Limited Discrepancy AND/OR Search and its Application to Optimization Tasks
in Graphical Models

Javier Larrosa, Emma Rollon
UPC Barcelona Tech
Barcelona, Spain

Abstract

Many combinatorial problems are solved with a
Depth-First search (DFS) guided by a heuristic and
it is well-known that this method is very fragile
with respect to heuristic mistakes. One standard
way to make DFS more robust is to search by in-
creasing number of discrepancies. This approach
has been found useful in several domains where
the search structure is a height-bounded OR tree.
In this paper we investigate the generalization of
discrepancy-based search to AND/OR search trees
and propose an extension of the Limited Discrep-
ancy Search (LDS) algorithm. We demonstrate the
relevance of our proposal in the context of Graph-
ical Models. In these problems, which can be
solved with either a standard OR search tree or
an AND/OR tree, we show the superiority of our
approach. For a fixed number of discrepancies,
the search space visited by the AND/OR algorithm
strictly contains the search space visited by stan-
dard LDS, and many more nodes can be visited due
to the multiplicative effect of the AND/OR decom-
position. Besides, if the AND/OR tree achieves a
significant size reduction with respect to the stan-
dard OR tree, the cost of each iteration of the
AND/OR algorithm is asymptotically lower than in
standard LDS. We report experiments on the min-
sum problem on different domains and show that
the AND/OR version of LDS usually obtains better
solutions given the same CPU time.

1 Introduction

Heuristic Search [Pearl, 1984] is a standard AI method to
model and solve combinatorial problems. The general idea
is to abstract the space of possibilities as a graph where so-
lutions correspond to paths from an initial node to one of the
possibly many goal nodes. The method is suitable for prob-
lems in which there is a heuristic telling how promising it is
to find a good path from each node to a goal node.

In this paper we restrict ourselves to the class of problems
where the graph is a height-bounded tree (the height of a tree
is the length of the longest path from the root to a leaf). For
these problems, the usual search method is Depth-First and

Rina Dechter
University of California, Irvine
Irvine, California, USA

the heuristic is used to decide the expansion order of the cur-
rent node successors. It is well-known that the performance
of the algorithm is heavily dependent on this ordering, espe-
cially at shallow levels on the tree. If a bad decision is made
on one of this early nodes, a large sub-tree must be explored
before this decision can be reversed. To make things worse,
it has been observed that heuristics tend to be less reliable at
shallow nodes where sub-problems are both larger and less
biased by the (shorter) path from the root.

Search based on discrepancies (LDS [Harvey and Gins-
berg, 1995], ILDS [Korf, 1996], DBDS [Walsh, 1997] ,...) is
a very successful method to make Depth-First more robust
with respect to early heuristic mistakes [Hmida er al., 2010;
Sakurai et al., 2000; Joncour et al., 2010]. These algorithms
tend to stick to the heuristic advice and only disregard it grad-
ually as search proceeds. Disregarding the heuristic is called
a discrepancy and discrepancy-based algorithms visits tree
leaves in increasing number of discrepancies.

While standard OR search trees suffice for modeling the
search space of many problems, some are better modeled
with AND/OR trees [Pearl, 1984; Nilsson, 1980]. Some well-
known examples are Graphical Models [Dechter, 2013] and
Probabilistic Planning [Geffner and Bonet, 2013].

In this paper we introduce LDSAO, a direct extension of
LDS to AND/OR search trees and demonstrate its potential
in the min-sum problem over Graphical Models (GM). This
problem includes important tasks like MPE/MAP in Bayesian
Networks and Markov Random Fields [Koller and Friedman,
2009], and weighted CSPs [Meseguer et al., 2006], and has
been the topic of intense research in the last decade. There are
two main reasons for chosing this domain. Firstly, GMs can
be modeled both as an OR and an AND/OR search space so
it seems a natural setting for comparing the two alternatives.
Secondly, in a recent, very extensive evaluation [Allouche et
al., 2015], LDS was found a very competitive method.

We show that, in the GM context, each iteration of LD-
SAO includes the search space region that LDS would visit
with the same number of discrepancies, but LDSAO can visit
a much larger region. Moreover, if the AND/OR tree is sig-
nificantly smaller than the OR tree, each iteration can be done
in asymptotically less time. Our experiments on six different
benchmarks corroborate the theory and show that LDSAO
can in general find better quality solutions than LDS, given
the same amount of time.

