AND/OR Branch-and-Bound for Computational Protein Design Optimizing K*

while $n_X \leftarrow EXPAND(\pi)$ do

else if $\exists \gamma \in \varphi \ s.t.$

 $PRUNE(\pi)$

else if $X \in \mathbf{R}$ then

if $MiniSat(\pi) = false$ then | $PRUNE(\pi)$

if $\exists a \in anc^{OR}(n)$ s.t.

 $PRUNE(\pi)$

 $UB_{Z_{\alpha}}(n_X) < threshold(\gamma)$ then

 $ub_{K^{\star}}(a,\pi) < lb_{K^{\star}}(a)$ then

13

15

16

18

19

20

Bobak Pezeshki (pezeshkb@uci.edu), Radu Marinescu (radu.marinescu@ie.ibm.com), Alex Ihler (ihler@ics.uci.edu), Rina Dechter (dechter@ics.uci.edu)

Summary

We introduce AOBB-K*MAP, a new branch-and-bound algorithm over AND/OR search spaces for solving the K*MAP protein design problem. In addition to formulating CPD as a graphical model for K* optimization and providing a new efficient algorithm, we also introduce a statically compiled heuristic for K*MAP not previously used in CPD. This work extends algorithms for Marginal MAP (MMAP) and provides a framework and proof-of-concept for continued adaptation of existing state-of-the-art mixed inference schemes over AND/OR search spaces to protein design.

