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Abstract

Bucket Elimination (BE) is a universal inference scheme
that can solve most tasks over probabilistic and determin-
istic graphical models exactly. BE works by eliminating
(marginalizing) variables one by one, and generating an in-
termediate bucket function for each one of them sequen-
tially. However, it often requires exponentially high levels of
memory (in the induced-width) preventing its execution. In
the spirit of exploiting Deep Learning for inference tasks, in
this paper, we will use neural networks to approximate the
bucket function computation. In our scheme training is car-
ried out for each problem and for each of its variables, in-
dependently. The resulting Deep Bucket Elimination (DBE)
algorithm is developed for computing the partition function.
We provide a proof-of-concept empirically using instances
from several different benchmarks, showing that DBE can be
more effective than current state-of-the-art approaches (e.g.
the mini-bucket schemes) especially when the problems are
sufficiently hard.

Introduction

Probabilistic graphical models, including Bayesian net-
works and Markov random fields, provide a framework
for information representation and reasoning (Pearl 1988;
Spiegelhalter and Lauritzen 1990; Frey 1998; Jordan 1998;
Koller and Friedman 2009; Darwiche 2009; Dechter 2013a).
Bucket Elimination (Dechter 1999) is a universal exact algo-
rithms for probabilistic inference. This is a variable elimi-
nation algorithm that can answer a variety of queries, rang-
ing from constraint satisfaction to pure combinatorial op-
timization (e.g., Most Probable Explanation (MPE/MAP))
and weighted counting (Partition Function, Probability of
Evidence, Solution Counting). Even the most challenging
mixed tasks, involving both optimization and summation,
such as computing the Marginal Map or the Maximum Ex-
pected Utility over an influence diagram can be addressed
with BE (Dechter 2013a). The BE algorithms take advan-
tage of the structure of the model’s graph. Most bucket-
elimination algorithms, however, are time and space expo-
nential in the induced-width of the underlying dependency
primal graph of the model. So when the induced-width is
too high the algorithm cannot be executed. In this work, we
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propose to address this fundamental problem by using deep
learning to approximate the BE functions.

To better see the problem, note that the central operation
of BE is processing the bucket functions of each variable one
at a time, in sequence. Processing a bucket involves combin-
ing all its functions by product (or by other operators) and
then eliminating the bucket’s variable by a summation or an
optimization operator to generate the output bucket’s func-
tion A (also called a message). The arguments (called scope)
of X\ is the set of all the bucket’s variable excluding itself.
The bucket’s function A is then placed in its parent bucket
which is associated with the variable closest in the ordering.
The bucket’s function is normally assumed to be expressed
as a table over all the configurations of its scope. However,
if the table is too large to fit memory, as it is exponential in
the bucket’s scope, where the maximum scope is known as
the induced-width, computing and memorizing the bucket’s
function is not feasible.

Since BE cannot be executed unless the induced-width
is bounded, significant research was carried out over the
years exploring bounding schemes and Monte-Carlo meth-
ods (Dechter and Rish 2003; Liu and Ihler 2013, 2011,
2012). Methods based on compact representation such as
decision diagrams and exploiting determinism were also ex-
plored (Dechter and Larkin 2001; Larkin and Dechter 2003;
Mateescu, Dechter, and Marinescu 2008; Chavira and Dar-
wiche 2007; Gogate and Domingos 2013).

The approach we take here is based on Deep Learning
(DL) (Goodfellow, Bengio, and Courville 2016; Baldi 2020),
leveraging the well known universal approximation prop-
erties of neural networks (NN) (Hornik, Stinchcombe, and
White 1989; Cybenko 1989; Baldi 2020) to approximate the
intermediate bucket functions generated by BE algorithms.
To prove the concept, we focus on the sum-product tasks, yet
our scheme is immediately applicable to optimization and
mixed, max-sum queries. In probabilistic graphical mod-
els, the sum-product problem, which includes the Partition
Function and the Probability of Evidence as special cases,
has many applications in areas such as protein side chain
prediction, genetic linkage analysis, and scheduling (Fishel-
son, Dovgolevsky, and Geiger 2005; G. Verfaillie and Schiex
1996; Sontag et al. 2008).

