
UNIVERSITY OF CALIFORNIA,
IRVINE

Anytime Approximate Inference in Graphical Models

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

Qi Lou

Dissertation Committee:
Professor Alexander Ihler, Chair

Professor Rina Dechter
Professor Sameer Singh

2018

c© 2018 Qi Lou

DEDICATION

To my grandfather in heaven.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ALGORITHMS viii

ACKNOWLEDGMENTS ix

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiii

1 Introduction 1
1.1 Main Contributions of This Dissertation . 3
1.2 Outline of This Dissertation . 3

2 Background 6
2.1 Graphical Models . 6

2.1.1 Inference Tasks in Graphical Models 8
2.2 Variational Bounds . 9

2.2.1 Bucket Elimination (BE) . 10
2.2.2 Mini-bucket Elimination (MBE) . 11
2.2.3 Weighted Mini-bucket (WMB) . 12

2.3 Search in Graphical Models . 17
2.3.1 Heuristic Search . 17
2.3.2 A* and SMA* . 18
2.3.3 AND/OR Search for Graphical Models 19

2.4 Monte Carlo Methods . 25
2.4.1 Some Concentration Results . 26
2.4.2 Importance Sampling . 29

3 Best-first Search Aided by Variational Heuristics 32
3.1 Anytime Anyspace Best-first Search for The Partition Function 33

3.1.1 Introduction . 33
3.1.2 AND/OR Best-first Search (AOBFS) 34
3.1.3 Memory-limited AOBFS . 40
3.1.4 Experimental Settings . 41
3.1.5 Empirical Results . 44

iii

3.1.6 Summary of AOBFS . 49
3.2 Anytime Anyspace Best-first Search for MMAP 50

3.2.1 Introduction . 50
3.2.2 AND/OR Search Spaces for MMAP 52
3.2.3 Unified Best-first Search (UBFS) . 54
3.2.4 Memory-limited UBFS . 59
3.2.5 Empirical Evaluation . 61
3.2.6 Summary of UBFS . 67

4 Sampling Enhanced by Best-first Search 68
4.1 Dynamic Importance Sampling . 69

4.1.1 Introduction . 69
4.1.2 WMB-IS . 70
4.1.3 AOBFS Revisited . 75
4.1.4 WMB for Heuristics and Sampling 76
4.1.5 Two-step Sampling . 78
4.1.6 Main Algorithm . 80
4.1.7 Empirical Evaluation . 82

4.2 Mixed Dynamic Importance Sampling . 86
4.2.1 Introduction . 86
4.2.2 An Augmented Graphical Model . 87
4.2.3 Experiments . 96

4.3 Conclusion . 101

5 Interleaving Variational Optimization with Sampling 103
5.1 Introduction . 103
5.2 Main Algorithm . 104

5.2.1 A General Interleaving Framework 104
5.2.2 Interleaving Policies . 107

5.3 Empirical Evaluation . 110
5.3.1 Interleaving versus Non-interleaving 111
5.3.2 Adaptive versus Static . 115

5.4 Conclusion . 116

6 Conclusion and Future Directions 118
6.1 Our Contributions . 118
6.2 Future Directions . 119

Bibliography 121

A Proofs for Propositions in Chapter 2 129
A.1 Proof of Proposition 2.2 . 129

iv

B Proofs for Propositions in Chapter 3 131
B.1 Proof of Proposition 3.1 . 131
B.2 Proof of Proposition 3.2 . 132
B.3 Proof of Proposition 3.8 . 133

v

LIST OF FIGURES

Page

1.1 Semantic image segmentation as a MAP task on a CRF. 2
1.2 Three inference paradigms . 3

2.1 A simple MRF example . 7
2.2 OR search tree versus AND/OR search tree 20

3.1 Anytime behavior of AOBFS on one instance per benchmark 45
3.2 Time to solution, 1GB . 46
3.3 Time to solution, 16GB . 47
3.4 AND/OR search tree for marginal MAP . 53
3.5 Anytime bounds, individual instances . 64

4.1 A motivating example for DIS . 71
4.2 A running example of WMB and WMB-IS 74
4.3 An illustration of DIS . 82
4.4 Anytime behavior of DIS on two instances per benchmark 84
4.5 The augmented graphical model for marginal MAP 88
4.6 Anytime behavior of UBFS on one instance per benchmark 98
4.7 UBFS for image denoising on one instance per digit 99

5.1 Interleaving versus non-interleaving on two instances per benchmark 112
5.2 Adaptive versus static interleaving on two instances per benchmark 113

6.1 A holistic view of future work . 120

vi

LIST OF TABLES

Page

3.1 Statistics of the benchmarks . 44
3.2 Number of instances solved to tolerance . 48
3.3 Statistics of the benchmarks . 62
3.4 Marginal MAP algorithm comparision by number of non-trivial bounds . . . 65
3.5 Marginal MAP algorithm comparison by number of best upper bounds, 50%

MAP variables . 66
3.6 Marginal MAP algorithm comparison by number of best upper bounds, 10%

MAP variables . 66

4.1 Mean area between upper and lower bounds 85
4.2 Statistics of the benchmarks . 97
4.3 Number of instances that an algorithm achieves the best lower bounds 100
4.4 Number of instances that an algorithm achieves the best upper bounds . . . 100

5.1 Statistics of the benchmarks . 111
5.2 Notations and abbreviations . 111
5.3 Mean area between upper bounds and (estimated) ground truth 115
5.4 Mean area between upper and lower bounds 115
5.5 Mean final gap between upper bound and (estimated) ground truth 116

vii

LIST OF ALGORITHMS

Page

3.1 AND/OR Best-first Search (AOBFS) . 38
3.2 Memory-limited AOBFS . 40
3.3 Unified Best-first Search (UBFS) . 59
3.4 Memory-limited UBFS . 60
4.1 Dynamic Importance Sampling (DIS) . 80
4.2 Mixed Dynamic Importance Sampling (MDIS) 92
5.1 A General Interleaving Framework . 105

viii

ACKNOWLEDGMENTS

It would be an empty universe indeed if it were not for
the people I love, and who love me.

Stephen Hawking, Brief Answers to the Big Questions

This PhD journey would surely not be possible without these people to be acknowledged
here.

First and foremost, I would like to express my highest appreciation and gratitude to my
amazing advisor – Prof. Alexander Ihler, for his guidance, support, and consideration during
the course of my PhD. Alex has been such a fantastic mentor, teacher, and collaborator that
what I have learned from him, probably just a very small portion of what he is capable of,
has dramatically shaped my knowledge, skills and mindset. Over these years one fact that I
have realized (and I wish I had realized earlier) is: the more I interact with him, the more
research progress I will make – this was the reason that I vetoed last summer the switch to a
much brighter and larger office which, however, is further away from Alex’s. I was (and I
still am now) constantly impressed by his critical thinking, his scientific writing, his deep
understanding of many subjects, his integrity, his frankness, (maybe also infected by) his
sense of humor, his walking speed, and his customer loyalty to Dr Pepper. Alex is the best
advisor that I can think of, and I hope I can still resort to him for advice in the future.

I have benefited tremendously from interactions with Prof. Rina Dechter. Knowing her as an
expert in the field, I approached Rina to seek collaboration in 2015, which has resulted in
five papers accepted/published at several renowned AI/ML venues; these papers serve as the
core of this dissertation. Rina challenged me on every sentence/notation that I wrote, which
forced me to think deeper and make them more accessible to readers. I still remember her
scrutiny led to a fix to a flawed proposition that was previously not noticed by anyone. I
admire and appreciate her work attitude – feedbacks from her can be on holidays or at 2:00
a.m. in the morning. I thank her for always being very supportive to me, e.g., she decided to
fly back to Irvine from the East Coast to attend my final defense.

I would like to thank Prof. Sameer Singh for being on my final thesis defense and advancement
committees. I first met Sameer when he came to give a candidate talk in 2016. In the later
years, I found he is so warm-hearted that he has never turned down any favor I asked for; I
am very thankful to him. I also want to thank Prof. Charless Fowlkes and Prof. Zhaoxia Yu
who served on my advancement committee. I am also really grateful to Prof. Xiaohui Xie for
facilitating my collaboration with his students.

Outside UCI, I want to express my gratitude to Prof. Dhruv Batra at Georgia Tech, who
offered me an invaluable opportunity to work with him at Virginia Tech, and recommended
me to Alex when I applied to UCI. I would like to thank my mentors at Adobe Research, Dr.

ix

Somdeb Sarkhel, Dr. Saayan Mitra, and Dr. Viswanathan Swaminathan, with whom I had a
wonderful summer in 2017.

I am so fortunate to have interacted with a number of great peers (especially those in the
ICS community) who made this journey more colorful than it could have been. Starting
from my labmates, I would like to thank Qiang Liu who acted like a big brother when I first
arrived in 2014, helping me with my research (I guess I could have been more productive
if he had stayed longer at UCI) and my accommodation (in the past four years, I visited
the same barber in Irvine initially recommended by him). Wei Ping and I spent many days
and nights together in DBH 4051. He has helped me in many aspects such as paper writing,
thesis formatting, and job hunting, for which I am very grateful. I also thank other labmates
including Tiancheng Xu, Jonathan Stroud, Noble Kennamer, and Nick Gallo for creating a
friendly environment for me to study. Rina’s group are also quite close to me. In particular, I
want to thank William Lam and Junkyu Lee from whom I received a lot of help. I appreciate
others in Rina’s lab including Filjor Broka, Bobak Pezeshki for being kind to me. Due to the
tight schedule when I am writing this thesis, I hope my other friends can forgive me for not
being able to mention their names here. It has been a luxury to have you in this journey.

To conclude, I want to thank my parents (especially my extremely hardworking mother) from
the bottom of my heart for their love and support throughout the years. I feel truly blessed
to have you in my life – Nathan, an endless source of joy, and Carrie, to whom I am forever
indebted.

x

CURRICULUM VITAE

Qi Lou

EDUCATION

Doctor of Philosophy in Computer Science 2014 – 2018
University of California, Irvine Irvine, California

INTERNSHIP

Research Intern 06/2017 – 09/2017
Big Data Experience Lab, Adobe Research San Jose, California

Research Intern 04/2014 – 08/2014
Machine Learning & Perception Group, Virginia Tech Blacksburg, Virginia

TEACHING

Teaching Assistant University of California, Irvine
Introduction to Artificial Intelligence Fall 2016
Machine Learning & Data Mining Winter 2016
Introduction to Graphical Models Fall 2015

ACADEMIC REVIEWING

Journal of Machine Learning Research (JMLR) 2018
Conference on Neural Information Processing Systems (NIPS) 2018
International Conference on Machine Learning (ICML) 2018
AAAI Conference on Artificial Intelligence (AAAI) 2018
Conference on Uncertainty in Artificial Intelligence (UAI) 2016 – 2018

PUBLICATIONS

Qi Lou, Rina Dechter, Alexander Ihler. Interleave variational optimization with Monte Carlo
sampling: A tale of two approximate inference paradigms. AAAI Conference on Artificial
Intelligence (AAAI), 2019. To appear.

Tiehang Duan, Qi Lou, Sargur Srihari, Xiaohui Xie. Sequential embedding induced text
clustering, a non-parametric Bayesian approach. 2018. Under review.

Qi Lou, Somdeb Sarkhel, Saayan Mitra, Viswanathan Swaminathan. Content-based effec-

xi

tiveness prediction of video advertisements. IEEE International Symposium on Multimedia
(ISM), 2018. Short paper. To appear.

Qi Lou, Rina Dechter, Alexander Ihler. Finite-sample bounds for marginal MAP. Uncertainty
in Artificial Intelligence (UAI), 2018.

Qi Lou, Rina Dechter, Alexander Ihler. Anytime anyspace AND/OR search for bounding
marginal MAP. AAAI Conference on Artificial Intelligence (AAAI), 2018.

Qi Lou, Rina Dechter, Alexander Ihler. Dynamic importance sampling for anytime bounds
of the partition function. Neural Information Processing Systems (NIPS), 2017.

Qi Lou, Rina Dechter, Alexander Ihler. Anytime anyspace AND/OR search for bounding
the partition function. AAAI Conference on Artificial Intelligence (AAAI), 2017.

Wentao Zhu, Qi Lou, Yeeleng Scott Vang, Xiaohui Xie. Deep multi-instance networks with
sparse label assignment for whole mammogram classification. Medical Image Computing and
Computer Assisted Intervention (MICCAI), 2017.

Qi Lou, Raviv Raich, Forrest Briggs, Xiaoli Fern. Novelty detection under multi-instance
multi-label framework. IEEE International Workshop on Machine Learning for Signal
Processing (MLSP), 2013.

Forrest Briggs, Xiaoli Fern, Raviv Raich, Qi Lou. Instance annotation for multi-instance
multi-label learning. ACM Transactions on Knowledge Discovery from Data (TKDD), 7(3),
2013.

Raviv Raich, Forrest Briggs, Qi Lou, Xiaoli Fern, David Mellinger. A framework for analyzing
bioacoustics audio recordings as multiple instance multiple label data. Meetings on Acoustics,
19(1), 2013.

Qi Lou, Ligang Liu. Curve intersection using hybrid clipping. Computers & Graphics, 36(5),
2012.

xii

ABSTRACT OF THE DISSERTATION

Anytime Approximate Inference in Graphical Models

By

Qi Lou

Doctor of Philosophy in Computer Science

University of California, Irvine, 2018

Professor Alexander Ihler, Chair

Graphical models are a powerful framework for modeling interactions within complex systems.

Reasoning over graphical models typically involves answering inference queries, such as

computing the most likely configuration (maximum a posteriori or MAP) or evaluating

the marginals or normalizing constant of a distribution (the partition function); a task

called marginal MAP generalizes these two by maximizing over a subset of variables while

marginalizing over the rest.

Exact computation of these queries is known to be intractable in general, leading to the

development of many approximate schemes, the major categories of which are variational

methods, search algorithms, and Monte Carlo sampling. Within these, anytime techniques that

provide some guarantees on the correct value, and can be improved with more computational

effort, are valued for quickly providing users with confidence intervals or certificates of

accuracy and allow users to decide the desired balance of quality, time and memory.

In this dissertation, we develop a series of approximate inference algorithms for the partition

function and marginal MAP with anytime properties by leveraging ideas and techniques

from the three inference paradigms, and integrating them to provide hybrid solutions that

xiii

inherit the strengths of all three approaches. We propose anytime anyspace best-first search

algorithms that provide deterministic bounds on the partition function and marginal MAP.

These best-first search schemes take advantage of both AND/OR tree search and optimized

variational heuristics. We then extend this approach to give anytime probabilistic confidence

bounds via a dynamic importance sampling algorithm, which interleaves importance sampling

(using proposal distributions extracted from the variational bound) with our best-first search

algorithm to refine the proposal. We also propose a framework for interleaving sampling

with the optimization of the initial variational bound, which can automatically balance its

computational effort between the two schemes. Overall, we show that our hybrid algorithms

perform significantly better than existing methods, giving flexible approaches with excellent

anytime confidence bounds.

xiv

Chapter 1

Introduction

Graphical models are a set of powerful frameworks for representing and reasoning in complex

systems over a number of variables with probabilistic and deterministic information [Pearl,

1988, Lauritzen, 1996, Darwiche, 2009, Koller and Friedman, 2009, Dechter et al., 2010,

Dechter, 2013]. Examples of graphical models include Bayesian networks, Markov random

fields (MRFs), conditional random fields (CRFs), factor graphs, and influence diagrams. In

the past few decades, they have been successfully applied to a wide range of domains including

but not limited to computational biology [Friedman, 2004], computer vision [Szeliski, 2010],

natural language processing [Jurafsky and Martin, 2008], reinforcement learning [Sutton and

Barto, 1998].

Reasoning over graphical models typically involves (approximately) solving some combinatorial

optimization problems or computing some fixed quantities such as maximum a posteriori

(MAP) or most probable explanation (MPE), which aims to find a most likely configuration

of all variables, the partition function that is the normalizing constant ensuring a proper

probability measure over all variables, and marginal MAP (MMAP) 1 that generalizes the

aforementioned ones by maximizing over a subset of variables with the remaining variables

marginalized. The process of solving these problems is called inference in graphical models,

and thus these problems are also known as inference queries or inference tasks. These inference

1In some literature, e.g., Park and Darwiche [2004], marginal MAP is simply called MAP.

1

Figure 1.1: Semantic image segmentation as a MAP task associated with a conditional
random field [Yadollahpour et al., 2013].

queries are widely used in many scenarios. For example, MAP plays an important role in

structured prediction applications such as image denoising and semantic segmentation in

computer vision [Nowozin and Lampert, 2011]. Figure 1.1 shows an example of formulating a

semantic image segmentation task as a MAP query on a conditional random field.

Exact computation of these queries is known to be intractable in general, leading to the

development of many approximate schemes, the major categories of which are variational

methods [Wainwright and Jordan, 2008], search algorithms [Pearl, 1984], and Monte Carlo

sampling [Liu, 2008]. Within these, techniques that provide some guarantees on the correct

value, and can be improved with additional computation, are valued for providing users

with concrete information or certificates of accuracy within a reasonable amount of time,

and allowing users to decide the desired balance of quality versus time. Such an “anytime”

property is crucial for tasks that are either not computationally feasible, or where it is not

economical to compute the optimal answer [Zilberstein, 1996]. Moreover, algorithms that are

able to run with limited memory resources are particularly useful because memory can be a

bottleneck in practice; thus, an “anyspace” property is also important to users.

2

Variational
methods

Search

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

0 Sampling

Chapter 3

Chapter 4

Chapter 5

Figure 1.2: A pictorial illustration of how the three inference paradigms interact in the three
chapters of the dissertation.

1.1 Main Contributions of This Dissertation

In this dissertation, we develop a series of approximate inference algorithms with anytime and

anyspace properties by leveraging ideas and techniques from the aforementioned inference

paradigms, and integrating them in a way that combines the relative strengths of each

paradigm to provide approximations with strong bound guarantees. To the best of our

knowledge, this is the first approach to combine all three major paradigms of approximate

inference, and demonstrate the feasibility and potential of this unified perspective.

1.2 Outline of This Dissertation

A general outline of the rest of the dissertation is as follows: Chapter 2 introduces some

background knowledge and notations that are used by the successive chapters. Chapters 3-5

present the main ideas and techniques developed by this thesis; Figure 1.2 depicts how the

three inference paradigms interact in these three chapters. Chapter 6 discusses some future

3

directions along this line of research and concludes the thesis. Some proofs and derivations

omitted from the main text can be found in the appendices. To be more specific:

Chapter 2 first reviews some basics of graphical models, and formally defines the three

inference tasks we consider. We then review some search terminology and algorithms, and

show how search is applied on graphical models by introducing AND/OR search spaces

along with some related concepts such as pseudo tree of the graph. We also review some key

variational methods that will be used in the subsequent chapters, with a particular emphasis

on elimination-based variational bounds (mini-bucket and similar methods) that will serve as

building blocks for our own algorithms. Finally, we briefly describe the basics of Monte Carlo

methods, introduce some concentration results, and conclude the chapter with a review of

importance sampling.

Chapter 3 develops best-first search algorithms for deterministic bounds. We first review

some related work on search based methods for inference queries and weighted model counting.

We then present our approach, an anytime anyspace heuristic search algorithm that improves

deterministic bounds for the partition function; this priority-driven best-first search scheme

takes advantage of both AND/OR tree search and optimized variational heuristics, to

efficiently reduce the bound gap on the partition function. We further extend this algorithm

to bound marginal MAP by treating the maximization and summation operators in a unified

way during search, using a carefully designed priority system that aims to drive down an

upper bound on the MMAP optimum as quickly as possible. This chapter demonstrates how

best-first search can be used to refine variational bounds in an anytime manner, as depicted

in Figure 1.2. This chapter is partly based on our published work, Lou et al. [2017a] and Lou

et al. [2018a].

Chapter 4 focuses on developing sampling algorithms to provide strong confidence intervals

on the partition function and marginal MAP queries. We first propose a dynamic importance

4

sampling (DIS) algorithm that provides anytime probabilistic bounds (i.e., they hold with

probability (1− δ) for some user-selected confidence parameter δ) on the partition function.

Our algorithm works by interleaving importance sampling with the variational bounds and

best first search algorithm developed in Chapter 3, which acts to adapt and refine the proposal

distribution of successive samples. We also generalize this idea to marginal MAP tasks by

first converting the problem of bounding the MMAP optimum to a surrogate task defined

by bounding a series of summation problems of an augmented graphical model, and then

adapting DIS to provide finite-sample bounds for the surrogate task. These algorithms

integrate ideas and techniques from all three inference paradigms. This chapter is partly

based on our published work, Lou et al. [2017b] and Lou et al. [2018b].

Chapter 5 proposes an approach that interleaves Monte Carlo sampling with the initial

optimization of the variational bounds, leading to faster improvement in confidence intervals

early in the inference process. We propose an adaptive interleaving policy that can automati-

cally balance the computational effort between these two schemes in an instance-dependent

way. Our framework inherits the relative strengths of both schemes, leads to tighter anytime

bounds and an unbiased estimate of the partition function, and allows flexible trade-offs

between memory, time, and solution quality. This chapter is partly based on our paper, Lou

et al. [2019].

Chapter 6 concludes the thesis. We summarize the dissertation, highlight its key contribu-

tions, and point out some directions to inspire future research.

5

Chapter 2

Background

In this chapter, we review some background knowledge and introduce notation that will

be needed for the thesis. We organize the chapter as follows. Section 2.1 introduces some

graphical model concepts used throughout the thesis, and formally defines the three primary

inference tasks on graphical models. Sections 2.2, 2.3, and 2.4 describe the perspectives of and

review some techniques from the three main approximate inference paradigms, consisting of

variational bounds, search algorithms, and Monte Carlo methods, respectively. In particular,

Section 2.2 reviews elimination-based variational bounds, including mini-bucket and weighted

mini-bucket; Section 2.3 introduces heuristic search frameworks and AND/OR search spaces;

and Section 2.4 reviews some Monte Carlo methods with a focus on importance sampling.

2.1 Graphical Models

Graphical models provide a formal mechanism for describing useful structures in large,

complex problems. In particular, graphical models assume that a large complex function

f , defined over some high-dimensional system, is actually an aggregation of smaller, more

“local” functions that represent interactions among small portions of the whole. Then, the

overall complexity of the system can be thought of as arising from the many, interdependent

components of the function.

6

A B f1(A,B)
0 0 0.24
0 1 0.56
1 0 1.1
1 1 1.2

· · ·

B C f3(B,C)
0 0 0.12
0 1 0.36
1 0 0.3
1 1 1.8

A B

C

Figure 2.1: A pairwise model over three binary variables. Factors f1(A,B), f2(A,C), f3(B,C)
are represented by tables.

More formally, a graphical model is a collection of variables, domains, and nonnegative

functions or factors. Let X = (X1, . . . , XM) be a vector of random variables, where each Xi

takes values in a domain Xi; variable domains can be either discrete or continuous. This

thesis only focuses on the discrete case unless otherwise stated, i.e., we assume |Xi| finite. We

use lower case letters, e.g., xi ∈ Xi, to indicate a value of Xi, and x to indicate an assignment

of X. A graphical model over X consists of a set of factors F = {fα(Xα) | α ∈ I}, where

each factor fα is defined on a subset Xα = {Xi | i ∈ α} of X, called its scope. We can

interpret F as an unnormalized probability measure, so that

f(x) =
∏
α∈I

fα(xα). (2.1)

We associate an undirected graph G = (V,E) (called the primal graph) with F , where each

node i ∈ V corresponds to a variable Xi and we connect two nodes, (i, j) ∈ E, if and only if

{i, j} ⊆ α for some α. The elements of I then correspond to cliques (fully connected subsets)

of the graph G.

Example 2.1. Figure 2.1 shows a pairwise model over three binary variables. There are

three local functions f1(A,B), f2(A,C), f3(B,C), whose product defines an overall function

f(A,B,C) over variables A,B,C. Each local function induces an edge between variables in

its scope. Those local functions are usually represented by tables.

7

2.1.1 Inference Tasks in Graphical Models

Given a graphical model, inference refers to answering probabilistic queries about the model.

There are three typical inference queries that we formally define here.

MAP

The maximum a posteriori (MAP) or most probable explanation (MPE) task aims to find the

maximum value of f , and a configuration (assignment of values to variables) achieving that

value, i.e.,

x? = argmax
x

f(x) f ? = f(x?) = max
x

f(x)

Note that it is possible that there are multiple optimal solutions; since we usually care about

finding one, we use x? to denote one optimal assignment instead of the set of all optimal

assignments. The MAP task is also called the optimization or max inference task in graphical

models. This task is known to be NP-hard [Shimony, 1994] in general.

The Partition Function

Another common task in graphical models is to compute the normalizing constant defined as

Z =
∑
x

∏
α∈I

fα(xα), (2.2)

which is often called the partition function. Z ensures

p(x) = f(x)/Z (2.3)

8

to be a proper probability distribution, where p(x) is called the underlying distribution of the

model. Computing Z is often a key task in evaluating the probability of observed data, model

selection, or computing predictive probabilities. This task is also known as the sum inference

task, and closely related to weighted model counting in constraint satisfaction problems

(CSPs). It is #P-hard [Valiant, 1979].

Marginal MAP

Marginal MAP (MMAP) generalizes the aforementioned two tasks by maximizing over a

subset of variables with the remaining variables marginalized. Let XM be a subset of X called

MAX variables, and XS = X\XM SUM variables. The MMAP task seeks an assignment x?M

of XM with the largest marginal probability, and its value:

x?M = argmax
xM

∑
xS

f(x) π? = π(x?M) =
∑
xS

f(x?M, xS) (2.4)

Note that, if XM is an empty set, the value π? is simply the partition function; if XS is

empty, MMAP reduces to the standard MAP inference task. MMAP is known to extremely

hard; its decision version is NPPP-complete [Park, 2002]), and it is commonly believed to

be harder than either pure max inference or sum inference, and can even be intractable on

tree-structured models, for which max or sum inference is efficient.

2.2 Variational Bounds

Variational algorithms are a class of deterministic approximations to the inference problems.

They cast the problem of computing a quantity of interest (say, f ? or Z) into a continuous

optimization problem, and then solve an approximate, simplified version of this optimization

problem, for example by applying some form of relaxation [Wainwright and Jordan, 2008].