inference schemes over AND/OR search spaces to protein design.				such that conformation variables are processed first, messages corresponding to upper and lower			2 3 4 5	and generate literals via constraints from \mathcal{M} and generate literals via constraint propagation $\mathbf{a} = \frac{1}{2} \mathbf{a} + 1$					21 22 23 24	end else if $ch_T^{unexp}(n) = \emptyset$ then $BACKTRACK(\pi)$		
$\mathcal{M} = \langle X, D, F \rangle$ Formulation			bounds on the partition functions of the conformation variables associated with the various protein			6 7 8	25 return $ub_{K^*}(n_D) = lb_{K^*}(n_D) = K^*MAP(\mathcal{M})$ 26 end									
$X = R \cup C_{\gamma}$	$\boldsymbol{D} = \boldsymbol{D}_R \cup \boldsymbol{D}_{C_{\gamma}}$	$F = E_{\gamma} \cup C$	states are computed and passed up				10	$\begin{array}{c} A_{Z\gamma}(B) \leftarrow 1 \\ A_{Z\gamma}^+(D) \leftarrow 0 \end{array}$								
Two sets of variables:	variables: Domains: Functions:		to be maximized over					11	11 $ub_{Z_{\gamma}}(n_D) \leftarrow \prod_{m \in ch_{T_{\gamma}}(n_D)} h_{Z_{\gamma}}(m)$					Results and Future Work		
• R esidue variables – capture the	 <i>D_R</i> - amino acids being 	• Energy of interactions between	Problem	iB X	Dmax v	v*d UB	OR	AND	CPP L	JBP SSP	EH time	K*MAP	BBK*t BE	3K* sln	Preliminary Results:	
amino acid (aa) at the respective	e considered at each position	the amino acids for each protein	1gwc_00021 2hnu_00026	4 12 4 14	203 203	4 6 10.29 5 7 15.08	28766 22010	134930 105458	77823 76657	55 2 38 0	5 16 4 7	9.79 13.18	152 437	9.79 13.18	AOBB-K*MAP performs better	
 Conformation variables - side 	• $D_{C\gamma}$ - various side chain conformations for all as	Sidle γ • Constraints enforcing	2hnv_00025	4 16	203	6 8 15.04	115194	297138	84882	39 0	3 16	13.65	962	13.65	than BBK* time-wise for the	
chain conformation of the aa at	considered at the correspon	ding consistency between side chain	2rf9_00018	6 18	205	7 9 16.68	20137	85033	87306	78 0	4 15	15.79	187	15.79	majority of problems tested with	
the corresponding residue for	residue for each protein stat	te v conformations and amino acid	2rfd_00035	6 16	205	6 8 17.70 5 7 11 52	896239	4253159	3273123	40 0	4 381	10 50	1242	16.77	2 MAP variables and better than	
protein states $v \in \{Bound, Unbound\}$		assignments	2rfe_00030 2rfe_00043	6 16	203	6 8 18.48	15390	40297	422357	34 43	4 80	18.04	50	18.04	half of those with 3 MAP variables	
p			2rfe_00044	6 16	203	6 8 18.62	37887	99927	1047107	30 3	6 86	18.19	75	18.19	 wMBE-K* provides solutions to 	
R_1 C_1	К* О	hiective	2rl0_00008	4 10	203	3 5 11.16	2	3	0	40 0	3 3	11.16	262	9.46	conditioned subproblems during	
	<u>K 0</u>	bjective	2xgy_00020	4 14 6 16	203	5 / 11.4/	43643	262523	743860	40 0	2 14 4 125	10.60	887	10.60	search, sometimes able to solve	
	$K^*(R_1,\ldots,R_N) = Z_R($	$R_1,, R_N) / Z_U (R_1,, R_N)$	3u7y 00009	5 12	203	4 6 4.51	2	3	0	40 0	3 6	4.51	191	4.51	the entire K*MAP problem exactly	
			4kt6_00023	4 16	203	6 8 14.80	38186	101546	23877	16 19	4 7	12.69	136	12.69	AOBB-K*MAP finds solutions	
(R_2) (C_2)	$7(B, B) = \sum \prod$	$(\mathcal{P}, \mathcal{C})$	4wwi_00019	5 14	203	5 7 15.43	8094	30774	17888	40 0	2 7	14.99	26	14.99	with greater K* values than BBK*	
\smile \bigcirc $))/$	$Z_{\gamma}(n_1n_N) = \sum_{\alpha} \prod_{\alpha}$	$\mathcal{O}_{\gamma(i)}(N_i, \mathcal{O}_{\gamma(i)})$	1gwc_00021	4 13	203	4 7 12.51	33881	590621	473189	388 6	8 205	11.92	551	11.72	Future Work:	
• //	$C_1,,C_N \mathscr{C}_{\gamma(i)}$	ee	2nnv_00025	4 1/	203	5 8 14 36	2151/1	10003	220825	77 0 57 0	4 153	16.18	880	13.65	 Incorporation of constraints into 	
_	$\prod_{\alpha} - \frac{E_{\gamma(i)}^{sb}(C)}{\Re T}$	$\frac{\gamma(i)}{\gamma(i)}$, $\prod c = \frac{E_{\gamma(ij)}^{pw}(C_{\gamma(i)}, C_{\gamma(j)})}{\frac{QT}{QT}}$	2rfe_00012 2rfe_00014	5 15	205	5 8 14.79	4087	13087	39411	57 0	3 85	14.36	45	14.36	wMBE-K* to exploit determinism,	
•		$\Gamma_{\mu\nu}^{\mu\nu} = \Gamma_{\mu\nu}^{\mu\nu}$	2rfe_00017	5 15	203	5 8 11.46	245894	1063198	6389737	227 25	43 333	10.86	78	10.80	and the use of a dynamic heuristic	
	$E^{so}_{\gamma(i)} \in E^{so}_{\gamma}$	$E_{\gamma(ij)}^{r} \in E_{\gamma}^{r}$	2rfe_00030	4 15	203	5 8 13.61	256957	1327425	2816050	726 83	77 274	11.12	275	10.97	Adaptation of state-of-the-art	
•))	tack $V^*MAD = $	$max V^*(D D)$	2xgy_00020	5 15	203	5 8 11.39	398102	2383318	7422285	42 0	20 360	10.96	1388	10.96	[approximate] search and sampling	
	$usk: \wedge MAP = 1$	$\prod_{n \in \mathbb{N}} K_{1}, \dots, K_{N}$	3u7y_00009	4 13	203	4 7 12.29	5758	16108	68579	50 0	5 86	11.85	210	11.85	algorithms to solving the K*MAP	
	\	T, , 1A	Aurui 00010	5 15	202	5 9 16 05	22045	97495	01677	176 75	5 190	14.00	24	14.00	problem.	

MAX

R

SUM

Cy

MBE-K*

M_B

 $UB(Z_{o}(R))$

Based on a constrained ordering

∠M_B Mu⁻¹

LB(Z₀(R))

Algorithm 2: AOBB-K*MAP

 $\gamma \in \varphi$

output: $K^*MAP(\mathcal{M})$

Initializa Mini Cat

1 begin

input : CPD graphical model \mathcal{M} ; pseudo-tree \mathcal{T} ; ¹⁴

 K^* upper-bounding heuristic function

 $h_{K_{\star}}^{ub}(.); Z_{\gamma}$ upper-bounding heuristic

function $h_{Z_{-}}^{ub}(.)$; and subunit stability

threshold $threshold(\gamma)$ for each subunit 17

1st Annual AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE), part of AAAI-22