In summary, our Deep Bucket Elimination (DBE) scheme
addresses the memory bottleneck of model-based inference



algorithms such as bucket elimination by training NNs to
approximate the generated bucket-functions. Our empirical
results show that DBE can generate significantly more accu-
rate results compared with weighted mini-bucket, a state-
of-the-art scheme, on hard instances from several bench-
marks. However, DBE is not yet competitive time-wise since
it requires training a sequence of NNs for each problem
instance. Overall, DBE is suitable for hard enough prob-
lems, which cannot be addressed satisfactorily with current
methods. Since BE’s relaxations such as the mini-bucket-
based schemes are the primary way of generating heuris-
tics for subsequent search. Therefore, DBE has the potential
for yielding superior heuristics (albeit, not necessarily upper
bounds). Therefore, at this initial exploration stage, we focus
more on DBE’s accuracy, leaving speed optimization issues
for followup studies.

Related Work

As note, approximating and bounding the Bucket Elimina-
tion algorithm has been carried out extensively over the
years for all probabilistic queries. Well known is the Mini-
Bucket Elimination scheme (Dechter and Rish 2003) and
its variants, such as Weighted Mini-Bucket (WMB), aug-
mented with message-passing cost-shifting (Liu and Ihler
2013, 2011). Those schemes also extend into iterative ver-
sions such as generalized belief propagation (IBP, IIGP)
(Mateescu et al. 2010; Liu and Ihler 2012; J. S. Yedidia and
Weiss 2005; M. J. Wainwright and Willskey 2005). Some
recent work for mixed queries appears in (Lee, Ihler, and
Dechter 2018; Lee et al. 2019; Ping, Liu, and Ihler 2015).
Anytime schemes that augment the mini-bucket scheme with
sampling can enhance accuracy as more time is available
(Liu, Fisher III, and Ihler 2015; Gogate and Dechter 2011).
Here we will compare against weighted mini-bucket only,
aiming to compare more broadly in our future work.

Other work aiming to harness neural network technology
and the primary inspiration of our work, is Deep Reinforce-
ment Learning (DRL) (Mnih et al. 2015, 2013; F. Agostinelli
and Baldi 2018; Agostinelli et al. 2019). In reinforcement
learning the value function is learned from temporal trajec-
tories (samples) created from real executions or simulated
ones. The value function can also be obtained by a vari-
able elimination scheme over an underlying Markov Deci-
sion Process (MDP) (Sutton and Barto 2018; Frangois-Lavet
et al. 2018). Recent efforts in Tractable learning and reason-
ing, e.g., using cutset networks (Rahman, Jin, and Gogate
2019) are also related, but work within a search framework.
Our approach may seem related to Graph Neural Networks
(Baldi 2020; Z and Savelsbergh 1999; Scarselli et al. 2009;
Gilmer et al. 2017; Yoon et al. 2018; Heess, Tarlow, and
Winn 2013a) in that it is a message-passing algorithm ex-
ploring the underlying graph structure of the problem. It
clearly shares the aim of bringing neural network into rea-
soning tasks. However our scheme differ significantly from
those based on GNN. We explore learning within each prob-
lem instance only and there is currently no attempt at learn-
ing across problem instances. In particular We do not have
augmented variables or hidden structures. Our algorithm
builds ambitiously, on an exact scheme (BE) rather then

on an approximate message-passing scheme (Heess, Tarlow,
and Winn 2013b; Yoon et al. 2019). All our NN training is
internal to the instance. It is not end-to-end but rather local
to each bucket message and no learning across instances is
aimed for. Another related work is (Silvestri, Lombardi, and
Milano 2020), in which they showed some initial empirical
results on using NNs in solving constraint satisfaction prob-
lems.