The structure of the paper is as follows. Section 2 revises
basic concepts and properties of Discrepancy-based search.
Section 3 makes the generalization to AND/OR trees and
presents LDSAQ. In the first part of Section 4 there are pre-
liminaries on Graphical Models concepts and the description
of their AND/OR search tree. In the second part, it is shown
how LDSAO instantiates to Graphical Models and it is shown
its theoretical advantage over LDS. Section 5 reports experi-
mental results on the min-sum problem. Finally, in Section 6
we discuss some limitations of our approach and some direc-
tions of future work.

2 Limited Discrepancy Search for OR Search

As is customary in the Discrepancy-based context, we make
the general assumption of a complete binary search tree with
bounded height h. Leaf nodes may be goals or failures and
the task of interest is to find a goal leaf. Each internal node
represents a decision that has to be made to reach a goal.

We also follow the standard convention of assuming that
the left child of each internal node represents following the
heuristic and the right child represents going against the
heuristic. The number of discrepancies of a leaf is the num-
ber of right turns in the path from the root to the leaf [Harvey
and Ginsberg, 1995]. It is easy to see that the number of ter-
minals with k discrepancies is ([').

Figure 1 (left) shows a search tree of height 4. Shadow
leaves represent goals. The number below each leaf indicates
its number of discrepancies.

Limited Discrepancy Search (LDS) [Harvey and Ginsberg,
1995] is the algorithm that searches for a goal leaf increas-
ing iteratively the number of discrepancies. The pseudo-code
is given in Algorithm 1. The k-th iteration of the main loop
will visit all the leaves having k or fewer discrepancies. The
Probe function is a standard recursive implementation of
DFS with three particularities: 7) it keeps track (parameter k)
of the number of discrepancies still available, i) if a discrep-
ancy is consumed, k is decreased before the recursive call and
141) if no further discrepancies are available, the algorithm
does not disregard the heuristic. Since the n-th iteration visits
all the leaves, the algorithm is complete. In the example of
Figure 1 (left), LDS would stop in the k = 1 iteration where
it would find the shadowed solution with 1 discrepancy.

In practice LDS is used in an any-time manner until a solu-
tion is found or the available time is exhausted. LDS has also
been successfully used in optimization problems, where each
leaf has an associated cost and the task of interest is to find
the least-cost one. In this case the heuristic gives advise about
the successor having the lowest cost leaf below and the result-
ing (any-time) algorithm outputs upper-bounds of the optimal
solution that improve over time.

The following property shows why, in practice, it is only
possible to run the first iterations of the algorithm.

Property 1. The complexity of the k-th iteration of LDS

searching on a binary tree of height h, and assuming k <
h/2, is O(hF+1),

Algorithm 1: LDS

Function LDS ()
begin

fork=0...ndo

| if Probe (root, k) then return true

| return false
Function Probe (node, k)
begin
if isLeaf (node) then return isGoal (node)
if £ = 0 then return Probe (left (node),0)
else return (Probe (right (node),k — 1) or
Probe (left (node),k))

3 Limited Discrepancy for AND/OR Search

3.1 AND/OR Search Trees

In AND/OR search trees [Nilsson, 1980; Pearl, 1984] there
are two types of nodes: OR nodes and AND nodes. OR
nodes represent branching points where a decision has to be
made, and AND nodes represent sets of sub-goals that need
to be accomplished. The two children of OR nodes are AND
nodes, and the (not necessarily two) children of AND nodes
are OR nodes. OR nodes are always internal nodes, while
AND nodes may be internal nodes, or leaves. A leaf may be
labeled as a goal or as a failure. The root of the tree is an
OR node. As before, we assume that the left child follows the
heuristic advice and the right child goes against it.

In the AND/OR context paths to leaves are generalized
to trees. A solution tree is a sub-tree that (1) contains the
ANDJ/OR tree root, (2) if an OR node is in the solution tree,
then exactly one of its children is in the solution tree, (3) if
an AND node is in the solution tree, then all its children are.
A solution tree is a goal solution tree if all its AND nodes
with no children are labeled goal. The task of interest in an
AND/OR search tree is to find a goal solution tree.