9

A number of variational algorithms have been developed over the past few decades, includ-

ing loopy belief propagation [Pearl, 1988], mean field algorithms [Opper and Saad, 2001],

expectation propagation [Minka, 2001], and many others. We refer readers to Wainwright

and Jordan [2008] for a detailed survey of the framework. For this thesis, we focus on

approximate elimination approaches, which are a subset of variational methods that provide

bound guarantees.

Elimination-based algorithms solve inference tasks by eliminating variables one at a time

with respect to a prescribed variable ordering, where “eliminating a variable” means that

we apply some operator (e.g., “sum” or “max”) to a set of candidate functions to generate

new functions whose scopes do not contain that variable. In what follows, we first introduce

bucket elimination (BE) Dechter [1999] which is an exact algorithm that directly eliminates

variables in sequence, then introduce mini-bucket elimination (MBE) [Dechter and Rish, 2003]

which alleviates the computational complexity of BE by eliminating variables approximately,

and finally introduce weighted mini-bucket (WMB) [Liu and Ihler, 2011] which generalizes

both BE and MBE. For the sake of convenience we consider the partition function task when

describing these three algorithms; only minor modifications are required for these algorithms

to be applied to the other two tasks, which we describe at the end of the section.

2.2.1 Bucket Elimination (BE)

Given a variable elimination ordering, BE processes variables one by one with respect to this

elimination ordering. For any variable, say, Xi, from the original model, BE first collects

those not-yet-processed factors with Xi in their scopes; this collection of factors, together

with factors generated by processing variables prior to Xi in the ordering that also have Xi

in their scopes, forms a set of factors, termed the bucket of Xi and denoted Bi. BE then

marginalizes Xi out from the product of factors in Bi, resulting in a new factor; if this new

10

factor is non-constant, we denote it λi→πi , and call it a (forward) message from Xi to Xπi :

λi→πi =
∑
xi

∏
fα∈Bi

fα, (2.5)

where Xπi is the earliest uneliminated variable in the scope of this new factor. The message

λi→πi is then placed in the bucket of Xπi for later processing. After all variables are processed,

BE gives the exact value of Z by taking the product of all constant factors generated during

the elimination process.

Both the time and space complexity of BE are exponential in the induced width of the graph

and order, which intuitively corresponds to the largest number of variables in the scope of

any message computed during the elimination. Thus, BE becomes impractical in the case

that the induced width is large.

2.2.2 Mini-bucket Elimination (MBE)

To alleviate the computational burden of BE, MBE introduces a user-specified parameter

called the ibound, and ensures that no message generated by MBE has a scope size larger

than ibound. To be more specific, when processing a bucket, say, Bi, MBE partitions it

into several disjoint subsets {Bji } called mini-buckets such that each mini-bucket involves

no more than (ibound +1) variables. MBE then selects one mini-bucket, say (without loss

of generality) the first mini-bucket B1
i , for marginalization, and the rest for maximization,

which leads to the following inequality:

∑
xi

∏
fα∈Bi

fα ≤
∏
j

λi→πij ,

11

where

λi→πij =


∑
xi

∏
fα∈B1i

fα, if j = 1;

max
xi

∏
fα∈Bji

fα, otherwise.

(2.6)

Analogous to BE, the message λi→πij will be placed in the bucket of Xπij , where Xπij is the

earliest uneliminated variable in the scope of λi→πij . Taking the product of the constant

factors generated during this process provides an upper bound on Z. A similar procedure

can also be used to compute a lower bound on Z, by replacing the “max” operator with the

“min” operator in the mini-bucket elimination step (2.6).

Compared to BE, MBE ensures the overall complexity will be exponential in the user-

controlled parameter ibound, rather than in the induced width of the graph, which may be

very high. Selecting a larger ibound usually provides a better bound; when the ibound is

larger than the graph’s induced width, MBE is identical to BE and thus gives exact answers.

Thus, MBE trades off bound quality with computational complexity via the ibound, but at a

cost that increases exponentially in both time and memory.

Bounds from MBE can be improved via moment matching [Flerova et al., 2011]. Partitioning

of mini-buckets can also affect the quality of bounds; we refer readers to Rollon and Dechter

[2010], Rollon et al. [2013] and Forouzan and Ihler [2015] for a more detailed treatment on

this topic.

2.2.3 Weighted Mini-bucket (WMB)

Weighted mini-bucket (WMB) generalizes its predecessors, BE and MBE, by replacing the

exact summation with a “power sum” operator during variable elimination.

More specifically, WMB is analogous to MBE in that it partitions bucket Bi of Xi into disjoint

12

mini-buckets {Bji } with their scope sizes bounded by (ibound +1). WMB then assigns a

“weight” ρij to each Bji , and eliminates Xi in factors of Bji using the power sum (see (2.7) for

a self-explanatory definition), which generates a message λi→πij :

λi→πij =
(∑

xi

∏
fα∈Bji

f
1
ρij
α

)ρij . (2.7)

When the weights ρij are positive and sum to one, i.e.,

ρij > 0,
∑
j

ρij = 1, (2.8)

Hölder’s inequality [Hardy et al., 1952] guarantees that the product of the messages λi→πij is

an upper bound of the sum:

∑
xi

∏
fα∈Bi

fα ≤
∏
j

λi→πij . (2.9)

Therefore, WMB provides an upper bound of Z if (2.8) is satisfied for all variables. Liu and

Ihler [2011] shows that the resulting upper bound is equivalent to a class of bounds based

on tree reweighted (TRW) belief propagation [Wainwright et al., 2005], or more generally,

conditional entropy decomposition [Globerson and Jaakkola, 2007].

Note that, like MBE, WMB can also be used to compute a lower bound when the factors are

strictly positive; this is obtained by replacing the non-negativity condition on the weights in

(2.8) with a condition that exactly one weight, say, ρik is positive, and the rest are negative:

ρik > 0, ρij < 0 if j 6= k,
∑
j

ρij = 1. (2.10)

The WMB bounds can be tightened by cost shifting (or reparameterization) and weight

optimization, which can be implemented in a forward-backward message passing procedure.

13

We refer readers to Liu and Ihler [2011], Liu [2014], Ping et al. [2015] for more details.

Example 2.2. We illustrate how BE, MBE and WMB behave on the model shown in

Figure 2.1, assuming the elimination ordering is A,B,C, and setting ibound = 1. We use

lowercase letters a, b, c to denote an instantiation of A,B,C. For MBE and WMB, we use

the upper bound variant of the algorithms.

• BE first creates bucket BA = {f1, f2} for A by collecting all factors involving A, and

then eliminates A to generate a message

λA→B(b, c) =
∑
a

f1(a, b)f2(a, c)

which is placed into bucket BB for B, resulting in BB = {f3, λA→B}. BE next eliminates

B and generates a message:

λB→C(c) =
∑
b

λA→B(b, c)f3(b, c).

Finally, BE eliminates C from bucket BC = {λB→C}, giving the exact value of Z:

Z =
∑
c

λB→C(c).

Note that the time and memory complexity of these operations is dominated by the

construction of λA→B(b, c); this function (table) takes memory quadratic in the domain

size of the variables, for all pairs of values (b, c), and is cubic in its computation, iterating

over all values of a for each (b, c).

• Given ibound = 1, MBE cannot construct a message over b and c jointly, and so instead

must partition factors involving A into two mini-buckets, say, B1
A = {f1} and B2

A = {f2},

14

and process them separately. We sum over mini-bucket B1
A and maximize over B2

A:

λA→B(b) =
∑
a

f1(a, b),

λA→C(c) = max
a
f2(a, c).

MBE then eliminates B,C consecutively (no further mini-bucket partitions are required),

and returns an upper bound Umbe of the partition function:

λB→C(c) =
∑
b

λA→B(b)f3(b, c),

Umbe =
∑
c

λA→C(c)λB→C(c).

• Like MBE, WMB creates two mini-buckets for A, then assigns weights ρA1 and ρA2

satisfying (2.8) to them respectively, and eliminates A using the power sum:

λA→B(b) =
(∑

a

f
1

ρA1
1 (a, b)

)ρA1

,

λA→C(c) =
(∑

a

f
1

ρA2
2 (a, c)

)ρA2

.

As with MBE, no further partitioning is necessary for B and C, so WMB eliminates

them exactly, to give an upper bound Uwmb:

Uwmb =
∑
c

λB→C(c)λA→C(c) =
∑
c

(∑
b

λA→B(b)f3(b, c)
)
λA→C(c)

Remark 2.1. Some conditions on the weights of WMB can be slightly relaxed without loss

of the boundedness property of WMB. We take the upper bound case below for example;

the lower bound case is analogous. The positiveness condition in (2.8) can be relaxed to

15

nonnegativeness by defining

(∑
xi

∏
fα∈Bji

f
1
0
α

)0

= max
xi

∏
fα∈Bji

fα.

This extension is continuous from the right side due to the following fact:

max
xi

∏
fα∈Bji

fα = lim
ρij→0+

(∑
xi

∏
fα∈Bji

f
1
ρij
α

)ρij
. (2.11)

In light of (2.6), we can see that the MBE upper bound is a special case of the WMB upper

bound, in which one of the mini-buckets is assigned weight one, and the others weight zero.

Remark 2.2. The three elimination algorithms, BE, MBE, and WMB, can easily be modified

to compute or bound the other inference tasks:

• For MAP, to compute or bound the MAP value, BE and MBE simply replace the “sum”

operator with the “max” operator in (2.5) and (2.6) respectively. BE then gives an

optimal MAP value, while MBE gives an upper bound. In this setting, WMB can set

all ρij’s in (2.7) to be positive and near zero to give an equivalent upper bound. To

decode a MAP solution for BE, MBE or WMB, we can compute assignments to each

variable Xi sequentially along the reverse elimination ordering: at each Xi, we find the

value xi that maximizes the product of the factors in bucket Bi, conditioned on the

partial solution we have decoded so far (an assignment to Xπi). Note that the solution

decoded by BE will be optimal, but may be suboptimal for MBE and WMB in general.

• For MMAP, we first require a restricted elimination ordering that ensures all SUM

variables XS are eliminated before any MAX variables XM. Then, when eliminating

a SUM variable, the three algorithms operate the same way as if computing the

partition function, while using the MAP variant forms when eliminating a MAX

variable. Decoding can then be performed analogously to that for MAP.

16

2.3 Search in Graphical Models

Search is a general framework for problem solving and has a variety of applications [Russell

and Norvig, 2009]. In this section, we introduce some search terminologies, several heuristic

search algorithms, and how to formulate an inference task in a graphical model as a search

problem on the so-called AND/OR space [Pearl, 1984].

2.3.1 Heuristic Search

A search problem is defined by a search space, typically a search tree or more generally a

search graph, where nodes represent encodings of subproblems, and edges represents actions

that are available to the problem solver. Each edge is associated with a cost. A unique node in

the search space is designated as the root, and a (possibly empty) set of nodes are set as goal

nodes. Search starts from the root, and traverses the search space by repeatedly expanding

nodes according to some search strategy. Expansion means to generate all successors of a

given node; this node is called the parent node while those successors are called its child

nodes. The set of nodes at the frontier that are available for expansion is called the open list

and denoted OPEN . We say that a portion of the search space has been explored if its nodes

have been visited.

A common search objective is to find a least cost path from the root to one of the goal nodes,

where the path cost is defined by a combination of the edge costs, typically by the sum; we

assume this setting when we present a number of popular search algorithms in the sequel.

In general, whether search is efficient for a problem of interest depends critically on how we

formulate the problem as a search problem, and what search strategy we adopt to explore

the search space.

A well-known category of search strategies is called heuristic search, or informed search,

17

which exploits problem-dependent information beyond the definition of the problem itself;

this is in contrast to so-called blind or uninformed search algorithms such as depth-first

search (DFS) and breadth-first search (BFS). Best-first search, as an instance of heuristic

search, has an evaluation function that incorporates domain-specific knowledge in some way,

and that is defined at each node and measures how valuable a node is for expansion; this

evaluation function greatly determines the performance of a best-first search algorithm, and

thus requires careful crafting.

2.3.2 A* and SMA*

The A* search algorithm [Hart et al., 1968] is a widely used best-first search algorithm that

combines two functions to define its evaluation function. The first is a cost function g(n)

that measures the path cost from the root to a node n, and the other is a heuristic function

h(n) that estimates the cheapest path cost from n to a goal node. The A* search algorithm

then expands a frontier node with minimal value g + h at each step.

The A* search algorithm has several nice properties, e.g., whenever A* selects a node for

expansion, the optimal path to that node has been found, given some conditions on the

heuristic function [Russell and Norvig, 2009]. A broad discussion of those properties can be

found in Dechter and Pearl [1985].

However, the A* search algorithm has to maintain a (possibly implicit) priority queue of

the frontier nodes, the size of which can grow very fast and makes A* memory-intensive

in practice. To overcome this memory bottleneck, a series of memory-bounded variants of

A* have been developed, including iterative-deepening A* (IDA*) [Korf, 1985], simplified

memory bounded A* (SMA*) [Russell, 1992], and recursive best-first search [Korf, 1993], just

to name a few.

Since SMA* plays an important role in developing our own search algorithms in Chapter 3,

18

we present its essential components here. Before a user-specified memory limit is full, SMA*

behaves the same as A*. When SMA* reaches the memory limit, since it cannot continue to

add more search nodes to the frontier, it starts to delete some frontier nodes that it deems

unpromising to free memory for the new additions. More precisely, when necessary it deletes

the “worst” frontier node, i.e., the frontier node where the evaluation function achieves the

highest value. In deleting the node, we lose information about the value (evaluation function)

of that node, and so this lost information is propagated up to its parent, ensuring that the

ancestor of a removed subtree is aware of the most current information on the best path that

could include it. SMA* will then regenerate this path if it turns out to be more promising

than any other path it has seen so far.

2.3.3 AND/OR Search for Graphical Models

This section introduces OR search spaces and AND/OR search spaces for graphical models,

which are useful tools for us to solve inference tasks via search.

OR Search Spaces

A typical way to do perform search for graphical models is to view search nodes as partial

assignments of variables, and expansion as extending this partial assignment by assigning a

value to a single variable at a time, following some variable ordering. In the simplest case, this

process defines a search tree, called the OR search tree, in which the root is no assignment,

and each leaf (or equivalently, path from root to a leaf, called a “solution path”) corresponds

to a full assignment of the graphical model. Let M be the number of variables and d be the

maximum domain size; then it is easy to see that the size of the full OR search tree is O(dM),

which can be very large.

Example 2.3. Figure 2.2(b) shows a full OR search tree for the graphical model depicted in

Figure 2.2(a). One solution path, marked red, corresponds to a complete configuration of all

19

A" B"

C"D"

E"

F"

G"

(a)

B

0

1 0

C

0

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

1

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

1

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

B

1

0 1

C

1

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

0

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

1

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

0

D

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

E

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

A

(b)

A

B

C F

GD E

(c)

A

B B

0 1

0 1 0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

(d)

Figure 2.2: (a) A primal graph of a graphical model over 7 variables. (b) A full OR search
tree for the model. One solution path is marked red. (c) A pseudo tree for the primal graph.
(d) The full AND/OR search tree guided by the pseudo tree. One (full) solution tree is
marked red. One partial solution tree is marked blue.

variables.

AND/OR Search Spaces

An AND/OR search space is a generalization of the aforementioned OR search space that

enables us to exploit conditional independence structures during search [Dechter and Mateescu,

2007]. The AND/OR search space for a graphical model is defined relative to a pseudo tree

that captures problem decomposition along a fixed search order.

Definition 2.1 (pseudo tree). A pseudo tree of an undirected graph G = (V,E) is a

directed tree T = (V,E ′) sharing the same set of nodes as G. The tree edges E ′ form a subset

20

of E, and we require that each edge (i, j) ∈ E \ E ′ be a “back edge”, i.e., the path from the

root of T to j passes through i (denoted i ≤ j). G is called the primal graph of T.

Guided by a pseudo tree, we can construct an AND/OR search tree consisting of alternating

levels of OR and AND nodes for a graphical model. Each OR node s is associated with a

variable, which we lightly abuse notation to denote Xs; the children of s, ch(s), are AND

nodes corresponding to the possible assignments of Xs. The root ∅ of the AND/OR search

tree corresponds to the root of the pseudo tree. Let pa(c) indicate the parent of c, and

an(c) = {n | n ≤ c} indicate the ancestors of c (including itself) in the tree.

In an AND/OR tree, any AND node c corresponds to a partial configuration x≤c of X,

defined by its assignment and that of its ancestors: x≤c = x≤p ∪ {Xs = xc}, where s = pa(c),

p = pa(s). The corresponding variables of x≤c is denoted as X≤c. For completeness, we also

define x≤s for any OR node s, which is the same as that of its AND parent, i.e., x≤s = x≤pa(s).

For any node n, the corresponding variables of x≤n is denoted as X≤n. Let de(Xn) be

all variables below Xn in the pseudo tree; we define X>n = de(Xn) if n is an AND node;

X>n = de(Xn) ∪ {Xn} if n is an OR node. An instantiation of X>n is denoted x>n.

A complete configuration X of the model corresponds to a subtree called a solution tree:

Definition 2.2 (solution tree). A solution tree T of an AND/OR search tree T is a subtree

satisfying three conditions: (1) T contains the root of T ; (2) if an OR node is in T , exactly

one of its children is in T ; (3) if an AND node is in T , all of its children are in T .

We can see that there is a one-to-one correspondence between a complete assignment of X

and a solution tree. Thus, for any full configuration x, we use Tx to denote its corresponding

solution tree; for any solution tree T , we use xT to denote its corresponding full configuration.

We generalize the notion of a “solution tree” to that of a “partial solution tree” in order to

relate partial configurations of X to some subtrees in the AND/OR search tree:

21

Definition 2.3 (partial solution tree). A partial solution tree T of an AND/OR search

tree T is a subtree satisfying three conditions: (1) T contains the root of T ; (2) if an OR

node is in T , at most one of its children is in T ; (3) if an AND node is in T , all of its children

or none of its children are in T .

From the above definition, we can see any partial solution tree T defines a partial configuration

xT of X, where xT = ∪n∈Tx≤n; we use XT ⊂ X to denote the corresponding variables of xT .

Note that two partial solution trees may induce an identical partial configuration, which is

different from the case of solution trees. In the sequel, we may refer a solution tree as a full

solution tree to avoid possible ambiguity.

The following property captures the size of a full AND/OR search tree. A full AND/OR

search tree usually has a much smaller size than that of a full OR search tree.

Proposition 2.1. A full AND/OR tree has size of O(bhdh), where h is the pseudo tree

height, b is the max branching factor of the pseudo tree, and d is the max variable domain

size. See Dechter and Mateescu [2007].

Example 2.4. Figure 2.2(d) shows a full AND/OR search tree for the model in Figure 2.2(a).

A solution tree is marked red in the AND/OR search tree. According to the definition, a

solution tree corresponds to a full instantiation of all the variables.

Inference Tasks as Search Problems on AND/OR Search Trees

We associate an arc cost wc with each OR-AND arc (an edge connecting an OR parent node

and one of its AND children), indexed by the AND child c, defined to be the product1of all

1Typical search formulations seek to minimize an additive cost, for which it is more convenient to use an
arc cost that is the negative log of the one defined here, i.e., − logwc. However, when defining summation
problems on search trees, we find it more convenient to adopt the product form described here, in which wc

is not precisely a “cost” but simply a partial function value.

22

factors fα that are instantiated at c but not before:

wc =
∏
α∈Ic

fα(xα), Ic = {α | Xpa(c) ∈ Xα ⊆ Xan(c)}

We define ws = 1 for any AND-OR arc, indexed by the OR child s. It is then easy to see

that the product of all arc costs on a path from the root,

gc =
∏
a≤c

wa,

defined as the cost of the path, equals the value of the factors whose scope is fully instantiated

at c. We again lightly abuse the notation to use g as a function of x≤c such that

g(x≤c) = gc. (2.12)

Note that this definition of function g is proper because it is easy to verify that any two nodes

induce an identical partial assignment of X must have the same path cost. Analogously, we

can define a cost gT for any partial solution T as the product of all arc costs on T :

gT =
∏
a∈T

wa. (2.13)

Again, we define a functional version of gT ,

g(xT) = gT , (2.14)

corresponding to the view that gT is the product of all factors fully instantiated by xT . As a

special case, the cost of a full solution tree equals the value f(x), where x is the corresponding

complete configuration.

Finally, the purpose of the search tree is to compute some inference quantity for the model,

23

such as the optimum f ? = maxx f(x) or the partition function Z (see (2.2)). To this end, we

associate an exact “value” vn with each node n in the AND/OR search tree, which represents

the inference task’s value on the unexpanded portion of the search space below node n. The

value vn can be defined recursively in terms of its children and grandchildren as follows. We

first define vn = 1 for any leaf (since no part of the model remains uninstantiated). For

maximization tasks, we have

Max: vn =


∏

c∈ch(n) vc, if n is an AND node,

maxc∈ch(n) wcvc, if n is an OR node;

(2.15)

while in the case of summation, the recursion defining vn for node n is

Sum: vn =


∏

c∈ch(n) vc, if n is an AND node,∑
c∈ch(n) wcvc, if n is an OR node.

(2.16)

Any search algorithm for reasoning about the model can be thought of as maintaining

estimators (typically, upper or lower bounds) on these quantities at each node. In particular,

for heuristic search, we assume that we have a heuristic function h+
c that gives upper bounds

(or upper and lower bounds, h+
c and h−c) on vc. These heuristics typically are more accurate

deeper in the search tree, and therefore their updates can be propagated upwards to the root

to yield tighter bounds to the overall inference value. Any search algorithm is then defined

by the order of expansion of the search tree.

Remark 2.3. An even more compact search space for a graphical model, called an AND/OR

search graph [Dechter and Mateescu, 2007], can be obtained by merging identical subproblems

in the AND/OR search tree. However, graph search algorithms are harder to design and

implement than tree search ones.

Remark 2.4. For maximization tasks, since our goal is to find a configuration with the

24

highest value, goal nodes correspond to leaf nodes of an optimal solution tree in the AND/OR

search tree. While for summation tasks, there is no goal node because in theory we have to

traverse the whole AND/OR space to accumulate all the mass.

2.4 Monte Carlo Methods

Monte Carlo methods constitute another major framework for approximate inference in

graphical models. In this section, we review some background about Monte Carlo methods

with an emphasis on importance sampling.

Monte Carlo methods use random samples to create estimates of the quantities of interest.

They typically formulate their goal as estimating an expectation of some function u(x):

Et[u(x)] =

∫
Ω

u(x)t(x) dx, (2.17)

where t(x) is called the target distribution, defined on Ω, a measurable subset of some

Euclidean space. When u(x) and t(x) are properly chosen, many inference tasks, such as

the calculation of marginal probabilities and the partition function, can be expressed in this

way [Andrieu et al., 2003]. The expectation in (2.17) can then be approximated using a

sample mean û:

Et[u(x)] ≈ û =
1

N

N∑
i=1

u(xi), (2.18)

where samples {xi}Ni=1 are independently drawn from t(x). The sample mean û in (2.18) is

an unbiased estimate of the expectation in (2.17):

Et[û] = Et[u(x)],

25

and converges to the expectation almost surely as N goes to infinity:

û
a.s.−−→ Et[u(x)].

If the variance Vart[u(x)] is finite, the estimator û is asymptotically Gaussian due to the fact

that
√
N
(
û−Et[u(x)]

)
converges in distribution to N

(
0,Vart[u(x)]

)
according to the central

limit theorem:

√
N
(
û− Et[u(x)]

) d−→ N
(
0,Vart[u(x)]

)
;

this implies the probability mass concentrates rapidly around Et[u(x)] as N increases.

2.4.1 Some Concentration Results

Concentration bounds use the fact the probability mass of random averages, such as û,

concentrate around their expected values to provide confidence intervals that hold with high

probability. Many concentration results for Monte Carlo estimators have been developed

over the years. We review several of these, since they will be used as key components of our

proposed algorithms in subsequent chapters. We refer readers to Bousquet [2002], Boucheron

et al. [2004] for a more thorough treatment. For notational convenience, we use the shorthand

ui for u(xi) and u for u(x) interchangeably. We also select δ to be a confidence parameter,

with δ ∈ (0, 1).

Markov's Inequality

A fundamental building block of most concentration bounds is Markov’s inequality, which

states:

26

Theorem 2.1 (Markov’s inequality). Assuming u(x) ≥ 0, then ∀ε > 0, we have

Pr[û ≥ ε] ≤ Et[u]

ε
.

By setting ε = Et[u]/δ, we can derive a confidence interval from Markov’s inequality:

Pr
[

Et[u] ≥ δû
]
≥ 1− δ, (2.19)

which states that, for non-negative u(x), δû is a lower bound of the true expectation Et[u]

with probability at least 1− δ.

Hoe�ding's Inequality

Building on Markov’s inequality, Hoeffding showed that averages of bounded random variables

have rapidly decaying distribution tails.

Theorem 2.2 (Hoeffding’s inequality [Hoeffding, 1963]). Assuming u(x) ∈ [0, 1], for

∀ε > 0 , we have

Pr[Et[u] ≥ û+ ε] ≤ e−2Nε2 ,

Pr[Et[u] ≤ û− ε] ≤ e−2Nε2 ,

hold respectively.

We can again derive confidence intervals from these inequalities:

Pr

[
Et[u] ≤ û+

√
− log δ

2N

]
≥ 1− δ,

Pr

[
Et[u] ≥ û−

√
− log δ

2N

]
≥ 1− δ.

27

Empirical Bernstein Bounds

A more sophisticated analysis can be used to derive a class of bounds that is often tighter in

practice:

Theorem 2.3 (Empirical Bernstein bounds [Maurer and Pontil, 2009]). Assuming

u(x) ∈ [0, 1], we have

Pr[Et[u] ≤ û+

√
2V̂ar log(2/δ)

N
+

7 log(2/δ)

3(N − 1)
] ≥ 1− δ,

Pr[Et[u] ≥ û−

√
2V̂ar log(2/δ)

N
− 7 log(2/δ)

3(N − 1)
] ≥ 1− δ,

hold respectively, where

V̂ar =
1

N − 1

N∑
i

(ui − û)2 =

∑N
i=1 u

2
i

N − 1
− Nû2

N − 1
(2.20)

is the sample variance of {ui}Ni=1, corresponding to an unbiased estimate of the variance, i.e.,

Et[V̂ar] = Vart[u].

