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Abstract Weighted heuristic search (best-first or depth-first) refers to search with a heuris-

tic function multiplied by a constant w [Pohl (1970)]. The paper shows, for the first time, that

for optimization queries in graphical models the weighted heuristic best-first and weighted

heuristic depth-first branch and bound search schemes are competitive energy-minimization

anytime optimization algorithms. Weighted heuristic best-first schemes were investigated for

path-finding tasks. However, their potential for graphical models was ignored, possibly be-

cause of their memory costs and because the alternative depth-first branch and bound seemed

very appropriate for bounded depth. The weighted heuristic depth-first search has not been

studied for graphical models. We report on a significant empirical evaluation, demonstrating

the potential of both weighted heuristic best-first search and weighted heuristic depth-first

branch and bound algorithms as approximation anytime schemes (that have sub-optimality

bounds) and compare against one of the best depth-first branch and bound solvers to date.

Keywords Graphical models · Heuristic search · Anytime weighted heuristic search ·
Combinatorial optimization ·Weighted CSP ·Most Probable Explanation

1 Introduction

The idea of weighing the heuristic evaluation function guiding search by a fixed (or vary-

ing) constant is well known [Pohl (1970)]. It was revived in recent years in the context of

path-finding domains, where a variety of algorithms using this concept emerged. The attrac-

tiveness of this scheme of weighted heuristic search is in transforming best-first search into
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an anytime scheme, where the weight serves as a control parameter, trading-off time, mem-

ory and accuracy. The common approach is to have multiple executions, gradually reducing

the weight along some schedule. A valuable by-product of these schemes is that the weight

offers a sub-optimality bound on the generated cost.

In this paper we investigate the potential of weighted heuristic search for probabilistic

and deterministic graphical models queries. Because graphical models are characterized by

having many solutions which are all at the same depth, they are typically solved by depth-

first schemes. These schemes allow flexible use of memory and they are inherently anytime

(though require a modification for AND/OR spaces). Best-first search schemes, on the other

hand, do not offer a significant advantage over depth-first schemes for this domain, yet

they come with a significant memory cost and lack of anytime behavior, and therefore are

rarely used. In this paper we show that weighted heuristics can facilitate an effective and

competitive best-first search scheme, useful for graphical models as well. The following

paragraphs elaborate.

In the path-finding domain, where the solution length varies (e.g., planning), best-first

search, and especially its popular variant A* [Hart et al (1968)], is clearly favoured among

the exact schemes. However, A*’s exponential memory needs, coupled with its inability to

provide a solution any time before termination, lead to extension into more flexible anytime

schemes based on the Weighted A* (WA*) [Pohl (1970)]. Several anytime weighted heuristic

best-first search schemes were proposed in the context of path-finding problems in the past

decade [Hansen and Zhou (2007); Likhachev et al (2003); Van Den Berg et al (2011); Richter

et al (2010); Thayer and Ruml (2010); Richter et al (2010)].

Our contribution: We extend and evaluate weighted heuristic search for graphical models.

As a basis, we used AND/OR Best First search (AOBF) [Marinescu and Dechter (2009b)]

and AND/OR Branch and Bound search (AOBB) [Marinescu and Dechter (2009a)], both

described in Section 2.3. We compare against a variant called Breadth-Rotating AND/OR

Branch and Bound (BRAOBB) [Otten and Dechter (2011)]. BRAOBB (under the name

daoopt) was instrumental in winning the 2011 Probabilistic Inference Challenge1 in all opti-

mization categories. This algorithm also won the second place for the 20 minute and 1 hour

time bounds in the MAP category, as well as the first place for all time bounds in the MMAP

category during the UAI Inference Challenge 20142. We also compare our schemes against

traditional depth-first branch and bound (DFBB) and A* exploring the OR search graph and

against Stochastic Local Search (SLS).

We explored a variety of weighted heuristic schemes. After an extensive preliminary em-

pirical evaluation, the two best-first schemes that emerged as most promising were wAOBF

and wR-AOBF. Both apply weighted heuristic best-first search iteratively while decreasing

the weight w. wAOBF starts afresh at each iteration, while wR-AOBF reuses search ef-

forts from previous iterations, extending ideas presented in Anytime Repairing A* (ARA*)

[Likhachev et al (2003)]. Our empirical analysis revealed that weighted heuristic search

can be competitive with BRAOBB on a significant number of instances from a variety of

domains.

We also explored the benefit of weighting the heuristic function for depth-first search,

resulting in wAOBB and wBRAOBB schemes. The weights facilitate an alternative anytime

approach and, most importantly, equip those schemes with sub-optimality guarantees. Our

empirical evaluation showed that for many instances our algorithms yielded best results.

1 http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
2 http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html
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To explain the behavior of weighted heuristic search we introduce a notion of focused

search that yields a fast and memory efficient search. Moreover, we derive the optimal value

of the weight that a) yields a greedy search with least loss of accuracy; b) when computed

over an arbitrary solution path provides a guarantee on the solution accuracy.

Note that for the purpose of this work we intentionally focus primarily on the complete

schemes that guarantee optimal solutions if given enough time and space. Thus, many ap-

proximate schemes developed for graphical models, e.g., [Hutter et al (2005); Neveu et al

(2004); Fontaine et al (2013); Sontag et al (2012); Wang and Daphne (2013)] remain beyond

the scope of our consideration, as do a number of exact methods, developed for weighted

CSP problems, e.g., [Lecoutre et al (2012); Delisle and Bacchus (2013)]. A relevant work

on generating both a lower bound and an upper bound in an anytime fashion and provid-

ing a gap of optimality when terminating was done by [Cabon et al (1998)], though their

approach is orthogonal to our investigation of the power of weighted heuristic search in

generating anytime schemes with optimality guarantees.

The paper is organized as follows. In Section 2 we present relevant background infor-

mation on best-first search (2.1), graphical models (2.2) and AND/OR search spaces (2.3).

In Section 3 we consider the characteristics of the search space explored by the weighted

heuristic best-first search and reason about values of the weights that make this exploration

efficient. Section 4 presents our extension of anytime weighted heuristic best-first schemes

to graphical models. Section 5 shows the empirical evaluation of the resulting algorithms.

It presents the overview of methodology (5.1), discusses the impact of the weight on run-

time and accuracy of solutions found by the weighted heuristic best-first (5.2), reports on

our evaluation of different weight policies (5.3) and compares the anytime performances

of our two anytime weighted heuristic best-first schemes against the previously developed

schemes (5.4). Section 6 introduces the two anytime weighted heuristic depth-first branch

and bound schemes (6.1) and presents their empirical evaluation (6.2). Section 7 summarizes

and concludes.

2 Background

2.1 Best-first search

Consider a search space defined implicitly by a set of states (the nodes in the graph), opera-

tors that map states to states having costs or weights (the directed weighted arcs), a starting

state n0 and a set of goal states. The task is to find the least cost solution path from n0 to

a goal [Nillson (1980)], where the cost of a solution path is the sum of the weights or the

product of the weights on its arcs.

Best-first search (BFS) maintains a graph of explored paths and a frontier of OPEN nodes.

It chooses from OPEN a node n having the lowest value of an evaluation function f (n),
expands it, and places its child nodes in OPEN. The most popular variant, A*, uses f (n) =
g(n)+h(n), where g(n) is the current minimal cost from the root to n, and h(n) is a heuristic

function that estimates the optimal cost h∗(n) to go from n to a goal node. For a minimization

task, h(n) is admissible if ∀n h(n) ≤ h∗(n). Heuristic h(n) is consistent, if for every node n

and for every successor n′ of n it true that h(n)≤ c(n,n′)+h(n′), where c(n,n′) is the weight

of the arc (n,n′).
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Weighted A* search (WA*) [Pohl (1970)] differs from A* only in using the evaluation func-

tion: f (n) = g(n)+w · h(n), where w > 1. Higher values of w typically yield greedier be-

havior, finding a solution earlier during search and with less memory. WA* is guaranteed to

terminate with a solution cost C such that C ≤ w ·C∗, where C∗ is the cost of the optimal

solution. Such solution is called w-optimal.