Figure 1 (right) shows an AND/OR tree where circles are
OR nodes and squares are AND nodes. Goal leaves are shad-
owed. The tree has 2 goal solution trees and thicker edges
show one of them.

The height h of an AND/OR tree is the number of OR
nodes of the longest path from the root. For simplicity, we
consider AND/OR trees such that all their solution trees have
the same tree structure, which implies the same number of
leaves, noted /. In the running example h = 3 and [= 2.

The following property follows directly from the defini-
tion,

Property 2. The size of an AND/OR tree is O(1 - 2").

We extend now the concept of discrepancy to the AND/OR
context,

Definition 1. The number of discrepancies of a leaf is the
number of right turns made from OR to AND nodes in the
path from the root. The number of discrepancies of a terminal
tree is the maximum among its leaves.

Note that for measuring how discrepant a solution tree is
we take the maximum among its leaves. There are several

Figure 1: An OR search space (left) and an AND/OR search space (right).

other alternatives, but, as we will see, this one allows simple
and efficient discrepancy-based algorithms.

Figure 1 (right) shows below each leaf its number of
discrepancies. The two goal solution trees have two
branches, each. In both cases the number of discrepancies
ismax{1,1} = 1.

3.2 LDSAO

LDAO (Algorithm 2) is the generalization of LDS to
AND/OR trees. It searches for goal solution trees and, as
in the LDS case, each iteration of the main loop allows one
more discrepancy.

The main difference between LDS and LDSAO is the man-
agement of the AND nodes. In LDSAO each AND node
searches recursively for sub-goals at each of its OR succes-
sors (Function Probe And). Note that these transitions do not
consume discrepancies (i.e, the value of k£ passes unmodi-
fied along the function) because they are not associated with
choices and the heuristic does not play any role.

The following two properties show the behaviour and the
complexity of LDSAO.

Property 3. The k-th iteration of LDSAO visits all terminal
trees with k or fewer discrepancies.

Property 4. The complexity of the k-th iteration of LDSAO
searching on a binary AND/OR tree of height h, where termi-
nal trees have | leaves, and assuming k < h/2, is O(1- h*+1),

4 LDSAO for Graphical Models

In this Section we demonstrate the potential of LDSAO for
Graphical Models. We start with some basic definitions and
then give the properties that show the theoretical advantage
of LDSAO over LDS.

4.1 Graphical Models

A binary graphical model is a pair M = (X, F'), where X =
{X1,Xs,..., X, }is the set of boolean variables. F is a set
of non-negative real valued cost function, where each f € F
is defined on a subset of the variables called its scope and
noted scope(f).

The min-sum problem is the computation of the minimum
cost complete assignment,

Algorithm 2: LDSAO

Function LDSA0 ()
begin
for £ = 0..n do
| if ProbeOr (root, k) then return true
| return false
Function ProbeOr (nodeOr, k)
begin
if £ = 0 then return
ProbeAnd (left (nodeOr),0)
return ProbeAnd (right (nodeOr),k — 1) or
| ProbeAnd (left (nodeOr),k)
Function ProbeAnd (nodeAnd, k)
begin
if isLeaf (nodeAnd) then
| return isGoal (nodeAnd)
for nodeOr € Successors(nodeAnd) do
L if not ProbeOr (nodeOr,k) then

| return false

L return true

¥ = argmingex Z f(zh) (H

feF

where X denotes the set of complete assignments to the vari-
ables and 2 denotes the projection of z on the scope of f.

The primal graph G of a graphical model M has the vari-
able as nodes, and an edge (X, X,) is in G iff the pair of
variables X,,, X, appears in the scope of any f € F. The pri-
mal graph is a useful tool, because it is a graphical represen-
tation of the problem structure in terms of explicit interaction
between variables.