Compared to Hoeffding’s bounds, the empirical Bernstein bounds allow us to exploit second-

order information (the estimated variance) and thus are typically tighter. Moreover, the

empirical Bernstein bounds remain easy to compute since they only involve some simple

statistics of the samples ui; this is in contrast to some other bounds, such as Bennett’s

bounds [Bennett, 1962], that require access to potentially unknown quantities such as the

true variance.

Remark 2.5. Both the Hoeffding and Empirical Bernstein concentration bounds require

boundedness, (u(x) ∈ [0, 1]), unbiasedness (Et[ui] = Et[u]), and independence of the samples

ui, but do not require that the ui be identically distributed.

28

2.4.2 Importance Sampling

Direct sampling from the target distribution t(x) might be difficult or even impossible in many

cases. Importance sampling (IS) offers an alternative approach, by introducing a proposal

distribution q(x) from which we are able to draw samples efficiently. The support of q(x)

should be large enough:

{x | u(x)t(x) 6= 0} ⊆ {x | q(x) > 0},

such that the ratio u(x)t(x)/q(x) is finite whenever u(x)t(x) is nonzero. Then, the target

mean can be approximated using samples from the proposal distribution:

Et[u(x)] = Eq

[u(x)t(x)

q(x)

]
≈ 1

N

N∑
i=1

u(xi)t(xi)

q(xi)
(2.21)

where {xi}Ni=1 are drawn independently from q(x). The variance of u(x)t(x)/q(x) is

Varq

[
u(x)t(x)

q(x)

]
= Eq

[(u(x)t(x)

q(x)
− Et[u(x)]

)2
]

= Eq

[(u(x)t(x)

q(x)

)2
]
−
(

Et[u(x)]
)2

. (2.22)

Ideally, we want to have a proposal distribution that leads to an estimate with the minimal

variance. The following proposition (whose proof is given in Appendix A) claims that the

proposal distribution q?(x) proportional to |u(x)| t(x) is optimal in terms of variance under

very mild conditions.

Proposition 2.2. If we assume Et[|u(x)|] > 0, and let

q?(x) = |u(x)|t(x)/Et[|u(x)|], (2.23)

29

then for any proposal distribution q(x), we have

Varq?

[
u(x)t(x)

q?(x)

]
≤ Varq

[
u(x)t(x)

q(x)

]
.

Two special cases of q?(x) are worth mentioning here. When u(x) is nonnegative, by

substituting (2.23) into (2.22), we can see that q?(x) achieves zero variance. Another special

case is that when u(x) is a constant, in which case q?(x) is exactly the target distribution

t(x).

The effectiveness of IS highly depends on the proposal distribution. If there is a large

discrepancy between q(x) and q?(x), the estimate in (2.21) can be very misleading [MacKay,

1998]. Finding a high-quality proposal distribution is difficult in general, which is often a

major practical concern about the application of IS.

Estimating Z via importance sampling

IS is directly applicable to estimating the partition function Z by setting u(x) = Z and

t(x) = p(x) where p(x) is the underlying distribution of a graphical model f(x) (see (2.1)–

(2.3)). Thus, Z can be approximated by its IS estimate Ẑ defined as follows:

Z = Eq

[
f(x)

q(x)

]
≈ Ẑ =

1

N

N∑
i=1

f(xi)

q(xi)
.

By following our previous arguments about the optimal proposal, we see that one guiding

principle for designing a proposal distribution is to find one that is close to p(x).

There is a lot of existing work using IS and its extensions for estimating the partition

function [e.g., Salakhutdinov and Murray, 2008, Sohl-Dickstein and Culpepper, 2012, Ma

30

et al., 2013, Naesseth et al., 2014, Burda et al., 2015, Liu et al., 2015a,b]. However, most of

these methods do not provide any certificate on the accuracy of their estimates. One key

exception is Liu et al. [2015a], which provides finite-sample bounds on the partition function;

we review this approach in detail in Chapter 4.

31

Chapter 3

Best-�rst Search Aided by Variational

Heuristics

In this chapter, we develop anytime anyspace best-first search algorithms for bounding the

partition function and marginal MAP, taking advantage of the AND/OR tree structure and

optimized variational heuristics to tighten deterministic bounds.

In Section 3.1, we study how our priority-driven best-first search scheme can improve on

state-of-the-art variational bounds in an anytime way within limited memory resources, as

well as the effect of the AND/OR framework to exploit conditional independence structure

within the search process within the context of summation. We compare our resulting bounds

to a number of existing methods, and show that our approach offers a number of advantages

on real-world problem instances taken from recent UAI competitions.

In Section 3.2, we propose a best-first search algorithm that provides anytime upper bounds

for marginal MAP. It folds the computation of external maximization and internal summation

into an AND/OR tree search framework, and solves them simultaneously using a unified best-

first search algorithm. The algorithm avoids some unnecessary computation of summation

sub-problems associated with MAP assignments, and thus yields significant time savings.

Furthermore, our algorithm is able to operate within limited memory. Empirical evaluation on

32

three challenging benchmarks demonstrates that our unified best-first search algorithm using

pre-compiled variational heuristics often provides tighter anytime upper bounds compared to

those state-of-the-art baselines.

3.1 Anytime Anyspace Best-�rst Search for The Partition Function

In this section, we develop an anytime anyspace best-first search algorithm that improves

bounds for the partition function by exploring the AND/OR search space, using pre-compiled

variational heuristics. We define and study the effect of several priority functions, which

determine the order in which the search space is explored. Empirical results demonstrate that

our approach, used with heuristics extracted from WMB (see Section 2.2) is almost always

superior to several state-of-the search algorithms on various benchmark-memory settings.

3.1.1 Introduction

As discussed in the background chapter, exact computation of the partition function is

intractable in general, leading to the development of a broad array of approximate schemes.

Particularly useful are schemes that provide guarantees, such as a confidence interval (upper

and lower bounds), and can also be improved in an anytime and anyspace manner.

The approximate elimination methods and variational bounds described in Section 2.2 provide

deterministic guarantees on the partition function. However, these bounds are not anytime;

their quality depends critically on the amount of memory available, and they do not improve

indefinitely without additional memory. On the other hand, Monte Carlo methods, such

as those based on importance sampling [e.g., Liu et al., 2015a], or approximate hash-based

counting for weighted SAT [e.g., Chakraborty et al., 2016] can smoothly trade time for

quality, but provide only probabilistic bounds (e.g., they hold with probability 1− δ for some

confidence parameter δ), and can be slow to provide tight intervals.

33

Historically, search techniques are well studied in graphical models for optimization (e.g.,

MAP and weighted CSP tasks) [Shimony and Charniak, 1991, Santos, 1991, Kask and Dechter,

2001, Bacchus et al., 2003a] and exact summation [Darwiche, 2001, Chavira and Darwiche,

2008, Bacchus et al., 2003b, Sang et al., 2005, Darwiche, 2009]. However, there has been

relatively little use of search on approximating summation problems such as the partition

function. One exception is Viricel et al. [2016], which adapts a depth-first branch-and-bound

search scheme to provide deterministic upper and lower bounds on the partition function.

As we can see in Section 2.3.3, AND/OR search spaces provide an elegant framework that

exploits conditional, possibly context-specific independence structure during search. In

contrast to methods such as recursive conditioning or “clamping” [Darwiche, 2001, Dechter

and Mateescu, 2007, Weller and Domke, 2016] and recent work on knowledge compilation

[Kisa et al., 2014], that can also explore the AND/OR search space, most explicit AND/OR

search algorithms were used for optimization, employing a fixed search order that restricts

the search but enables the use of strong, pre-compiled heuristic functions that can lead to

faster exploration and better early pruning [Marinescu and Dechter, 2009b,a, Otten et al.,

2011, Otten and Dechter, 2012, Marinescu et al., 2014, 2015].

Other related approaches for summation queries include cutset-conditioning for exact solu-

tions [Pearl, 1988, Dechter, 2013] or approximation with sampling [Bidyuk and Dechter, 2007].

Bidyuk et al. [2010] used conditioning to combine bound intervals on marginal probabilities.

3.1.2 AND/OR Best-�rst Search (AOBFS)

We explore the power of AND/OR search with precompiled heuristics for bounding sum

inference tasks. In this section, we introduce our main algorithm; we first present a simplified

version that is A*-like, and then generalize to an SMA*-like version to operate with limited

memory.

34

Beginning with only the root ∅, we expand the search tree according to the pseudo tree

structure and some control strategy (depth-first, breadth-first, etc.) With best-first search,

we assign a priority (i.e., an evaluation value) to each frontier node on the search tree, then

expand the top priority frontier node in each iteration.

More precisely, we maintain an explicit AND/OR search tree of visited nodes, denoted S,

whose frontier nodes are denoted OPEN. The remaining nodes of S are called internal nodes.

For an internal node n, we denote OPEN(n) as the set of descendants of n that are in OPEN.

A frontier AND node of S is called solved if it corresponds to a leaf node in the pseudo tree.

An internal node of S is solved only if all its children are solved.

Recall from (2.16) that, for the summation problem, the value of a node n is defined recursively

in terms of the edge weights wc and values vc of its children:

vn =


∏

c∈ch(n) vc, if n is an AND node,∑
c∈ch(n) wcvc, if n is an OR node.

(3.1)

During search, we maintain upper and lower bounds on the values of explored nodes, denoted

un and ln, respectively. When a search node n is first generated (i.e., when it is in OPEN),

these bounds can be initialized via the pre-compiled heuristics, ln = h−n ≤ vn ≤ h+
n = un,

and then subsequently refined as n and its descendants are expanded during search. For

internal nodes, given the currently expanded tree S, we update the bounds un and ln using

35

information propagated from the frontier:

un =


∏

c∈ch(n) uc, if n is an AND node,∑
c∈ch(n) wcuc, if n is an OR node,

ln =


∏

c∈ch(n) lc, if n is an AND node,∑
c∈ch(n) wclc, if n is an OR node.

(3.2)

Note that these values depend implicitly on the search tree S.

It will be useful to define a quantity at each node, that represents the total sum conditioned

on the path from the root to that node. Let branch(p, q) be all OR nodes that are siblings of

some node s on the path p < s ≤ q; these are “other” children of AND-node ancestors of q.

For shorthand we use branch(q) = branch(∅, q) for paths from the root. Then, define

Vn = gn vn
∏

s∈branch(n)

vs, (3.3)

where the branch terms correspond to incorporating the exact values for conditionally

independent subproblems for sibling subtrees at AND nodes. As a special case, this quantity

at the root V∅ equals the partition function Z. It will also be useful to define two node-specific

quantities that are upper and lower bound analogues of Vn:

Un = gn un
∏

s∈branch(n)

us, (3.4)

Ln = gn ln
∏

s∈branch(n)

ls.

These quantities combine the path cost and heuristic in the usual way, e.g., the path cost

gn times the current heuristic bound, un. At the root, the dynamically updated bounds

U = U∅ = u∅, L = L∅ = l∅ serve as anytime bounds on Z. Thus, we can interpret Un and Ln

36

as the contributions of n to the global bounds U and L. Moreover, we show in Appendix B,

Proposition 3.1. The quantity Vn represents the total weighted sum over all solution trees

that include the path from the root to node n. Given a current search tree S, for all n, we

have Ln ≤ Vn ≤ Un.

Priority Types

A critical element of best-first search is the priority value for each frontier node, which

determines which node will be expanded next. However, some complications arise in AND/OR

search, and particularly for summation queries, which we discuss here.

In typical A* search, we select the frontier node with the lowest cost incurred so far, plus

an optimistic heuristic estimate of the cost to go. In our notation and for maximization,

this corresponds to selecting s ∈ OPEN to maximize Us; this choice will tighten the current

global upper bound U , and we refer to it as the “upper” priority. However, for summation

problems it may be more natural to tighten the current gap, U − L, which suggests selecting

s to maximize Us − Ls (the “gap” priority); more precisely, in Appendix B we show:

Proposition 3.2. Given a current search tree S, fully solving the summation problem below

a frontier node s will tighten the bound difference U − L by

gs (us − vs)
∏

t∈branch(s)

ut + gs (vs − ls)
∏

t∈branch(s)

lt

which is upper bounded by gap(s) = Us − Ls.

Thus, gap(s) serves as an optimistic estimate of the effect of expanding s on the global bound

difference. For OR search, this essentially reduces to the priority proposed in Henrion [1991].

However, in AND/OR search, tracking the highest priority node can be difficult. In particular,

37

Algorithm 3.1 AND/OR Best-first Search (AOBFS) for anytime summation bounds.

1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: ExpandBest(∅, 1, 1) // find best frontier, from root
4: end while

5: function ExpandBest(n, Un, Ln)
6: if n 6∈ OPEN // not frontier; recurse down:
7: Find c+ via (3.5) or (3.6)
8: ExpandBest(c+, Uc+ , Lc+)
9: else // expand frontier node:

10: Generate children of n; uc = h+
c , lc = h−c .

11: Mark any leaves (or uc = lc) as SOLVED.
12: end if
13: Update un, ln via (3.2)
14: if all children c ∈ ch(n) are SOLVED
15: Remove ch(n) from S; add n to SOLVED.
16: end if
17: Find c+ and update U+

n , L+
n by (3.5) or (3.6)-(3.7).

18: end function

both the upper and gap priorities are non-static: after expanding a node in OPEN , the

priority of other nodes may change their values and relative orders. Consider two nodes which

share an AND ancestor; this means that the nodes correspond to conditionally independent

subproblems, and their contributions are multiplied in the recursive value definition (3.1).

Since both branches must be solved, proving that one branch is unpromising tells us not to

explore the other branch, and reduces its priority.

For the upper bound heuristic at a node n, it is easy to show that, if no descendant of n is

updated, the relative order of n’s children does not change. To see this, write Us = Un(Us/Un)

for any frontier node s descended from n, s ≥ n. Then, the second term, Us/Un, will involve

only quantities defined on descendants of n; thus, changes to ancestors of n can only affect

Un and hence cannot change the relative order of n’s descendants. Then, by maintaining at

38

each node n the relative value of the highest priority descendant,

U+
n = max

s≥n,s∈OPEN
Us/Un

we can always identify the highest-priority child of n, and propagate U+
c upward, by computing

c+ = argmax
c∈ch(n)

UcU
+
c and U+

n = Uc+U
+
c+/Un. (3.5)

Unfortunately, the gap heuristic is less well-behaved. At a node n, the descendant gap

Un(Us/Un)− Ln(Ls/Ln) can change the relative order if n’s ancestors are updated and Un

and Ln change values. For this reason, we elect to track the gap priority approximately, by

computing the child with the highest score,

c+ = argmax
c∈ch(n)

UcU
+
c − LcL+

c , (3.6)

and updating n’s priority terms as

U+
n = Uc+U

+
c+/Un and L+

n = Lc+L
+
c+/Ln. (3.7)

This is not guaranteed to find the current highest gap priority node at each step, but will

become more accurate as the search tree grows and the Un, Ln become more accurate (and

thus stable).

The overall algorithm is given in Algorithm 3.1 and named AOBFS. Each iteration recurses

from the root to the best frontier node, scoring n’s children and computing Un, Ln. At the

frontier, we expand a node, and recurse back up the tree, updating the bounds un, ln and

descendant priority quantities U+
n , L

+
n . We can show:

Proposition 3.3. The time complexity of each node expansion and update in Algorithm 3.1

39

Algorithm 3.2 Memory-limited AOBFS for anytime summation bounds.

1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: if memory OK: n←ExpandBest(∅, 1, 1)
4: else n←RemoveWorst(∅, 1, 1)
5: end if
6: end while

7: function RemoveWorst(n, Un, Ln)
8: if n’s children all in OPEN // worst removable node
9: Remove ch(n) from S; mark n in OPEN

10: else // or recurse toward worst
11: Find worst non-OPEN child c− via (3.8) or (3.9)
12: RemoveWorst(c−, Uc− , Lc−)
13: end if
14: Update c− and U−n , L−n via (3.8) or (3.9)–(3.10)
15: end function

16: function ExpandBest(n, Un, Ln)
17: // As in Algorithm 3.1, except:
18: Ensure un, ln, U+

n , L+
n updated monotonically

19: Update c− and U−n , L−n via (3.8) or (3.9)–(3.10)
20: end function

is bounded by O(h(b+ d)) where h is the height of the pseudo tree, b is the max branching

factor of the pseudo tree, and d is the max variable domain size.

3.1.3 Memory-limited AOBFS

As is typical for best-first search, memory usage can quickly become a major bottleneck.

To continue improving in memory-limited settings, we could switch to some low-memory

strategy such as depth-first search (DFS). However, this is often slow to tighten the bounds.

Instead, we apply a variant of SMA* [Russell, 1992], so that near the memory limit, we

continue expanding nodes in a best-first way, but remove low-priority nodes from S, in such a

way that they will be re-generated once the high-priority subtrees are tightened or solved. We

simply modify our updates in two ways: (1) at each node n, we also track the lowest-priority

removable descendant of n; and (2) we force un, ln, and the node priority quantities U+
n , L+

n

40

to be updated monotonically, to avoid worsening the bounds or overestimating priority when

subtrees are removed and later re-generated. The resulting memory-limited AOBFS is shown

in Algorithm 3.2.

For convenience, we define a node as removable if its children are all in OPEN , and “remove”

it by deleting its children and re-adding it to OPEN ; this notion simplifies tracking and

re-expanding removed nodes. We keep track of the smallest priority value of any removable

node below n; for the upper heuristic,

c− = argmin
c∈rm(n)

UcU
−
c and U−n = Uc−U

−
c−/Un (3.8)

with rm(n) = ch(n)\OPEN, i.e., the children of n not in OPEN , and U−n = U+
n at removable

nodes. For the gap priority, we again track only approximately, using

c− = argmin
c∈rm(n)

UcU
−
c − LcL−c (3.9)

and

U−n = Uc−U
−
c−/Un,

L−n = Lc−L
−
c−/Ln

(3.10)

Then, to remove a node, we search downward along the worst children c−, and remove n

when its children are all in OPEN .

3.1.4 Experimental Settings

To evaluate the effectiveness of memory-limited AOBFS (Algorithm 3.2), we compare it to a

number of existing methods on four benchmarks and under three different memory budgets.

41

Benchmarks

We evaluate our method’s performance on several benchmark instance sets: CPD, a set

of computational protein design problems from Viricel et al. [2016]; PIC’11, a benchmark

subset of 23 instances selected by Viricel et al. [2016] from the 2012 UAI competition; BN, a

set of Bayesian networks from the 2006 competition1; and Protein, made from the “small”

protein side-chains of Yanover and Weiss [2002]. For CPD, BN, and Protein, we evaluate

on randomly selected subsets of size 100, 50, and 50, respectively. Table 3.1 gives statistics

on the composition of these benchmarks. Note that CPD and PIC’11 are used in order to

facilitate comparison with the baseline Z∗ε . BN and Protein are chosen to reflect diverse

problem characteristics; as we can observe from Table 3.1, BN instances have large number of

variables and functions on average, while Protein instances typically have large domain sizes.

Methods

Our memory-limited AOBFS (Algorithm 3.2) is tested in two variants: using the “gap”

priority (denoted A-G), and using the “upper” priority (A-U). To measure whether errors

in tracking and finding the highest gap priority affect quality, we also compare an OR search

variant, O-G; this can be done by simply selecting a chain-structured pseudo tree, and

ensures that the highest gap priority node is found at each step, at the cost of not exploiting

the AND/OR problem decomposition. For our experiments, we use WMB heuristics whose

memory use is roughly controlled by the ibound. For a given memory budget, we first compute

the largest ibound that fits the memory budget, and then use the remaining memory for

search. A more carefully chosen allocation strategy might be able to yield better performance;

however, we leave this for future work.

Z∗ε [Viricel et al., 2016] is a recent algorithm that provides lower and upper bounds on the

1http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

42

http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

partition function. For a given ε, it returns bounds on logZ whose gap is at most log(1 + ε).

We adopted the parameter setup suggested by the authors: upper bound set to Ub1, enforcing

VAC at the root, and using EDAC during the rest of the search.

VEC [Dechter, 1999, 2013] (Variable Elimination with Conditioning, also known as cutset

conditioning) is a classical method for trading off memory with time when the induced width

of the problem is too high. The algorithm determines the highest induced width for which it

can run the variable elimination algorithm, denoted w, and then searches over a w-cutset set

of nodes, applying variable elimination to each assignment of the cutset.

MMAP-DFS [Marinescu et al., 2014] (abbreviated M-D) is a state-of-the-art method for

marginal MAP using AND/OR search, which solves the internal summation problem exactly

using depth-first search aided by weighted mini-bucket heuristics. We use it to compute

the partition function by treating all variables as summation variables. Since it also uses

weighted mini-bucket, we use the same ibound selected for the heuristics in our algorithm.

Viricel et al. [2016] also compared several other solvers, minic2d [Oztok and Darwiche, 2015],

ace [Chavira and Darwiche, 2008], and cachet [Sang et al., 2005], but found that even with

significant memory (60GB), these solvers did not complete a significant fraction of the CPD

problems: minic2d solved about 13%, ace solved about 5%, and cachet solved 7% of the

instances. For this reason, we elected not to include them in our evaluation.

Implementations of all methods are in C/C++ by the original authors. We allowed each

solver a maximum time of 1 hour per instance, and tested under three different memory

budgets: 1GB, 4GB and 16GB.

43

Table 3.1: Statistics of the four evaluated benchmark sets.

PIC’11 Protein BN CPD

instances 23 50 50 100
avg. # variable 104.04 99.96 838.60 15.68
avg. # factor 409.09 355.84 838.60 135.32
avg. max domain size 2.91 77.94 12.44 32.54
avg. # evidence 0 0 96.04 0
avg. induced width 16.35 11.24 32.78 14.68
avg. pseudotree depth 26.09 27.66 112.46 12.27

3.1.5 Empirical Results

The main goal of our algorithm is to provide continuously improving, anytime bounds. While

Z∗ε is able to reduce its quality requirement (by increasing ε), it is not anytime in this sense.

To simulate anytime-like behavior, we vary ε across the range log(ε + 1) ∈ [10−3, 102] to

provide a sequence of quality/time pairs. Figure 3.1 shows the anytime behavior of our

algorithm along with these Z∗ε runs on one instance per benchmark. Generally speaking, our

best-first search process tightens the bound much more quickly and smoothly than Z∗ε . For

example, in Figure 3.1(a), only very coarse bounds are produced within the time limit; in

(b), the Z∗ε bounds are loose until our proposed algorithm has essentially solved the problem

(with heuristic construction comprising most of the total time); in (c) Z∗ε did not produce

any useful bound within the time limit.

Within our algorithm’s variants, we see that both AND/OR variants perform similarly, with

the OR variant similar or slower (e.g., Figure 3.1(b)). We find that our gap-based priority

can be slower initially, but usually improves to do better than upper priority after enough

time; for example, this behavior is visible in Figure 3.1(c).

44

10
1

10
2

10
3

10
4

−140

−120

−100

−80

−60

time (sec)

bo
un

ds
 o

f l
nZ

A-G
A-U
O-G
Z

∗

ε

(a) PIC’11/queen5 5 4

10
−2

10
0

10
2

10
4

−66

−65

−64

−63

−62

−61

−60

time (sec)

bo
un

ds
 o

f l
nZ

A-G
A-U
O-G
Z

∗

ε

(b) Protein/1g6x

10
1

10
2

10
3

10
4

−5.65

−5.6

−5.55

−5.5

−5.45

−5.4

−5.35

time (sec)

bo
un

ds
 o

f l
nZ

A-G

A-U

O-G

(c) BN/BN 8

10
1.1

10
1.6

226.8

227

227.2

227.4

227.6

time (sec)

bo
un

ds
 o

f
ln

Z

A-G
A-U
O-G
Z

∗

ε

(d) CPD/237 SER

Figure 3.1: Anytime behavior of AOBFS on one instance per benchmark. For A-G, A-U,
and O-G, anytime bounds on logZ are truncated at logU − logL = 10−3. Curves for Z∗ε may
be missing since it may not be able to produce bounds or bounds are not in a reasonable
scope for log(ε+ 1) ∈ [10−3, 102].

Solving to �xed tolerance

We evaluate the number of instances in each benchmark that can be solved to tolerance (so

that the gap between the upper and lower bound is less than ε) within the memory and time

constraints. Table 3.2 shows the performance of each algorithm at two thresholds, “loose”

(ε = 1.0) and “tight” (ε = 10−3). Exact methods (VEC, M-D) are included with the tight

45

5 10 15 20

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(a) PIC’11

10 20 30 40 50

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(b) Protein

10 20 30 40 50

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(c) BN

20 40 60 80 100

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(d) CPD

Figure 3.2: Time required to solve the n-th fastest instance in the benchmark (to tolerance
10−3), with memory 1GB. Maximum time budget is 1 hour. The total benchmark sizes (from
left to right) are 23, 50, 50 and 100 instances, respectively. Here, lower curves are better,
indicating less time required to solve those problems.

tolerance interval.

From Table 3.2, we can see that A-G solves the most instances to tight tolerance in 9 of 12

settings; A-U is only slightly worse, and also improves over the previous approaches. (Again,

we see that O-G solves fewer instances, emphasizing the usefulness of exploiting conditional

46

5 10 15 20

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(a) PIC’11

10 20 30 40 50

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(b) Protein

10 20 30 40 50

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(c) BN

20 40 60 80 100

10
0

10
2

10
4

no. of solved instances

tim
e

(s
ec

)

A-G
A-U
O-G
Z

∗

ε

VEC
M-D

(d) CPD

Figure 3.3: Time required to solve the n-th fastest instance in the benchmark (to tolerance
10−3), with memory 16GB. Maximum time budget is 1 hour. The total benchmark sizes
(from left to right) are 23, 50, 50 and 100 instances, respectively. Again, lower curves are
better, indicating faster solutions.

independence in the AND/OR space.) An exception is on CPD, which Z∗ε performs slightly

better at lower memory bounds. When looser bounds are acceptable, Z∗ε solves only one

additional problem at 16GB, and two additional problems at lower memory; it has difficulty

taking advantage of anytime tradeoffs. In contrast, the proposed search algorithms solve

significantly more problems to loose tolerance.

47

Table 3.2: Number of instances solved to tolerance interval for each benchmark & memory
setting. Each entry contains the number of solved instances in 1 hour with memory budget
1GB, 4GB, and 16GB from left to right. The highest (most solved) for each setting is bolded.
Exact methods (VEC, M-D) are compared to the “tight” tolerance 10−3.