Formally, after [Pohl (1970)]:

Theorem 1 The cost C of the solution returned by Weighted A* is guaranteed to be within

a factor of w from the optimal cost C∗.

Proof Consider an optimal path to the goal t. If all nodes on the path were expanded by

WA*, the solution found is optimal and the theorem holds trivially. Otherwise, let n′ be the

deepest node on the optimal path, which is still on the OPEN list when WA* terminates.

It is known from the properties of A* search [Pearl (1984)] that the unweighted evaluation

function of n′ is bounded by the optimal cost: g(n′) + h(n′) ≤ C∗. Using some algebraic

manipulations: f (n′) = g(n′)+w ·h(n′), f (n′) ≤ w · (g(n′)+h(n′)). Consequently, f (n′) ≤
w ·C∗.

Let n be an arbitrary node expanded by WA*. Since it was expanded before n′, f (n) ≤
f (n′) and f (n)≤ w ·C∗. It holds true to all nodes expanded by WA*, including goal node t:

g(t)+w ·h(t)≤ w ·C∗. Since g(t) =C and h(t) = 0, C ≤ w ·C∗. ⊓⊔

2.2 Graphical models

A graphical model is a tuple M = 〈X,D,F,
⊗〉, where X = {X1, . . . ,Xn} is a set of variables

and D = {D1, . . . ,Dn} is the set of their finite domains of values. F = { f1(XS1
), . . . , fr(XSr )}

is a set of non-negative real-valued functions defined on subsets of variables XSi
⊆X, called

scopes (i.e., ∀i fi : XSi
→R

+). The set of function scopes implies a primal graph whose ver-

tices are the variables and which includes an edge connecting any two variables that appear

in the scope of the same function (e.g. Figure 1a). Given an ordering of the variables, the

induced graph is an ordered graph, such that each node’s earlier neighbours are connected

from last to first, (e.g., Figure 1b). The maximum, over all nodes in the induced graph, num-

ber of preceding neighbours is called induced width w∗ (not to be confused with the weight

w). For more details see [Kask et al (2005)]. The combination operator
⊗ ∈ {∏,∑} defines

the complete function represented by the graphical model M as C (X) =
⊗r

j=1 f j(XS j
).

The most common optimization task is known as the most probable explanation (MPE)

or maximum a posteriori (MAP), in which we would like to compute the optimal value C∗

and/or its optimizing configuration x∗:

C∗ =C(x∗) = max
X

r

∏
j=1

f j(XS j
) (1)

x∗ = argmaxX

r

∏
j=1

f j(XS j
) (2)

The MPE/MAP task is often converted into negative log-space and solved as an energy

minimization (min-sum) problem. This is also known as the Weighted CSP (WCSP) problem

[Marinescu and Dechter (2009a)] and is defined as follows:

C∗ =C(x∗) = min
X

r

∑
j=1

f j(XS j
) (3)
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(a) Primal graph. (b) Induced

graph.

(c) Pseudotree.

Fig. 1 Example problem with six variables, induced graph along ordering A,B,C,D,E,F , corresponding

pseudo tree, and resulting AND/OR search graph with AOBB pruning example.

Bucket Elimination (BE) [Dechter (1999), Bertele and Brioschi (1972)] solves MPE/MAP

(WCSP) problems exactly by eliminating the variables in sequence. Given an elimination

order BE partitions the functions into buckets, each associated with a single variable. A

function is placed in the bucket of its argument that appears later in the ordering. BE pro-

cesses each bucket, from last to first, by multiplying (summing for WCSP) all functions in

the current bucket and eliminating the bucket’s variable by maximization (minimization for

WCSP), resulting in a new function which is placed in a lower bucket. The complexity of BE

is time and space exponential in the induced width corresponding to the elimination order.

Mini-Bucket Elimination (MBE) [Dechter and Rish (2003)] is an approximation algorithm

designed to avoid the space and time complexity of full bucket elimination by partitioning

large buckets into smaller subsets, called mini-buckets, each containing at most i (called

i-bound) distinct variables. The mini-buckets are processed separately. MBE generates an

upper bound on the optimal MPE/MAP value (lower bound on the optimal WCSP value).

The complexity of the algorithm, which is parameterized by the i-bound, is time and space

exponential in i only. When i is large enough (i.e., i ≥ w∗), MBE coincides with full BE.

Mini-bucket elimination is often used to generate heuristics for both best-first and depth-

first branch and bound search over graphical models [Kask and Dechter (1999a), Kask and

Dechter (1999b)].

2.3 AND/OR search spaces

The concept of AND/OR search spaces for graphical models has been introduced to better

capture the problem structure [Dechter and Mateescu (2007)]. A pseudo tree of the primal

graph defines the search space and captures problem decomposition (e.g., Figure 1c).
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Fig. 2 Context-minimal AND/OR search graph with AOBB pruning example.

Definition 1 A pseudo tree of an undirected graph G = (V,E) is a directed rooted tree

T = (V,E ′), such that every arc of G not included in E ′ is a back-arc in T , namely it

connects a node in T to an ancestor in T . The arcs in E ′ may not all be included in E.

Given a graphical model M = 〈X,D,F,
⊗〉with primal graph G and a pseudo tree T of

G, the AND/OR search tree ST based on T has alternating levels of OR and AND nodes. Its

structure is based on the underlying pseudo tree. The root node of ST is an OR node labelled

by the root of T . The children of an OR node 〈Xi〉 are AND nodes labelled with value

assignments 〈Xi,xi〉 (or simply 〈xi〉); the children of an AND node 〈Xi,xi〉 are OR nodes

labelled with the children of Xi in T , representing conditionally independent subproblems.

Identical subproblems, identified by their context (the partial instantiation that separates

the subproblem from the rest of the problem graph), can be merged, yielding an AND/OR

search graph [Dechter and Mateescu (2007)]. Merging all context-mergeable nodes yields

the context-minimal AND/OR search graph, denoted by CT (e.g., Figure 2). The size of the

context minimal AND/OR graph is exponential in the induced width of the primal graph G

along a depth-first traversal of T [Dechter and Mateescu (2007)].

The arcs from nodes Xi to 〈Xi,xi〉 in an AND/OR search graph are annotated by the

weights c(Xi,〈Xi,xi〉) derived from the cost functions in F. Namely c(Xi,〈Xi,xi〉) equals to

the combination (i.e. sum for WCSP and product for MPE) of all the functions, whose scope

includes Xi and is fully assigned along the path from root to node corresponding to 〈Xi,xi〉,
evaluated at all values along the path.

A solution tree T of CT is a subtree such that: (1) it contains the root node of CT ; (2) if

an internal AND node n is in T , then all its children are in T ; (3) if an internal OR node n

is in T , then exactly one of its children is in T ; (4) every tip node in T (i.e., a node with no

children) is a terminal node. The cost of a solution tree is the product (resp. sum for WCSP)

of the weights associated with its arcs.

Each node n in CT is associated with a value v(n) capturing the optimal solution cost

of the conditioned subproblem rooted at n. Assuming a MPE/MAP problem, it was shown

that v(n) can be computed recursively based on the values of n’s successors: OR nodes by

maximization, AND nodes by multiplication. For WCSPs, v(n) is updated for OR and AND

nodes by minimization and summation, respectively [Dechter and Mateescu (2007)].
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We next provide an overview of the state-of-the-art best-first and depth-first branch and

bound search schemes that explore the AND/OR search space for graphical models. As it

is customary in the heuristic search literature, we assume without loss of generality a mini-

mization task (i.e., min-sum optimization problem). Note that in the algorithm descriptions

throughout the paper we assume the mini-bucket heuristic hi, obtained with i-bound i, to be

an input parameter to the search scheme. The heuristic is static and its computation is treated

as a separate pre-processing step for clarity.

AND/OR Best-First Search (AOBF). The state-of-the-art version of A* for the AND/OR

search space for graphical models is the AND/OR Best-First algorithm. AOBF is a variant

of AO* [Nillson (1980)] that explores the context-minimal AND/OR search graph. It was

developed by [Marinescu and Dechter (2009a)].

