
Abstraction Sampling in Graphical Models

Rina Dechter
University of California, Irvine

Irvine, CA 92697
dechter@ics.uci.edu

Filjor Broka
University of California, Irvine

Irvine, CA 92697
fbroka@ics.uci.edu

Kalev Kask
University of California, Irvine

Irvine, CA 92697
kkask@ics.uci.edu

Alexander Ihler
University of California, Irvine

Irvine, CA 92697
ihler@ics.uci.edu

Abstract

We present a new sampling scheme for approximating hard to compute queries
over graphical models, such as computing the partition function. The scheme
builds upon exact algorithms that traverse a weighted directed state-space graph
representing a global function over a graphical model. With the aid of an abstrac-
tion function and randomization, the state space can be compacted to facilitate
tractable computation, yielding a Monte Carlo Estimate that is unbiased.

1 Introduction

Imagine that we want to compute a function over a weighted directed graph where the graph is given
implicitly, e.g., using a generative state-space search model whose explicit state graph is enormous
and does not fit in memory. Algorithms that need to traverse such a state-space graph will clearly
fail. Knuth and Chen [7, 1] proposed a pioneering sampling scheme for estimating quantities that
can be expressed as aggregates (e.g., sum) of functions defined over the nodes in the graph. They
focused on estimating the number of nodes in such graphs [7]. Our work is inspired by their scheme
and more recent work in the context of predicting search tree size [9, 8] and extends them to a
more general class of functions defined over weighted directed graphs or trees. In particular, this
extension is applicable to reasoning tasks over graphical models e.g., probability of evidence or
partition function since they can be transformed into tasks over weighted directed state graphs [5].

The sampling scheme we will present uses an abstraction function that partitions the nodes in the
state-space graph into subsets of abstract states under the intuition that nodes in the same abstract
state represent similar subproblems and therefore a single member can represent all others. Given an
abstraction function, our abstraction sampling algorithm generates a weighted directed subgraph
G̃ from G using a generative randomized process. In particular, the scheme chooses randomly a
single representative node from each encountered abstract state and associates it with a weight that
estimates the total contribution of all such encountered states. An estimator to our query over G
can then be computed over the generated representative graph G̃, which is supposedly far smaller.
Clearly, if the number of abstract states is bounded, the generated graph size is small and the estima-
tor can be computed efficiently. We call each sampled graph a probe. In this paper we will assume
that the weighted state-space graphs are directed OR or AND/OR trees.

2 Background

A graphical model, such as a Bayesian or a Markov network [13, 3, 4] can be defined by a 3-tuple
M = (X,D,F), where where X = {Xi : i ∈ V } is a set of variables indexed by a set V and D =

{Di : i ∈ D} is the set of finite domains of values for each Xi. Each function ψα ∈ F is defined
over a subset of the variables called its scope, Xα, where α ⊆ V are the indices of variables in its
scope and Dα denotes the Cartesian product of their domains, so that ψα : Dα → R≥0. The primal
graph of a graphical model associates each variable with a node and arcs connect nodes whose
variables appear in the scope of the same local function. A graphical model represents a global
function, often a probability distribution, defined by Pr(X) ∝

∏
α ψα(Xα). An important task is

to compute the normalizing constant, also known as the partition function Z =
∑
X

∏
α ψα(Xα).

A graphical model can also be expressed via a weighted state space graph. In a simple OR search
space, the states (or nodes) are partial assignments relative to a variable ordering, where each layer
corresponds to a new assigned variable. A graphical model can also be transformed into a more
compact AND/OR search space [5]. AND/OR search spaces provide a compact representation
of all configurations by capturing conditional independence in the model, thus facilitating more
effective algorithms [12]. The AND/OR search space is defined relative to a pseudo tree of the
primal graph. A pseudo tree of an undirected graphG = (V,E) is a directed rooted tree T = (V,E′)
such that every arc of G not in E′ is a back-arc in T connecting a node in T to one of its ancestors.

