On the Impact of Subproblem Orderings on Anytime
AND/OR Best-First Search for Lower Bounds

William Lam and Kalev Kask and Rina Dechter ! and Javier Larrosa

Abstract. Best-first search can be regarded as an anytime scheme
for producing lower bounds on the optimal solution, a characteris-
tic that is mostly overlooked. In this paper we explore this topic in
the context of AND/OR best-first search, guided by the mini-bucket
heuristic, when solving graphical models. In that context, the impact
of the secondary heuristic for subproblem ordering becomes appar-
ent, especially when viewed in the anytime context. Specifically, we
show how the concept of bucket errors, introduced recently, can yield
effective subproblem orderings in AND/OR search and that it is of-
ten superior to the baseline approach which uses the same heuristic
for node selection (OR nodes) and for subproblem orderings (AND
nodes). Our experiments show an improvement in performance both
for proving optimality and also in the anytime performance.

1 INTRODUCTION

AND/OR best-first search is guided by two heuristic evaluations
functions. The first, f1, evaluates the potential cost of the best solu-
tion extending a current partial solution graph. The second heuristic,
f2, prioritizes the tip nodes of a current partial solution which will be
expanded next. Quoting Pearl (page 54): "These two functions, serv-
ing in two different roles, provide two different types of estimates: f;
estimates some properties of the set of solution graphs that may em-
anate from a given candidate base, whereas f» estimates the amount
of information that a given node expansion may provide regarding
the alleged priority of its hosting graph. Most work in search theory
focus on the computation of fi, whereas fo is usually chosen in an
ad-hoc manner.” [10]

Our paper investigates the impact of secondary heuristics for or-
dering subproblems in AND/OR search [10]. This is done in the con-
text of exploring the potential of AND/OR best-first search as an
anytime scheme for generating lower bounds on the optimal solution.
We consider the min-sum problem over a graphical model (which in-
clude, among others, the most probable explanation task of Markov
networks [11] and weighted CSPs). This problem is usually solved
by depth-first branch-and-bound, which generates successively bet-
ter solutions and therefore tightens the upper bound on the optimal
solution in an anytime fashion. AND/OR branch-and-bound (AOBB)
improve its performance by exploiting decomposition in the graph-
ical model. However, its anytime performance can be severely de-
graded due to the default practice to completely solve a subproblem
before moving onto another. This was remedied, for example, by the

1 University of California, Irvine, USA, {willmlam, kkask,

dechter} @ics.uci.edu. Supported in part by NSF grants IIS-1526842,
and IIS-1254071, the US Air Force under Contract No. FA8750-14-C-
0011 under the DARPA PPAML program.

2 UPC Barcelona Tech, Spain, larrosa@lsi.upc.edu. Supported in part by
MINECO/FEDER under project TIN2015-69175-C4-3-R.

2

breadth-rotating AOBB algorithm (BRAOBB) which rotates through
subproblems rather than solving each one exactly first [9].

There has not been much work in the symmetrical problem of
generating lower bounds by search in an anytime manner. Here, we
explore the potential of best-first search as a potentially effective
anytime scheme for lower bounds for AND/OR search spaces over
graphical models. It is easy to see that best-first search schemes are
ideal candidates since they explore the search space in frontiers of
non-decreasing lower bounds and are thus inherently anytime for this
task.

ANDY/OR best-first (AOBF), guided by the mini-bucket heuristic,
is known to be a state-of-the art algorithm for combinatorial opti-
mization (e.g., MPE and weighted CSP). Like any best-first scheme it
is optimal under common conditions (admissibility and monotonic-
ity of its heuristic function), yet it often cannot run to completion
due to its memory issues. The algorithm is an extension of the A*
algorithm to the AND/OR search space known as the AO* algorithm
[8, 7]. Thus far, it has only been evaluated in its performance on
finding an optimal solution. As an A*-like algorithm, it can be easily
made to generate a sequence of lower bounds by simply reporting the
best evaluation function, f1, seen so far.

While exploring AOBF as an anytime scheme, our focus will be
on investigating a class of secondary heuristics fa.

Contributions. The paper investigates the potential of bucket errors
introduced recently [2] in yielding secondary heuristic for subprob-
lem ordering and its impact on anytime lower bounding. We ana-
lyze the problem and show empirically, on three benchmarks that
the bucket errors provide relevant information on how much we can
improve the lower bound when expanding a particular node. In par-
ticular, we show that it can improve the anytime lower bound often,
when compared with a baseline ordering. To our knowledge, this is
the first investigation of subproblem ordering in AOBF and among
the first investigations of anytime best-first search.

In section 2, we provide background. Section 3 discusses the im-
pact of properly choosing a node for expansion. Section 4 relates the
bucket error on the effect of a node expansion in AOBF and proposes
several variants of a subproblem ordering heuristic based on bucket
error. Section 5 presents the experiments and discussion. Section 6
concludes the paper.

2 BACKGROUND

Graphical Models A graphical model is a tuple M = (X, D, F),
where X = {X; : ¢ € V'} is a set of variables indexed by a set V,
D = {D; : i € V}is aset of finite domains of values for each X,
and F is a set of discrete functions over subsets of X. We focus on
the min-sum problem, C* = ming 3 ;. » f(x) which covers a wide

(a) A primal graph of a graphical model over 8 variables.

We assume pair-wise functions.

Aeys(A,B)

F—8

________________ Aosi(AF)
! 1

\D| f(AD) | D[f(BD) |+ E [f(B,E) G | f(AG)
! L—] [f(c,o)]i [f(c,a] [f(ae)]

mini-buckets

(c) Mini-bucket tree with ¢-bound of 3.

(d) The AND/OR context minimal search graph.

Figure 1

range of reasoning problem such as MAP in graphical models or cost
minimization problem in weighted constraint satisfaction problems
(WCSP). The scope of f (the subsets of X that f € F are over) is
denoted as scope(f).