AOBF, described by Algorithm 1 for min-sum tasks, maintains the explicated part of the

context-minimal AND/OR search graph G and also keeps track of the current best partial

solution tree T ∗. AOBF interleaves iteratively a top-down node expansion step (lines 4-

16), selecting a non-terminal tip node of T ∗ and generating its children in the explored

search graph G , with a bottom-up cost revision step (lines 16-25), updating the values of the

internal nodes based on the children’s values. If a newly generated child node is terminal, it

is marked solved (line 9). During the bottom-up phase the OR nodes, whose best successor

is solved, and the AND nodes, who have all children solved, are also marked as solved.

The algorithm also marks the arc to the best AND child of an OR node through which the

minimum is achieved (line 20). Following the backward step, a new best partial solution tree

T ∗ is recomputed (line 28). AOBF terminates when the root node is marked solved. If the

heuristic used is admissible, at the point of termination T ∗ is the optimal solution with cost

v(s), where s is the root node of the search space.

Note that, unlike the traditional best-first search schemes exploring OR search spaces,

AOBF does not maintain explicit OPEN and CLOSED lists. Same is true for all AND/OR

algorithms discussed in this paper.

Theorem 2 Marinescu and Dechter (2009b). The AND/OR Best-First search algorithm

with no caching (traversing an AND/OR search tree) has worst case time and space com-

plexity of O(n · kh), where n is the number of variables in the problem, h is the height of the

pseudo tree and k bounds the domain size. AOBF with full caching traversing the context-

minimal AND/OR graph has worst case time and space complexity of O(n · kw∗), where w∗

is the induced width of the pseudo tree.

AND/OR Branch and Bound (AOBB). The AND/OR Branch and Bound [Marinescu and

Dechter (2009a)] algorithm traverses the context-minimal AND/OR graph in a depth-first

rather than best-first manner, while keeping track of the current upper bound on the mini-

mal solution cost. The algorithm (Algorithm 2, described here with no caching) interleaves

forward node expansion (lines 4-18) with a backward cost revision (or propagation) step

(lines 19-30) that updates node values (capturing the current best solution to the subproblem

rooted at each node), until search terminates and the optimal solution has been found. A

node n will be pruned (lines 12-13) if the current upper bound is smaller or equal to the

node’s heuristic lower bound, computed recursively using the procedure described in Algo-

rithm 3. Although branch and bound search is inherently anytime, AND/OR decomposition

hinders the anytime performance of AOBB, which has to solve completely at each AND

node almost all independent child subproblems (except for the last one), before obtaining

any solution at all.
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Algorithm 1: AOBF(hi, w0) exploring the AND/OR search tree (Marinescu and

Dechter (2009b))

Input: A graphical model M = 〈X,D,F,∑〉, weight w0 (default value 1), pseudo tree T rooted at

X1, heuristic hi calculated with i-bound i;

Output: Optimal solution to M

1 create root OR node s labelled by X1 and let G (explored search space) = {s};
2 initialize v(s) = w0 ·hi(s) and best partial solution tree T ∗ of G , T ∗ = {s};
3 while s is not SOLVED do

4 select non-terminal tip node n in T ∗. If there is no such node then exit;

// expand node n

5 if n = Xi is OR then

6 forall the xi ∈ D(Xi) do

7 create AND child n′ = 〈Xi,xi〉;
8 if n’ is TERMINAL then

9 mark n′ SOLVED;

10 succ(n)← succ(n)∪n′;

11 else if n = 〈Xi,xi〉 is AND then

12 forall the successor X j of Xi in T do

13 create OR child n′ = X j ;

14 succ(n)← succ(n)∪n′;

15 initialize v(n′) = w0 ·hi(n
′) for all new nodes;

16 add new nodes to the explored search space space G ← G ∪ succ(n);
// update n and its AND and OR ancestors in G , bottom-up

17 repeat

18 if n is OR node then

19 v(n) = mink∈succ(n)(c(n,k)+ v(k)); // c(n,k) is the weight of the arc (n,k)

20 mark best successor k of OR node n, such that k = argmink∈succ(n)(c(n,k)+ v(k))

(maintaining previously marked successor if still best);

21 mark n as SOLVED if its best marked successor is solved;

22 else if n is AND node then

23 v(n) = ∑k∈succ(n) v(k);

24 mark all arcs to the successors;

25 mark n as SOLVED if all its children are SOLVED;

26 n← p; //p is a parent of n in G

27 until n is root node s;

28 recompute T ∗ by following marked arcs from the root s;

29 return 〈v(s),T ∗〉;

We use notation AOBB(hi, w0, UB) to indicate that AOBB uses the mini-bucket heuris-

tic hi obtained with i-bound=i, which is multiplied by the weight w0 and initializes the upper

bound used for pruning to UB. The default values of the weight and upper bound for AOBB

traditionally are w0 = 1, corresponding to regular unweighted heuristic, and UB= ∞, indi-

cating that initially there is no pruning.

Theorem 3 Marinescu and Dechter (2009b). The AND/OR Branch and Bound search

algorithm with no caching (traversing an AND/OR search tree) has worst case time and

space complexities of O(n · kh) and O(n), respectively, where n is the number of variables

in the problem, k bounds the domain size and h is the height of the pseudo tree. AOBB with

full caching traversing the context-minimal AND/OR graph has worst case time and space

complexity of O(n · kw∗), where w∗ is the induced width of the pseudo tree.
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Algorithm 2: AOBB(hi, w0, UB = ∞) exploring the AND/OR search tree (Marinescu

and Dechter (2009b))

Input: A graphical model M = 〈X,D,F,∑〉, weight w0 (default value 1), pseudo tree T rooted at

X1, heuristic hi calculated with i-bound i;

Output: Optimal solution to M

1 create root OR node s labelled by X1 and let stack of created but not expanded nodes OPEN = {s};
2 initialize v(s) =UB and best partial solution tree rooted at s is T ∗(s) = /0 ;

3 while OPEN6= /0 do

4 select top node n on OPEN;

//EXPAND

5 if n is OR node labeled Xi then

6 foreach xi ∈ D(Xi) do
//Expand node n:

7 add AND child n′ = 〈Xi,xi〉 to list of successors of n;

8 initialize v(n′) = 0, best partial solution tree rooted in n′ T ∗(n′) = /0;

9 if n is AND node labeled 〈Xi,xi〉 then

10 foreach OR ancestor k of n do

11 recursively evaluate the cost of the partial solution tree rooted in k, based on heuristic

hi and weight w0, assign its cost to f (k); // see evalPartialSolutionTree(T ∗n ,

hi(n), w0) in Algorithm 3

12 if evaluated partial solution is not better than current upper bound at k (e.g.

f (k)≥ v(k) for minimization) then

13 prune the subtree below the current tip node n;

14 else

15 foreach successor X j of Xi ∈T do

16 add OR child n′ = X j to list of successors of n;

17 initialize v(n′) = ∞, best partial solution tree rooted in n′ T ∗(n′) = /0;

18 add successors of n on top of OPEN;

//PROPAGATE

//only propagate if all children of n are evaluated and the final v’s are determined

19 while list of successors of node n is empty do

20 if node n is the root node then

21 return solution: v(n),T ∗(n) ;

22 else
//update ancestors of n, AND and OR nodes p, bottom up:

23 if p is AND node then

24 v(p) = v(p)+ v(n), T ∗(p) = T ∗(p)∪T ∗(n);

25 else if p is OR node then

26 if the new value of better than the old one, e.g. v(p)> (c(p,n)+ v(n)) for

minimization then

27 v(p) = c(p,n)+ v(n), T ∗(p) = T ∗(p)∪〈xi,Xi〉;
28 if p is root then UB = min(UB,v(p))

29 remove n from the list of successors of p;

30 move one level up: n← p;

31 return 〈v(s),T ∗(s)〉;

Although AOBF and AOBB with full caching have the same worst case space complex-

ity, namely exponential in the induced width of the pseudo tree, often AOBB is far more

memory efficient than AOBF because it can avoid caching nodes appearing on just a sin-

gle path from the root. These nodes are called dead-caches. AOBB can avoid dead-caches,

while AOBF cannot. In particular, when the induced width is high, most of the nodes are
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Algorithm 3: Recursive computation of the heuristic evaluation function (Marinescu

and Dechter (2009b))

function evalPartialSolutionTree(T ′n , h(n), w)