“Loose”: logU − logL < 1.0

PIC’11 Protein BN CPD

#inst. 23 50 50 100

Memory: 1GB/4GB/16GB

A-G 20/20/21 23/29/30 39/42/43 100/100/100
A-U 20/20/21 23/29/30 39/42/43 100/100/100
O-G 19/20/21 12/13/16 35/37/40 100/100/100
Z∗ε 14/14/15 13/13/13 30/31/31 100/100/100

“Tight”: logU − logL < 10−3

PIC’11 Protein BN CPD

#inst. 23 50 50 100

Memory: 1GB/4GB/16GB

A-G 18/18/19 16/17/19 32/40/42 95/98/100
A-U 18/18/19 15/17/19 32/40/41 93/95/100
O-G 16/18/19 9/12/13 28/36/38 95/98/100
Z∗ε 13/13/15 12/12/12 30/31/31 100/100/100
VEC 12/14/19 14/15/15 36/38/39 36/52/56
M-D 14/14/14 9/9/11 23/23/24 7/7/8

Figure 3.2 and Figure 3.3 show the time required to solve (to tolerance 10−3) the instances in

each benchmark with memory 1GB and 16GB respectively. Again, we find that Z∗ε is usually

faster on CPD problems, but slower than our proposed method on PIC’11 and Protein, and

faster on only the easiest of the BN instances. Among exact methods, M-D is often faster

on simple models, but then fails to solve harder models, while VEC is usually both slower

and solves fewer models than our best-first search. We also observe that more memory often

leads to better performance for all methods. Our algorithm and VEC generally improve

more compared to other baselines with more memory.

Search can sometimes effectively solve instances with very high width, if there are relatively

48

few high-weight configurations of the model. For example, in the Protein instances, A-G

solves instance “1who” with an induced width 10 in only 12 seconds and 1GB memory, while

the corresponding junction tree requires about 150GB memory; even more extreme, instance

“2fcr” with an induced width 17 is solved in 21 minutes and 16GB memory, while junction

tree would require approximately 3.5PB.

A-G versus A-U

As we observed from Figure 3.1, A-U may outperform A-G early on in search, but A-G

usually catches up. One possible explanation is that, early on, the lower bound heuristics

from weighted mini-bucket are often significantly worse than the corresponding upper bounds,

and thus the gap, U − L, is very close to U , and the priorities are similar. However, our

approximate procedure may not identify the top gap-priority node, and moreover, A-U

priority requires slightly less computation than that of A-G, making it more efficient during

early search. However, as search proceeds and the heuristics become more accurate, focusing

on nodes that have high gap, rather than merely high value, pays off; for example, A-G

solves slightly more instances than A-U to tolerance in Table 3.2.

3.1.6 Summary of AOBFS

In this section, we develop an anytime anyspace search algorithm for bounding the partition

function. It is a priority-driven best-first search scheme on the AND/OR search tree based

on precompiled heuristics from state-of-the-art variational bounds, and is able to improve on

these bounds in an anytime fashion within limited memory resources. The AND/OR search

tree enables exploiting conditional independence during search, while the heuristics and

priority guide it toward critical subtrees of the search space. In experimental comparisons,

our best-first algorithm outperforms existing, state-of-the-art baseline methods on multiple

standard benchmarks and memory limits.

49

3.2 Anytime Anyspace Best-�rst Search for MMAP

We next extend our anytime anyspace AND/OR best-first search algorithm to provide

improving deterministic upper bounds for marginal MAP (MMAP). Our algorithm unifies

max and sum inference within a specifically designed priority system that aims to reduce

upper bound of the optimal solution(s) as quickly as possible, which generalizes AOBFS

for the pure summation task. Our approach avoids some unnecessary exact evaluation of

conditional summation problems, yielding significant computational benefits in many cases,

as demonstrated by empirical results on three challenging benchmarks compared to existing

state-of-the-art baselines on anytime upper bounds.

3.2.1 Introduction

Some early works [Park and Darwiche, 2003, Yuan and Hansen, 2009] solve MMAP exactly

based on depth-first branch and bound. Marinescu et al. [2014] outperforms the predecessors

by using AND/OR search spaces and high-quality variational heuristics. Later, a best-first

search variant of Marinescu et al. [2014] was proposed and shown empirically superior to

the depth-first one given enough memory [Marinescu et al., 2015]. Because best-first search

is memory-intensive, a recursive best-first search algorithm [Marinescu et al., 2015] was

proposed to that operate within a limited memory budget.

Because of the inherent difficulty of MMAP, searching for exact solutions is generally un-

promising. Recent works on MMAP often focus on approximate schemes. Approximate

elimination methods (see Section 2.2) and closely related variational bounds [Liu and Ihler,

2013] provide deterministic guarantees. However, as noted before in the case of partition

function, these bounds are not anytime; their quality often depends on the memory available,

and does not improve without additional memory. The decomposition bounds of Ping et al.

[2015] operate similarly; while the bounds improve over time, they cannot be guaranteed to

50

find optimal solutions unless given enough memory. Some Monte Carlo methods such as one

based on random hashing [Xue et al., 2016] provide probabilistic bounds only, while some may

not even have this property, e.g., those based on Markov chain Monte Carlo [Doucet et al.,

2002, Yuan et al., 2004]. Another algorithm that provides anytime deterministic bounds for

MMAP is based on factor set elimination [Mauá and de Campos, 2012], but the factor sets it

maintains tend to grow very large and thus limit its practical use to problems with relatively

small induced widths [Marinescu et al., 2017].

Recent search-based algorithms improve upon their exact predecessors [Otten and Dechter,

2012, Marinescu et al., 2014, 2015] by introducing weighted heuristics in best-first search [Lee

et al., 2016b] or by combining best-first search with depth-first search [Marinescu et al.,

2017] to improve their anytime performance, and these comprise the current state of the art.

However, these algorithms [Marinescu et al., 2014, 2015, Lee et al., 2016b, Marinescu et al.,

2017] treat the max and sum inference separately, and require solving exactly a number of

conditional summation problems, which is generally intractable. Although this strategy works

reasonably at anytime improvement of lower bounds, it is often slow to improve the associated

upper bound. Moreover, it is not always necessary to fully solve an internal summation

problem to prove a configuration’s sub-optimality. In contrast, we focus our solver on quickly

reducing its MMAP upper bound via best-first search, with computation of the internal

summation problems integrated in a best-first way as well. When the search encounters an

internal summation problem, instead of fully solving it immediately we gradually instantiate

its summation variables, which acts to reduce the upper bound of the current candidate MAP

(sub-) configuration. This “pure” best-first behavior can potentially solve fewer summation

problems to certify the optimal MAP configuration.

51

3.2.2 AND/OR Search Spaces for MMAP

To present an AND/OR search algorithm for MMAP, we first have to adapt and extend some

notions introduced in Section 2.3.3 such as “pseudo tree” (see Definition 2.1) and “partial

solution tree” (see Definition 2.3) to this particular task.

If a tree node of a pseudo tree corresponds to a MAX variable in the associated graphical

model of the pseudo tree, we call it a MAX node, otherwise we call it a SUM node. A pseudo

tree is called valid for an MMAP task if there is no MAX variable that is descendant of some

SUM variable. Thus, all MAX variables of a valid pseudo tree form a subtree (assuming a

dummy MAX root) that contains the root. We assume valid pseudo trees in the sequel.

Example 3.1. Figure 3.4(a) shows the primal graph of a pairwise model, with A,B,C being

MAX variables, and the rest SUM. Figure 3.4(b) shows one valid pseudo tree of the model.

If an OR node is associated with some MAX variable, it is called an OR-MAX node. Notions

of OR-SUM, AND-MAX, AND-SUM nodes are defined analogously. We introduce a concept

called partial MAP solution tree below.

Definition 3.1 (partial MAP solution tree). A partial MAP solution tree T of an

AND/OR search tree T is a partial solution tree (see Definition 2.3) that satisfies the

following condition: If an OR-SUM node is in T , this node must have OR-MAX sibling(s); T

contains all its siblings and meanwhile T does not contain any of its children.

The associated configuration xTM of a partial MAP solution tree TM is a partial assignment

of XM (all the MAX variables, see Section 2.1.1). If xTM is a complete assignment of XM,

we call it a full MAP solution tree. We let T denote the set of all full solution trees (see

Definition 2.2). and T
M denote the set of all full MAP solution trees.

Example 3.2. A full solution tree is marked red in the AND/OR search tree shown in

Figure 3.4(c). According to the definitions, a full solution tree (see Definition 2.2) corresponds

52

A B

CD

E

F

G

(a)

A

B

C F

GD E

(b)

A

B B

0 1

0 1 0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

(c)

Figure 3.4: (a) A primal graph of a graphical model over 7 variables (A, B, C are MAX
variables and D, E, F, G are SUM variables). (b) A valid pseudo tree for the primal graph.
(c) AND/OR search tree guided by the valid pseudo tree. One full solution tree is marked
red. One partial solution tree that is also a partial MAP solution tree is marked blue.

to a complete assignment of all variables. A partial solution tree (see Definition 2.3) that

happens to be a partial MAP solution tree is marked blue in Figure 3.4(c).

We extend the definitions (2.15)–(2.16) to the mixed MAX/SUM of the MMAP task. First,

if n is an AND node that corresponds to a leaf node of the pseudo tree, we define vn = 1 as

usual; and for the rest, we have

AND node n: vn =
∏

s∈ch(n)

vs

OR node n: vn =


max
s∈ch(n)

wsvs, if MAX node n∑
s∈ch(n)

wsvs, if SUM node n

(3.11)

53

Thus, the value v∅ at the root is the optimum of the MMAP task, i.e., v∅ = maxxM
∑

xS
f(x).

For each node n, we lightly abuse notation to define Vn as the MMAP value of the model

conditioned on x≤n, expressed explicitly as:

Vn = gn vn
∏

s∈branch(n)

vs. (3.12)

Note that the above has the same form as that of (3.3) for the summation task. In general,

for any partial solution tree T , let VT denote the optimum of the MMAP task for the model

conditioned on xT , we have

VT = gT
∏

n∈leaf(T)

vn (3.13)

where leaf(T) is the set of all leaf nodes of T , and gT is defined in (2.13). Let TM
n be the optimal

full MAP solution that contains or extends to n, i.e., TM
n = argmax{TM∈TM|TM∪{n}⊂T,T∈T} VTM .

The following proposition reveals the fact that Vn is the total sum of conditioned task values

over those full solution trees that contain both TM
n and n:

Proposition 3.4.

Vn =
∑

{T∈T|TM
n ∪{n}⊂T}

VT (3.14)

These quantities and their relations will help us develop the priority function defined for our

algorithm in the sequel.

3.2.3 Uni�ed Best-�rst Search (UBFS)

In this section, we will present our main algorithm by first introducing the double-priority

system which leads to a simplified version that is A*-like, and then generalizing it to an

SMA*-like version to operate with limited memory. If the MMAP task corresponds to a pure

54

summation, our algorithm will reduce to AOBFS using the “upper” priority.

Beginning with only the root ∅, we expand the search tree respecting the pseudo tree structure.

As a best-first scheme, we assign a priority to each frontier node on the search tree, then

expand the top priority frontier node in each iteration. More precisely, we maintain an

explicit AND/OR search tree of visited nodes, denoted S, whose frontier nodes are denoted

OPEN . Without loss of generality, we assume OPEN only contains AND nodes. A frontier

AND node of S is solved if it corresponds to a leaf node in the pseudo tree. An internal

node of S is solved if all its children are solved. For an internal OR-MAX node, it suffices to

conclude that it is solved if its “best” child argmaxs∈ch(n) wsvs is solved.

For each node n in the AND/OR search tree, we make un an upper bound of vn, initialized

via pre-compiled heuristic h+
n s.t. vn ≤ h+

n , and subsequently tightened during search. Given

the currently expanded tree S, we update un using information propagated from the frontier,

analogous to (3.11):

AND node n: un =
∏

s∈ch(n)

us

OR node n: un =


max
s∈ch(n)

wsus, if MAX node n∑
s∈ch(n)

wsus, if SUM node n

(3.15)

These values depend implicitly on the search tree S. Thus, the dynamically updated bounds

U = u∅ at the root serve as an anytime bound on the optimum of the MMAP task.

Priority

Our goal is to drive down the global upper bound U as quickly as possible. Intuitively,

this can be achieved by expanding the frontier node that affects U most at each iteration.

Following this intuition, we will first show how to make connection between a frontier node n

55

and the global upper bound U , which is bridged by the current “best” partial MAP solution

tree in S that contains or extends to n; we will then establish a double-priority system that

marks the most “influential” frontier node as the top priority one.

Analogously to Vn and VT (see (3.12), (3.13)), we define Un for any node n ∈ S and UT for

any partial solution tree T ⊂ S:

Un = gn un
∏

s∈branch(n)

us, UT = gT
∏

n∈leaf(T)

un (3.16)

These two quantities are upper bounds of Vn and VT respectively. Note that Un and UT

depend on the current search tree S while Vn and VT do not. The relation between Un and

UT is also analogous to that of Vn and VT stated in (3.14):

Un =
∑

{T∈TS |TM
S (n)∪{n}⊂T}

UT (3.17)

where TS = {T ∩ S | T ∈ T} is the set of the partial solution trees formed by projections

of all full solution trees on S, TM
S = {TM ∩ S | TM ∈ T

M} is the set of partial MAP

solution trees formed by projections of all full MAP solution trees on S, and TM
S (n) =

argmax{TM∈TM
S |TM∪{n}⊂T,T∈TS} UTM is the partial MAP solution tree in T

M
S with the highest

upper bound among those in T
M
S that contain or extend to n.

In lieu of (3.17), we can derive the following proposition that implies Un quantifies the

contribution of node n to the upper bound of TM
S (n):

Proposition 3.5.

UTM
S (n) = Un +

∑
{T∈TS |TM

S (n)⊂T,n/∈T}

UT (3.18)

Moreover, it is intuitively clear that the global upper bound U is determined by the current

56

most “promising” partial MAP solution tree, TM
S = argmaxTM∈TM

S
UTM :

Proposition 3.6.

U = max
TM∈TM

S

UTM (3.19)

From Proposition 3.5 and 3.6, we see that among all the frontier nodes, only those contained

in or reachable by TM
S eventually contribute to U , which is very different from the pure

summation case where all the frontier nodes contribute to the global bound. This group of

frontier nodes, denoted OPEN(TM
S), can be expressed explicitly as:

OPEN(TM
S)={n∈OPEN | TM

S ∪ {n} ⊂ T, T ∈ TS} (3.20)

It is obvious that TM
S = TM

S (n) for any n ∈ OPEN(TM
S). We thus prefer to expand n? =

argmaxn∈OPEN(TM
S) Un, the node that contributes most to U , because such expansion is likely

to decrease U most.

Double-priority system. The above discussion also suggests a double-priority system that

helps to identify n? in each iteration. For any n ∈ OPEN, a primary priority defined by the

upper bound UTM
S (n), indicates the potential of TM

S (n) to be the tree that that determines

the overall upper bound U ; a secondary priority given by Un quantifies the contribution of n

to UTM
S (n). Note that these two priorities are equal for any MAX node.

However, tracking the highest priority node can be difficult in AND/OR search. In particular,

both these primary and secondary priorities are non-static: after expanding a node in OPEN ,

the priority of other nodes in OPEN may change their values and relative orders. A similar

effect occurred in the pure summation case. The double-priority system does preserve some

local order invariance:

Proposition 3.7. For any internal node n ∈ S, expansion of any node in OPEN\OPEN(n)

57

will not change the relative order of nodes in OPEN(n) for either the primary or secondary

priority.

The above local order-preserving property allows us to design an implicit priority queue for

nodes in OPEN . To be more specific, first, for any s ∈ OPEN, we define U?
s = us; then, for

each internal node n, we maintain several quantities during search:

c? =



argmax
c∈ch(n)

U?
c /uc, if AND node n

argmax
c∈ch(n)

(wcuc, wcU
?
c), if OR-MAX node n

argmax
c∈ch(n)

wcU
?
c , if OR-SUM node n

(3.21)

U?
n =


U?
c?un/uc? , if AND node n

wc?U
?
c? , if OR node n

(3.22)

In the above, “argmax” over pairs “(,)” means that we compute the argmax over the first

component and use the second component to break ties; this reflects the primary and secondary

priority structure. It is still possible for two frontier nodes to have the same priority: if those

two nodes have the same node type, e.g., both are MAX nodes, we break ties randomly for

simplicity; if they have different node types, we favor the MAX node over the SUM node

because we prefer to reach a full MAP solution tree as early as possible.

The overall algorithm is presented in Algorithm 3.3. Note that the current best partial MAP

configuration xTM
S

serves as an anytime approximation, and can be extended into a full MAP

configuration in some greedy way if required.

Proposition 3.8. In each iteration, Algorithm 3.3 finds a top-priority frontier node to

expand.

See Appendix B for proof.

58

Algorithm 3.3 Unified Best-first Search (UBFS) for anytime upper bound of MMAP

1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: ExpandBest(∅) // find best frontier, from root
4: end while

5: function ExpandBest(n)
6: if n 6∈ OPEN // not frontier; recurse down:
7: ExpandBest(c?)
8: else // expand frontier node:
9: Generate children of n; U?

c = uc = h+
c .

10: Mark any leaves as SOLVED.
11: end if
12: Update un via (3.15).
13: Find c? and update U?

n via (3.21)-(3.22).
14: if all children c ∈ ch(n) are SOLVED
15: or n is an OR-MAX node and c? is SOLVED
16: Remove ch(n) from S; add n to SOLVED.
17: end if
18: end function

Proposition 3.9. The time complexity of each node expansion and update in Algorithm 3.3

is bounded by O(h(b+ d)) where h is the pseudo tree height, b is the max branching factor

of the pseudo tree, and d is the max variable domain size.

3.2.4 Memory-limited UBFS

As memory usage can quickly become a major bottleneck for a best-first search algorithm, we

apply a variant of SMA* similar to that in Algorithm 3.2, so that near the memory limit, we

continue expanding nodes in a best-first way, but remove low-priority nodes from S, in such a

way that they will be re-generated once the high-priority subtrees are tightened or solved. We

simply modify our updates in two ways: (1) at each node n, we also track the lowest-priority

removable descendant of n; and (2) we force (un, U
?
n) to be updated monotonically, to avoid

worsening the bounds or overestimating the priority when subtrees are removed and later

re-generated. The resulting memory-limited best-first algorithm is shown in Algorithm 3.2.

59

Algorithm 3.4 Memory-limited UBFS for anytime upper bound of MMAP

1: Initialize S ← {∅} with the root ∅.
2: while termination conditions not met
3: if memory OK: n←ExpandBest(∅)
4: else n←RemoveWorst(∅)
5: end if
6: end while

7: function RemoveWorst(n)
8: if ch(n) ⊂ OPEN // worst removable node
9: Remove ch(n) from S; mark n in OPEN .

10: else // or recurse toward worst
11: RemoveWorst(c−)
12: end if
13: Update c−, u−n and U−n via (3.23)-(3.25).
14: end function

15: function ExpandBest(n)
16: // As in Algorithm 3.3, except:
17: Ensure (un, U

?
n) updated monotonically

18: Update c−, u−n and U−n via (3.23)-(3.25).
19: end function

For convenience, we define a node as removable if its children are all in OPEN , and “remove”

it by deleting its children and re-adding it to OPEN ; this simplifies tracking and re-expanding

removed nodes. To do so, we introduce two quantities u−n and U−n that are defined for internal

nodes of S. For each n that is removable, we set U−n = U?
n, u−n = un if n is a MAX node and

u−n = U?
n if n is a SUM node. The bottom-up recursion is as follows:

c− =


argmin
c∈rm(n)

(u−c /uc, U
−
c /uc), if AND node n

argmin
c∈rm(n)

(wcu
−
c , wcU

−
c), if OR node n

(3.23)

60

u−n =


un, if AND-MAX n & OR-SUM c−

u−c−un/uc− , if AND-MAX n & OR-MAX c−

wc−u
−
c− , if OR node n

(3.24)

U−n =


U−c−un/uc− , if AND node n

wc−U
−
c− , if OR node n

(3.25)

where rm(n) = ch(n)\OPEN, i.e., the children of n not in OPEN . Then, to remove a node,

we search downward along the worst children c−, and remove n when its children are all in

OPEN .

3.2.5 Empirical Evaluation

We evaluate the anytime performance of our proposed algorithm UBFS, in Algorithm 3.4,

against three baselines which can also provide anytime bounds, on three benchmark problem

sets. The baselines include AAOBF [Marinescu et al., 2017], a state-of-the-art search

algorithm, XOR MMAP [Xue et al., 2016], a recent random hashing based approach, and

AFSE [Mauá and de Campos, 2012], a factor-set elimination scheme. AAOBF and AFSE

can provide anytime deterministic bounds, while XOR MMAP provides anytime stochastic

bounds. Generally, the baselines are chosen to cover recent anytime bounding schemes from

different categories.

The benchmark set includes three problem domains: grid networks (grid), medical diagnosis

expert systems (promedas), and protein, made from the “small” protein side-chains of

Yanover and Weiss [2002]. Our grid set is a subset of the grid dataset used in Marinescu

et al. [2017], with “small” instances (less than 324 variables) excluded because they can be

solved exactly during the heuristic construction and so provide little insight into the search

61

Table 3.3: Statistics of the three evaluated benchmark sets. “avg. induced width” and “avg.
pseudotree depth” are computed given 50% of variables randomly selected as MAX variables.

grid promedas protein

instances 100 100 50
avg. # variables 764.48 1063.84 99.96
avg. # of factors 764.48 1076.84 355.84
avg. max domain size 2.00 2.00 77.94
avg. max scope 3.00 3.00 2.00
avg. induced width 190.59 136.72 35.28
avg. pseudotree depth 218.23 170.50 43.72

process. The promedas set is the same dataset as that used in Marinescu et al. [2017]. We

tested two settings of MAX variables. In the first setting, 50% of the variables are randomly

selected as MAX variables, which is the same setting used in Marinescu et al. [2017]. To

compare the algorithms on instances with relatively hard internal summation problems, we

also decrease the percentage of MAX variables to 10% for the second setting. The statistics

of the benchmarks in Table 3.3 show these instances are very challenging.

The time budget is set to 1 hour for all experiments. We allot 4GB memory to all algorithms,

with 1GB extra memory to AAOBF for caching. For our heuristic search methods, we use

WMB heuristics, whose memory usage is roughly controlled by the ibound. For a given

memory budget, we first compute the largest ibound that fits in memory, then use the

remaining memory for search. Since AAOBF also uses weighted mini-bucket heuristics, the

same ibound is shared during heuristic construction between our proposed algorithm and

AAOBF. Implementations of all methods are in C/C++ by the original authors except AFSE,

implemented by the authors of Marinescu et al. [2017]. The step size used by AFSE to

control the partitioning of the factor sets is set to 1 since little difference in performance was

observed for larger values [Marinescu et al., 2017]. For XOR MMAP, we adopt parameter

values suggested by its authors. Unfortunately, XOR MMAP failed to produce valid bounds

on many of our instances in the allotted time, perhaps because it maintains multiple copies

62

of the problem instance and must solve internal NP-hard parity constraint problems. Despite

its promising solutions and bounds on small instances [Xue et al., 2016], it does not appear

to scale well to our harder benchmarks.

Individual Results

Our algorithm is designed to improve upper bounds in an anytime fashion. Figure 3.5 shows

the methods’ anytime behavior on individual instances from each benchmark. The lower

bounds from UBFS in those plots, corresponding to the best solutions found so far by UBFS

at the respective timestamps, are computed offline and are intended only for reference, to

give a sense of the quality of the anytime MAP configurations predicted by UBFS.

From Figure 3.5, we observe that only UBFS and AAOBFS are able to provide valid (upper)

bounds on all the 6 instances. AFSE runs out of memory on all but one instance before

providing any bounds, which was fairly typical; for comparison, UBFS and AAOBF are able

to solve this instance optimally. We commonly observed that when AFSE is able to produce

bounds, UBFS and AAOBF usually produce better bounds or even find optimal solutions.

XOR MMAP failed to provide any solutions or bounds for these instances.

When UBFS reaches the memory limit, it keeps improving the upper bounds and optimally

solves some of the problems (e.g., Figures 3.5(b), 3.5(c), and 3.5(d)). As expected, memory

is a bottleneck and UBFS usually reaches the 4GB limit (vertical lines in the plots) within a

few minutes of search, but continues to improve its bound by pruning low-priority nodes. In

contrast, AAOBF terminates when memory is used up (e.g., Figure 3.5(a)). Note that UBFS

typically runs into the memory limit faster than AAOBF; in Figure 3.5(a) UBFS uses up its

memory in 100 seconds, while AAOBF reaches the limit after 1000 seconds. This is because

UBFS is a pure best-first scheme, while AAOBF is a hybrid scheme that solves internal

summation problems using depth-first search; if the DFS step is slow (hard summation

63

10
1

10
2

10
3

10
4−70

−60

−50

−40

−30

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS reaches memory limit

UBFS

AAOBF

AFSE

(a) grid/75-26-5

10
0

10
2

10
4−40

−35

−30

−25

−20

bo
un

ds
 (

in
 lo

g)

time (sec)

(b) grid/75-20-5

10
0

10
2

10
4−100

−80

−60

−40

−20

0

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS reaches memory limit

UBFS

AAOBF

AFSE

(c) promedas/or chain 50.fg

10
0

10
2

10
4−150

−100

−50

0

bo
un

ds
 (

in
 lo

g)

time (sec)

(d) promedas/or chain 4.fg

10
0

10
2

10
4−300

−250

−200

−150

−100

−50

bo
un

ds
 (

in
 lo

g)

time (sec)

UBFS

AAOBF

AFSE

(e) protein/1noa

10
−2

10
0

10
2

10
4−45

−40

−35

−30

bo
un

ds
 (

in
 lo

g)

time (sec)

(f) protein/1r69

Figure 3.5: Anytime bounds for two instances per benchmark, with 50% MAX variables.
AFSE is missing if it ran out of memory before producing bounds; XOR MMAP failed to
produce bounds on these instances. UBFS lower bounds are computed offline and shown only
for reference. Black dotted lines mark UBFS reaching the 4GB memory limit; time budget 1
hour.

