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Topics covered

1. Introduction to Graphical Models 
2. Bayesian Networks (Belief Upd, MPE and MAP)
3. Exact Inference: Bucket Elimination 
4. AND/OR Search Spaces
5. Approximation algorithms
6. Mini-Bucket heuristic Search



Topics covered

7. Finding good variable orderings: IGVO, 
Complete algorithm for treewidth, Enumerating 
Minimal Triangulations.

8. Trade-offs between height and width.
9. AND/OR Beam Search and Stochastic AND/OR 
Beam Search.



Topic 1: 
Height vs Width

Trade-offs



Height-Width trade-offs on pseudo-trees
- Pool of pseudo-trees generated by Enumerating minimal 

triangulations of a graph. [Nofar Carmeli, Batya Kenig and Benny Kimelfeld. Efficiently Enumerating 
Minimal Triangulations. 2017]

- Compare orderings that generate pseudo-trees with 
different heights and widths. 



Bounds for the height and width
h ≤ w log n   → h/w ≤ log n 

h ≥ w → h/w ≥ 1

1 ≤ h/w ≤ log n 



Variability of the orderings (I)



Variability of the orderings (II)



Hypothesis #1

For trees of the same width, a lower height of the 
trees is better.



Motivation (I)



Motivation (II)
Dead caches h = w.
If h = w + δ with δ small, we’re almost in the case 
where we don’t have to cache -> faster
With δ large, we need to check the cache multiple 
times to check the same problem -> slower.



To check the first hypothesis, we plot the 
execution times for AOBF caching the 
results on pseudo-trees of equal width 
and different height. 



Characteristics of the networks



Same width - different height
Family2Dominant.1.5loci   Family2Dominant.20.5loci BN_0



Same width - different height
BN_1 503.wcsp



Same width - different height
- Architecture-dependent

- Pedigree and some examples in BN show better 
results for shallower pseudo-trees.

- Some BN and WCSP don’t.



Hypothesis #2
We can use the ratio to generalize for the cases 
that seem to fulfill the Hypothesis #1.

For these cases, the smaller the ratio, the better 
the execution time. 



We plot the same execution times of AOBF 
caching and not caching against the width of the 
ordering and the ratio.



Width-time vs ratio-time (caching) - BN



Width-time vs ratio-time (no caching) - BN



Width-time vs ratio-time (caching) - Pedigree



Width-time vs ratio-time (caching) - Or chain



Width-time vs ratio-time (caching) - WCSP



Width-time vs ratio-time

- If width is representative, use width.

- If it’s not, use ratio to choose among orderings.

- Problem-dependent



Future work
- Execute same orderings with AOBB

- Execute distributed version of the algorithms. 



Topic 2: 
AOBeam & 

Stochastic AOBeam



Beam Search
- Parameterized by β, beam width.

- At each step of the algorithm we open the best 
β nodes in terms of the heuristic value.  



Beam Search
- Doesn’t guarantee completeness or optimality.

- Moreover, it’s not monotonic with respect to the 
β parameter. 



Beam Search - Monotonicity
β = 2;  c(sol) = 6        β = 3; c(sol’) =  9



Beam Search - AND/OR Spaces
Adaptation to AND/OR spaces is necessary since: 

- Every child of an AND node has to be included.

- For each OR node, we need at least one node 
in the solution. 



Beam Search - AND/OR Spaces
Adaptation -> OR-pruning:

For each OR node, include in the space only the 
most promising β children.



Motivation 
AND/OR Best First Search weaknesses:

- Memory Issues 
- Bounds the solution pretty slowly. 

AND/OR Beam Search:
- Less memory usage
- More aggressive pruning sacrifices optimality 

and completeness but generates bounds faster.



Task computed & algorithms executed
MPE on different UAI inference challenge domains 
(Pedigree, WCSP, Segmentation, Object 
detection…)

William Lam’s version of DAOOPT that includes 
AOBF and AOBB.



AOBeam vs AOBF vs AOBB



AOBeam vs AOBF vs AOBB



AOBeam vs AOBF vs AOBB



AOBeam vs AOBF vs AOBB



AOBeam vs AOBF vs AOBB



Comparison with AOBF 

- AOBeam prunes faster allowing for faster 
bounding of the solution.

- The bounding of the solution doesn’t happen as 
fast as we thought.



Stochastic AOBeam
Idea: reduce the value of β and improve the 
pruning heuristic

Besides the β-best nodes, include every other node 
with a probability proportional to its heuristic value. 



Stochastic AOBeam
For h’s that are upper bounds. 

For h’s that are lower bounds.



Stochastic AOBeam
Besides, add an α that adds up to this probability:

p’(n) = p(n) + α

Allows for tuning of the pruning policy. 



Stochastic AOBeam (β = 1, α=0) vs AOBeam (β = 2) vs AOBF



Stochastic AOBeam (β = 1, a = 0) vs AOBeam (β = 2) vs AOBF



Stochastic AOBeam (β = 1, a = 0) vs AOBeam (β = 3) vs AOBF



Stochastic AOBeam (β = 1, a = 0.05) vs AOBeam (β = 3) vs AOBF



Anytime AOBeam (Theoretical)
Stochastic AOBeam + Anytime ideas

Weaken pruning policy each iteration by:
a) Increasing the value of β  (may be too 

expensive)
b) Increasing the value of α 



Anytime AOBeam



Conclusions
- AOBeam’s pruning is beneficial but it’s not as 

aggressive as first thought.

- Alternatives should be found to overall have 
only β open paths overall.



Future work 
- Vary α or β during the execution. Allows for 

faster pruning. 
-  Make AAOBeam incremental. Using the updated 
values found in previous searches as heuristics. 



This is the end… 

Thanks!