Input: Partial solution subtree T ′n rooted at node n, heuristic function h(n);
Output: Heuristic evaluation function f (T ′n);

1 if succ(n) == /0 then

2 return h(n) ·w;

3 else

4 if n is an AND node then

5 let k1, . . . ,kl be the OR children of n;

6 return ∑
l
i=1 evalPartialSolutionTree(T ′ki

, h(ki), w);

7 else if n is an OR node then

8 let k be the AND child of n;

9 return w(n,k) + evalPartialSolutionTree(T ′k , h(k), w);

dead-caches and the search space is close to a tree. In these cases AOBB will rarely cache

anything, while AOBF will still have to cache the whole search frontier. The most extreme

case illustrating this point is when w∗ = n and we have a tree. AOBB will have no caching

and will require no extra memory, while AOBF will have the memory overhead exponential

in n. Furthermore, from an implementation perspective, the memory footprint of a cache

entry (or node) recorded by AOBB is minimal (it is a single double value), whereas AOBF

needs to record for every node a lot more information, such as lists of pointers to parents

and children, heuristic and node values, in order to maintain the explicated search space in

memory. All these issues carry over to the weighted heuristic best-first and depth-first search

algorithms discussed in the paper.

Breadth Rotating AND/OR Branch and Bound (BRAOBB). To remedy the relatively poor

anytime behavior of AOBB, the Breadth-Rotating AND/OR Branch and Bound algorithm

has been introduced recently by [Otten and Dechter (2011)]. The basic idea is to rotate

through different subproblems in a breadth-first manner. Empirically, BRAOBB finds the

first sub-optimal solution significantly faster than plain AOBB [Otten and Dechter (2011)].

3 Some properties of the weighted heuristic search

In this section we explore the interplay between the weight w and the heuristic function h,

and their impact on the explored search space. It was observed early on that the search space

explored by WA* when w > 1 is often smaller than the one explored by A*. Intuitively,

the increased weight of the heuristic h transforms best-first search into a greedy search.

Consequently, the number of nodes expanded tends to decrease as w increases, because a

solution may be encountered early in the search process. In general, however, such behavior

is not guaranteed [Wilt and Ruml (2012)]. For some domains greedy search can be less

efficient than A*.

A search space is a directed graph having a root node. Its leaves are solution nodes or

dead-ends. A greedy depth-first search always explores the subtree rooted at the current node

representing a partial solution path. This leads us to the following definition.
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Definition 2 (focused search space) An explored search space is focused along a path π,

if for any node n ∈ π once n is expanded, the only nodes expanded afterwards belong to the

subtree rooted at n.

Having a focused explored search space is desirable because it would yield a fast and

memory efficient search. In the following paragraphs we will show that there exists a weight

wh that guarantees a focused search for WA*, and that its value depends on the costs of the

arcs on the solution paths and on the heuristic values along the path.

Proposition 1 Let π be a solution path in a rooted search space. Let arc (n,n′) be such that

f (n) > f (n′) . If n is expanded by A* guided by f , then a) any node n′′ expanded after n

and before n′ satisfies that f (n′′) ≤ f (n′), b) n′′ belongs to the subgraph rooted at n , and

c) under the weaker condition that f (n) ≥ f (n′), parts a) and b) still hold given that the

algorithm breaks ties in favour of deeper nodes.

Proof a). From the definition of best-first search, the nodes n′′ are chosen from OPEN list

(which after expansion of n includes all n’s children, and in particular n′). Since n′′ was

chosen before n′, it must be that f (n′′) ≤ f (n′).
b) Consider the OPEN list at the time when n is chosen for expansion. Clearly, any

node q on OPEN satisfy that f (q) ≥ f (n). Since we assured f (n) > f (n′), it follows that

f (q) > f (n′) and node q will not be expanded before n′, and therefore any expanded node

is in the subtree rooted at n.

c) Assume f (n)≥ f (n′). Consider any node q in OPEN: it either has an evaluation func-

tion f (q) > f (n), and thus f (q) > f (n′), or f (q) = f (n) and thus f (q) ≥ f (n′). However,

node q has smaller depth than n, otherwise it would have been expanded before n (as they

have the same f value), and thus smaller depth than n′, which is not expanded yet and thus

is the descendant of n. Either way, node q will not be expanded before n′. ⊓⊔

In the following, we assume that the algorithms we consider always break ties in favor

of deeper nodes.

Definition 3 ( f non-increasing solution path) Given a path π = {s, . . . ,n,n′ . . . , t} and a

heuristic evaluation function h≤ h∗, if f (n)≥ f (n′) for every n′ (a child of n along π), then

f is said to be monotonically non-increasing along π.

From Proposition 1 it immediately follows:

Theorem 4 Given a solution path π along which evaluation function f is monotonically

non-increasing, the search space is focused along path π.

We will next show that this focused search property is achieved by WA* when w passes

a certain threshold. We denote by c(n,n′) the cost of the arc from node n to its child n′.

Definition 4 (the h-weight of an arc) Restricting ourselves to problems where h(n)−
h(n′) 6= 0, we denote

wh(n,n
′) =

c(n,n′)
h(n)−h(n′)

Assumption 1. We will assume that for any arc (n,n′), wh(n,n
′)≥ 0 .

Assumption 1 is satisfied iff c(n,n′) and h(n)−h(n′) have the same sign, and if h(n)−
h(n′) 6= 0. Without loss of generality we will assume that for all (n,n′), c(n,n′) ≥ 0.
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h∗(B) = 2 h∗(C) = 3

f(C) = 1 + 10 · 3 = 31f(B) = 5 + 10 · 2 = 25

w = 10

Fig. 3 WA* with the exact heuristic

Definition 5 (The h-weight of a path) Consider a solution path π, s.t,

wh(π) = max
(n,n′)∈π

wh(n,n
′) = max

(n,n′)∈π

c(n,n′)
h(n)−h(n′)

(4)

Theorem 5 Given a solution path π in a search graph and a heuristic function h such that

wh(π) is well defined, then, if w≥ wh(π), WA* using w yields a focused search along π.

Proof We will show that under the theorem’s conditions f is monotonically non-increasing

along π. Consider an arbitrary arc (n,n′) ∈ π. Since w≥ wh(π) , then

w≥ c(n,n′)
h(n)−h(n′)

or, equivalently,

c(n,n′) ≤ w ·h(n)−w ·h(n′)
adding gπ (n) to the both sides and some algebraic manipulations yield

gπ(n)+ c(n,n′)+w ·h(n′)≤ gπ (n)+w ·h(n)

which is equivalent to

gπ (n
′)+w ·h(n′)≤ gπ(n)+w ·h(n)

and therefore, for the weighted evaluation functions we have

f (n′)≤ f (n).

Namely, f is monotonically non-increasing. From Theorem 1 it follows that WA* is focused

along π with this w. ⊓⊔

Clearly therefore,

Corollary 1 If WA* uses w≥ wh(π) for each solution path π, then WA* performs a greedy

search, assuming ties are broken in favour of deeper nodes.

Corollary 2 When h = h∗, then on an optimal path π,
c(n,n′)

h(n)−h(n′) = 1. Therefore, any value

w≥ 1 will yield a focused search relative to all optimal paths.

Corollary 3 If we found a solution path π, such that wh(π) = 1, then the solution must be

optimal and heuristic h is exact.
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Clearly, when h is exact, the weight w = 1 should be preferred since it guarantees the

optimal solution. But if w > 1 and h = h∗, the solution found by the greedy search may not

be optimal.

Example 1 Consider the graph in Figure 3. Given w = 10, WA* will always find the incor-

rect path A-B-D instead of the exact solution path A-C-D.

Notice that, if the search is focused only along some solution paths, it can still be very

unfocused relative to the entire solution space. More significantly, as we consider smaller

weights, the search would be focused relative to a smaller set of paths, and therefore less

contained. Yet with smaller weights, upon termination WA* yields a superior guarantee

on the solution quality. We next provide an explicit condition showing that, under certain

conditions, the weight on a path can provide a bound on the relative distance of the cost of

the path from the optimal cost.