Primal graph, pseudo-tree. The primal graph G of a graphical
model M is a graph where each variable X; is represented by a node
and edges connect variables which appear in the same scope of any
f € F. A pseudo-tree T = (V, E’) of the primal graph G = (V, E)
is a rooted tree over the same nodes V' such that every edge in E — E’
connects a node to an ancestor in 7. We denote X; as a set containing
X and its ancestors in T . ch(X;) denotes the children of X in 7.

Example. Figure la is a primal graph of a graphical model with 10
binary functions, where each edge represents a function. Figure 1b is
a corresponding pseudo-tree.

AND/OR search. A state-of-the-art method to solve reasoning tasks
on graphical models is to search their AND/OR graph [7]. The
AND/OR search tree, which is guided by a pseudo-tree T of the pri-
mal graph G, consists of alternating levels of OR and AND nodes.
Each OR node is labeled with a variable X; € X. Its children are
AND nodes, each labeled with an instantiation x; of X;. The weight
of the edge, w(Xj;, x;), is the sum of costs of all the functions f € F
that are completely instantiated at x; but are not at its parent X;.
Children of AND nodes are OR nodes, labeled with the children
of X in 7. Each child represents a conditionally independent sub-
problem given assignments to their ancestors. Those edges are not
weighted. The root of the AND/OR search free is the root of 7. The
path from an AND node labeled x; to the root corresponds to a partial
assignment to X; denoted Z;.

A solution tree in the AND/OR tree is a subtree that (1) contains
its root, (2) if an OR node is in the solution subtree, then exactly one

of its children is in the solution tree, (3) if an AND node is in the
solution tree, then all its children are. A solution tree corresponds to
a complete assignment and its cost is the sum-cost of its arc weights.

The AND/OR search tree can be converted into a graph by merg-
ing nodes that root identical subproblems. It was shown that identical
subproblems can be identified by their context (a partial instantiation
that decomposes the subproblem from the rest of the problem graph),
yielding an AND/OR search graph [7].

Example. The pseudo-tree in Figure 1b labels each node with
its context. Figure 1d displays the AND/OR search graph of the
running example. A solution tree corresponding to the assignment
(A=0,B=1C=1,D =0,FE =0,F =0,G = 0), is
highlighted.

AND/OR best-first (AOBF) is a state-of-the-art algorithm for solv-
ing combinatorial optimization problems over graphical models [7].
It is a variant of the AO* algorithm [8] specialized for graphical
models. It works by maintaining the explicated part of the context-
minimal AND/OR search graph G and keeps track of a best partial
solution tree T™ . To achieve this, every node in G needs to be updated
with its best lower bound based on the current state of G. We present
the AOBF in Algorithm 1. It interleaves a top-down expansion step
and a bottom-up revision step. Once T is determined (using f1),
the top-down expansion step selects a non-terminal tip node of 7"
and generates its children in G (lines 4-9) (this is f2). A bottom-up
revision step follows, which updates the internal nodes values that
represent the best lower bound that we know for that node, based on
its expanded descendants (lines 10-15). In this step, we just need to
propagate the values of newly expanded children to its parents and
repeat this process for every updated node (up to the root if neces-
sary). This step also marks which children are the best of a particular
node. In addition, for OR nodes, we mark them as solved if it’s best

child is solved and for AND nodes, we mark them as solved if all
of its children are solved. Finally, we find a new best partial solution
tree T™ by following the marked best children from the root of G.
When the root node of G is marked as solved, then the best solution
tree T* is the optimal solution whose cost is the revised value of
the root node v(r) and AOBF terminates. In previous literature the
algorithm is provided as a purely exact algorithm. However, since
values are constantly updated as the algorithm searches, v(r) is ac-
tually a lower bound on the solution. In particular, when running out
of memory, it can return v(r) as a lower bound on the solution.

Algorithm 1: AOBF
Input: A graphical model M = (X, D, F), pseudo-tree T,
heuristic function h
Qutput: Lower-bound to solution of M
1 Create the root OR node r labeled by X; and let G = {r}
2 Initialize value v(r) = h(r) and best partial solution tree 7™ to
g
3 while r is not solved and memory is available do
// Expand
4 n := Select-Node(T™)
5 if n = X is an OR node then
6 | add AND child n’ for each z; € D(X;) to G

7 else if n = (X;, x;) is an AND node then
8 | add OR child n’ for each child of X; in T to G

9 Initialize v(n') = h(n') for each generated n’
// Revise
10 Update n and its ancestors p in G bottom-up (repeat until
the root):

11 if p is an OR node then
12 U(p) = minmEchildT'en(p) (C(pa m) + v(m))
Mark arg min,, as the best child of p
14 else if p is an AND node then
15 L U(p) = ZmEchildren(p) U(m)
16 Update T to new best partial solution tree by following
marked best children from root r
17 return (v(r), T™)

Mini-Bucket Elimination Heuristic. Current AOBF [6, 7] algo-
rithms are guided by the mini-bucket heuristic. This heuristic is based
on mini-bucket elimination, MBE(%), where the i-bound allows trad-
ing off pre-processing time and space for heuristic accuracy with ac-
tual search. It is a static heuristic, meaning that it is pre-processed
before search starts. MBE(¢) works relative to the same pseudo-tree
T which defines the AND/OR search graph. Each node X, of T
is associated with a bucket By that includes a set of functions. The
scope of a bucket is the union of scopes of all its functions before it
is processed as described next. First, each function f of the graphical
model is placed in a bucket By, if X}, is the deepest variable in T s.t.
X, € scope(f). Then MBE(2) processes the buckets of the pseudo-
tree from leaves towards the root. Processing a bucket may require
partitioning the bucket’s functions into mini-buckets B, = U, By,
where each By, includes no more than ¢ variables. Then, processing
each mini-bucket separately, all its functions are combined (by sum
in our case) and the bucket’s variable (X)) is eliminated (by min
in our case). Each resulting new function, also called a message, is
placed in the closest ancestor bucket whose variable is contained in
its scope. By design, MBE(i) is time and space exponential in the

i-bound.

