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Abstract

In this thesis, I develop and explore two novel models of how humans might be able
to acquire high-level conceputal knowledge by performing probabilistic inference over
a language of thought (Fodor 1975) – a space of symbolic and compositional mental
representations sufficiently expressive to capture the meanings of human thoughts
and utterances. These models and their associated learning algorithms are moti-
vated by an attempt to provide an understanding of the algorithmic principles that
might underlie a child’s ability to search the haystack of sentences in her language of
thought to find the needle that corresponds to any specific concept. The first model
takes advantage of the compositionality inherent to LOT representations, framing
concept acquisition as program induction in a functional programming language; the
Exploration-Compression algorithm this model motivates iteratively builds a library
of useful program fragments that, when composed, restructures the search space,
making more useful programs shorter and easier to find. The second model, the Infi-
nite Knowledge Base Model (IKM), frames concept learning as probabilistic inference
over the space of relational knowledge bases; the algorithm I develop for learning in
this model frames this inference problem as a state-space search over abductive proofs
of the learner’s observed data. This framing allows us to take advantage of powerful
techniques from the heuristic search and classical planning literature to guide the
learner. In the final part of this thesis, I explore the behavior of the 𝐼𝐾𝑀 on several
case studies of intuitive theories from the concept learning literature, and I discuss
evidence for and against it with respect to other approaches to LOT models.
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Title: Professor
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Chapter 1

Foreword

Whatever innate knowledge infants possess when they are born (Spelke and Kinzler
2007), they do not have at their disposal anything like the conceptual repertoire of the
adult. And the lay adult may stand in a similar — though less extreme — relation to
the expert, and the new arrival in a foreign culture to the native. An account of the
conceptual change that occurs between infancy and adulthood is one of the central
challenges of the cognitive sciences, and such an account remains ellusive.

The aim of this thesis is explore one aspect of this mystery through the lense
of computational cognitive science, artificial intelligence and machine learning. We
set out with the following question: given our best hypotheses about the natural
of mental representations and the goals of learning agents, what is it that allows a
learner to find the right meaning for a concept — to discover an adequate theory of
their world from the infinite space of competing theories — and to do so with the
limited time and resources at their disposal.

This goal is motivated by a particular view of conceptual knowledge as consisting
of intuitive theories expressed in a language of thought. On this view, people’s knowl-
edge about the world is organized around explanatory theories of particular domains,
much like scientific theories, and these theories both contain their knowledge about
the domain and guide their further learning and exploration (Carey 1985; Wellman
and Gelman 1992; Gopnik, Meltzoff, and Bryant 1997). And the mental representa-
tion that supports this knowledge is — like the natural languages in which scientific
theories are expressed — a symbolic, relational and compositional formalism.

Computational models of cognition that ascribe to this view — that conceptual
knowledge is organized in intuitive theories expressed in an LOT — have in recent
years been able to provide a satisfying account of various patterns of reasoning and
learning in people. With one notable exception (Ullman, Goodman, and Tenenbaum
2012), these models are at the computational level of analysis1. Even for those who
believe that much remains to be studied at the computational level, pushing beyond
this to the algorithmic level is important for at least three reasons. First, a plausible
algorithmic account of learning in an LOT model provides a proof of concept that such
a model could be instantiated in the human mind. Second, any algorithmic approach

1Throughout this thesis, when we refer to levels of analysis, we are refering to David Marr’s
“computational,” “algorithmic,” and “implementation” levels Marr 1982
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provides us with tools for studying the predictions and behavior of a computational
model, without which it is difficult to compare competing models and hypotheses
about them. Finally, algorithmic models have the potential to provide us with insight
into the behaviors that we observe when children and adults learn, to help us explain
not just what they learn, but also when and in what circumstances.

The tools and techniques I will use in this thesis are largely borrowed from com-
puter science, especially AI. Since its inception, AI has attempted to represent com-
monsense knowledge in programming languages and to develop algorithms that are
able to efficiently reason and learn over those representations. Moreover, the preva-
lence of intractable combinatorial search tasks in AI problems like planning, constraint
satisfaction, and automated game playing has led to the development of general search
techniques for these domains Russell and Norvig 2010. A general approach of this the-
sis will be to attempt to apply these knowledge representations and search techniques
within the framework of the Bayes LOT hypothesis.

The Bayes LOT hypothesis Expressive formal languages, like their natural lan-
guage counterparts, provide a natural medium in which to represent various kinds of
structured information. Whether the goal is to store and query information as in a
database, to formalize communication conventions as in a communication protocol,
or to encode precisely our understanding of the laws of nature (for example, in a
electronic circuit simulator), computing in complex domains is facilitated by using
expressive languages that allow for abstraction, composition, and modularity. The
ubiquity of these properities in the formal languages that humans use to represent
their knowledge suggests that whatever knowledge representation exists in the human
mind must also have these properties as well. This line of thinking has lead to the hy-
pothesis that mental representations are expressed in some sort of language of thought
(LOT), and that human concepts and theories are best understood as expressions in
that LOT.

A separate line of research in computational cognitive science provides mounting
evidence that people’s learning and reasoning, especially in the face of small amounts
of noisy and uncertain information, is well described as probabilistic inference over
probabilistic generative models of the world that people hold in their minds. This
hypothesis is generally described as a Bayesian view of cognition, as it draws parallels
between the human mind and the logic of a Bayesian statistician.

A small literature has emerged over the last decade or so that seeks to combine
the Bayesian view of cognition and the LOT hypothesis (this literature is discussed
in detail in Chapter 4). We term this combination the Bayes LOT hypothesis:

knowledge acquisition is best understood as posterior inference in a prob-
abilistic generative model over expressions in a language of thought.

Overview of this thesis The following two chapters present two very Bayes LOT
models through which we have explored algorithmic principles by which the human
mind can explore the vast hypothesis space induced by a symbolic and compositional
knowledge representation.
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The first chapter presents a simple model of concept acquisition as the auto-
mated synthesis of functional programs. The primary contribution here is to present
the Exploration-Compression algorithm, and through it to study the hypothesis that
learning in the space of functional programs can be assisted by learning useful and
frequently occuring program fragments. We show that in the multi-task learning set-
ting, our approach succeeds in “bootstrapping” domain-specific language that allows
for more efficient exploration of the search space.

The second chapter presents a qualitatively different kind of Bayes LOT model,
the Infinite Knowledge Base Model (IKM). The IKM is a probabilistic generative
model of first-order deductive knowledge bases with an unbounded number of “latent”
concepts. We also present a MAP inference algorithm for learning in the IKM. By
framing this inference problem as an abuctive search over proofs of observed data, we
are able to use the tools of state-space heuristic search to develop efficient learning
algorithms over these knowledge bases.

In the final chapter of this thesis, we apply the IKM to some of the concept
learning domains that are commonly studied in the Bayes LOT literature, and discuss
how it the IKM relates to previously proposed models. We argue that the IKM is
at once simple enough to admit tractable learning algorithms and expressive enough
to apply to some of the of complex systems of interrelated concepts that characterize
people’s commonsense knowledge.
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Chapter 2

Bootstrap learning via modular
program induction

2.1 Introduction

Many of the problems we want to solve in AI are best cast as search problems.
There are many search algorithms, but in order to be practically efficient in the high-
dimensional and combinatorial spaces that are characteristic of AI domains, they
typically exploit the local or topological structure of the search space. In continuous
search spaces, for example, convex optimization and gradient based search methods
take advantage of local smoothness to move in promising directions. In combinatorial
search spaces, local search algorithms move from one candidate solution to a neigh-
boring one, requiring a suitable notion of neighborhood. Heuristic search techniques
take advantage of a search space’s topological structure, enabling one to prune off
large parts of the solution space guided by an approximate heuristic function.

These search algorithms rely on a human with the expertise to identify the suit-
able representation, similarity metrics, or search operators that will enable these
algorithms to perform successfully. Unfortunately, however, many of the tasks we
expect intelligent agents to tackle — from the quotidien (emptying the dishwasher,
folding the laundry, navigating city streets) to the intellectual (developing new tech-
nologies, proving new theorems) — do not come with such a structured search space.
This is particularly true of those problems whose solutions are naturally expressed
as computer programs, with their data structures, variables, and control constructs.
Given this, this work asks how a suitably structured search space for given domain
can be extracted from the space of computer programs.

Naturally, we take as our inspiration the human programmer: how does she,
when confronted with the boundless space of programs, ever happen on one that
solves the task at hand? There are many ingredients to this ability — the ability
to understand the specification of a problem, break it into smaller pieces, create
a mental model of a program’s operation, etc. — but we focus on one particular
ingredient: the programmer’s ability to notice repeated useful pieces of code, to
package them up as named subroutines, and thus create a function library. Armed
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with such a library, she manages the complexity of the programs she needs to create.
Likewise, the ec algorithm builds a library of reusable program components and
places a distribution over these, effectively learning from simple tasks a search space
that enables it to solve more complex tasks.

In this work, we try to see how far this idea of reusable function definition can get
us. We ask the following questions:

∙ can an AI system discover the structure latent in the solutions to multiple re-
lated problems and thereby bootstrap effective exploration of the search space?

∙ Can discovering modular program components transform a problem from one
in which search is intractable into a problem in which it becomes increasingly
feasible with experience?

Given collection of tasks in some domain, the ec algorithm works as follows. It
begins with a small library of program primitives and a probability distribution over
programs synthesized from this library. On each iteration, it generates programs in
order of highest probability according to the library learned in the previous iteration,
and it tests whether any of these generated programs solves any of the given tasks.
From the solutions it finds, it extracts those functions that most compress these
solutions, and it estimates a new distribution over programs with these new functions
as primitives in an attempt to match the distribution of empirically observed useful
programs.

In using compression as a guide to the choice of representation, we instantiate the
idea that good representations are those which minimize the description length of typ-
ical elements in the domain. We show that this simple idea allows us to achieve high
performance in tasks where just searching according to the initial distribution over
program primitives clearly fails. Beyond this, we show how to couch this algorithm
within the framework of hierarchical Bayesian inference, demonstrate its application
within a variety of disparate domains, present several ways to combine it with more
sophisticated search techniques, and provide some theoretical justifications for its
efficacy.

The remainder of this chapter is structured as follows: after a discussion of related
work in the literature in the next section, we will we elaborate on the general Bayes
LOT framework (Section 2.3). In Section 2.4, we present the basic ec algorithm,
along with the particular learning setting and generative model for which the ec
algorithm is an approximate solution. In Section 2.5, we discuss several variations to
the ec algorithm that we have studied. Finally, Section 2.6, we will present results and
insights from several case-studies and experiments we have run using these variants
of ec.

2.2 Related Work

The idea of discovering and using reusable subcomponents is part of an old tradition in
AI. For instance, it is one of the central themes in Herb Simon’s 1969 “The Sciences
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of the Artificial” (Simon 1996). Rendell’s 1985 paper (Rendell 1985), “Substantial
Constructive Induction Using Layered Information Compression: Tractable Feature
Formation in Search,” presented within a classical search paradigm the idea that
compression provides a heuristic for constructing good representations.

Within the Inductive Logic Programming (ILP) literature, researchers have ex-
plored “Constructive Induction,” generating new and reusable logic programming
terms (Muggleton 1987). Later, predicate invention was also applied in the mul-
titask setting (Khan, Muggleton, and Parson 1998). We apply these ideas to learning
functional programs, and believe that the modularity and compositionality afforded
by this representation is necessary for these ideas to be successful.

Genetic programming (GP) (Koza 1993) has tackled the problem of program learn-
ing and has explored the notion that reusable functions are helpful. This work relies,
however, on stochastic local search over the space of programs, and automatically
discovering useful subroutines is seen as a helpful heuristic. More recently, Liang
et al. (Liang, Jordan, and Klein 2010) used a stochastic grammar over combinatory
logic to induce shared structure in multi-task program induction problems. We find
this latter representation compelling and use it here, but we see both this and ge-
netic programming as tackling the question of how to benefit from shared structure
in situations where local search might be successful on its own. Such problems rely
on domain knowledge — whether in the form of a fitness function or a likelihood
function — to provide local structure to the search space.

The idea of composing primitive operations in order to construct macro opera-
tors that allow for more efficient search has been explored extensively in the search,
planning, and reinforcement learning literatures. (Fikes, Hart, and Nilsson 1972)
introduced the idea of generalizing solutions to strips planning problems; these gen-
eralization solutions, created by “lifting” a particular solution by replacing some con-
stants with variables, were called macro operators, or macrops. Later, Korf 1985b
presented the Macro Problem Solver, an approach for solving combinatorial search
problems by first automatically synthesizing macro operators and then applying those
macro-operators in a deterministic, backtrack-free manner. The use of macros has
also been widely explored in the reinforcement learning literature, with some work ex-
ploring how macros can be automatically generated (Hauskrecht et al. 1998; Randlov
1999). For the most part, the literature on macro generation in these domains has
focused on abstracting macros from plans, solution paths, execution traces, etc. By
contrast, ec uses a formalism that explicitly represents abstraction (i.e. higher-order
functional programs); at the cost of making the search space much more complex,
this choice of representation means that the solution space and the space of “macros”
is the same.

A central difference between the work we present here and previous related work
is the use of a probabilistic generative model of programs to guide the generation and
selection of learned functions. Instead of looking at function learning as merely a
technique for generalizing from one solution to another or for learning to make search
more efficient, we see function learning as the result of discovering the latent structure
of the search space.
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2.3 The Bayes LOT framework
In order to motivate our view of multi-task program synthesis as hierarchical Bayesian
inference, we elaborate on the Bayes LOT hypothesis, introduced in the Chapter 1.
The Bayes LOT hypothesis is the hypothesis that when people learn and reason about
the data that they observe in the world, they assume that a) the data generating
process is parameterized by an expression in a symbolic and compositional formal
language, and b) that this expression is drawn from some probability distribution
over expressions in this language. Writing Φ for the parameters of the expression
generating process, 𝐸 for an LOT expression, and 𝐷 for the observed data, these
assumptions are summarized by the equations:

𝐸 ∼ 𝑝𝐸|Φ(·|Φ) (2.1)
𝐷 ∼ 𝑝𝐷|𝐸(·|E). (2.2)

The Bayes LOT hypothesis is not that such a data generating process actually
exists in the world. In some cases, this assumption seems reasonable: when reasoning
about other people, it seems reasonable to assume that their actions are the product
of knowledge represented in their LOT. In other cases, like when reasoning about the
laws of physics, the Bayes LOT hypothesis seems merely to capture the psychological
fact that humans behave as if the physical world is determined by such things as laws,
that these laws are described in some kind of more or less formal linguistic medium,
and that not all laws are a priori equivalently likely to hold.

With this general model in place, the Bayes LOT framework posits that learning,
reasoning, prediction, explanation, etc., correspond to the standard applications of
Bayes’ rule to this probabilistic model.

In order to model how learners can acquire knowledge about the structure of a
given domain, we turn this simple generative process into a hierarchical one:

∀∆ ∈ domains : (2.3)
𝐺Δ ∼ 𝑝𝐺|Φ(·|Φ) (2.4)
𝐸Δ

𝑖 ∼i.i.d 𝑝𝐸|𝐺(·|𝐺Δ) (2.5)
𝐷Δ

𝑖 ∼ 𝑝𝐷|𝐸(·|𝐸Δ
𝑖 ), (2.6)

where 𝐺Δ captures the abstractions and patterns that are relevant for domain ∆.
Since our goal in this work is to examine how this hierarchical setting might support
search over latent expressions, we will treat the data that each expression generates as
a black box, i.e., we will assume that that there is a known function 𝑡 where 𝑡(𝐷,𝐸)
is the “fit” of expression 𝐸 to data 𝐷. This allows us to define tasks 𝑡𝑖(·) = 𝑡(𝐷𝑖, ·).
The generative process is shown as a graphical model in Figure 2-1.
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Figure 2-1: Graphical model for the multitask reinforcement learning variant of
the Bayes LOT framework. The stochastic grammar 𝐺 is parameterized by hyper-
parameters Φ, and latent expressions 𝑒1, . . . , 𝑒𝑛 are generated i.i.d from 𝐺. Each task
𝑡𝑖 is parameterized by its associated expression 𝑒𝑖.

2.4 The Exploration-Compression algorithm

In this section, we present the ec algorithm, motivating it as a concrete instantiation
of the hierarchical Bayes LOT model presented in the previous section. We first
present in more detail the generative model upon which the algorithm is based, and
we then describe an approximate scheme for inference in the model. This results
in a general version of the ec algorithm. Subsequently, we introduce combinatory
logic as the formal language we use, and describe simple implementations of the
two fundamental steps – exploration and compression – in the context of this
formalism.

2.4.1 Generative Model

Our Bayes LOT learner is presented with a sequence of tasks 𝑧 = 𝑧1, . . . , 𝑧𝑛. Each
task is a function 𝑧𝑖 : L ↦→ R≥0 that takes an expression in language L and returns
a non-negative reward. The learner assumes that the reward 𝑧𝑖(𝑒) corresponds to
some measure of agreement between 𝑒 and a latent expression 𝑒𝑖. In the simplest
case, 𝑧𝛿𝑖 (𝑒|𝑒𝑖) is one if 𝑒 and 𝑒𝑖 correspond to the same function, and zero otherwise;
that is 𝑧𝛿𝑖 (𝑒|𝑒𝑖) = 1 (func(𝑒) = func(𝑒𝑖)), where func(𝑥) is the function associated with
expression 𝑥1. The learner additionally assumes that the latent expressions 𝑒1, . . . , 𝑒𝑛
are drawn independently from a latent stochastic grammar G over L, and G is drawn
from a distribution over stochastic grammars parameterized by Φ (see Figure 2-1).

1This requires some notion of equality of functions, which we will take as defined extensionally,
i.e., functions 𝑓 and 𝑔 are equivalent if ∀𝑥 ∈ Π.𝑓(𝑥) = 𝑔(𝑥) over some domain of interest Π
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2.4.2 Inference

The learner’s task is to jointly estimate the latent expressions 𝑒 = 𝑒1, . . . , 𝑒𝑛. Our
algorithm does so by finding a maximum a posteriori (MAP) value of G = Ĝ, and
then returning the MAP value of 𝑒1, . . . , 𝑒𝑛 = 𝑒1, . . . , 𝑒𝑛 given Ĝ:

Ĝ = arg max
G

∑︁
𝑖

log
∑︁

𝑒𝑖 ∈ L:
𝑧𝑖(𝑒𝑖) = 1

𝑝(𝑒𝑖|G) (2.7)

𝑒𝑖 = arg max
𝑒𝑖 ∈ L:

𝑡𝑖(𝑒𝑖) = 1

𝑝(𝑒|Ĝ) (2.8)

The ec algorithm can be seen as a applying an approximate MAP Expectation-
Maximization (MAP-EM) algorithm to this inference task (Dempster, Laird, and
Rubin 1977; Krishnan and McLachlan 1997) where, roughly, the exploration step
of ec corresponds to the expectation step of EM and the compression step of ec
corresponds to the maximization step of EM.n

In MAP-EM, the objective is to maximize the value of the random variable that
influences the data via some extra intermediate latent variables (these latter variables
are conventionally referred to as the hidden data); in our case, the random variables
are the parameters of the stochastic grammar and the hidden data are the expressions
for each task. EM is an iterative update algorithm. In our case the iterative step for
computing the 𝑖 + 1-th estimate of grammar G given the 𝑖th one is:

G𝑖+1 ← arg max
G

E [log 𝑝(𝑡, 𝑒,G|Φ) |G𝑖] (2.9)

= arg max
G

log 𝑝(G|Φ) +
∑︁
𝑗

∑︁
𝑒𝑗 ∈ L :

𝑧𝑗(𝑒𝑗) = 1

𝑝(𝑒𝑗|G𝑖, 𝑧𝑗) log 𝑝(𝑒𝑗|G), . (2.10)

That is, each G𝑖+1 is the latent grammar that best accounts for observed data (tasks)
given the distribution over expressions fixed by the previous grammar estimate G𝑖.

Of course, we cannot actually perform the summation over all expressions in the
language; instead, we enumerate a frontier 𝐹 (G) of the 𝑁𝑓 best expressions under
the current grammar G, and we modify the sum in Equation 2.10 to be:

G𝑖+1 ← arg max
G

log 𝑝(G|Φ) +
∑︁
𝑗

∑︁
𝑒𝑗 ∈ 𝐹 (G𝑖) :

𝑧𝑗(𝑒𝑗) = 1

𝑃 (𝑒𝑗|G𝑖) log 𝑝(𝑒𝑗|G) (2.11)

Solving for G𝑖+1 in Equation 2.11 involves two basic steps:

1. exploration: We need to generate the frontier 𝐹 (G𝑖), and, for each task, col-
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lect those expressions in the frontier that solve it; we call this the exploration
step.

2. compression: We need to find the grammar parameters that maximize the log
probability of this grammar plus the log probability of task-solving expressions
that we have collected, given these grammar parameters. It is natural in the
context of distributions over expressions to interpret the log probability of an
expressions as the negative description length (roughly, the number of bits).
Essentially, then, this second step is to find the grammar G that minimizes
the sum of its description length plus the description length of the task-solving
expressions in the frontier, when encoded by the grammar. In this way, we
operationalize the maximization in Equation 2.11 as a compression operation,
and we call this operation the compression step of the algorithm.

Let 𝐹𝑗(G) be the set of expressions in the frontier that satisfy task 𝑧𝑗: 𝐹𝑗(G) ,
{𝑒|𝑒 ∈ 𝐹 (G), 𝑧𝑗(𝑒) = 1}. Then, the ec algorithm can now be stated as:
Algorithm 1: The ec algorithm.
for 𝑖 ∈ 1, 2, . . . do

𝐹 (𝑖) ← nBest(𝑁𝑓 , 𝐺𝑖) � Exploration
G𝑖+1 ← compress(G𝑖, 𝐹

(𝑖)
1 , . . . , 𝐹

(𝑖)
𝑛 )� Compression

end

2.4.3 Language

Our implementation of the Algorithm 1 requires us to specify a representation lan-
guage for expressions and a stochastic grammar over expressions in this language.
Here, we choose to use combinatory logic (Schönfinkel 1967; Curry and Feys 1968).
Like the lambda calculus, it is a kind of minimal functional language. Specifically,
we use a polymorphic simply-typed combinatory calculus, which can be seen as a
variable-free subset of the polymorphic simply-typed lambda calculus (Pierce 2002).

A well formed expression in the combinatory logic, known as a combinatory term, is
either a combinator 𝑃 or the application (𝐸1𝐸2) of one combinatory term to another2.
The set of combinators in a specific calculus is its basis. Each combinator 𝑃 is
associated with a rewrite rule of the form (𝑃𝑥1 . . . 𝑥𝑛)→ 𝐸 where the 𝑥𝑖 are variables
that stand for combinatory expressions, and 𝐸 is a combinatory expression containing
these variables. Thus, the combinators – and by extension, any combinatory term – is
a function on combinatory terms. Some common combinators are defined as follows:

I𝑥→ 𝑥 (identity) (2.12)
S 𝑓 𝑔 𝑥 → (𝑓 𝑥) (𝑔 𝑥) (2.13)
C 𝑓 𝑔 𝑥 → (𝑓 𝑥) 𝑔 (2.14)
K 𝑓 𝑔 → 𝑓 (2.15)

B 𝑓 𝑔 𝑥 → 𝑓 (𝑔 𝑥) (composition) (2.16)

2When parentheses are omitted, application is assumed to associate to the left, e.g. 𝑎𝑏𝑐 = ((𝑎 𝑏) 𝑐).
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Figure 2-2: Combinators implement variable-free language via the routing behavior
of S, B, and C.

A basis is complete if it allows for the expression of any Turing-computable function.
Although the basis combinators shown above constitute a complete basis, we will allow
our language to have greater variety of primitive combinators, capturing various kinds
of background knowledge. Note that by default we consider all primitives to be in
their “curried” form (e.g. a function like “+” adds two numbers 𝑥 and 𝑦 by being
first applied to 𝑥, returning the function (+𝑥) and then being applied to 𝑦, returning
((+𝑥) 𝑦) ).

The basis combinators can themselves be expressed in the lambda calculus (with
definitions following directly from the equations above). The lambda calculus has
two basic operations – application and abstraction – but in using the combinatory
logic we sequester uses of the abstraction operation inside the combinators. In doing
so, we have replaced the variable binding of the 𝜆 operator with the variable routing
of these basis combinators; this routing behavior is demonstrated in Figure 2-2. Our
representation thus becomes variable-free. See Liang, Jordan, and Klein 2010 for a
more detailed discussion of this routing interpretation.

Using combinatory logic is very convenient for program synthesis (Briggs and
O’Neill 2008): since every expression is the application of one expression to another
– with this recursion bottoming out at the primitive combinators – so each program
is a binary tree. Most importantly, any subtree is itself a well-formed expression;
this is not the case in the lambda calculus, since abstraction introduces long range
dependencies between the 𝜆 operator and the variables to which that operator refers.
In the lambda calculus, then, a subtree might have free variables, not bound to any
enclosing 𝜆.

As a simple example of our representation, consider the squaring function, repre-
sented in the lambda calculus, 𝜆𝑥. * 𝑥 𝑥. Using two of the basis combinators above,
we can write the squaring function in combinatory logic as S * I (taking * as a back-
ground combinator). When we apply this combinator to a value 𝑥, the action of the
combinator is defined as S * I𝑥 → (*𝑥) (I𝑥) → * 𝑥 𝑥.

We can extend this representation with a simple polymorphic type system (Pierce
2002). In this representation, a type 𝑡 is either a type primitive (e.g. reals, integers,
booleans, etc.), a type variable (e.g. 𝜎), or a function type 𝑡1 → 𝑡2 of functions from
source type 𝑡1 to target type 𝑡2. Any term can be represented as a binary tree (see
Figure 2-3) whose leaves are typed primitive combinators and whose interior nodes
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R → R

(R → R) →
R → R

S : (𝑡2 → 𝑡1 → 𝑡0) →
(𝑡2 → 𝑡1) →
𝑡2 → 𝑡0

* : R → R → R

R → R

I : 𝑡0 → 𝑡0

Figure 2-3: The typed combinator S * I, which computes 𝑓(𝑥) = 𝑥2 over real values
R, represented as a binary tree. Nodes are annotated with their types, i.e. if node 𝑛
has left child ℓ : 𝜏 and right child 𝑟 : 𝜎 then the type of 𝑛 is mgu(𝜏, 𝜎 → 𝜋).

𝑐1 . . . 𝑐𝑛

𝑐1. . .𝑐𝑛

...
...

...
...

𝑐1 . . .𝑐𝑛

Figure 2-4: The space of all typed combinators represented as an infinitely deep
AND/OR tree.

represent typed applications of one term to another. We write 𝑒 : 𝑡 to mean that
expression 𝑒 has type 𝑡.

2.4.4 A stochastic grammar over programs

To define the stochastic generative process over expressions given G, we introduce
some basic concepts and notation.

A fresh type variable in a scope is a type variable that does not occur in any
type expression in that scope. A type substitution Σ is a partial function from type
variables to type expressions, and when applied to a type expression 𝑡, which we
write as 𝑡[Σ] it replaces each occurance in 𝑡 of a type variables 𝜎 in the domain of
Σ with Σ(𝜎). We write a substition as a set of bindings from type variables to type
expressions, e.g., {} is the identity substitution, {𝜎 ↦→ 𝑡} is a substition with a domain
consisting of the single type variable 𝜎. A unifier of two type expressions 𝑡 and 𝑠 is
a substitution Σ such that 𝑡[Σ] = 𝑠[Σ]; if such a unifier exists, we say that 𝑡 and 𝑠
unify. Given two type expressions 𝑡 and 𝑠 that unify, the function mgu(𝑡, 𝑠) returns
the most general unifier (mgu) of 𝑡 and 𝑠. A unifier Σ of 𝑡 and 𝑠 is the mgu of 𝑡 and
𝑠 if for any unifier Ω there is a unifier ∆ such that Ω = Σ ∘∆.
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A typed combinator is a combinator associated with a type expression. The type
of an combinatory term is defined by a partial function type(·): if 𝑒 is a combinator,
then type(𝑒) is just its associated type. If 𝑒 is an application of the form (𝑒ℓ 𝑒𝑟), then
type(𝑒) = 𝑡Σ where Σ = mgu(𝑡𝑟 ↦→ 𝑡, 𝑡ℓ) if such a unifier exists; otherwise, type(𝑒) is
undefined. If type(𝑒) exists then we say that 𝑒 is well-typed.

We define a stochastic combinatory grammar G = (𝑐, 𝑤̄, 𝑤app) to be a stochastic
grammar (Booth and Thompson 1973) where library 𝑐 is a collection of 𝑀 typed
combinators, 𝑤̄ is a collection of 𝑀 library weights, and 𝑤app is the application weight :

𝑐 = {𝑐1, . . . , 𝑐𝑀}, (2.17)
𝑤̄ = {𝑤1, . . . , 𝑤𝑀}, where 𝑤𝑖 ≥ 0 (2.18)

𝑤app ∈ [0, 1]. (2.19)

A derivation is a binary tree whose leaves are combinators and whose nodes are
either application nodes or combinator nodes. Combinator nodes may only appear at
the leaves of the derivation. In a complete derivation, all leaf nodes are combinator
nodes; if a derivation is not complete we call it a partial derivation. Application
nodes are labeled with type expressions, while combinator nodes are labeled with
combinators.

The yield of an application node 𝑛, written yield(𝑛) is the application of the
yield of 𝑛’s left child to its right child. The yield of a combinator node is simply
the associated combinator. The yield of a derivation is the yield of its root node.
We define the type of a derivation to be the type of its yield, i.e., for derivation 𝑑,
type(𝑑) = type(yield(𝑑)). For reasons that will be clear, the label of a node in
a derivation is called its requesting type, which we write ReqTy(𝑛). We write an
application node with requesting type 𝑡, left child ℓ and right child 𝑟 as node(𝑡, ℓ, 𝑟);
we write a terminal node with requesting type 𝑡 and combinator 𝑐 as node(𝑡, 𝑐).