Given a pseudo tree T of a primal graphG, the AND/OR search tree TT guided by T has alternating
levels of OR nodes corresponding to the variables, and AND nodes corresponding to an assignment
from its domain with edge costs extracted from the original functions F [5]. Let s be a node in
TT . We denote by var(s) the last variable of the partial value assignment associated with s. So if
s stands for x̄1..p = (x1, x2, ..., xp), then var(s) = Xp, in which case we say that the variable of s
is Xp. Each AND node s (or the arc from its OR parent to the AND node) has a cost c(s) defined
to be the product of all factors ψα that are instantiated at s but not before. The size of the AND/OR
search tree, TT is exponential in the height of the pseudo tree.

We define a solution subtree x̂M to be a subtree of TT satisfying: (1) it contains the root of TT ; (2)
if an OR node is in x̂M , exactly one of its AND child nodes is in x̂M ; (3) if an AND node is in x̂M
then all its OR children are in x̂M . The product of costs on any full solution tree equals the cost of a
full configuration of the modelM. Each node s in TT can be associated with a value Z(s); for the
partition function it expresses the conditioned partition function rooted at s. Clearly, Z(s) can be
computed recursively based on the values of the children of s: OR nodes by summation and AND
nodes by multiplication. The value of TT is the value of its root state, which is the partition function
of the underlying model,M. As noted, Z(s) can be computed by a depth-first search scheme from
leaves to root of the AND/OR tree . However, since TT is normally too large to traverse we must
resort to approximations. When the pseudo-tree is a chain we get back the regular OR tree, where
each path corresponds to a full variable configuration.

3 Abstraction Sampling

Our proposed Abstraction Sampling is a Monte Carlo process that generates compact representatives
T̃T of TT , guided by an abstraction function. In [1] this function is called a stratifier, and it is
inspired by the statistical technique of stratified sampling. We choose the term abstraction instead,
because it inspires tapping into work on abstraction in AI [2].

Algorithm Given an abstraction function a, our scheme samples T̃ of T , where root(T) = root(T̃).
Each sampled T̃ , OR or AND/OR, is a tree defined over a subset of the same set of variables and
represents a probability distribution PT̃ (X) having a well defined Z(T̃). The idea is that in each
probe of T we generate a compact subtree, representing several configurations. The abstraction
function partitions the nodes in each level into equivalence classes, called abstract states, and we
stochastically select a single representative from an abstract state. We will consider layered abstrac-
tions that put in the same abstraction state nodes that reside at the same level of the tree (nodes
corresponding to the same variable). The abstract states are partially ordered in an order consistent
with pseudo-tree (abstract states belonging to root variables are smallest).

AND/OR Abstraction Sampling (AOAS, Algorithm 1) builds a subtree T̃T of TT , level-by-level,
breadth first. At each step, it picks a leaf AND node having the smallest abstraction, and expands
two levels down - child OR nodes, and their child AND nodes. Each seen AND node s is associated
with a weight w(s) representing the mass the abstract state stands for. The initial weight of the root
node is a constant 1. For each of the newly generated AND nodes, the algorithm checks if there

2

already exists an AND node with the same abstraction. If this is the case (line 11), it decides, with
probability p proportional to w(s)g(s)h(s) for each candidate node s, which of the representatives
to keep and which to discard. g(s) is the product of arc-costs from root to s, while h(s) is a heuristic
function approximating Z(s). The weight of the remaining representative is adjusted to account for
the discarded ones. Otherwise (line 21), if no AND node with the same abstraction exists, it adds
the new AND node to T̃T with the weight of its parent.

The sampling function incorporates a heuristic function h, that provides an upper bound on the
partition function. While, as we will show, the algorithm is unbiased for any sampling probability,
the heuristic yields a sampling function whose accuracy can significantly impact its convergence.
Once a probe T̃T is generated, its partition function can be computed in a depth-first manner to yield
the estimate. The details of this last step are omitted for lack of space.