64

Table 3.4: Number of instances with non-trivial bounds at three times (1 min, 10 min, and 1
hour resp.) for each benchmark. 50% MAX variables. The highest for each setting is bolded.

grid promedas protein

instances 100 100 50

Timestamp: 1min/10min/1hr

UBFS 100/100/100 100/100/100 46/50/50
AAOBF 98/100/100 100/100/100 23/31/34
AFSE 0/0/0 25/27/27 7/7/7

problems), the best-first portion of the search will proceed slowly. Figure 3.5(f) shows an

example where evaluation of this summation is so slow that AAOBF fails to provide any

bounds beyond its inital heuristic upper bound; in contrast, UBFS quickly finds a much

higher-quality upper bound (albeit without a corresponding online lower bound).

Collective Results

We evaluate some statistics across algorithms to compare their performance on the benchmarks.

Since XOR MMAP generally fails to provide bounds, we exclude it from the remaining

discussion.

Responsiveness. Responsiveness characterizes how fast an algorithm produces non-trivial

bounds. For UBFS and AAOBF, we require them to produce bounds other than the initial

heuristic bound. From Table 3.4, we can see that UBFS responds quickly on almost all

the instances within 1 minute, except for 4 protein instances that require more time to

process. AAOBF is responsive on most grid and promedas instances, but performs worse on

a number of protein instances due to their very hard internal summation problems. AFSE

is not competitive and fails to produce any bounds on the grid instances.

Bound quality. We compare anytime upper bounds among the algorithms. Table 3.5 shows

the number of instances for which an algorithm achieves the tightest upper bounds at each of

65

Table 3.5: Number of instances that an algorithm achieves the best upper bounds at each
timestamp (1 min, 10 min, and 1 hour) for each benchmark. 50% MAX variables. The best
for each setting is bolded.

grid promedas protein

instances 100 100 50

Timestamp: 1min/10min/1hr

UBFS 85/84/89 83/86/87 46/50/50
AAOBF 33/46/44 47/47/47 17/16/18
AFSE 0/0/0 0/0/0 5/5/5

Table 3.6: Number of instances that an algorithm achieves best upper bounds at each given
timestamp (1 min, 10 min, and 1 hour) for each benchmark. 10% MAX variables. The best
for each setting is bolded.

grid promedas protein

instances 100 100 50

Timestamp: 1min/10min/1hr

UBFS 99/100/100 88/99/99 43/50/50
AAOBF 1/1/3 17/12/17 15/9/9
AFSE 0/0/0 10/8/10 7/7/7

three timestamp. From Table 3.5, we see that our algorithm does best on this task across all

benchmark/timestamp settings, by a large margin. Again, the advantage is most significant

on the protein instances, and again, AAOBFS performs better than AFSE.

Harder summation. UBFS avoids some unnecessary evaluation of the internal summation

problems, thus it is expected to be suitable for those MMAP problems with hard internal

summation problems. To assess this setting, we decrease the percentage of MAX variables

from 50% to 10%. Table 3.6 shows the relative upper bound quality. By comparing Table 3.5

and Table 3.6, we can see that UBFS gains a larger advantage when the search space of MAX

variables is smaller, while the summation tasks are relatively harder.

66

3.2.6 Summary of UBFS

In this section, we present an anytime anyspace AND/OR best-first search algorithm to

improve upper bounds for MMAP problems. We cast max and sum inference into one best-

first search framework. The specially designed double-priority system allows our algorithm to

identify the current most promising partial MAP solution tree and expand the frontier node

that contributes most to the upper bound of that partial MAP solution tree, which often

leads to quick reduction on the global upper bound. Our algorithm avoids some unnecessary

exact computation of internal conditional summation problems and thus has a significant

advantage especially on those instances with hard internal summation problems. Empirical

results demonstrate that our approach with heuristics extracted from weighted mini-bucket

is superior to those state-of-the-art baselines on various settings.

67

Chapter 4

Sampling Enhanced by Best-�rst Search

In this chapter, we develop approximate inference algorithms involving importance sampling,

heuristic search, and variational bounds, for the tasks of bounding the partition function and

MMAP respectively.

In Section 4.1, we propose a dynamic importance sampling (DIS) scheme that provides anytime

finite-sample bounds for the partition function. Our algorithm balances the advantages of

the three major inference strategies, Monte Carlo sampling, heuristic search, and variational

bounds, blending sampling with search to refine a variationally defined proposal. Our

algorithm combines and generalizes work on anytime search (Algorithm 3.1) and probabilistic

bounds [Liu et al., 2015a] of the partition function. By using an intelligently chosen weighted

average over the samples, we construct an unbiased estimator of the partition function with

strong finite-sample confidence intervals that inherit both the rapid early improvement rate

of sampling and the long-term benefits of an improved proposal from search. This gives

significantly improved anytime behavior, and more flexible trade-offs between memory, time,

and solution quality.

In Section 4.2, we propose a mixed dynamic importance sampling (MDIS) algorithm that

blends heuristic search and importance sampling to provide anytime finite-sample bounds

for marginal MAP, along with predicted MMAP configurations. We convert bounding the

68

marginal MAP solution to a surrogate task of bounding a series of summation problems of

an augmented graphical model, and then adapt DIS to provide finite-sample bounds for the

surrogate task. Those bounds are guaranteed to become tight given enough time, and the

values of the predicted MMAP solutions will converge to the optimum. Our algorithm runs

in an anytime/anyspace manner, which gives flexible trade-offs between memory, time, and

solution quality. We demonstrate the effectiveness of our approach empirically by comparing

to a number of state-of-the-art search algorithms.

4.1 Dynamic Importance Sampling

In this section, we present a dynamic importance sampling (DIS) algorithm that provides

anytime probabilistic bounds (i.e., they hold with probability (1 − δ) for some confidence

parameter δ) for the partition function. DIS interleaves importance sampling with best-first

search (AOBFS, see Algorithm 3.1) which is used to refine the proposal distribution of

successive samples. In practice, DIS enjoys both the rapid bound improvement characteristic

of importance sampling [Liu et al., 2015a], while also benefiting significantly from search on

problems where search is relatively effective, or when given enough computational resources,

even when these points are not known in advance. Since our samples are drawn from a

sequence of different, improving proposals, we devise a weighted average estimator that

upweights higher-quality samples, giving excellent anytime behavior.

4.1.1 Introduction

As we mentioned in Chapter 3, search algorithms [Henrion, 1991, Viricel et al., 2016] explicitly

enumerate over the space of configurations and eventually provide an exact answer; however,

while some problems are well-suited to search, others only improve their quality very slowly

with more computation. Importance sampling [e.g., Dagum and Luby, 1997, Liu et al., 2015a]

69

gives probabilistic bounds that improve with more samples at a predictable rate; in practice

this means bounds that improve rapidly at first, but are slow to become very tight. Several

algorithms combine two strategies: approximate hash-based counting combines sampling (of

hash functions) with CSP-based search [e.g., Chakraborty et al., 2014, 2016] or other MAP

queries [e.g., Ermon et al., 2013, 2014], although these are not typically formulated to provide

anytime behavior. Most closely related to this work are AOBFS and WMB-IS [Liu et al.,

2015a], which perform search and sampling, respectively, guided by variational bounds.

A Motivating Example

We illustrate the focus and contributions of our work on an example problem instance

(Figure 4.1). Search (see Algorithm 3.2) provides strict bounds (gray) but may not improve

rapidly, particularly once memory is exhausted; on the other hand, sampling using WMB-

IS [Liu et al., 2015a] provides probabilistic bounds (green) that improve at a predictable

rate, but require more and more samples to become tight. We first describe a “two stage”

sampling process that uses a search tree to improve the baseline bound from which importance

sampling starts (blue), greatly improving its long-term performance, then present our dynamic

importance sampling (DIS) algorithm, which interleaves the search and sampling processes

(sampling from a sequence of proposal distributions) to give bounds that are strong in an

anytime sense.

4.1.2 WMB-IS

Since WMB-IS [Liu et al., 2015a] is closely related to our algorithm, we present it here for

completeness. In the sequel, we assume all the weights of WMB satisfy the convex condition

in (2.8), i.e., all are non-negative and sum to one. We use “E” to denote the expectation

operator (without a subscript to indicate the distribution when it is obvious).

70

10
2

10
4

−78

−76

−74

−72

−70

−68

−66

−64

time (sec)

up
pe

r
bo

un
d

search
sampling
two-stage
DIS

Figure 4.1: Example: upper bounds on logZ for protein instance “1bgc”.

Recall that when WMB processes a variable, say, Xi, it first partitions all unprocessed factors

(including those intermediately generated ones) that contain Xi into several disjoint subsets

called mini-buckets. WMB then eliminates Xi from those mini-buckets, which generates new

factors called messages (see (2.7) for a precise definition). Those messages along with their

corresponding factors can be used to define conditional distributions over Xi. For example,

the conditional distribution qij derived from the j-th mini-bucket Bji of Xi and its induced

message λi→πij is as follows:

qij(xi|xanj(i)) =

(∏
fα∈Bji

fα

λi→πij

) 1
ρij

.

where Xanj(i) are the variables included in the mini-bucket Bji other than Xi. Note that

qij(xi|xanj(i)) is a proper probability measure because it is non-negative and normalized:

∑
xi

qij(xi|xanj(i)) =

∑
xi

∏
fα∈Bji

f
1
ρij
α(

λi→πij
) 1
ρij

= 1.

71

The last equation is derived by simply applying the definition of λi→πij :

λi→πij =

∑
xi

∏
fα∈Bji

f
1
ρij
α

ρij

.

If we raise each qij to the power of ρij and then take the product:

∏
i

∏
j

q
ρij
ij (xi|xanj(i)) =

∏
i

∏
j

∏
fα∈Bji

fα

λi→πij

=

∏
α∈I fα

U

=
f(x)

U
. (4.1)

In the preceding equation, the middle equality holds because of the following: any interme-

diate non-constant message λi→πij appears exactly once in the denominator and numerator

respectively, corresponding to the bucket i in which it is generated and the parent bucket

πij in which it is placed, and thus is canceled out. This leaves only the original factors fα

and the product of all constant messages (i.e., the WMB upper bound U) remaining in the

quotient. Thus, Eq. (4.1) gives a reparametrization of the model:

f(x) = U
∏
i

∏
j

q
ρij
ij (xi|xanj(i)) (4.2)

We can then use the qij to define the WMB-IS proposal q(x):

q(x) =
∏
i

∑
j

ρijqij(xi|xanj(i)). (4.3)

Notice that q(x) takes the form of a product of conditional distributions over each Xi, where

each conditional distribution is a weighted average (mixture distribution) of the conditionals

qij , which condition on variables eliminated after Xi in the order (ancestors of the mini-buckets

72

Bji). It is thus easy to verify that q(x) is a valid distribution.

Moreover, for each i, the terms in (4.2) and (4.3) can be seen to correspond to a geometric

mean and arithmetic mean, respectively, of the qij. Thus, applying the arithmetic-geometric

mean (AM-GM) inequality, we have:

∏
j

q
ρij
ij (xi|xanj(i)) ≤

∑
j

ρijqij(xi|xanj(i)),

from which we can immediately see that the importance weights f(x)/q(x) generated by

samples from this choice of q(x) are guaranteed to be bounded:

f(x)

q(x)
≤ U. (4.4)

A basic property of importance sampling is that it provides an unbiased estimate of Z (see

Section 2.4.2):

E

[
f(x)

q(x)

]
= Z. (4.5)

Together, the boundedness and unbiasedness properties can be used to obtain finite-sample

bounds on the partition function. Specifically, applying the empirical Bernstein form of

concentration bound (see Theorem 2.3) gives:

Proposition 4.1 (Corollary 3.2 of Liu et al. [2015a]). Let {xi}Ni=1 be i.i.d. samples

drawn from q(x) as defined in (4.3), V̂ar be the empirical variance of {f(xi)/q(xi)}Ni=1 (see

73

𝐴

 𝑓 𝐴, 𝐵 𝐵

 𝑓 𝐵, 𝐶 C 𝑓 𝐵, 𝐹 F

𝑓 𝐴, 𝐺 𝑓 𝐹, 𝐺

G 𝑓 𝐵, 𝐸 𝑓 𝐶, 𝐸

E 𝑓 𝐵, 𝐷 𝑓 𝐶, 𝐷

D

λ𝐵→𝐴(𝐴)

𝑓 𝐴, 𝐷 D

mini-buckets

𝑓 𝐴

λ𝐹→𝐵(𝐴, 𝐵)
λ𝐺→𝐹(𝐴, 𝐹) λ𝐸→𝐶(𝐵, 𝐶) λ𝐷→𝐶(𝐵, 𝐶) λ𝐷→𝐴(𝐴) λ𝐶→𝐵(𝐵)

𝑈

(a)

.
.
.

(b)

Figure 4.2: (a) Given an elimination order G,F,E,D,C,B,A, and ibound = 2, WMB runs
on the model depicted in Figure 2.2(a) to produce an upper bound of the partition function.
(b) The same relaxation from (a) gives a proposal distribution with properties present in
(4.4) and (4.5).

(2.20) for reference), and

Ẑ =
1

N

N∑
i=1

f(xi)

q(xi)
,

∆ =

√
2V̂ar log(2/δ)

N
+

7U log(2/δ)

3(N − 1)
.

For any δ ∈ (0, 1), we have that Ẑ + ∆ and Ẑ −∆ are upper and lower bounds on Z with

probability at least (1− δ) respectively:

Pr[Z ≤ Ẑ + ∆] ≥ 1− δ,

Pr[Z ≥ Ẑ −∆] ≥ 1− δ.
(4.6)

When this bound is worse than the deterministic bound U , it can be simply replaced by

U ; however, it usually becomes significantly tighter than U very quickly as the number of

samples N increases.

Example 4.1. Figure 4.2 shows an example of running WMB on the pairwise graphical

74

model from Example 2.3 to produce an upper bound on the partition function as well as the

proposal distribution q(·), assuming the elimination order G,F,E,D,C,B,A and imposing

ibound = 2.

4.1.3 AOBFS Revisited

Our algorithm requires a closer look at AOBFS developed in Section 3.1 for bounding the

partition function. First we introduce a conditional cost function g(x>n|x≤n) at a node n of

an AND/OR search tree to denote the quotient g([x≤n, x>n])/g(x≤n) (see (2.12)):

g(x>n|x≤n) =
g([x≤n, x>n])

g(x≤n)
.

where x>n is any assignment of X>n, the variables below n in the search tree. Thus, the

value vn as defined in (2.16) for each node n can be re-interpreted as the total conditional

cost of all configurations below n:

vn =
∑
x>n

g(x>n|x≤n). (4.7)

The value of the root is simply the partition function, v∅ = Z.

AOBFS (Algorithm 3.1) expands the search tree in a best-first manner, and maintains an

explicit AND/OR search tree S of visited nodes. For each node n in the AND/OR search

tree, AOBFS maintains an upper bound on vn, denoted un (see (3.2)), which is initialized

via our pre-compiled heuristic vn ≤ h+
n , and subsequently updated during search using

information propagated from the frontier. Thus, the upper bound at the root, u∅, is an

anytime deterministic upper bound of Z. Note that this upper bound depends on the current

search tree S, so we write US = u∅.

If all nodes below n have been visited, then un = vn; we remove the subtree below n from

75

memory because n is solved. Hence, we can partition the frontier nodes into two sets1: solved

frontier nodes, SOLVED(S), and unsolved ones, OPEN(S). AOBFS assigns a priority to

each node and expands a top-priority node from OPEN(S) at each iteration. Here we use

the “upper priority” Un (defined in (3.4)) which quantifies n’s contribution to the global

bound US ; AOBFS with this priority attempts to reduce the upper bound on Z as quickly

as possible. We can also interpret our bound US as a sum of bounds on each of the partial

configurations covered by S. Concretely, let TS be the set of projections of full solution trees

on S (in other words, TS are partial solution trees whose leaves are frontier nodes of S); then,

US =
∑
T∈TS

UT , (4.8)

where

UT = g(T)
∏

s∈leaf(T)

us. (4.9)

leaf(T) are the leaf nodes of the partial solution tree T ; g(T) is defined as g(xT) (see (2.14)).

We will lightly abuse notation by using g(T) and g(xT) interchangeably.

4.1.4 WMB for Heuristics and Sampling

WMB can not only provide upper bound heuristics for AOBFS (as detailed in Section 3.1),

but also offers a proposal distribution with the same relaxation that yields finite-sample

bounds as we see in WMB-IS. The strong connection between WMB heuristics and the

mixture proposal distribution in (4.3) lays the foundation for development of our algorithms.

Let n be any node in the search tree; analogous to the derivation of (4.2), one can show that

1 Note that this partitioning is proper because we apply only the plain AOBFS in Algorithm 3.1, not the
memory-limited variant in Algorithm 3.2.

76

WMB yields the following reparametrization of the conditional cost below n:

g(x>n|x≤n) = h+
n

∏
k

∏
j

qij(xi|xanj(i))ρij , Xi ∈ X>n (4.10)

Suppose that we define a conditional distribution q(x>n|x≤n) by replacing the geometric

mean over the qij in (4.10) with their arithmetic mean:

q(x>n|x≤n) =
∏
i

∑
j

ρijqij(xi|xanj(i)) (4.11)

Applying the arithmetic-geometric mean inequality, we see that

g(x>n|x≤n)

h+
n

≤ q(x>n|x≤n).

Summing over x>n shows that h+
n is a valid upper bound heuristic for vn:

vn =
∑
x>n

g(x>n|x≤n) ≤ h+
n

The mixture distribution q(x>n|x≤n) can be also used as a proposal for importance sampling,

by drawing samples from q(x>n|x≤n) and averaging the importance weights. For any node

n, we have that the importance weight g(x>n|x≤n)/q(x>n|x≤n) is an unbiased and bounded

estimate of vn:

g(x>n|x≤n)

q(x>n|x≤n)
≤ h+

n and E

[
g(x>n|x≤n)

q(x>n|x≤n)

]
= vn. (4.12)

(bounded weights) (unbiased estimator)

In particular, we recover the WMB-IS proposal in (4.3) by setting n to the root, together

with properties (4.4) and (4.5) of its importance weights.

77

4.1.5 Two-step Sampling

The finite-sample bound (4.6) suggests that improvements to the upper bound on Z may

be translatable into improvements in the probabilistic, sampling bound. In particular, if

we define a proposal that uses the search tree S and its bound US , we can improve our

sample-based bound as well. This motivates us to design a two-step sampling scheme that

exploits the refined upper bound constructed using search; it is a top-down procedure starting

from the root:

Step 1 For an internal node n: if it is an AND node, all its children are selected; if n is an

OR node, one child c ∈ ch(n) is randomly selected with probability wcuc/un.

Step 2 When a frontier node n is reached, if it is unsolved, draw a sample of X>n from

q(x>n|x≤n); if it is solved, quit.

The behavior of Step 1 can be understood by the following proposition:

Proposition 4.2. Step 1 returns a partial solution tree T ∈ TS with probability UT/U
S .

Any frontier node of S will be reached with probability proportional to its upper priority

defined in (3.4).

Note that at Step 2, although the sampling process terminates when a solved node n is

reached, we associate every configuration x>n of X>n with probability g(x>n|x≤n)/vn which

is appropriate in lieu of (4.7). Thus, we can show that this two-step sampling scheme induces

a proposal distribution, denoted qS(x), which can be expressed as:

qS(x) =
∏

n∈AND(Tx∩S)

wnun/upa(n)

∏
n′∈OPEN(S)∩Tx

q(x>n′ |x≤n′)
∏

n′′∈SOLVED(S)∩Tx

g(x>n′′ |x≤n′′)/vn′′

where AND(Tx ∩ S) is the set of all AND nodes of the partial solution tree Tx ∩ S. By

applying the upper bound recursion in (3.2), and noticing that the upper bound is the initial

78

heuristic for any node in OPEN(S) and is exact at any solved node, we re-write qS(x) as

qS(x) =
g(Tx ∩ S)

US

∏
n′∈OPEN(S)∩Tx

h+
n′ q(x>n′|x≤n′)

∏
n′′∈SOLVED(S)∩Tx

g(x>n′′|x≤n′′). (4.13)

The search tree proposal qS(x) can be shown to provide bounded importance weights that

use the refined upper bound US :

Proposition 4.3. Importance weights from qS(x) are bounded by the upper bound of S,

and are unbiased estimators of Z, i.e.,

f(x)

qS(x)
≤ US and E

[
f(x)

qS(x)

]
= Z.

Proof. Note that f(x) can be written as

f(x) = g(Tx ∩ S)
∏

n′∈OPEN(S)∩Tx

g(x>n′|x≤n′)
∏

n′′∈SOLVED(S)∩Tx

g(x>n′′|x≤n′′)

Noticing that for any n′ ∈ OPEN(S), g(x>n′|x≤n′) ≤ h+
n′ q(x>n′ |x≤n′) by (4.12), and compar-

ing with (4.13), we see f(x)/qS(x) is bounded by US . Its unbiasedness is trivial.

Thus, importance weights resulting from our two-step sampling can enjoy the same type of

bounds described in (4.6). Moreover, note that at any solved node, our sampling procedure

incorporates the “exact” value of that node into the importance weights, which serves as

Rao-Blackwellisation [Casella and Robert, 1996] and can potentially reduce variance.

We can see that if S = ∅ (before search), qS(x) is the WMB-IS proposal in (4.3); as

search proceeds, the quality of the proposal distribution improves, gradually approaching

the underlying distribution f(x)/Z as S approaches the complete search tree. If we perform

search first, up to some memory limit, and then sample, which we refer to as two-stage

sampling, our probabilistic bounds will proceed from an improved baseline, giving better

79

Algorithm 4.1 Dynamic Importance Sampling (DIS)

Require: Control parameters Nd, Nl; memory budget, time budget.
Ensure: N , HM(U), V̂ar({Ẑi/Ui}Ni=1), Ẑ, ∆.

1: Initialize S ← {∅} with the root ∅.
2: while within the time budget
3: if within the memory budget // update S and its associated upper bound US

4: Expand Nd nodes via AOBFS (Algorithm 3.1) with the upper priority (see (3.4)).
5: end if
6: Draw Nl samples via TwoStepSampling(S).
7: After drawing each sample:
8: Update N , HM(U), V̂ar({Ẑi/Ui}Ni=1).

9: Update Ẑ, ∆ via (4.14), (4.15).
10: end while

11: function TwoStepSampling(S)
12: Start from the root of the search tree S:
13: For an internal node n: select all its children if it is an AND node; select exactly
14: one child c ∈ ch(n) with probability wcuc/un if it is an OR node.
15: At any unsolved frontier node n, draw one sample from q(x>n|x≤n) in (4.11).
16: end function

bounds at moderate to long computation times. However, doing so sacrifices the quick

improvement early on given by basic importance sampling. In the next section, we describe

our dynamic importance sampling procedure, which balances these two properties.

4.1.6 Main Algorithm

To provide good anytime behavior, we would like to do both sampling and search, so that

early samples can improve the bound quickly, while later samples obtain the benefits of the

search tree’s improved proposal. To do so, we define a dynamic importance sampling (DIS)

scheme, presented in Algorithm 4.1, which interleaves drawing samples and expanding the

search tree. Figure 4.3 illustrates the interleaving process of DIS.

One complication of such an approach is that each sample comes from a different proposal

distribution, and thus has a different bound value entering into the concentration inequality.

Moreover, each sample is of a different quality – later samples should have lower variance,

80

since they come from an improved proposal. To this end, we construct an estimator of Z that

upweights higher-quality samples. Let {xi}Ni=1 be a series of samples drawn via Algorithm 4.1,

with {Ẑi = f(xi)/qSi(xi)}Ni=1 the corresponding importance weights, and {Ui = USi}Ni=1

the corresponding upper bounds on the importance weights respectively. We introduce an

estimate Ẑ of Z:

Ẑ =
HM(U)

N

N∑
i=1

Ẑi
Ui
, where HM(U) =

[
1

N

N∑
i=1

1

Ui

]−1

. (4.14)

Here, HM(U) is the harmonic mean of the upper bounds Ui. It is easy to see that Ẑ is an

unbiased estimate of Z, since it is a weighted average of independent, unbiased estimators.

Additionally, since Z/HM(U), Ẑ/HM(U), and Ẑi/Ui are all within the interval [0, 1], we

can apply the empirical Bernstein bounds (see Theorem 2.3) to derive finite-sample bounds:

Theorem 4.1. Define the deviation term

∆ = HM(U)

√2V̂ar({Ẑi/Ui}Ni=1) log(2/δ)

N
+

7 log(2/δ)

3(N − 1)

 (4.15)

where V̂ar({Ẑi/Ui}Ni=1) is the unbiased empirical variance of {Ẑi/Ui}Ni=1 (see (2.20) for ref-

erence). Then Ẑ + ∆ and Ẑ −∆ are upper and lower bounds of Z with probability at least

1− δ, respectively, i.e.,

Pr[Z ≤ Ẑ + ∆] ≥ 1− δ,

Pr[Z ≥ Ẑ −∆] ≥ 1− δ.

It is possible that Ẑ − ∆ < 0 at first; if so, we may replace Ẑ − ∆ with any non-trivial

lower bound of Z. In the experiments, we use Ẑδ, a (1− δ) probabilistic bound by Markov’s

inequality (see (2.19)). We can also replace Ẑ + ∆ with the current deterministic upper

81

A

B B

0 1

0 1 0 1

…

A

B B

0 1

0 1 0 1

A

B B

0 1

0 1 0 1

F

0 1

C

0 1

…

A

B B

0 1

0 1 0 1

F

0 1

C

0 1
... ...

Figure 4.3: An illustration of the interleaving process of DIS in Algorithm 4.1.

bound if the latter is tighter.

Intuitively, our DIS algorithm is similar to Monte Carlo tree search (MCTS) [Browne et al.,

2012], which also grows an explicit search tree while sampling. However, in MCTS, the

sampling procedure is used to grow the tree, while DIS uses a classic search priority. This

ensures that the DIS samples are independent, since samples do not influence the proposal

distribution of later samples. This also distinguishes DIS from methods such as adaptive

importance sampling (AIS) [Oh and Berger, 1992].