Algorithm 2 shows the generative process for sampling derivations given gram-
mar G given requesting type 𝑡. That is, Algorithm 2 defines a distribution over
derivations terms conditioned on their types unifying with a particular requesting
type. Under this process, derivations are generated top-down and left-to-right. The
function Gen(𝑡) generates a derivation whose root node has requesting type 𝑡. With
probability 𝑤app it samples a left child derivation whose requesting type is the type
of functions from some type variable 𝜎 to the parent requesting type 𝑡. Once this left
child is sampled, any resulting variable bindings induced by the left child are applied
to 𝜎 and the right child of the derivation is sampled conditioned on being the proper
input type for the left child. With probability 1− 𝑤app, the recursive descent is ter-
minated by a combinator node whose combinator is sampled from those combinators
in the library whose types unifies with the requesting type 𝑡, in proportion to their
weights.
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Algorithm 2: The generative process for sampling a combinatory term of re-
questing type 𝑡 from stochastic grammar G = (𝑐, 𝑤̄, 𝑤app).

Σ← {}
Def Gen(𝑡):

𝑥 ∼ Bernoulli(𝑤app)
if 𝑥 = 1 then /* sample application node */

𝑛ℓ ← Gen(𝜎 ↦→ 𝑡) where 𝜎 is a fresh type variable
𝑛𝑟 ← Gen(𝜎[Σ])
return node(𝑡, 𝑛ℓ, 𝑛𝑟)

else /* sample combinator node */
sample 𝑖 ∝ 𝑤𝑖1[𝑡 unifies with 𝑡𝑖] /* fails if no comb. with
unifying type */
Σ← Σ ∘mgu(𝑡, 𝑡𝑖) /* extend substitution with most general
unifier */
return node(𝑡, 𝑐𝑖)

end
return Gen(𝑡)

2.4.5 The exploration step: best-first enumeration of pro-
grams

Algorithm 1 requires a procedure nBest which returns the frontier 𝐹 (G) — the
𝑁𝑓 expressions with the highest prior probability under the grammar G. There has
been recent interest in this problem, most of it focused on enumerating the shortest
program satisfying some criterion (Katayama 2005; Yakushev and Jeuring 2009). Our
enumeration procedure is best described by the following recursion: every program
is either a primitive combinator or it is a left child program applied to a right child
program.

We formulate this procedure as a best-first exploration of derivation state space,
the state-space graph of partial derivations whose requesting type is 𝑡. 𝒟(𝑡) is defined
as follows:

1. the nodes of 𝒟(𝑡) are partial derivations;

2. the root of 𝒟(𝑡) is labeled by a single derivation node with requesting type 𝑡;

3. the solution nodes of 𝒟 are those that are labeled by complete derivations;

4. the child of a node 𝑎 labeled with a partial derivation 𝑑 is obtained as follows:
let 𝑛 with requesting type 𝑠 be the left most non-terminal of 𝑑; then child 𝑏 of 𝑎
is a obtained by connecting 𝑛 to either a) a left and right nonterminal of types
𝜎 ↦→ 𝑠 and 𝜎, respectively, or b) a terminal node labeled with a combinator
that unifies with 𝑠. In the latter case, the unifier is applied to the remaining
non-terminal nodes in the derivation.

31



For each node in 𝒟(𝑡) labeled by partial derivation 𝑑, we define its cost to be its
negative log probability. This allows for a straight-forward application of breadth-first
search for enumeration of the frontier.

2.4.6 The compression step

Once the exploration step has enumerated a frontier of expressions, the compres-
sion step of the ec algorithm attempts to find a new stochastic grammar such that
description length of the grammar plus the expressions that solve the given tasks is
minimal.

One way to do this is to describe a distribution over stochastic grammars and
perform posterior Bayesian inference over that distribution. Such an approach, using
an adaptor grammar — a non-parametric Bayesian distribution over PCFGs — is
described in Appendix A. Though theoretically elegant, the approach we will present
in this section is a heuristic approximation.

From Equation 2.10, the compression step of ec is finding the grammar that
solves the following optimization problem:

arg max
G

log 𝑝(G|Φ) +
∑︁
𝑗

∑︁
𝑒𝑗∈𝐹𝑗(G𝑖)

𝑝(𝑒𝑗|G𝑖) log 𝑝(𝑒𝑗|G)

We can rewrite this optimization problem as:

arg min
G

− log 𝑝(G|Φ) +
∑︁

𝑒∈𝐹 (G𝑖)

− log 𝑝(𝑒|G)×
∑︁
𝑗

𝑞𝑖,𝑗(𝑒) (2.20)

where 𝑞𝑖,𝑗(𝑒) = 𝑝(𝑧𝑗|𝑒)𝑝(𝑒|G𝑖)/𝑍𝑖,𝑗 (2.21)

𝑍𝑖,𝑗 =
∑︁

𝑒∈𝐹 (G𝑖)

𝑝(𝑧𝑗|𝑒)𝑝(𝑒|G𝑖) (2.22)

Here one should interpret 𝑞𝑖,𝑗(𝑒) as the responsibility of program 𝑒 for explaining task
𝑗 on iteration 𝑖 of the ec algorithm.3 We have defined 𝑍𝑖,𝑗 to ensure that 𝑞𝑖,𝑗(𝑒) is
normalized.

Equation 2.20 has a natural interpretation as a form of compression. It says
to jointly minimize the description length of the grammar (i.e., − log 𝑝(G|Φ)) plus
the description length of every program in the frontier (i.e., − log 𝑝(𝑒|G)) where the
description length of a program is scaled by the expected number of times that it was
used to solve a task (i.e.,

∑︀
𝑗 𝑞𝑖,𝑗(𝑒)). At this point we can use any grammar induction

algorithm to solve Equation 2.20.
Inducing a grammar breaks down into two steps: (1) inferring the symbolic struc-

ture of the grammar, which for ec means deciding which combinators are cached; and
then (2) estimating the real-valued parameters of the grammar, which for ec means
estimating the terminal weights 𝑤̄ and application weight 𝑤app.

3The first presentation of ec (Dechter et al. 2013) used a slightly different but related approach:
the approximating distributions 𝑞𝑖,𝑗(𝑒) were bootstrapped without G𝑖 by searching for an assignment
of programs to tasks that maximize reuse of subexpressions. See Dechter et al. 2013 for details.
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Grammar Structure Learning

An especially simple and tractable algorithm for inducing the structure of a grammar
minimizing Equation 2.20 is the Nevill-Manning algorithm (Nevill-Manning and Wit-
ten 1997). Nevill-Manning incorporates into the grammar any subtree that is used
more than once. But for our grammar induction problem, the observed programs 𝑒
are also annotated with a real-valued weight telling us how many times we expect to
see 𝑒 as a solution to a task (

∑︀
𝑗 𝑞𝑖,𝑗(𝑒)). A natural generalization of Nevill-Manning

to our setting is to incorporate into the grammar any subtree whose expected number
of occurrences is at least some constant 𝜆:

𝑒 ∈ G whenever 𝜆 ≤
∑︁

𝑒′∈𝐹 (G𝑖)

𝑘(𝑒, 𝑒′)×
∑︁
𝑗

𝑞𝑖,𝑗(𝑒
′) (2.23)

where 𝑘(𝑒, 𝑒′) = # times 𝑒′ occurs in 𝑒 (2.24)

The constant 𝜆 should be interpreted constant that controls how much we regularize
the structure of the grammar. Increasing 𝜆 favors smaller grammars; decreasing 𝜆
favors putting subtrees into the grammar that were used in programs which solved
the tasks. The original Nevill-Manning algorithm corresponds to 𝜆 = 1.

An alternative derivation of this modified Nevill-Manning algorithm arises from
the following approximations to the description lengths of G and 𝑒|G:

− log 𝑝(G|Φ) ≈ 𝜆
∑︁
𝑠

1[𝑠 ∈ G] (2.25)

− log 𝑝(𝑒|G) ≈
∑︁
𝑠

1[𝑠 /∈ G]× 𝑘(𝑠, 𝑒) (2.26)

where 𝑠 ranges over all possible subtrees of all programs in the frontier. Using this
approximation the total description length can be rewritten as

− log 𝑝(G|Φ) +
∑︁

𝑒∈𝐹 (G𝑖)

− log 𝑝(𝑒|G)×
∑︁
𝑗

𝑞𝑖,𝑗(𝑒) (2.27)

≈
∑︁
𝑠

1[𝑠 /∈ G]

(︃
−𝜆 +

∑︁
𝑒

∑︁
𝑗

𝑞𝑖,𝑗(𝑒)𝑘(𝑠, 𝑒)

)︃
+ const. (2.28)

which has as its unique minimum the same solution has Equation 2.23.

Grammar Parameter Estimation

With the discrete structure of the grammar in hand, we need to estimate the con-
tinuous parameters of the grammar. For ec this is the probability associated with
each cached subtree along with the probability of application, 𝑤app. Because our
grammar is not context-free, this parameter optimization problem is not tractable:
the probability that a combinator is used as a terminal at some node depends on the
set of other combinators that unify with the requesting type at that node. This set
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of competing combinators are different depending on the requesting type, resulting in
a highly non-convex optimization problem. In the Appendix (Section A), we discuss
an intricate but principled approach to resolving this problem.

In practice, however, we can use parameter estimation algorithms designed for
stochastic context free grammars in order to estimate the parameters of our context-
sensitive grammars. We adopted this scheme and regard it as an approximate yet ef-
fective heuristic. Our approach is an EM algorithm that works by alternating between
estimating a distribution over derivations (parses), and estimating the parameters of
the grammar conditioned on the parses.

Given a grammar structure G along with its parameters 𝑤̄, EM assigns the fol-
lowing distribution over parse 𝑧 of expression 𝑒:

𝑞(𝑧|𝑒,G, 𝑤̄) ∝ 1[𝑧 is a derivation of 𝑒]𝑝(𝑧|G, 𝑤̄) (2.29)

Given these distributions over parses, EM updates the weight 𝑤𝑒 of an expression
𝑒 ∈ G having type 𝜏 to be:

𝑤𝑒 ←
E𝑞𝑖,𝑗 ,𝑞𝑧|𝑒,G,𝑤̄

[# times 𝑒 occurs in 𝑧]

E𝑞𝑖,𝑗 ,𝑞𝑧|𝑒,G,𝑤̄
[# times requested type unifies with 𝜏 ]

(2.30)

Intuitively, Equation 2.30 says that we estimate the probability of using expression
𝑒 by dividing the number of times that it was used by the number of times that
it could have been used. Efficiently computing the expectations in Equation 2.30
over the 𝑞(𝑧|𝑒,G, 𝑤̄) distribution given in Equation 2.29 is a well studied problem in
the Natural Language Processing literature, where a common solution is to use the
Inside/Outside algorithm (Manning, Schütze, et al. 1999). We adopt this approach.
Inside/Outside is a dynamic program that, in our case, recurses on subexpressions of
programs in the frontier. We refer the reader to Manning, Schütze, et al. 1999 for
more detail.

2.5 Variations on the EC algorithm

In this section we describe a few ways of augmenting the ec algorithm (1) to han-
dle large frontiers (Section 2.5.1); (2) to build programs in an incremental fashion
(Section 2.5.2); and to induce programs that humans can interpret (Section 2.5.3).
Readers can safely skip ahead to Section 2.6 for the experimental results, some of
which use these ec variants.

2.5.1 Enumerating the frontier

Memory-efficient frontier enumeration

The Explore step of the ec algorithm must enumerate a very large frontier of candi-
date programs. Best-first enumeration has memory requirements that scale linearly
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with the size of the frontier. In practice memory rather than time can become the
bottleneck. Two alternative enumeration schemes sidestep this problem:

Iterative deepening. One may maintain the same asymptotic time complexity of
best-first enumeration using iterative deepening. Rather than increasing the search
radius by one discrete choice, we increase the maximum description length of the
enumeration by a constant amount of entropy. For a given description length bound,
we can use depth first enumeration to consider every program whose description
length under the current generative model is appropriately bounded.

Monte Carl0 EM. The compression step is to find the grammar G* as follows:

G* = arg max
G′

E𝑒∼G [log (𝑝(𝑡|𝑒)𝑝(𝑒|G′))] + log 𝑝(G′|Φ)

We can approximate the expectation over 𝑒 ∼ G through likelihood weighting, yield-
ing a Monte Carlo EM algorithm where the missing data (𝑒) is sampled from the pre-
vious grammar (G) — replacing enumeration with sampling. This stochastic scheme
fails to encourage reuse of subexpressions as strongly as deterministic enumeration.

2.5.2 Sequentially Constructing Programs by Sequential EC

ec’s generate-and-test search algorithm works by proposing whole programs and eval-
uating them against the task set. However, when our tasks come equipped with likeli-
hood functions that give partial credit, we might more intelligently explore the space
of programs by sequentially constructing programs by repeatedly modifying solutions
that get lots of partial credit on a task. Here we describe a way of adapting the ec
algorithm to this setting, giving the Sequential ec algorithm.

Sequential ec works by first enumerating a frontier exactly like ec. But then,
it heuristically searches through the space of programs, searching for programs that
achieve high likelihood for a given task. Each program in the search space is either a
program that was originally in the frontier, or a composition of programs that were
originally in the frontier. So the transitions we can take in the search space are given
by function composition. See Algorithm 3, which explores the search space with beam
search. After searching for solutions to all of the tasks we estimate a new grammar
exactly as the unmodified ec algorithm does.
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Algorithm 3: The search algorithm used to enumerate a frontier in the Se-
quential ec algorithm. Frontier enumeration is guided by the likelihood model
of each task, so we run this search algorithm independently for each task. This is
a beam search over programs where the beam width has size 𝑁𝑓 and the search
has depth 𝐿.

SequentialECFrontierEnumeration(G, frontier size 𝑁𝑓 , task 𝑡 with type 𝜏, search bound 𝐿)
F1 = nBest (𝑁𝑓 ,G, 𝜏) � First frontier comes from grammar G, programs have
type 𝜏

T = nBest (𝑁𝑓 ,G, 𝜏 → 𝜏) � Transitions in search space of type 𝜏 → 𝜏
for 𝑖 = 2, 3, 4, . . . , 𝐿 do

Hi= {𝑓(𝑥)|𝑥 ∈ 𝐹𝑖−1, 𝑓 ∈ 𝑇}
Fi=top 𝑁𝑓 members of 𝐻𝑖 as measured by joint probability 𝑝(𝑡|·)𝑝(·|G)

end
return

⋃︀𝐿
𝑖=1 𝐹𝑖

2.5.3 Symbolic Dimensionality Reduction

One of the major advantages of using a programming language as a knowledge repre-
sentation is that symbolic languages are often readily interpretable by people. This
suggests the knowledge learned by ec might be useful not just for searching for pro-
grams that solve various tasks, but also for helping people understand the structure
of a given domain. This application of ec – which we call symbolic dimensional-
ity reduction — attempts to extract a compressive symbolic representation from a
dataset, ideally one which is interpretable by humans. We adopt LOT expressions as
the symbolic representation.

In the setup we have presented so far, however, the output of ec would be the
learned grammar, and for each task (i.e. datum), an expression. However, it is often
more natural to think of data as the product of a single program applied to various
different inputs. To use ec in this application, then, we modify our generative model
to the one shown in Figure 2-5; the latent expressions are factored into task-specific
argument expressions (the 𝑎𝑖) and a domain-specific program 𝑑, such (𝑑𝑎𝑖) evaluates
to 𝑐𝑖. For symbolic dimensionality reduction, we take as our goal to infer the latent
program 𝑑, marginalizing over the corresponding arguments 𝑎𝑖, conditioned only on
the observed tasks 𝑧𝑖.

For an observed dataset consisting of the tasks {𝑧𝑖}𝑁𝑖=1, the best program 𝑑* is
given by

𝑑* = arg max
𝑑

⎛⎜⎝log𝑃 (𝑑|G0) +
𝑁∑︁
𝑖=1

log
∑︁
𝑎:

𝑑(𝑎)=𝑧𝑖

𝑃 (𝑎|G0)

⎞⎟⎠ (2.31)

where G0 is a base grammar. This objective function finds the 𝑑* that maximally
compresses {𝑧𝑖}𝑁𝑖=1, which corresponds to MAP inference in the model diagrammed
in Figure 2-5.

Exact computation of the sum over 𝑎 in Equation 2.31 requires summing over the

36



G0

𝑑

𝑎𝑖 𝑧𝑖

N

Figure 2-5: Generative model for symbolic dimensionality reduction

infinite space of all programs. This is impossible, so we instead use ec to find sets
of programs that solve each task, {𝐹𝑖}𝑁𝑖=1, that are likely to share common structure.
This pre-training permits tractable maximization in Equation 2.31: for each program
in
⋃︀𝑁

𝑖=1 𝐹𝑖, there is at most one candidate value of 𝑑* which must be checked against
at most |⋃︀𝑁

𝑖=1 𝐹𝑖| other programs. By keeping a constant number of most likely
programs under the grammar, we have that |𝐹𝑖| = 𝑂(1) and that this approximate
inference of 𝑑* takes time quadratic in 𝑁 .

2.6 Applications

In this section, we present case studies in which we explore the algorithmic variations
discussed above to various tasks and domains. Doing so allows us to experimentally
study the algorithm’s behavior, examine its practical applicability, and explore ways
in which it could be extended or improved.

Note that, for the sake of interpretability, we will often display programs and
program fragments as lambda-calculus expressions even though all experiments below
used the combinatory calculus as the representation formalism. The translation of
an expression from combinatory calculus to lambda-calculus is straightforward and
can be done automatically, but the lambda-calculus is far more human-readable than
combinatory calculus.

2.6.1 Applications of Vanilla EC

We begin with two studies of Vanilla ec on two domains designed to reveal to what
extent the various pieces of the algorithm contribute to its learning capabilities.

Symbolic regression

In this first empirical case-study, we explore the performance of the vanilla ec on a
domain consisting of symbolic regression problems. For each task in this problem, we
want to find an algebraic function, symbolically specified, that maps a set of input
values to output values. We choose this problem because it has a long history in AI,
particularly in the genetic programming literature (Koza 1993).
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In the formulation we consider, each task 𝑡 corresponds to a polynomial 𝑓 ; an
expression 𝑒 solves 𝑡 if it returns the same value when applied 𝑖 ∈ 0, . . . , 9 that 𝑓
does. In the experiment shown here, the set of tasks 𝑡 corresponds to the set of all
polynomials with degree less than or equal to two and integer coefficients between 0
and 10:

𝑡 = {𝑎𝑥2 + 𝑏𝑥 + 𝑐|𝑎, 𝑏, 𝑐 ∈ 0, . . . , 9}. (2.32)

We initialize the learner with a base grammar consisting of the basic combinators
I, S, B, C and four arithmetic primitives, 1, 0, *, and +. Note that the frontiers
generated by the exploration step depend on the initial production weights in
the grammar. To get a general sense of the algorithm’s performance, we set the
initial weights to be slightly different on each run, perturbing them around a uniform
weighting: for 𝑐𝑖 in the base grammar, we set 𝑤(𝑐𝑖) ∝ 1 + 𝒰(0, 0.1).
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Figure 2-6: Learning curves as a function of frontier size. As frontier size is increased,
curves plateau closer to 100% performance. A baseline search over 150000 expressions
only hits 3% of the tasks.

Figure 2-6 shows performance results as we vary the frontier size 𝑁𝑓 . Changing
the frontier size changes the number of tasks the algorithm identifies correctly over
the course of 15 algorithm iterations.

A key question is the extent to which ec’s grammar re-estimation procedure ac-
tually improves the ability of the exploration step to effectively explore the space
of programs. To evaluate this, we can simply look at the difference between the effi-
cacy of a single iteration of ec and multiple iterations. Of course, we need to equate
the total number of programs explored by both versions. Thus, as a baseline, we
enumerated 10000 * 15 = 150000 expressions from the initial grammar. This is the
total number of expressions that a run of the algorithm sees if it has a frontier size of
10000 and runs for 15 iterations. Thus, if the benefit accruing to the runs with larger
frontier sizes is due to simply an increase in the number of expressions seen, rather
than increased learning, we should see similarly good performance from this baseline
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Figure 2-7: How do different task sets affect learning curves? Learning curves at
frontier size of 10000 for different task sets.

run. Figure 2-6 clearly shows that this is not the case. In fact, the baseline version
only hits 27 of the 1000 tasks (3%), whereas our algorithm nears 100% for a frontier
of 10000.

What does the EC algorithm learn in this task? Inspecting the top weighted
primitives of the final grammars, we find many incrementers (e.g. (+1), (+2), etc.),
several versions of expressions that translate to functions like 𝑥*𝑓(𝑥) and 𝑓(𝑥*𝑓(𝑥)),
and combinations of these, like 𝑥 * (𝑥 + 3) + 3 and 𝑥 * (𝑥 + 2). Informally, we see
expressions that apply functions to themselves, building up complex functions with
relatively few unique primitives.

To what degree is “conceptual bootstrapping” responsible for the improved per-
formance? That is, to what extent does the presence of simple problems account for
the ability to learn complex functions? One hypothesis is that to succeed on a set
of tasks, the set must contain a “learnable” curriculum, a set of tasks that serve as
stepping stones from an impoverished representation to a rich one. We can test this
hypothesis by varying the set of tasks to which the EC algorithm is exposed. If it is
true, then we should see a nonlinear response to reducing the number of easy tasks,
as the curriculum changes from being learnable to being unlearnable.

In Figure 2-7, we present learning curves (frontier size 10000) corresponding to
various versions of our original symbolic regression task set. Recall that the original
set consisted of all polynomials of degree two or less and with coefficients between 0
and 9. In the “no constant” task set, we remove the 9 constant functions in this set. In
the “no linear” task set, we remove 90 linear functions from the set. We observe that
performance on those task sets does not decrease. However, when we remove both the
linear functions and the constant function (“only quadratics”), we see a sharp drop in
the algorithm’s performance. When we further restrict the task set to only “complex”
quadratics (which we define as quadratics whose coefficients are greater than zero),
we observe another comparable drop in performance. When we go one step further
and restrict the task set to quadratics with coefficients greater than 1, performance

39



drops to 0 because no task is hit in the initial frontier.
This data has in it the nonlinearity that we predicted — that a minimal curriculum

of simple tasks is sufficient to achieve high performance — but also suggests that, at
least in this domain, this is not an all-or-none effect. Though the performance drops
significantly once no linear functions are included in the task set, learning does still
occur, and the learning curves still have the same basic shape.

Boolean function learning

In our second case-study of the vanilla ec algorithm, we investigate the algorithm’s
ability to learn Boolean functions. It is well known that a Boolean circuit can be
constructed for any boolean function given only the NAND gate. Our question here
is whether the ec algorithm can discover more useful components out of which to build
a set of Boolean circuits. Therefore, in this case-study the base grammar consists of
the combinators 𝐼, 𝑆,𝐵,𝐶 and the NAND function.

To evaluate how 𝐸𝐶’s performance is affected by the distribution of problems in
the domain, we constructed two task sets, 𝑍sampled and 𝑍all. 𝑍sampled was constructed
explicitly to contain familiar modular structure; by contrast 𝑍all simply contains all
Boolean functions up to a fixed size.

Experiment 1: learning from sampled Boolean circuits To construct 𝑍sampled,
we sampled 1000 Boolean circuits using AND, OR, and NOT gates. To accomplish
this, we first sampled either 1, 2, 3 inputs, then between 1 and 5 gates, randomly
wiring the inputs of each new gate to the output of one of the existing gates in
the circuit. We continued this sampling procedure until we had 1000 “connected”
circuits, i.e., circuits all of whose outputs are wired to an input except for the last one
(the output gate). This set of one thousand circuits, consisted of 82 unique Boolean
functions (i.e. unique truth tables). The distribution of these tasks is visualized in
Figure 2-9 (a). For more details on this distribution, see Appendix A.1.

𝑍sampled consists of the set of tasks that correspond to learning the functions
associated with these sampled circuits. That is, given the set 𝐶 of the 1000 sampled
circuits, 𝑍sampled is defined as:

𝑍sampled ={𝑡(·|𝑐)|𝑐 ∈ 𝐶} (2.33)
where 𝑡(𝑒|𝑐) = 1(truth_table(𝑒) = truth_table(𝑐)). (2.34)

In Figure 2-8, we show the learning performance of ec on 𝑍sampled for three frontier
sizes, 100, 500, and 1000. The procedure for generating this data is that same as that
described in Section 2.6.1. There is a large jump between the performance at frontier
size 100 and 500 and a much smaller one between 500 and 1000. Regardless of the
frontier size, it we see that there is clearly a suboptimal learning trajectory leading to
two distinct learning plateaus. This suggests that it may be difficult for ec to move
between local modes.
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Figure 2-8: Learning curves from Boolean function learning Experiment 1. Learning
curves for several frontier sizes on 𝑍sampled, a task set of Boolean functions generated
by sampled Boolean circuits.

We can also look at how the learner’s implicit distribution over Boolean functions
changes over the course of learning. We do so by examining the distribution of Boolean
functions that occur in the learner’s frontier before and after learning and comparing
this to the ground truth distribution. As mentioned above, Figure 2-9 (a) shows the
ground truth distribution, while Figures 2-9 (b) and (c) show the distributions before
and after learning, respectively (this is on an arbitrarily selected learning run with
frontier size 1000). This comparison demonstrates that the distribution over Boolean
functions enumerated from the grammar over expressions is much more similar to the
true function distribution after learning than before.

(a) ground truth

(b) grammar before learning

(c) grammar after learning

Figure 2-9: Comparing the frontier before and after learning on distribution over
boolean circuits. Each row represents a distribution over Boolean functions {𝑓 |𝑓 :
{0, 1}𝑑 ↦→ {0, 1}, 𝑑 ∈ 1, 2, 3}. There are 276 such functions and they are arrayed
left-to-right, with 𝑑 = 1 on the left and 𝑑 = 3 on the right. Vertical bands indicate
the fraction of expressions/circuits that are equivalent to the corresponding function;
a darker band indicates a larger proportion. For clarity, where the proportion is zero,
the color is pink.
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func. CL expression schematic

(a)

NOT (S NAND I) x ≡

AND (C B NAND) (B (S NAND I))
→ (C B NAND) (B NOT)

y

x

OR

((B (C (B (S NAND)
NAND)))
(S NAND I)
→ ((B (C (B (S NAND)
NAND))) NOT

y

x

(b)

E1 S B (S NAND)
x f(·)

f(·)

E2 (B (C B NAND) S) x

f(·)

g(·)

(c)

TRUE (S NAND) (S NAND I)
→ (S NAND) NOT x

FALSE (S B (S NAND)) (S NAND I)
→E1 NOT

E1 ( )

= x

XOR

((S (B C ( ((B (C B NAND))
S) ( ((B (C B NAND)) S) (B C
((B (B NAND)) NAND))))))
I)
→ ((S (B C ( E2 ( E2 (B C
((B (B NAND)) NAND))))))
I)

y

x

Figure 2-10: Cached expressions learned in the Boolean circuit experiment. Each
expressions is shown with its name, if interpretable as a standard Boolean connective,
and a schematic circuit showing its representation as a circuit. a) The three primitive
logic gates used in the sampling procedure for the data set. b) Two higher-order
learned expressions. These are used in c) to define True, False, and XOR.

This experiment is particularly suitable for inspecting the elements of the grammar
that ec learns. Ideally, the algorithm recovers the constituent logic gates that were
used to build up the tasks. Table 2-10 shows a few of the top ranked expressions in the
library of the grammar referred to in Figure 2-9. These include the basic logic gates;
we also show two higher-order expression 𝐸1 and 𝐸2, to stress that the representation
the EC algorithm is using allows it to build concepts that are more expressive that
just sub-circuits.
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Figure 2-11: Learning curves from Boolean function learning Experiment 2. 10 learn-
ing curves for frontier size of 2000 on 𝑍all, a task set consisting of all Boolean functions
of cardinality 3 or smaller. Note how most of the trajectories get stuck in a local min-
imum around 50%.

Experiment 2: An unstructured set of Boolean functions In this second
experiment, we use task set 𝑍all, which corresponds to all 272 Boolean truth tables
with three or fewer inputs as tasks. Since there is no implicit structure in this space
of tasks, we expect this to be a more challenging task for ec. There are two kinds
of learning that the EC algorithm might accomplish: first, many expressions in L
map to a single Boolean function, so it needs to learn primitives that allow it to span
many different functions instead of generating very simple functions redundantly. The
second kind of learning involves the distribution of the functions themselves. In the
circuit based Boolean experiment, that structure is apparent in the distribution in
Figure 2-9. In this second experiment, we remove the second kind of structure. In
Figure 2-11, we show 10 runs of the EC algorithm on the second experiment with a
frontier size of 2000: note how there are several local minima that the majority of
the runs get stuck in with performance around 50%, but several of the runs seem to
take different trajectories to more successful representations.

Learning string transformations

String transformations are a class of problems encountered in the study of automation
in spreadsheets (Gulwani 2011). In a string transformation problem, the learner is
given a few examples of input-output string pairs and is asked to generalized to
instances of input strings. Microsoft Excel’s FlashFill implements program induction
for solving such problems using a model that assumes a different generative model
than ec: there is no use of a latent grammar, and individual string transformation
problems are treated in isolation. However, many string transformation tasks have
the potential for common underlying structure, making it a natural domain in which

43



to apply the ec algorithm. Given a set of string transformation tasks that vary
from simple foundational concepts to more complex concepts that compose on those
simpler ones, ec is able to iteratively learn a sophisticated grammar that is expressive
for those tasks.

We selected a set of relevant primitives for string transformation, listed in Table
2.1, and we created a small dataset of 20 string transformation problems of varying
complexity, a sample of which is shown in Table 2.2a. Running ec on these tasks
yields a learned grammar of program fragments that capture common building-blocks
of such programs; these include a fragment which capitalizes each word in a string,
a fragment which trims a string after a character, and fragments for the numbers
-1 and 1. Table 2.2b shows some of the solutions that ec discovered; to be clear,
here as elsewhere, we used the combinatory logic as our formalism, but the resulting
programs are much more readable when translated to the lambda-calculus. Learning
performance parameterized by number of iterations and frontier size is shown in
Figure 2-12.

<ascii chars>... char
zero int
empty str
string-of-char char → str
string-of-int int → str
upper str → str
lower str → str
capitalize str → str
replace-substr-first str → str → str
replace-substr-all str → str → str
incr int → int
decr int → int
word-count str → int
char-count str → int
find-char char → str → int
substr int → int → str → str
replace str → int → int → str → str
nth int → str → str
fnth (str → str) → int → str → str
feach (str → str) → str → str
is str → str → bool
filter-words (str → bool) → str → str

Table 2.1: Primitives for string transfor-
mation given to the ec algorithm, and
their associated types.
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Figure 2-12: Learning curves as a
function of frontier size. Larger
frontier sizes help ec solve more
tasks.

