
On the trade-offs of width and height
of Pseudo-trees

&
AND/OR Beam Search

Héctor Otero Mediero - 66558358

CS199: Individual Study - Rina Dechter

Topics covered

1. Introduction to Graphical Models
2. Bayesian Networks (Belief Upd, MPE and MAP)
3. Exact Inference: Bucket Elimination
4. AND/OR Search Spaces
5. Approximation algorithms
6. Mini-Bucket heuristic Search

Topics covered

7. Finding good variable orderings: IGVO,
Complete algorithm for treewidth, Enumerating
Minimal Triangulations.

8. Trade-offs between height and width.
9. AND/OR Beam Search and Stochastic AND/OR
Beam Search.

Topic 1:
Height vs Width

Trade-offs

Height-Width trade-offs on pseudo-trees
- Pool of pseudo-trees generated by Enumerating minimal

triangulations of a graph. [Nofar Carmeli, Batya Kenig and Benny Kimelfeld. Efficiently Enumerating
Minimal Triangulations. 2017]

- Compare orderings that generate pseudo-trees with
different heights and widths.

Bounds for the height and width
h ≤ w log n → h/w ≤ log n

h ≥ w → h/w ≥ 1

1 ≤ h/w ≤ log n

Variability of the orderings (I)

Variability of the orderings (II)

Hypothesis #1

For trees of the same width, a lower height of the
trees is better.

Motivation (I)

Motivation (II)
Dead caches h = w.
If h = w + δ with δ small, we’re almost in the case
where we don’t have to cache -> faster
With δ large, we need to check the cache multiple
times to check the same problem -> slower.

To check the first hypothesis, we plot the
execution times for AOBF caching the
results on pseudo-trees of equal width
and different height.

Characteristics of the networks

Same width - different height
Family2Dominant.1.5loci Family2Dominant.20.5loci BN_0

Same width - different height
BN_1 503.wcsp

Same width - different height
- Architecture-dependent

- Pedigree and some examples in BN show better
results for shallower pseudo-trees.

- Some BN and WCSP don’t.

Hypothesis #2
We can use the ratio to generalize for the cases
that seem to fulfill the Hypothesis #1.

For these cases, the smaller the ratio, the better
the execution time.

We plot the same execution times of AOBF
caching and not caching against the width of the
ordering and the ratio.

Width-time vs ratio-time (caching) - BN

Width-time vs ratio-time (no caching) - BN

Width-time vs ratio-time (caching) - Pedigree

Width-time vs ratio-time (caching) - Or chain

Width-time vs ratio-time (caching) - WCSP

Width-time vs ratio-time

- If width is representative, use width.

- If it’s not, use ratio to choose among orderings.

- Problem-dependent

Future work
- Execute same orderings with AOBB

- Execute distributed version of the algorithms.

Topic 2:
AOBeam &

Stochastic AOBeam

Beam Search
- Parameterized by β, beam width.

- At each step of the algorithm we open the best
β nodes in terms of the heuristic value.

Beam Search
- Doesn’t guarantee completeness or optimality.

- Moreover, it’s not monotonic with respect to the
β parameter.

Beam Search - Monotonicity
β = 2; c(sol) = 6 β = 3; c(sol’) = 9

Beam Search - AND/OR Spaces
Adaptation to AND/OR spaces is necessary since:

- Every child of an AND node has to be included.

- For each OR node, we need at least one node
in the solution.

Beam Search - AND/OR Spaces
Adaptation -> OR-pruning:

For each OR node, include in the space only the
most promising β children.

Motivation
AND/OR Best First Search weaknesses:

- Memory Issues
- Bounds the solution pretty slowly.

AND/OR Beam Search:
- Less memory usage
- More aggressive pruning sacrifices optimality

and completeness but generates bounds faster.

Task computed & algorithms executed
MPE on different UAI inference challenge domains
(Pedigree, WCSP, Segmentation, Object
detection…)

William Lam’s version of DAOOPT that includes
AOBF and AOBB.

AOBeam vs AOBF vs AOBB

AOBeam vs AOBF vs AOBB

AOBeam vs AOBF vs AOBB

AOBeam vs AOBF vs AOBB

AOBeam vs AOBF vs AOBB

Comparison with AOBF

- AOBeam prunes faster allowing for faster
bounding of the solution.

- The bounding of the solution doesn’t happen as
fast as we thought.

Stochastic AOBeam
Idea: reduce the value of β and improve the
pruning heuristic

Besides the β-best nodes, include every other node
with a probability proportional to its heuristic value.

Stochastic AOBeam
For h’s that are upper bounds.

For h’s that are lower bounds.

Stochastic AOBeam
Besides, add an α that adds up to this probability:

p’(n) = p(n) + α

Allows for tuning of the pruning policy.

Stochastic AOBeam (β = 1, α=0) vs AOBeam (β = 2) vs AOBF

Stochastic AOBeam (β = 1, a = 0) vs AOBeam (β = 2) vs AOBF

Stochastic AOBeam (β = 1, a = 0) vs AOBeam (β = 3) vs AOBF

Stochastic AOBeam (β = 1, a = 0.05) vs AOBeam (β = 3) vs AOBF

Anytime AOBeam (Theoretical)
Stochastic AOBeam + Anytime ideas

Weaken pruning policy each iteration by:
a) Increasing the value of β (may be too

expensive)
b) Increasing the value of α

Anytime AOBeam

Conclusions
- AOBeam’s pruning is beneficial but it’s not as

aggressive as first thought.

- Alternatives should be found to overall have
only β open paths overall.

Future work
- Vary α or β during the execution. Allows for

faster pruning.
- Make AAOBeam incremental. Using the updated
values found in previous searches as heuristics.

This is the end…

Thanks!