Proper Abstractions for AND/OR To guarantee the validity of our sampling scheme for general
AND/OR trees (pseudo tree not necessarily a chain), and in particular its unbiasedness, we need
to ensure that the sampled AND/OR tree would include only legitimate full solution trees of the
underlying AND/OR tree. However, a brute-force application of the algorithm may generate probes
that are not legitimate in that sense. We therefore require abstractions to be proper for AND/OR
trees. Given a pseudo-tree T , we call variable Y a branching variable of X , if Y is its closest
ancestor in T that has at least 2 child nodes in T . An abstraction is called proper if it assigns different
abstract states to nodes s′j and sj corresponding to variableXj , whenever their ancestor nodes from
the root to the branching variable of Xi correspond to different partial assignments. Clearly, any
abstraction is proper for OR trees because there are no branching variables. Consequently, when
sampling AND/OR trees we will always make sure to generate probes using a proper abstraction by
simply imposing this restriction during the sampling process.

4 Properties of Abstraction Sampling

Unbiasedness We show that our sampling scheme generates an unbiased estimator of the partition
function (proof omitted).

THEOREM 1 Given a weighted directed AND/OR search tree T derived from a graphical model,
a value function Z(n) defined recursively over T , and a proper abstraction function over T , the
estimate Ẑ, generated by AOAS, is unbiased.

Complexity The proper restriction limits the compactness of the sampled AND/OR trees. More
branchings in the pseudo tree imply more abstract states and larger probes. We can show that:

THEOREM 2 (complexity of proper AND/OR tree) Given a pseudo tree, the number of states in a
probe byAOAS isO(n·mb+1), where n is number of variables, b bounds the number of branchings
along any path of the pseudo-tree and m bounds the number of states in the input abstraction
function a per each variable (and level). For OR trees, b = 0, so size is bounded by O(nm).

Notice that when we have many branchings in the pseudo tree T , the underlying AND/OR tree from
which we sample is far more compact than the underlying OR tree. However, the AOAS probe size
is easier to control on OR trees, as we find in our empirical evaluation.

Sampling Probabilities The proof of unbiasedness works for any sampling distribution p. The
reason for choosing our specific sampling probabilities is to reduce variance.

THEOREM 3 (exact heuristics) If the sampling probability in AOAS uses an exact heuristic h(n) =

Z(n), namely if it satisfies p = w(n′)g(n′)Z(n′)
w(n′)g(n′)Z(n′)+w(n′′)g(n′′)Z(n′′) , then Ẑ is exact after a single

probe (has zero variance), for any abstraction which is proper.

We can define abstraction functions using symbolic properties. One example is context-based ab-
stractions. The context of a variable in T , denoted C(X), identifies a subset of its ancestor vari-
ables, whose assignment uniquely determines the AND/OR subtree below the node [5]. An abstrac-
tion a is context-based, if given OR node (variable) X there exists S ⊆ C(X) such that for any two
child AND nodes s1 and s2 of X we have: a(s1) = a(s2) ↔ πSC(s1) = πSC(s2). If |S| = j the
abstraction is said to be a j-level context-based abstraction. In particular, a 0-level abstraction puts
all AND nodes of a variable in a single abstract state.

3

Table 1: Mean error aggregated over benchmark for a given tree type, abstraction level (j) and time.
OR: j ∈ {0, 4, 8}. AO: j ∈ {0, 1, 2}. (#inst, n̄, w̄, k̄, ¯|F |, s̄) are number of instances and averages
of number of variables, induced width, max domain size, number of functions, max scope size.
Benchmark tree #nodes/probe 1 min 20 min 60 min
#inst, n̄, w̄, k̄, ¯|F |, s̄
DBN OR 818, 7452, 117175 7.80, 6.00, 1.89 6.20, 4.49, 0.99 5.26, 3.69, 0.74
47, 750, 59.3, 2, 14848, 2
Grids OR 179, 2764, 42202 7.31, 5.79, 4.72 6.25, 4.84, 4.20 5.24, 4.09, 3.66
7, 271, 24.3, 2, 791, 4 AO 215, 7169, 1290451 7.20, 5,16, 3.41 6.18, 4.58, 2.90 4.87, 3.75, 2.20
Linkage OR 274, 6501, 200549 0.38, 0.57, 0.70 0.30, 0.29, 0.39 0.22, 0.24, 0.28
17, 950, 29.5, 4.9, 950, 4 AO 286, 15353851, - 0.31, 0.57, - 0.23, 0.37, - 0.21, 0.26, -
Promedas OR 104, 1010, 12707 1.51, 1.81, 2.36 0.91, 1.15, 1.24 0.54, 0.65, 0.61
8, 720, 28.0, 720, 3 AO 93, 25117, - 1.44, 1.91, - 0.96, 0.95, - 0.36, 0.72, -