Conclusion

The case-studies above explore how vanilla ec behaves as the algorithm’s frontier
size is extended, as the number of iterations is increased, and as the amount of the
modular structure is present in the problem domain. The results above suggest that
if the frontier-size is sufficiently large, the grammars learned on each subsequent
iteration of the algorithm is able to overcome the exponential scaling of the search
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Task Input Output
1 Structure and Interpretation SICP

of Computer Programs
2 #include <os.h> OS
3 ruby.clinton@mit.edu Ruby Clinton

(a)
Task Solution
1 𝜆a.replace-substr-all empty

(string-of-char ‘ ’)
(feach (substr zero (incr zero))

(filter-words (𝜆b.is b (cap b)) a))
2 𝜆a.upper (substr (incr (findchar ‘<’ a))

(decr zero)
(substr zero (findchar ‘.’ a) a))

3 𝜆a.feach capitalize (replace-substr-all (string-of-char ‘ ’)
(string-of-char ‘.’)
(substr zero (findchar ‘@’ a) a))

(b)

Table 2.2: (a) String transformation tasks that ec learns to solve by composing
solution fragments from simpler tasks. (b) The learned solutions to those tasks,
translated from combinatory logic to lambda calculus for increased interpretability.
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space.

2.6.2 Applications of Sequential EC

While the previous case studies examined the behavior of the ec algorithm in idealized
learning settings, we present, in this section, two applications of Sequential ec in
domains which intuitively fit the incremental and constructive nature of this variant
of the ec algorithm.

Learning to Construct Graphical Models

This first case-study explores how ec could be used to aid human experts in the
construction of statistical models. Graphical models – graphs that capture the de-
pendency structure of a given statistical model – are central to probabilistic AI and
Machine Learning, and learning the structure of graphical models directly from data
is an active area of research (Adams, Wallach, and Ghahramani 2010; Tsamardinos,
Brown, and Aliferis 2006; Friedman and Koller 2003; Heckerman, Geiger, and Chick-
ering 2013). Graphical model structures enforce the conditional independencies a
modeler believes exists among latent and observed random variables (Pearl 1989). In
practice, the sorts of graphical models that humans design – Hidden Markov Mod-
els, phylogenetic trees, topic models, Ising models – exhibit certain symmetries and
recursive structures that might be amenable to synthesis by programs.

A learner that is able to construct graphical models that fit a given dataset must
be able to jointly generate hypothetical graphs and evaluate those graphs against
the statistical relationships present in the data. Solving either of these problems on
their own is quite difficult, and as we are primarily interested here in applying ec
to domains with a rich compositional structure, we chose in this case-study to focus
on the first part of this problem, i.e., learning the compositional structure underlying
commonly used graphical models.

To do this, we constructed a set of tasks in which each task is a function from a
list of nodes to a graph. That is, each task corresponds to a class of graphical models.
See Figure 2-13 for the set of tasks and an example input-output pair for the function
corresponding to each task.

In additional to the primitive combinators I, S, B, C, the base grammar for this
case study also included the graph combinators described schematically in Figure 2-14.
These graph combinators implement natural ways of composing two graphs together
to create a third.

Our findings are that in initial iterations of the algorithm, Sequential ec is unable
to find programs for the more complicated graph structures such as the Ising Model or
the Hidden Markov Model; this is true even after enumerating ≈ 4 million programs
in the frontier. However, it is able to find programs that generate simpler graphi-
cal models, such as Markov chains. By compressing the solutions to these simpler
problems, it modifies its search procedure and, in subsequent iterations, learns more
successful programs. An example of such a program shown in Figure 2-15, in which a
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Figure 2-13: Example input/out-
put pairs of learned programs.
Each induced program takes as
input an arbitrarily large list of
observed nodes and produces an
undirected graphical model. La-
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to observed/latent variables.
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Figure 2-14: Graph combinators in initial
library. Union: computes union of ver-
texes and edges. UnionC: adds edges be-
tween corresponding vertexes. UnionHT:
adds edge between first (head) vertex and
last (tail) vertex. UnionD: relabels input
graph vertices so that they do not overlap
and then computes union.

cylinder graph is generated. This example shows how relatively small compositional
programs can be chained by Sequential ec to create programs of substantial size.

What grammars does Sequential ec learn, and how do they enable the bootstrap
learning of more complicated programs? The simplest example is how the Markov
chain bootstraps the learning of the Ising model. After one iteration, the program
fragment (foldr unionC), used in the Markov chain program, is incorporated in to
the grammar. On the second iteration, the Ising model is learned using this fragment,
producing the program (((SB) map) ((foldr unionC) null)).

Building stable towers of blocks

Planning problems are a natural fit for Sequential ec, in that plans are sequences of
steps towards a goal. Sequential ec allows for an approach to planning in which the
building blocks of the plan are programs themselves and not just primitive actions.
To investigate this perspective on Sequential ec, we applied ec to a classical AI
planning problem; we show how the use of a functional programming language as
the knowledge representation for the space of plans allows us to discover higher-order
operations that mean, for example, “take a plan fragment and perform it twice in
succession.”
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Figure 2-15: This program constructs a cylindrical structure from nodes by generating
two rings – one latent, one visible – and connecting them. Sequential ec discovers
this program by first discovering a program for generating rings.

The domain here is somewhat similar to the classic blocks world domain, in which
agents must move stacked blocks on a tabletop from one configuration to another
world (Winograd 1972). A key difference, however, is that in order domain the the
goal is not to place blocks in any given configuration; rather, the goal is to construct
structures that are both tall and stable. The learning agent begins with an empty
tabletop, and has access to an unbounded supply of rectangular blocks that are either
vertically or horizontally oriented. The learner’s objective is to place the blocks in
a configuration that maximizes the product of the structure height and its stability.
The stability of a structure is operationalized as the fraction of “pushes” 𝛿 that the
structure can withstand, where the set of such pushes ranges over a finite set of
small pushes to the left and right (we represent the domain two-dimensionally). We
compute the stability of a structure by simulating the pushes in the Bullet physics
simulator4. Thus, the tasks in this domain are identical and are all of the form:

𝑝(𝑧|𝑒) ∝ exp

(︃
height(𝑇 )×

∑︁
𝛿

stable(𝑇, 𝛿)

)︃
(2.35)

In addition to the primitive routing combinators I, S, B, and C, the base grammar
for this case study included primitives for placing horizontal and vertical blocks along
the one-dimensional horizontal axis (given a block and its horizontal location, its final
location is determined by lowering it – tetris like – until it comes to rest on either
the ground or the block below it). Located blocks are represented as pairs of real
numbers and Boolean values, where the Boolean value represents determines whether
a block is horizontally or vertically oriented. Therefore, a program for constructed a
tower of blocks is a list of pairs of real-values and Booleans. For example, in the first
expression in Figure 2-16a, the subexpression ((pair -1) False) denotes the pair
(−1, False) and represents a horizontal block at location −1.

4Bullet: www.bulletphysics.org
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Program :: [(Real,Boolean)]

Program primitives:

cons :: a -> [a] -> [a]
append :: [a] -> [a] -> [a]
True,False :: Boolean
0,1,-1 :: Real
+,-,/,* :: Real -> Real -> Real
pair :: a -> b -> (a,b)
map :: (a -> b) -> [a] -> [b]
reverse :: [a] -> [a]
singleton :: a -> [a]
nand :: Boolean -> Boolean -> Boolean
first :: (a,b) -> a
second :: (a,b) -> b
toFirst :: (a -> b) -> (a,c) -> (b,c)
toSecond :: (a -> b) -> (b,a) -> (b,c)

Subset of learned grammar:

/* place a horizontal block */
(cons ((pair -1) False))
/* place a vertical block */
(cons ((pair 1) True))
/* duplicate a tower-building plan */
((S append) I)

(a)

(b)

Figure 2-16: Using Sequential ec to learn to build tall and stable towers.

We used the Sequential ec algorithm to incrementally build up towers while fo-
cusing our search effort on the most promising tower building plans. A subset of the
useful expressions that Sequential ec learns are shown in Figure 2-16a.

We find that Sequential ec learns to build tall yet stable towers by first learning
program fragments that put down individual blocks, then, after rounds of compres-
sion, composing those fragments to build multi-block towers and learning a program
that duplicates tower-building plans, allowing it to make multilevel towers.

Conclusion

Sequential ec is a way to combine the goal-directed nature of planning with the rich
compositional structures afforded by ec. In this section, we showed how we applied
Sequential ec to two domains that seem to be a natural fit for this combination.
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2.6.3 Applications of Symbolic Dimensionality Reduction

In this section, we show how the symbolic dimensionality reduction version of ec can
move beyond mere learning and towards understanding. In the first of the case stud-
ies in this section, we apply ec to multitask symbolic regression, where the learner’s
goal is to uncover the algebraic form that represents a domains “natural law.” In
the second case study, we apply the same algorithm to the problem of learning lin-
guistic morphology, a domain in which people intuitively understand morphological
transformations as the applications of “rules.”

Multitask regression

In this case study we explore how the symbolic dimensionality reduction version of
ec (see Section 2.5.3) performs on a version of symbolic regression task in which the
underlying domain is a mixture of function classes.

Scientists classify natural laws according to the structure of the equations that
describe them. For example, inverse square laws describe both gravitation (New-
tonian gravity) and electrostatic forces (Coulomb’s law); power laws describe both
the motion of planets (Kepler’s laws) and the distribution of words (Zipf’s law); and
polynomials arise in both classical mechanics (e.g., the trajectory of a object when
thrown) and in geometry (e.g., the equation of a line). In all these examples, scien-
tists induced a new abstraction from particular examples of functions obeying that
abstraction.

Here we model the learning of high-level abstractions (power law, linear relation-
ship, etc.) as multitask regression. We present ec with a number of curve-fitting
tasks, {𝑧𝑖}𝑁𝑖=1. For each curve, written {𝑓𝑖(·)}𝑁𝑖=1, the model observes noisy samples
of the function’s value on a fixed set of points, written 𝑋. This framing gives our
definition of the tasks:

𝑧𝑖(𝑒𝑖) =
∏︁
𝑥∈𝑋

NormalDensity(𝑒𝑖(𝑥)|𝜇 = 𝑓𝑖(𝑥), 𝜎 = 1) (2.36)

Here, the tasks have a natural interpretation as a likelihood model. If one assumes
that Gaussian noise has been added to observed values of 𝑓𝑖(𝑥) for 𝑥 ∈ 𝑋, then
Equation 2.36 is the likelihood of 𝑒𝑖’s predictions on 𝑋.

Running ec on a set of related regression tasks yields a mixture of program pieces
that explain the curves and abstract out commonalities. However, this mixture lacks
the crisp interpretability of a concept like second order polynomial or Fourier basis. To
recover concepts like these we induce a single program using symbolic dimensionality
reduction (Section 2.5.3).

The domain of problems and the learned results for this case study is shown in
Table 2-17. Each row represents a different class of functions, described in the first
column. For example, the first row represents the class of lines, while the third is the
class of functions that is the composition of either a 𝑠𝑖𝑛, 𝑐𝑜𝑠 or 𝑠𝑞𝑢𝑎𝑟𝑖𝑛𝑔 function
with a line that goes through the origin. The second column shows examples of
data provided to ec: for each function in the corresponding class, input values where
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𝑓(𝑥) = . . . Example input data Learned Expression

𝑎𝑥 + 𝑏 where:
𝑎 ∈ {0, 1, ..., 9},
𝑏 ∈ {0, 1, ..., 9}

𝜆𝑎𝑏𝑥.𝑎𝑥 + 𝑏

(𝑎𝑥 + 𝑏)2 where:
𝑎 ∈ {0, 1, ..., 9},
𝑏 ∈ {0, 1, ..., 9}

𝜆𝑎𝑏𝑥.(𝑎𝑥 + 𝑏)2

𝑔(𝑎𝑥) where:
𝑎 ∈ {0, 1, ..., 9},

𝑔 ∈ {sin, cos, square}
𝜆𝑔𝑎𝑥.𝑔(𝑎× 𝑥)

𝑎× 𝑔(𝑥) where:
𝑎 ∈ {0, 1, ..., 9},

𝑔 ∈ {sin, cos, square}
𝜆𝑔𝑎𝑥.𝑎× 𝑔(𝑥)

Figure 2-17
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/kæts/ (“cats”) /dOrz/ (“doors”)
/Suz/ (“shoes”) /bUks/ (“books”)
/hOrs@z/ (“horses”) /ajz/ (“eyes”)

Figure 2-18: Plural forms of nouns
commonly spoken by children at thirty
months of age (Dale and Fenson 1996),
written in phonetic (IPA) form.

(lambda (stem)
(append stem (if (voiced? (last-one stem))

((cons /z/) null)
((cons /s/) null))))

Figure 2-19: Learned representation of the
English plural. When given the stem of
a word (like “dog:” /dag/) this expres-
sion produces a plural form (like “dogs”:
/dagz/).

past tense:

(lambda (stem)
(append stem
(if (voiced?
(last-one stem))
((cons /d/) null)

((cons /t/) null))))

superlative:

(lambda (stem)
(append stem
(cons /@/
(cons /s/
(cons /t/ null)))))

comparative:

(lambda (stem)
(append stem
(cons /@/
(cons /r/ null))))

Figure 2-20: Other learned representations of English inflections.

chosen at regular intervals; output values were perturbed to contain a small amount
of noise.

As shown in the first two rows of Table 2-17, ec can recover abstractions like
linear relationship or squared polynomial. However, these abstractions do not employ
the sophisticated machinery afforded by an expressive LOT — a standard symbolic
regression toolkit could also solve these problems. The next two rows of Table 2-17
show the system learning abstractions that take other functions as parameters, such
as scaling an arbitrary function by some real number. We see this as an advantage of
using rich representations like combinatory logic.

English morphophonology

Consider a problem that nearly every child faces: that of acquiring the linguistic
rules of his or her native language. During the first few years of life, children learn
their languageâĂŹs rules for forming plurals, past tense, superlatives, past participles,
and other forms of inflectional morphology (O’Donnell 2015). Although forming the
English plural may seem simple to a native speaker, the regular rule actually consists
of three different cases that the child must learn; depending upon phonetic properties
of the end of the noun, a different sound is appended to it. Additionally, the child
must identify a large set of irregular patterns, such as ox→oxen. When confronted
with linguistic data such as in Figure 2-18, children can, and machines ought to,
explain this data by inducing the general morphophonological rule of the English
plural.

We presented ec with sets of words all sharing the same inflection, for example
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all being plural words or all being superlatives. We then asked the system to discover
programs that evaluate to the pronunciations of these words. So in this setting each
task is a word, and our likelihood model for task 𝑧𝑤 for word 𝑤 is:

𝑝(𝑧𝑤|𝑒) =

{︃
1, if 𝑒 evaluates to 𝑡

0, otherwise.
(2.37)

English possesses eight classes of inflectional affixes: the plural, past tense, past
participle, genitive, 3rd person singular, progressive, comparative, and superlative.
For each inflectional affix, we compiled a word list, drawn from (Dale and Fenson
1996), of words modified to use that affix. Each word was represented as a sequence
of phonemes. For example, when learning the plural, the system is given a set of
words like in Figure 2-18, or when learning the superlative, the system is given the
pronunciations of words like biggest, tallest, or smallest.

Like in multitask regression (Section 2.6.3), our goal is not to estimate a distribu-
tion over programs, but to induce a single program that compresses the observations.
So, as in multitask regression, we use the symbolic dimensionality reduction variant
of ec. But not all words conform to regular grammatical rules: for example the plural
of “tooth” is “teeth” and not “tooths”. So we introduce an extra parameter, 𝜖, which
corresponds to the probability of a word not following the regular grammatical rule.
We seek the single program 𝑑* maximizing:

𝑑* = arg min
𝑑

min
𝑀

⎛⎜⎝− log𝑃·|𝐺(𝑑|𝐺0)−
∑︁
𝑖

log

⎛⎜⎝(1−𝑀)
∑︁
𝑒𝑖:

𝑑(𝑒𝑖)=𝑥𝑖

𝑃·|𝐺(𝑒𝑖|𝐺0) + 𝑀
∑︁
𝑒𝑖:

𝑒𝑖=𝑥𝑖

𝑃·|𝐺(𝑒𝑖|𝐺0)

⎞⎟⎠
⎞⎟⎠

(2.38)
Some inflectional rules, such as that of the superlative, modify all (regular) stems

in the same manner. In these cases, our system recovered the correct regular inflection.
For the superlative, this inflection consists of appending /@st/ to the stem.

2.7 Conclusion & Future Directions
In this paper, we presented an algorithm for multi-task functional program synthe-
sis that automatically learns the structure of the search space by discovering useful
reusable program components. We motivated the approach and algorithm by framing
the problem as approximate posterior inference in a hierarchical probabilistic model,
studied the algorithm’s behavior on several domains, and showed how it can be used
in various applications. Several issues remain to be tackled before the synthesis of
functional programs will be a practical approach to solving difficult AI search prob-
lems. As we discuss below, some of these issues are representational. But even when
issues of representation are solved, issues of scaling will remain.

Knowledge representation Our use of the combinatory logic as our computa-
tional formalism was motivated by its simplicity and lack of explicit variable binding.
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Unfortunately, the lack of variable binding quickly leads to large expressions that do
nothing but route input arguments to their positions in the combinatory expression.
And these large expressions can quickly overwhelm any reasonably sized search fron-
tier. It is unclear to what extent learning of reusable combinators can ameliorate this
problem.

This problem is related to the more general problem of how to deal with state
in functional programs. The practical use of real-world functional languages usually
requires special syntactic mechanisms to thread state through complex programs. We
would expect that if these mechanisms are necessary to manage the complexity of the
code that humans write, then they will also be very useful for program synthesis.

Continuous domains Many domains involve learning domains are most parsimo-
niously represented as containing continuous dimensions. Learning these parameters
as part of a search over program structure is bound to be very inefficient, because
such a search does not take advantage of gradient information. Future work must be
done to understand the interaction between learning continuous parameters, discrete
parameters, and program structure.

Non-deterministic or probabilistic programs Although ec frames program
synthesis as inference in a probabilistic model, the programs that it synthesizes are
themselves deterministic. In many contexts, however, the knowledge we want pro-
grams to represent is itself non-deterministic or probabilistic in nature. We have
presented one approach to tackling this problem in the section on symbolic dimen-
sionality with ec, but it is not clear whether all such knowledge should be handled
in this way. That is, it is not clear whether it is best to handle all non-determinism
as non-determinism over the programs themselves, or whether non-deterministic con-
structs shouldn’t be included in the program formalism itself.
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Chapter 3

The Infinite Knowledge Base Model

3.1 Introduction

People routinely learn and reason about complex inter-related systems of concepts.
Young children learn about kinship relations (mother, daughter, cousin, . . . ),
ontologies of living things (animal, plant, pet, predator, . . . ), and social rules
(mine, yours, shared, borrowed, . . . ). The basic conceptual ontology of space
and time as well as highly-specialized systems of technical concepts (such as those of
Newtonian mechanics, force, mass, acceleration, velocity, . . . ) also fall into
this category. Arguments and evidence from philosophy, psychology, linguistics and
AI support the view that our conceptual knowledge is best represented in a symbolic
and compositional formalism – most often based on the first-order predicate calculus
– which is often termed the Language of Thought (LOT) (Fodor 1975; Fodor and
Pylyshyn 1988). If our goal is human-like AI, then we need learning algorithms that
can acquire these language-like representations from data.

As a motivating example, consider a small child who at home and at school wit-
nesses various relationships between individuals. Among these social relations are
“mommies,” “daddies,” “brothers, ” “sisters,” “daughters” and “sons.” But she may
never or rarely hear about the concepts that underlie these relations: “male,” “fe-
male,” “parent,” “child,” “sibling,” “spouse,” “relative,” “family,” to name a few. Yet
we would hardly say a child understands what a mother is if not as a female parent
or what a brother is if not as the different son of the same parent.

Our intuition is that in order to obtain an understanding of these relations, the
child must be continually searching for rules that explain why the observed relations,
and not others, are the ones she sees. In doing so, she attempts to strike a balance
between the complexity of the rules and the precision with which they predict the
data. Although we will not attempt here to address this learning task in its full
complexity (after all, it takes children many years to master the kinship relations),
this is the kind of knowledge acquisition problem our approach here is aimed at
tackling. In the case studies below, we will focus on a variant of the kinship domain
and various relations defined on small graphs.

We approach this learning challenge with two main ingredients. First, we use the
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Meta-Interpretative Learning (MIL) framework, introduced by Muggleton and Lin
2013. MIL is a top-down approach to Inductive Logic Programming (ILP) (Mug-
gleton and Raedt 1994; Muggleton et al. 2012) which flexibily allows for predicate
invention, the ability to use new symbols denote intermediate or abstract concepts.
The second ingredient is the idea of concept learning as Bayesian inference, which
enables us to characterize concept acquisition as probabilistic inference in a genera-
tive model over expressions in a LOT (Piantadosi, Tenenbaum, and Goodman 2012;
Piantadosi, Tenenbaum, and Goodman 2010; Dechter et al. 2013; Kemp, Goodman,
and Tenenbaum 2008; Kemp, Goodman, and Tenenbaum 2007).

As with most work in ILP, we use datalog (a fragment of definite clause logic)
as our LOT, and show how to specify a probabilistic generative model over data-
log knowledge bases. Finally, we present a principled MAP inference algorithm for
this generative model that uses ideas from state-space heuristic search and classical
planning to guide learning in the resulting hypothesis space.

Specifically, the main contributions of this paper are:

∙ we introduce the Infinite Knowledge Base Model (IKM), a probabilistic gener-
ative model over first-order relational knowledge bases;

∙ we a describe the HS-MAP(IKM) algorithm, a MAP inference algorithm for the
IKM that guides search using an automatically constructed domain-agnostic
heuristic;

∙ and we empirically explore the behavior of this model and algorithm on a num-
ber of domains.

The remainder of this paper is structured as follows. After briefly discussing
related work and presenting some preliminary concepts and notation, we describe the
IKM in Section 3.4. Subsequently, in Section 3.5, we describe the HS-MAP-IKM
algorithm. In Section 3.6, we study the HS-MAP-IKM algorithm empirically. We
finish with a discussion of the work presented here, its limitations, and future work
to handle these limitations and expand its applicability and scope.

3.2 Related work

The work presented here is partially inspired by the Infinite Relational Model (IKM)
(see Kemp et al. 2006). The IKM is a hierarchical clustering model of relational con-
cept learning. In this model the propensity of a tuple (𝑥1, . . . , 𝑥𝑛) to be a member of
an observed relation 𝑅 is determined by the latent clusters to which 𝑥1, . . . , 𝑥𝑛 belong.
The cluster assignments for objects are distributed according to a CRP, promoting
concept definitions that use a smaller number of latent clusters. In the case of learning
multiple concepts at once, the latent clusters are shared across concept definitions.
Thus, like the IKM, the IKM uses a non-parametric probabilistic generative model
to guide concept learning with an unbounded number of latent concepts. However,
the hypothesis space of concept definitions in the IKM, being defined as a clustering
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model over individual objects, is quite restrictive. The IKM attempts to extent this
kind of probabilistic generative model to a more expressive relational logic.

In the ILP literature, Muggleton 1997 introduced the idea of learning a logical
theory from positive data with the aid of a probability distribution over theories and
the data they generate. In that work, the probability of a theory was used to guide the
Progol algorithm, which uses a bottom up inverse entailment approach. As discussed
in Muggleton and Lin 2013, such bottom-up approaches appear not to lend themselves
to predicate invention. Muggleton 1997 did not propose a specific generative model
over logical theories, instead using the number of atoms in the theory as a proxy for
negative log probability of the logical theory.

3.3 Preliminaries

As mentioned above, this work is based on the MIL approach to ILP. As background,
we introduce MIL and the associated concepts and notation we will adopt here.

ILP is a symbolic machine learning approach whose goal is to learn logic programs
that parsimoniously explain a data set. Logic programs are collections of clauses that
together define one or more predicate, and an intepreter for a logic program is a
program that answers queries about the predicates the logic program defines. A
meta-interpreter is a predicate defined in a logic program that simulates the behavior
of an interpreter, but usually in such a way that it modifies the default behavior of
the underlying interpreter.

MIL uses a meta-interpreter to facilitate efficient search and predicate invention
when inducing logic programs from data. The basic idea is that the meta-interpreter
has access to a set of metarules, higher-order definite clauses that function as tem-
plates for first-order definite clauses. A metarule has one or more metavariables
in it, and the metarule is instantiated by binding these metavariables to symbols.
While searching for a proof of a query, the MIL meta-interpreter instantiates these
metavariables. In doing so the meta-intepretator implicitly generates a first-order
logic program that entails the data. By allowing an unbounded supply of symbols for
instantiating metavariables, this scheme allows the learner to invent predicates that
have occurred neither in the background knowledge nor the data.

Muggleton and colleagues introduced METAGOL𝐷, an algorithm and implemen-
tation of the MIL framework, along with several variants based on it. To induce
a logic program, METAGOL𝐷 performs an iterative deepening search (Korf 1985a)
on the size of the induced logic program; this approach guarantees that the learner
discover the shortest logic program that entails the positively labeled data, without
entailing any negatively labeled data.

While METAGOL𝐷’s objective is to find shortest logic program that entails pos-
itively labeled data and does not entail negatively labeled data, a slightly different
algorithm METAGOL𝑂 minimizes the resource complexity of the hypothesized logic
program instead. METAGOL𝑂 modifies METAGOL𝐷 in two ways: first, the back-
ground knowledge is annotated with the the cost of using each rule. Second, the
iterative deepening meta-intepretator accumulates this cost for each proof, maintain-
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ing an upperbound on the lowest cost proof. Thus, once METAGOL𝑂 finds one
solution (necessarily the same one found by METAGOL𝐷), it continues the search,
pruning those partial proofs that exceed the current upper bound on the cost.

Although METAGOL𝑂 allows for more flexibility in the learner’s objective func-
tion, the cost of a partial solution is used only to prune hypotheses, not to guide the
search. The approach we present in this paper defines the cost of a partial solution
to be the negative logarithm of a probability mass function defined by the probabilis-
tic generative model introduced in the next section. Our search algorithm uses this
objective function in a more explicit way to direct the search over abductive proofs.
Later in Section 3.6.4, we compare our approach to METAGOL𝑂 empirically.

Notation and definitions The following are some of the logic programming con-
cepts and notational conventions we will be using.

A variable is represented by a string of letters and numbers whose first character
is an upper case letter (e.g. 𝑋, 𝑌, . . . ). A predicate or function symbol is string of
letters of numbers whose first character is a lower case letter (e.g. 𝑝, 𝑞1, . . . ). The arity
ar(𝑝) of a predicate or function symbol 𝑝 is the number of arguments that 𝑝 takes. A
function symbol 𝑎 is a constant if ar(𝑝) = 0. A term is a constant, a variable, or a
function symbol applied to a tuple of terms, the function’s arguments (e.g. 𝑋, 𝑎, and
𝑓(𝑋, 𝑎) are terms). A variable is a first-order variable if it can be substituted for by
a term; it is a higher-order variable if it can be subsituted for by a predicate symbol.
An atom is a predicate or higher-order variable followed by a tuple of terms, where the
length of the tuple is equal to the arity of the predicate or higher-order variable; it is
a datalog atom if all the its terms are constants or variables (e.g. 𝑓(𝑋, 1) is a datalog
atom but 𝑓(𝑓(𝑋), 1) is not). A formula is ground if it contains no variables. A datalog
clause 𝐶 has the form 𝐻 ← 𝐵 where 𝐻, a datalog atom, is the head of the 𝐶 and
𝐵, a finite conjunction of datalog atoms, is its body. A datalog clause is (first-order)
range-restricted if all (first-order) variables that appear in the head also appear in the
body. In this paper, all clauses will be required to be range-restricted. The body of
a clause may be empty, in which case the clause is called a fact. A first-order atom is
an atom that contains only first-order variables. A higher-order atom is an atom that
contains higher-order variables. Likewise, a first-order clause (higher-order clause) is
a clause that contains first-order (higher-order) atoms.

A knowledge base 𝐾 is a set of first-order clauses. For the standard semantics
of first-order datalog knowledge bases, see Abiteboul, Hull, and Vianu 1995. The
extension 𝐸(𝐾) of a first-order knowledge 𝐾 is the set of ground atoms entailed by
the 𝐾. A substitution Φ = {𝑉1 ↦→ 𝑐1, 𝑉2 ↦→ 𝑐2, . . . } is a partial function from variables
𝑉 to terms 𝑐. A substitution Φ applied to a term or formula 𝑡 replaces all occurences
of 𝑉 with 𝑐 with Φ(𝑉 ) = 𝑣. We call a substitution ground if its range consists of
ground terms.

The MIL framework introduces a few additional concepts: a metarule 𝑟 is a
formula of the form ∃V.𝐶 where 𝐶 is a higher-order datalog clause, and V is some
subset of the variables occuring in 𝐶. We call V the metavariables of 𝑟. We require
that for metarule 𝑟 to be well-formed, all of the higher-order variables in 𝐶 must be
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contained in V; note, however, that we do not require that every variable in V be
higher-order.

3.4 The Infinite Knowledge Base Model

The IKM is a generative model that, given a knowledge base schema Σ, specifies a
joint probability distribution over knowledge bases 𝐾 and the observed data sets 𝒟
that are generated from them. In broad terms, the generative model over a knowledge
base and a dataset is described by the following sampling procedure:

∙ sample the number of clauses 𝑁 that will be in the knowledge base;

∙ for each of the 𝑁 clauses in knowledge base, sample an associated metarule
from the knowledge base schema;

∙ for each metavariable occuring in the knowledge base, bind it to a symbol drawn
from a distribution over symbols;

∙ the 𝑁 metarules and the associated metavariable bindings defines a first-order
datalog knowledge base; compute the set of observable facts entailed by this
knowledge base;

∙ from this set of observable facts, sample a subset to be the data set.

The form of the distributions mentioned this description along, with their parame-
terizations, will be described in the following sections.

3.4.1 Knowledge base schema

The IKM defines a hypothesis space H = H(Σ) over first-order knowledge bases that
is parameterized by a knowledge base schema Σ. A knowledge base schema Σ = (𝑅,S)
is a pair in which 𝑅 is a set of metarules, and where each S(𝑖) in S = {S(1),S(2), . . . , }
is a potentially infinite ordered set of symbols of arity 𝑖.