Background

A graphical model, such as a Bayesian or a Markov net-
work (Pearl 1988; A 2009; Dechter 2013b) can be defined
by a 3-tuple M = (X,D,F), where X = {X; : i €
V,V ={1,...,n}} is a set of n variables indexed by V and
D = {D; : i € V} is the set of finite domains for each
X, (i.e. each X; can only assume values in D;, and each D;
is finite). Each function f, € F is defined over a subset of
the variables called its scope, X, where o C V are the in-
dices of variables in its scope and D,, denotes the Cartesian
product of their domains, so that f, : D, — R> 0. The
primal graph of a graphical model associates each variable
with a node. An edge between node ¢ and node j is cre-
ated if and only if there is a function containing X; and X
in its scope. Graphical models can be used to represent a
global function, often a probability distribution, defined by
Pr(X) o« [],, fa(X4). Animportant task is to compute the
normalizing constant, also known as the partition function

Z =) x s fa(Xa).

Algorithm 1: (Deep) Bucket Elimination (DBE)

Input: Graphical model M = (X, D, F), Ordering
d= Xy, ..., Xy, t-bound 7, €, #samples ns
QOutput: the partition function constant and
messages Ag_sp
1 foreach p fromn to 1 do
2 (Initialize buckets) put all unplaced functions
mentioning X,, in B,,.

3 foreach p fromn to 1 do
Let X, be closest ancestor variable in d of X,
that is in bucket B,
5 Generate the bucket function:
)\p%a — ZX@ HfaeBp fa
If width(Xp) < ¢ then P p—sa < )\pﬂa,
else
Hd p—sa < approximate-NN (A, 4, €, ns)
Put ue p—q in B,

RIS

10 return All ug-messages generated (product of
messages B is the p(e))

Bucket Elimination Given a variable ordering, BE (pre-
sented in Algorithm 1, when excluding steps 6,7 and 8) pro-
cesses variables one by one with respect to a given ordering.
For the next variable X, it collects all the functions not-
yet-processed having X; in their scopes into a bucket of X;
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(b) Bucket elimination example

Figure 1: (a) A primal graph. of a graphical model with 7 vari-
ables. (b) Illustration of bucket elimination.

denoted B;. This includes the original functions in the mod-
els as well as the messages created by processing previous
variables. We do not distinguish between the different func-
tions as shown in step 5. It then marginalizes X; out from
the product of functions in B; generating a new, so called,
bucket function or bucket function, denoted \;_,,, or \; for

short.
)\i~>7ri = Z H fa

X; fa€B;

where X, is the closest variable in the scope of this
new function along the ordering (constants are placed in
B7). The bucket’s function is placed in the bucket of X,
for later processing. Once all the variables are processed,
BE outputs the exact value of Z by taking the product
of all the constant present in the bucket of the first vari-
able. Figure 1a shows a primal graph of a graphical model
with variables indexed from A to G with binary functions
over pairs of variables connected by an edge. In this par-
ticular example F' = {f(A), f(A4, B), f(A,D), f(4A,G),
f(B,C), f(B, D), f(B, E), f(B, F), f(C, D),

f(C,E), f(F,G)}.

Bucket-Elimination can be viewed as a message-passing
algorithm along its bucket-tree. The nodes of the tree are the
different buckets. Each bucket of a variable contains a set
of the model’s functions depending on the given order of
processing (see Algorithm 1). There is an arc from the B;
to a parent bucket B;, if the function created at bucket B; is
placed in bucket B;. We illustrate BE message flow on our
example problem in Figure 1b.

Complexity Both the time and space complexity of BE are
exponential in the induced-width of the primal graph along
the ordering, which is the size of the largest number of vari-
ables, (minus 1) in the scope of any message computed. The
induced-width can be computed as a graph parameter based
on the ordered primal graph (Dechter 2013b). Clearly, BE
becomes impractical if the induced-width is large. We de-
note by scope(f) the set of arguments of function f. In par-
ticular scope(B) is the set of variables in bucket B.

