
Selecting DaoOpt solver configuration for MPE problems

Summer project report
Submitted by: Abhisaar Sharma
Submitted to: Dr. Rina Dechter

Abstract

We address the problem of selecting the best
configuration out of a set of configurations
for DaoOpt - an AND/OR Branch-and-Bound
search based solver for combinatorial optimiza-
tion problems expressed as MPE queries over
graphical models. DaoOpt takes different param-
eters for solving a problem, the running time of
a problem depends on the configuration chosen
for it. We want to learn for a given problem in-
stance which configuration is the fastest to solve
it and predict the configuration likely to solve a
new problem in the least amount of time. The re-
sults indicate that our predictor is able to improve
the running time of the problems.

1 Introduction

We start by describing the basic supervised learning termi-
nology. The learning domain is an arbitrary set X from
which samples x ∈ X are drawn, according to an unknown
distribution. Samples are represented by a set of features
which we extract from it. The set of target values Y gets
assigned to each sample by a function f : X → Y . Given a
set S of training data, (xj , yj) ∈ X × Y , the learning task
is to use the training data to find a function f∗ : X → Y ,
called a model that can be used to predict for a new sample
x ∈ X it’s target y using the sample features ϕ(x) . If Y
is continuous or quantitative we have a regression learning
problem. Let C be a set of configurations and c ∈ C be a
particular configuration. We train |C| different models f∗c
on (X,Yc), where target Yc is configuration dependent. In
our case the target Yc is the time taken to solve a problem
under a configuration c. To predict the configuration likely
to solve a new problem x in the least amount of time, we
choose argmin

c
f∗c (ϕ(x)).

2 Methodology

The experiments were done on a problem base which in-
cluded different problem classes such as Grid-Networks,
Linkage analysis(pedigree), Protein folding, Image align-
ment etc1 . and past UAI problems. We used CVO to gen-
erate variable orderings on the problem instances. CVO is a
tool for generating variable orderings using min-fill heuris-
tic and implements the Iterative Greedy Variable Ordering
Algorithm. Let C(Xi) denote the context of a variable Xi

in a given AND/OR search space and let Di denote the
domain of variable Xi. The state space size, is then ex-
pressed as

∑n
i=1 |Di| ·

∏
Xj∈C(Xi)

|Dj |. Variable Elimi-
nation complexity is defined as the log of state space size.
The following figure shows the histogram of the induced
width of the problems and log State Space Size on the or-
derings generated by CVO after running it for 105 iterations
per problem instance. The engineered features ϕ(x) for the
learning task are listed subsequently.

Figure 1: Histogram of induced widths and log State Space
Size for the problem instances. The orderings are generated
by running CVO for 105 iterations using min-fill heuristic.

1Problem Instances at http://graphmod.ics.uci.
edu/˜abhisaar/mpeProblems/

http://graphmod.ics.uci.edu/~abhisaar/mpeProblems/
http://graphmod.ics.uci.edu/~abhisaar/mpeProblems/

Problem Features

1. Width - Induced width of the problem
2. NumFactors - Number of factors in the problem
3. NumVar - Number of variables in the problem
4. PseudotreeDepth - Depth of the generated pseudo-tree
5. LowerBound - The minimum theoretical induced width
6. Complexity - log size of junction tree to store the problem
7. MaxFactorScope - Maximum scope of all the factors
8. MaxVarDomain - Maximum domain size of all the variables
9. MeanFactorScope - Mean value of the scopes of all the factors
10. MeanVarDomain - Mean of domain size of variables
11. MedianVarDomain - Median domain size of the variables
12. MinVarDomain - Minimum domain size of the variables
13. DevFactorScope - Standard deviation in factor scopes
14. DevVarDomain - Standard deviation in variable domain size

The following set of configurations were tailored which are
suitable for solving easy to hard problems. The starting
configurations have weaker heuristics but are faster to com-
pute, making them suitable for easier problems.

Table 1: List of configurations for running the experi-
ments differentiated by SLS iterations and time per itera-
tion, number of MPLP iterations and the Max-time for run-
ning MPLP, number of JGLP iterations and the Max-time
for running JGLP and the Ibound of each problem. Max
Ibound indicates the solver will run with the highest possi-
ble Ibound given the memory limit.