4.1.7 Empirical Evaluation

We evaluate DIS against AOBFS (search) and WMB-IS (sampling) on several benchmarks

of real-world problem instances from recent UAI competitions. Our benchmarks include

pedigree, 22 genetic linkage instances from the UAI’08 inference challenge; protein, 50

randomly selected instances made from the “small” protein side-chains of [Yanover and Weiss,

82

2002]; and BN, 50 randomly selected Bayesian networks from the UAI’06 competition2. These

three sets are selected to illustrate different problem characteristics; for example protein

instances are relatively small (M = 100 variables on average, and average induced width 11.2)

but high cardinality (average max |Xi| = 77.9), while pedigree and BN have more variables

and higher induced width (average M 917.1 and 838.6, average width 25.5 and 32.8), but

lower cardinality (average max |Xi| 5.6 and 12.4).

We alloted 1GB memory to all methods, first computing the largest ibound that fits the

memory budget, and using the remaining memory for search. All the algorithms used the

same upper bound heuristics, and thus DIS and AOBFS had the same amount of memory

available for search. For AOBFS, we use the memory-limited version (see Algorithm 3.2) with

the upper priority, which continues improving its bounds past the memory limit. Additionally,

we let AOBFS access a lower bound heuristic for no cost, to facilitate comparison between DIS

and AOBFS. We show DIS for two settings, (Nl=1, Nd=1) and (Nl=1, Nd=10), balancing the

effort between search and sampling. Note that WMB-IS can be viewed as DIS with (Nl=Inf,

Nd=0), i.e., it runs pure sampling without any search, and two-stage sampling viewed as

DIS with (Nl=1, Nd=Inf), i.e., it searches up to the memory limit and then samples. We set

δ = 0.025 and ran each algorithm for 1 hour. All implementations are in C/C++.

Anytime Bounds for Individual Instances

Figure 4.4 shows the anytime behavior of all methods on two instances from each benchmark.

We observe that compared to WMB-IS, DIS provides better upper and lower bounds on all

instances. In 4.4(d)–(f), WMB-IS is not able to produce tight bounds within 1 hour, but

DIS quickly closes the gap. Compared to AOBFS, in 4.4(a)–(c),(e), DIS improves much

faster, and in (d),(f) it remains nearly as fast as search. Note that four of these examples

are sufficiently hard to be unsolved by a variable elimination-based exact solver, even with

2http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

83

http://melodi.ee.washington.edu/~bilmes/uai06InferenceEvaluation/

10
1

10
2

10
3

10
4

−130

−125

−120

time (sec)

lo
gZ

 (
 −

12
4.

97
9

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(a) pedigree/pedigree33

10
0

10
2

10
4

−105

−100

−95

−90

−85

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(b) protein/1co6

10
0

10
2

10
4

−35

−30

−25

−20

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(c) BN/BN 30

10
1

10
2

10
3

10
4

−280

−275

−270

−265

−260

time (sec)

lo
gZ

 (
 −

26
8.

43
5

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(d) pedigree/pedigree37

10
0

10
2

10
4

−95

−90

−85

−80

−75

−70

−65

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(e) protein/1bgc

10
1

10
2

10
3

10
4

−160

−150

−140

−130

−120

time (sec)

lo
gZ

 (
 u

nk
no

w
n

)

AOBFS
WMB-IS
DIS (Nl=1, Nd=1)
DIS (Nl=1, Nd=10)
two-stage

(f) BN/BN 129

Figure 4.4: Anytime bounds on logZ for two instances per benchmark. Dotted line sections
on some curves indicate Markov lower bounds. In examples where search is very effective
(d,f), or where sampling is very effective (a), DIS is equal or nearly so, while in (b,c,e) DIS is
better than either.

84

Table 4.1: Mean area between upper and lower bounds of logZ, normalized by WMB-IS,
for each benchmark. Smaller numbers indicate better anytime bounds. The best for each
benchmark is bolded.

AOBFS WMB-IS DIS (Nl=1, Nd=1) DIS (Nl=1, Nd=10) two-stage

pedigree 16.638 1 0.711 0.585 1.321
protein 1.576 1 0.110 0.095 2.511
BN 0.233 1 0.340 0.162 0.865

several orders of magnitude more computational resources (200GB memory, 24 hour time

limit).

DIS provides excellent anytime behavior; in particular, (Nl=1, Nd=10) seems to work well,

perhaps because expanding the search tree is slightly faster than drawing a sample (since

the tree depth is less than the number of variables). On the other hand, two-stage sampling

gives weaker early bounds, but is often excellent at longer time settings.

Aggregated Results across The Benchmarks

To quantify anytime performance of the methods in each benchmark, we introduce a measure

based on the area between the upper and lower bound of logZ. For each instance and method,

we compute the area of the interval between the upper and lower bound of logZ for that

instance and method. To avoid vacuous lower bounds, we provide each algorithm with an

initial lower bound on logZ from WMB. To facilitate comparison, we normalize the area

of each method by that of WMB-IS on each instance, then report the geometric mean of

the normalized areas across each benchmark in Table 4.1; this shows the average relative

quality compared to WMB-IS; smaller values indicate tighter anytime bounds. We see that

on average, search is more effective than sampling on the BN instances, but much less effective

on pedigree. Across all three benchmarks, DIS (Nl=1, Nd=10) produces the best result

by a significant margin, while DIS (Nl=1, Nd=1) is also very competitive, and two-stage

sampling does somewhat less well.

85

4.2 Mixed Dynamic Importance Sampling

Since the probabilistic bounds produced by sampling, and DIS in particular, are often

much faster to improve than deterministic bounds, we would like to apply them to other

inference tasks, such as marginal MAP, as well. However, sampling methods are built around

approximating expectations, which makes them difficult to apply directly to maximization

queries such as MAP and marginal MAP. In this section, we describe a generalization to DIS

that allows it to provide anytime, finite-sample probabilistic bounds on MMAP.

Briefly speaking, we follow Doucet et al. [2002] to construct an augmented graphical model

from the original model by replicating the marginalized variables and potential functions.

From this augmented model, we derive a sequence of decreasing summation objectives that

bound the MMAP optimum raised to some fixed power. Then, we adapt DIS to bound

these summation objectives and provide finite-sample bounds of the MMAP optimum. Our

framework has several key advantages: 1) it provides anytime probabilistic upper and lower

bounds that are guaranteed to be tight given enough time. 2) it is able to predict high-quality

MAP solutions whose values converge to the optimum; the exploration-exploitation trade-off

of searching MAP solutions is controlled by the number of replicates of the marginalized

variables. 3) it runs in an anytime/anyspace manner, which gives flexible trade-offs between

memory, time, and solution quality.

4.2.1 Introduction

As we discussed in Section 3.2, those search methods (e.g., Marinescu et al. [2017]) for

bounds of MMAP typically require regular evaluation of internal summation problems when

traversing the MAP space; when these internal sums are difficult, the search process may

stall completely.

86

One way to avoid this issue is to unify the summation with the MAP search in a single,

best-first search framework (UBFS), which allows the bounds to improve as the summation

is performed, and switch to other MAP configurations when appropriate.

Another promising route is to make use of probabilistic bounds (e.g., DIS), which hold with

a user-selected probability, and can be significantly faster and tighter than deterministic

bounds. However, since each MAP configuration is associated with an independent summation

problem, comparing MAP configurations using probabilistic bounds must compensate for the

presence of many uncertain tests (in effect, a multiple hypothesis testing problem), and is

thus non-trivial to adapt to the MAP search, which may contain exponentially many such

configurations.

To some extent, the intrinsic hardness of MMAP arises from the non-commutativity of the

sum and max operations. One natural idea to alleviate this issue is to convert the mixed

inference task to a pure sum or a pure max one first. For example, Cheng et al. [2012]

constructs an explicit factorized approximation of the marginalized distribution using a form

of approximate variable elimination, which results in a structured MAP problem.

Following this line of thoughts, we design an algorithm taking advantage of both search and

sampling, the general idea of which is to first bound the mixed inference objective with a series

of sum inference objectives whose finite-sample bounds can be established by generalizing

DIS, and then translate the bounds back to those of the original objective in which we are

interested.

4.2.2 An Augmented Graphical Model

We first introduce an augmented graphical model which connects the MMAP optimum to a

series of summation tasks. The augmented graphical model is built from the original model

by replicating the SUM variables and the factors. Note that the idea of introducing an

87

A B

CD

E

F

G

(a)

A

B

C F

GD E

(b)

A

B B

0 1

0 1 0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

C

0 1

E

0 1

D

0 1

E

0 1

D

0 1

F

0 1

G

0 1

G

0 1

F

0 1

G

0 1

G

0 1

(c)

A B

CD

E

F

G

K

K

(d)

A

B

C F

GD E

KK

K

(e)

Figure 4.5: (a) A primal graph of a graphical model over 7 variables. A, B, C are MAX
variables and D, E, F, G are SUM variables. (b) A valid pseudo tree for the MMAP task
on the model in (a). (c) An AND/OR search tree guided by the pseudo tree in (b). (d) An
augmented model created by replicating SUM variables and factors of the original model in
(a). Plate notations used here. (e) A valid pseudo tree for the augmented model.

augmented space on which we perform inference is adopted from Doucet et al. [2002].

Let Xaug = (XM, X
1
S, . . . , X

K
S) be all the variables of the augmented model where X1

S, . . . , X
K
S

are K replicates of the SUM variables XS. The overall function faug of the augmented model

88

is defined as

faug(xaug) =
K∏
k=1

f(xM, x
k
S).

Thus, the partition function of the augmented model is

Zaug =
∑

xM,x
1
S,...,x

K
S

K∏
k=1

f(xM, x
k
S)

=
∑
xM

πK(xM)

where

π(xM) =
∑
xS

f(x).

Considering that πK(x?M) (where x?M is the optimal MAP solution, see (2.4)) is the largest

term in the sum on the R.H.S., we have

Zaug

|XM|
≤ πK(x?M) ≤ Zaug, (4.16)

that is to say,

(Zaug

|XM|
)1/K ≤ π(x?M) ≤ Z1/K

aug ,

where |XM| is the size of the MAP space. The above inequalities are actually well-known

boundedness relations between the ∞-norm and p-norms of the Euclidean space R|XM|. These

bounds are monotonic in K, i.e., they improve as K increases, and become tight as K goes

to infinity. In other words, K acts as a “reverse temperature” parameter. The lower bound

is negatively impacted by the domain sizes of the MAX variables, which can be quite loose if

|XM| is large compared to the scale of K.

89

The significance of (4.16) is that it connects the MMAP optimum to a summation quantity

Zaug that can be easily approximated using Monte Carlo methods such as importance

sampling.

Example 4.2. Figure 4.5(d) shows an augmented graphical model created from the model

of Figure 4.5(a). Figure 4.5(e) shows one valid pseudo tree for the augmented model.

Main Algorithm

A straightforward idea is to apply DIS to bound Zaug whose finite-sample bounds can then

be translated to those of π(x?M). However, several key issues remain to be addressed for this

idea to work well.

The first issue is about how to adapt DIS to the augmented model in an efficient manner.

Since the augmented model might have many more variables compared to the original model,

a näıve construction of AND/OR trees leads to an excessively large search space. Note

that any Xk
S in the augmented model is an identical copy of XS; we thus do not necessarily

distinguish those XS copies during search. That is to say, when search instantiates those

factors involving SUM variables, it behaves as usual but takes into account the effect of

replication when using information propagated from SUM nodes. We can also apply an

analogous idea to construct WMB heuristics to ensure that they are still compatible with

the new search process. In a nutshell, search for the augmented model can enjoy the same

complexity as that for the original model.

Meanwhile, the proposal distribution qSaug(xaug) associated with a search tree S has a decom-

position property:

qSaug(xaug) = qSaug(xM)
K∏
k=1

qSaug(xkS|xM), (4.17)

90

with qSaug(x
k
S|xM) are identical conditional distributions. Its importance weights also share

the boundedness property:

faug(xaug)

qSaug(xaug)
≤ USaug,

where USaug is the upper bound associated with S. Note that sampling from qSaug can also be

done via a two-step sampling procedure analogous to that in DIS.

One point worth mentioning is that

π(xM) = E

[
f(xM, x

k
S)

qSaug(xkS|xM)

]

implies that we can estimate the value of each sampled MAP configuration xM along the way.

Another issue is that if Zaug is much larger than πK(x?M), even high-quality bounds of Zaug

might not result in reasonably good bounds of π(x?M), let alone those bounds will never be

tight in general for π(x?M) with a finite K. One way to alleviate this issue is based on the

following key observation: for any subset A of XM that contains x?M, we have

ZAaug

|A|
≤ πK(x?M) ≤ ZAaug, (4.18)

where

ZAaug =
∑
xM∈A

πK(xM).

The above inequalities tell us that if we know an instantiation of XM is not optimal, we can

mute its contribution to Zaug and use the resulting smaller summation quantity to bound

πK(x?M).

This observation enables pruning during search: any node ruled out from being associated

91

Algorithm 4.2 Mixed Dynamic Importance Sampling (MDIS)

Require: Control parameters K, Nd, Nl; confidence parameter δ; memory budget, time
budget.

Ensure: Ẑaug, ∆, HM(U), HM(U/|A|).
1: Construct WMB heuristics for the augmented model.
2: Initialize S ← {∅} with the root ∅.
3: while within the time budget
4: if within the memory budget // update S, US , AS during search.
5: Expand Nd nodes via AOBFS (see Algorithm 3.1) with its upper priority.
6: else
7: Expand Nd nodes via depth-first search.
8: end if
9: Draw Nl samples from qSaug (see (4.17)).

10: After drawing each sample:
11: Update N , Ẑaug, HM(U), HM(U/|A|), V̂ar, ∆ via (4.19), (4.20), (4.25), (4.26).
12: end while

with the optimal configuration can be removed from memory. Such pruning is particularly

useful to prune MAX nodes: for any AND-MAX node with its sub-problem beneath solved,

if it holds the highest value among its siblings, all its siblings (solved or not) and their

descendants can be pruned immediately. Thus, as pruning proceeds along with search, A

shrinks towards {x?M}. We use AS to denote the remaining MAP space associated with the

search tree S.

Note that when we approach the memory limit, we switch the default best-first search to a

depth-first search (DFS) that is also compatible with the sampling procedure, and leads to a

complete search algorithm with the capability to identify x?M and its value given enough time.

By interleaving search and sampling, we derive our mixed dynamic importance sampling

(MDIS) algorithm and present it in Algorithm 4.2.

Remarks on Algorithm 4.2

1) K as the number of replicates of the SUM variables controls the exploration-exploitation

trade-off. When K is small, we draw a small number of samples for the SUM variables in

92

each iteration, which allows us to evaluate each sampled MAP configuration fast, however

introduces more randomness when assessing the MAP configuration; when K is large, we

have more accurate estimate of a MAP configuration being sampled, but also slow down

exploration of the MAP space.

2) To predict MAP solutions in an anytime manner, one can simply choose the one with the

highest estimated value among those configurations that have been sampled.

Finite-sample Bounds for Marginal MAP

In MDIS, each sample not only comes from a different proposal distribution but also gives

importance weights corresponding to a different expectation, which is more complicated than

in DIS.

Let {xiaug}Ni=1 be a series of samples drawn via Algorithm 4.2, with {Si} the corresponding

search trees, {Ẑi
aug = faug(x

i
aug)/q

Si
aug(x

i
aug)}Ni=1 the corresponding importance weights, and

{Ui = USiaug}Ni=1 the corresponding upper bounds associated with those search trees respectively.

We denote Ai as the MAP space preserved in Si. Thus,

E
[
Ẑi

aug

]
= ZAiaug.

That is to say, the importance weights have different (in fact, decreasing) expectations; this

differs from the case of DIS where any importance weight has the same expectation (the

partition function). We propose an estimate Ẑaug whose expectation is again an upper bound

of πK(x?M) in the following way:

Ẑaug =
HM(U)

N

N∑
i=1

Ẑi
aug

Ui
, (4.19)

93

where

HM(U) =

[
1

N

N∑
i=1

1

Ui

]−1

(4.20)

is the harmonic mean of the upper bounds {Ui}Ni=1. Thus, Ẑaug upweights the terms Ẑi
aug

whose expectations are closer to πK(x?M). The expectation of Ẑaug is

E
[
Ẑaug

]
=

HM(U)

N

N∑
i=1

ZAiaug

Ui
.

E
[
Ẑaug

]
is a convex combination of {ZAiaug}Ni=1 with coefficients {HM(U)

NUi
}Ni=1, shrinking towards

πK(x?M) as search proceeds.

According to (4.18), since πK(x?M) ≤ ZAiaug, we know

πK(x?M) ≤ E
[
Ẑaug

]
, (4.21)

and from ZAiaug ≤ |Ai|πK(x?M), we know

E
[
Ẑaug

]
≤ πK(x?M)

HM(U)

N

N∑
i=1

|Ai|
Ui

. (4.22)

By combining (4.20), (4.21), and (4.22), we derive two-sided bounds for πK(x?M) involving

E
[
Ẑaug

]
:

∑N
i=1 1/Ui∑N

i=1 |Ai|/Ui
E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
. (4.23)

From the above, we can see that the bounds get tight only when Ai approaches {x?M}. To be

94

concise, we re-arrange the L.H.S. of (4.23) to derive:

HM(U/|A|)
HM(U)

E
[
Ẑaug

]
≤ πK(x?M) ≤ E

[
Ẑaug

]
, (4.24)

where

HM(U/|A|) =

[
1

N

N∑
i=1

|Ai|
Ui

]−1

(4.25)

is the harmonic mean of {Ui/|Ai|}Ni=1.

Considering Ẑi
aug are independent, and E Ẑaug/HM(U), Ẑaug/HM(U), Ẑi

aug/Ui are all within

the interval [0, 1], we can apply the empirical Bernstein bounds (see Theorem 2.3) to derive

finite-sample bounds on E Ẑaug and translate those bounds to π(x?M) based on (4.24).

Theorem 4.2. For any δ ∈ (0, 1), we define

∆ = HM(U)

√2V̂ar log(2/δ)

N
+

7 log(2/δ)

3(N − 1)

 , (4.26)

where V̂ar is the unbiased empirical variance of {Ẑi
aug/Ui}Ni=1. Then, the following probabilistic

bounds hold for π(x?M):

Pr
[
π(x?M)≤(Ẑaug+∆)

1
K

]
≥1−δ,

Pr

π(x?M)≥

(
(Ẑaug−∆) HM(U/|A|)

HM(U)

) 1
K

≥1−δ,

i.e., (Ẑaug + ∆)
1
K and ((Ẑaug−∆) HM(U/|A|)

HM(U)

) 1
K are upper and lower bounds of π(x?M) with proba-

bility at least (1− δ), respectively.

Note that it is possible that Ẑaug −∆ < 0 early on; if so, we may replace Ẑaug −∆ with any

95

non-trivial lower bound of Zaug. In the experiments, we use δẐaug, a (1 − δ) probabilistic

bound by the Markov’s inequality (see (2.19)). We can replace Ẑaug + ∆ with the current

deterministic upper bound if the latter is tighter.

4.2.3 Experiments

We evaluate our proposed approach (MDIS) against two baseline methods on five benchmarks.

The baselines include UBFS (see Algorithm 3.4), a unified best-first search algorithm that

emphasizes rapidly tightening the upper bound, and AAOBF [Marinescu et al., 2017], a best-

first/depth-first hybrid search algorithm that balances upper bound quality with generating

and evaluating potential solutions. These two are state-of-the-art algorithms for anytime

upper and lower bounds respectively. We do not compare to XOR MMAP [Xue et al., 2016]

and AFSE [Mauá and de Campos, 2012] due to their limitations to relatively easy problem

instances as shown in Section 3.2.

Three benchmarks are formed by problem instances from recent UAI competitions: grid,

50 grid networks with size no smaller than 25 by 25; promedas, 50 medical diagnosis expert

systems; protein, 44 instances made from the “small” protein side-chains of [Yanover and

Weiss, 2002]. Since the original UAI instances are pure MAP tasks, we generate MMAP

instances by randomly selecting 10% of the variables as MAP variables. The fourth benchmark

is planning, formed by 15 instances from probabilistic conformant planning with a finite-time

horizon [Lee et al., 2016a]. On these four benchmarks, we compare anytime bounds. Some

statistics of the four benchmarks are shown in Table 4.2. These benchmarks are selected

to illustrate different problem characteristics; for example, protein instances are relatively

small but high cardinality, while planning instances have more variables and higher induced

width, but lower cardinality. The fifth benchmark, which we will describe in detail later, is

created from an image denoising model in order to evaluate quality of the predicted MAP

solutions.

96

Table 4.2: Statistics of the four evaluated benchmarks. The first three benchmarks are formed
by problem instances from recent UAI competitions, where 10% of variables are randomly
selected as MAX variables. “avg. ind. width of sum” in the last row stands for the average
induced width of the internal summation problems.

grid promedas protein planning

instances 50 50 44 15
avg. # variables 1248.20 982.10 109.55 1122.33
avg. % of MAX vars 10% 10% 10% 12%
avg. # of factors 1248.20 994.76 394.64 1127.67
avg. max domain size 2.00 2.00 81.00 3.00
avg. max scope 3.00 3.00 2.00 5.00
avg. induced width 124.82 108.14 15.84 165.00
avg. pseudo tree depth 228.92 158.78 33.52 799.33
avg. ind. width of sum 43.44 40.32 10.20 49.67

The time budget is set to 1 hour for the experiments on the first four benchmarks. We

allot 4GB memory to all algorithms, with 1GB extra memory to AAOBF for caching. For

our experiments, we use the WMB heuristics; whose memory usage is roughly controlled

by the ibound. For a given memory budget, we first compute the largest ibound that fits in

memory, then use the remaining memory for search. Since all the competing algorithms use

weighted mini-bucket heuristics, the same ibound is shared during heuristic construction. We

set Nd = 100 and Nl = 1 (see Algorithm 4.2) as suggested by the experimental results in

Section 4.1. We set δ = 0.025. All implementations are in C/C++ courtesy of the original

authors.

Anytime Bounds for Individual Instances

Figure 4.6 shows the anytime behavior of all the methods on instances from four benchmarks.

In terms of lower bounds, our approach can always provide decent lower bounds even when

the internal summation problems are quite challenging, while AAOBF may not work well

since it relies on exact evaluation of those internal summation problems, e.g., on those shown

in Figure 4.6(b)-4.6(d). When the internal summation problems are relatively easy, their

97

10
2

10
4

−20

−15

−10

−5

0

bo
un

ds
 (

in
 lo

g)

time

UBFS

AAOBF

MDIS (K=5)

MDIS (K=10)

(a) grid/90-25-5

10
2

10
4

−30

−20

−10

0

bo
un

ds
 (

in
 lo

g)

time

UBFS

AAOBF

MDIS (K=5)

MDIS (K=10)

(b) promedas/or chain 48.fg

10
1

10
2

10
3

10
4

−100

−98

−96

−94

−92

−90

−88

bo
un

ds
 (

in
 lo

g)

time

UBFS

AAOBF

MDIS (K=5)

MDIS (K=10)

(c) protein/1skz

10
1

10
2

10
3

10
4

−10

−5

0

5

10

15

bo
un

ds
 (

in
 lo

g)

time

UBFS

AAOBF

MDIS (K=5)

MDIS (K=10)

(d) planning/bw2 2 4 4

Figure 4.6: Anytime bounds for MMAP on instances from four benchmarks. The max domain
sizes of those instances from (a)-(d) are 2, 2, 81, 3 respectively, and the induced widths of
the internal summation problems are 25, 28, 8, 24 respectively. Curves for some bounds may
be (partially) missing because they are not in a reasonable scope. UBFS only provides upper
bounds. The time limit is 1 hour.

exact evaluation is cheap; thus AAOBF might perform better than ours. Figure 4.6(a) gives a

typical example. In terms of upper bounds, our bound quality is often eventually comparable

to UBFS, e.g., Figure 4.6(b)-4.6(d). UBFS typically performs better than MDIS early on,

while MDIS quickly catches up and becomes comparable. Improvement in AAOBF on upper

bounds also requires fast exact evaluation of the internal summation problems, which might

not be possible in many cases. So, AAOBF is usually not as competitive as the other two

methods on upper bounds.

98

(a)

10
2

10
3

55

60

65

70

75

80

so
lu

tio
n

va
lu

e
(i

n
lo

g)

time

UBFS

AAOBF

MDIS (K=5)

(b)

 h

v
 x

(c) CRBM

Figure 4.7: (a) Image denoising results for one instance per digit. The first row is for the
ground truth images. The second row is for the noisy inputs created from the ground truth
by randomly flipping 5% pixels. Below the first two rows are denoised images from UBFS,
AAOBF, MDIS (K=5) respectively. (b) An example on MAP solution quality comparison.
(c) Illustration of the conditional restricted Boltzmann machine (CRBM) model used for the
image denoising task. When conditioned on an input “X”, this model has a bipartite graph
structure between hidden units “h” (SUM variables) and visible units “v” (MAX variables).

Anytime Bounds across Benchmarks

We present the anytime performance across the four benchmarks in Table 4.3 and 4.4 where

we compare anytime bounds at three different timestamps: 1 minute, 10 minutes and 1

hour. From Table 4.3, we can observe that MDIS with K=5 is dominant at any of these

timestamp/benchmark combinations for lower bounds. MDIS with K=10 performs less well,

99

Table 4.3: Number of instances that an algorithm achieves the best lower bounds at each
timestamp (1 min, 10 min, and 1 hour) for each benchmark. The best for each setting is
bolded. Entries for UBFS are blank because UBFS does not provide lower bounds.

grid promedas protein planning

instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 47/44/45 32/34/31 31/27/28 14/13/13
MDIS (K=10) 3/2/1 4/5/6 11/13/14 1/2/2
UBFS -/-/- -/-/- -/-/- -/-/-
AAOBF 0/4/4 16/21/24 2/4/4 0/0/0

Table 4.4: Number of instances that an algorithm achieves the best upper bounds at each
timestamp (1 min, 10 min, and 1 hour) for each benchmark. The best for each setting is
bolded.

grid promedas protein planning

instances 50 50 44 15

Timestamp: 1min/10min/1hr

MDIS (K=5) 0/0/0 9/12/13 5/9/15 1/1/1
MDIS (K=10) 0/0/0 10/13/14 9/10/13 1/2/3
UBFS 50/50/50 50/50/50 36/32/26 14/14/13
AAOBF 0/0/1 2/4/6 2/2/2 1/1/1

perhaps because it requires more time to draw one full sample compared to when K=5,

leading the empirical Bernstein lower bounds to kick in relatively late; this phenomenon can

be also observed in all the plots in Figure 4.6. UBFS provides the best upper bounds as

shown in Table 4.4. However, our algorithm generally performs better than AAOBF in terms

of upper bounds.