Deep Bucket Elimination

Algorithm 1 presents DBE which is identical to BE, except
that when the induced-width is beyond a given i-bound, it
approximates the bucket’s function by training a neural net-
work as described in its steps 6,7 and 8. As before central op-
eration of BE is processing the bucket of each variable one at
the time. but, when the bucket’s functions are too large, BE
cannot be executed. To overcome this limitation, we estimate
the bucket’s function by training a neural network having a
manageable size, aiming toward achieving an error bounded
by a given . The error function used is the average mean-
square error. For example, in Figure 1, instead of sending an
exact function from the bucket of D, A\p_,c(A, B,C), we
can send a compact approximation pue p—c (A4, B, C).

Deep Bucket Elimination DBE’s, approximation is
carried out by training a neural network procedure
approximate-NN presented in Algorithm 2. Assuming a
given neural network structure and a target function A, the
training scheme first generates a given number of samples
from the function and then trains the neural network until a
provided error bound is obtained or until a cap on the num-
ber of training iterations (#epochs) is reached.

In principle, neural networks can approximate any reason-
able function (Hornik, Stinchcombe, and White 1989; Cy-
benko 1989; Baldi 2020). So, the main empirical question is
how to fit the NN’s architecture and size to estimate a po-
tential bucket-function, while maintaining a desirable error
bound, and how these errors translate into a global error. We
next provide additional details.

Algorithm 2: approximate-NN(, ¢, n.s)

Input: )\ function on a set of variables X, ¢ bounds
the bucket’s error, #epochs a bound on the
number of epochs, NN, the neural network
structure, n.s number of samples

Output: uq(z), the trained neural network

1 samples < generate-samples(\, n.s)

2 p=1

3 while errore > €;

4 & p<#epochs do

5 e < train(N N, p, samples)

6 p <—p+increment

7 update error

8 return g and a bound on the error
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Figure 2: The structure of the MaskedNet.

The Neural Network Architecture We use two types of
NNs treating differently problem instances with and with-
out determinism (i.e. having 0 within a bucket function).
For instances without determinism, we use a feedforward
neural network with fully connected layers and ReLU acti-
vation function for each layer. The number of layers and the
number of units in each layer can be tuned according to the
complexity of the instance. For instances with determinism,
we propose the MaskedNet, which first predicts whether the
output is deterministic, namely whether it is zero, and if not,
predicts the actual value. The structure of the MaskedNet is
described in Figure 2. The input is sent to a couple of fully
connected layers to obtain a feature vector which summa-
rizes the high level representation of the input. Then this fea-
ture vector is sent to two sister networks: 1) a network that
outputs a binary mask which is responsible for determining
whether the final output is zero, and 2) a network responsi-
ble for predicting the target value of the Bucket’s function.
The activation functions of the final layer for the first and
second sub-networks are the logistic function and the soft-
plus function, respectively. The outputs from the two sister
networks are multiplied together to get the final output of the
MaskedNet. In our experiments, we found that the Masked-
Net effectively decreases the error of the Bucket’s function
approximation compared to a plain feedforward network.

Sample Generation Given a bucket B, of X, we gen-
erate the required #samples uniformly at random from its
bucket’s function to serve as our training set. The bucket’s
function A, is defined in Equation 1.

=Y 11 fa e))

Xp fa€Bp

We first generate a random configuration from the function’s
domain which will be in the input layer of the network. We
subsequently match it with its function’s value computed as
follows. Specifically, given a configuration Z, selected ran-
domly where S = scope(B,) excluding X, then for each
x, € D, we compute the product ¢(Zs, z,) = HfaeBp fa
(a product of constants) and subsequently sum over the dif-
ferent values of x,, yielding the function value A, (Z,).