Config ibound SLS
it/time

MPLP
it/time

JGLP
it/time

2 Max-3 0/0 0/0 0/0
3 Max-1 0/0 0/0 0/0
4 Max-1 1/2 1/5 0/0
5 Max 10/5 1000/30 500/30
6 Max 20/5 1500/45 750/45
7 Max 20/10 2000/60 1000/60
8 Max 20/10 3000/90 1500/90
9 Max 30/10 4000/120 2000/120
10 Max 50/10 8000/240 4000/240

Initially, configurations also had different number of iter-
ations to generate the orderings in the parameters, which
were removed due to the large variance in the resulting run-
ning times. The set of 1,008 problems was run on each
of these configurations with a time-out of 24 hours. The
variable orderings for the problem were generated by run-
ning CVO for 10,000 iterations. The resulting data was
used to train predictors. We studied the performance of
lasso regression, ridge regression, Boosted decision tree
and k-nearest neighbours regression. Using 5 fold cross-
validation, we selected the hyper-parameters for each of the
regressors. The problems that did not finish to completion
were associated with a fixed time-out value.

Figure 2: Parameter selection for Configuration 5. Clock-
wise from top-left we plot the Mean Absolute Prediction
Error versus (a) Number of estimators for the Boosted De-
cision Tree Regression (b) Number of nearest neighbours
for the KNN Regression (c) Regularization parameter for
Ridge Regression (d) Regularization parameter for Lasso
Regression.

Figure 3: Time prediction for Configuration 5. Clockwise
from top-left we plot the log time taken to solve a prob-
lem versus (a) Log predicted time for the Lasso Regression
(b) Log predicted time for the KNN Regression (c) Log
predicted time for the Ridge Regression (d) Log predicted
time for the Boosted Decision Tree Regression.

3 Results

For evaluating the performance of our configuration selec-
tion, we compare the running times of each problem in-
stance when using the configuration picked by our predic-
tor, versus a fixed configuration from the set of configura-
tions. Problems which were not solved completely within
the 24 hour time-out are assigned a completion time of
86400 seconds. In general, we observed that configurations
with higher FGLP/MPLP/SLS iterations perform slower
but solve more problems. Configurations which don’t use
these pre-processing routines tended to solve easier prob-
lems much faster but timed out on harder problems. As
measures to illustrate this trade-off, we compute for each

configuration the average adjusted time, defined as the av-
erage of sum of times taken to solve problems finished to
completion and the number of unsolved problems, denoted
by U multiplied by a fixed penalty tp (86400 secs).

AverageAdjustedT ime = 1/N(
∑
i

(ti) + U ∗ tp) (1)

AverageT ime =
∑
i

ti/(N − U) (2)

where the ith problem was solved to completion. Improv-
ing both these metrics could indicate that we are solving
more problems in lesser amount of time. We measure the
number of exact matches, which happen if the predictor
chose the configuration which would have taken the least
amount of time, or if the predictor assigned a configuration
9 or 10 for problems that could not be solved.

We also analyse the pairwise performance of each individ-
ual configuration against our models predicted configura-
tion. We compute the average sum of time differences from
choosing our predictors configuration versus a fixed con-
figuration over all instances that solved to completion. We
also measure the average adjusted time gain per problem,
where we also include unsolved problems, as described
above. Additionally we measure for how many problem in-
stances the model’s predicted configuration performed bet-
ter than a given configuration.

Table 2: Prediction Performance of configurations versus
the learnt predictors and an oracle on various metrics.

Config Unsolved
Problems

Average
Time

Average
Adj.
Time

Exact
Matches

5 222 404 19400 -
6 222 430 19420 -
7 214 673 18927 -
8 214 655 18913 -
9 211 827 18793 -
10 212 1231 19197 -
BDT 211 491 18528 684
Lasso 214 491 18784 799
Ridge 214 450 18752 797
Knn 220 370 19202 771
Oracle 210 401 18371 -

The results in table 2 show that Lasso predictors have
the most number of exact matches. The performance of
Boosted decision trees was enhanced using feature selec-
tion. It solves the same number of problems as the hardest
configurations, while reducing the average time needed to
solve a problem by more than half.

The following sections show the comparison of the predic-
tors performance versus the configurations.