Bucket Elimination (BE). When the i-bound is high enough so
there is no partitioning the mini-bucket algorithm becomes the exact
bucket-elimination (BE) scheme [1]. Its time and space complexity is
exponential in the size of the largest bucket scope encountered which
is called the induced width and is denoted w™, for that ordering.

Notation. In the following, f denotes an original function placed
in Bucket By, (if there is more than one, they are all summed into a
single function), and \;_,; denotes a message created at bucket B;
and placed in bucket By,. Processing bucket By produces messages
Ai_s; for some ancestors X; of X, (i.e, X5 € Xi — X#).

Example. Figure 1c illustrates the execution of MBE(3) in our run-
ning example by means of the so-called mini-bucket tree (nodes
are buckets and tree-edges show message exchanges). In this ex-
ample, bucket Bp is the only one that needs to be partitioned
into mini-buckets. Each mini-bucket generates a message. In the
figure, messages are displayed along an edge to emphasize the
bucket where they are generated and the bucket where they are
placed. For instance, Ap_,c is generated in bucket D (as Ap—c =
minp{f(B, D) + f(B, D)}) and placed in bucket C'.

Extracting the mini-bucket heuristic [5]. The (static) mini-bucket
heuristic used by AOBF requires a MBE(¢) execution prior to search
keeping all the message functions. Let X be a partial assignment.
A denotes the sum of the messages sent from bucket B; to all of the
instantiated ancestor variables,

Aj(ER) = Y Njo(T) (1)

X, €Xy,

The heuristic value at node T is,

h(zy) = Z Aj(Zr) 2)

X, €Ty

Example. In our example, the heuristic function of partial assign-
ment (A = 0,B = 1)is h(A = 0,B = 1) = Ap—a(A =
0) =+)\C—>B(B = 1) =+ AF—»B(A = O,B = 1)

Bucket Error [2]. The notion of bucket error was introduced re-
cently as a function that captures the local error induced by mini-
bucket elimination. It was shown to be identical to the depth 1 look-
ahead residual. The bucket error is the difference between the mes-
sage that would have been computed in a bucket without partitioning
and the message computed by the mini-buckets.

DEFINITION 1 (bucket and mini-bucket messages at By). [2]
Given a mini-bucket partition By, = UyBj, the combined mini-
bucket message By is,

e =3 | min > f 3)

T feBE,

while the exact message that would have been generated with no par-
titioning at By, is,

i = min S f)

It is important to note that p, is only exact for the current bucket
Bjy:; it may contain errors introduced by partitioning from its descen-
dants.

DEFINITION 2 (local bucket error at By). Given a run of MBE, the
local bucket error function Erry of By is,

Erry = pk — [tk)
where the scope of Erry is the same as the set variables in By.

Computing and storing the bucket functions takes time and space
exponential in the pseudo-width, which is between the i-bound and
induced width w™ of the problem. The pseudo-width is the maximum
number of variables in a bucket once the mini-bucket execution fin-
ishes. Since the pseudo-width may be too high, often those functions
can be computed but cannot be stored. We therefore define an aggre-
gate notion of a bucket error which is the average value of the bucket
error function.

DEFINITION 3 (average bucket error at By). [2] The average
bucket error of By, given a run of MBE is,

- 1
Fr= —-——— ETTk(m_k)
HvEXk |D’U| %:

Alternatively, we can divide the Erry(Zy) term by p*(Zx) to
yield relative error.

3 ILLUSTRATING THE IMPACT OF
SUBPROBLEM ORDERING

We refer to Algorithm AOBF which is described in Algorithm 1 in
the following. The Select-Node call in line 4 of the AOBF algo-
rithm uses f2, where the heuristic function h corresponds to fi. In
all implementations of AOBF so far, f5 is based on the mini-bucket
heuristic.

THEOREM 1. Given an AO* algorithm that uses a given f1 eval-
uation function. Then, for different choices of f2, when AO* termi-
nates (with a full solution which is optimal) its explicated subgraph
G’ is not the same, even if we assume identical tie breaking rules.
Namely, even though the final value of a solution tree seen at termi-
nation is the same, with two different secondary functions f2 and f3,
the sequence of f1 values seen for successive partial solution graphs:
ti,to, ... ti,...andt\,ty, ...t ... produced when using f2 and
f4 respectively, can differ significantly.

Note that the sequence of f; values for each respective sequence,
yields lower bounds whose quality increases (for a monotone heuris-
tic function), yet one sequence may be superior to the other.

DEFINITION 4 (profile). Let us call the sequence py, = { f1(t:)]i =
1..7} produced with a particular f2 when f1 is kept fixed, the profile
of fa, under f1. Let L be a constant smaller than C*. We denote by
I, (L) the first index of a profile where it crossed the lower bound L
and call it the threshold index of fo at cost L. Namely when using fa
as a secondary heuristic, 17,(L) = k if f1(tk—1) < L and f1(tx) >
L.

If ¢ is a solution base that can be extended to an optimal solution
tree, then f*(t) = C*. In the following we show that the choice
of f can, in the worst case, make an exponential difference in the
number of expansions needed to cross a lower bound threshold L.
This means that the impact of f> can be quite high for both anytime
performance and when looking for an optimal solution.

THEOREM 2. Assume the search space is a weighted AND/OR
tree, having a heuristic evaluation function fi(t) for a partial so-
lution tree t. Let f2 and f5 be two secondary heuristic functions
deciding which tip node of t to expand next. Then, there exists an
AND/OR search tree, a heuristic evaluation function f1, and 2 sec-
ondary heuristic functions fa and f5, and a lower bound threshold
L, L < C*, where C* is the optimal cost for the AND/OR tree, such
that there is an exponential gap between Iy, (L) and Iy, (L).