A symbol 𝑠 in S(𝑖) is either a named or an unnamed symbol. A symbol is named
when it occurs “in the world” (i.e. in the data set or in some background knowledge the
learner may have). All other symbols are unnamed. Unnamed symbols are arbitrary
in the sense that if 𝑃 is a permutation of the symbols in S(𝑖) that leaves the named
symbols in the same place, then the meaning of a knowledge base 𝐾 does not change
if we simultaneously replace every occurence of every symbol 𝑠 ∈ S(𝑖) with 𝑃 (𝑠). In
this paper, we will use the symbols ℓ(𝑖)𝑗 as teh arbitrary name of the unnamed symbol
whose arity is 𝑖 and whose index in S(𝑖) is 𝑗. When there is no ambiguity, we will
drop the arity and just write ℓ𝑗. In the context of learning, we will refer to unnamed
symbols as latent symbols — and the associated predicates as latent predicates — to
highlight that they represent predicates or objects that the learner does not directly
observe.
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Example 1. Σ = (𝑅,S) is a knowledge base schema where

𝑅 =

{︃
𝑟1 = ∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵(𝑋), 𝐶(𝑌 )

𝑟2 = ∃𝐴𝐵.𝐴(𝐵)

}︃
,

and

S(0) = {1, 2, 3, 4, ℓ(0)1 , ℓ
(0)
2 , . . . }

S(1) = {𝑎, ℓ(1)1 , ℓ
(1)
2 , . . . }

S(2) = {𝑞, ℓ(2)1 , ℓ
(2)
2 , . . . }.

This knowledge base schema consists of two metarules 𝑟1, 𝑟2 and six named symbols
1, 2, 3, 4, 𝑎, 𝑞. The digits are constants, 𝑎 is a unary predicate symbol, and 𝑞 is a binary
predicate symbol. In addition, 𝑆 contains an infinite number of unnamed constants,
unary predicate symbols and binary predicate symbols.

A metarule instantiation 𝛿 = (𝑟,Φ) is a pair of a metarule 𝑟 and a ground sub-
stitution Φ that binds the metavariables of 𝑟. We say that metarule instantiation
𝛿 = (𝑟,Φ) is complete if every metavariable of 𝑟 is bound by Φ; otherwise, it is
incomplete. A complete metarule instantiation corresponds to a first-order clause (al-
though many metarule instantiations can result in the same first-order clause). We
write 𝐶 = 𝐶(𝛿) = 𝐶((∃V.𝐶0,Φ)) to mean that 𝐶 = Φ(𝐶0).

Similarly, a (knowledge base) schema instantiation ∆ is a list of metarule in-
stantiations. If ∆ = (𝛿1, . . . , 𝛿𝑁), then the knowledge base it corresponds to is
𝐾 = (𝐶(𝛿1), . . . , 𝐶(𝛿𝑁)), and we write 𝐾 = 𝐾(∆). A schema instantiation is com-
plete if all of its metarule instantiations are complete; otherwise, it is incomplete.

Example 2 (schema instantiation). Let ∆ be an complete instantiation of the schema
in Example 1 where:

∆ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝛿1 = (𝑟1,[𝐴→ 𝑎,𝐵 → ℓ1, 𝐶 → ℓ2])

𝛿2 = (𝑟2,[𝐴→ ℓ1, 𝐵 → 1])

𝛿3 = (𝑟2,[𝐴→ ℓ1, 𝐵 → 2])

𝛿4 = (𝑟2,[𝐴→ ℓ2, 𝐵 → 3])

𝛿5 = (𝑟2,[𝐴→ ℓ2, 𝐵 → 4])

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.1)

The knowledge base corresponding to this instantiation is

𝐾(∆) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑎(𝑋, 𝑌 )← ℓ1(𝑋), ℓ2(𝑌 )

ℓ1(1)

ℓ1(2)

ℓ2(3)

ℓ2(4).

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(3.2)

𝐾(∆) defines the extension of predicate 𝑎/2 to be {𝑎(1, 3), 𝑎(2, 3), 𝑎(1, 4), 𝑎(2, 4)}.
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3.4.2 The probability distribution

We can break up the probability distribution over data sets into the two standard
components of the Bayesian inference framework, the prior over knowledge bases and
the likelihood the knowledge base given the data (i.e., the probability of observing
the data set given a specific knowledge base).

Prior distribution

The prior distribution over knowledge bases 𝑝prior(𝐾 |Σ,Θ,∆0) is parameterize by a
knowledge base schema Σ, schema parameters Θ, and an initial schema instantiation
∆0. The schema parameters are Θ = (𝛾, 𝛼𝑅, 𝛼S), where 0 < 𝛾 < 1.0, 𝛼𝑅 > 0 and for
𝑎 ∈ 0, 1, . . ., 𝛼S(𝑎) > 0. We will refer to the pair (Σ,Θ) as a parameterized schema.

The stochastic process that defines 𝑝prior(𝐾 |Σ,Θ,∆0) is shown in Algorithm 4. To
sample a knowledge base 𝐾 given a parameterized schema Σ(Θ), we sample a schema
instantiation ∆. First, we sample the number of metarules 𝑁 in the instantiation from
a geometric distribution with success probability 𝛾. Next, we sample 𝑁 metarules 𝑟
from a Dirichlet-Multinomial distribution with parameter 𝛼𝑅. Finally, we sample a
substitution that instantiates the metavariables in ∆. For each arity 𝑎 present in the
∆, the metavariables 𝑉𝑎 are jointly sampled from a Chinese Restaurant Process (Pit-
man 2006), the non-parameteric generalization of the Dirichlet-Multinomial; using a
non-parametric distribution allows for the unbounded number of symbols in S.

If there is background knowledge we want to include, as there usually is, it can
be included in the intial schema instantiations. If the background knowledge con-
tains no meta-variables, then we can ignore it and stipulate that it is contained in
all knowledge base instantiations. On the other hand, if we want to include instan-
tiated metarules in ∆0, we can condition the Dirichlet-Multinomial and CRP on ∆0,
taking the corresponding rule and symbol counts into account. Since the Dirichlet-
Multinomial and CRP are both conjugate to the schema instantiation, conditioning
on the schema instantiation leaves the form of the distribution unchanged.
Algorithm 4: IKM prior distribution over a knowledge base instantiations
Data: Σ,Θ = (0 ≥ 𝛾 ≤ 1.0, 𝛼𝑅, {𝛼(𝑎) ≥ 0}𝑎∈1,2,...): parameterized knowledge

base schema
∆0: initial schema instantiation
Result: ∆: a complete schema instantiation

1 𝑁 ∼ Geom(·|𝛾)
2 𝑟 = (𝑟1, . . . , 𝑟𝑁) ∼ Dirichlet-Multinoulli(·|Σ,∆0, 𝛼𝑅)

for 𝑎 ∈ 1, 2, . . . do
3 Φ(𝑉𝑎(𝑟)) ∼ CRP(·|Σ,∆0, 𝛼

(𝑎))
end
∆← ∆0 ∪ (𝑟,Φ)
return ∆

In Section 3.5, we will describe an algorithm for maximum a posteriori (MAP) in-
ference over this distribution, i.e, the problem of searching for the highest posterior
probability schema instantiation given some dataset. For the MAP solution to be
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a useful representative of the posterior distribution, it is important to account for
symmetries within the space of samples generated by the generative process we have
specified. We will say that two schema instantiations are variants if the corresponding
knowledge bases are syntactically identical up to renaming of variables; we say that
they are equivalent if the knowledge bases they correspond to have the same exten-
sion. The first source of symmetry is that if we take a schema instantiation, permute
the order of its metarules, and then reindex the unnamed symbols so that their first
appearance is in increasing order, the corresponding knowledge base is equivalent to
the original one. This is because the extension of a datalog knowledge base is in-
variant to the order of its clauses. We will call this symmetry the rule permutation
symmetry.

The rule permutation symmetry arises from the fact that applying a permutation
to the rules in a schema instantiation, and then reindexing the unnamed symbols so
that the schema instantiation is well-formed, results in a new schema instantiation
with the same probability under our generative model; this is because a) the prior is
exchangeable (as noted above), and because b) the extension of named symbols does
not depend on the rule order or the indexing of the unnamed symbols.

Let ∆ a schema instantion with |∆| rules. We can account for the rule permutation
symmetry, by multiplying the probability of sampling ∆ under our generative model
by |∆|!. One might be concerned, however, that in doing so we overcount. Define the
𝒯 (𝜎,∆) to be the schema instantiation that results from permuting the rules of ∆ by
permutation 𝜎 and then reindexing the unnamed symbols in increasing order. There
may be two schema instantations ∆1 and 𝜎 such that ∆2 = 𝒯 (𝜎,∆1) is a variant of
∆1. In this case, we do not want to count both instantiations towards the probability
of the associated equivalence class. We will argue that we can avoid checking for
this overcounting because in such cases ∆1 always contains at least one redundant
in clause (in the sense that if you removed it you the extension of the knowledge
base remains unchanged). Since ∆1 has a redundant clause, it cannot be an optimal
solution, and the optimal solution remains unchanged if we remove all such knowledge
bases with redunant clauses from the hypothesis space.

Proposition Let ∆1 be a schema instantiation ∆1 = (𝑟1,Φ1), . . . , (𝑟𝑁 ,Φ𝑁). Let
∆2 = 𝒯 (𝜎,∆1) where 𝜎 is a permutation such that 𝐾(∆2) is a variant of 𝐾(∆1). Then
there exist two clauses in 𝑐1 and 𝑐2 in 𝐾 = 𝐾(∆1) such that 𝐸(𝐾) = 𝐸(𝐾 −{𝑐1}) =
𝐸(𝐾 − {𝑐2}). That is, 𝑐1 is redudant given 𝑐2 and vice versa.

Proof Suppose permutation 𝜎 maps the 𝑖th metarule instantiation 𝛿1 in ∆1 to the
𝑗th metarule instantiation 𝛿2 in ∆2, where 𝑖 ̸= 𝑗. And let 𝛿′ be the 𝑖th metarule
instantiation in ∆2. Then by assumption, clause 𝑐′ = 𝑐(𝛿′) is a variant of clause
𝑐1 = 𝑐(𝛿1). Now, since 𝐾(∆1) and 𝐾(∆2) are variants of one another, the transfor-
mation ∆2 = 𝒯 (𝜎,∆1) induced some reindexing of unnamed symbols. Let ℐ(·) be
the function that rewrites the unnamed symbols under this reindexing. Let 𝑠1 be the
set of proofs in 𝐾(∆1) that use clause 𝑐1 and that prove facts of named predicate
symbols. Then 𝑠2 = ℐ(𝑠1) is a set of proofs of the same facts in 𝐾(∆2), and all of
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the proofs in 𝑠2 use clause 𝑐2 = ℐ(𝑠2). But since 𝐾(∆1) and 𝐾(∆2) are variants, 𝑠1
is also a set of proofs for those same facts in 𝐾(∆2). Therefore, we can remove either
of 𝑠1 or 𝑠2 from the set of possible proofs in 𝐾(∆2) without changing the extention
of 𝐾(∆2). By construction, 𝑠1 contains all the proofs that use clause 𝑐1 = 𝑐′ and 𝑠2
contains all the proofs that use 𝑐2. Therefore, we can remove either of these clauses
from 𝐾(∆2) without changing its extension.

Since a schema instantiation whose knowledge base has the same extension but
fewer rules is always preferred by our generative model (because we of the geometric
distribution over number of clause in the KB), any such schema instantiation is sub-
optimal.

Taking the above counting argument into account, we have the following prior
probability distribution over schema instantiations:

𝑝prior(𝐾 = 𝐾(∆) |Σ,Θ) =|𝐾|! 𝑝prior(∆ |Σ,Θ) (3.3)
𝑝prior(∆ |Σ,Θ) =Geom(|∆|; 𝛾) (3.4)

Dirichlet-Multinoulli(𝑟|𝛼𝑟) (3.5)∏︁
𝑎

CRP({𝑥|𝑉 ↦→ 𝑥 ∈ Φ(∆) s.t. ar((𝑉 )) = 𝑎}|𝛼(𝑎)) (3.6)

The probability density for the CRP is

CRP(𝐵;𝛼) =
Γ(𝛼)

Γ(𝛼 + 𝑁)
𝛼𝐾
∏︁
𝑘

Γ(𝑁𝑘), (3.7)

where 𝐵 = 𝐵1, . . . , 𝐵𝑘 is partition of the integers 1, . . . , 𝑁 and the number of elements
in partition 𝐵𝑘 is 𝑁𝑘.

The probability mass function for the symmetric Dirichlet-Multinoulli is:

𝑝({𝑁𝑘}|𝛼) =
Γ(𝐾𝛼)

Γ(𝑁 + 𝐾𝛼)

∏︀
𝑘 Γ(𝑁𝑘 + 𝛼)

Γ(𝛼)𝐾
(3.8)

where 𝛼 is the concentration parameter, 𝐾 is the number of categories, 𝑁𝑘 is the
number of items in category 𝑘, and 𝑁 =

∑︀
𝑘 𝑁𝑘 is the total number of items assigned.

This gives a log probability of

log 𝑝({𝑁𝑘}|𝛼) = log Γ(𝐾𝛼)− log Γ(𝑁 + 𝐾𝛼) (3.9)

−𝐾 log Γ(𝛼) +
∑︁
𝑘

log Γ(𝑁𝑘 + 𝛼) (3.10)
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A likelihood model for inference from positive observations

In order to define a model of probability updating, we need to define the likelihood of
observing data set 𝒟. We define a data set to be an ordered set 𝐷 = (𝑂1, . . . , 𝑂𝑁) of
observations, where each observation 𝑂 = (𝐹𝑂,ℒ𝑂(·)) consists of collection of ground
facts 𝐹𝑂 = 𝑓1, . . . , 𝑓|𝑂| and a likelihood function ℒ𝑂(·) : 𝐾 → [0, 1] from a knowledge
base to the probability of observing 𝐹𝑂 given that knowledge base.

Although there are many different and complex hypotheses that a learner might
hold about how the data they observe is generated, in this work we will simplify
matters by assuming that the probability of observing 𝐹𝑂 is the probability of making
the i.i.d observations of its elements, and we will assume that observations are picked
uniformly at random without replacement from the set of all true observable facts Λ𝐾

entailed by the knowledge base 𝐾.
Taken together, these assumptions imply that the probability of observing an

observation 𝑂 generated by a knowledge base 𝐾 is:

ℒ(𝐾|𝒟) =
∏︁
𝑂∈𝒟

ℒ(𝐾|𝑂) (3.11)

ℒ(𝐾|𝑂) = 1(𝐾 � 𝐹𝑂)
(|Λ𝐾 | − |𝐹𝑂|)!
|Λ𝐾 |!

where Λ𝐾 , {𝑓 |𝐾 � 𝑓}. (3.12)

This likelihood function corresponds to the size principle for scoring hypotheses (see
Tenenbaum 1999), which, though simple, has been shown to explain various phenom-
ena in human concept generalization.

Example 3. A paradigmatic case of a relational conceptual system is a kinship sys-
tem. Consider a highly simplified kinship system that only consists of two observable
binary relations m(𝑋, 𝑌 ) (meaning 𝑋 is a married to 𝑌 ) and c(𝑋, 𝑌 ) (meaning 𝑋
is the child of 𝑌 ), and defines m/2 and c/2 according to the clauses in 3-1.

m(𝑋, 𝑌 )← m(𝑌,𝑋) (3.13)
c(𝑋, 𝑌 )← c(𝑋,𝑍),m(𝑍, 𝑌 ) (3.14)

Figure 3-1: Clauses for a simplified kinship system containing the two binary relations
m(𝑋, 𝑌 ) (𝑋 is married to 𝑌 ) and c(𝑋, 𝑌 ) (𝑋 is the child of 𝑌 ).

A complete specification of the relations exhibited by some set of individuals can be
captured by writing down only a subset of the true relations among them; Figure 3-2
shows an example of this specification for two families consisting of individuals labeled
1, . . . , 6. Pedigree graphs capture exactly this parsimony; each pedigree consists of
two edges whereas an explicit specification of all true relations requires four facts per
family. The relations are shown as a pedigree tree (ignoring gender)

We can parameterize the learning task by the number of families represented in it.
In this example, we will assume that each family consists of three people (two parents
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1 2

3

4 5

6

m(1, 2) m(4, 5)
m(2, 1) m(5, 4)
c(3, 1) c(6, 4)
c(3, 2) c(6, 5)

Figure 3-2: The ground truth relations for Example 3

and a child) and that individuals are labeled by integers. Specifically, if we have 𝑁𝑓

families in a data set, then there will be 3𝑁𝑓 possible individuals {0, . . . , 3𝑁𝑓 − 1}.
Let 𝐷𝑁𝑓

be a data set consisting the complete set of entailed facts over 𝑁𝑓 families:

𝐷𝑁𝑓
= {m(3𝑛, 3𝑛 + 1)|𝑛 ∈ {0, . . . , 𝑁𝑓}} (3.15)
∪ {m(3𝑛 + 1, 3𝑛)|𝑛 ∈ {0, . . . , 𝑁𝑓}}
∪ {c(3𝑛 + 3, 3𝑛)|𝑛 ∈ {0, . . . , 𝑁𝑓}}
∪ {c(3𝑛 + 3, 3𝑛 + 1)|𝑛 ∈ {0, . . . , 𝑁𝑓}}

To provide a feel for the hypothesis space that our model will be exploring, we
present a possible learning scenario for this data, and a few points in the space of
hypothetical knowledge bases. We define the knowledge base schema as

Σ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∃𝑃𝑄.𝑃 (𝑋, 𝑌 )← 𝑄(𝑋, 𝑌 )

∃𝑃𝑄.𝑃 (𝑋, 𝑌 )← 𝑄(𝑌,𝑋)

∃𝑃𝑄𝑅.𝑃 (𝑋, 𝑌 )← 𝑄(𝑋,𝑍), 𝑅(𝑍, 𝑌 )

∃𝑃𝑄𝑅.𝑃 (𝑋, 𝑌 )← 𝑄(𝑋), 𝑅(𝑌 )

∃𝑃𝑋𝑌.𝑃 (𝑋, 𝑌 ).

∃𝑃𝑋.𝑃 (𝑋).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.16)

Figure 3-3 shows three possible knowledge bases that entail data set 𝐷𝑁𝑓
. 𝐾overfit in

effect memorizes the data, defining each observed predicate as the disjunction of its
observed instances. 𝐾underfit defines both observed predicates as admitting any pair
of individuals; this entails the data but also fails to capture the structure that will
enable generalization. The third knowledge base 𝐾just right captures exactly the target
theory. It is constructed by transforming the rules of the target theory into a form
compatible with the knowledge base schema.
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𝐾underfit 𝐾overfit 𝐾just right

m(𝑋, 𝑌 ) ← c(𝑌,𝑋)

c(𝑋, 𝑌 ) ← ℓ𝑛(𝑋), ℓ𝑛(𝑌 )

|𝑛 ∈ 1, . . . , 𝑁𝑓

ℓ𝑛(𝑖)

|𝑛 ∈ 1, . . . , 𝑁𝑓

𝑖 ∈ 3𝑛, 3𝑛 + 1, 3𝑛 + 2

𝐷𝑁𝑓 m(𝑋, 𝑌 ) ← m(𝑌,𝑋)

c(𝑋, 𝑌 ) ← c(𝑋,𝑍),m(𝑍, 𝑌 )

m(3𝑛, 3𝑛 + 1),c(3𝑛 + 2, 3𝑛)

|𝑛 ∈ 1, . . . , 𝑁𝑓

Figure 3-3: Three knowledge bases that entail 𝐷𝑁𝑓
(see Figure 3.15). 𝑁𝑓 is the number

of families in the data set. 𝐾underfit entails that the married-to and child-of relations
hold between any two individuals in a family. To capture the unobserved same-family
relation, this knowledge base uses a unary latent predicate for each family in the data
set. 𝐾overfit entails all and only those facts found in the data set by recording each
as a separate clause in the knowledge base. 𝐾just_right entails the same clauses as
𝐾overfit, but directly records in the knowledge base only two of the four facts that
hold in each family; the remainder are accounted for by its first two clauses.

3.5 MAP Inference for the IKM

In this section, we present HS-MAP-IKM, an algorithm for MAP inference in the
IKM using heuristic state-space search. The algorithm uses the tools and techniques
of classical state-space search in AI; all standard notation and terminology not covered
here can be found in an introductory AI text such as Russell and Norvig (2010, chapter
3).

We consider the maximum a posteriori (MAP) inference problem for the IKM:
given a data set 𝐷, the task is to find the knowledge base 𝐾* that maximizes the
probability of 𝑝(𝐾|𝐷,Σ,Θ). Broadly speaking, we can take either a top-down or
bottom-up approach to this search problem. In the “top-down” approach, the al-
gorithm generates hypothetical knowledge bases that are then scored against their
fit to the data. In the “bottom-up” approach, which is by far the more popular in
ILP algorithms, hypothetical knowledge bases are generated in some fashion directly
from the data. The popularity of the bottom-up approach is due to the difficulty of
finding, without direct appeal to the data, a knowledge base that entails the data.
A bottom-up approach will usually take as the initial knowledge base just the data
itself, which trivially entails itself. By framing the knowledge base induction problem
as a heuristic state-space search, we combine the attractive features of the top-down
and bottom-up approaches.

A key feature of the HS-MAP-IKM algorithm is that nodes in the state space
correspond to pairs of partial schema instantiations (corresponding to partial knowl-
edge bases) and associated partial proofs of the data set. As described Section 3.5,
the knowledge base is constructed as a biproduct of a search over proofs of the facts
in the data set. Thus, learning here is a form of abductive inference, where what is
abduced is the rules in knowledge base that make that proof possible.
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The state space The state space 𝒮 is a directed graph. Each node 𝑛 = (𝐺,∆) ∈ 𝒮
is associated with a goal set 𝑛.goals = 𝐺 and a schema instantiation 𝑛.∆ = ∆.
Algorithm 5 defines the function child which generates the children of nodes in 𝒮.
This function is defined by first selecting some goal node from the node’s goal set (we
discuss goal selection in Section 3.5) and then applying one of the two search operators
GroundMetaVar and BackwardChain. The first of these has priority: that is,
if the current node’s selected goal contains metavariables, then GroundMetaVar
is used to nondeterministically instantiate one of the goal’s metavariables with an
element from its domain. The BackwardChain operator, produces a child by either
applying a standard backward-chaining step to the selected goal node using one of
the clauses already in the node’s knowledge base or by resolving the selected goal
against the head of a metarule in Σ. In the latter case, a fresh metarule instantiation
is inserted into the node’s schema instantiation.
Algorithm 5: Generating the children of nodes in the IKM state space 𝑆.
Def child(𝑛𝑜𝑑𝑒):

1 selected← select(node.goals)
if selected contains meta-variables then

yield node in GroundMetaVar(selected, node)
else

yield node in BackwardChain(selected, node)
Def GroundMetaVar(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑛𝑜𝑑𝑒):

𝑉1, . . . , 𝑉𝑘 ← metavars(selected)
for 𝑠1 ∈ S(ar(𝑉1)), . . . ,S(ar(𝑉𝑘)) do

𝜎 ← {𝑉1 ↦→ 𝑠1, . . . , 𝑉𝑘 ↦→ 𝑠𝑘}
yield 𝜎(𝑛𝑜𝑑𝑒)

end
Def BackwardChain(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑, 𝑛𝑜𝑑𝑒):

𝐾 ← 𝐾(node.∆)
for 𝑐 ∈ 𝐾 do

𝜎 ← mgu(𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 :- 𝐵, 𝑐)
node.goals← remove(selected, node.goals)
node.goals← push(𝐵, node.goals)
yield 𝜎(node)

end
for metarule 𝑟 = ∃𝑉 .𝐻 :- 𝐵 ∈ Σ do

𝜎 ← mgu(selected :- 𝐵,𝐻 :- 𝐵)
node.∆← node.∆ ∪ {(𝑟, 𝜎 restricted to 𝑉 )}
node.goals← remove(selected, node.goals)
node.goals← push(𝐵, node.goals)
yield 𝜎(node)

end

Target nodes The goal of the state-space minimization problem is to find the
minimal cost target node that is reachable from a given initial node. We define a
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node 𝑛 to be a target node if its knowledge base is first-order and entails the observed
data set. That is, 𝑛 is a target node iff 𝐾(𝑛.∆) contains no higher-order variables,
and 𝐾(𝑛.∆) � 𝐷.

We argue that given the search operators defined in Algorithm 5, if for some goal 𝑛,
𝑛.goals is empty and 𝑛.∆ is a complete schema instantiation, then 𝑛 is a target node.
The reasoning is as follows. Any higher-order variable in a knowledge base schema,
must be a metavariable. Thus, if 𝑛.∆ is complete, and thus has no metavariables,
then 𝐾(∆) must be first-order. Further, consider a path from an initial node to a
node with an empty goal set. The subset of arcs along this path that correspond to
the search operator BackwardChain represent a backward chaining proof of the
initial node’s goal set, and by construction the clauses used in that proof are present
in 𝐾(𝑛.∆).

Goal selection At line 1 of Algorithm 5, we need to specify how a goal should be
selected from the current goal set. In the experiments here, the goal set is a LIFO
queue: we always select from the goal set the goal that was most recently inserted.
There may be other, more efficient, approaches. We do not explore these here, but
we note that there are many possibilities, and that these roughly correspond to the
dynamic variable ordering heuristics one finds in the constraint processing literature
(see, e.g., Gent et al. 1996; Dechter 2003). One possibility is to select the goal
with the smallest number of children; this is relatively cheap to assess as it does not
involve computing the heuristic value for each child of each goal. Another possibility
is to select the goal arbitrarily, thus introducing some stochasticity into the search
procedure. The advantage of the LIFO approach is that the selection itself is very
cheap. It also corresponds to a kind of intuitive notion of attention: while the heuristic
function evaluates the state globally, the search moves themselves are confined the to
the current subproblem.

A cost function Our state space minimization algorithm will be guided by a cost
function 𝑔(𝑛) that assigns a cost to every node 𝑛 in the state space graph. We
consider first the function 𝑔* : 𝑆 ↦→ R which assigns a cost to every target node. It
is simplest to frame the MAP inference problem as a minimization of the negative
log probability: for any target node 𝑛, we set 𝑔*(𝑛) to the negative logarithm of the
joint probability of 𝐾(𝑛.∆) and 𝒟 under our generative model. Making explicit 𝑔*’s
dependency on observed data set 𝐷, we have:

if 𝑛 is a target node: (3.17)

𝑔*(𝑛;𝒟,Σ,Θ) , − log 𝑝(𝒟, 𝐾|Σ,Θ) (3.18)
= − logℒ(𝐾|𝒟)− log 𝑝prior(𝐾 |Σ,Θ) (3.19)

where 𝐾 = 𝐾(𝑛.∆) (3.20)

We define cost function 𝑔 to be an extension of 𝑔* to non-target nodes, and we desire
that this extension satisfy two basic properties:
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∙ consistency: if a 𝑛 is a target node, then 𝑔(𝑛) = 𝑔*(𝑛), and

∙ monotonicity: if 𝑛′ is a child node of 𝑛, then 𝑔(𝑛′) ≥ 𝑔(𝑛).

One option for defining 𝑔, which satisfies these two conditions, is simply to apply
Equation 3.17 to all nodes in 𝑆; however, by construction, non-target nodes do not
entail the data set, so 𝑔*(𝑛) is ∞ for any non-target node. Thus, this option would
result in a completely uninformative search space in which nearly all neighboring
nodes have the same cost value.

In order to get a cost function that is more usefully graded, we compute the
likelihood of a non-target node using a knowledge base augmented with that node’s
goal set. One sublety here is that both a non-target node’s incomplete schema in-
stantiation and its goal set may contain metavariables, and our likelihood function
is only defined over first-order knowledge bases. At the level of the knowledge base,
metavariables are existentially quantified logic variables that are not within the scope
of any universally quantified logic variables. Therefore, we can skolemize existential
variables by introducing a Skolem constant for each existential variable appearing in
the knowledge base (Gabbay, Hogger, and Robinson 1998). In doing so, we introduce
into the extension of observable predicates facts that contain Skolem constants; since
our goal here is to find a lowerbound on the extension of observable facts, we do not
count facts that contain Skolem constants towards the number of observable facts
entailed by a partial knowledge base.

Example 4. As a simple example of how this skolemization works, consider a data
set consisting of the single goal a(1) and a knowledge base schema that contains the
metarule ∃𝐴𝐵𝐶.𝐴(𝑋)← 𝐵(𝑌 ), 𝐶(𝑋, 𝑌 ). Suppose we perform a single Backward-
Chaining step with this goal resolving against this metarule. This produces an incom-
plete knowledge base and a goal set that, when combined, give the following knowledge
base:

𝐾 = ∃𝐵𝐶𝑍.

⎡⎢⎣∀𝑋𝑌. a(𝑋)← 𝐵(𝑌 ), 𝐶(𝑋, 𝑌 )

𝐵(𝑍)

𝐶(1, 𝑍).

⎤⎥⎦ (3.21)

We skolemize variables 𝐴,𝐵 and 𝐶 with constants 𝑓𝐴, 𝑓𝐵 and 𝑓𝐶:

skolemize(𝐾) =

∀𝑋𝑌. a(𝑋)← 𝑓𝐵(𝑌 ), 𝑓𝐶(𝑋, 𝑌 )

𝑓𝐵(𝑓𝑍)

𝑓𝐶(1, 𝑓𝑍).

(3.22)

We only apply the skolemization step to the likelihood part of the cost function. This
is because we do not know how these skolem constants are realized in the optimal
extension of the partial knowledge base, and the prior probability of the unskolemized
knowledge base is an upperbound on the that of its skolemized counterpart.

Finally, then, we arrive at the following cost function:
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𝑔(𝑛;𝒟,Σ,Θ) = − logℒ(𝐾 ′|𝒟)− log 𝑝prior(𝐾 |Σ,Θ) (3.23)
where 𝐾 = 𝐾(𝑛.∆) (3.24)

𝐾 ′ = skolemize(𝐾 ∪ 𝑛.goals) (3.25)

The intuition behind this cost function is that, under the prior, a node’s knowledge
base is no more costly than that of any of its descendants, and any descendant that is
also a target will have a knowledge base that entails 𝐺. Therefore, both terms in the
right hand side of Equation 3.23 are non-decreasing as one moves from a parent node
to one of its children. This means that 𝑔(·) is monotonic. It is consistent because
𝑛.goals for any target node is empty, which implies that 𝑔(·) is equal to 𝑔*(·) at target
nodes.

Heuristic search for MAP inference Heuristic search is popular algorithmic
framework in AI for systematically searching extremely large discrete spaces (Edelkamp
and Schrödl 2012; Pearl 1984) within the state-space search paradigm. A heuristic
search algorithm performs graph search with the aid of a heuristic function which
provides an estimate of the distance from any node to the closest solution node.
Although heuristic search algorithms do not in general improve the worst-case com-
plexity of search problems in AI (the vast majority of which are NP-complete), they
often improve the practical memory and time requirements of these problems by many
orders of magnitude.