100

Empirical Evaluation of Solution Quality

To evaluate the MAP solution quality predicted by our algorithm, we create an image

denoising task from the MNIST database3 of handwritten digits [LeCun et al., 1998]. We

binarize each image, resize it to 14 by 14, and then randomly flip 5% of the pixels to generate

a corrupt one. We train a conditional restricted Boltzmann machine (CRBM) [Mnih et al.,

2011] model with 64 hidden units and 196 visible units using mixed-product BP [Ping and

Ihler, 2017, Liu and Ihler, 2013] for the denoising task. The resulting graphical model thus

has 64 SUM variables and 196 MAX variables. Figure 4.7(c) gives an illustration of this

model. The advantage of this model is that we can easily evaluate any MAP configuration

since the internal summation problem only contains singleton potentials; thus this model

favors AAOBF since AAOBF is able to evaluate MAP configurations at a very low cost.

We set K to 5 and runtime to 10 minutes for convenience. We test on 100 images with 10

images per digit. Figure 4.7(a) compares the denoising results among all the algorithms

for one instance per digit. Figure 4.7(b) gives an example of the quality of the predicted

MAP solutions of our algorithm. In general, the quality of predicted MAP solutions for our

algorithm are better than the other two baselines in 51 of 100 instances, which is generally as

good as AAOBF (47/100) despite the model being well-suited to AAOBF. A possible reason

is that our algorithm is able to traverse the MAP space very quickly and get cheap stochastic

estimates of the most promising MAP solutions.

4.3 Conclusion

In this chapter we developed a set of fast, anytime and anyspace probabilistic bounds based

on importance sampling, by leveraging both AND/OR search and variationally optimized

bounds, for the partition function and marginal MAP objectives. Our dynamic importance

3http://yann.lecun.com/exdb/mnist/

101

http://yann.lecun.com/exdb/mnist/

sampling algorithm follows an AOBFS search process that improves the proposal distribution

over time, while our choice of weighted average for the importance weights gives the resulting

estimator rapidly tightening finite-sample bounds. This line of work also opens up several

avenues for future research, including investigating different weighting schemes for the samples,

more flexible balances between search and sampling (for example, changing over time), and

more closely integrating the variational optimization process into the anytime behavior.

We then leveraged the dynamic importance sampling procedure to develop anytime finite-

sample upper and lower bounds for marginal MAP, giving a technique for this query that

enjoys the merits of both heuristic search and importance sampling. Our approach is

particularly useful for problem instances whose internal summation problems are challenging.

It predicts high-quality MAP solutions along with their estimated values and runs in an

anytime and anyspace manner, allowing the user to take advantage of flexible trade-offs

between memory, time, and solution quality.

102

Chapter 5

Interleaving Variational Optimization

with Sampling

5.1 Introduction

In the preceding chapter, we described an approach that first built a pre-compiled variational

bound, optimizing it with cost shifting or message passing, before using this bound as the

basis for subsequent search (as a heuristic function) and sampling (as a proposal). While

this proved quite effective, particularly over long time periods (minutes to hours), it has

the drawback that, early in the process, only the variational bound is available, which does

not give the best possible bounds at faster time scales. The best amount of effort to put

into constructing this initial bound depends on the problem: failing to build a high-quality

variational bound can dramatically slow down the subsequent progress of search or sampling

on more difficult problems, but for easier problems that would be solvable with a less optimized

heuristic or proposal, solution time is dominated by this initial build time. Unfortunately it

is difficult to know beforehand into which regime a particular problem instance will fall.

103

Our Contributions

In this chapter, we propose a general framework that interleaves optimization of TRW [Wain-

wright et al., 2005] and WMB variational bounds (via message passing) with Monte Carlo

importance sampling, giving faster initial bound improvement without sacrificing long-term

performance. We also propose an adaptive interleaving policy that can automatically balance

the computational effort between these two schemes in an instance-dependent way, which pro-

vides our framework with the strengths of both schemes, leads to tighter anytime bounds and

an unbiased estimate of the partition function, and allows flexible trade-offs between memory,

time, and solution quality. Our experiments on real-world problems demonstrate that our in-

terleaving framework with the adaptive policy is superior to several non-interleaving baselines

and interleaving baselines with simple static policies in terms of anytime performance, gives

competitive final bound quality, and is relatively insensitive to its hyperparameter, making it

easy to use and automate in practice.

5.2 Main Algorithm

In this section, we present a general scheme that interleaves optimization of the variational

upper bound with importance sampling, derive finite-sample bounds for this scheme, and

discuss interleaving policies.

5.2.1 A General Interleaving Framework

Our general scheme is quite simple: we interleave the two processes according to some policy.

Since optimization of variational bounds is typically through a message passing procedure,

we consider interleaving message passing with importance sampling in our algorithm. Proce-

durally, we first build up an initial bound within a given memory budget, and then interleave

104

Algorithm 5.1 A General Interleaving Framework

Require: memory budget, time budget, confidence parameter δ, interleaving policy P .
Ensure: N , U , Ẑ, HM(U), ∆, V̂ar.

1: Build an initial variational upper bound that fits the memory budget.
2: while within the time budget
3: Generate (R, S) via policy P . // R steps of message passing and S steps of sampling
4: for r ← 1 to R
5: Run one round of message passing.
6: Update U .
7: end for
8: for s← 1 to S
9: Draw one sample from the current proposal.

10: Update N , Ẑ, HM(U), ∆, V̂ar via (5.1), (5.2), (5.4)
11: and (5.5) respectively.
12: end for
13: Update policy P if necessary.
14: end while

the two processes following a policy that we will discuss in the sequel. Algorithm 5.1 presents

details of our framework.

Our framework actually serves as a “meta-algorithm” from which any optimizable proposal

with properties in (4.4) and (4.5) can benefit; in particular this includes convex variational

bounds such as WMB and TRW (see Liu et al. [2015a] for more details on why this holds for

TRW).

Interleaving these two processes leads to rapid early bound improvement, since the improve-

ment provided by the probabilistic bounds is not delayed until after variational optimization

converges or is otherwise terminated (e.g., in WMB-IS and DIS); this results in significant

improvements in anytime behavior as we demonstrate in the empirical evaluation. A critical

point is that, by interleaving updates to the proposal, our samples are no longer identically

distributed; in fact, their variance is decreasing as the proposal improves, and for best results

we should up-weight these more accurate samples in our estimates. To this end, and analogous

to that of DIS, we define a weighted average estimator Ẑ and apply the empirical Bernstein

bounds (see Theorem 2.3) to derive finite-sample bounds on the error between Z and Ẑ based

105

on independent samples from a sequence of proposals satisfying (4.4) and (4.5):

Theorem 5.1. Let {xi}Ni=1 be a series of samples drawn from proposal distributions {qi(x)}Ni=1

respectively via Algorithm 5.1, with {Ẑi = f(xi)/qi(x
i)}Ni=1 the corresponding importance

weights, and {Ui}Ni=1 the corresponding variational upper bounds respectively. Let

Ẑ =
HM(U)

N

N∑
i=1

Ẑi
Ui
, (5.1)

where

HM(U) =

[
1

N

N∑
i=1

1

Ui

]−1

(5.2)

is the harmonic mean of {Ui}Ni=1. then, Ẑ is an unbiased estimator of Z, i.e.,

E[Ẑ] = Z. (5.3)

Define a deviation term

∆ = HM(U)

√2V̂ar log(2/δ)

N
+

7 log(2/δ)

3(N − 1)

 , (5.4)

where

V̂ar =
1

N − 1

N∑
i=1

(
Ẑi
Ui
− Ẑ

HM(U)

)2

(5.5)

is the unbiased empirical variance (see (2.20)) of {Ẑi/Ui}Ni=1. Since the boundedness of each

106

Ẑi guarantees that Ẑi/Ui ≤ 1 for all i, applying standard empirical Bernstein results we have

Pr[Z ≤ Ẑ + ∆] ≥ 1− δ,

Pr[Z ≥ Ẑ −∆] ≥ 1− δ,
(5.6)

i.e., Ẑ + ∆ and Ẑ − ∆ are upper and lower bounds of Z with probability at least (1 − δ),

respectively.

5.2.2 Interleaving Policies

The key for our framework to work well is its interleaving policy. Our goal is to design a policy

balancing the effort between message passing and sampling, so that the probabilistic bounds

in (5.6) can improve as quickly as possible. Algorithm 5.1 controls this balance by alternating

between R steps of message passing, and S steps of sampling, within each iteration.

Optimize-�rst Policy

In most prior work, the variational bound is optimized first, as a separate pre-processing

step. Within the framework of Algorithm 5.1, this takes the form of setting (R, S) = (1, 0)

(all message passing) until some convergence or time-out criteria are satisfied, then changing

the policy P so that (R, S) = (0, 1) (all sampling). A simple strategy is to switch over after

some fixed time. As noted previously, this approach suffers from several drawbacks. The

deterministic variational bounds are considerably weaker than those provided by sampling,

and the early work serves mainly to improve the quality of later sampling, so that quality

does not improve in a smooth, anytime way. A related point is that this makes it difficult to

know how much effort to put into the optimization process; too little, and the probabilistic

bounds will improve only slowly; too much, and we waste time that could have been used for

sampling.

107

Static Policy

Alternatively, we can interleave updates and samples using a simple static policy, fixing

(R, S) in Algorithm 5.1 to some constants. While this choice will alternate between update

types, giving smoother performance, it is also non-trivial to automate for different types of

problems. In particular, it is difficult to know how any given (R, S) will perform a priori; the

characteristics of the problem instance may make message updates more or less expensive

and more or less effective, changing the desired balance between R and S.

Adaptive Policy

The main issue with static policies is that they are “blind” to the current status and behavior

of the inference process on a particular problem instance. We propose an adaptive policy

that is able to adjust its behavior based on information available on the fly. The basic idea of

our adaptive policy is to select the action that is projected to have larger unit contribution

to improving the probabilistic upper bound in each iteration. Details follow.

Suppose we have already drawn N samples so far. The deviation term ∆ in (5.4) can be

roughly approximated by ∆′:

∆ ≈ ∆′ = HM(U)

(√
log(2/δ)

2N
+

7 log(2/δ)

3(N − 1)

)
. (5.7)

∆′ is derived from ∆ by substituting the empirical variance V̂ar (as defined in (5.5)) with 1/4,

which is an upper bound of the empirical variance in expectation according to Popoviciu’s

inequality [Popoviciu, 1935]. This means that ∆′ is actually an upper bound of the expectation

of ∆ thanks to the concavity of the square root function. Therefore, the probabilistic upper

bound Ẑ + ∆ in (5.6) can be approximated by Z + ∆′ since Ẑ is an unbiased estimate of Z.

Thus, we define a gain function that approximates the improvement in the probabilistic upper

108

bound that we expect after drawing N ′ more samples, parameterized with respect to the

value of the variational upper bound:

gain(N,U,N ′) = (Z + ∆′)− (Z + ∆′N ′)

= ∆′ −∆′N ′

where

∆′N ′ =

[
1

N +N ′
(N ′
U

+
N∑
i=1

1

Ui

)]−1(√
log(2/δ)

2(N +N ′)
+

7 log(2/δ)

3(N +N ′ − 1)

)
.

Assuming that one sampling step takes time tis, we can easily define the unit gain gainis of

drawing one sample:

gainis = gain(N,U, 1)/tis (5.8)

However, to define the gain of running one message passing step is more complicated: message

passing does not directly contribute to the current probabilistic bound, but rather, affects

the deterministic upper bound and hence the quality of all later samples. We also do not

know precisely how much the bound will improve by executing a single message passing

step. To address these issues, we first predict the improved value of the deterministic bound

based on the improvements from past message updates (in our experiments, we use a simple

linear interpolation). Denoting this improved bound value by U ′, we estimate the resulting

improvement in the probabilistic bound after Ns more samples are drawn using this improved

proposal. Then, the unit gain gainmsg of one message passing step is:

gainmsg = gain(N,U ′, Ns)/tmsg (5.9)

where tmsg is the time it takes to complete one message passing step.

109

Finally, our adaptive policy compares gainis and gainmsg and takes the action with larger

unit gain in the following step. Note that neither gainis nor gainmsg involves information

from the samples themselves, which ensures that their independence is preserved and that

Theorem 5.1 still applies.

5.3 Empirical Evaluation

In this section, we present empirical results to demonstrate the usefulness of our framework

and the effectiveness of our adaptive policy.

We evaluated on three benchmarks of real-world problem instances from recent UAI compe-

titions. Our benchmarks include: pedigree, 22 genetic linkage instances from the UAI’08

inference challenge; protein, 50 instances made from the “small” protein side-chains of

[Yanover and Weiss, 2002]; promedas, 50 medical diagnosis expert systems [Wemmenhove

et al., 2007]. These three sets are selected to illustrate different problem characteristics.

Table 5.1 shows some summary statistics of these benchmarks.

We adopted WMB as our variational bound, and allocated a maximum of 512MB memory,

using the largest ibound that fit our memory budget. We set a maximum time budget of

600 seconds. The confidence parameter δ for our probabilistic bounds is set to 0.025. In the

experiments, we also used Ẑδ, a (1− δ) probabilistic lower bound by the Markov’s inequality

(see (2.19)), and switched to our lower bound Ẑ −∆ when it becomes non-trivial. We also

replaced Ẑ + ∆ with the best deterministic upper bound reached so far if the latter is tighter.

Table 5.2 explains the evaluated algorithms, all of which share the same initial WMB structure.

We test our adaptive approach against several non-interleaved strategies (“fixed-X”) as well

as statically interleaved strategies (“static-X”). The “equal time” strategy corresponds to

“static (1, tmsg/tis)” instead of “static (tis/tmsg, 1)” because message passing is usually much

110

Table 5.1: Statistics of the three evaluated benchmark sets.

pedigree protein promedas

instances 22 50 50
avg. # variable 917.14 99.96 682.12
avg. # of factor 917.14 355.84 682.12
avg. max domain size 4.95 77.94 2.00
avg. max scope 4.45 2.00 3.00
avg. induced width 25.50 11.24 25.76

Table 5.2: Notations and abbreviations used in figures and tables for the evaluated algorithms.

fixed p%
optimize-first policy with the first p% of time for message passing,
and the rest for sampling.

static (R, S) static policy with some given (R, S).
equal time static policy with (1, tmsg/tis).
adaptive Ns adaptive policy with Ns pseudo samples.

more expensive than sampling (typically, tmsg/tis > 103). Note that “static (0, 1)” can also

be viewed as an optimize-first (non-interleaving) strategy “fixed 0%”, because it does not

spend any time improving the variational bound after the initial bound construction. During

one round of message passing, i.e., one forward-backward pass as defined in Liu and Ihler

[2011], we do cost-shifting and weight optimization simultaneously. All implementations are

in C/C++.

5.3.1 Interleaving versus Non-interleaving

Figure 5.1 shows anytime bounds from some typical instances of each benchmark for in-

terleaving and non-interleaving strategies. We can observe from Figure 5.1 that those

non-interleaving strategies except “static (0, 1)” lack good anytime behavior compared to

our adaptive interleaving strategy: they are unable to compute a lower bound until they quit

message passing and start sampling; their early upper bounds correspond to the deterministic

variational bounds, which typically do not improve as fast as the probabilistic upper bound

111

10 2

time (sec)

-92

-91

-90

-89

-88

-87

lo
gZ

 (
-8

8.
77

8)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(a) pedigree/pedigree23

10 0 10 2

time (sec)

-285

-280

-275

-270

-265

-260

lo
gZ

 (
-2

68
.4

35
)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(b) pedigree/pedigree37

10 0 10 2

time (sec)

-160

-140

-120

-100

lo
gZ

 (
-1

15
.2

88
)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(c) protein/1qsq

10 0 10 2

time (sec)

-70

-60

-50

-40

-30

lo
gZ

 (
-4

2.
04

3)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(d) protein/1whi

10 2

time (sec)

-35

-30

-25

-20

-15

lo
gZ

 (
-1

9.
41

0)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(e) promedas/or chain 132.fg

10 0 10 2

time (sec)

-40

-30

-20

-10

lo
gZ

 (
-2

0.
01

5)

static (0, 1)
fixed 25%
fixed 50%
fixed 75%
fixed 100%
adaptive 100

(f) promedas/or chain 153.fg

Figure 5.1: Anytime bounds on logZ for two instances per benchmark, comparing our adaptive
interleaving strategy with non-interleaved strategies, spending various fractions of the time
(0% through 100%) optimizing the deterministic bound first (see Table 5.2; “static(0,1)” is
equivalent to “fixed 0%”). The adaptive strategy strikes a balance between responsiveness
(giving tighter bounds early) and long-term performance (tight bounds later).

112

10 2

time (sec)

-92

-91

-90

-89

-88

-87

lo
gZ

 (
-8

8.
77

8)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(a) pedigree/pedigree23

10 0 10 2

time (sec)

-285

-280

-275

-270

-265

-260

lo
gZ

 (
-2

68
.4

35
)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(b) pedigree/pedigree37

10 0 10 2

time (sec)

-160

-140

-120

-100

lo
gZ

 (
-1

15
.2

88
)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(c) protein/1qsq

10 0 10 2

time (sec)

-70

-60

-50

-40

-30

lo
gZ

 (
-4

2.
04

3)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(d) protein/1whi

10 2

time (sec)

-35

-30

-25

-20

-15

lo
gZ

 (
-1

9.
41

0)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(e) promedas/or chain 132.fg

10 0 10 2

time (sec)

-40

-30

-20

-10

lo
gZ

 (
-2

0.
01

5)

static (0, 1)
static (1, 10)
static (1, 100)
equal time
adaptive 10
adaptive 100

(f) promedas/or chain 153.fg

Figure 5.2: Anytime bounds on logZ for two instances per benchmark, comparing our adaptive
strategy with statically interleaved strategies balancing message updates and sampling (see
Table 5.2). The best fixed strategy is typically “equal time”, but adaptivity is usually slightly
better, as it is able to change its behavior dynamically based on the observed improvement
in bounds from message updates.

113

of our adaptive variant. “static (0, 1)” responds quickly but often gives looser results at

longer time scales; see Figure 5.1(c) and 5.1(f) for example. It performs very well when the

initial bound is already close to the ground truth (see Figure 5.1(a)), but such information is

usually not available to users beforehand.

To quantify the anytime performance of the methods in each benchmark, we use two measures:

one is the area between the upper bound of logZ and the (estimated) ground truth of logZ;

the other is the area between the upper and lower bound of logZ as introduced in Section 4.1.7.

The first facilitates comparison with those methods that do not provide lower bounds early

on. These quantities are computed for each instance and method, and then normalized by

those of “static (0, 1)”. Finally, we take the (geometric) mean over these scores across each

benchmark.

From Table 5.3, we observe that our adaptive policy performs significantly better in terms of

anytime upper bound than any of the non-interleaving variants across all the benchmarks. We

can also see differences in performance stemming from the different problem characteristics

in the benchmarks: for example, the performance of the non-interleaved strategies degrades

with higher time used for message passing on the pedigree benchmark, while this is less true

of the other two benchmarks; this indicates the difficulty of deciding when to quit message

passing and start sampling for good anytime behavior, especially when we do not know the

time limit in advance. In contrast, our interleaving framework does not have such limitations.

We also examine performance at a fixed time limit, as opposed to anytime behavior. Table 5.5

shows the mean final gap between the upper bound and the (estimated) logZ. We can see that

our adaptive variants perform almost as well as the best method for each benchmark, which

implies that although our algorithm is designed for a more responsive, anytime behavior, it

does not sacrifice much in terms of long-term bound quality.

114

Table 5.3: Mean area between upper bounds and (estimated) ground truth logZ, normalized
by that of “static (0, 1)”, for each benchmark. Smaller numbers indicate better anytime
upper bounds. The best for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50%

pedigree 1 2.436 1.262 2.084 3.027
protein 1 0.145 0.077 0.161 0.231
promedas 1 1.217 0.615 0.898 1.408

fixed 75% fixed 100% equal time adaptive 10 adaptive 100

pedigree 3.904 4.655 0.947 0.781 0.786
protein 0.285 0.329 0.054 0.051 0.050
promedas 1.855 2.268 0.414 0.354 0.349

Table 5.4: Mean area between upper and lower bounds of logZ, normalized by that of “static
(0, 1)”, for each benchmark. Entries for some non-interleaved strategies are missing because
they do not give lower bounds early on. Smaller numbers indicate better anytime bounds.
The best for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50%

pedigree 1 4.624 2.213 - -
protein 1 0.299 0.118 - -
promedas 1 2.674 1.203 - -

fixed 75% fixed 100% equal time adaptive 10 adaptive 100

pedigree - - 2.061 1.544 1.529
protein - - 0.104 0.080 0.078
promedas - - 1.271 0.728 0.726

5.3.2 Adaptive versus Static

We next compare our adaptive interleaving strategy with several statically interleaved

approaches. Figure 5.2 shows anytime bounds of two instances per benchmark for various

interleaving settings. From Figure 5.2, we observe that in general, the “equal time” variant

performs better than a static choice of interleaving rate, since it is able to take into account

how computationally expensive the message updates are. Even so, both of our adaptive

variants (corresponding to a shorter or longer horizon when estimating the impact of a

115

Table 5.5: Mean final gap between upper bound and (estimated) ground truth logZ, normal-
ized by that of “static (0, 1)”, for each benchmark. Smaller numbers are better; the best
method for each benchmark is bolded.

static (0,1) static (1,10) static (1,100) fixed 25% fixed 50%

pedigree 1 2.113 0.804 0.468 0.480
protein 1 0.045 0.016 0.004 0.004
promedas 1 0.879 0.308 0.121 0.133

fixed 75% fixed 100% equal time adaptive 10 adaptive 100

pedigree 0.581 6.576 0.534 0.554 0.572
protein 0.005 0.208 0.005 0.006 0.005
promedas 0.185 2.519 0.165 0.150 0.148

message update) perform better most of the time; they are able to make more informed

decisions about the current benefits of sampling versus message updates. These observations

are also supported by the statistical results in Table 5.3 and Table 5.4. From Figure 5.2,

Table 5.3, and Table 5.4, we can also see that the two adaptive variants perform fairly

similarly. In fact, we found in our experiments that our adaptive policy works reasonably well

within a wide range of Ns, i.e., it is not very sensitive to the hyperparameter value, which

simplifies its use in practice.

5.4 Conclusion

In this chapter, we propose a general framework that interleaves optimization of a variational

upper bound with importance sampling based on its associated proposal, to obtain high-

quality anytime bounds and estimates of the partition function. This framework can be viewed

as a meta-algorithm for convex variational bounds such as TRW and WMB, giving them more

responsive bounds without sacrificing long-term quality. Our proposed adaptive policy, which

selects the action with larger unit gain for improving the probabilistic upper bound at each

iteration, leads to excellent empirical anytime performance, both in comparison to simple

116

non-interleaved baselines as well as simpler interleaved policies within our framework. Our

approach is easy to use in practice since it does not appear to be sensitive to its hyperparameter

in our experiments. For future work, one may consider incorporating importance sampling in

the initial bound construction as well, to further boost the anytime performance.

117

Chapter 6

Conclusion and Future Directions

In this dissertation, we studied inference problems that arise from reasoning over graphical

models. By leveraging ideas and techniques from three major inference paradigms, i.e.,

variational methods, heuristic search, and Monte Carlo sampling, we developed a series of

anytime anyspace inference algorithms for the partition function and marginal MAP with

deterministic or probabilistic bound guarantees.

6.1 Our Contributions

In Chapter 3, we proposed anytime anyspace best-first search algorithms for bounding the

partition function and marginal MAP respectively, taking advantage of the AND/OR tree

structure and optimized variational heuristics to tighten deterministic bounds. In particular,

we first presented our AOBFS algorithm for the partition function, which can improve on

state-of-the-art variational bounds in an anytime way within limited memory resources. We

then generalized this idea to marginal MAP by introducing UBFS that unifies max and sum

inference within a specifically designed priority system, that aims to reduce upper bound

of the optimal solution(s) as quickly as possible. Its effectiveness is also confirmed by other

researchers [Marinescu et al., 2018].

118

In Chapter 4, we developed approximate inference algorithms that integrate importance

sampling, best-first search, and variational upper bounds, that provide anytime finite-sample

bounds for the partition function and marginal MAP respectively. Specially, for the partition

function, we proposed DIS that interleaves importance sampling with best-first search, that

in practice enjoys both the rapid bound improvement characteristic of sampling while also

benefiting significantly from search on problems where search is relatively effective, or when

given enough computational resources, even when these points are not known in advance. We

then generalized DIS to MDIS which gives anytime finite-sample bounds for marginal MAP

with predicted MAP solutions. MDIS first converts bounding marginal MAP to a surrogate

task of bounding a series of summation problems of an augmented graphical model, and then

adapt DIS to provide finite-sample bounds for the surrogate task. Given enough time, those

bounds are guaranteed to be tight, and the values of the predicted MAP solutions are also

guaranteed to converge to the optimum. MDIS shares the same anyspace property as DIS.

In Chapter 5, we presented a general inference framework that interleaves optimization of

variational upper bounds with importance sampling. Our adaptive interleaving policy can

automatically balance the computational effort between these two schemes in a problem-

dependent way, which equips our framework with the strengths of both schemes, leads to

tighter anytime finite-sample bounds and an unbiased estimate of the partition function, and

allows flexible trade-offs between memory, time, and solution quality.

6.2 Future Directions

This dissertation opens up several directions for future research. An important angle one can

think of is how to further explore ideas/techniques from the three major inference paradigms

and integrate them in a way that new algorithms can share strengths from all of the paradigms

and thus can be deployed in a broad spectrum of real-world scenarios. This holistic view is

119

Variational
methods

Search

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 1

0 Sampling

Figure 6.1: A holistic view of future work by exploring ideas/techniques from the three
inference paradigms.

illustrated in Figure 6.1.

In this thesis, we utilized variational bounds to provide heuristics for search, and proposal

distributions for sampling; we can in turn investigate how search and sampling can help

construct high-quality variational bounds. One possible perspective is to use samples to

decide what regions to add in order to tighten some relaxation [Sontag et al., 2008] because

samples from a proposal extracted from the variational bound may carry valuable information

to help make decision. This serves as a form of stochastic optimization, and can potentially

be faster than deterministic optimization approaches (e.g., Forouzan and Ihler [2015]).