A pseudo-tree T = (V,E’) of the primal graph G =
(V, E) is a rooted tree over the same set of vertexes V' such
that every edge in F — E’ must connect a node to one of its
ancestors in 7. The root is noted X,.,¢-

The purpose of the pseudo-tree is to make explicit how
the graphical model can be broken into independent com-
ponents that can be solved separately. More precisely, it
captures conditional independencies based on cost-function

Y & o
®

@) (b)

Figure 2: (a) A primal graph G of a graphical model over 4
variables; and (b) A pseudo-tree of G

scopes. If a partial assignment of variables follows the top-
down order of the tree, each unassigned sub-tree is an inde-
pendent sub-problem (conditioned to the assignment) and can
be solved separately. The algorithms that exploit such inde-
pendences are those that use the AND/OR tree to be defined
next [Dechter and Mateescu, 2007].

Figure 2 (left) depicts the primal graph G of a graph-
ical model with 4 variables. One possible set of cost
functions that would have such a graph has the following
scopes {{X1, Xo}, {X1, X5}, {X1, Xa}, {X3, X4 }}. Figure
2 (right) depicts one possible pseudo-tree 7 for G. The
pseudo-tree indicates that the assignment of variable X; will
produced two conditionally independent sub-problems whose
set of variables will be the two sub-trees rooted by its two
children, X5 and X3.

4.2 OR and AND/OR search trees for Graphical
Models

A search space must capture the set of all possible assign-
ments. For Graphical Models there are two possibilities: an
OR, and an AND/OR tree. The obvious one is an OR tree
of height n (the number of variables). Each node is labeled
with a variable and its two children correspond to its two pos-
sible assignments. It is clear that the size of such a tree is
O(2™). The OR tree in Figure 1 (left) corresponds indeed to
the Graphical Model with the primal graph in Figure 2 (left).

A more compact approach is the AND/OR search tree, an
alternative search space that exploits conditional decompo-
sitions. It is driven by a pseudo-tree 7. Each OR node is
labeled with a variable X, € X and its two children are
AND nodes, each one corresponding to one possible assign-
ment of X, (left child follows the heuristic advise, right child
goes against it). The children of an AND node are OR nodes
labeled with the children of X, in 7. The children of an
AND node represent the independent sub-problems given the
assignments from the root up to that node. The root of the
AND/OR search tree is an OR node labeled with X, the
root of 7. The AND/OR tree in Figure 1 (right) corresponds
to the Graphical Model with the primal graph in Figure 2
(left) and pseudo-tree in Figure 2 (right).

Clearly, the size of the AND/OR tree of a Graphical Model
is O(l - 2") where h and [are the height and the number
of leaves of the pseudo-tree, respectively [Dechter and Ma-
teescu, 2007]. In our running example, the size of the OR tree
is exponential on its height (4) while the size of the AND/OR

tree is exponential in its height (3) which is also the height of
its corresponding pseudo-tree.

4.3 LDS vs LDSAO

We now compare the performance of Limited Discrepancy
Search over the OR tree (LDS) versus the AND/OR counter-
part (LDSAO). First, we show that each iteration of LDSAO
is at least as powerful in terms of visited terminals than the
same iteration of LDS.

It can be seen that there is a one-to-one mapping between
complete assignments of the variables, leaves in the OR tree
and solution trees in the AND/OR tree. It follows the fact that
in both trees there is a left-or-right turn below each OR node
and there is one OR node associated to each variable.

Let x be an assignment of all the variables of a Graphical
Model. The number of discrepancies of the leaf associated to
x in the OR tree (according to the standard definition) is noted
Dog(x), the number of discrepancies of the solution tree as-
sociated to x in the AND/OR tree (according to Definition 1)
isnoted D s p/or(). It can be seen that,

Lemma 1. For any complete assignment x, it holds that
Danpjor(x) < Dogr(w).

Proof. Inboth cases, they have the same left and right turns in
their associated search spaces. By definition Dog(x) is the
number of right turns, while D snp,or(z) takes the maxi-
mum over diferent fragments, which may be smaller or equal,
but not larger. O

What follows is a direct consequence of the previous
lemma,

Property 5. If assignment x, is visited during the k-th iter-
ation of LDS, then it is visited during the k-th iteration of
LDSAQ.

The two goal leaves in Figure 1 (left) correspond to the
same assignments as the two goal solution trees in Figure 1
(right). Note that in one of them the number of discrepancies
decreases in the AND/OR tree. As a result, LDSAO would
visit the two of them in the & = 1 iteration.