We use the following conventional notation for describing the heuristic search
framework: as defined earlier, 𝑔(𝑛) is the cost of the current best path from 𝑛0 to 𝑛.
The heuristic function ℎ(𝑛) is an estimate of the cost of the best path from 𝑛 to a
solution node. 𝑓(𝑛) is an estimate of the cost of the best path from 𝑛0 to 𝑛* that goes
through 𝑛. In most cases, 𝑓(𝑛) is defined as 𝑓(𝑛) = 𝑔(𝑛) + ℎ(𝑛), which is interpreted
as saying that the cost of the best path that goes through 𝑛 is the actual cost of the
best path to 𝑛 from the start node plus the estimate of the cost of getting to a goal
node from 𝑛.

The performance of heuristic search algorithm depends greatly on the choice of
heuristic function ℎ(·). If the heuristic is inaccurate, then the algorithm can be misled
into exploring parts of the search space in which no solution or in which suboptimal
solutions exist. If the heuristic is perfect, then a greedy search will find an optimal
solution. If a heuristic is admissible then it is guaranteed that some algorithms (like
the very popular 𝐴* algorithm; see Hart, Nilsson, and Raphael 1968), will find an
optimal solution to the search problem.

Although constructing a good heuristic function for a given problem has tradition-
ally been left to a human with some insight into the structure of the problem, research
into efficient domain general planners has led to the development of techniques for au-
tomatically generating heuristics (Geffner and Bonet 2013). The basic insight is that
if a problem can be framed as recursively solving multiple dependent subproblems,
then a simpler problem can be automatically produced by systematically removing
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those dependencies. The simpler problem can then be used as an approximation for
the original problem, and the cost of a solution in the simpler problem can be taken
as a heuristic function for the cost of the solution in original problem.

In the problem considered here, the dependent subproblems correspond to the
multiple goals in a node’s goal set. The actions that incur a cost in our state-space are
those in which the meta-interpreter needs to invent a rule or instantiate a metavariable
in order to explain the current node. To explain a node, the meta-interpreter must
explain each of the goals in its goal set. The best way to explain any one of these
goals depends on how the others are explained, but according to the above technique,
we can get a heuristic function by allowing the meta-intepreter to pretend that those
costs are in fact independent. In doing so, we get the following heuristic ℎ(·) (where
we have left implicit the dependence on dataset 𝐷):

ℎ((𝐺,∆)) =
∑︁
𝑡∈𝐺

ℎ′(𝑡,∆) (3.26)

ℎ′(𝑡,∆) =

⎧⎨⎩0, if 𝑡 = true,
min

(𝐺′,Δ′)∈𝐶ℎ(({𝑡},Δ))
(𝑔((𝐺′,∆′))− 𝑔(({𝑡},∆))) + ℎ((𝐺′,∆)), otherwise,

(3.27)

where 𝐶ℎ is a function that maps nodes to their children in the heuristic graph.
There are two sources of approximation in this heuristic. The first source is that

in Equation 3.26, the heuristic value of the goal list is the sum of the heuristic values
of each of the goals; this is an approximation because proofs of different goals in the
same goal set are dependent on one another as they may bind variables commmon to
both terms. The second source of approximation is that in Equation 3.27, the schema
instantiation in the recursion term always remains ∆, not ∆′. This means that the
heuristic cost of the child is computed with respect to the schema instantiation of the
parent.

With these two approximations, ℎ′(·) effectively only depends on a single goal
term. The “true” cost function 𝑔(·), on the other hand, depends on a list of goal
terms and a schema instantion. This difference between ℎ′(·) and 𝑔(·) is what makes
computing the heuristic efficient compared to computing the original cost function.

We can frame the computation of ℎ((𝐺,∆)) as minimization in a relaxed state-
space 𝒮rel(𝐺,∆) parameterized by the node (𝐺,∆) whose heuristic valued is being
determined. Unlike the original state space 𝒮, 𝒮rel is an AND/OR graph, in which
AND nodes sum over the costs of their independent children, and OR nodes perform
the non-deterministic search operations of the original search space. This state-space
is fully specified by a cost function over the edges of the 𝒮rel and the two search
operators 𝒞OR

rel and 𝒞AND
rel which map OR and AND nodes, respectively, to their

children (see Algorithm 6).
Note that lines 1 and 2 correspond to two different choices in generating AND

nodes. In the first, an OR node has a single child, namely, the AND node that is
labeled with the goals resulting from the search operator chosen at the parent. In
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the second, there is an additional step: if the result of the parent search operator has
multiple goals that share variables among them, then those variables are first instan-
tiated non-deterministically, thus breaking the variable-induced dependency between
those goals and making the heuristic relaxation more accurate. There is a trade-off, of
course, as instantiating these shared variables can dramatically increase the number
of distinct nodes in 𝒮rel. In the results we describe in this paper, we always use line 2.
Example 5 describes the effect of instantiating shared variables and motivates our
choice.

Algorithm 6: Search operators in 𝒮rel(𝐺0,∆0)

𝐺: a goal set
∆: a knowledge base schema instantiation
𝐶𝒮 : the search operators of original state-space 𝒮
Def 𝒞OR

rel (𝐺,∆):
if |𝐺| = 1 then

return {OR(𝐺′,∆′)|(𝐺′,∆′) ∈ 𝐶𝒮((𝐺′,∆0))}
else

1 (*) return AND(𝐺,∆)
2 (**) return {AND(𝐺′,∆′)|(𝐺′,∆′) ∈ InstSharedVars(𝐺′,∆0)}

Def 𝒞AND
rel (𝐺,∆):

return {OR({𝑡},∆′)|𝑡 ∈ 𝐺}
Def InstSharedVars(𝐺,∆):

𝑉 𝑠← shared variables in 𝐺
return {(𝐺′,∆′)|𝐺′ is 𝐺 with vars in 𝑉 𝑠 instantiated }

Def ArcCost((𝐺𝑝, 𝐾𝑝), (𝐺𝑐, 𝐾𝑐)):
return 𝑔((𝐺𝑐, 𝐾𝑐))− 𝑔((𝐺𝑝, 𝐾𝑝))

Example 5. Suppose that we have a knowledge base

𝐾 =

⎧⎪⎨⎪⎩
𝐶1 = 𝑎(𝑋, 𝑌 )← 𝑎(𝑋,𝑍), 𝑏(𝑍, 𝑌 )

𝐶2 = 𝑎(1, 1)

𝐶3 = 𝑏(2, 2)

⎫⎪⎬⎪⎭ (3.28)

and a schema

Σ =

{︃
𝑀1 = ∃𝐴𝑋𝑌.𝐴(𝑋, 𝑌 )

. . .

}︃
. (3.29)

Then there at least two ways to prove the goal set 𝐺 = {𝑎(1, 2)} in 𝒮 (we display the
proofs as a sequence of goal sets, where the underlined goal is the selected goal, and
each arrow is a backward chaining step marked with the used clause or metarule and
substitution):
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𝑎(1, 2)
𝐶1:(𝑋,𝑌 )↦→(1,2)−−−−−−−−−→ 𝑎(1, 𝑍), 𝑏(𝑍, 2) (3.30)
𝐶2:𝑍 ↦→1−−−−→ 𝑏(1, 2) (3.31)
𝑀1:(𝐴,𝑋,𝑌 )↦→(𝑏/2,1,2)−−−−−−−−−−−−−→ true (3.32)

and

𝑎(1, 2)
𝑀1:(𝐴,𝑋,𝑌 )↦→(𝑎/2,1,2)−−−−−−−−−−−−−→ true. (3.33)

Each of these two proofs incurs the cost of adding a binary fact to the knowledge base,
and which is the better proof depends on which of the two predicates 𝑎/2 and 𝑏/2 has
a higher prior probability. If the knowledge base above represented some intermediate
node in our MAP search procedure, then we would expect that the second proof have
the lesser cost because 𝐾 has three occurances of predicate symbol 𝑎/2 but only two of
predicate symbol 𝑏/2. This is a consequence of the “rich-gets-richer” property induced
by our use of a CRP over symbol instantiations.

Now we can compare these proofs to our heuristic. Figure 3-4b shows 𝒮rel, using
line 1 of the Algorithm 6. The heuristic cost for proving 𝑎(1, 2) is 0. This is because
the goals 𝑎(1, 𝑋), 𝑏(𝑋, 2) which cannot be satisfied in 𝐾 are effectively “relaxed” to
the goals 𝑎(1, 𝑋), 𝑏(𝑌, 2), which can. Therefore, in the heuristic graph, there exists
a relaxed proof of 𝑎(1, 2) in which no additional metarule instantiations are required.
By contrast, Figure 3-4a shows the heuristic graph when we use line 2 of Algorithm 6.
In this case, the dependency between the previously mentioned goals is maintained,
resulting the more accurate heuristic estimate in which adding 𝑎(1, 2) is less costly
that 𝑏(1, 2).

Putting it together Given the ingredients define above, any of a number of heuris-
tic search algorithms can be used. In the case studies that follow we use the basic
𝐴* algorithm. We leave a more thorough investigation of different heuristic search
algorithms for future work.
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ℓ1(1, 2) : 4.71

ℓ1(1, 2) : 4.71

∃𝐴.𝐴(1, 2) : 5.69

∃𝐴.𝐴(1, 2) : 5.69

𝑏(1, 2) : 4.71

𝑏(1, 2) : 4.71

𝑎(1, 2) : 4.42

𝑎(1, 2) : 4.42

true : 0.00

0.69

0.98

4.71

4.42

4.71

4.38 4.094.09

3.58

0.98

4.09

4.09

(a) Instantiating shared variables.

𝑏(𝐴, 2) : 0.00

∃𝐴.𝐴 ∈ 𝑆2 :?∃𝐴𝐷.𝐴(1, 𝐵), 𝐷(𝐵,𝐸) :?

true : 0.00

𝑎(1, 𝐴) : 0.00

𝑎(1, 𝐴), 𝑏(𝐴, 2) : 0.00

𝑎(1, 2) : 0.00𝑎(1, 2) : 0.00

∃𝐴𝐷.𝐴(1, 𝐵), 𝐷(𝐵, 2) :?

∃𝐴𝐸.𝐴(𝐵,𝐶), 𝐸(𝐶, 2) :?

3.00

3.73

3.00

3.44

3.28

4.42

(b) Without instantiating shared variables.

Figure 3-4: The effect of instantiating shared variables on the explored heuristic graph
𝒮𝐻 . Rectangular nodes are OR nodes; oval nodes are AND nodes. 𝒮𝐻 is expanded
using depth-first branch and bound. Where a node’s arcs have been pruned by the
branch and bound procedure, the node cost is left as a question mark; otherwise, the
node is labeled with its optimal cost.
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3.6 Experiments and case studies
In this section, we explore the empirical behavior of the HS-MAP-IKM algorithm.

3.6.1 Dealing with noisy data

One of the limitations of classical approaches to symbolic concept learning is the dif-
ficulty of dealing with noisy data. Bayesian approaches to concept learning naturally
accodomate noisy data. This can be done in one of two ways: either a noise generat-
ing process is assumed to exist on top of the underlying “pure” concept definition or
noisy observations are included within the concept definitions themselves.

We take the latter approach: noisy observations are accomodated directly within
the learned conceptual representation. If an exceptional fact is found in the data, it
can be incorporated into the underlying knowledge base as a fact; and, importantly,
if there is some structure to the noise generating process, then that structure can be
incorporated as rules in the knowledge base.

To explore how our model behaves in the presence of noisy data, we ran an ex-
periment based on the task shown in Example 3. We compare the log probability of
a knowledge base learned using the HS-MAP-IKM to the manually created “land-
mark” knowledge bases (𝐾underfit, 𝐾overfit, and 𝐾just right) as we increase both the
problem size and level of noise.

Methods The scenario and schema definitions in this experiment are the same as
those in Example 3.

We generated 10 sample data sets for each noise level 𝜇 ∈ 0, 0.2, 0.4 and for each
𝑁𝑓 ∈ 1, 3, . . . , 11. To generate a noisy data set 𝐷𝑁𝑓

[𝜇] of 𝑁𝑓 families with with noise
level 0 < 𝜇 < 1, we take the noiseless data set 𝐷𝑁𝑓

and, for each relation between
two individuals in the same family, we toggle its presence or absence in the data set
with probability 𝜇. That is,

𝐷𝑁𝑓
[𝜇] = 𝐷𝑁𝑓

⊕ {𝑃 (𝑋, 𝑌 )|𝑃 ∈ {m,c}, 𝑋, 𝑌 same family , with prob. 𝜇}. (3.34)

While 𝐾underfit entails the noisy data sets without modification, we extend the other
two knowledge bases for a noisy data set 𝐷𝑁𝑓

[𝜇] as follows:

∙ 𝐾overfit(𝐷𝑁𝑓
[𝜇]) = 𝐷𝑁𝑓

∙ 𝐾just_right(𝐷𝑁𝑓
[𝜇]) = 𝐾just_right ∪ {𝑓 |𝑓 ∈ 𝐷𝑁𝑓

[𝜇]∖𝐷𝑁𝑓
}

That is, 𝐾just_right(𝐷𝑁𝑓
[𝜇]) just memorizes any observed facts that it cannot other-

wise explain.
To compute 𝐾learned, we used the incremental version of HS-MAP-IKM with a

time limit of 2 minutes and with each batch of observations consisting of two families.
We set 𝛼 = 0.5, and 𝛿 = 0.75.

For the analysis shown in Figure 3-5, we compute on the y-axis the log probability
of the given theory relative to that of 𝐾overfit and normalized the number of families.
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That is, the bar associated with knowledge base 𝐾 at noise level 𝜇 and number of
families 𝑁𝑓 :

1

𝑁𝑓

(log 𝑝(𝐾;𝜇,𝑁𝑓 )− log 𝑝(𝐾overfit;𝜇,𝑁𝑓 )). (3.35)

Error bars show standard error.

Results When no noise is present 𝐾just right is consistently the best theory, as
expected, and 𝐾learned is nearly as good. For the low level of noise 𝜇 = 0.2, the
performance of the 𝐾learned suffers somewhat relative to 𝐾just right. This is likely
because the simple noisy model assumed for 𝐾just right does well enough when the
low levels are low, and the noisy data makes the search over knowledge bases more
challenging. However, as the noise increases to 𝜇 = 0.4, 𝐾just right becomes clearly
inadequate, especially when the amount of data is small. For the smallest amount
of data, 𝐾learned does just as well as 𝐾overfit, and as the amount of data increases,
it begins to discover the structure in the data while consistently doing better than
𝐾just right and 𝐾underfit.

3.6.2 Does the heuristic improve learning times?

A basic empirical question is whether the heuristic we have described is effective in
the sense that using the heuristic improves search performance over not using it. This
can be assessed by looking at the amount of effort learning requires with and without
the aid of the heuristic. We evaluate this empirically by looking at how learning
time and the number of search states evaluated during learning grow as a function of
problem size.

Methods We set up two learning tasks, bipartite𝑛and star𝑛, each of which is pa-
rameterized by problem size 𝑛 = 1, 2, . . . . The ground truth theories for bipartite𝑛

and star𝑛 are shown in Figures 3-6b and 3-6c, respectively. We use the same the
KB schema, displayed in Figure 3-6a, for both learning tasks. Because, in the ab-
sence of a heuristic, search is computationally challenging even for small schemas,
the schema used here contains only three rules, the minimum needed to express the
target theories.

For each 𝑛, the data set for each task consisted of all the the entailed by the
corresponding theory. Learning was accomplished using a basic 𝐴* algorithm, run
until the first solution was returned, for each of two conditions: in the +heuristic
condition, the astar algorithm is

In Figure 3.6.4, we show both the number of nodes in the search space expanded
and the time elapsed as we increase the size of the problem. In figure 3-6d, we show
this comparison for two learning problems, versions of the Bipartite and Star
learning tasks (see Figures 3-6b and 3-6c, respectively). We provide the algorithm
with a very simplified knowledge base schema (shown in Figure 3-6a), due to the
limited computational tractability of search without a heuristic.
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Figure 3-5: A comparison of HS-MAP-IKM against our other handwritten knowl-
edge bases in the presence of noisy data. The task setup and the definitions of the
knowledge bases is the same as found in Example 3. 𝜇 is the error probability, i.e.,
the probability that a given true fact is not in the dataset or that a false fact is. The
height of each bar is the log probability of a given knowledge base per family member
relative to what it would be under the overfitting knowledge base (which memorizes
the data) 𝐾overfit.

In this experiment, as in most of the other ones in this paper, we employ a basic
𝐴* graph-search algorithm. In -heuristic condition, no heuristic function is used.
In the +heuristic condition, the HS-MAP-IKM+ algorithm is used. We ran the
search algorithms until the first goal was found.

Results As expected, the data show that in the -heuristic both the number of
nodes explored and the time taken to find this solution grow exponentially with the
problem size. The size of the data set grows linearly for the star theory, whereas it
grows quadratically for the bipartite theory; this explains the much faster increase
in the time and nodes expanded in the latter theory. Moreover, as expected, we find
see that the search effort is much less in the +heuristic condition, showing what
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∃𝐴𝐵.𝐴(𝑋, 𝑌 )← 𝐵(𝑋, 𝑌 ) with 𝑆0 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, ℓ
(0)
1 , ℓ

(0)
2 , . . . }

∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵(𝑋), 𝐶(𝑌 ) 𝑆1 = {𝑥1, . . . , 𝑥𝑛, 𝑦1, . . . , 𝑦𝑛, ℓ
(1)
1 , ℓ

(1)
2 , . . . }

∃𝐴𝑋.𝐴(𝑋) 𝑆2 = {𝑎, ℓ(2)1 , ℓ
(2)
2 , . . . }

(a) KB Schema

𝑎(𝑋, 𝑌 )← ℓ1(𝑋), ℓ2(𝑌 )

ℓ1(𝑥1), ℓ1(𝑥2), . . . , ℓ1(𝑥𝑛)

ℓ2(𝑦1), ℓ2(𝑦2), . . . , ℓ2(𝑦𝑛)

(b) bipartite target the-
ory

𝑎(𝑋, 𝑌 )← ℓ1(𝑋), ℓ2(𝑌 )

ℓ1(𝑥1)

ℓ2(𝑦1), ℓ2(𝑦2), . . . , ℓ2(𝑦𝑛)

(c) star target theory
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(d) Search effort as problem size grows.

Figure 3-6: Gauging the effectiveness of the HS-MAP-IKM heuristic function. This
figure compares the search effort and solution quality with and without this heuristic.
This comparison is accomplished by paramterizing two tasks (specified at the top of
the figure) as a function of a problem size parameter 𝑛. The bottom of the figure
compares the number of nodes expanded, the search time, and the log probability of
the found solution between these the two versions of the search. For number of nodes
expanded and search time, we also show the values on a log-scale. We see that even
though searching with the heursitic scales much better than doing so without it, we
obtain solutions of equivalent quality in all cases.

seems to be asymptoticallly faster search. Nor is it the case that the cost of computing
the heuristic renders the +heuristic the slower method in practical terms. (This
last point is important because unlike the technique in much of the heuristic search
literature, our heuristic cannot be precomputed, as its value at a given state depends
the partial knowledge base at that state, and the number of these partial knowledge
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bases is unbounded.) Finally, we note that the speed of the +heuristic condition
does not come at the cost of optimality in this case; this is shown in the bar plots
in Figure 3-6d which show the log probability of the goal knowledge bases for each
of the conditions. The use of 𝐴* means that the optimal solution is found in the
-heuristic case; but since our heuristic is not admissible, we have no gaurantee of
finding an equivalently good solution in the +heuristic condition. While we cannot
make any claims about the approximate optimality of the algorithm in the general
case, in these data at least, we are not improving the speed of the search procedure
by finding lower quality solutions.

3.6.3 Heuristic graph size

A primary concern with our approach to computing the HS-MAP-IKM heuristic is
that the computational cost of doing so does not scale well with the problem size.
In this experiment we examine empirically the computational cost of computing this
heuristic.

The computational cost of computing the heuristic is determined by the number
of arcs traversed in the heuristic graph; this itself is determined by the number of
nodes in the graph. Each OR node in the graph is labeled with exactly one goal, and
each AND node in the graph is labeled with a conjunction of goals. Except for the
root node, AND nodes can not be labeled with more 𝐷 goals, where 𝐷 is the size
of the largest antecedent of in the knowledge base or knowledge base schema. Each
goal in the conjunction is a positive literal in the Herbrand universe of the knowledge
base. Let the size of the Herbrand universe be 𝐻. Then the number of nodes in the
heuristic graph is 𝑂(|𝐻|𝐷). Each arc in the graph is between and AND node and an
OR node. The number of OR nodes is 𝑂(|𝐻|). So the number of arcs is 𝑂(|𝐻|𝐷+1).

Methods To empirically evaulate the computational cost of computing the heuris-
tic, we evaluated the heuristic for the following state as a function of 𝑁 and 𝐾, where
𝑁 is the number of non-latent constants in the knowledge base schema and 𝐷 is the
size of the largest “chain” clause schema.

Let Σ𝐷 be

∃𝐴𝐵.𝐴(𝑋, 𝑌 )← 𝐵(𝑋, 𝑌 ) with 𝑆0 = {𝑥1, . . . , 𝑥𝑛, ℓ
(0)
1 , ℓ

(0)
2 , . . . }

(3.36)

∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵1(𝑋,𝑍1), 𝐵2(𝑍1, 𝑍2), . . . , 𝐵𝐷(𝑍𝐷−1, 𝑌 ) 𝑆1 = {ℓ(1)1 , ℓ
(1)
2 , . . . }
(3.37)

∃𝐴𝑋.𝐴(𝑋) 𝑆2 = {𝑎, ℓ(2)1 , ℓ
(2)
2 , . . . }

(3.38)
∃𝐴𝑋𝑌.𝐴(𝑋, 𝑌 ) (3.39)

and 𝐾𝑁 be
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any(𝑋, 𝑌 )← any(𝑋),any(𝑌 ) (3.40)
any(𝑋)← 𝑋 ∈ 1, . . . , 𝑁. (3.41)

2 6 10 14 18

N

0

200

400

600

800

1000

1200

nu
m

be
r

of
ar

cs

1 2 3 4 5

D

0

200

400

600

800

1000

1200

Figure 3-7: The number of arcs in the heuristic graph as a function of the number of
constants 𝑁 and the maximum schema clause degree 𝐷 in the schema. The different
lines in the right graph are the different levels of 𝑁 ; darker lines indicate larger 𝑁 .
On the left, the differences between different levels of 𝐷 is impercetible.

Results Figure 3-7 shows how the number of arcs 𝑁arcs in the heuristic graph grows
as a function of the number of constants 𝑁const and the maximum clause degree 𝐷
of the schema. 𝑁arcs seems to be insensitive to 𝐷 beyond 𝐷 = 2, suggested that the
AND/OR branch-and-bound search we are using to explore the 𝒮rel is pruning the
use of clauses with degree greater than two. However, there seems to be no similar
attenuation with respect to 𝑁const.

The polynomial dependency of 𝑁arcs on the number of symbols in the knowledge
base is particularly concerning given that our model allows for an increasing number
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of symbols as learning progresses. For this heuristic to be viable, it will be important
construct further approximations that limit this dependency.

3.6.4 Comparison with METAGOL

As mentioned in Section 3.3, METAGOL𝐷 performs an iterative deepening search
on the size of the knowledge base induced in the meta-proof of the data. Since
the iterative-deepening procedure, if continued indefinitely, will eventually discover
every knowledge base that entails the data, we can use METAGOL𝐷 to optimize
any objective function. We do this by maintaining an upperbound on the cost of the
optimal knowledge base. We run the iterative deepening search for as long as time
allows; whenever we find a target knowledge base, we update our upperbound, and
whenever a partial knowledge base exceeds the current upperbound, we backtrack.
This is in effect what METAGOL𝑂 does, with the modification that the “resource
complexity” cost that METAGOL𝑂 uses is a function of the proof so far and not
the knowledge base so far. That is, in METAGOL𝑂, if a particular first-order clause
is used more than once, a cost is incurred each time. In the METAGOL variant
described above, which we will call METAGOL𝐷(IKM), the IKM is associated with
the partial knowledge base, not the partial proof.

Here, we compare HS-MAP-IKM with METAGOL𝐷(IKM). Because METAGOL𝐷(IKM)

does not use the heuristic function to direct the search, it does not need to traverse
the heuristic graph for each expanded arc in the 𝒮, and therefore the rate at which it
explores partial knowledge bases is much greater than that of HS-MAP-IKM. The
empirical question is whether the benefit of using the heuristic function to guide the
search compensates for the overhead of computing the heuristic function itself.

Methods To explore this question, we ran both algorithms on data from five re-
lational theories. For each of these these five theories, the data set learned from is
the set of entailed facts of predicate 𝑎/2. These target theories are shown in the left
two columns of Table 3-9, and the knowledge base schema used by both algorithms
is shown in Figure 3-8. The learners were supplied two background knowledge pred-
icate, 𝑜𝑏𝑗/1 and 𝑒𝑞/2. 𝑜𝑏𝑗(𝑋) is true when for 𝑋 ∈ 1, . . . , 8 for all theories except
for transitive, in which case 𝑋 ∈ 1, . . . , 6. 𝑒𝑞(𝑋, 𝑌 ) is true whenever 𝑋 = 𝑌 . The
knowledge base was paramterized with parameters 𝛼 = 0.5 and 𝛾 = 0.75, and each
algorithm was run for ten minutes on each dataset.

Results The right two columns of Table 3-9 shows that best theory found by each
algorithm. For subgroup and star + eq, both algorithms find theories that are
syntactically identical to the target theories from which the data set was generated.
These two theories correspond have the shortest target theories. In the time allotted,
METAGOL𝐷(IKM) does not discover a knowledge base for the other three data sets
that is better than the trivial definition of 𝑎/2 as the complete relation over pairs
of objects. For all theories, HS-MAP-IKM finds knowledge bases with the target
extension, though its knowledge base for subgroup + exception and transitive
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∃𝑄,𝑋, 𝑌.𝑄(𝑋, 𝑌 )

∃𝑄,𝑋.𝑄(𝑋)

∃𝑄,𝑃.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋, 𝑌 )

∃𝑄,𝑃.𝑄(𝑋, 𝑌 )← 𝑃 (𝑌,𝑋)

∃𝑄,𝑃.𝑄(𝑋)← 𝑃 (𝑋)

∃𝑄,𝑃,𝑅.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋,𝑍), 𝑅(𝑍, 𝑌 )

∃𝑄,𝑃,𝑅.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋, 𝑌 ), 𝑅(𝑋, 𝑌 )

∃𝑄,𝑃,𝑅.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋), 𝑅(𝑋, 𝑌 )

∃𝑄,𝑃,𝑅.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋), 𝑅(𝑌,𝑋)

∃𝑄,𝑃,𝑅.𝑄(𝑋, 𝑌 )← 𝑃 (𝑋), 𝑅(𝑌 )

Figure 3-8: The metarules use in the comparison of the IKM to METAGOL.

are suboptimal with respect to the prior probability disribution on knowledge bases.
The HS-MAP-IKM solution for subgroup+exception contains two copies of the
identical clause; such syntactic redundancies could be easily detected and removed.
In contrast, the suboptimality in the HS-MAP-IKM solution for transitive is less
simple.

The time courses of log probability for each theory is shown in Figure 3-10.
Roughly, as the number of clauses in the target theory increases, we see HS-MAP-IKM
performing better than METAGOL𝐷(IKM). In the case of star+eq, the target the-
ory has only three clauses, and iterative-deepening search finds the target solution
much faster than the heuristic guided search. For the subroup theory, where the
number of clauses in the target theory is increased by one, we see a mixed result, with
HS-MAP-IKM finding a close to optimal solution faster than METAGOL𝐷(IKM)

even though it is somewhat slower to find the optimal one (here, we take the “opti-
mal” solution to be the target solution, even though we do not prove that the target
knowledge bases we have provided are in fact the globally optimal solutions). As
stated above, for the remainder of the theories, whose target theories have between
five and seven clauses, METAGOL𝐷(IKM) fail to find a non-trivial solution.

To an extent, these results are to be expected given those shown in Figure . There
are various differences between these results and the previous ones, but a significant
one is that we use here the implementation of METAGOL𝐷(IKM) provided by its
authors (with minor modifications to maintain the negative log probability upper
bound). In the previous results, we merely lesioned the heuristic computation from
an implementation designed for its use. We think, therefore, that these results argue
strongly that although computed the heuristic function is costly, the benefits of much
faster node expansion is quickly outweighted by the exponentially increasing search
space.
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target theory HS-MAP-IKM METAGOL𝐷(IKM)

subgroup
𝑎(𝑋, 𝑌 )← ℓ1(𝑋), 𝑜𝑏𝑗(𝑌 )

ℓ1(6).ℓ1(7).ℓ1(8).

𝑎(𝐴,𝐵)← 𝑜𝑏𝑗(𝐴), ℓ2(𝐵)

ℓ2(6).ℓ2(7).ℓ2(8).

𝑎(𝐴,𝐵)← 𝑜𝑏𝑗(𝐴), ℓ2(𝐵)

ℓ2(6).ℓ2(7).ℓ2(8).

subgroup
+ exception

. . . subgroup theory . . .
𝑎(1, 1)

𝑎(1, 1).

ℓ2(8).ℓ2(7).ℓ2(6).

𝑎(𝐹,𝐺)← 𝑜𝑏𝑗(𝐹 ), ℓ2(𝐺)

𝑎(𝐾,𝐿)← 𝑜𝑏𝑗(𝐾), ℓ2(𝐿)

𝑎(𝐴,𝐵)← 𝑜𝑏𝑗(𝐴), 𝑜𝑏𝑗(𝐵)

star + eq
𝑎(𝑋, 𝑌 )← ℓ1(𝑋), 𝑜𝑏𝑗(𝑌 )

ℓ1(1)

𝑎(𝑋, 𝑌 )← 𝑒𝑞(𝑋, 𝑌 )

𝑎(𝐴,𝐵)← 𝑒𝑞(𝐴,𝐵)

𝑎(𝐸,𝐹 )← ℓ2(𝐸), 𝑜𝑏𝑗(𝐹 )

ℓ2(1)

𝑎(𝐴,𝐵)← 𝑒𝑞(𝐴,𝐵)

𝑎(𝐸,𝐹 )← ℓ2(𝐸), 𝑜𝑏𝑗(𝐹 )

ℓ2(1)

symmetric
𝑎(𝑋, 𝑌 )← 𝑎(𝑌,𝑋)

𝑎(3, 4).𝑎(1, 2).𝑎(1, 3)

𝑎(1, 3).𝑎(5, 6).𝑎(2, 7).