Another point worth mentioning is about variable ordering. In our algorithms, e.g., AOBFS,

we imposed a fixed variable ordering, which is not necessarily optimal in many settings.

Instead, one may wish to consider what variable to assign “on the fly” – this dynamic variable

ordering strategy would alleviate the burden of finding a good variable ordering a priori,

and can possibly lead to improved performance, as has been suggested by research on other

domains [Bacchus and Van Run, 1995].

120

Bibliography

C. Andrieu, N. De Freitas, A. Doucet, and M. Jordan. An introduction to MCMC for machine
learning. Machine Learning, 50(1-2):5–43, 2003.

F. Bacchus and P. Van Run. Dynamic variable ordering in CSPs. In Proceedings of the 1st
International Conference on Principles and Practice of Constraint Programming, CP’95,
pages 258–275, 1995.

F. Bacchus, S. Dalmo, and T. Piassi. Value elimination: Bayesian inference via backtracking
search. In Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence,
UAI’03, 2003a.

F. Bacchus, S. Dalmo, and T. Piassi. Algorithms and complexity results for #SAT and
Bayesian inference. In Proceedings of the 44th Symposium on Foundations of Computer
Science, FOCS’03, 2003b.

G. Bennett. Probability inequalities for the sum of independent random variables. Journal
of the American Statistical Association, 57(297):33–45, 1962.

B. Bidyuk and R. Dechter. Cutset sampling for Bayesian networks. Journal of Artificial
Intelligence Research, 28:1–48, 2007.

B. Bidyuk, R. Dechter, and E. Rollon. Active tuples-based scheme for bounding posterior
beliefs. Journal of Artificial Intelligence Research, 39:335, 2010.

S. Boucheron, G. Lugosi, and O. Bousquet. Concentration Inequalities, pages 208–240.
Springer Berlin Heidelberg, 2004.

O. Bousquet. Concentration inequalities and empirical processes theory applied to the analysis
of learning algorithms. PhD thesis, Biologische Kybernetik, 2002.

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A survey of Monte Carlo tree search
methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012.

Y. Burda, R. Grosse, and R. Salakhutdinov. Accurate and conservative estimates of MRF
log-likelihood using reverse annealing. In Proceedings of the 18th International Conference
on Artificial Intelligence and Statistics, AISTATS’15, pages 102–110, 2015.

G. Casella and C. Robert. Rao-Blackwellisation of sampling schemes. Biometrika, 83(1):
81–94, 1996.

121

S. Chakraborty, D. J. Fremont, K. S. Meel, S. A. Seshia, and M. Y. Vardi. Distribution-
aware sampling and weighted model counting for SAT. In Proceedings of the 28th AAAI
Conference on Artificial Intelligence, AAAI’14, pages 1722–1730, 2014.

S. Chakraborty, K. S. Meel, and M. Y. Vardi. Algorithmic improvements in approximate
counting for probabilistic inference: From linear to logarithmic SAT calls. In Proceedings
of the 25th International Joint Conference on Artificial Intelligence, IJCAI’16, pages
3569–3576, 2016.

M. Chavira and A. Darwiche. On probabilistic inference by weighted model counting. Artificial
Intelligence, 172(6):772–799, 2008.

Q. Cheng, F. Chen, J. Dong, W. Xu, and A. Ihler. Approximating the sum operation
for marginal-MAP inference. In Proceedings of the 26th AAAI Conference on Artificial
Intelligence, AAAI’12, pages 1882–1887, 2012.

P. Dagum and M. Luby. An optimal approximation algorithm for Bayesian inference. Artificial
Intelligence, 93(1-2):1–27, 1997.

A. Darwiche. Recursive conditioning. Artificial Intelligence, 126(1):5–41, 2001.

A. Darwiche. Modeling and reasoning with Bayesian networks. Cambridge University Press,
2009.

R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial Intelligence,
113(1-2):41–85, 1999.

R. Dechter. Reasoning with probabilistic and deterministic graphical models: Exact algorithms.
Synthesis Lectures on Artificial Intelligence and Machine Learning, 7(3):1–191, 2013.

R. Dechter and R. Mateescu. AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2–3):73–106, 2007.

R. Dechter and J. Pearl. Generalized best-first search strategies and the optimality of A∗.
Journal of the ACM, 32(3):505–536, 1985.

R. Dechter and I. Rish. Mini-buckets: A general scheme of approximating inference. Journal
of the ACM, 50(2):107–153, 2003.

R. Dechter, H. Geffner, and J. Y. Halpern. Heuristics, Probability and Causality. A Tribute
to Judea Pearl. College Publications, 2010.

A. Doucet, S. J. Godsill, and C. P. Robert. Marginal maximum a posteriori estimation using
Markov chain Monte Carlo. Statistics and Computing, 12(1):77–84, 2002.

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimensionality:
Discrete integration by hashing and optimization. In Proceedings of the 30th International
Conference on International Conference on Machine Learning, ICML’13, pages 334–342,
2013.

122

S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Low-density parity constraints for
hashing-based discrete integration. In Proceedings of the 31st International Conference on
International Conference on Machine Learning, ICML’14, pages 271–279, 2014.

N. Flerova, A. Ihler, R. Dechter, and L. Otten. Mini-bucket elimination with moment
matching. In Proceedings of NIPS Workshop on Discrete and Combinatorial Problems in
Machine Learning, DISCML’11, 2011.

S. Forouzan and A. Ihler. Incremental region selection for mini-bucket elimination bounds.
In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence, UAI’15,
pages 268–277, 2015.

N. Friedman. Inferring cellular networks using probabilistic graphical models. Science, 303
(5659):799–805, 2004.

A. Globerson and T. Jaakkola. Approximate inference using conditional entropy decomposi-
tions. In Proceedings of the 11th International Conference on Artificial Intelligence and
Statistics, AISTATS’07, pages 131–138, 2007.

G. Hardy, J. Littlewood, and G. Pólya. Inequalities. Cambridge Mathematical Library.
Cambridge University Press, 1952.

P. Hart, N. Nilsson, and B. Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Science and Cybernetics, 4(2):100–107,
1968.

M. Henrion. Search-based methods to bound diagnostic probabilities in very large belief
nets. In Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, UAI’91,
pages 142–150, 1991.

W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13–30, 1963.

D. Jurafsky and J. Martin. Speech and Language Processing. Prentice Hall, 2008.

K. Kask and R. Dechter. A general scheme for automatic generation of search heuristics from
specification dependencies. Artificial Intelligence, 129(1):91–131, 2001.

D. Kisa, G. Van den Broeck, A. Choi, and A. Darwiche. Probabilistic sentential decision
diagrams. In Proceedings of the 14th International Conference on Principles of Knowledge
Representation and Reasoning, KR’14, 2014.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques. MIT
Press, 2009.

R. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence, 27(1):97–109, 1985.

R. Korf. Linear-space best-first search. Artificial Intelligence, 62(1):41–78, 1993.

123

S. Lauritzen. Graphical models, volume 17. Clarendon Press, 1996.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

J. Lee, R. Marinescu, and R. Dechter. Applying search based probabilistic inference algorithms
to probabilistic conformant planning: Preliminary results. In Proceedings of the 14th
International Symposium on Artificial Intelligence and Mathematics, ISAIM’16, 2016a.

J. Lee, R. Marinescu, R. Dechter, and A. Ihler. From exact to anytime solutions for marginal
MAP. In Proceedings of the 30th AAAI Conference on Artificial Intelligence, AAAI’16,
pages 3255–3262, 2016b.

J. S. Liu. Monte Carlo strategies in scientific computing. Springer Science & Business Media,
2008.

Q. Liu. Reasoning and Decisions in Probabilistic Graphical Models – A Unified Framework.
PhD thesis, University of California, Irvine, 2014.

Q. Liu and A. Ihler. Bounding the partition function using Hölder’s inequality. In Proceedings
of the 28th International Conference on International Conference on Machine Learning,
ICML’11, pages 849–856, 2011.

Q. Liu and A. Ihler. Variational algorithms for marginal MAP. Journal of Machine Learning
Research, 14(1):3165–3200, 2013.

Q. Liu, J. W. Fisher, III, and A. Ihler. Probabilistic variational bounds for graphical models.
In Proceedings of the 29th Conference on Neural Information Processing Systems, NIPS’15,
pages 1432–1440, 2015a.

Q. Liu, J. Peng, A. Ihler, and J. Fisher III. Estimating the partition function by discriminance
sampling. In Proceedings of the 31st Conference on Uncertainty in Artificial Intelligence,
UAI’15, pages 514–522, 2015b.

Q. Lou, R. Dechter, and A. Ihler. Anytime anyspace AND/OR search for bounding the
partition function. In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
AAAI’17, pages 860–867, 2017a.

Q. Lou, R. Dechter, and A. Ihler. Dynamic importance sampling for anytime bounds of the
partition function. In Proceedings of the 31st Conference on Neural Information Processing
Systems, NIPS’17, pages 3198–3206, 2017b.

Q. Lou, R. Dechter, and A. Ihler. Anytime anyspace AND/OR best-first search for bounding
marginal MAP. In Proceedings of the 32nd AAAI Conference on Artificial Intelligence,
AAAI’18, 2018a.

Q. Lou, R. Dechter, and A. Ihler. Finite-sample bounds for marginal MAP. In Proceedings
of the 34th Conference on Uncertainty in Artificial Intelligence, UAI’18, 2018b.

124

Q. Lou, R. Dechter, and A. Ihler. Interleave variational optimization with Monte Carlo
sampling: A tale of two approximate inference paradigms. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence, AAAI’19, 2019. To appear.

J. Ma, J. Peng, S. Wang, and J. Xu. Estimating the partition function of graphical models
using Langevin importance sampling. In Proceedings of the 16th International Conference
on Artificial Intelligence and Statistics, AISTATS’13, pages 433–441, 2013.

D. MacKay. Introduction to Monte Carlo methods. In Learning in Graphical Models, pages
175–204. Springer, 1998.

R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial opti-
mization in graphical models. Artificial Intelligence, 173(16):1457–1491, 2009a.

R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial opti-
mization in graphical models. Artificial Intelligence, 173(16-17):1492–1524, 2009b.

R. Marinescu, R. Dechter, and A. Ihler. AND/OR search for marginal MAP. In Proceedings
of the 30th Conference on Uncertainty in Artificial Intelligence, UAI’14, pages 563–572,
2014.

R. Marinescu, R. Dechter, and A. Ihler. Pushing forward marginal MAP with best-first
search. In Proceedings of the 24th International Joint Conferences on Artifical Intelligence,
IJCAI’15, pages 696–702, 2015.

R. Marinescu, J. Lee, A. Ihler, and R. Dechter. Anytime best+ depth-first search for bounding
marginal MAP. In Proceedings of the 31st AAAI Conference on Artificial Intelligence,
AAAI’17, pages 3775–3782, 2017.

R. Marinescu, R. Dechter, and A. Ihler. Stochastic anytime search for bounding marginal
MAP. In Proceedings of the 27th International Joint Conferences on Artifical Intelligence,
IJCAI’18, pages 5074–5081, 2018.

D. Mauá and C. de Campos. Anytime marginal maximum a posteriori inference. In Proceedings
of the 29th International Conference on International Conference on Machine Learning,
ICML’12, pages 1395–1402, 2012.

A. Maurer and M. Pontil. Empirical Bernstein bounds and sample variance penalization. In
Proceedings of the 22nd Conference on Learning Theory, COLT’09, 2009.

T. Minka. Expectation propagation for approximate Bayesian inference. In Proceedings of
the 17th Conference on Uncertainty in Artificial Intelligence, UAI’01, pages 362–369, 2001.

V. Mnih, H. Larochelle, and G. Hinton. Conditional restricted Boltzmann machines for
structured output prediction. In Proceedings of the 27th Conference on Uncertainty in
Artificial Intelligence, UAI’11, pages 514–522, 2011.

125

C. A. Naesseth, F. Lindsten, and T. Schön. Sequential Monte Carlo for graphical models. In
Proceedings of the 28th Conference on Neural Information Processing Systems, NIPS’14,
pages 1862–1870, 2014.

S. Nowozin and C. Lampert. Structured learning and prediction in computer vision. Founda-
tions and Trends R© in Computer Graphics and Vision, 6(3–4):185–365, 2011.

M.-S. Oh and J. Berger. Adaptive importance sampling in Monte Carlo integration. Journal
of Statistical Computation and Simulation, 41(3-4):143–168, 1992.

M. Opper and D. Saad, editors. Advanced Mean Field Methods: Theory and Practice. MIT,
2001.

L. Otten and R. Dechter. Anytime AND/OR depth-first search for combinatorial optimization.
AI Communications, 25(3):211–227, 2012.

L. Otten, A. Ihler, K. Kask, and R. Dechter. Winning the PASCAL 2011 MAP challenge
with enhanced AND/OR branch-and-bound. In Proceedings of NIPS Workshop on Discrete
and Combinatorial Problems in Machine Learning, DISCML’11, 2011.

U. Oztok and A. Darwiche. A top-down compiler for sentential decision diagrams. In
Proceedings of the 24th International Joint Conference on Artificial Intelligence, IJCAI’15,
pages 3141–3148, 2015.

J. Park. MAP complexity results and approximation methods. In Proceedings of the 18th
Conference on Uncertainty in Artificial Intelligence, UAI’02, pages 388–396, 2002.

J. Park and A. Darwiche. Solving MAP exactly using systematic search. In Proceedings of
the 19th Conference on Uncertainty in Artificial Intelligence, UAI’03, pages 459–468, 2003.

J. Park and A. Darwiche. Complexity results and approximation strategies for MAP expla-
nations. Journal of Artificial Intelligence Research, 21:101–133, 2004.

J. Pearl. Heuristics: intelligent search strategies for computer problem solving. Addison-Wesley,
1984.

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers Inc., 1988.

W. Ping and A. Ihler. Belief propagation in conditional RBMs for structured prediction. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS’17, pages 1141–1149, 2017.

W. Ping, Q. Liu, and A. Ihler. Decomposition bounds for marginal MAP. In Proceedings of
the 29th Conference on Neural Information Processing Systems, NIPS’15, pages 3267–3275,
2015.

T. Popoviciu. Sur les équations algébriques ayant toutes leurs racines réelles. Mathematica,
9:129–145, 1935.

126

E. Rollon and R. Dechter. New mini-bucket partitioning heuristics for bounding the probability
of evidence. In Proceedings of the 24th AAAI Conference on Artificial Intelligence, AAAI’10,
pages 1199–1204, 2010.

E. Rollon, J. Larrosa, and R. Dechter. Semiring-based mini-bucket partitioning schemes. In
Proceedings of the 23rd international joint conference on Artificial Intelligence, IJCAI’13,
pages 644–650, 2013.

S. Russell. Efficient memory-bounded search methods. In Proceedings of the 10th European
Conference on Artificial Intelligence, ECAI’92, pages 1–5, 1992.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall Press,
2009.

R. Salakhutdinov and I. Murray. On the quantitative analysis of deep Belief networks. In
Proceedings of the 25th International Conference on Machine learning, ICML’08, pages
872–879, 2008.

T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model counting.
In Proceedings of the 20th National Conference on Artificial Intelligence, AAAI’05, pages
475–482, 2005.

E. Santos. On the generation of alternative explanations with implications for belief revision.
In Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence, UAI’91,
pages 339–347, 1991.

S. Shimony. Finding MAPs for belief networks is NP-hard. Artificial Intelligence, 68(2):
399–410, 1994.

S. Shimony and E. Charniak. A new algorithm for finding MAP assignments to belief
networks. In Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence,
UAI’91, pages 185–193, 1991.

J. Sohl-Dickstein and B. Culpepper. Hamiltonian annealed importance sampling for partition
function estimation. arXiv preprint arXiv:1205.1925, 2012.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP relaxations
for MAP using message passing. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, UAI’08, pages 503–510, 2008.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT press, 1998.

R. Szeliski. Computer Vision: Algorithms and Applications. Springer Science & Business
Media, 2010.

L. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8
(2):189–201, 1979.

127

C. Viricel, D. Simoncini, S. Barbe, and T. Schiex. Guaranteed weighted counting for affinity
computation: Beyond determinism and structure. In Proceedings of the 22nd International
Conference on Principles and Practice of Constraint Programming, CP’16, pages 733–750.
Springer, 2016.

M. Wainwright and M. Jordan. Graphical models, exponential families, and variational
inference. Foundations and Trends R© in Machine Learning, 1(1-2):1–305, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. A new class of upper bounds on the log partition
function. IEEE Transactions on Information Theory, 51(7):2313–2335, July 2005.

A. Weller and J. Domke. Clamping improves TRW and mean field approximations. In
Proceedings of the 19th International Conference on Artificial Intelligence and Statistics,
AISTATS’16, pages 38–46, 2016.

B. Wemmenhove, J. M. Mooij, W. Wiegerinck, M. Leisink, H. J. Kappen, and J. P. Neijt.
Inference in the promedas medical expert system. In Conference on Artificial Intelligence
in Medicine in Europe, pages 456–460. Springer, 2007.

Y. Xue, Z. Li, S. Ermon, C. Gomes, and B. Selman. Solving marginal MAP problems with NP
oracles and parity constraints. In Proceedings of the 30th Conference on Neural Information
Processing Systems, NIPS’16, pages 1127–1135, 2016.

P. Yadollahpour, D. Batra, and G. Shakhnarovich. Discriminative re-ranking of diverse
segmentations. In Proceedings of the 26th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR’13, pages 1923–1930, 2013.

C. Yanover and Y. Weiss. Approximate inference and protein-folding. In Proceedings of the
16th Conference on Neural Information Processing Systems, NIPS’02, pages 1457–1464,
2002.

C. Yuan and E. Hansen. Efficient computation of jointree bounds for systematic MAP
search. In Proceedings of the 21st International Joint Conference on Artificial Intelligence,
IJCAI’09, pages 1982–1989, 2009.

C. Yuan, T.-C. Lu, and M. Druzdzel. Annealed MAP. In Proceedings of the 20th Conference
on Uncertainty in Artificial Intelligence, UAI’04, pages 628–635, 2004.

S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine, 17(3):73, 1996.

128

Appendix A

Proofs for Propositions in Chapter 2

A.1 Proof of Proposition 2.2

Proposition 2.2. If we assume Et[|u(x)|] > 0, and let

q?(x) = |u(x)|t(x)/Et[|u(x)|], (2.23)

then for any proposal distribution q(x), we have

Varq?

[
u(x)t(x)

q?(x)

]
≤ Varq

[
u(x)t(x)

q(x)

]
.

Proof. Since

Eq?

[(u(x)t(x)

q?(x)

)2
]

=

∫
Ω

u2(x)t2(x)

q?(x)
dx

=

∫
Ω

u2(x)t2(x)

|u(x)|t(x)/Et[|u(x)|]
dx

= Et

[
|u(x)|

] ∫
Ω

|u(x)|t(x) dx

=

(∫
Ω

|u(x)|t(x) dx

)2

129

=

(∫
Ω

|u(x)|t(x)

q(x)
q(x) dx

)2

≤
∫

Ω

(|u(x)|t(x)

q(x)

)2

q(x) dx (Cauchy-Schwarz inequality)

= Eq

[(u(x)t(x)

q(x)

)2
]
,

i.e.,

Eq?

[(u(x)t(x)

q?(x)

)2
]
≤ Eq

[(u(x)t(x)

q(x)

)2
]
.

We know

Varq?

[
u(x)t(x)

q?(x)

]
= Eq?

[
(
u(x)t(x)

q?(x)
)2

]
−
(

Et[u(x)]
)2

(see (2.22))

≤ Eq

[
(
u(x)t(x)

q(x)
)2

]
−
(

Et[u(x)]
)2

= Varq

[
u(x)t(x)

q(x)

]
,

i.e.,

Varq?

[
u(x)t(x)

q?(x)

]
≤ Varq

[
u(x)t(x)

q(x)

]
,

which proves the proposition.

130

Appendix B

Proofs for Propositions in Chapter 3

B.1 Proof of Proposition 3.1

Proposition 3.1. The quantity Vn represents the total weighted sum over all solution trees

that include the path from the root to node n. Given a current search tree S, for all n, we

have Ln ≤ Vn ≤ Un.

Proof. First, it is obvious that Un and Ln are upper and lower bounds of Vn respectively.

For a solution tree T ∈ T(S) where T(S) denotes the set of all solution trees of S, its mass is

vT =
∏
c∈T

wc
∏

s∈T∩OPEN

vs

T also defines an upper bound of vT denoted as uT where

uT =
∏
c∈T

wc
∏

s∈T∩OPEN

us

By taking the sum of masses over all the solution trees of S, we obtain the exact partition

function. Analogously, by taking the sum of upper bounds over all its solution trees, we can

131

upper bound the partition function. Namely,

U =
∑

T∈T(S)

uT

Now, for any solution tree T that contains n, gn contributes to vT as a multiplicative factor.

The rest of vT comes from subtrees underneath nodes in {n}
⋃
branch(n). Thus, it is easy to

verify that

Vn =
∑

{T∈T(S) | n∈T}

vT

i.e., Vn is the total mass of all solution trees that contain n.

B.2 Proof of Proposition 3.2

Proposition 3.2. Given a current search tree S, fully solving the summation problem below

a frontier node s will tighten the bound difference U − L by

gs (us − vs)
∏

t∈branch(s)

ut + gs (vs − ls)
∏

t∈branch(s)

lt

which is upper bounded by gap(s) = Us − Ls.

Proof. We can see that fully solving the subproblem underneath s will decrease Us to

gs vs
∏

t∈branch(s)

ut

132

This will improve U by

gs (us − vs)
∏

t∈branch(s)

ut

By applying the same argument to lower bound, we know the bound difference U −L will be

reduced by

gs (us − vs)
∏

t∈branch(s)

ut + gs (vs − ls)
∏

t∈branch(s)

lt

which is obviously a lower bound of gap(s) = Us − Ls.

B.3 Proof of Proposition 3.8

Proposition 3.8. In each iteration, Algorithm 3.3 finds a top-priority frontier node to

expand.

Proof. We will prove the following claims from which we can easily derive the proposition.

For any internal node n ∈ S, we claim: First, its best child c? found via (3.21) is an ancestor

of a top-priority descendant of n in OPEN .

Second,

U?
ngn

∏
s∈branch(n)

us (B.1)

is the secondary priority value of n’ top-priority descendant in OPEN .

We will prove the above claims via induction on the height of nodes in S, where the height

for a node is defined as the distance from that node to its furthest descendant in OPEN . For

133

example, a frontier node has height 0; a node has all its children in OPEN has height 1.

To begin with, the first claim is vacuously true for all frontier nodes, and the second claim is

true for all frontier nodes by definition. Then, suppose the claims hold for those nodes of

height no greater than some h ≥ 0, we will show they also hold for nodes of height h + 1.

Now, let n ∈ S be a node of height h+ 1; all its children have height no greater than h and

thus the claims apply to them.

If n is an AND node, for any c1, c2 ∈ ch(n), it is easy to see that their top-priority frontier

descendants have the same primary priority. Thus, we only have to compare the secondary

priority of their top-priority frontier descendants. Since

U?
c1
gc1

∏
s∈branch(c1)

us

is the secondary priority value of c1’s top-priority frontier descendant according to (B.1). By

applying the facts that gn = gc1 and un =
∏

c∈ch(n) uc to the above quantity, we have

U?
c1
/uc1ungn

∏
s∈branch(n)

us

Thus, (3.21) finds c? that leads to a top-priority descendant of AND node n, which has the

secondary priority

U?
c?/uc?ungn

∏
s∈branch(n)

us

Combining the above and (3.22), we know the second claim is true for n as well.

If n is an OR-MAX node, for any c1 ∈ ch(n), it is easy to see that

gc1uc1
∏

s∈branch(c1)

us

134

is the primary priority value of c1’s top-priority frontier descendant, which can then be

re-written as

wc1uc1gn
∏

s∈branch(n)

us

by considering the facts that gc1 = wc1gn and branch(c1) = branch(n). According to the

second claim and gc1 = wc1gn, the secondary priority value of c1’s top-priority frontier

descendant can be re-written as

wc1U
?
c1
gn

∏
s∈branch(n)

us

Thus, c? found via (3.21) leads to a top-priority descendant. Also, the second claim holds for

n in lieu of (3.22).

If n is an OR-SUM node, we know all its frontier descendants share the same primary priority.

The analysis on the secondary priority is the same as that of the OR-MAX case.

All in all, we can see that the two claims hold for a node of height h+ 1. By induction, we

know these claims hold for all internal nodes of S, which implies Proposition 3.8.

135

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Main Contributions of This Dissertation
	Outline of This Dissertation

	Background
	Graphical Models
	Inference Tasks in Graphical Models

	Variational Bounds
	Bucket Elimination (BE)
	Mini-bucket Elimination (MBE)
	Weighted Mini-bucket (WMB)

	Search in Graphical Models
	Heuristic Search
	A* and SMA*
	AND/OR Search for Graphical Models

	Monte Carlo Methods
	Some Concentration Results
	Importance Sampling

	Best-first Search Aided by Variational Heuristics
	Anytime Anyspace Best-first Search for The Partition Function
	Introduction
	AND/OR Best-first Search (AOBFS)
	Memory-limited AOBFS
	Experimental Settings
	Empirical Results
	Summary of AOBFS

	Anytime Anyspace Best-first Search for MMAP
	Introduction
	AND/OR Search Spaces for MMAP
	Unified Best-first Search (UBFS)
	Memory-limited UBFS
	Empirical Evaluation
	Summary of UBFS

	Sampling Enhanced by Best-first Search
	Dynamic Importance Sampling
	Introduction
	WMB-IS
	AOBFS Revisited
	WMB for Heuristics and Sampling
	Two-step Sampling
	Main Algorithm
	Empirical Evaluation

	Mixed Dynamic Importance Sampling
	Introduction
	An Augmented Graphical Model
	Experiments

	Conclusion

	Interleaving Variational Optimization with Sampling
	Introduction
	Main Algorithm
	A General Interleaving Framework
	Interleaving Policies

	Empirical Evaluation
	Interleaving versus Non-interleaving
	Adaptive versus Static

	Conclusion

	Conclusion and Future Directions
	Our Contributions
	Future Directions

	Bibliography
	Proofs for Propositions in Chapter 2
	Proof of Proposition 2.2

	Proofs for Propositions in Chapter 3
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.8