Proof. Let t be a partial solution base that is currently selected
for extension by AOBF search a weighted AND/OR tree, T'. Let
C = fi(t) where C' < C”. Assume that ¢ cannot be extended to
an optimal solution, namely f*(¢) > C*. Let A and B be two vari-
ables labeling OR tip nodes of ¢ which are direct child nodes of an
OR parent X = 0. We will not make assumptions regarding the sub-
trees below A and below B.

Let a subtree below by a variable X be denoted as Tx and the
d-depth truncated subtree be denoted as Tj‘g. Now, assume that T’
is an OR tree having depth n (i.e., there are n variables below it).
Assume that the best extension of ¢ into T’z has f; smaller than C*.
Furthermore, we want to make sure all of the nodes in 7’5 would be
explored by AOBF in order to establish the optimal cost in 7T’g. This
can be enforced if the weights on the arcs in T’ are monotonically
increasing along a breadth-first ordering of the arcs in T’g. In con-
trast, assume that 7’5 (truncated to depth 1), provides an extension to
t having f; > C*, namely f(t UT}) > C*.

Under these assumptions about the AND/OR tree and fi, a sec-
ondary heuristic function f5 that prefers expanding all of T’z before
any of T4 (and such exists) will expand many more nodes than an f
that expands T'4 first, and which will never expand any of T’z since
its f(tUT}) > C*. Therefore, with f3, we generate exponentially
more nodes before finding an optimal solution.

To generalize, let f1(t) = C1, f1(tUT4) = Co,and f1 (tUTR) =
Cs, where C71 < (O3 < C2 < C*. Assume that the profiles of
f2 and f7 until subtree ¢ is encountered are identical and appear at
index j of their profiles. Clearly, if we apply f2 at this point, we get
that the index of lower bound C is j + 1. On the other hand, if we
apply f3, its index for lower bound C3 is j + k™, where k is the
maximum domain size of a variable in the problem. Since C's < Cs,
its index to C must be even larger. Therefore, Iy, (C2) = j + 1,
while I, (C2) > j + k™, which proves our claim. O

[~

MM
NS

|~ o|o|»
o~ |o|m

ENNE
NSRS

4

{0

[1]
0
1

o

2 25 7

@,

=
~E=1

A A
2 5
Figure 2: A simple graphical model over 3 variables with two func-
tions. Shown above are the primal graph (also a valid pseudo-tree in
this case), the function tables, and the associated AND/OR search
space with weights labeled. The optimal solution tree is highlighted
and has a cost of 11.

Example. Figure 2 depicts a graphical model defined over 3
variables A, B, C' having two functions f(A, B) and f(A, C). The
full AND/OR search space is shown here and the optimal solution

(A=1,B =1,C = 0) is marked in red. Let us assume that our
heuristic evaluation function is 0, and that the general primary f; of
a partial tree is obtained by backing up recursively the values of h up
to the root of the tree, as usual. Let’s also assume that we have two
secondary functions for subproblem orderings: f> which orders the
subproblems by choosing the left-most branch first (B < C'), while
f4 reverses the orderings from right to left. It is easy to see that the
sequence of fi values seen with f5 is: (0,1,5,11) while the sequence
seen with f3 is shorter: (0,6,11). In particular, with f2 we explore
all solution subtrees while with f5 we will never expand the B node
under A = 0, since expanding C proves that the A = 0 branch has
a cost of at least 20. We would never return to the A = 0 branch due
to the A = 1 never exceeding a cost of 20 at any point and in fact
yields the optimal solution. Clearly, the profile of f5 dominates that
of f> in this case.

To illustrate further the potential impact of subproblem ordering,
consider a partial solution tree encountered ¢, that cannot be extended
to an optimal solution. If f1(t) < C*, the value of the optimal solu-
tion, the secondary function f2 can influence the size explored below
it considerably. It can guide in selecting a subproblem that yields the
largest increase in the heuristic evaluation function first, then avoid-
ing expanding alternative branches. Overall, we wish to prune partial
solution graphs ¢ that lead to suboptimal solutions in as few node ex-
pansions as possible. The pruning condition is f1 > C™, since best-
first search will never expand a partial solution graph that has been
proven to be suboptimal. Therefore, the tip node selection given by
f2 should lead to the largest increase in f;.

4 BUCKET ERRORS FOR AOBF

The overall target for an effective ordering heuristic should select
the subproblem which it can increase the bound the most in fewer
expansions. First, let us assume a simple, greedy scheme for sub-
problem ordering, that is, given a frontier of tip nodes to select from,
we aim to select the one that will lead to the greatest increase in f;
in a single expansion. Clearly, lookahead can be used to answer this
question. As such the depth-1 lookahead residual of each tip node
corresponds to the greatest increase in f1, which, in turn, is equiva-
lent to the bucket error [2].

However, this greedy scheme does not capture well the cases
where there exists a T'¢ such that d > 1 and f(t U T%) > C*.
In particular, if f(tUTx) = f(t), then the subproblem rooted by X
would be ordered last because its depth-1 residual is zero.

Let us therefore consider the opposite end of the spectrum by con-
sidering the error of f1(t) itself.

DEFINITION 5 (full residual). Ler the full residual res™(n) =
h*(n) — h(n). This is equivalent to the d-level residual with d equal
to the depth of the search space below node n.

Computing the full residual res*(n) is equivalent to performing
look-ahead in a way that would be equivalent to solving the problem,
so we consider approximating it instead by summing over the depth-
1 residuals (or the bucket errors). To distinguish this measure from
bucket errors, we call them subtree errors. We will clarify what it
means to sum over bucket errors in the following sections that detail
two different approaches we propose. Overall, using bucket errors
over look-ahead during search has the advantage that all computation
of the secondary heuristic is done as pre-processing before search,
much like with static MBE heuristics.

4.1 Constant Subtree Error

The first approach is to use the average bucket errors to represent the
error at each bucket. This is the simplest and most efficient approach,
as we only require a single constant value for each bucket variable.
Summation over them is then trivial; we simply add all of the average
bucket errors for variables within the subtree of interest.