𝑎(2, 7).𝑎(5, 6).𝑎(1, 3).

𝑎(1, 2).𝑎(3, 4).

𝑎(𝐸,𝐷)← 𝑎(𝐷,𝐸)

𝑎(𝐴,𝐵)← 𝑜𝑏𝑗(𝐴), 𝑜𝑏𝑗(𝐵)

transitive
𝑎(𝑋, 𝑌 )← 𝑎(𝑋,𝑍), 𝑎(𝑍, 𝑌 )

𝑎(1, 2).𝑎(2, 3).𝑎(3, 4).

𝑎(4, 5).𝑎(5, 6)

𝑎(𝐴,𝐶)← 𝑎(𝐴,𝐵), 𝑎(𝐵,𝐶)

𝑎(5, 6).𝑎(4, 5).𝑎(4, 5).

𝑎(2, 3).ℓ2(1).

𝑎(𝐿,𝑀)← ℓ2(𝐿), 𝑜𝑏𝑗(𝑀)

𝑎(𝐴,𝐵)← 𝑜𝑏𝑗(𝐴), 𝑜𝑏𝑗(𝐵)

Figure 3-9: Five relational theories on which we compare HS-MAP-IKM and METAGOL𝐷(IKM). The first column is the
ground truth theory, i.e., the the theory from which the dataset was generated. The second column is the best theory that
our algorithm found. The third column is the best knowledge base that METAGOL found. METAGOL𝐷(IKM) returns trivial
underfitting theories in three of the five cases. HS-MAP-IKM finds solutions worse than ground truth in the two of the five
cases, but it’s solutions still manage to capture much of the statistical structure of the dataset in those cases. The corresponding
search timecourses are shown in Figure 3-10.
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Figure 3-10: Comparing the search timecourses of HS-MAP-IKM and
METAGOL𝐷(IKM) on five relational theories. Ground truth for each task and the
discovered theories for each algorithm are shown in the 3-9. Generally, we see that
within the ten minute limit of this experiment, HS-MAP-IKM is able to more effec-
tively escape local optima found early in the search.

3.7 Conclusion
Humans flexibly and reliably acquire knowledge about systems of interdependent re-
lational concepts. The work presented here continues a long line of research that
attempts to understand how an automated learning system can achieve the kind of
efficiency, reliability and expressivity that even the youngest children seem to exhibit
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in their learning behaviors. The basic mystery at the root of this question is how
learners deal with a hypothesis space of knowledge bases that is both enormously
large and very non-smooth. We have argued here that by framing the learning prob-
lem as posterior inference in a hierarchical probabilistic model and then applying
the techniques of heuristic search, we can get traction on this problem of practical
tractability.

The algorithmic approach we have presented, however, relies on limiting our
knowledge representation language in significant ways. We have restricted ourselves
to negation-free datalog. Introducing negation in the body of clauses will introduce
non-monotonicity to the model’s likelihood function; as we learn new facts about one
relation, we may be reducing the number of entailed facts for another relation. Adding
negation would also introduce well-known issues in the semantics and evaluation of
negation in datalog.

Though the heuristic we have introduced provides us with traction on the very
difficult search problem, the heuristic itself is computationally costly: the size of the
heuristic graph grows polynomially with the number of symbols in the knowledge
base and that number is usually quite large in any knowledge base of useful size.
Therefore, it will be important to find ways to limit the size of the heuristic graph or
to develop proxies that provide a similar guiding signal in the search space.

The motivation for this work is the intuition that the solution to automated learn-
ing of conceptual knowledge will be found at the intersection of representational and
algorithmic considerations. Much of the algorithmic work in AI has been focused on
solving problems in discrete combinatorial spaces, where it is the job of the AI practi-
tioner to model the domain of interest within these limited representations. We have
attempted to show here that we should remove that practioner out of the loop while
still using the same algorithmic techniques, and that we can do so by embedding a
symbolic representation langauge within the paradigm of state-space graph search.
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Chapter 4

Modeling intuitive theories with the
IKM

4.1 Introduction

Our common sense knowledge about a particular concept (mother, for example)
goes well beyond knowing how to identify its instances. We know how concepts
relate to one other (father, child, family) via the abstractions and rules that give
them meaning (parent, sex, relative). This interrelated system of common sense
concepts is called an intuitive theory, and understanding how these intuitive theories
are acquired, represented, and used is a central aim of cognitive science.

How do we account for the people’s ability to learn these systems of rules and
abstractions? How do they determine how many rules to use and how many abstract
concepts to invent? How do they know which observed relations are true “just be-
cause” and which are explained by other more intrinsic relations? And, finally, how
do they do so from small noisy observations of positive data.

We argue here that the Infinite Knowledge Base Model (IKM) provides such an
account. This model is a particular instantiation of the Bayes Language of Thought
(LOT) hypothesis – the hypothesis the flexibility and robustness of human conceptual
learning is the result of learning mechanisms which effectively perform Bayesian infer-
ence over a hypothesis-space consisting of sentences in symbolic formal language. The
IKM’s particular instantiation of this hypothesis combines the expressive represen-
tational formalism of first-order deductive databases (a kind of restricted first-order
logic) with the flexibility and robustness of nonparametric Bayesian statistics.

In this paper, we situate the IKM within the Bayes LOT literature so far, and
demonstrate with a series of case studies that it goes beyond previous work in several
concrete ways: it provides a generative model over knowledge bases with an un-
bounded number of invented predicates; it provides a learning approach that moves
away from the intractable and psychologically improbably generate-and-test algo-
rithms used by much of the literature; and it does so while still providing a general-
purpose model, capable of expressing several qualitatively different kinds of concept
learning.
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RR +DNF [1] Boolḟormula No DNF formula No No Yes
IRM [2] Relational No Co-Clustering Unary No Yes
RL +Datalog [3] Relational Yes Datalog Yes Yes No
RL +FOL(T) [4] Relational Yes None Yes Yes No
RR +Datalog [5] Relational Yes Datalog Limited Yes Yes
RR +𝜆 [6] Functional Yes+ 𝜆 calc.;

single function
No Limited Yes

CL +EC [7] Functional Yes Combinatory calc. Yes Primitive Yes
IKM Relational Yes Datalog Yes Yes Yes

Table 4.1: A comparison of the features of various Bayes LOT models; see text for
a detailed discussion. Representation is whether concepts are relations, functions,
or boolean formulae (propositional). Concept invention describes whether the model
allows for explicit representation of new concepts. In the case of relational LOTs, this
refers to predicate invention. In case of functional LOTs, this refers to the definition
of new functions. Recursion describes, roughly, whether a concept definition can re-
fer to itself, either directly or via another concept. Generative model is whether the
probabilistic model is generative, i.e., the model includes a description of a process by
which samples from the distribution over LOT expressions can be generated.[1] Good-
man et al. 2008a, [2] Kemp et al. 2006, [3] Kemp, Goodman, and Tenenbaum 2007;
Katz et al. 2008, [4] Kemp, Goodman, and Tenenbaum 2008, [5] Ullman, Goodman,
and Tenenbaum 2012, [6] Piantadosi, Tenenbaum, and Goodman 2012; Piantadosi,
Tenenbaum, and Goodman 2010 [7] Dechter et al. 2013; Ellis, Dechter, and Tenen-
baum 2015; Ellis et al. 2013.

4.2 Related Work

The Bayes LOT literature is relatively young and quite small. As such, there we
have not yet developed a good way to classify Bayes LOT models or to delineate
with precision the different dimensions along which they vary. It is not even clear
where exactly the lines around this class of models should be drawn. Table 4.1 is
our attempt to group and compare the models in the literature along important
dimensions, but it should be clear that this is a provisional classification. The first
three columns — Representation, First Order, and Syntactic restrictions — have to
do with the characteristics of the language of thought formalism used in the model.
The fourth and fifth columns — Predicate invention and Recursion — are capabilities
of the model, i.e., the fifth column should be interpreted as answering the question,
“Does this model allow a concept to be defined in terms of itself?” The last column
— Generative — describes whether the probability distribution used in the model is
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specified using a generative process.
The Infinite Relational Model (Kemp et al. 2006) (IRM) is the least expressive

LOT in the table. It is a co-clustering model, and, as such, there is no explicit lan-
guage over which concepts are defined. Although it should perhaps not be considered
an LOT model at all, it is motivated by the desire to model relational concept acqui-
sition with an unbounded number of latent concepts; therefore, it shares important
characteristics with several of the models in Table 4.1, including ours. The general
idea behind the IRM is to describe a relation over entities as determined by a po-
tentially unbounded number of latent clusterings of those entities. The IRM uses a
non-parametric Bayesian prior over the clusterings of entities, so that a smaller num-
ber of clusters is preferable, but there is no a priori limit on the number of clusters
in the model’s posterior. The latent clusters inferred by the model can be seen as
learned unary predicates; it is this aspect of the IRM that we borrow in the IKM.
That said, the IRM is not a first-order formalism; it does not allow for quantification
over variables. For example, statements of the form ∀𝑋, 𝑌.𝑎(𝑋, 𝑌 )⇐⇒𝑏(𝑌,𝑋) cannot
be expressed. Because of this, none of the case studies we look at in this work can be
expressed by the IRM.

Several of the Bayes LOT models in 4.1 are based on the Rational Rules (RR)
framework, which was introduced in Goodman et al. 2008a. Independently of the
representation language itself, we take the RR framework to be the specification of a
prior over LOT expressions by using a probabilistic context free grammar (PCFG),
a probabilistic generative model of expressions in a language described by a context
free grammar. Goodman et al. 2008a introduced a RR model in that paper, which we
call RR+DNF, which specified a distribution over concepts as propositional Boolean
formulae in disjunctive normal form. Note that the authors present it as a first-order
language, by describing their representation language as a constrained fragment of
FOL. Namely, the language consists of formulae of the form:

ℓ(𝑥)⇐⇒𝐷(𝑥), (4.1)

where 𝐷(𝑥) is a DNF over the single variable 𝑥. In a related paper (Goodman et al.
2008b), they show how this can be extended to a single additional quantified variable:

ℓ(𝑥)⇐⇒∃𝑦.𝐷(𝑥, 𝑦) (4.2)
or ⇐⇒∀𝑦.𝐷(𝑥, 𝑦). (4.3)

While these latter forms may technically be first order formulae, the general approach
is not developed beyond these highly restricted forms.

The other major influence of the RR+DNF model is the learning algorithm. Good-
man et al. 2008a use a Metropolis-Hastings algorithm which is a biased random walk
over the space of theories driven by what they term subtree regeneration proposals.
Given the derivation tree of a given hypothesis expression, the Metropolis-Hastings
proposal operator chooses a random node in the derivation tree and re-samples the
subtree at that node from a PCFG prior. With minor variation, this algorithm –
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Metropolis-Hastings with subtree regeneration proposals – is used for inference in the
works that use the RR+𝜆 and the RR+Datalog models, which we briefly describe
next.

Piantadosi and colleagues applied the RR framework to study several specific
domains of learning, and they did so by applying the framework to the space of func-
tional programs. In order to provide a computational account of conceptual change,
Piantadosi, Tenenbaum, and Goodman (2012) modeled how children acquire the “car-
dinality principle” – the knowledge that the successive numbers in the counting list
correspond to successively increasing cardinalities. Their model used the RR frame-
work over a grammar that generates functions in the lambda calculus; this allowed
them to model how a child might learn a function from a set to a number. In sepa-
rate work, Piantadosi, Tenenbaum, and Goodman 2010 studied models of how people
might acquire concepts over sets of objects as functions over those sets. The Bayes
LOT model they used for both these studies is essentially the same, and we call it
RR+𝜆 model. The use of the lambda calculus is very appealing, as it straightfor-
wardly allows for higher-order functions, has a highly compositional nature, and —
for these reasons – has long been seen as a promising representation of the semantics
of natural language itself. We have used them ourselves in other work (see Dechter
et al. 2013). Despite this, it is unclear how the lambda calculus can be used as a
foundation of a general purpose knowledge representation system. Briefly, this is be-
cause we know of no workable proposals for how knowledge represented in the lambda
calculus can support reasoning, other than just computing the functions themselves.
That is, while both aforementioned papers show how can use the RR+𝜆 model to
learn functions from sets to the numbers of elements in those sets or to learn functions
that classify sets of objects as within a concept or not, there is no concrete proposal
about how a learning agent might use this knowledge in any way other than to com-
pute these functions, because doing so would seem to involve practical reasoning with
higher-order logics. That said, there have been proposals along these lines in the
past, especially in the program languages literature, and research is ongoing (see, for
example, Miller and Nadathur 2012).

In Table 4.1, models whose name includes RL are those in which the prior prob-
ability of an expression is a function of its “representation length,” usually a count
of the number symbols and variables in the expression. Essentially, a prior of this
form is a log-linear model in which the features correspond to various counts of inter-
est. Therefore, these are not generative models, in the sense that one cannot sample
directly from these priors or explicitly compute the normalized probability of an ex-
pression under the model. One pattern to notice in Table 4.1 is that the RL type
models allow for predicate invention, at least implicitly, and the RR type models do
not, or do so in a limited way. The RL models “allow” for predicate invention because
they do not seek to provide a generative story for how one might sample theories
or programs that contain an unspecified or arbitrary number of invented predicates.
However, a generative model is an essential tool for the computational cognitive sci-
entists who wants to implement their model, for the generative process itself provides
one with the means to sample from the prior (in the case of Monte Carlo style infer-
ence algorithms) or — as in the case of the algorithm presented in this chapter —
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to use the prior distribution as a guide to searching the space of hypotheses. This
is especially true in the context of discrete and high-dimensional hypothesis spaces,
since inference techniques for log-linear models typically rely heavily on gradient in-
formation for optimization. One of the main contributions of the IKM is that it
shows how to describe a generative Bayes LOT model that naturally accommodates
predicate invention.

The two models in Table 4.1 that use Datalog — the representation formalism that
the IKM uses — are the RL+Datalog and the RR+Datalog models. Of the two papers
we have lumped together under the RL+Datalog heading – Kemp, Goodman, and
Tenenbaum 2007 and Katz et al. 2008 – the IKM is more similar to the former. This is
because the latter, along with the RR+Datalog model presented in Ullman, Goodman,
and Tenenbaum 2012, makes an explicit distinction between “observable” predicates
and “core” predicates, a distinction that we discuss in more detail in Section 4.5.

The RR+Datalog model is the most fully developed model in formalizing a gener-
ative model over Datalog knowledge bases and in offering a learning algorithm for that
model. There are several concrete ways in which the IKM goes beyond this model.
First, the RR+Datalog model allows for a fixed number of latent predicates whereas
the IKM provides an unbounded number. Second, as with the other RR type models,
the RR+Datalog model uses an Metropolis-Hastings plus subtree regeneration algo-
rithm for inference. In contrast, the IKM is designed specifically to enable learning
as abductive proof search; that is, we show that even though we employ an expressive
first-order knowledge base formalism, we are not forced to use a generate-and-test
search procedure for learning. Both in terms of numbers of clauses and numbers of
concepts learned simultaneously, our work here significantly surpasses the previous
work on the RR+Datalog model. Given that the hypothesis space is exponential in
the number of clauses, pushing this dimension of difficulty is a fundamental challenge
for these kinds of models. Finally, we generalize the application of Datalog knowledge
base models and show that they apply not only to the learning of “laws” in intuitive
theories, but also to some “procedural” kinds of knowledge. Namely, we show that the
counting procedure that is modeled with the RR+𝜆 model in Piantadosi, Tenenbaum,
and Goodman 2012 can also be learned using the IKM. In doing so, we attempt to
expand the domain of this kind of model’s applicability.

We note, finally, that one Bayes LOT model has well surpassed any other in
terms of the expressivity and generality of its language of thought. This is the one
we call RL+FOL(T) and which is presented in Kemp, Goodman, and Tenenbaum
2008. The language of thought for this model is first order logic (FOL) with transi-
tive closure (the T). While we postpone our discussion of the pros and cons of this
choice for later (Section 4.5), we clarify the cell in the Table 4.1 which says that
RL+FOL(T) admits recursion. First order logic, in the generality used in that paper,
does not have an explicit notion of “definition.” However, since that model allows
arbitrary first-order formulae, one can simulate definitions using bi-implication (i.e.
∀𝑋, 𝑌.𝐶(𝑥, 𝑦)⇐⇒(𝐶(𝑥− 1, 𝑦) ∨ . . . )).
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4.3 The Infinite Knowledge Base Model

In this section, we give a brief re-cap of the IKM and describe its application to
problems of concept learning; for details, see Dechter and Tenenbaum in prep. The
IKM is a generative model that, given a knowledge base schema Σ, specifies a joint
distribution over knowledge bases 𝐾 and the observed data sets 𝒟 that are generated
from them. An example knowledge base schema and a possible knowledge base gen-
erated from it is shown in Figure 4-1. A knowledge base, like the one on the right of
the figure, is a collection of clauses, each of which is either a rule or a fact. A rule
is an implication 𝐻 ← 𝐵 where 𝐻 (the head) is an atom (that is, a term consisting
of a single predicate symbol applied to some arguments) and 𝐵 (the body) is a list of
atoms. A rule’s presence means that if all the atoms in 𝐵 are true, for some instan-
tiation of its variables, then 𝐻 is true for that same variable instantiation. A fact is
simply a rule with an empty body, meaning that the atom is true unconditionally.

The knowledge base in Figure 4-1b shows some of the properties of this knowledge
representation. It is first-order, which means that it allows for variables (written with
uppercase letters) as arguments. Because a knowledge base semantically corresponds
to a disjunction of its clauses and each clause is one possible reason to judge that the
head of the clause is true, this formalism is incremental ; any subset of a knowledge
base’s clauses is another well-formed knowledge base. Our formalism includes two
kinds of symbols, named symbols and unnamed ones. The named symbols are those
like mother and philip which refer to things in the world. The unnamed symbols
correspond to predicates and objects that are invented by the learner and obtain their
meanings merely by their usage within the knowledge base. We identify them by their
arity (the number of arguments they take) and an integer index. In this paper, we
maintain the convention that any symbol of the form ℓ

(𝑎)
𝑖 is the 𝑖th unnamed symbol

of arity 𝑎 (note that when the arity can be inferred from the context we drop the
superscript). Because of their usage as references to unobserved relations and objects,
we refer to unnamed predicate symbols and unnamed constant symbols as latent
predicates and constants, respectively. For example, in 4-1b, the first two clauses
contain three latent predicates ℓ

(1)
1 , ℓ

(1)
2 , and ℓ

(2)
1 which are meant to be interpreted

as latent predicates that correspond to the concepts of female, male and father,
respectively.

Figure 4-1a shows an example knowledge base schema from which the knowledge
base in Figure 4-1b could be generated. A knowledge base schema Σ consists of a
collection of metarules (in the example 𝑟1, 𝑟2 and 𝑟3) and, for each possible symbol
arity, a potentially infinite set of symbols S, where 𝑆(𝑎) is the set of symbols, named
and unnamed, of arity 𝑎. A metarule is a template for a clause in the knowledge
base, where the existentially quantified variables are metavariables, and a clause is
instantiated from a metarule by substituting symbols from S for its variables. For
example, rule 𝑟1 in 4-1b is generated by instantiating 𝑟1 with the substitution {𝐴 ↦→
mother, 𝐵 ↦→ ℓ

(1)
1 , 𝐶 ↦→ ℓ(1)}.
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𝑅 =

⎧⎪⎨⎪⎩
𝑟1 = ∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵(𝑋), 𝐶(𝑋, 𝑌 )

𝑟2 = ∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵(𝑋), 𝐶(𝑌,𝑋)

𝑟2 = ∃𝐴𝑋.𝐴(𝑋)

⎫⎪⎬⎪⎭ ,

and

S(0) = {1, 2, 3, 4, ℓ(0)1 , ℓ
(0)
2 , . . . }

S(1) = {ℓ(1)1 , ℓ
(1)
2 , . . . }

S(2) = {𝑚𝑜𝑡ℎ𝑒𝑟, 𝑓𝑎𝑡ℎ𝑒𝑟, 𝑠𝑜𝑛, 𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟, ℓ
(2)
1 , ℓ

(2)
2 , . . . }.

(a) A knowledge base schema Σ = (𝑅,S).

𝑚𝑜𝑡ℎ𝑒𝑟(𝑋, 𝑌 )← ℓ1(𝑋), ℓ1(𝑋, 𝑌 )

𝑓𝑎𝑡ℎ𝑒𝑟(𝑋, 𝑌 )← ℓ2(𝑋), ℓ1(𝑋, 𝑌 )

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑋, 𝑌 )← ℓ2(𝑋), ℓ1(𝑌,𝑋)

𝑠𝑜𝑛(𝑋, 𝑌 )← ℓ2(𝑋), ℓ1(𝑌,𝑋)

ℓ1(𝑝ℎ𝑖𝑙𝑖𝑝).ℓ1(𝑐ℎ𝑎𝑟𝑙𝑒𝑠).

ℓ2(𝑝ℎ𝑖𝑙𝑖𝑝).ℓ2(𝑐ℎ𝑎𝑟𝑙𝑒𝑠).

ℓ1(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠).ℓ1(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒).

ℓ1(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠).ℓ1(𝑝ℎ𝑖𝑙𝑖𝑝, ).

(b) A knowledge base which is an in-
stantiation of Σ. Latent predicates
ℓ
(1
1 , ℓ

(1)
2 , ℓ

(2)
1 correspond to the concepts of

male, female, and parent respectively.

Figure 4-1: An example knowledge base schema and a sample instantiation demon-
strating the use of the latent predicates.

A prior distribution over knowledge bases We obtain a probability distribu-
tion over knowledge bases by specifying a stochastic generative process over schema
instantiations, which are collections of metarules with their metavariables instanti-
ated. This generative process is broadly defined by the following stochastic procedure:

1. sample the size of the knowledge base 𝑁 , the number of its clauses, from a
distribution over the natural numbers;

2. for each 𝑖 ∈ 1, . . . , 𝑁 , sample a metarule 𝑐𝑖 from a distribution over the knowl-
edge base schema’s metarules;

3. to instantiate the metavariables in the resulting knowledge base, sample a se-
quence of symbols of the appropriate arities.

As is the case in the Rational Rules model, we want our prior over knowledge bases
to have the property that we assign higher probability to knowledge bases with fewer
clauses, and we want them to exhibit a “rich gets richer” dynamics known as pref-
erential attachment over symbol and metarule choice. Therefore, we choose to sam-
ple the number of clauses from a geometric distribution, the clause metarules from
a symmetric Dirichlet-Multinoulli (with 𝛼 < 1) and the symbols from a collection
of Chinese Restaurant Processes (CRPs), one for each symbol arity. This Dirichlet-
Multinoulli (Gelman et al. 2014) is a canonical example of a distribution that exhibits
preferential attachment over a finite number of elements, and the CRP (Pitman 2006)
is its generalization to an infinite number of elements.
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A likelihood distribution over observed data In this work, we focus on learning
from positive examples; we assume that the learner’s data is set of true facts about
the world. To keep the model as general as possible, we assume that the observed
data is simply sampled uniformly without replacement from the set of true facts in
a given context. So, for example, the model is learning about kinship relations, then
the context might be all the people at a family gathering and the observed data is
an arbitrary subset of all the true relations that hold among all the people at the
gathering. The data likelihood – i.e. the probability of observing the data given
some context and hypothetical knowledge base – is this inversely proportional to the
number of facts that the knowledge base licenses. This is an implementation of the
size principle (Tenenbaum 1999), the idea that a preference for restrictive hypotheses
facilitates concept learning from positive examples.

4.3.1 Inference

In Bayes LOT models, the goal of the learner is to perform posterior inference over
the model given the observed data. Performing inference in Bayes LOT models is
exceptionally demanding. Where implementation of inference has been attempted,
the approach has mainly been to use some form of stochastic search. However, because
the hypothesis spaces involved are discrete and very high dimensional, and because
expressions in LOT models are (like computer code) very fragile, the probability that
a random perturbation to a hypothesis in a LOT moves to an improvement over the
current one is vanishingly small.

There is also the psychological observation that human hypothesis generation does
not seem to be a process of random exploration, that children and adults seems to
have an ability to explore the space of possible explanations for their observations
in a way that prunes the hypothesis space dramatically, and that accounting for this
ability is key to understanding everyday conceptual discovery (see Schulz 2012 for
some arguments along these lines).

Motivated by both the practical and theoretical limitations of learning algorithms
based on stochastic search, we developed the HS-MAP-IKM algorithm (Dechter and
Tenenbaum in prep.) – an algorithm for posterior inference in the IKM that searches
over hypothetical knowledge bases in a targeted fashion. While the details of this
algorithm are beyond the scope of this paper, we briefly describe the main ideas.

The algorithm performs maximum a posteriori inference: given a data set, it
searches for the knowledge base that maximizes the joint probability of the data set
and the knowledge base under the generative model described above. Using a recently
developed AI learning framework called metainterpretative learning (MIL), the algo-
rithm searches not over knowledge bases directly, but over possible explanations of
the observed data, maintaining a collection of partial explanations of the data. Each
partial explanation corresponds to a knowledge base, namely, that knowledge base
containing all the rules used in the explanation. Moreover, for each partial explana-
tion there is some set of things yet to be explained. The algorithm uses a heuristic
function that provides an estimate of the cost (in terms of the negative log probability
under the model) of the remaining explanation. The sum of this heuristic function
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plus the cost of the partial explanation so far is the signal that guides the algorithm
through the hypothesis space, thus reducing the MAP inference problem to a problem
in a heuristic state-space search (Edelkamp and Schrödl 2012; Pearl 1984).

4.4 Case studies

In this section, we examine our model’s behavior in three domains of concept acquisi-
tion that have been studied in the literature on conceptual development and intuitive
theories. We explore this behavior both as a function of the amount of data it receives
and the time course of learning, and we discuss the parallels between its behavior and
the empirical literature on concept acquisition.

General methods In each of these case studies, we we will describe a learning sce-
nario which consists of the data observed by the learner and the learner’s background
knowledge. For each scenario, we run the HS-MAP-IKM algorithm with the model
hyperparameters set to 𝛼 = 1.0, 𝛾 = 0.8, and 𝜔 = 5. 𝜔 is a data multiplier, which
means that the higher 𝜔 is, the more the model weights the data likelihood relative
to the prior. The MAP inference algorithm is run in all cases until the target theory
is found.

The figure accompanying each case study will consist of three parts parts. First,
there is a plot showing the timecourse of the found theories. Second, we show the
relative loglikelihood of the found theories as a function of the data multiplier 𝜔.
Third, we show the discovered theories themselves.

4.4.1 Magnetism

In this case study, we simulate a learner in a simplified magnetism domain, borrowed
from Ullman, Goodman, and Tenenbaum 2012. In this learning scenario, there are
twelve objects. Unbeknownst to the learner, four are magnets, four are magnetic
(i.e. interact with magnets but not with each other) and four are non-magnetic. The
learner witnesses the interactions diagrammed in Figure 4-2 in terms of the observed
binary predicate interacts. The learner is given no background knowledge about
these objects.

Figure 4-3 shows our algorithm’s learning behavior on this dataset. Over the
course of the simulation, the learner discovers a sequence of five knowledge bases of
increasing posterior probability. The first of these, found immediately, seems psy-
chologically implausible: there are two distinct classes of objects ℓ1 and ℓ2, but they
contain the exact same extension, namely, all the magnets and magnetic objects.
The theory is quickly improved on by 𝐾2 and 𝐾3, which are variants of the idea
that there are two distinct classes of objects that interact with each other and that
this interaction is symmetric. 𝐾4 is our intuitive theory about magnetic interaction,
introducing a new rule. Taken together the three rules in 𝐾4 say that there are mag-
nets and magnetic objects, that those two classes interact, and that if something is
a magnetic then it is also magnetic. Finally, 𝐾5, which is slighly favored in negative

95



log-probability over 𝐾4, replaces the new rule in 𝐾4 with the rule that magnets at-
tract magnets. which simply states that any object interacts with any other object.
Whether 𝐾4 or 𝐾5 is the more favored depends on the exact parameters of the prior
distribution. On the one hand, 𝐾4 is slightly more parsimonious in terms of symbols
used. On the other hand, 𝐾5 uses only three distinct types of metarules whereas 𝐾4

uses four. Therefore, which gets favored depends on the strength of the “preferential
attachment” characteristic of the prior distribution.

magnetic magnetic

magnet magnet

non-magnetic

non-magnetic

Figure 4-2: A schematic of the observed relations in the magnetism experiment. In
the actual experiment we use four objects of each type. The object labels are not
known to the learner. According to this simplified theory of magnetic attraction,
magnets interact with metals and other magnets (i.e. we do not take poles into
account).

The magnetism case-study is a simple example of how the IKM is able to perform
theory-learning as a kind of dimensionality reduction, using predicate invention to
discover categories of objects that are not in the data to begin with, but, when
introduced, provide a more parsimonious theory.

4.4.2 Kinship

Human kinship relations are a paradigmatic case of a relational system of concepts.
The kinship domain features several important properties of systems of conceptual
knowledge. Lexical kinship concepts are referred to by common words (like mother)
are defined in terms of core concepts whose associated words are much less common
in everyday speech (like female and parent).

We consider the four binary kinship relations mother, father, son, and daughter.
Ideally, we might want to show that our model can learn the definitions of these four
relations in terms of the core relations of male, female and parent. To keep the
problem computationally manageable, however, we provide the male and female
predicates as background knowledge and examine the extent to which the IKM can
recover the definitions of the kinship relations as well as discover the parent/2 rela-
tion as a latent predicate.

Methods The graphs shown in Figure 4-4 show a fragment of the family tree of the
British royal family. Figure 4-4a shows the core unary predicates 𝑚𝑎𝑙𝑒 and 𝑓𝑒𝑚𝑎𝑙𝑒
across two generations. These are provided as background knowledge. Figure 4-4b
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shows the true observed relations between these individuals, i.e. the data given to
the learner.

