
A Weighted Mini-Bucket Bound for Solving Influence Diagrams

Summary

❖ Valuation Algebra for Influence Diagrams

Valuation for IDs:

Combination Marginalization

Re-writing MEU Query by ValuationAlgebra for IDs

Valuations for IDs  form a commutative semi-ring

✓Axiomatization of valuation algebra ensures decomposition by re-arranging 

combinations and marginalizations (distributive law).

✓ Local computation is implemented by Bucket Elimination.

❖ Influence Diagram

Factored MDP as an ID

• Chance variables

• Decision variables

• Probability functions

• Utility functions

• Partial ordering constraint

• Policy functions

• MEU and optimal policy

✓ A bounding scheme that interleaves variable elimination and 

reparameterization on valuations for influence diagrams (IDs) over the 

weighted mini-bucket decompositions of influence diagram.

✓ It improves the quality of the bound and computation time compared with 

state-of-the art decomposition bounds of IDs, and generate admissible 

heuristic evaluation functions suitable for AND/OR graph search.

❖ Graphical Model Decomposition

• The exact decomposition captures dynamic programming structure.

• The approximate decomposition introduces auxiliary variables and bounds  the complexity.

• Messages can be passed over a decomposed join-graph to generate upper bounds.

Backgrounds

[Shenoy 1992, Jensen 1994, Lauritzen 1997, 

Maua, 2012, Moral 2018]

[Dechter, 1999]

Bucket Tree Decomposition
✓ exact

✓ local computation

[Dechter, 1999]

Mini-Bucket Tree Decomposition
✓ Approximation

✓ boundedcomplexity

[Dechter, 2003]
Join-Graph Decomposition
✓ Approximation

✓ iterative and loopy message passing

[Mateescu 2010]

✓ The powered-sum operator

❖ Previous Work: Decomposition Bounds for IDs

✓ When marginalizing X from the combination of valuations,          

exchange combination and marginalization.

[Lee, Ihler, Dechter, 2018] 

❖Weighted Mini-Bucket Decomposition for IDs

✓ Bucket S2 is decomposed to Mini-bucket 1 and 2 with “i-bound” 2.

❖ Reparameterizing WMBE Bound

A Weighted Mini-bucket Bound for IDs

✓ Processing all remaining buckets generates an upper bound of MEU.

✓ Introduce cost shifting functions between mini-buckets.

✓ Tighten the upper bound by optimizing weights and costs.

❖Optimization Objective for WMBE-ID Bounds

✓ “fully” decomposed bound,                 is a surrogate upper bound.

Algorithm

Experiments

❖ Comparing Decomposition Bounds for IDs

❖WMBE-ID vs. JGDID(i=1)

Initialization 
• Ln1: Create a mini-bucket tree and join-graph, 

allocate functions to mini-buckets and initialize 

weights uniformly.

• Ln2: WMBE-WC2: optimize weights w.r.t. the initial 

function allocations (optional).

Interleaving VE and optimization
• Ln5: Process one layer of mini-buckets at a time.

• Ln7-Ln10: Jointly optimize cost functions, and 

weights over the mini-buckets for iteration limits.

• Ln12-Ln16: Generate messages by marginalization 

and pass messages downward.

• Ln17-18: Combine messages and weights before 

eliminating the next layer.

Algorithm configurations
• MBE: no optimization, no weights.

• WMBE-U : no optimization, use uniform weights.

• WMBE-UC: optimize cost functions only.

• WMBE-WC1: optimize both but skip initial weight 

optimization step over the join graph.

• WMBE-WC2: optimize both and perform optional 

weight optimization step over the join graph.
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(probability, expected utility value)

❖Optimization Setup for Computing Weights and Costs

Objective: value component of  

Parameters:

Constraints:

[Sequential least squares programming]

[Exponentiated Gradient Descent]

• Compared 4 different configurations of 

the WMBE-ID, state-of-the-art JGDID, 

and MBE, MBE with relaxed ordering.

• Non-iterative algorithms (WMBE-U, 

MBE, MBE-Re) produced very loose 

bounds.

• i-bounds 1, 5, 10, 15, 

maximum iterations 1, 5, 10, 20

• At lower i-bounds, JGIDID performs 

the best.

• At higher i-bounds, WMBE-WC1,2 

improved the bound and produced 

tighter bounds in shorter time.

• Compared the ratio of 

the time and bound from 

WMBE-WC2  against 

JGDID(i=1).

• At high i-bounds, WMBE-

WC2 produced tighter 

bounds (ratio less than 1.0) 

than JGDID(i=1)  in most 

of the instances.
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