Regarding time complexity it is clear that the k-th iteration
of LDS and LDSAO (assuming k¥ < h,n) is O(n¥*1) and
O(l - h**1), respectively. Since h is smaller than n (and in
many important cases much smaller), LDSAO will be faster
than LDS.

The actual set of assignments that LDSAO will visit and
LDS will not at the k-iteration depends on the pseudo-tree
structure. We illustrate it with the k¥ = 1 case in three differ-
ent simple scenarios where we also discuss the different time
complexities.

e Consider a pseudo-tree whose root has the rest of nodes
as children (that is, h = 2,] = n — 1). The k = 1 iter-
ation of LDSAO will visit some assignments that under
the OR tree perspective will have up to n — 1 discrepan-
cies. The cost of this iteration will be time O(n).

e Consider a pseudo-tree whose root has two children,
each one rooting a chain of size n/2 and n/2 — 1, re-
spectively (thatis, h = (n/2) + 1,1 = 2). Thek =1
iteration of LDSAO will visit assignments that under the

OR perspective will have up to 2 discrepancies. The cost
of such iteration will be O(n?), similar to the LDS case.

e If the pseudo-tree is a complete binary tree (that is, h =
logn and I = n/2), the k = 1 iteration of LDSAO will
visit assignments that under the OR tree would have up
to O(n/2) discrepancies. The cost of such iteration will
be O(n - (logn)?).

5 Experimental Results

In this section we report results comparing LDS vs LD-
SAO as any-time schemes in the min-sum problem of
Graphical Models. Note that LDS was recently found
extremely efficient in that domain (see e.g. Figure 4
in [Allouche et al., 2015]). All executions had a time
limit of 1 hour. We have experimented with six different
well-known benchmarks. Instances have been taken from
http://genoweb.toulouse.inra.fr/ degivry

/evalgm and http://bioinfo.cs.technion.ac.
il/superlink. All instances have been read in wesp
format and in those containing more than one connected
component, only the largest one has been considered.

In our experiments both algorithms guided the search
with the static Mini-Bucket-Elimination heuristic [Kask and
Dechter, 1999; Thler et al., 2012; L. Otten and Dechter, 2012].
This heuristic has a control parameter, called i-bound, that
allows to trade memory for accuracy. In the experiments the
two algorithms ran with the same ¢-bound (10 for all bench-
marks except for Linkage and Type4 pedigree where it was
set to 15 and 16, respectively). Since many instances con-
tain non-boolean variables, we considered all assignments but
the one with the highest heuristic value as a discrepancy (ties
were broken lexicographically).

Figure 3 shows any-time plots for one instance from each
benchmark (note the logarithmic scale of time). Results
for the rest of instances (a total of 138) can be down-
loaded from http://www.cs.upc.edu/larrosa/
lds—-experiments.pdf. It can be seen that consistently
LDSADO has better solutions than LDS given the same amount
of time. As previously discussed, there are two reasons why
LDSAO is likely to be superior than LDS: it iterates faster
and it visits more complete assignments at each iteration. To
be able to separately assess these two factors, plots also in-
dicate the ending point of each iteration. For instance, in
the Spot5 5.wesp instance (top-left plot) the £ = 3 iteration
ends after 20 and 400 seconds for LDSAO and LDS, respec-
tively. Besides, at the end of this iteration LDSAO has an
upper bound of 150, while LDS has an upper bound of 151.
Similar results can be observed in the combinatorial auction,
linkage and grid instances (i.e, top and middle rows). In the
Type 4 pedigree and DBN insntaces (i.e, bottom row) it can
be observed that the advantage comes exclusively from the
faster iteration of LDSAO. It means that the additional solu-
tions that LDSAO visits for a given iteration do not provide
any improvement in the upper bound. This is a situation that
we have encountered in many other instances. There are two
reasons that explain this phenomenon: 4) the additional solu-
tions that LDSAO may visit with respect to LDS contain their
discrepancies at deep levels of the search space and Branch-

and-Bound usually prunes before these discrepancies may oc-
cur and 4¢) discrepancies at deep levels are more unlikely to
do any good since the heuristic is much more accurate there
[Walsh, 1997].