We define the constant subtree error recursively as

E'=Ev+ > E 6)
c€ch(Xg)

where Ej, are the average bucket errors (see Definition 3) and
ch(X}) denotes the children of variable X}, in the pseudo tree. For
leaves in the pseudo tree, this expresses the base case that for those
variables, the constant subtree error is identical to the average bucket
error.

An immediate shortcoming is that this is context-independent,
since the average is computed over all of the instantiations to vari-
ables within a particular bucket. This means that they contain in-
formation from all instantiations of the error functions, whereas we
would ideally only want the error for the single instantiation we are
interested in during search. The quality of this constant subtree error
approach is therefore dependent on the variance of the bucket er-
ror functions. Still, due to its simplicity, it consumes a very minimal
amount of memory, which can allow AOBF to expand mode nodes
before running out of memory.

4.2 Subtree Error Functions

In order to address the context-independent nature of constant-value
subtree errors, we can consider storing functions, much like with lo-
cal bucket error functions. Ignoring the possibly intractable complex-
ity of storing such functions for now, we first describe how to gen-
erate subtree error functions from the local bucket error functions.
A subtree error function for a particular variable will have the same
scope as its local bucket error function.

In extending Equation 6 to error functions, we take a natural
bottom-up approach. We define a one pass message passing scheme
similar in execution to bucket elimination, but with some differences.

DEFINITION 6 (subtree error message). Let Erri’ be a subtree
error function with scope Sk, X, be the parent of Xy, in pseudo tree
T, and Erry be the local bucket error function for X, with scope
Sp. Then the subtree error message is defined as

e 1 st
A Sp) = —=—— E E S 7
ki}p(p) |DSk*Sp| Sp—S e (k) ()
P

The message is generated by averaging out the variables which are
not present in the parent which the message will be sent to. Similar
to constant subtree errors, the subtree error functions are identical
to the local bucket error functions, and forms the base case for the
recurrence. Algorithm 2 present a procedure for computing all of
the subtree error functions for a given problem with local bucket error
functions already computed. We denote the parent of 7 in T as pa(7).

4.3 Approximating Error Functions

We now return to deal with the issue of the error functions being
possibly intractable to compute and store due to its complexity in
the pseudowidth. We choose to approximate the error functions as a
result.

Algorithm 2: Subtree Error Propagation
Input: A Graphical model M = (X, D, F), a pseudo-tree 7,
i-bound, local bucket error functions Erry
Output: Subtree error functions Err’(Sy)
1 Initialize, for all leaves u of 7, Erry' (Su) = Erry(Su)
2 Compute bottom-up over 7T, for each variable X,
30 Brr¥ (i) = Errx,(Si) + 2 ccenix,) Newsi(Si)
4 Af—)pa(i)(spa(i)) P rE— Zsi_spa(i)) Erri*(Si)

\Dsﬁspa(i)\
5 return Err}ti for each variable X;inX

First, we address the space aspect first by bounding the scope of
the error functions. Unlike the MBE scheme, the error functions are
single functions rather than a collection of functions (buckets), so
it is not possible to consider any sort of partitioning-based scheme.
We take the approach of quantization by truncating the scopes of
the local bucket error functions and aggregating over the eliminated
variables by averaging.

DEFINITION 7 (scope-bounded local bucket error function). Let
s% be a scope such that s% C sy, where sx, is the scope of the lo-
cal bucket error function. Then the scope-bounded local bucket error
function for a variable Xy, is

1

E b Sb _
TTk(k) |DSk*SZ‘ si

Errg (Sk) (8)
,Sz

With this, we can select a scope Sf;(k for each variable such that
|S’§(,C | is smaller then a specified integer (typically the i-bound). We
currently select S’)J(k in an ad-hoc fashion by removing variables
from S, that are closest to X}, until the condition above is satisfied.
Next, we can replace the full local bucket error functions used in Al-
gorithm 2 with scope-bounded versions to generate scope-bounded
subtree error functions which are tractable to compute and store in
memory. This is a generalization of everything presented thus far. If
S}k = () for all variables, then each local bucket error functions
becomes the average bucket error. Running Algorithm 2 on such
functions reduces to constant subtree errors.

The other aspect of computation time is still present here, since
we still have to enumerate over a possibly large function when av-
eraging out a subset of variables (i.e. we may need to truncate a
large number of variables) For this, we can replace the averaging
steps of Equations 7 and 8 with a sampling procedure. In particular,
given an expression of the form i > Err, we replace this with

m > . Err,& ~ U(s), where s is a scope and U (s) denotes

a uniform distribution over the assignments to s.

4.4 Weighted Subtree Error

Although we now have methods of approximating of res”(n), they
are actually invariant to the amount of AOBF expansions it takes to
actually achieve that difference. Let us consider an example where
there are two tip nodes n and m to choose from. Assume that the
variable for node n has non-zero subtree error, but its descendants
have zero subtree error, while the variable for node m has zero sub-
tree error, but it has a single descendant variable for node mg4 that
is d nodes deeper with non-zero subtree error. In this case, the ap-
proximation to res*(n) is exact for both. Furthermore, now let us
assume that R = res*(n) = res”(m). Using this directly, the tip
nodes are tied in priority. However, we know that expanding n is less

costly since in order for AOBF to improve the lower bound by R via
expanding m first, it must at expand every single node on the path
from m to mg, spending at least d more node expansions.
A natural approach is to incorporate weights for the messages sent
to the parents in Algorithm 2 as a way to penalize their contributions.
To apply this idea, we modify line 3 of Algorithm 2 to

Err¥, = Errx, +wi- Aoy)
c€ch(X;)

where w; is the weight for variable X;.