Training the Neural Network Once the samples are
available, we train the NN by minimizing the mean square
error of the output prediction and the target value by stochas-
tic gradient descent. For the optimization we use the Adam
optimizer (Kingma and Ba 2014) with a learning rate of
0.001 and mini-batchsize of 256. At the end of each itera-
tion, we compute the mean squared error between the neu-
ral network output and the target value on the training set.
We stop training when we acheiev the e error on the train-
ing set, or when the number of maximum number of epochs
is reached. When necessary, additional hyperparameter op-
timization is carried out using the Sherpa software (Hertela
et al. 2020).

Empirical Evaluation

Algorithms We run experiments using the DBE algorithm
and compared its performance against the weighted mini
bucket WMB scheme (Dechter and Rish 2003; Liu and Ihler
2013). We use the WMB as our baseline because this scheme
also directly aims to address the same memory bottleneck
of BE, and it is controlled by the same ¢-bound parameter.
Higher i-bound generally leads to stronger and more accu-
rate bounds for the mini-bucket scheme. Therefore, using
the same i-bound parameter ensures that similar memory re-
sources are used, allowing for a meaningful comparison.

Benchmarks We carried out experiments on instances se-
lected from three well-known benchmarks from the UAI
repository (Easy Grids, Hard grids, Pedigrees, and DBNs).
In each benchmark we distinguish between problems that
can be solved exactly, which we call easy”, and those that
cannot be solved, called “hard”. We also distinguish bench-
marks that possess determinism, namely having a high pro-
portion of zero probabilities, a feature which can impact
training. We selected 6 instances from the relatively easy
Grids (width 20-30), 6 from the hard Grids (1600 vari-
ables, width 55), 6 instances from the Pedigree benchmark, a
benchmark with high levels of determinism, and 6 instances
from the DBN benchmark, totalling 24 instances.

Performance Measure To evaluate the performance, we
calculate the error: error = |logi0Z* — logioZ| where Z
is the generated estimate of the partition function, Z, and
Z* is the exact reference. When the exact Z is not available
(for hard Grid benchmark), Z* is a surrogate to Z, which
is obtained from (Kask et al. 2020). Their estimate is ob-
tained using an advanced sampling scheme for a duration
of 100 * 1hr. Another method we used to address the lack
of exact Z is to convert a solvable problem instance into a
hard one for BE, by selecting a variable ordering having a
high induced-width. We used this methodology for the Pedi-
gree benchmark, since all Pedigree instances can be solved
exactly.

Results

Our overall results are shown in the four tables of Figure
3, one for each benchmark. Each table displays the number
of trained buckets (#NN) and the error obtained by both



i-bound=10 WMB i-bound=20 WMB
Id name di #v w || #NN error Id name di #v w |l #NN error
1 lgrid1010f10wi 2 | 100 | 21 || 31 B 32.004 1 igrid4040f10 2 :1600: 55 || 308 i 21545
2 igrid1010f10i 2 | 100 i 13 8 | 1.582 2 i grid4040f5 i 2 :1600: 55 || 308 i 84.92
3 i grid2020f2 {2 i 400 | 27 114 | 1124 3 | grid4040f2 {2 {1600 55 308 | 25.24
4 }grid2020f10{ 2 | 400 | 27 || 114 | B 506 4 | grid4040f2wi 2 11600 55 || 376 | 32
5 grid2020f5 ;2 | 400 | 27 || 114 [ 39.435 5 | grid4040f15 i 2 {1600} 55 || 308 i L 3382
6 igrid2020f1512 | 400 | 27 || 114 )01 6 igrid4040f15w 2 i1600 i 55 || 376 : NGs 03
(a) Grid, Easy, Without Determinism (b) *Grid, Hard, Without Determinism
i-bound=20 DBE WMB i-bound=20 DBE WMB
Id name di #v w || #NN error error Id name di #v w || #NN error error
1} pedigreedo |7 i 842 | 30 || 92 I sg017||[ME 67977 1i rmm2o (2} 40 | 21| 20 0.0376 0.0007
2 | pedigreest i 5 i 885 i 32 || 92 il 11362||I  4.1497 2F rbm21 (2 42 {22 || 22 | 0.1787 || 6 3913
3| pedigree7 4 i 867 | 34 || 108 B 3.578s|[B 60012 3i rbm22 (2§ a4 {23 || 22 | 0.572¢ ||ITE 6549
4 | pedigrees4 i 5: 922 i 33 || 106 i 2a728||I 70762 4 {rbmferro20i2 i 40 i 21 || 20 i 0315 0.005
5 pedigree31 |5 11006} 30 || 85 N g.0972 ||MNTZ 3603 5 {rbmferro21i2 i 42 i 22 || 22 il® 2.803||F 1.984
6 | podgreeto |5 i 693 | 28 || 43 il 1.4428||F 2.5809 6 | rom-ferro22i2 i 44 | 23 || 24 | 0526l 0.517