As it can be seen in the plots, LDS updates more frequently
the value of its best-so-far solution (see for instance the k = 2
iteration in the bottom-right rus-2 plot). The reason is that
LDS is fully any-time in the sense that it can identify an im-
proving solution in the middle of an iteration and report it im-
mediately. In the LDSAO case, the situation is more complex.
The algorithm goes from one sub-problem to another sequen-
tially trying to find good sub-solutions in one sub-problem af-
ter the others. Consequently, LDSAO cannot report improve-
ments until the end of each iteration. The natural way to over-
come this drawback is to incorporate to LDSAO a breadth ro-
tation scheme like the one proposed in [Otten and Dechter,
2012].

6 Conclusions and Future Work

In this paper we have presented a generalization of LDS
[Harvey and Ginsberg, 1995] to AND/OR tree search and
demonstrated its practical interest on the min-sum problem
for Graphical Models. In this domain, we have shown the-
oretically and corroborated empirically that our LDSAO can
search more solutions with (asymptotically) less effort.

One practical disadvantage of our approach inherited from
the AND/OR tree usage is that LDSAO must use a static vari-
able ordering (while LDS does not). This is an important lim-
itation that needs to be addressed, since some state-of-the-art
min-sum solvers find dynamic orderings instrumental to their
success. One possible solution is to allow LDSAO to use a
semi-dynamic variable ordering, where variables can be as-
signed in any order within pseudo-tree chains. Another pos-
sibility is to have more than one pseudo-tree, and use one
or another depending on what variables are dynamically se-
lected at the first levels of the search.

The investigation reported in this paper leaves room to
many lines of future work. First, variations of LDS such as
ILDS [Korf, 1996] or DBDS [Walsh, 1997] to the AND/OR
context should be explored. We also believe that LDSAO
can be improved to do a more intelligent management of the
search effort. For instance, in problems with an unbalanced
pseudo-tree it seems reasonable to allow more discrepancies
on the largest sub-problems. More discrepancies should also
be allowed on the harder sub-problems. Finally, we also
want to explore the applicability of LDSAO in on-line plan-
ning [Geffner and Bonet, 2013] and other domains where
AND/OR structures are used.

Acknowledgments

We thank William Lam for his help in running the exper-
iments. This work was suppported in part by MINECO
under project TIN2015-69175-C4-3-R, by NSF grants IIS-
1065618, 1IS-1526842, and IIS-1254071, and by the US
Air Force under Contract No. FA8750-14-C-0011 under the
DARPA PPAML program.

0.156

0.155F

0.153

0.152

0.151F

UB (in thousands)

0.150

0.149

0.154 | == = = = =

--- LDS
LDSAO ||

o 102 10° 104
time (sec.)

pedigreel9

6.5F

6.0

(in thousands)

UB

5.0

55h....2 '_/.__ 2

--- LDS
LDSAO ||

0 107 10° 104
time (sec.)

_Typed_160 23

1000

AR
900 | 0’\ 1
0
800

600 -

500

UB (in thousands)

400

S

VN A

1)

300+

LDS .
LDSAO ¥

10°

10! 107 10° 104
time (sec.)

UB (in thousands) UB (in thousands)

UB (in thousands)

cat_paths 60 160 0000
--- LDS
LDSAO
106.0 |
105.5—_I
: 2 3
1 4
105.0f
e_._‘.t.'_.'_.'_/'._'._'.:'_.‘-_ Lo /5
k KR Y
0 2 3 4 '5 7 9 “=--
10431)6 / 8/ 1012 19
v/¢¢_‘_..»4_.»{,_R,_/
10° 100 10° 10° 14 10*
time (sec.)
_grid80x80.f15 _
Rl M e —— _ 1
: Y
2500 :
2450
1
¥
2400
TS L
LDSAO ¥
2350+ ‘ L L 1
10° 10! 10? 10° 104
time (sec.)
rus2 100 200 9 1
354.0F T T ’ T
D --- LDS
s LDSAO
3535] ! |
P 1
353.0 ’ -'-—/---—-----—---;---,_I
1 s,
3525} : :
; I"l 2
352.0| ’P{?- ---------- :-Z
10° 161 161 163 104
time (sec.)

Figure 3: Experimental results on one representative instance from six different benchmarks. Top: SPOTS, Auctions. Middle:
Linkage, Grids. Bottom: Type4 pedigrees, DBN. Plots report quality of best-found solution versus time. Note the logarithmic
scale of time. Arrows indicate the end of each iteration.