3.1 Lasso Predictor Results

Table 3 compares the performance of the lasso predictor
and the fixed configurations on the problem instances. The
lasso predictor performs better or equal on most of the
problem instances across each configuration and results in
a time gain per problem.

Table 3: Comparison of Lasso predictor and the fixed con-
figurations. The predictor performs better across all the
configurations.

Config Lasso
Better

or
Equal

Lasso
Worse

Time
Gain

/problem

Adj.
Time
Gain

/problem

5 777 14 10 sec 616 sec
6 771 21 35 sec 636 sec
7 776 16 183 sec 144 sec
8 772 21 166 sec 129 sec
9 780 16 312 sec 9.4 sec
10 786 8 741 sec 414 sec

3.2 Decision Tree Predictor Results

Table 4 compares the performance of the Decision tree and
the configurations on the problem instances. The Deci-
sion tree is able to solve the same number of problems as
the hardest configurations. However the number of exact
matches and the number of problem instances where it was
better than a given configuration are lesser than the lasso
predictor.

Table 4: Comparison of Decision Tree predictor and the
fixed configurations.

Config BDT
Better

or
Equal

BDT
Worse

Time
Gain

/problem

Adj.
Time
Gain

/problem

5 662 132 -28 sec 873 sec
6 715 79 -2.4 sec 893 sec
7 742 52 183 sec 400 sec
8 759 35 168 sec 386 sec
9 774 21 314 sec 266 sec
10 789 5 741 sec 670 sec

3.3 Ridge and KNN Predictor Results

The performance of Ridge regression and KNN regression
was not as good as the Lasso regression and KNN. Their
prediction results are included in the Appendix.

(a) Lasso predictor vs Configuration 5 (b) Lasso predictor vs Configuration 6 (c) Lasso predictor vs Configuration 7

(d) Lasso predictor vs Configuration 8 (e) Lasso predictor vs Configuration 9 (f) Lasso predictor vs Configuration 10

Figure 4: Plots showing log time for solving the problem instance using the Lasso model’s predicted configuration versus
the fixed configurations for all the problem instances. Lasso predictor’s performance is better than the individual configu-
rations for majority of the problems resulting in both an average and adjusted time gains.

(a) BDT predictor vs Configuration 5 (b) BDT predictor vs Configuration 6 (c) BDT predictor vs Configuration 7

(d) BDT predictor vs Configuration 8 (e) BDT predictor vs Configuration 9 (f) BDT predictor vs Configuration 10

Figure 5: Plots showing log time for solving the problem instance using the predictors configurations versus the fixed
configurations for all the problem instances. BDT solves the most number of problem instances, only 1 problem less than
the oracle’s performance in the number of problems solved completely.

4 Conclusion

We have showed that Lasso Regression and Boosted De-
cision Trees are able to predict the configurations likely to
solve a new problem instance and in lesser time than using
a fixed set of configurations over all the problems, which do
not adjust according to the problem instance. Our predic-
tors use the problem features to predict which configuration
can solve a problem fastest, leading to large time improve-
ments for our solver.

5 Side Activities

The other side activities done during the project involved
comparing the performance of DaoOpt and Toolbar2

which showed Toolbar performed better in most problem
classes on their benchmarks. DaoOpt was run with 500
FGLP iterations, 10 seconds as FGLP total time, 250 JGLP
iterations, 10 seconds as JGLP total time, 5 SLS iterations

2Results available at http://graphmod.ics.uci.
edu/˜abhisaar/plots/toolbox_BTD_plt/

http://graphmod.ics.uci.edu/~abhisaar/plots/toolbox_BTD_plt/
http://graphmod.ics.uci.edu/~abhisaar/plots/toolbox_BTD_plt/

with 2 seconds as time per SLS iteration. However their
performance still needs to be tested on our benchmarks.

An interesting observation was the lower bound on the in-
duced width generated by CVO had the most feature weight
in the lasso predictor, with the problem induced width as
the second. To improve the learning performance, adding
the feature LowerBound − UpperBound was consid-
ered, where these bounds are MPE solution bounds. How-
ever it did not lead to any increase in prediction accuracy.
What remains to be explored is if the normalized measure
(L−U)/L leads to any increase in prediction performance.
A reasonable notion of MPE lower bounds developed was
running SLS for a short period of time, in case it does not
find a lower bound we could take the log of minimum non-
zero values out of each factor table and add them to gener-
ate a loose lower bound. If a solution exists it will always
be above this lower bound - hence it can be used as a refer-
ence.