Theorem 6 Given a search space and given an admissible heuristic function h having

wh(π) function for each path π, let π be a solution path from s to t, satisfying:

1) for all arcs (n,n′) ∈ π, c(n,n′)≥ 0, and for at least one arc c(n,n′)> 0

2) for all arcs (n,n′) ∈ π, h(n)−h(n′)> 0.

Then the cost of the path Cπ is within a factor of wh(π) from the optimal solution cost C∗.
Namely,

Cπ ≤ wh(π) ·C∗ (5)

Proof Denote by f (n) = fπ(n) the weighted evaluation function of node n using weight w =
wh(π): fπ(n) = g(n)+wh(π) ·h(n). Clearly, based on Theorem 2 we have that ∀(n,n′) ∈ π,

f (n)≥ f (n′). Namely, that search is focused relative to π.

Since for any arc (n,n′) on path π, starting with s and ending with t f is monotonically

non-increasing when using wh(π), we have

f (s)≥ f (t)

Since g(s) = 0, f (s) = wh(π) ·h(s) and since h(t) = 0, f (t) = g(t) =Cπ . We get that

wh(π) ·h(s)≥Cπ

Since h is admissible, h(s)≤ h∗(s) and h∗(s) =C∗, we have h(s)≤C∗ and

wh(π) ·h(s)≤ wh(π) ·h∗(s) = wh(π) ·C∗

We get from the above two inequalities that

wh(π) ·C∗ ≥Cπ or
Cπ

C∗
≤ wh(π)

⊓⊔
In practice, conditions (1) and (2) hold for many problems formulated over graphical

models, in particular for many instances in our datasets (described in Section 5.1), when the

MBE heuristic is used. However, in the presence of determinism the h-value is sometimes

not well-defined, since for certain arcs c(n,n′) = 0 and h(n)−h′(n) = 0.

In the extreme we can use wmax = maxπ wh(π) as the weight, which will yield a focused

search relative to all paths, but we only guarantee that the accuracy factor will be bounded

by wmax and in the worst case the bound may be loose.

It is interesting to note that:
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Proposition 2 If the heuristic function h(n) is consistent and if for all arcs (n,n′) ∈ π,

h(n)−h(n′)> 0 and c(n,n′)> 0, then wh(π)≥ 1.

Proof From definition of consistency: h(n) ≤ c(n,n′)+h(n′). After some algebraic manip-

ulation it is easy to obtain: max(n,n′)∈Eπ

c(n,n′)
h(n)−h(n′) ≥ 1 and thus wh(π)≥ 1.

We conclude that:

Proposition 3 For every π, and under the conditions of Theorem 6

Cπ ≥C∗ ≥ Cπ

wh(π)
and there f ore, min

π
{Cπ} ≥C∗ ≥max

π
{ Cπ

wh(π)
}

⊓⊔

In summary, the above analysis provides some intuition as to why weighted heuristic

best-first search is likely to be more focused and therefore more time efficient for larger

weights, and how it can provide a user-control parameter exploring the trade-off between

time and accuracy. There is clearly room for exploration of the potential of Proposition 3

that we leave for future work.

4 Tailoring weighted heuristic BFS to graphical models

After analyzing a number of existing weighted heuristic search approaches we extended

some of the ideas to the AND/OR search space over graphical models. In this section, we

describe wAOBF and wR-AOBF - the two approaches that proved to be the most promising

after our initial empirical evaluation (not reported here).

4.1 Weighted heuristic AOBF

The fixed-weighted heuristic version of the AOBF algorithm is obtained by multiplying the

mini-bucket heuristic function by a weight w > 1 (i.e., substituting hi(n) by w ·hi(n), where

hi(n) is the heuristic obtained by mini-bucket elimination with i-bound equal to i). This

scheme is identical to WAO*, an algorithm introduced by [Chakrabarti et al (1987)], but it

is adapted to the specifics of AOBF. Clearly, if hi(n) is admissible, which is the case for

mini-bucket heuristics, the cost of the solution discovered by weighted heuristic AOBF is

w-optimal, same as is known for WA* [Pohl (1970)] and WAO* [Chakrabarti et al (1987)].

Consider an example problem with 4 binary variables in Figure 4 that we will use to

illustrate the work of our algorithms. Figure 4a shows the primal graph. We assume a

Weighted CSP problem, namely the functions are not normalized and the task is the min-sum

one: C∗ = minA,B,C,D

(

f (A,B)+ f (B,C)+ f (B)+ f (A,D)
)

. Figure 4c presents the AND/OR

search graph of the problem, showing the heuristic functions and the weights derived from

functions defined in Figure 4b on the arcs. Since the problem is very easy, the MBE heuristic

is exact.

Figure 5 shows the part of the search space explored by AOBF (on the left) and weighted

heuristic AOBF with weight w= 10 (on the right). The numbers in grey boxes mark the order

of nodes expansions. For clarity the entire sequence of node values’ updates is not presented

and only the latest assigned values v are shown. We use notation vSN to indicate that the

value was last updated during step N, namely when expanding the Nth node. The reported



Weighted Heuristic Search in Graphical Models 15

B

CA

D

(a) Primal graph.

f(A,B) A B

0 0

0

0

1

1

11 1

1

4

3

B

0 0

0

0

1

1

11 1

f(B,C) C

3
2
2

0 0

0

0

1

1

11 1

3

Af(A,D) D

1

1 0

1

1

Bf(B)

9

(b) Functions.

B

CA

0000

0

1111

1

AC

D D

0 1 0 1

91

111

1

2

2

2334

1 1

h = 0

h = 0h = 0

h = 0 h = 0 h = 0

h = 0h = 0h = 1h = 1h = 1h = 1

h = 1 h = 1

h = 1h = 2 h = 2h = 4

h = 6 h = 3

h = 7

(c) Context-minimal weighted AND/OR graph.

Fig. 4 Example problem with four variables, the functions defined over pairs of variables and resulting

AND/OR search graph.

solution subtree is highlighted in bold. AOBF finds the exact solution with cost C∗ = 7 and

assignment x∗ = {A = 1,B = 0,C = 1,D = 1}. Weighted heuristic AOBF discovers a sub-

optimal solution with cost C = 12 and assignment x = {A = 0,B = 1,C = 1,D = 0}. In this

example both algorithms expand 8 nodes.
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Fig. 5 Search graphs explored by (a) AOBF, (b) Weighted heuristic AOBF, w=10. The numbers in grey boxes

indicate the order in which the nodes are expanded. vSN indicates that value v was last assigned during step

N, i.e. while expanding the Nth node.

Algorithm 4: wAOBF(w0, hi)

Input: A graphical model M = 〈X,D,F,∑〉; heuristic hi calculated with i-bound i; initial weight w0,

weight update schedule S

Output: Set of sub-optimal solutions C

1 Initialize w = w0 and let C ← /0;

2 while w >= 1 do

3 〈Cw,T
∗

w 〉 ← AOBF(w ·hi);

4 C ← C ∪{〈w,Cw ,T
∗

w 〉};
5 Decrease weight w according to schedule S;

6 return C ;

4.2 Iterative weighted heuristic AOBF (wAOBF)

Since weighted heuristic AOBF yields w-optimal solutions, it can be extended to an anytime

scheme wAOBF (Algorithm 4), by decreasing the weight from one iteration to the next.

This approach is identical to the Restarting Weighted A* by [Richter et al (2010)] applied

to AOBF.