5 Empirical Evaluation and Future Work

Methodology We evaluate our algorithm on instances from 4 benchmarks (DBN, Grids, Linkage,
Promedas), for which we have exact values of the partition function, by running experiments using
different configurations abstraction functions for 1 hour each. We implemented the algorithm in C++
and ran experiments on a 2.66 GHz processor with 4GB of memory. We use Weighted Mini-Bucket
Elimination (WMBE) [6, 11] heuristic function, whose strength is controlled by a parameter called
the i-bound. Higher i-bounds lead to stronger heuristics at the expense of higher computation and
memory cost. We use i-bound 10 in our experiments. Abstraction sampling can be augmented on
top of any importance sampling scheme, while our current choice of proposal is closely related to
a state-of-the-art proposal based on weighted mini-bucket that ensures reasonably bounded impor-
tance weights, reducing variance [10].

As abstraction function we use context-based abstraction, parametrized by the level. We compare
higher level abstractions to 0-level one corresponding to a baseline regular importance sampling
scheme, with the above mentioned proposal. Higher level abstractions have increasing number of
abstract states, thus leading in general to higher number of nodes expanded during sampling. For
OR trees (using a fixed variable order) we experiment with abstractions of level 4 and 8, while for
AND/OR trees (using a fixed pseudo tree) we experiment with levels 1 and 2 (probe size in AND/OR
trees increases faster with level due to properness restriction). Since DBN instances have pseudo-
trees which are chain-like (basically OR), we test only on OR trees for that benchmark. For Linkage
and Promedas benchmarks some of the problem instances do not generate a probe in the time limit
for level 2, due to the large probe size, so respective aggregate results are missing.

Performance Measure For each problem instance and experiment configuration (tree type, i-bound,
abstraction level) we execute 11 independent 1 hour experiments, and record the partition function
estimate Ẑ at different time steps. We compute the median estimate Ẑm over the 11 runs, and
compute the log partition function absolute error | log10 Ẑm − log10 Z|. We present the mean of
these errors aggregated by benchmark in Table 1.

Results We notice that for benchmarks where regular importance sampling (0-level) has large errors
(DBN and Grids), abstraction sampling with high level abstraction shows much stronger perfor-
mance (e.g for DBN OR after 60 min we have a reduction in error of more than 4 orders of mag-
nitude). In Grids we notice that this performance gets even stronger when we move to AND/OR.
In comparing OR and AND/OR at 0-level (where each probe consists of one configuration), we
see that AND/OR outperforms OR across benchmarks, potentially due to computational benefits of
exploiting subproblem independence. For the Linkage and Promedas benchmarks, where regular
sampling already performs well (small errors), we see that we are not able to improve performance
by moving to higher level abstractions. In Figure 1 in the Appendix, we also show selected graphs
of convergence patterns, supporting the findings of the aggregate results.

Future work We plan to explore different abstraction function families in order to identify properties
of strong-performing abstractions. We also are considering the extension of the existing algorithm
from AND/OR trees to AND/OR graphs [5] to benefit from sampling on smaller search spaces.

4

Acknowledgments

This work was supported in part by NSF grants IIS-1526842 and IIS-1254071.

References
[1] P.-C. Chen. Heuristic sampling: A method for predicting the performance of tree searching

programs. SIAM Journal on Computing, 21:295–315, 1992.

[2] J. C. Culberson and J. Schaeffer. Pattern databases. In Computational Intelligence, pages
318–334, 1998.

[3] A. Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press,
2009.

[4] Rina Dechter. Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algo-
rithms. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers, 2013.