References

[Allouche et al., 2015] David Allouche, Simon de Givry,
George Katsirelos, Thomas Schiex, and Matthias Zytnicki.

Anytime hybrid best-first search with tree decomposition

for weighted CSP. In Principles and Practice of Con-
straint Programming - 21st International Conference, CP
2015, Cork, Ireland, August 31 - September 4, 2015, Pro-
ceedings, pages 12-29, 2015.

[Dechter and Mateescu, 2007] Rina Dechter and Robert Ma-
teescu. And/or search spaces for graphical models. Artif.
Intell., 171(2-3):73-106, 2007.

[Dechter, 2013] Rina Dechter. Reasoning with Probabilistic
and Deterministic Graphical Models: Exact Algorithms.
Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers, 2013.

[Geffner and Bonet, 2013] Hector Geffner and Blai Bonet. A
Concise Introduction to Models and Methods for Auto-
mated Planning. Synthesis Lectures on Artificial Intelli-
gence and Machine Learning. Morgan & Claypool Pub-
lishers, 2013.

[Harvey and Ginsberg, 1995] William D. Harvey and
Matthew L. Ginsberg. Limited discrepancy search.
In Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, IJCAI 95, Montréal
Québec, Canada, August 20-25 1995, 2 Volumes, pages
607-615, 1995.

[Hmida et al., 2010] Abir Ben Hmida, Mohamed Haouari,
Marie-José Huguet, and Pierre Lopez. Discrepancy search
for the flexible job shop scheduling problem. Computers
& Operations Research, 37(12):2192-2201, 2010.

[Ihler et al., 2012] Alexander Ihler, Natalia Flerova, Rina
Dechter, and Lars Otten. Join-graph based cost-shifting
schemes. In Uncertainty in Artificial Intelligence (UAI),
pages 397-406. AUAI Press, Corvallis, Oregon, August
2012.

[Joncour et al., 2010] C. Joncour, S. Michel, Ruslan
Sadykov, D. Sverdlov, and Francois Vanderbeck. Column
generation based primal heuristics. Electronic Notes in
Discrete Mathematics, 36:695-702, 2010.

[Kask and Dechter, 1999] K. Kask and R. Dechter. Branch
and bound with mini-bucket heuristics. Proc. IJCAI-99,
1999.

[Koller and Friedman, 2009] D. Koller and N. Friedman.
Probabilistic Graphical Models. MIT Press, 2009.

[Korf, 1996] Richard E. Korf. Improved limited discrepancy
search. In Proceedings of the Thirteenth National Confer-
ence on Artificial Intelligence and Eighth Innovative Ap-
plications of Artificial Intelligence Conference, AAAI 96,
IAAI 96, Portland, Oregon, August 4-8, 1996, Volume 1.,
pages 286-291, 1996.

[L. Otten and Dechter, 2012] K. Kask L. Otten, A. Ihler and
R. Dechter. Winning the pascal 2011 map challenge with
enhanced and/or branch-and-bound. In Workshop on DIS-
CML 2012 (a workshop of NIPS 2012), 2012.

[Meseguer er al., 2006] Pedro Meseguer, Francesca Rossi,
and Thomas Schiex. Soft constraints. In Handbook of
Constraint Programming, pages 281-328. 2006.

[Nilsson, 1980] N. J. Nilsson. Principles of Artificial Intelli-
gence. Tioga, Palo Alto, CA, 1980.

[Otten and Dechter, 2012] Lars Otten and Rina Dechter.
Anytime AND/OR depth-first search for combinatorial op-
timization. AI Commun., 25(3):211-227, 2012.

[Pearl, 1984] J. Pearl. Heuristics: Intelligent Search Strate-
gies. Addison-Wesley, 1984.

[Sakurai et al., 2000] Yuko Sakurai, Makoto Yokoo, and
Koji Kamei. An efficient approximate algorithm for win-
ner determination in combinatorial auctions. In EC, pages
30-37, 2000.

[Walsh, 1997] Toby Walsh. Depth-bounded discrepancy
search. In Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence, IJCAI 97, Nagoya,
Japan, August 23-29, 1997, 2 Volumes, pages 1388—1395,
1997.