(c) Pedigree, Hard, With Determinism

(d) DBN, Easy, Without Determinism

Figure 3: Results on performance of DBE against WMB. d:domain size, #v:variable numbers, w:induced width, #N N: number of NNs,
error: L1 error for referenced and estimated log(Z). *Note: Here, referenced Z is approximated by (Kask et al. 2020)

schemes (DBE and WMB). In all the experiments we used
5 x 10° samples for training the NNs with an error bound of
€ = 1075, As noted, at this preliminary stage of our work
we were not concerned with the time performance but aimed
primarily at accurate results. Tuning #samples, is left for
future work. We also manually tuned the number of epochs
#epochs to the training error (see Algorithm 2). Namely, if
the training error obtained was not acceptable (far from ¢),
we increased #epochs. Additional details regarding the ex-
periments and the results are provided in the Supplementary
Material section.

Grids The results for the Grid benchmarks are shown in
Figures 3b (hard) and 3a (easy), respectively. For the rela-
tively easy problems we used a lower ¢-bound of 10 to facil-
itate the training of a relatively large number of buckets. As
expected, when an instance has a low induced-width only
a small number of buckets are trained (e.g. Id 2) and both
schemes obtain high accuracy. As the induced-width is in-
creased, more buckets are trained yet DBE still obtains high
accuracy. In all cases, DBE has significantly better perfor-
mance than WMB. On the hard instances, (Figure 3b) we
used the maximum possible z-bound of 20. We observe that
DBE can achieve a far lower error compared with WMB. For
all the Grids we used feedforward neural networks with 2
hidden layers of 100 nodes each, and with number of epochs
bounded by 10, which was sufficient to obtain good results.

Pedigree Pedigree results are presented in Table 3c. Since
Pedigrees can be solved exactly with good variable order-
ings, alternate variable ordering were used to create hard
Pedigree problems for our experiments. As alternate order-

ings do not change Z, the exact Z was available for ref-
erence. Here also we see that DBE can achieve low error,
which is far smaller than the error achievable by WMB with
the same ¢-bound. As expected, the number of trained buck-
ets vary with the induced-width. The Pedigree instances in-
clude determinism, hence, we used the MaskedNet architec-
ture for the NNs on this benchmark as we described earlier.
We used networks having 3 hidden layers each containing
100 nodes for the MaskedNet (One for the blue and one for
each of the yellow layers in Figure 2). The #epochs was
bounded at 20 for all instances except for ids 2 and 3 where
we used 40 and 80 bounds, respectively.

DBN The results for the DBN benchmark are shown in
Figure 3d. All these instances have an exact solution, yet
they are almost intractable memory-wise having widths in
the range 20-23. Here too DBE can achieve a high accuracy,
sometime significantly better than the WMB algorithm (in-
stances 2 and 3) that appear harder in this set. DBE achieves
low error (instances 1,4 and 6), for which WMB is almost ex-
act. We used feedforward architecture having 2 or 3 number
of hidden layers based on the complexity of the instances
and 100 number of nodes in each layer. The #epochs = 10
for instances ids {1, 2, 3}, #epochs = 20 for instance id 5,
and is is 60 and 100 for instances 4 and 6, respectively.