Theorem 7 The worst case time and space complexity of a single iteration of wAOBF with

full caching is O(n · kw∗), where n is the number of variables, k is the largest domain size

and w∗ is the induced width of the pseudo tree.
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Algorithm 5: wR-AOBF(hi, w0)

Input: A graphical model M = 〈X,D,F,∑〉; pseudo tree T rooted at X1; heuristic hi for i-bound=i;

initial weight w0 , weight update schedule S

Output: Set of sub-optimal solutions C

1 initialize w = w0 and let C ← /0;

2 create root OR node s labelled by X1 and let G = {s};
3 initialize v(s) = w ·hi(s) and best partial solution tree T ∗ = {s} of G ;

4 while w >= 1 do

5 expand and update nodes in G using AOBF(w,hi) search with heuristic function w ·hi;

6 if T ∗ has no more tip nodes then C ← C ∪{〈w,v(s),T ∗〉};
7 decrease weight w according to schedule S;

8 for all leaf nodes in n ∈ G , update v(n) = w ·hi(n). Update the values of all nodes in G using the

values of their successors. Mark best successor of each OR node.;

9 recalculate T ∗ following the marked arcs;

10 return C ;

Proof During each iteration wAOBF executes AOBF from scratch with no additional over-

head. The number of required iterations depends on the start weight value and the weight

decreasing policy. ⊓⊔

We note that certain weight decreasing policy (or schedule) do not guarantee that the

weight converges to 1 in a finite number of steps (see for example the sqrt(k) policy in

Section 5.3). In practice, for these kinds of policies, if the current weight is less than 1.0001,

then it is set to 1.0, thus enabling a termination condition for the respective algorithm.

4.3 Anytime repairing AOBF (wR-AOBF)

Running each search iteration from scratch seems redundant, so we introduce Anytime Re-

pairing AOBF (Algorithm 5), which we call wR-AOBF. It is an extension of the Anytime

Repairing A* (ARA*) algorithm [Likhachev et al (2003)] to the AND/OR search spaces

over graphical models. The original ARA* algorithm utilizes the results of previous itera-

tions by recomputing the evaluation functions of the nodes with each weight change, and

thus re-using the inherited OPEN and CLOSED lists. The algorithm also keeps track of

the previously expanded nodes whose evaluation function changed between iterations and

re-inserts them back to OPEN before starting each iteration.

Extending this idea to the AND/OR search space is fairly straightforward. Since AOBF

does not maintain explicit OPEN and CLOSED lists, wR-AOBF keeps track of the partially

explored AND/OR search graph, and after each weight update it performs a bottom-up up-

date of all the node values starting from the leaf nodes (whose h-values are multiplied by the

new weight) and continuing towards the root node (line 8). During this phase, the algorithm

also marks the best AND successor of each OR node in the search graph. These markings

are used to recompute the best partial solution tree T ∗. Then, the search resumes in the usual

manner by expanding a tip node of T ∗ (line 9).

Like ARA*, wR-AOBF is guaranteed to terminate with a solution cost C such that C ≤
w ·C∗, where C∗ is the optimal solutions cost.

Theorem 8 The worst case space complexity of a single iteration of wR-AOBF with caching

is O(n · kw∗), where n is the number of variables, k is the largest domain size and w∗ is the

induced width of the pseudo tree. The worst case time complexity can be loosely bounded by
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O(2 ·n · kw∗ ). The total number of iteration depends on the starting weight and the parame-

ters of the weight updating policy/schedule.

Proof In the worst case at each iteration wR-AOBF explores the entire search space of size

O(n · kw∗), having the same theoretical space complexity as AOBF and wAOBF. In practice

there exist an additional space overhead due to the book-keeping required by best-first search

to maintain in memory the explicated AND/OR search graph (see also Section 2.3).

The time complexity comprises of the time it takes to expand nodes and the time over-

head due to updating node values during each iteration. Every time the weight is decreased,

wR-AOBF needs to update the values of all nodes in the partially explored AND/OR graph,

at most O(n · kw∗) of them. ⊓⊔

The updating of node values is a costly step because it involves all nodes the algorithm

has ever generated. Thus, although wR-AOBF expands less nodes that wAOBF, in practice

it is considerably slower, as we will see next in the experimental section.

5 Empirical evaluation of weighted heuristic BFS

Our empirical evaluation of weighted heuristic search schemes consists of two parts. In this

section, we focus on the two weighted heuristic best-first algorithms described in Section 4:

wAOBF and wR-AOBF, respectively. In Section 6.2 we additionally compare these algo-

rithms with the two weighted heuristic depth-first branch and bound schemes that will be

introduced in Section 6.1.

5.1 Overview and methodology

In this section, we evaluate the behavior of wAOBF and wR-AOBF and contrast their perfor-

mance with a number of previously developed algorithms. The main point of reference for

our comparison is the depth-first branch and bound scheme, BRAOBB [Otten and Dechter

(2011)], which is known to be one of the most efficient anytime algorithms for graphical

models3,4. In a subset of experiments we also compare against A* search [Hart et al (1968)]

and depth-first branch and bound (DFBB) [Lawler and Wood (1966)], both exploring an

OR search tree, and against Stochastic Local Search (SLS) [Hutter et al (2005); Kask and

Dechter (1999c)]. We implemented our algorithms in C++ and ran all experiments on a

2.67GHz Intel Xeon X5650, running Linux, with 4 GB allocated for each job.

All schemes traverse the same context-minimal AND/OR search graph, defined by a

common static variable ordering, obtained using the well-known min-fill ordering heuristic

[Kjærulff (1990)]. The algorithms return solutions at different time points until either the

optimal solution is found, until a time limit of 1 hour is reached or until the scheme runs out

of memory. No evidence was used. A* and DFBB are using a chain (following the min-fill

ordering) instead of a pseudo tree like the AND/OR algorithms do. All branch and bound

algorithms use a dynamic value ordering heuristic that sorts the domain values of a variable

in increasing order of their corresponding heuristic upper bounding estimates.

3 http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
4 http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html
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Benchmark # inst n # func k w∗ hT

Pedigrees 11 437-1152 437-1152 3-7 16-39 52-104

Grids 32 144-2500 144-2500 2-2 15-90 48-283

WCSP 56 25-1057 301-18017 2-100 5-287 11-337

Type4 10 3907-8186 3907-8186 5-5 21-32 319-625

Table 1 Benchmark parameters: # inst - number of instances, n - number of variables, # func - number of

functions (include uniary ones), k - domain size, w∗ - induced width, hT - pseudo tree height.

All schemes use the Mini-Bucket Elimination heuristic, described in Section 2.3, with

ten i-bounds, ranging from 2 to 20. However, for some hard problems computing the mini-

bucket heuristic with the larger i-bounds proved infeasible, so the actual range of i-bounds

varies among the benchmarks and among instances within a benchmark.

We evaluated the algorithms on four benchmarks: Weighted CSPs (WCSP), Binary

grids, Pedigree networks and Type4 genetic networks. The pedigree instances (“pedi-

gree*”) arise from the domain of genetic linkage analysis and are associated with the task

of haplotyping. The haplotype is the sequence of alleles at different loci inherited by an in-

dividual from one parent, and the two haplotypes (maternal and paternal) of an individual

constitute this individual’s genotype. When genotypes are measured by standard procedures,

the result is a list of unordered pairs of alleles, one pair for each locus. The maximum likeli-

hood haplotype problem consists of finding a joint haplotype configuration for all members

of the pedigree which maximizes the probability of data. It can be shown that given the pedi-

gree data the haplotyping problem is equivalent to computing the most probable explanation

of a Bayesian network that represents the pedigree [Fishelson and Geiger (2002)]. In binary

grid networks (“50-*”, “75-*” and “90-*”)5 the nodes corresponding to binary variables

are arranged in an N by N square and the functions are defined over pairs of variables and

are generated uniformly randomly. The WCSP (“*.wcsp”) benchmark includes random bi-

nary WCSPs, scheduling problems from the SPOT5 benchmark, and radio link frequency

assignment problems, providing a large variety of problem parameters. Type4 (“type4b *”)

instances come from the domain of genetic linkage analysis, just as the Pedigree problems,

but are known to be significantly harder. Table 1 describes the benchmark parameters.

For each anytime solution found by an algorithm we record its cost, CPU time in sec-

onds and the corresponding weight (for weighted heuristic schemes) at termination. For

uniformity, we consider all problems as solving the max-product task, also known as Most

Probable Explanation problem (MPE). The computed anytime costs returned by the algo-

rithms are lower bounds on the optimal solutions. In our experiments we evaluate the impact

of the weight on the solution accuracy and runtime, analyze the choice of weight decreasing

policy, and study the anytime behavior of the schemes and the interaction between heuristic

strength and the weight.

5.2 The impact of weights on the weighted heuristic AOBF performance

One of the most valuable qualities of weighted heuristic search is the ability to flexibly

control the trade-off between speed and accuracy of the search using the weight, which

provides a w-optimality bound on the solution.