Results Figure 4-5 shows the timecourse of the learning algorithm, with corre-
sponding found knowledge bases shown in Figure 4-6. 𝐾1 is all data memorized in
the knowledge base. Knowledge bases 𝐾2 through 𝐾5 increasingly substitute rules
for some of these memorized facts, though none use any latent predicates for this.
Finally, 𝐾6 makes a leap to using a latent binary predicate, whose extension which is
equivalent to 𝑐ℎ𝑖𝑙𝑑/2.
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a) The average negative log-
probability of discovered theories
as a function of learning time.
Error-band is the standard devi-
ation.

b) A single representative run.
Stars correspond to discovered
theories. The numbered knowl-
edge bases correspond to these
stars.

𝐾1

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ2(𝐴), ℓ3(𝐵)

ℓ2(𝑓1) ℓ3(𝑚2)

ℓ3(𝑓4) ℓ2(𝑓3)

ℓ2(𝑓4) ℓ2(𝑚2)

ℓ3(𝑚1) ℓ3(𝑚3)

ℓ3(𝑚4) ℓ2(𝑚4)

ℓ3(𝑓3) ℓ2(𝑓2)

ℓ3(𝑓1) ℓ3(𝑓2)

ℓ2(𝑚1) ℓ2(𝑚3)

𝐾2

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ2(𝐴), ℓ3(𝐵)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐵,𝐴)

← 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

ℓ3(𝑓3) ℓ3(𝑓4)

ℓ3(𝑓1) ℓ2(𝑓2)

ℓ2(𝑚1) ℓ3(𝑓2)

ℓ3(𝑚3) ℓ2(𝑚2)

ℓ3(𝑚2) ℓ2(𝑚4)

ℓ2(𝑓4) ℓ3(𝑚1)

ℓ2(𝑓3) ℓ2(𝑓1)

𝐾3

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ2(𝐴), ℓ3(𝐵)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐵,𝐴)

← 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

ℓ3(𝑚1) ℓ3(𝑚4)

ℓ2(𝑓1) ℓ3(𝑚3)

ℓ2(𝑚4) ℓ2(𝑓2)

ℓ3(𝑚2) ℓ2(𝑓4)

ℓ2(𝑓3) ℓ2(𝑚3)

ℓ2(𝑚2)

𝐾4

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ2(𝐴), ℓ3(𝐵)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐵,𝐴)

← 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

ℓ3(𝐴)

← ℓ2(𝐴)

ℓ2(𝑚1) ℓ3(𝑓1)

ℓ2(𝑚2) ℓ3(𝑓2)

ℓ2(𝑚3) ℓ3(𝑓3)

ℓ2(𝑚4) ℓ3(𝑓4)

𝐾5

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ3(𝐴), ℓ2(𝐵)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

← ℓ2(𝐴), ℓ2(𝐵)

𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐵,𝐴)

← 𝑎𝑡𝑡𝑟𝑎𝑐𝑡𝑠(𝐴,𝐵)

ℓ2(𝑚3) ℓ3(𝑓1)

ℓ3(𝑓2) ℓ2(𝑚1)

ℓ2(𝑚2) ℓ3(𝑓4)

ℓ2(𝑚4) ℓ3(𝑓3)

c) Knowledge bases for discovered theories in a representative run of the magnetism
experiment.

Figure 4-3: Results of the magnetism experiment. In this learning task, there are
four magnets (𝑚1, . . . ,𝑚4), four magentic objects 𝑓1, . . . , 𝑓4), and four non-magnetic
objects (𝑛1, . . . , 𝑛4). Note, however, that the naming of these symbols is just for the
benefit of the reader; the learner just sees twelve unique symbols.
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Male Female
philip elizabeth
charles anne
henry beatrice
andrew louise
edward
peter

(a) Background knowledge: unary
predicates male/1 and female/1.

philip

charles

henry

anne

peter

elizabeth

andrew

beatrice

edward

louise

(b) Observable binary relations: fa-
ther (red), mother (green), son
(blue), daughter (yellow).

Figure 4-4: Background and observed relations for kinship case study. Whereas
in the magnetism case-study, the learner invents unary predicates to explain the
observed relation, in the kinship case-study, the learner invents a binary-predicate
(parent/2) to explain the relation between observed kinship terms and gender.

4.4.3 Counting

In our final case study, we model the acquisition of the knowledge about the relation-
ships between number words and cardinalities. How children come to understand the
meaning of numbers and their relationship to cardinalities is a problem with a long
history and continuing debate in the literature on conceptual development (see Wynn
1992; Sarnecka and Carey 2008; Leslie, Gelman, and Gallistel 2008). As discussed
earlier, Piantadosi, Tenenbaum, and Goodman 2012 used a Bayes LOT model as a
model of the the acquisition of the CP principle. In that work, the LOT is the lambda
calculus and the goal is to learn a function from sets of objects to number words.

The Piantadosi et alṁodel explains children’s progression through the N-knower
stages entirely at the computational level. Under the model’s prior, the prior prob-
ability decreases as the learner transitions from 0-knower to 1-knower, 1-knower to
2-knower, and so on. On the other hand, the data likelihood increases along these
same transitions. The balance between these two factors determines the optimal the-
ory. As the amount of data increases, the influence of the data likelihood increases,
and so the optimal theory moves further towards the CP-knower. Therefore, the
learning trajectory is determined by the amount of the data the learner observes.

There are two unsatisfying aspects to the Piantadosi model:

1. in order to match the empirically observed learning trajectory, the model needs
to impose a large log-probability penalty on the use of recursion. This is because
the CP-knower theory can be expressed relatively concisely when recursion is
employed. Figure 4-7 shows the 3-knower and CP-knower theories as expressed
in the Piantadosi model; the size of the 3-knower theory is on-par if not some-
what greater than that of the CP-knower theory. In order to get the learner to
progress through a 3-knower stage, then, it is necessary that the recursive call
(the 𝐿 symbol in the figure) be less likely under the prior than other symbols
and productions in the LOT grammar.
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Figure 4-5: Timecourse of log probability of best kinship theory found as a function
time. The knowledge bases corresponding to these discovered theories are shown in
Figure 4-6.

2. More importantly, the Piantadosi model’s reliance on computational level con-
siderations to explain the learning trajectory does not accord with our intuition
that the learning trajectory should be strongly influenced by the process which
implements that learning. On the basis of this model, one might expect a child
who is quickly exposed to a large amount of data about sets and their cardinal-
ities to skip the N-knower stages altogether or to progress through them with
arbitrary speed. An algorithmic level model does not have this same problem,
because it credits the learning trajectory to the algorithmic process by which
learning is accomplished. Doing so has the additional benefit of solving the
previous problem: if the model’s explanatory power does not solely depend on
the relative probabilities of the various theories, it becomes more robust to the
exact details of the prior distribution over expressions.

Our model addresses these aspects by attempting to account for children’s ob-
served learning trajectories through the search process the child goes through in
attempting to find theories that best explain their observations.

Learning scenario The simulated learning scenario for this case study is similar
to that in Piantadosi, Tenenbaum, and Goodman 2012. The learner is assumed to
observe sets and hear number words corresponding to their cardinalities. Following
Piantadosi et al., who examined number word frequencies in the CHILDES corpus,
we use a distribution over set sizes that is strongly biased towards “one,” but that has
a heavy tail up to “five.” This distribution is shown in Figure 4-9.

The learning scenario for this case study is shown in Table 4-10. The data set
consists of two “episodes” in which the learner sees four sets paired with the corre-
sponding number word; the constants 𝑠𝑖,𝑗 correspond to the set in episode 𝑖 with 𝑗
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𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑙𝑜𝑢𝑖𝑠𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑤𝑖𝑙𝑙𝑖𝑎𝑚)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑙𝑜𝑢𝑖𝑠𝑒, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑝𝑒𝑡𝑒𝑟)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

(a) 𝐾1

𝑚𝑜𝑡ℎ𝑒𝑟(𝐷,𝐸)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝐷), 𝑠𝑜𝑛(𝐸,𝐷)

𝑠𝑜𝑛(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑙𝑜𝑢𝑖𝑠𝑒, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑤𝑖𝑙𝑙𝑖𝑎𝑚)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑙𝑜𝑢𝑖𝑠𝑒)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒)

𝑠𝑜𝑛(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)𝑔

(b) 𝐾2

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝐷,𝐸)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝐷), 𝑓𝑎𝑡ℎ𝑒𝑟(𝐸,𝐷)

𝑓𝑎𝑡ℎ𝑒𝑟(𝐼, 𝐽)← 𝑚𝑎𝑙𝑒(𝐼), 𝑠𝑜𝑛(𝐽, 𝐼)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑙𝑜𝑢𝑖𝑠𝑒)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑝𝑒𝑡𝑒𝑟)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑛𝑒)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

(c) 𝐾3

𝑚𝑜𝑡ℎ𝑒𝑟(𝐷,𝐸)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝐷), 𝑠𝑜𝑛(𝐸,𝐷)

𝑓𝑎𝑡ℎ𝑒𝑟(𝐼, 𝐽)← 𝑚𝑎𝑙𝑒(𝐼), 𝑠𝑜𝑛(𝐽, 𝐼)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑛𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒, 𝑎𝑛𝑑𝑟𝑒𝑤)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑙𝑜𝑢𝑖𝑠𝑒, 𝑒𝑑𝑤𝑎𝑟𝑑)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑙𝑜𝑢𝑖𝑠𝑒)

(d) 𝐾4

𝑚𝑜𝑡ℎ𝑒𝑟(𝐷,𝐸)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝐷), 𝑠𝑜𝑛(𝐸,𝐷)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝐼, 𝐽)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝐼), 𝑓𝑎𝑡ℎ𝑒𝑟(𝐽, 𝐼)

𝑓𝑎𝑡ℎ𝑒𝑟(𝐾,𝐿)← 𝑚𝑎𝑙𝑒(𝐾), 𝑠𝑜𝑛(𝐿,𝐾)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

𝑠𝑜𝑛(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

𝑠𝑜𝑛(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑙𝑜𝑢𝑖𝑠𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒)

𝑓𝑎𝑡ℎ𝑒𝑟(𝑝ℎ𝑖𝑙𝑖𝑝, 𝑎𝑛𝑛𝑒)

(e) 𝐾5

𝑠𝑜𝑛(𝐴,𝐵)← 𝑚𝑎𝑙𝑒(𝐴), ℓ1(𝐴,𝐵)

𝑓𝑎𝑡ℎ𝑒𝑟(𝐼, 𝐽)← 𝑚𝑎𝑙𝑒(𝐼), ℓ1(𝐽, 𝐼)

𝑚𝑜𝑡ℎ𝑒𝑟(𝑁,𝑂)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝑁), ℓ1(𝑂,𝑁)

𝑑𝑎𝑢𝑔ℎ𝑡𝑒𝑟(𝑃,𝑄)← 𝑓𝑒𝑚𝑎𝑙𝑒(𝑃 ), ℓ1(𝑃,𝑄)

ℓ1(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑝ℎ𝑖𝑙𝑖𝑝)

ℓ1(𝑐ℎ𝑎𝑟𝑙𝑒𝑠, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

ℓ1(𝑎𝑛𝑛𝑒, 𝑝ℎ𝑖𝑙𝑖𝑝)

ℓ1(𝑝𝑒𝑡𝑒𝑟, 𝑎𝑛𝑛𝑒)

ℓ1(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑝ℎ𝑖𝑙𝑖𝑝)

ℓ1(𝑤𝑖𝑙𝑙𝑖𝑎𝑚, 𝑐ℎ𝑎𝑟𝑙𝑒𝑠)

ℓ1(𝑏𝑒𝑎𝑡𝑟𝑖𝑐𝑒, 𝑎𝑛𝑑𝑟𝑒𝑤)

ℓ1(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

ℓ1(𝑙𝑜𝑢𝑖𝑠𝑒, 𝑒𝑑𝑤𝑎𝑟𝑑)

ℓ1(𝑎𝑛𝑑𝑟𝑒𝑤, 𝑝ℎ𝑖𝑙𝑖𝑝)

ℓ1(𝑎𝑛𝑛𝑒, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

ℓ1(𝑒𝑑𝑤𝑎𝑟𝑑, 𝑒𝑙𝑖𝑧𝑎𝑏𝑒𝑡ℎ)

(f) 𝐾6

Figure 4-6: Learned theories in the kinship case-study, in order of increasing posterior
log probability. Figure 4-5 shows the timecourse of search. The learner is able to
directly observe predicates male/1, female/1, mother/2, father/2, son/2, and
daughter/2. Theoresi 𝐾1 through 𝐾5 make due with these predicates, refining the
relations between them in order to create more parsimonious theories. But the optimal
theory 𝐾6 is created by inventing a new binary predicate ℓ1/2 which corresponds to
the parent/2 relation.
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three-knower

( lambda S ( i f ( s i n g l e t o n ? S)
"one"

( i f ( doubleton ? S)
"two"

( i f ( t r i p l e t o n ? S)
" three "

undef ) ) ) )

(a)

CP-knower

( lambda S ( i f ( s i n g l e t o n ? S)
"one"

( next (L ( set−d i f f e r e n c e S
( s e l e c t S ) ) ) ) )

(b)

Figure 4-7: The three-knower and CP-knower expressions in the Piantadosi et
al. model.

elements. For example, the observed fact card(𝑠2,4, “four") corresponds to the ob-
servation that the cardinality of the set with four elements in the second episode is
number word “four.”

The learner is also given a collection of background knowledge predicates. num/1
and set/1 are predicates that hold of any number word and set, respectively. next/2
corresponds to knowledge of successive element in the number word count list (“one”,
“two”, . . . ). add_one/2 relates a set to the result of adding an element to that set,
e.g., add_one(𝑠1,2, 𝑠1,3) holds because the learner observes that 𝑠1,3 resulted when
a single element was added to 𝑠1,2. remove_one/2 is the inverse of add_one/2.
The predicates singleton/2, pair/2, triple/2, and many/2 are predicates that
correspond to the empirical observations that children have the ability to distinguish
sets of one, two, and three elements from one another and larger sets, even before
they learn how to count.

Our knowledge base formalism is quite different from that used in Piantadosi,
Tenenbaum, and Goodman 2012; the IKM learns first-order knowledge bases. While
not every function expressible in the lambda calculus can be represented in our first-
order knowledge bases, many, including the one learned Piantadosi, Tenenbaum, and
Goodman 2012, can be, and in a very similar way.

Piantadosi, Tenenbaum, and Goodman 2012 modeled a child learning a func-
tion from sets to number words. In their formalism the CP-knower’s knowledge
is expressed by the function in Figure 4-7b. To write this in our knowledge base
representation we define instead binary predicate card which is true whenever its
first argument is a set and its second argument is the number word corresponding to
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the set. Since the functional version has a single conditional, the relation version is a
disjunction of two clauses:

card(𝑆,𝑁)← card(𝑆 ′, 𝑁 ′), 𝑎𝑑𝑑_𝑜𝑛𝑒(𝑆 ′, 𝑆), 𝑛𝑒𝑥𝑡(𝑁 ′, 𝑁). (4.4)
card(𝑆, “one”)← 𝑠𝑖𝑛𝑔𝑙𝑒𝑡𝑜𝑛(𝑆).

Note that while the functional and relation versions are equivalent when interpreted
as functions from set to numbers, the relational version can be used to answer queries
in the opposite direction as well, e.g., we can query the knowledge base for those
sets 𝑆 such that card(𝑆, “two”). Thus in the relational formalism we do not need
separate knowledge for counting the number of elements in a set and providing a set
with a specified number of elements.

We ran multiple runs (𝑁 = 20) of simulated learning of the IKM in this learning
scenario. Stochasticity across runs is due to a stochastic goal selection function, which
can be interpreted as a kind of stochastic “attention” or randomness in the order in
which data are seen. Each of the runs had a time limit of one hour. We chose to use a
data set of size 200 because, as is explained in the next section, Figure 4-8a this seems
to be the smallest data-set size that makes N-knower progression possible. (This is
because our learning algorithm, begin a MAP learning algorithm, never moves from
a one theory to a lower probability theory, and so we needed to choose a data set size
at which the probability along the N-knower progression is strictly increasing).

Results We first confirm that under our model and the given learning scenario, a
computational level analysis alone does not account of for the progression of N-knower
stages. To do this we manually constructed five knowledge bases corresponding to
these stages (Figure 4-8b) and examined their probabilities under the model as a
function of the amount of data observed. Figure 4-8a shows the negative log proba-
bility of these five knowledge bases as the amount of data increases. As the amount
of data increases, the maximum amount the first four knowledge bases progressively
moves to the right, but, regardless of the amount of data, the overall best knowledge
base is the CP-knower one.

Note, also, that in our formalism, it is less clear how one would apply a "recursion
penalty" of the form used in the Piantadosi model, because the the presence of the
recursion is not a local property of a single clause, but is a property of the knowledge
base as a whole. In fact, the our hand-written knowledge base for the CP-knower
does not involve any directly recursive clauses (clauses whose head predicate appears
in the body).

Figure 4-11 shows the results from the multiple simulated learning runs in the
counting scenario. Figure 4-11(a) shows the mean loglikelihood of the current best
knowledge base as a function of time. We show only a portion of the hour long run
time because the mean function quickly plateaus. This data is broken down by N-
knower stage in Figure 4-11(c), in which we test each learner’s theory at each point
in time to see if it corresponds to one the N-knower stages. The curves in the figure
correspond to the percentage of learners in a given stage at a given point in time.
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Note that even though nearly 90% of the learners are CP-knowers by the end
of the simulation, the negative log probability of their knowledge bases is not as
high as that shown for the CP-knower in Figure 4-8a. This is because there are
many knowledge bases that are extensionally equivalent to our manually constructed
CP-knower knowledge base, but are not as concise.

The inference algorithm discovers three knowledge bases 𝐾1, 𝐾2 and 𝐾3. 𝐾1 is
found immediately and is the theory that any number word can be paired with any
set. 𝐾2 is an intermediate theory that sets with one and two elements have cardinality
“one” and “two,” respectively, but that beyond two elements, any number word can
be used. This corresponds to the 2-knower stage in the conceptual development of
counting concepts. The last, 𝐾3, is the full CP-knower theory, equivalent to that
shown in Equation 4.4, but using a binary latent predicate to fit a clause with three
atoms in its body into a knowledge base schema confined to clauses with bodies of
at most two atoms. This is an example of how latent predicates can be used both
to express latent core concepts and as intermediate concepts that facilitate fitting
complex expressions into a simple formalism.

In Piantadosi, Tenenbaum, and Goodman 2012, the authors argue that children’s
progression through the N-knower stages can be accounted for purely by considera-
tions at the “computational” level of the model specification. The distribution of the
number words that children hear is strongly biased towards “one.” The authors argue
that this, combined with a hypothetical probability penalty for recursion, might drive
the step-wise progression that children go through. While we do not have evidence
against this view, our results show a similar progression through intermediate the-
ories of cardinality as a byproduct of the search dynamics, suggesting perhaps that
stages of development might be driven by considerations at the “algorithmic” level
of analysis. That is, the progression between N-knower stages might be due to the
structure of the search space itself. On this view, it is not that 2-knowers, say, have
in some sense considered the CP-knower hypothesis and rejected it; it is that they
simply have not found it yet.
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(a) Negative log probability of N-knower KBs as a function of the amount of observed data.
The KBs corresponding to the x-axis labels are in Figure 4-8b.

no-knower
card(𝐴,𝐵)← 𝑠𝑒𝑡(𝐴), 𝑛𝑢𝑚(𝐵)

one-knower
card(𝐴,𝐵)← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ1(𝐵)

ℓ1(one)

card(𝐴,𝐵)←more_than_single(𝐴),

𝑙1(𝐴,𝐵)

ℓ1(𝐴,𝐵)← set(𝑋), num(𝑌 )

two-knower
card(𝐴,𝐵)← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ1(𝐵)

ℓ1(one)

card(𝐴,𝐵)← 𝑝𝑎𝑖𝑟(𝐴), ℓ2(𝐵)

ℓ2(two)

card(𝐴,𝐵)←more_than_pair(𝐴),

𝑙1(𝐴,𝐵)

ℓ1(𝐴,𝐵)← set(𝑋), num(𝑌 )

three-knower
card(𝐴,𝐵)← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ1(𝐵)

ℓ1(one)

card(𝐴,𝐵)← 𝑝𝑎𝑖𝑟(𝐴), ℓ2(𝐵)

ℓ2(two)

card(𝐴,𝐵)← 𝑡𝑟𝑖𝑝𝑙𝑒(𝐴), ℓ3(𝐵)

ℓ3(three)

card(𝐴,𝐵)←more_than_triple(𝐴),

𝑙1(𝐴,𝐵)

ℓ1(𝐴,𝐵)← set(𝑋), num(𝑌 )

CP-knower
card(𝐴,𝐶)← ℓ1(𝐴,𝐵), next(𝐵,𝐶)

ℓ1(𝐴,𝐶)← remove_one(𝐴,𝐵), card(𝐵,𝐶)

card(𝐴,𝐵)← single(𝐴), ℓ1(𝑌 )

ℓ1(one)

(b) Manually constructed KBs for the N-knower stages.

Figure 4-8: As is the case for the Piantadosi model of the the N-knower progression,
our a straightforward implementation of the N-knower KBs in our model does not
explain the progression at a computational level.
.
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Figure 4-9: Set size frequencies used to simulate data for counting experiment.

Background Knowledge
num/1 num(𝑁) iff 𝑁 is a number word
set/1 set(𝑆) iff 𝑆 is a set
singleton/1 singleton(𝑆) iff 𝑆 is a singleton set
pair/1 pair(𝑆) iff 𝑆 is a set of size two
triple/1 triple(𝑆) iff 𝑆 is a set of size three
many/1 many(𝑆) iff 𝑆 is a set of size greater than three
succ/2 succ(one, two), succ(two, three), . . .

add_one/2
add_one(𝑆1, 𝑆2) iff 𝑆1 is the set obtained by adding a
single elements to 𝑆2.

remove_one/2
remove_one(𝑆1, 𝑆2) iff 𝑆1 is the set obtained by re-
moving a single elements to 𝑆2.

Observed Predicates

card/2
card(𝑆𝑒𝑡,𝑁𝑢𝑚𝑏𝑒𝑟) where 𝑁𝑢𝑚𝑏𝑒𝑟 is the cardinality
of set 𝑆𝑒𝑡.

Observed data
card(𝑠1,1, 𝑜𝑛𝑒).card(𝑠1,2, 𝑡𝑤𝑜).
card(𝑠1,2, 𝑡ℎ𝑟𝑒𝑒).card(𝑠1,4, 𝑓𝑜𝑢𝑟).
card(𝑠2,1, 𝑜𝑛𝑒).card(𝑠2,2, 𝑡𝑤𝑜).
card(𝑠2,3, 𝑡ℎ𝑟𝑒𝑒).card(𝑠2,4, 𝑓𝑜𝑢𝑟).

Figure 4-10: Learning scenario for counting case study.

106



0 500 1000 1500
elapsed time (sec)

800

700

600

500

400

300

200

100

−
lo

g(
p
)

(a)

0 500 1000 1500

K1

K2

K3

K4

K5

(b)

0 500 1000 1500 2000 2500 3000 3500
elapsed time (sec)

0

25

50

75

100

p
e
rc

e
n
t

(c)

NO
ONE
TWO
THREE
CP

NO
ONE

THREE

NO
ONE
CP

NO
ONE
TWO
CP

NO
ONE

THREE
CP

NO
TWO

THREE
CP

NO
ONE
TWO

THREE
CP

(d)

Figure 4-11: Results from the Counting case study. (a) Average negative loglike-
lihood of the learned theory as a function of time. The ribbon shows one standard
deviation. (b) An example of a learner who goes through all the N-knower stages.
The plot shows the negative loglikelihood of the theories 𝐾1, . . . , 𝐾5 which correspond
to learning stages no-knower, . . . ,CP-knower. The knowledge bases are shown
in Figure 4-12. (c) The percentage of learners at N-knower stage at a given point
in time. Note that sum of curves need not sum to 100 since early on a learner may
not have discovered any theory at all. (d) The percentage of learners in each of the
learning trajectories occurring in the data.
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𝐾1

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑠𝑒𝑡(𝐴), 𝑛𝑢𝑚(𝐵)
𝐾2

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ_9(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), 𝑛𝑢𝑚(𝐵)

ℓ_9(𝑜𝑛𝑒)
𝐾3

ℓ_5(𝐴,𝐵)

← 𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑝𝑎𝑖𝑟(𝐴), ℓ_10(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ_9(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐶)

← 𝑎𝑑𝑑_𝑜𝑛𝑒(𝐴,𝐵), ℓ_5(𝐵,𝐶)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑝𝑎𝑖𝑟(𝐴), 𝑛𝑢𝑚(𝐵)

ℓ_10(𝑡𝑤𝑜)

ℓ_9(𝑜𝑛𝑒)

𝐾4

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑡𝑟𝑖𝑝𝑙𝑒(𝐴), ℓ_11(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑚𝑜𝑟𝑒_𝑡ℎ𝑎𝑛_𝑡𝑟𝑖𝑝𝑙𝑒(𝐴), 𝑛𝑢𝑚(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑠𝑖𝑛𝑔𝑙𝑒(𝐴), ℓ_10(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐵)

← 𝑝𝑎𝑖𝑟(𝐴), ℓ_9(𝐵)

ℓ_11(𝑡ℎ𝑟𝑒𝑒)

ℓ_9(𝑡𝑤𝑜)

ℓ_10(𝑜𝑛𝑒)
𝐾5

ℓ_5(𝐴,𝐵)

← ℓ_9(𝐴), 𝑠𝑖𝑛𝑔𝑙𝑒(𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐶)

← ℓ_5(𝐴,𝐵), 𝑎𝑑𝑑_𝑜𝑛𝑒(𝐵,𝐶)

ℓ_5(𝐵,𝐴)

← 𝑐𝑎𝑟𝑑(𝐴,𝐵)

𝑐𝑎𝑟𝑑(𝐴,𝐶)

← 𝑎𝑑𝑑_𝑜𝑛𝑒(𝐴,𝐵), ℓ_5(𝐵,𝐶)

𝑐𝑎𝑟𝑑(𝐴,𝐶)

← ℓ_5(𝐴,𝐵), 𝑛𝑒𝑥𝑡(𝐵,𝐶)

ℓ_9(𝑜𝑛𝑒)

Figure 4-12: KBs learned in the run of Counting case study shown in Figure 4-11(b).
This learner progresses in sequences through the N-knower stages: 𝐾1 corresponds to
no-knower, 𝐾2 to one-knower, 𝐾3 to two-knower, 𝐾4 to three-knower,𝐾5

to CP-knower.
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4.5 Discussion
In this paper we have shown the IKM can be used to model several of the kinds of
systems of concepts that children learn over the first few years of life. As a whole, the
IKM unifies and generalizes many of the previous approaches to Bayes LOT models,
but there are also several ways in which it contrasts with them.

Uniform treatment of rules and “core” predicates Ullman, Goodman, and
Tenenbaum 2012 and Katz et al. 2008 make a formal distinction between “core” pred-
icates and “observable” predicates. Core predicates cannot appear as the consequence
of a rule and are represented as completely specified relations, e.g., the parent/2
core predicate is a boolean table over all pairs of entities in the domain. Given that
“unexplained” knowledge can simply be included as facts in the knowledge base, it
is not clear what this distinction buys representationally. Moreover, it seems likely
that core predicates are only provisionally so, until enough data has been observed
and enough search has been done to discover predicates that are more “core” than
the ones discovered so far. However, there may be algorithmic benefits to treating
the search over facts differently from the search over rules, especially in the regime of
larger amounts of data.

Functional vs relational representations We have already discussed how the
specific concepts studied in Piantadosi, Tenenbaum, and Goodman 2012 using a
lambda calculus representation can be equivalently represented in our knowledge base
formalism. There are, however, several advantages to using a representation based on
a functional language. First, in the case where the target relation is a function, using
a functional language reduces the hypothesis space to only those that satisfy this
property. Second, a functional language naturally allows for higher-order functions
(e.g. a function that takes another function as an argument and applies it to every
element in a set). While both of these properties could potentially be simulated in a
logic programming language, it is not clear whether the inference algorithms we have
developed will be useful in these cases.

Relatedly, as we pointed out in our discussion of 𝐾3 in the magnetism case study,
there are often higher-order properties of relations that one would either want to
learn or take as an assumption. In that example, the higher-order property was that
any definition of the predicate interacts/2 should be symmetric in its arguments.
That a predicate should be functional in one of its arguments (as in the example
card/2, in which the number word is a function of the set) is another such example.
Type level information (for example, that a given argument of a predicate must be
a word and not a physical object) is also a kind of higher-order specification. It is
not clear exactly where such higher-order properties should be learned or specified in
a concept learning model. Some of these properties, like symmetry, we can simulate
in our knowledge base formalism: e.g., if we want to specify that interacts/2 is
symmetric we can just posit that interacts(𝑋, 𝑌 ) ← interacts(Y, X) is the in
the knowledge base to begin with. But for others, like the functionality constraint,
cannot be expressed in this way.
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Negation The most glaring limitation of the model proposed here is that in its
current form it does not implement any form of explicit negation. The semantics of
the knowledge base is based on the closed world assumption, the assumption that any
fact that cannot be proven using the knowledge base is false. In logic programming
and deductive databases, a form of explicit negation called negation as failure is often
used to allow for clauses that include negated atoms in their bodies. Under negation
as failure, ¬𝑎(𝑥) is true when 𝑎(𝑥) is not in the extension of the predicate 𝑎/1. This
allows one to write rules of the form

orphan(X)← ¬parent(Y, X), (4.5)

which reads that someone is an orphan if there is no person who is their parent. These
are concepts that people can clearly express, and so any serious attempt to model
people’s conceptual learning must be able to account for it.

In the IKM, such negation-as-failure within each hypothetical knowledge would
take, from the perspective of the learner, the form of what we call negation-as-
unabduced ; by this we mean that some atom is considered false, if the learner is
unwilling to abduce the clause or clauses that would make it true. To take the ex-
ample in clause 4.5 above, suppose the learner is attempting to learn a knowledge
base that entails observed data of orphan/1 given some potentially incomplete set of
parent/2 facts, and suppose one of the observations is orphan(𝑗𝑜ℎ𝑛). Even if there
is no parent of John mentioned in the knowledge base, the learner can always use an
unnamed symbol – say, ℓ1 – to stand in for John’s parent. Therefore, being able to
prove that John is an orphan using clause 4.5 depends on the learner’s unwillingness
to abduce the fact parent(ℓ1, 𝑗𝑜ℎ𝑛).

There are a couple different reasons we have not included negation-as-failure in our
implemented model. The first is that the technology that we have used to implement
the generated knowledge bases does not yet handle negation. (As of version 7.3.34, the
tabling extension in SWI-Prolog has not implemented negation.) The second reason is
that handling negation-as-failure in our inference algorithm would require a significant
amount of complication and modification, and would likely require substantial changes
to the way in which we compute our heuristic function. Given the computational
challenges of exploring the space of knowledge bases, we decided to tackle the case in
which negation is not used before addressing the more general case.