The Impact of the ;-bound Normally, the highest i-bound
possible is 20, depending also on the domain size. For the
WMB schema, both theory and practice show that higher i-
bound often yield more accurate approximations (Dechter
and Rish 2003). In our experiments we initially used several



Grid DBE i-bound 20 DBE i-bound 15

Id name H| #v | w |[#NN| error | T(s) ||#NN| error T(s)

1igrid2020f10 e | 400 | 27 || 31 0.53 | 3976/ 69 il 4 | 10008
2igrid2020f5 | e | 400 i 27 |[ 31 | 2026 | 40as|| 69 | 2.84 [ sa4a
3igrid4040f10 h 11600} 55 |[308 I 8.45 Mag711 4215-9.91 52133
4 h

grid4040f5 1600 55 || 308 {IF 20.17 M3s60s| 421 {37 79 F53037

Figure 4: The impact of the ¢-bound, H:hardness, e:easy,
h:hard, #v:number of variables, w:induced width, # /N N:
number of NNs, error: L1 error for referenced and esti-
mated log(Z), T': algorithm running time.

i-bounds to explore the impact of this parameter and we im-
mediately observed that with higher i-bound DBE achieves
higher accuracy with less time. To illustrate this point, we
show results on four grid instances running with ¢-bounds of
1 = 20 and ¢+ = 15. The table in Figure 4 depicts the error
and the time for both algorithms. We clearly see that DBE’s
accuracy and time is significantly better when the ¢-bound is
higher and that the number of buckets that need to be trained
is reduced. With fewer trained buckets, we expect higher ac-
curacy (as more functions are exact) and lower times (as we
have less functions to train).

Summary of Experiments Our empirical evaluation
shows that DBE is effective at generating accurate estimates
of the partition functions, and is superior to the WMB base-
line, especially when problem instances are hard.

We acknowledge that DBE is inherently time consuming,
far more than WMB since it involves training multiple (e.g.,
hundreds) NNs. Often WMB takes seconds, or at most min-
utes, when DBE may take hours. On the other hand, as we
noted, WMB is not able to improve its performance, even
with more time, whereas DBE is able to do so, with room
for improving its speed in future studies.

Conclusion and Future Work

The paper presents Deep Bucket Elimination (DBE), a new
algorithm that harnesses neural network technology to ad-
vance the universal Bucket Elimination algorithm. We pro-
vide an initial empirical evaluation showing very good per-
formance on challenging instances from three benchmarks.
In particular, its superior performance against the weighted
mini-bucket scheme, is clearly established.

We should emphasize that the proposed DBE scheme is
novel in the way it incorporates NNs into traditional graph-
ical models algorithms. Although the scheme is still in its
infancy, it opens new doors for exploring these methodolo-
gies. In particular, it opens up reasoning algorithms into a
new modus operandi that tolerates significant pre-processing
and interaction with the user, for the sake of achieving better
solutions to challenging reasoning tasks.

Future work We chose to compare against WMB since it
is a widely known scheme that shares the same structure
and some of the same properties as DBE. The WMB will