To decide what the weights should be, we go back to the reasoning
in Theorem 2. Let ¢ be a current partial solution tree. Let A and B
be two variables labeling OR tip nodes of ¢t. Lett4 =t U Tgl and
tg = tU TgQ be the partial solution trees expanded below A to
depth dy and below B to depth d2 such that f(t4) = f(tB) and
d1 < da. Then it follows that I(ta) < I(tm), with a difference
as large as k27?1, Therefore, we should choose to expand nodes
in tp over t4 if the error of ¢p is at least kP2—h larger than that
of t 4. Intuitively, this prioritizes errors which are closer and falls in
line with our objective of increasing the bound the most with fewer
expansions. Based on this analysis, we choose w; as ﬁ, where D;
is the domain of variable X;, so |D;| is a worst case estimate of
the number of extra expansions needed from a variable X; before
moving on to expand its children (i.e. we expand each value of X;
before proceeding finding the best one). We take the inverse of this so
it penalizes the children. Since weighted errors are now propagated,
the penalizing weights along a path to the root serve to exponentially
penalize errors based on their depth relative to any particular node on
the path, which matches our estimate above.

Finally, our ordering heuristic f> for a particular variable X is
given directly by the subtree error function Err}ti, which varies de-
pending on the choice of Sfi(k for each variable.

5 EXPERIMENTS

We evaluated our proposed subproblem ordering heuristics on the
min-sum task in graphical models. Using the framework for scope-
bounded subtree error functions described in the previous section, we
experimented with 4 variants. In particular, we considered the case
of absolute vs. relative errors and constant vs. scope-bounded sub-
tree error functions. We compare these 4 also against the baseline
subproblem ordering based on the heuristic evaluation function, fi.
In all of the results, we refer to the baseline as Baseline, and denote
our 4 variants with hyphenated combinations of Absolute/Relative
and Constant/ScopeBounded The version of MBE we used for all ex-
periments is mini-bucket elimination with moment-matching (MBE-
MM) [4]. We used a fixed pseudo-tree for all settings. We also varied
the ¢-bound to show how the results depend on the levels of heuristic
error. When necessary, in approximating each error function, we used
a fixed scope-bound of 10 for the scope bounding and a maximum
sample size of 10° values for sampling.

We used benchmarks from genetic linkage analysis [3]
(pedigree, typed), and medical diagnosis networks [12]
(promedas). We included only instances that had a fair amount of
search (number of nodes expanded is at least on the order of 10°
when using the baseline ordering). Overall we report results on 10
pedigrees, 34 promedas networks, and 44 type4 instances, for a total
of 88 instances. The implementation was in C++ (64-bit) and was
executed on a 2.66GHz processor with 24GB of RAM.

Exact Inference. In Table 1, we report the CPU time (seconds) and
number of OR nodes expanded for a subset of the problems which

instance heur i =10 =12 =14 i =16 =18

(n,k,w*, h) time nodes time nodes | time nodes | time nodes | time nodes
pedigree networks

Baseline 792 10412048 226 4391784 237 5672090 27 950622 12 261861

Absolute-Constant 840 10408138 219 4389160 103 3890902 31 947791 15 283633

pedigree9 Relative-Constant 288 7642412 233 4388686 103 3889300 31 947712 15 254102

(935,4,27,100) | Absolute-ScopeBounded 956 10829863 245 4456735 236 5669618 31 951332 14 283398
Relative-ScopeBounded 252 7011689 233 4415602 103 3888749 32 947379 15 270359

Baseline oom | 1102 6908120 284 3695085 541028323 98 192875
Absolute-Constant oom 515 9292892 212 3322455 42 927227 101 220920
pedigreel9 Relative-Constant oom 568 4538644 272 3679115 42 922953 101 220920
(693,5,21,117) | Absolute-ScopeBounded oom 598 9837857 274 7672713 5T 1428580 102 234270
Relative-ScopeBounded oom 764 7669632 271 3663181 44 1025588 100 220920
Baseline 574 11673224 258 7806467 31 1166724 13 510651 8 206145
Absolute-Constant 578 11466903 232 7151730 33 1142691 17 516318 11 194343
pedigree44 Relative-Constant 398 9783861 228 7377908 34 1227131 16 517032 11 216053
(644,5,24,79) Absolute-ScopeBounded 312 9065438 294 8005335 32 1152958 15 505324 9 213716
Relative-ScopeBounded 455 10794795 227 7331955 33 1169720 14 537312 9 213524

romedas networks

Baseline oom 128 5374693 80 3398901 47 1977044 46 1904356
Absolute-Constant 370 14358065 112 4550622 75 3019573 47 1724537 42 1443359
orchain80.fg Relative-Constant oom 99 4550571 76 3029016 47 1738411 41 1443415
(840,3,50,108) | Absolute-ScopeBounded oom 248 9001600 174 6222197 83 3108986 84 3127096
Relative-ScopeBounded oom 114 4551500 76 3018916 46 1724171 40 1444453
Baseline oom 336 13850972 79 3555258 39 1747772 41 1830746
Absolute-Constant 157 6592327 133 5866565 53 2138422 25 893042 29 1103890
orchain208.fg | Relative-Constant 157 6592583 136 5865223 54 2148716 25 902896 26 1111423
(797,3,41,97) Absolute-ScopeBounded oom oom 302 10415855 113 4199239 87 3399972
Relative-ScopeBounded 184 7434017 161 6730016 54 2176748 25 912046 29 1125857
Baseline oom 197 8434233 212 9580054 75 3443357 34 1528349
Absolute-Constant oom 156 5322015 920 3330653 45 1611674 28 921161
orchain226.fg | Relative-Constant 342 11205154 154 5320502 104 3905754 45 1611614 26 976171
(735,3,42,87) Absolute-ScopeBounded oom 291 11595162 346 15606697 117 4854775 62 2525417

Relative-ScopeBounded 339 11231185 159 5482198 98 3663610 46 1697173 25 976807

Table 1: Times and nodes expanded for finding the optimal solution.