In order to evaluate the impact of the weight on the solution accuracy and runtime we

run wAOBF and we consider iterations individually. Each iteration j is equivalent to a single

5 http://graphmod.ics.uci.edu/repos/mpe/grids/
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run of AOBF(w j,hi), namely the AND/OR Best-First algorithm that uses MBE heuristic hi,

obtained with an i-bound equal to i, multiplied by weight w j.

Table 2 reports the results for selected weights (w=2.828, 1.033, 1.00), for several se-

lected instances representative of the behavior prevalent over each benchmark. Following

the names and parameters of each instance, the table is vertically split into two blocks, cor-

responding to two i-bounds. In the second column of each block we report the time (in sec-

onds) it took BRAOBB to find the optimal solution to the problem (the higher entry in each

row) and the solution cost on a logarithmic scale (the lower entry in each row). The symbol

“—” indicates that the corresponding algorithm ran out of memory. The next three columns

show the runtime in seconds and the cost on the log scale obtained by AOBF when using a

specific weight value. The entries mentioned in this section are highlighted. Note that, since

calculation of the mini-bucket heuristics is time and space exponential in i-bound, for some

instances the heuristics can’t be obtained for large i-bounds (e.g. 1502.wcsp, i-bound=10).

Comparison between the exact results by AOBF obtained with weight w = 1 (columns

5 and 9) and by BRAOBB (columns 2 and 6) with any one of the other columns reveals

that abandoning optimality yields runtime savings and allows to find approximate solutions

when exact ones cannot be obtained within an hour.

In more details, let us consider, for example, the columns of Table 2 where the costs

generated are guaranteed to be a factor of 2.828 away from the optimal. We see orders of

magnitude time savings compared to BRAOBB, for both i-bounds. For example, for pedi-

gree9, i-bound=16, for w = 2.828 the runtime of the weighted heuristic AOBF is merely

6.24 seconds, while BRAOBB’s is 1082.02 seconds. For WCSP networks, the algorithms’

runtimes are often quite similar. For example, for bwt3ac.wcsp, i-bound=10, BRAOBB takes

54.34 seconds and weighted heuristic AOBF for w = 2.828 takes 54.88. On some WCSP

instances, such as myciel5g 3.wcsp, i-bound=2, BRAOBB is clearly superior, finding an

optimal solution within the time limit, while weighted heuristic AOBF runs out of memory

and does not report any solution for w = 2.828.

Comparing columns 5 and 9, exhibiting full AOBF with w = 1 (when it did not run

out of memory) against w = 2.828 we see similar behavior. For example, for grid 75-18-5,

i-bound=6, we see that the exact AOBF (w = 1) requires 88.53 seconds, which is about 200

times longer than with weight w = 2.828 which requires 0.42 seconds.

More remarkable results can be noticed when considering the column of weight w =
1.033, especially for the higher i-bound (stronger heuristics). These costs are just a factor

of 1.033 away from optimal, yet the time savings compared with BRAOBB are impressive.

For example, for pedigree9, i-bound=16 weighted heuristic AOBF runtime for w = 1.033 is

34.66 seconds as opposed to 1082.02 seconds by BRAOBB. Observe that the actual results

are often far more accurate than what the bound suggests. In particular, on several test cases,

the optimal solution is obtained with w > 1. For example, see grid 75-18-5, i-bound=20,

w = 1.003. Sometimes the exact AOBF with w = 1 is faster than BRAOBB.

Impact of heuristic strength The i-bound parameter allows to flexibly control the strength

of the mini-bucket heuristics. Clearly, more accurate heuristics yield better results for any

heuristic search and thus should be preferred. However, running the mini-buckets with suf-

ficiently high i-bound is not always feasible due to space limitations and has a considerable

time overhead, since the complexity of the Mini-Bucket Elimination algorithm is exponen-

tial in the i-bound. Thus, we are interested to understand how the heuristic strength influ-

ences the behavior of weighted heuristic best-first schemes when the value of the i-bound is

considerably smaller than the induced width of the problem.
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Instance

(n, k, w∗, hT )

BRAOBB
AOBF(w,hi) weights

BRAOBB
AOBF(w,hi) weights

2.828 1.033 1.00 2.828 1.033 1.00

time

C∗
time

log(cost)
time

log(cost)
time

log(cost)

time

C∗
time

log(cost)
time

log(cost)
time

log(cost)

Grids I-bound=6 I-bound=20

50-16-5
(256, 2, 21, 79)

2601.46
-16.916

0.16
-21.095 — —

7.16
-16.916

7.01
-17.57

7.01
-16.916

7.02
-16.916

50-17-5

(289, 2, 23, 77)

1335.44

-17.759

0.05

-23.496 — —

9.42

-17.759

9.44

-17.829

9.44

-17.759

9.44

-17.759

75-18-5
(324, 2, 24, 85)

390.72
-8.911

0.42
-10.931

74.69
-8.911

88.53
-8.911

13.52
-8.911

13.95
-9.078

13.95
-8.911

13.96
-8.911

75-20-5
(400, 2, 27, 99) time out

1.78
-16.282 — —

22.52
-12.72

19.35

-14.067

24.96

-12.72
27.85
-12.72

90-21-5

(441, 2, 28, 106)
187.75
-7.658

1.13
-8.871

41.38
-7.658

42.48
-7.658

17.01
-7.658

17.32
-9.476

17.65
-7.658

17.74
-7.658

Pedigrees I-bound=6 I-bound=16

pedigree9

(935, 7, 27, 100) time out

0.83

-137.178 — —

1082.02

-122.904

6.24

-133.063

34.66

-122.904 —

pedigree13

(888, 3, 32, 102) time out

0.18

-88.563 — — time out

4.13

-76.429 — —

pedigree37

(726, 5, 20, 72)
4.36

-144.882
0.08

-163.325
4.42

-145.082

9.99

-144.882
388.36

-144.882

388.96

-155.259

389.02

-145.341

389.07

-144.882

pedigree39

(953, 5, 20, 77) time out
0.11

-174.304 — —
4.34

-155.608
4.3

-162.381
4.37

-155.608
4.83

-155.608

WCSP I-bound=2 I-bound=10

1502.wcsp

(209, 4, 5, 11) time out

0.0

-1.258

0.01

-1.258

0.0

-1.258 — — — —

42.wcsp

(190, 4, 26, 72) time out — — —
1563.44
-2.357

11.69

-2.418 — —

bwt3ac.wcsp

(45, 11, 16, 27)
2.47

-0.561

0.93

-0.561
1.84

-0.561
1.85

-0.561
54.34
-0.561

54.88
-0.561

54.92

-0.561

54.92

-0.561

capmo5.wcsp

(200, 100, 100, 100) time out

1.18

-0.262 — — time out

24.04

-0.262 — —

myciel5g 3.wcsp

(47, 3, 19, 24)

2661.91

-64.0 — — —

12.93

-64.0

2.5

-72.0 — —

Type4 I-bound=6 I-bound=16

type4b 100 19

(3938, 5, 29, 354) time out
5.02

-1309.91 — — time out
33.32

-1171.002 — —

type4b 120 17

(4072, 5, 24, 319) time out

4.16

-1483.588 — — time out

26.06

-1362.607

104.37

-1327.776 —

type4b 140 19

(5348, 5, 30, 366) time out

7.28

-1765.403 — — time out

44.94

-1541.883 — —

type4b 150 14

(5804, 5, 32, 522) time out
16.15

-2007.388 — — time out
38.22

-1727.035 — —

type4b 170 23

(5590, 5, 21, 427) time out

9.65

-2191.859 — — time out
18.62

-1978.588
38.4

-1925.883 —

Table 2 Runtime (sec) and cost (on logarithmic scale) obtained by AOBF(w,hi) for selected w, and by

BRAOBB (that finds C∗ - optimal cost). Instance parameters: n - number of variables, k - max domain size,

w∗ - induced width, hT - pseudo tree height. ”—” - running out of memory. 4 GB memory limit, 1 hour time

limit, MBE heuristic. The entries mentioned in the text are highlighted.
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Comparing the results Table 2 across i-bounds for the same algorithm and the same

weight, we observe a number of instances where a more accurate heuristic comes at too high

a price. For example, for pedigree37 weighted heuristic AOBF finds a w-optimal solution

with w = 2.828 in 0.08 seconds for i-bound=6, but takes 388.96 seconds for i-bound=16.