That said, at a computational level, the IKM can be used compute posterior
probabilities of knowledge bases with negation-as-failure. To do so metarules with
negation – e.g. ∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 )← 𝐵(𝑋),¬𝐶(𝑌 ) – are simply added to the knowledge
base schema. And thus, using manually constructed knowledge bases, we can show
that negation plays an important role in account for people’s behavior when learning
relational concepts. Kemp, Goodman, and Tenenbaum 2007 used an LOT model
based on the relational knowledge bases to model how people learned six simple graph
concepts in a laboratory setting. Figure 4-13 shows the negative log probability that
our model assigns to a knowledge base for each one of these theories as a function
as we vary whether the schema includes 1) binary facts or only unary facts or 2)
negation. The presence of a binary fact is possible if the knowledge base schema
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(b) Negative log probability of hand-
written knowledge bases for each sce-
nario.

bipartite! exception!transitive!

star! random!symmetric!

(c) Graph concepts.

𝑎(𝑋, 𝑌 )← ℓ1(𝑋), ℓ2(𝑌 )

ℓ1(1).ℓ1(2).ℓ1(3).ℓ1(4).ℓ1(5).

ℓ2(6).ℓ2(7).ℓ3(8).

(d) bipartite knowledge with-
out negation.

𝑎(𝑋, 𝑌 )← ℓ1(𝑋), ℓ2(𝑌 ).

ℓ1(𝑋)← 𝑜𝑏𝑗(𝑋),¬ℓ2(𝑋).

ℓ2(6).ℓ2(7).ℓ2(8).

(e) bipartite knowledge with
negation.

Figure 4-13: Comparing IKM to empirical data from Kemp, Goodman, and Tenen-
baum 2007 with and without binary facts and negated atoms.

contains a rule of the form ∃𝐴𝑋𝑌.𝐴(𝑋, 𝑌 ); if not a binary fact may be proven by
a rule created with the metarule ∃𝐴𝐵𝐶.𝐴(𝑋, 𝑌 ) ← 𝐵(𝑋), 𝐶(𝑌 ) along with some
unary facts. If we take the learning times and complexity ratings as proxies for the
probability of the theories that subjects learn, we see that the IKM matches best
when binary facts are not included and when negated atoms are used. The effect
of negation is important because it plays an important role in the bipartite and
exception theories (exception is just bipartite with some noise injected into
it). Figures 4-13e and 4-13e show the manually written knowledge bases for the the
bipartite theory with and without negation, respectively. The use of negation allows
for a much more compact knowledge base.

Full first-order logic vs. logic programming The model proposed in Kemp,
Goodman, and Tenenbaum 2008 opted for the expressivity of full first-order logic
(FOL). Our decision to use Datalog for our knowledge base formalism is motivated
both by practical and theoretical considerations, and these considerations are largely
the same as those that drove most practitioners in AI to search for restricted logics
in which to express common-sense knowledge: FOL is undecidable, it is difficult to
read and write, and it requires a automated theorem prover for reasoning (which are
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fragile, computationally demanding, and usually require interaction with an expert
user). Additionally, FOL expressions can very easily be inconsistent – i.e. one can
derive that some fact is both true and not true – and so modifying a knowledge base
with FOL expressions means always checking the entirety for consistency. This is
not the case in knowledge base formalisms, like Datalog, in which rules only tell you
what is true, not what is false. For our purposes, which are focused on exploring
algorithmic plausibility of Bayes LOT models, reasoning about a given expression
in the LOT is just the inner loop in the search over expressions. This puts special
pressure on the reasoning problem itself being relatively reliable and cheap.

Incremental hypothesis generation vs. stochastic local search We have
discussed how inference IKM can be framed as state-space inference over a space
of partial explanations of a data set, guided by a heuristic function. This is a very
different approach from the majority of Bayes LOT approaches that use a form of
stochastic local search to explore the hypothesis space. This dichotomy is a familiar
AI, operations research, and combinatorial search, fields where there are vast and
discrete space of possible solutions to a problem. Stochastic local search, which
moving in a biased random walk, from one complete solution to another, is intuitive
and easy to use. And, since it explores the hypothesis space broadly, it allows for
approximate marginalization over the entire space of hypotheses (as opposed to MAP
inference which only finds one or a few solutions).

But this approach is clearly not appropriate for many of the reasoning problems
in which cognitive scientists are interested. People do not plan their actions by incre-
mentally modifying a randomly chosen set of actions, and they do not write papers
by proposing random strings of words until they happen upon one that means what
they intend. It is plausible, then, that concept learning in language of thought also
requires more than a stochastic search through the space of mental representations.

Why is concept learning possible for humans? When framed as a search
problem over expressions in a language of thought, it becomes clear that concept
learning over richly structured domains should be an extremely challenging problem.
It is remarkable that it is possible at all. After all, as far as anyone can tell, no
other animal is capable of acquiring such concepts. What can our concept learning
approach here tell us, then, about why it is even possible for humans to acquire these
concepts?

The work we have presented here suggests that the domain-generality of a learning
approach – the degree to which it can be applied to disparate domains – is not
equated with its simplicity. That is, just because a concept learning approach can
be applied to any domain of problem does not necessarily mean that it must be in
some sense “blind.” The domain-general heuristic function employed by the IKM
algorithm are complex, and this complexity does not emerge – as in Neural Networks
– from a large number of uniform operations. Rather, IKM depends on the careful
coordination of multiple data-structures and multiple search operators applied to a
suitable representation language.
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Therefore, it may not be implausible that evolution has only stumbled on such a
coordination of computation components only once so far. On this view, what makes
domain-general concept learning possible for humans and not for other animals is
not any particular representation language or computational ability, but a suitable
domain-general learning algorithm for searching the space of expressions in a language
of thought.

Why is concept learning so hard? Why does it take so long? While concept
learning is certainly possible for humans, it is clearly quite difficult. The case-study
domains in this work take children many years to master. If the IKM is to be an
account of human-like concept learning, what are we to make of the quickness with
which it learns these concepts in these case-studies. Or, put otherwise, if the IKM
can learn these concepts so quickly, why does it take children so long?

To some extent, the apparent speed of learning in these case-studies is the result
of a methodological bias: we deliberately simplified the domains we studied. On the
one hand, we want to use domains that are complex enough to capture the richness
of the knowledge that children learn. But the development and study of learning
algorithms would be severely limited if we could not quickly evaluate our techniques.
Children learn a vast number of domains of knowledge at once, in a much more
noisy environment than any of our case-studies capture. Heuristic search techniques
make search faster by reducing the exponent on the runtime of algorithms whose
run-times are otherwise exponential in size of the target solution and the branching
factor of the search space; therefore, it should not be surprising that even with the
best heuristics, even small increases in the complexity of the domain should lead to
very large increases in search difficulty.

And yet this explanation is not quite satisfactory, for it does not explain why even
though it takes children a very long time to learn, say, the meaning of the kinship
concepts, that these concepts are eventually learned at a relatively young age is more
or less certain. Notably, none of the models we discuss in this work have a pedagogical
component; there is no feedback loop with a teacher that can guide the learner in
any way. And while this may seem to be a reasonable elision for models of concept
learning in very young children, it may be a critical omission when describing the
progression of concept learning over the course of childhood.
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Chapter 5

Afterword

In this thesis, we have presented two models of concept learning within the Bayes
LOT framework, with the goal of tackling some of algorithmic challenges associated
with learning in such models. First, we presented a model of learning as a search
over the space of functional programs; we showed that our Exploration-Compression
algorithm can learn and take advantage of the structure latent in a domain, reshaping
the search space by discovering and caching useful recurring fragments. Our second
model, the Infinite Knowledge Base Model (IKM), is a model of learning as a search
over the space of first order relational knowledge bases. We framed learning in the
IKM as a state space search over abductive proofs.

The technical core of this thesis has to do with automatically synthesizing pro-
grams. Finding methods for automatically synthesizing programs is a long sought
after goal of the computational sciences. Despite major advances in search and op-
timization over the last century, it is safe to say that we have made little progress
in understanding how to explore hypothesis spaces of structured and compositional
expressions. Statisticians have algorithms to fit the parameters of their models, but
first they must specify the structure of the model. Scientists run simulations to test
their theories, but coming up with the theory is left to the scientists alone. In some
cases, mathamaticians use theorem provers to help find proofs of their theorems, but
they do not use them to suggest the theorems themselves. And none of this is for
lack of effort.

If the Bayes LOT hypothesis is correct, as we believe it is, then automated program
synthesis is a fundamental problem for cognitive science as well. Our goal in this
thesis has been to move us in that direction, by a) specifying Bayes LOT models
that expose the vastness of the hypothesis space with which every child is faced and
by b) exploring algorithmic principles that take advantage of the the structured and
compositional character of these representation languages.

As discussed throughout this thesis, much of the previous work on the Bayes
LOT hypothesis has been at David Marr’s computational level of analysis: it has
argued that the human learner effectively behaves as rational Bayesian learner who
faces a prior distribution over expressions in a language of thought and who wishes
to understand the world in terms of those expressions. As this thesis demonstrates,
going beyond this level of analysis to the algorithmic level is challenging. But even
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if we are not able to describe a practicle or realizable algorithm for learning in a
Bayes LOT model, understanding how such an algorithm might work is important
for cognitive science.

To make an analogy to another branch of the natural sciences: although we are
unable to simulate in our computers the evolution of organisms on any significant
scale, our current understanding of evolution goes well beyond the “computational”
level statement that organisms evolve to optimize their fitness. We understand it
at an “algorithmic” level; for example, we know that evolution is driven by genetic
recombination and random mutations. This allows us to understand natural phenom-
ena (like speciation) and guides our scientific explorations of the “implementation”
level, whether in terms of mating behaviors or the structure of the genome.

We hope that, similarly, a better understanding of the principles of learning in
Bayes LOT models provides us with insight into such diverse issues as the peculiar
dynamics of learning, the nature of pedagogy and the role of language in cognition.
For we think that this work makes clear that, at least for humans, learning cannot
be ascribed a passive metaphore in the mind; it cannot be merely the consolidation
of memories or the tuning of neural weights or the pruning of connections. Any
mechanism that is capable of effectively exploring expressions in the language of
thought is unlikely to leave any other aspect of mental life unaffected.
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Appendix A

EC as variational inference in a
hierarchical probabilistic model over
functional programs

In this section, we show how the ec algorithm can be seen as implementing an
approximate variational inference algorithm in a hierarchical probabilistic model over
functional programs. The probabilistic model we employ is largely the same as the one
presented in Liang, Jordan, and Klein 2010. In particular, expressions are assumed to
be generated from an adaptor grammar (Johnson, Griffiths, Goldwater, et al. 2007).
An adaptor grammar is a stochastic generative process over trees 𝑇1, 𝑇2, . . . with the
property that subtrees generated in the past are more likely to be generated in the
future. Thus, like many non-parametric Bayesian processes based on the Dirichlet
process, they exhibit a “rich gets richer” dynamic. One way to think of an adaptor
grammar is as a PCFG that stochastically memoizes the subtrees it generates: each
time a subtree is generated, there is some probability that this subtree is added to the
grammar as an atomic production. And the probability of using a previously cached
subtree increases the more it has been previously used.

The adaptor grammar implements precisely the intuition that motivates our ap-
proach to multitask program synthesis: in the context of generating expressions in a
programming language, the programmer’s library functions is her finite approxima-
tion to the most high probability elements of the adaptor grammar’s latent collection
of cached subtrees.

Liang, Jordan, and Klein 2010 propose a Metropolis-Hastings algorithm for an
adaptor grammar over functional programs. This sampling-based approach relies on
the previously described representation of adaptor grammar as a process that sequen-
tially generates programs and stochastically reusing frequently used subexpressions.
In this representation, which we will call the sequential representation of the adaptor
grammar, there is an explicit dependency between previously generated trees and
those generated in the future. However, as shown in Cohen, Blei, and Smith 2010,
there is also non-sequential stick-breaking representation of the adaptor grammar that
makes these dependencies implicit by introducing a latent (infinitely large) collection
of expressions conditioned on which the 𝑇𝑖 are i.i.d. The stick-breaking representation

117



makes an iterative variational inference approach feasible.

Variational inference is a general framework for approximate inference in proba-
bilistic models. The general setting is that the learner wants to estimate 𝑝(𝑧|𝑥), the
conditional distribution of some latent variables 𝑧 given some observed data 𝑥, but
only has access to the joint distribution 𝑝(𝑥, 𝑧). In the common case that computing
𝑝(𝑧|𝑥) directly in not feasible, the learner attempts to find a distribution 𝑞 = 𝑞(𝜑)
from among the family of distributions 𝑄 which is “close” to 𝑝(𝑧|𝑥. Specifically, the
goal is to find 𝑞 = arg min𝑞∈𝑄 KL(𝑞(𝑧)||𝑝(𝑧|𝑥)), where 𝐾𝐿(·||·) is the KL divergence.
The mean-field approximation is a very common approach to variational inference
and is obtained by specifying 𝑄 as a product of independent distributions where
𝑞(𝑧;𝜑1, . . . , 𝜑𝐹 ) = 𝑞1(𝑧1;𝜑1) . . . 𝑞𝐹 (𝑎𝐹 ;𝜑𝐹 ) and 𝑧 = 𝑧1 ∪ · · · ∪ 𝑧𝐹 . Specifically, we can
use the general mean-field update equations:

𝑞𝑗(𝜑𝑗)←
expE𝑞𝑖 ̸=𝑗

[log 𝑝(𝑥, 𝑧)]∫︀
𝑑𝜑𝑗 expE𝑞𝑖 ̸=𝑗

[log 𝑝(𝑥, 𝑧)]
. (A.1)

Procedurally, mean-field variational inference can be implemented by cycling through
the factors of the approximating the distribution and, for each factor, estimating its
parameter values by taking an expectation over all the other factors, using Equa-
tion A.1.

Let A be an adaptor grammar with base grammar G0, adapted non-terminals M ,
discount parameter 𝑏, concentration parameter 𝑎 and a set of Dirichlet parameters
𝛼. The base grammar G0 is a context free grammar with terminals W , nonterminals
N , production rules 𝑅, and a start symbol 𝑆. The set of rules with left hand side
non-terminal 𝐴 will be denoted 𝑅𝐴.

In the non-sequential representation, derivation trees 𝑧 for expressions are sam-
pled as follows. For each adapted nonterminal 𝐴 ∈ M , we sample the vector 𝜋𝐴 =
𝜋𝐴,1, 𝜋𝐴,2, . . . where

∑︀
𝑖 𝜋𝐴,𝑖 = 1 from 𝐺𝐸𝑀(𝑎𝐴, 𝑏𝐴). This vector is then used to de-

fine a categorical distribution over expressions 𝑢𝐴 = 𝑢𝐴,1, 𝑢𝐴,2, . . . where each 𝑢𝐴,1 is
itself sampled from the adaptor grammar; see 7. Finally, the derivation trees for each
task 𝑧1, . . . , 𝑧𝑁 are sampled by additional independent calls to the adaptor grammar.
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Algorithm 7: Generative process for sampling derivation trees from adaptor
grammar based on stick-breaking construction of GEM process
Def AgGenTree(𝐴):

draw 𝐴→ 𝐵1 . . . , 𝐵𝑁 from 𝑅𝐴 with probability 𝜃𝐴
𝑧 ← 𝐴=⇒ 𝐵1 . . . , 𝐵𝑁

while yield(𝑧) contains nonterminals do
𝐵 ← unexpanded nonterminal in 𝑧
if 𝐵 ∈ M then

replace 𝐵 with a draw from 𝐺𝐴

else
expand 𝐵 from 𝑅𝐵 with probabilities 𝜃𝐵

end
end
return z

Def AgGenGrammar(𝐴):
𝜋|𝑎𝐴, 𝑏𝐴 ∼ GEM(𝑎𝐴, 𝑏𝐵)
for 𝑖 ∈ 1, . . . do

𝑧𝑖 ← AgGenTree(𝐴)
end
return Categorical({𝑧1, . . . }, 𝜋̄)

Def AgGenGrammar:
for 𝐴 ∈ M do

G𝐴 ← AgGenGrammar(𝐴)
end
return G𝐴 for 𝐴 ∈ M

Def AgGenExpressions:
for 𝑖 ∈ 1, . . . , 𝑁 do

if 𝑆 ∈ M then
𝑧𝑖 ∼ G𝑆

else
𝑧𝑖 ∼ AgGenTree(𝑆)

end
end
return {𝑧1, . . . , 𝑧𝑁}

In the context of learning programs, the variables of interest 𝜋, 𝜃, 𝑢 and 𝑧. Instead
of directly dealing with the normalized vector 𝜋𝐴, it is more convenient to deal with
the unnormalized proportions 𝑣𝐴, where 𝜋𝐴,𝑖 = 𝑣𝐴,𝑖

∏︀
𝑗<𝑖(1 − 𝑣𝐴,𝑗) because each 𝑣𝐴,𝑗

is independently distributed from the Beta distribution Beta(1 + 𝑎𝐴, 𝑎 + 𝑖𝑏). To
generate a mean-field variational distribution over these variables, we describe the
space of variational approximations 𝑄 as the product of independent distributions
over these variables:
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𝑄 = {
∏︁
𝐴

𝑞𝜃(𝜃𝐴; 𝜏𝐴)
∏︁
𝑖

𝑞𝑣(𝑣𝐴,𝑖|𝛾(1)
𝐴,𝑖, 𝛾

(2)
𝐴,𝑖)
∏︁
𝑗

𝑞𝑢(𝑢𝑗|𝜑(𝑢))
∏︁
𝑗

𝑞𝑧(𝑧𝑗|𝜑(𝑧))| (A.2)

𝑞𝜃(·|𝜏) ∼ Dirichlet(𝜏) (A.3)

𝑞𝑣(·|𝛾(1), 𝛾(2)) ∼ Beta(𝛾(1), 𝛾(2)) (A.4)
𝑞𝑢(·|𝜑) ∼ PCFG(∆, 𝜑) (A.5)
𝑞𝑧(·|𝜑) ∼ PCFG(∆, 𝜑)}. (A.6)

Given this family of approximating distributions, we derive the variational update
equations using Equation A.1, where the target joint probability distribution 𝑝 =
𝑝(𝑡, 𝑧, 𝑢, 𝜋, 𝜃; 𝑎, 𝑏, 𝛼).

The distributions 𝑞𝑧 and 𝑞𝑢 are drawn from a common PCFG 𝐺′ with production
probabilities 𝜑 and production rules 𝑅′, and for this distribution, Johnson et al 2005
and Cohen et al 2010 use a set of rules derived in a bottom-up fashion from the
string or strings under consideration. In our case, however, there is no set of strings
from which these PCFGs can be derived. Let 𝑅𝐴 be the set of rules in 𝑅 with head
nonterminal 𝐴. Then, we specify the rules

𝑅′
𝐴 = 𝑅𝐴 ∪ {𝐴→ 𝛽1 . . . 𝛽𝑁 |𝐴← 𝐵1 . . . 𝐵𝑁 , (A.7)

𝛽1 ∈ yield(𝐵1), . . . , 𝛽𝑁 ∈ yield(𝐵𝑁)} (A.8)

Where define the yield of a nonterminal to be all possible derivation trees that are
rooted at that nonterminal. So 𝑅′

𝐴 contains all the rules headed by nonterminal 𝐴
in 𝑅𝐴 plus the potentially infinite set of rules whose right hand side is a string of
terminals that could be generated by the right hand side of some rule in 𝑅𝐴.

When computing the expected number of time the rule 𝐴 → 𝑢𝑖 is used in some
derivation 𝑧, 𝑓(𝐴 → 𝑢𝑖, 𝑧), we must compute an approximate expectation, which
we do by enumerating a finite number of derivations. However, for any task whose
solutions are of a nontrivial length, we must do this in such a way that there is
a good probability that we will actually find expressions that solve our task. The
approach that ec takes is to perform a best-first search on the distribution over
parse trees imposed by current variational approximation. If we also wish to have
cached expressions of non-trivial size, then we must allow both the parameters and the
production rules themselves to change as the approximation continues. Otherwise, to
use a cached subexpression containing 𝑁 nodes, we would need to store 𝑂(exp(𝑁))
production rules in our approximate PCFG.

Suppose that at some iteration 𝑘 in our variational inference procedure we have an
approximate PCFG with rules ∆ and production probabilities Φ. Let BF(𝑁,∆,Φ)
be the 𝑁 derivation trees returned by the best-first search of derivations trees. Then
for each derivation tree 𝑧 ∈ BF(𝑁,∆,Φ), we can compute the approximate expected
counts 𝑓(𝑢𝐴) of cached expression 𝑢𝐴, rooted at adapted nonterminal 𝐴. Instead of
considering only those derivation trees produced by the best-first enumeration, we
want to consider expressions that are not in our approximate grammar as well. Let
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𝑈𝐴 = BF(𝑁,∆,Φ) contain any span that can be rooted by adapted nonterminal 𝐴
and that is not a right hand side for some rule in ∆ and is contained in some derivation
in BF(𝑁,∆,Φ). Let ∆′ be a set of PCFG rules augmented with this set of 𝑈 :

∆′ , ∆ ∪ {𝐴→ 𝑢|𝐴 ∈𝑀,𝑢 ∈ 𝑈}. (A.9)

To initialize the corresponding production probabilities Φ′ for the new rules, we ex-
tend 𝛾1 and 𝛾2 for the corresponding expressions and recompute the Φ′ parameters
accordingly.

𝛾1′ = 𝑓𝛾1([𝑓(𝐴→ 𝑢𝐴)|0, |𝑈 |. . . , 0] (A.10)

𝛾2′ = 𝑓𝛾2([𝑓(𝐴→ 𝑢𝐴)|0, |𝑈 |. . . , 0] (A.11)

𝜑′ = 𝑓𝜑(𝛾1′, 𝛾2′). (A.12)

Now we can compute the expected rule counts using this augmented grammar. There
are two components to the expected rule counts. For a given rule 𝑟, we want to count
the expected number of times it used in generating the tasks 𝑡 and the expected
number of times it is used in generating the cached subexpressions 𝑢. The former we
can do using the Inside-Outside algorithm.

The latter distribution, 𝑞𝑢, is not conditioned on the tasks, so we just compute the
unconditional expectation over the 𝐾 independently drawn subexpressions for each
adapted nonterminal 𝐴 ∈𝑀 . Let 𝑐 be a matrix where 𝑐𝐴,𝑟 is the expected number of
occurrences of rule 𝑟 in a derivation tree with root 𝐴. Let 𝜑𝐴,𝑟 be the probability of
expanding a nonterminal 𝐴 using rule 𝑟 and 𝑁𝑟,𝐴 be the number of times nonterminal
𝐴 occurs on the right hand side of rule 𝑟. Then 𝑐 is solution to 𝜑 = 𝑐(1− (𝜑𝑁)𝑇 ).

The adaptor grammar inference procedure places pressure on the estimated dis-
tribution in two ways. First, larger cached subexpressions are preferable to shorter
ones: consider an expression 𝑒 corresponding to a binary tree of all of whose subtrees
are distinct (e.g. the leaves are numbered 1, 2, . . . ), and suppose that we are com-
puting the expected counts of rules used to derive this expression where the rules are
{𝑆 → (𝑆 𝑆)} ∪ {𝑆 → 𝑢|𝑢 is a subexpression of𝑒} and all rule probabilities are equal.
Then the rule count rule 𝑆 → 𝑢𝑛 where 𝑢𝑛 is a subexpression of height 𝑛 will have
twice the expected count of the rule 𝑆 → 𝑢𝑛−1. The second pressure comes from
the 𝐺𝐸𝑀 prior over stick-breaking proportions: the prior accentuates the differences
between subexpressions. These two tendencies together mean that the approximate
posterior will try to put its weight on large rules that occur frequently, and that,
where, there are multiple similar rules, the posterior will concentrate its mass on one
or a few of these rules, rather than keep it spread out.
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Algorithm 8: ec as mean-field variational inference over an Adaptor Grammar
Data: 𝑅: rules; 𝑅𝐴 rules with left hand side 𝐴
𝑁 : nonterminals; 𝑀 : adapted nonterminals
𝑎; 𝑏; 𝛼
𝑁𝐹 : frontier size
� initialization
for 𝐴 ∈ 𝑁 do

∆𝐴 ← 𝑅𝐴

end
initialize 𝑓 to zeros
𝜑← 𝑔𝜏 (𝑟; 𝑓,∆)
� loop
while not converged do

𝐹 ← BF(𝑁𝑓 ,∆, 𝜑)� explore frontier of 𝑁𝐹 expressions
for task 𝑧𝑖 do

𝐹𝑖 ← {𝑒|𝑒 ∈ 𝐹, 𝑧𝑖(𝑒)}
end
𝐹 ← ∪𝑖𝐹𝑖

for every subexpression 𝑢 of an expression 𝑒 ∈ 𝐹 do
insert 𝐴→ 𝑢 into ∆𝐴 at smallest unoccupied index

end
𝜑← 𝑔(𝑓,∆) � compute 𝜑 for new rules
for 𝑟 ∈ ∆ do

𝑓𝑟 ← E𝐹 [𝑟|∆, 𝜑]� compute expected rule counts
end
𝜑← 𝑔(𝑓,∆) � compute new production probabilities
for 𝐴 ∈𝑀 do

∆𝐴 ← first 𝐾 𝑟 ∈ ∆𝐴 sorted in descending order of 𝜑𝑟

end
end
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𝑔𝛾1(𝑟 = 𝐴→ _; 𝑓,∆) = 1− 𝑏𝐴 +
∑︁
𝑟∈Δ𝐴

𝑓𝑟 (A.13)

𝑔𝛾2(𝑟 = 𝐴→ _; 𝑓,∆) = 𝑎𝐴 + 𝑖𝑟𝑏𝐴 +
∑︁

𝑟′∈Δ𝐴

1(𝑖′𝑟 < 𝑖𝑟)𝑓
′
𝑟 (A.14)

where 𝑖𝑟 = index of rule 𝑟 in ∆𝐴 (A.15)
𝑔𝜏 (𝑟; 𝑓) = 𝛼𝐴 + 𝑓𝑟 (A.16)

𝑔𝜑(𝑟 = 𝐴→ _; ∆, 𝛾1, 𝛾2, 𝜏) =

{︃
Ψ(𝛾1

𝑟 )−Ψ(𝛾1
𝑟 + 𝛾2

𝑟 ) +
∑︀

𝑟′∈Δ𝐴
(Ψ(𝛾2

𝑟′)−Ψ(𝛾1
𝑟′ + 𝛾2

𝑟′)), if 𝐴 ∈𝑀

Ψ(𝜏𝑟)−Ψ(
∑︀

𝑟′∈Δ𝐴
𝜏 ′𝑟), otherwise

(A.17)
𝑔(𝑟; 𝑓,∆) = 𝑔𝜑(𝑟; ∆, 𝑔𝛾1(𝑓,∆), 𝑔𝛾2(𝑓,∆), 𝑔𝜏 (𝑓)) (A.18)

Figure A-1: Update functions for mean-field variational inference

𝑞𝑧(𝑧|𝑡,∆′, 𝜑′,∆, 𝜑) ∝ 1(𝑒 ∈ BF(𝑁,∆, 𝜑))1(yield(𝑧) = 𝑒)1(𝑡(𝑒))𝑞𝑧(𝑧|∆′, 𝜑′) (A.19)

𝑓(𝐴→ 𝑢|∆, 𝜑) =
∑︁
𝑡,𝑧

∑︁
𝐴→𝑢∈𝑧

𝑞𝑧(𝑧|𝑡,∆′, 𝜑′,∆, 𝜑) (A.20)

+
∑︁
𝐵∈𝑀

∑︁
𝐵→𝑢′∈Δ′

E 𝑟 ∈ 𝑧 :
yield(𝑧) = 𝑢′

[1(𝑟 = 𝐴→ 𝑢)|∆′, 𝜑′] (A.21)

(A.22)

Finally, we compute new 𝛾 parameters from these expected counts, which we then
sort and truncate to 𝑇 values. That gives us the 𝛾 values for the next iteration.

Additionally, we need to decide which rules in 𝑅′
𝐴 will correspond to the pa-

rameters 𝛾𝐴,𝑖. We do this according to the heuristic that larger stick proportions
should be assigned to the rules that have the largest expected counts. This leads us
to the following procedure: a) compute the expected counts 𝑓𝑟𝑖 for rules 𝑟𝑖, b) set
𝛾𝐴,1, . . . , 𝛾𝐴,𝐾 = sort{𝑓𝑟1 , . . . , 𝑓𝑟𝐾}. Note that we compute the expected counts for
some rule 𝑓𝑟 for every 𝑟 that appears in our enumeration of derivations, and not only
those 𝑟’s that already have a variational parameter assigned to them. But for any
rule 𝑟 that is not included in the variational parameters on iteration 𝑗, we assign the
default variational parameters 𝛾

(1)
𝑟 = 1− 𝑏𝐴 and 𝛾

(2)
𝑟 = 𝑎ℎ(𝑟) + 𝐾𝑏ℎ(𝑟) +

∑︀
.

To apply mean-field variational inference when inferring these variables, we fac-
torize as these latent variables as

𝑞(𝜃, {𝑧𝐴,𝑖}𝐴,𝑖, 𝜋𝐴, {𝑧𝑖}𝑖) = 𝑞tasks({𝑧𝑖}𝑖)𝑞G({𝑧𝐴,𝑖}𝐴,𝑖)𝑞𝜋(𝜋)𝑞𝜃(𝜃) (A.23)

where 𝑞tasks and 𝑞G({𝑧𝐴,𝑖}𝐴,𝑖) are categorical distributions over parse trees and 𝑞𝜋 and
𝑞𝜃 Dirichlet distributions.
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In practice, it is necessary to limit the cached parse trees 𝑧𝐴,𝑖 to a finite, and
preferably small, number.

A.1 Circuit Distribution
The procedure for sampling circuits for Experiment 1 of Section 2.6.1 is as follows:

1. sample the number of Boolean inputs 𝑁 according to discrete distribution
𝑁 1 2 3 4
𝑝(𝑁) ∝ 1 2 4 4

2. sample the number of gates 𝑀 according to discrete distribution 𝑀 1 2 3 4 5 6
𝑝(𝑀) ∝ 1 3 4 4 5 5

3. the output of the 𝑀th gate is considered the output of the circuit

4. until there are not unconnected inputs in the circuit, connect an arbitrarily
selected output to an unconnected input
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