[5] Rina Dechter and Robert Mateescu. AND/OR search spaces for graphical models. Artificial
Intelligence, 171(2-3):73–106, 2007.

[6] Rina Dechter and Irina Rish. Mini-buckets: A general scheme for bounded inference. J. ACM,
50(2):107–153, 2003.

[7] D.E. Knuth. Estimating the efficiency of backtracking algorithms. Math. Comput., 29:1121–
136, 1975.

[8] Levi H. S. Lelis, Lars Otten, and Rina Dechter. Memory-efficient tree size prediction for
depth-first search in graphical models. In Barry O’Sullivan, editor, Principles and Practice of
Constraint Programming - 20th International Conference, CP 2014, Lyon, France, September
8-12, 2014. Proceedings, volume 8656 of Lecture Notes in Computer Science, pages 481–496.
Springer, 2014.

[9] Levi H. S. Lelis, Sandra Zilles, and Robert C. Holte. Predicting the size of IDA*’s search tree.
Artificial Intelligence, 196(Supplement C):53 – 76, 2013.

[10] Qiang Liu, John W Fisher III, and Alexander T Ihler. Probabilistic variational bounds for
graphical models. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems 28, pages 1432–1440, Montreal,
Canada, 2015. Curran Associates, Inc.

[11] Qiang Liu and Alexander T. Ihler. Bounding the partition function using holder’s inequality. In
Proceedings of the 28th International Conference on Machine Learning, ICML 2011, Bellevue,
Washington, USA, June 28 - July 2, 2011, pages 849–856, 2011.

[12] R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial optimiza-
tion in graphical models. Artificial Intelligence, 173(16-17):1457–1491, 2009.

[13] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

5

Appendix

Algorithm 1: AOAS, a single probe
Require: A graphical modelM = (X,D,F) over X = {X1, ..., Xn}, a pseudo tree T . An

implicit AND/OR tree TT ofM. c(s) is the cost of an OR-to-AND arc (parent(s), s) in TT .
g(s) is the product of arc-costs from root to s and h(s) (heuristic function) An abstraction a.
X(s) denote the variable of node s

Ensure: A sampled subtree T̃T = (Ñ, E,C) of TT . Each n ∈ Ñ is a pair n =< s,w(s) > where
w(s) is a weight. Note that OR node weight is always 1.

1: initialize T̃T ← {< s, 1 >},
2: while OPEN is not empty do
3: < s,w(s) >← remove node in OPEN with smallest abstraction a
4: Expand s, generating all its OR child nodes ch(X(s)) ∈ T denoted variables {X1, ...Xr},

each yielding OR nodes s1, ..., sr (X(sj) = Xj) and add them to T̃T .
5: for each OR child node sj do
6: expand it, generating all its AND child nodes sji =< Xj , xji >, xji ∈ DXj

with weights
w(sji) = w(s).

7: for each child sji do
8: {k} ← a(sji)

9: if T̃T contains a representative < s{k}, w{k} > of abstraction {k} then
10: p← w(sji)g(sji)h(sji)

w(sji)g(sji)h(sji)+w{k}g(s{k})h(s{k})

11: with probability p do:
12: remove s{k} from T̃T and OPEN

13: add < sji ,
w(sji)

p > as a child of sj in T̃T representing {k} and add it to OPEN
14: else
15: w{k} ←

w{k}
1−p

16: else
17: add < sji , w(sji) > as a child of sj in T̃T representing {k} and add it to OPEN.
18: T̃T is the final tree generated.
19: return Ẑ ← compute by depth-first search the Z value over the final tree T̃T generated.

6

Figure 1: Convergence Patterns for Different Abstraction Levels (aL) for Selected Problem In-
stances. #p – number of probes, #n – average number of expanded nodes per probe, h – height
of pseudo tree, maxNBVC – max number of branching variables in any path of pseudo tree, error –
showing median error over 11 runs and error range in parentheses

7

	Introduction
	Background
	Abstraction Sampling
	Properties of Abstraction Sampling
	Empirical Evaluation and Future Work