pedigreel9 LB (n=793 k=5 w=21 h=117) (i-bound=10) pedigreel9 LB (n=793 k=5 w=21 h=117) (i-bound=14) 9PedigreelQ LB (n=793 k=5 w=21 h=117) (i-bound=18)

gIpmmmmmmmssssssssmsmsssmmmmmmmmnn = | gl eessssssssssssssscs Ve | 0000 hmmsssssssssss P - =

®
Ll
o I et
& s g
O g3l 4
92

1000 2000 3000 4000 50 100 150 200 250 300 9

98 100 102

Search time in seconds Search time in seconds Search time in seconds
osr chain_8.fg LB (n=1195 k=2 w=42 h=80) (i-bound=10) or_chain_8.fg_LB (n=1195 k=2 w=42 h=80) (i-bound=14) or_chain_8.fg LB (n=1195 k=2 w=42 h=80) (i-bound=18)
A A 7 ettt
50 <t
o VWWVWWV 6 2 ’/ o 4«‘«44 qet
y 6 <t
@ a0 ywy DVOQ”X"!‘M.!Q PEQE.m ««‘<<‘<« i 44‘44
Q [Bgf‘ ...u/ atet o5 W
O 35 w 5H e o n)
W?Mw add = .d<< g
W yeis g) =
R 3=
** fommiebs < 3 _
0 100 200 300 400 50 100 200 300 400 50 100 150 200 250 300 350 400
Search time in seconds Search time in seconds Search time in seconds
orﬂcsham 108.fg LB (n=1263 k=2 w=67 h=117) (i-bound=10) or_chain_108.fg_LB (n=1263 k=2 w=67 h=117) (i-bound=14) or_chain_108.fg_LB (n=1263 k=2 w=67 h=117) (i-bound=18)
9
o @ 7.5 _ s
70 o ;JA . L ppapBSEBSSIIEE po
W 7.0 < . oo SARRRRRE
o 65 - g W Bl e
ool 8o & e e q
G s0 - o % B - o
= B B e
55 2 60} : FPRRILS
50# M 15
100 200 300 400 200 400 600 800 1000 100 200 300 400 500
Search time in seconds Search time in seconds Search time in seconds
typedb13A8 20 LB (n=9355 k=5 w=30 h=524) (i-bound=16) typedh 348 20 LB (n=9355 k=5 w=30 h=524) (i-bound=18) typedh 148 20 LB (n=9355 k=5 w=30 h=524) (i-bound=20)
’ VYYVVYVYV 8 » ° pDRPEDRBIRPBRBITE A0/
6 7 5 2
5 6
2 = : a4 o
(%) w0 s [%)
Q 4 Q Q ~
O, O 4 O 3
3 2
2
2
1 - B PAQY
500 1000 1500 200 400 600 800 1000 1200 550 600 650 700 750 800
Search time in seconds Search time in seconds Search time in seconds

@ Baseline ¥V Absolute-Constant A Relative-Constant < Absolute-ScopeBounded ' Relative-ScopeBounded

Figure 3: Plots of the lower bound over time. The exact solution is shown as the top dotted horizontal line if known. Higher is better.

could be solved exactly by AOBF. For each instance we also mention algorithm and MBE-MM. The best times and node counts are bolded
the problem’s parameters such as the number of variables (n), max- per i-bound and the best times and node count overall for a given in-
imum domain size (k), induced width (w™), and pseudo-tree height stance are also underlined. If the optimal solution was not found,
(h). Each column is indexed by the i-bound of the MBE-MM. Each then we report ‘oom* to denote that the experiment ran out of mem-
row for each instance shows the various ordering schemes we exper- ory. The type4 instances were generally too difficult to solve ex-
imented with. The 24GB of memory was shared between the AOBF actly (running out of memory), so they have been omitted from this

5.0 pedigree rankings (i=10) (#inst=10)

5.0

pedigree rankings (i=14) (#inst=10)

45 pedigree rankings (i=18) (#inst=10)

o 45 o 4514 Mw 40
&o0 ' 535 e P
© 35 030 M il W
© 30 o, 5, M
25 o~
220 020}
®1s © 15

1. 1 1. X

8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0

normalized time
4'Opromecﬁs‘rankings (i=10) (#inst=34

normalized time
promedas rankings (i=14) (#inst=34

normalized time
promedas rankings (i=18) (#inst=34

P . P

1'8.0 0.2 0.4 0.6 0.8 1.0 1'8.0 0.2 0.4

normalized time
type4 rankings (i=16) (#ingt=4i)ﬁ

normalized time

0.6 0.8 1.0 1'8.0 0.2 0.4 0.6 0.8 1.0
normalized time

v 40 P

45 type4 rankings (i=18) (#inst=36) a5t e4 rankings (i=20) (#inst=25)
. L 40 %

1'8.0 0.2 0.4 0.6 0.8 1.0 1'8.0 0.2 0.4

normalized time

normalized time

0.6 0.8 1.0 1'8.0 0.2 0.4 0.6 0.8 1.0
normalized time

"'O"Baseline W Absolute-Constant "4 Relative-Constant '€ Absolute-ScopeBounded " ®Relative-ScopeBounded

Figure 4: Average rankings over the normalized time relative to the baseline. Lower is better.

table.

We observe that the new ordering heuristic can improve over the
baseline in many cases, especially when the i-bound is low. For ex-
ample, on pedigree44 with and i-bound of 10, we reduce the time
by a factor 1.8 when using Absolute-ScopeBounded. As the i-bound
increases, the heuristic accuracy improves and the errors decrease,
having less impact. Specifically, tip node ordering has a smaller ef-
fect since the heuristics are mostly accurate, and most expansions
would not tighten the bound by much regardless of the choice of the
node. However, for all of the promedas instances with an i-bound of
18, an error-based method is better than the baseline.