not be able to improve its performance even given more
time. That being said, other schemes developed in recent
years are anytime and were shown to be more powerful (Liu,
Fisher 111, and Ihler 2015; Gogate and Dechter 2011). Some
of these schemes augment the mini-bucket approach with
search or sampling facilitating more accurate solutions or
tighter bounds with more time. Consequently, the primary
focus of our future work will be on studying DBE’s potential
against advanced anytime schemes (WMB-IS or Dynamic-1S
(Liu, Fisher III, and Ihler 2015; Gogate and Dechter 2011)).
We will also explore speeding up the training in DBE.
Many design choices we made were addressed to provide
a proof-of-concept regarding accuracy while deferring effi-
ciency issues to future work. For example, we use the same
network architecture and the same number of samples across
all the instances of a benchmark and across all their buck-
ets, ignoring their function complexity (e.g., number of ar-
guments). We will also explore ideas from transfer learn-
ing (Pan and Yang 2010; Weiss, Khoshgoftaar, and Wang
2016) techniques; retraining a network to approximate a spe-
cific bucket function, and then fine-tuning the same network
to approximate the others. In addition we will explore us-
ing different NN architectures and different sample size, de-
pending on each bucket function complexity and width.
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Supplemental Material

Experiments The parameters and results for all the exper-
iments in the paper is provided in Figures 5, 6, 7, 8



Grid Easy DBE WMB

name #v |[d|w| i exactZ ||#ep|Arch € #NN| estZ DBE |error DBE estZ WMB error WMB
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Figure 5: Easy Grid benchmark experiments. #v:number of variables, d: maximum domain size , w:induced width, i:ibound,
#ep:bound on the number of epochs, Arch:NN architecture ff stands for feedforward and each layer has 100 nodes , e:error
bound for DBE, # N N: number of trained NN, estZ: estimated Z value, error: L1 error for exact and estimated log(Z).

Grid Hard DBE WMB

name #v | d|w]| i ref2 #ep |Arch € #NN| estZ DBE |error DBE estZ WMB error WMB
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Figure 6: Hard Grid benchmark experiments. #v:number of variables, d: maximum domain size , w:induced width, i:ibound,
re f Z:referenced Z value computed with 100 hours of abstraction sampling , #ep:bound on the number of epochs, Arch:NN
architecture ff stands for feedforward and each layer has 100 nodes, e:error bound for DBE, # N N: number of trained NN,
estZ: estimated Z value, error: L1 error for referenced and estimated log(Z).

Pedigree Hard DBE WMB
name #v | d|w] i exactZ || Arch | #ep € #NN| estZ DBE |[error DBE estZ WMB error WMB
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Figure 7: Hard Pedigree benchmark experiments. #v:number of variables, d: maximum domain size , w:induced width,
i:ibound, Arch:NN architecture MN stands for MaskedNet and each layer has 100 nodes, #ep:bound on the number of epochs,
e:error bound for DBE, # N N: number of trained NNs, estZ: estimated Z value, error: L1 error for exact and estimated

log(Z).



DBN Easy DBE WMB

name #v [ d | w i exactZ #ep € Arch #NN| estZ DBE |error DBE estZ WMB error WMB
rbm20 40 {2 {21i{20 | 5853 10 i 1.00E-06 ff-2layers 20 58.4924; 0.0376 58.5307 0.0007
rbm21 42 2 i22i20 63.15 10 1.00E-06 ff-2layers 22 62.9713 0.1787 69.5413 6.3913
rbm22 44 2 :23:20 66.55 10 1.00E-06 ff-2layers 24 65.9774 0.5726 75.2049 8.6549
rbm-ferro20 40 2 i21:20 151.16 60 1.00E-06 ff-2layers 20 150.845 0.315 151.155 0.005
rbm-ferro21 42 (2 i22:i20 152.62 20 1.00E-06 ff-2layers 22 155.423 2.803 154.604 1.984
rbm-ferro22 44 2 123:20 166.11 100 i 1.00E-06 ff-3layers 24 165.584 0.526 166.627 0.517

Figure 8: Easy DBN benchmark experiments. #wv:number of variables, d: maximum domain size , w:induced width, ¢:ibound,
#ep:bound on the number of epochs, e:error bound for DBE, Arch:NN architecture ff stands for feedforward and each layer
has 100 nodes ,# N N: number of trained NNs, estZ: estimated Z value, error: L1 error for exact and estimated log(Z).