We also tried to see if our predictor would lead to an in-
crease in the any-time performance. We plotted the log
solution cost versus log time for all the problems and com-
pared the area of a solution generated by a configuration
to that of our predictor. The area of a solution was calcu-
lated with the lower bound as described above with the log
time window of 0 to 12. The results indicated the predictor
could not lead to increases in the anytime area. It would be
interesting to see if we can train a predictor for selecting a
configuration to maximize the anytime performance.

Another side activity was observing performance of order-
ings which minimize a primary criteria and then a sec-
ondary criteria, for example finding orderings which mini-
mize induced widths and amongst such orderings selecting
ones with minimum state space size. Though we could not
see a specific pattern in these with the limited examples
we tested on, problems of a specific type seemed to always
work better when the same criteria were being minimized.
It may be possible to predict on which criteria we should
generate the ordering based on the problem.

6 Appendix

6.1 KNN Predictor Results

Table 5 compares the performance of the KNN predic-
tor and the fixed configurations on the problem instances.
KNN is not able to recognise hard problems and has the
highest number of unsolved problems.

6.2 Ridge Predictor Results

Table 6 compares the performance of the Ridge predictor
and the fixed configurations on the problem instances. The
performance of Ridge is worse than Lasso predictor, al-
though it solves more problems than the KNN predictor.

Table 5: Comparison of KNN predictor and the fixed con-
figurations.

Config KNN
Better

or
Equal

KNN
Worse

Time
Gain

/problem

Adj.
Time
Gain

/problem

5 773 13 37 sec 198 sec
6 778 18 62 sec 218 sec
7 771 22 173 sec -273 sec
8 774 19 223 sec -289 sec
9 780 15 382 sec -409 sec
10 781 13 781 sec -4 sec

Table 6: Comparison of Ridge predictor and the fixed con-
figurations.

Config Ridge
Better

or
Equal

Ridge
Worse

Time
Gain

/problem

Adj.
Time
Gain

/problem

5 779 12 11 sec 532 sec
6 772 19 36 sec 552 sec
7 775 17 184 sec 60 sec
8 771 22 166 sec 45 sec
9 779 17 312 sec -75 sec
10 785 9 742 sec 330 sec

Parameter Selection and Prediction Plots

We plot the mean absolute prediction error versus the
hyper-parameter for each of the predictor’s configuration.
Also shown are the plots of the predicted log time versus
the actual log time taken to solve a problem by the predictor
using the hyper-parameter giving the best cross-validation
performance.

(a) KNN predictor vs Configuration 5 (b) KNN predictor vs Configuration 6 (c) KNN predictor vs Configuration 7

(d) KNN predictor vs Configuration 8 (e) KNN predictor vs Configuration 9 (f) KNN predictor vs Configuration 10

Figure 6: Plots showing log time for solving the problem instance using the KNN predictor’s configurations versus the
fixed configurations for all the problem instances.

(a) Ridge predictor vs Configuration 5 (b) Ridge predictor vs Configuration 6 (c) Ridge predictor vs Configuration 7

(d) Ridge predictor vs Configuration 8 (e) Ridge predictor vs Configuration 9 (f) Ridge predictor vs Configuration 10

Figure 7: Plots showing log time for solving the problem instance using the Ridge predictor’s configurations versus the
fixed configurations for all the problem instances.

Figure 8: Parameter selection for configuration 5

Figure 9: Time prediction for configuration 5

Figure 10: Parameter selection for configuration 6

Figure 11: Time prediction for configuration 6

Figure 12: Parameter selection for configuration 7

Figure 13: Time prediction for configuration 7

Figure 14: Parameter selection for configuration 8

Figure 15: Time prediction for configuration 8

Figure 16: Parameter selection for configuration 9

Figure 17: Time prediction for configuration 9

Figure 18: Parameter selection for configuration 10

Figure 19: Time prediction for configuration 10

	Introduction
	Methodology
	Results
	Lasso Predictor Results
	Decision Tree Predictor Results
	Ridge and KNN Predictor Results

	Conclusion
	Side Activities
	Appendix
	KNN Predictor Results
	Ridge Predictor Results