Anytime Lower Bounding. In Figure 3, we report the lower bound
on the cost of the optimal solution as a function of time. A plot that
is higher earlier on indicates superior performance. The first point of
each line is always the bound returned by the MBE itself, recorded
whenever search starts following all pre-processing. We show one
instance from each of our benchmarks over 3 different ¢-bounds. For
pedigreel9, the exact solution is known and we show the evolution of
the bound over time for the different secondary heuristic functions.
For an ¢-bound of 14, we see that early on, the Absolute-Constant or-
dering heuristic results in AOBF tightening of the lower bound more
quickly than for the others, beating out the rest of the orderings at
around 75 seconds. For the other two instances, the optimal solu-
tion is not known, but we can compare the ordering heuristics based
on their relative performance. In or_chain_8, for the i-bounds of 14,
every method except the Absolute-ScopeBounded has superior per-
formance overall. Lastly, type4b_140_20 at the highest ¢-bound (20)
demonstrates that computing the ordering heuristic is cost-effective.
Note that the baseline method starts search earlier at around 575 sec-
onds, while all of the other methods start 10 to 20 seconds later due
to the overhead in computing the error functions. However, within a
few seconds, the bound increases much more compared to the base-
line and ultimately leads to a better bound at termination when we
run out of memory.

In Figure 4, we aggregated the results over each benchmark. We
normalized the time scale for each instance to that of the baseline,

ranked the bounds yielded by each variant across time, and aggre-
gated across the instances by averaging. The number of instances
varies with the different i-bounds since some instances run out of
memory when computing the MBE heuristic with higher i-bounds.

Pedigree. The baseline performs the best overall, but falls behind to-
wards the end, with the relative error based measures ranking slightly
better. Inspecting the general distribution of bucket errors for pedi-
gree instances, it is zero for many of the variables, making the extra
initial preprocessing time not cost-effective.

Promedas. For i = 10, we see that the Constant methods perform
similarly to the baseline at the beginning, but start to rank better with
time. This is once again due to the extra preprocessing time at the
start. The ScopeBounded methods tend to have a disadvantage due
to additional overhead during search itself. Compared with the Con-
stant methods, they require a table lookup as opposed to a simple
retrieval of a constant. However, at ¢ = 18, even though there is less
error, the buckets with error have larger error function scopes and the
Relative-ScopeBounded method is able to work well here.

Type4. For the type4 instances with ¢ = 16, the Relative-
ScopeBounded heuristic is best at the start, though its performance
starts to approach that of the Relative-Constant method, once again
due to computation overhead during search. With ¢ = 20, nearly half
of the instances could not run due to MBE running out of memory,
but we also see that the Relative-ScopeBounded method maintains
the best rank here for the same reasons as the promedas instances.
Overall, we see that the baseline is outperformed by most of our
schemes on this benchmark.
To summarize, we have the following takeaways:

1. When the solution evaluation heuristics are weak, the subproblem
ordering has a larger effect.

2. Although, the scope-bounded method is more informative, it ex-
pands nodes during search at a slower rate. As a consequence, its
relative performance degrades as the bound approaches the opti-
mal solution.

3. We see that the scope-bounded method using absolute error per-

forms poorly in most cases.
4. The context-independent heuristic is easy to compute and offers
the best overall trade-off.

6 CONCLUSION

The paper explores the potential of using AND/OR best-first search
for generating lower bounds in an anytime fashion. And, in partic-
ular, highlights the significance of subproblem orderings heuristics
(the so-called secondary evaluation function [10]) within the anytime
context. The paper presents new heuristics for subproblem ordering
which are based on the notion of pre-compiling information about the
primary heuristic error using the notion of bucket-error and demon-
strate significant impact on many instances, empirically. As far was
we know there has been little focus on this aspect of AND/OR search
in recent literature. This technique should be applied to any type
AND/OR search, and can be extended to various memory-efficient
A* variants such as IDA* which would also benefit from a better
subproblem ordering evaluation function.

REFERENCES

[1] Rina Dechter, Reasoning with Probabilistic and Deterministic Graphi-
cal Models: Exact Algorithms, Synthesis Lectures on Artificial Intelli-
gence and Machine Learning, Morgan & Claypool Publishers, 2013.

[2] Rina Dechter, Kalev Kask, William Lam, and Javier Larrosa, ‘Look-
ahead with mini-bucket heuristics for mpe’, in AAAZ (2016).

[3] M. Fishelson and D. Geiger, ‘Exact genetic linkage computations for
general pedigrees.’, Bioinformatics, (2002).

[4] Alexander Ihler, Natalia Flerova, Rina Dechter, and Lars Otten, ‘Join-
graph based cost-shifting schemes’, in Uncertainty in Artificial Intelli-
gence (UAI), 397-406, AUAI Press, Corvallis, Oregon, (August 2012).

[5] K. Kask and R. Dechter, ‘Branch and bound with mini-bucket heuris-
tics’, Proc. IJCAI-99, (1999).

[6] K. Kask and R. Dechter, ‘A general scheme for automatic search heuris-
tics from specification dependencies’, Artificial Intelligence, 91-131,
(2001).

[7]1 Radu Marinescu and Rina Dechter, ‘Memory intensive and/or search
for combinatorial optimization in graphical models’, Artif. Intell.,
173(16-17), 1492-1524, (2009).

[8] N.J.Nilsson, Principles of Artificial Intelligence, Tioga, Palo Alto, CA,
1980.

[9] Lars Otten and Rina Dechter, ‘Anytime and/or depth-first search
for combinatorial optimization’, Al Communications, 25(3), 211-227,
(2012).

[10] J. Pearl, Heuristics: Intelligent Search Strategies, Addison-Wesley,
1984.

[11] J. Pearl, Probabilistic Reasoning in Intelligent Systems, Morgan Kauf-
mann, 1988.

[12] Bastian Wemmenhove, JorisM. Mooij, Wim Wiegerinck, Martijn
Leisink, Hilbert]. Kappen, and JanP. Neijt, ‘Inference in the promedas
medical expert system’, in Artificial Intelligence in Medicine, volume
4594 of Lecture Notes in Computer Science, 456460, Springer Berlin
Heidelberg, (2007).