One of the examples to the contrary, where the higher i-bound is beneficial, is grid 90-21-

5, where weighted heuristic AOBF takes 41.38 seconds to terminate for w = 1.033 when

i-bound=6, but only 17.65 seconds, when the i-bound=20.

Table 2 shows that weighted heuristic AOBF is less sensitive to the weak heuristics com-

pared with BRAOBB. For example, for grid 90-21-5 and for i-bound=20, BRAOBB termi-

nates in 17.01 seconds. However, if the heuristic is weak (i-bound=6), it requires 187.75

seconds, an order of magnitude more. On the other hand, for the same instance weighted

heuristic AOBF with weight w = 1.033 has much smaller difference in performance for the

two i-bounds. Weighted heuristic AOBF terminates in 17.65 seconds for i-bound=20 and in

41.38 seconds for i-bound=6. This may suggest that wAOBF could be preferable when the

i-bound is small relative to the problem’s induced width.

Overall, weighted heuristic AOBF solves some hard problems that are infeasible for the

exact scheme and often yields solutions with relatively tight bounds considerably faster than

the optimal solutions obtained by BRAOBB or exact AOBF.

5.3 Exploring weight policies

How should we choose the starting weight value and weight decreasing policy? Previous

works on weighted heuristic search usually avoid disclosing the details of how the starting

weight is defined and how it is decreased at each iteration [e.g., Hansen and Zhou (2007),

Likhachev et al (2003). etc.]. To answer this we evaluated 5 different policies.

The first two policies we considered were substract, which decreases the weight by a

fixed quantity, and divide, which at each iteration divides the current weight by a constant.

These policies lay on the opposite ends of the strategies spectrum. The first method changes

the weight very gradually and consistently, leading to a slow improvement of the solution.

The second approach yields less smooth anytime behavior, since the weight rapidly ap-

proaches 1.0 and fewer intermediate solutions are found. This could potentially allow the

schemes to produce the exact solution faster, but on hard instances presents a danger of

leaping directly to a prohibitively small weight and thus failing prematurely due to memory

issues. The other policies we considered were constructed manually based on the intuition

that it is desirable to improve the solution rapidly by decreasing the weight fast initially and

then “fine-tune” the solution as much as the memory limit allows, by decreasing the weight

slowly as it approaches 1.0.

Overall, we evaluated the following five policies, each for several values of parameters.

We denote by w j the weight used at the jth iteration of the algorithm, the k and d denote

real-valued policy parameters, where appropriate. Given k and d, assuming w1 = w0 (start

weight), for j > 1:

– substract(k): w j = w j−1− k

– divide(k): w j = w j−1/k

– inverse: w j = w1/ j

– piecewise(k,d): if w j ≥ d then w j = w1/ j else w j = w j−1/k

– sqrt(k): w j =
√

w j−1/k

The initial weight value needs to be large enough 1) to explore the schemes’ behavior

on a large range of weights; 2) to make the search focused enough initially to solve harder
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instances, known to be infeasible for regular best-first search within the memory limit. After

some preliminary experiments (not included) we chose the starting weight w0 to be equal

to 64. We noticed that further increase of w0 typically did not yield better results. Namely,

the instances that were infeasible for wAOBF and wR-AOBF with w = 64 also did not

fit in memory when weight was larger. Such behavior can be explained by many nodes

having evaluation function values so similar, that even a very large weight did not yield

much difference between them, resulting in a memory-prohibitive search frontier.
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Iterations
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30

40

50

60

70

W
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gh
t

Weight policies

substract(0.1)
divide(2)
inverse()
piecewise(1.05,8)
sqrt(1.0)

Fig. 6 The dependency of the weight value on iteration index according to considered weight policies, show-

ing first 50 iterations, starting weight w0= 64.

Figure 6 illustrates the weight changes during the first 50 iterations according to the con-

sidered policies. We use the parameter values that proved to be most effective in the prelim-

inary evaluation: substract(k = 0.1), divide(k = 2), inverse(), piecewise(k = 1.05,d = 8),
sqrt(k = 1.0).

Figures 7 and 8 show the anytime performance of wAOBF and wR-AOBF with various

weight scheduling schemes, namely how the solution cost changes as a function of time in

seconds. We plot the solution cost on a logarithmic scale. Figure 7 displays the results for

wAOBF using each of our 5 weight policy. We display results for a mid-range i-bound, on

two instances from each of the benchmarks: Grids, Pedigrees, WCSPs and Type4. Figure 8

shows analogous results for wR-AOBF, on the same instances.

Comparing the anytime performance of the two schemes, we consider as better the one

that finds the initial solutions faster and whose solutions are more accurate (i.e., have higher

costs). Graphically, the curves closer to the left top corner of the plot are better.

Several values of numerical parameters for each policies were tried, but only the ones

that yielded the best performance are presented. The starting weight is 64, w! denotes the

weight at the time of algorithms termination. In this set of experiments the memory limit

was 2 GB, while the time limit was set to 1 hour. The behavior depicted here was quite

typical across instances and i-bounds.

We observe in Figure 7 that for most Pedigrees, Grids and Type4 problems wAOBF

finds the initial solution the fastest using the sqrt policy (the reader is advised to consult

the colored plots online). This can be seen, for example, on grid instance 75-23-5 and on

type4b 120 17, respectively. The sqrt policy typically facilitates the fastest improvement of

the initial solutions. For most of the WCSP instances, however, there is no clear dominance
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Fig. 7 wAOBF: solution cost (on logarithmic scale) vs time (sec) for different weight policies, starting weight

= 64. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size, w∗

- induced width, hT - pseudo tree height. Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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Fig. 8 wR-AOBF: solution cost (on logarithmic scale) vs time (sec) for different weight policies, starting

weight = 64. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain

size, w∗ - induced width, hT - pseudo tree height. Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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between the weight policies. On some instances (not shown) the sqrt policy is again superior.

On others, such as instance 505, the difference is negligible.

Figure 8 depicts the same information for wR-AOBF. The variance between the results

yielded by different weight policies is often very small. On many instances, such as pedi-

gree31 or WCSP 505, it is almost impossible to tell which policy is superior. The dominance

of sqrt policy is less obvious for wR-AOBF, than is was for wAOBF. On a number of prob-

lems piecewise and inverse policies are superior, often yielding almost identical results, see

for example, pedigree7 or WCSP 404. However, there are still many instances, for which

sqrt policy performs well, for example, pedigree7.

Overall, we chose to use the sqrt weight policy in our subsequent experiments, as it is

superior on more instances for wAOBF than other policies, and is often either best or close

second best for wR-AOBF.

Instance Algorithm

Time bounds

10 30 60 600 3600

log(cost) log(cost) log(cost) log(cost) log(cost)

weight weight weight weight weight

Grids, i-bound=10

75-16-5 (256,2,21,73)

-8.1262 -8.0642 -8.0642 -8.0642 -8.0642

wAOBF 1.0671 1.0082 1.0 1.0 1.0

8.0642 -8.0642 -8.0642 -8.0642 -8.0642

wR-AOBF 1.0 1.0 1.0 1.0 1.0

75-26-5 (676,2,36,129)

-24.5951 -23.0522 -23.0522 -23.0522 -23.0522

wAOBF 2.8284 1.6818 1.6818 1.6818 1.6818

-25.2884 -25.2884 -25.2884 -25.2884 -25.2884

wR-AOBF 1.6818 1.6818 1.6818 1.6818 1.6818

Pedigrees, i-bound=10

pedigree7 (867,4,32,90)

-114.4256 -114.4256 -113.8887 -113.8887 -113.8887

wAOBF 1.2968 1.2968 1.1388 1.1388 1.1388

-118.8305 -118.8305 -114.5481 -114.5481 -114.5481

wR-AOBF 1.2968 1.2968 1.1388 1.1388 1.1388

pedigree41 (885,5,33,100)

-123.6391 -121.3366 -121.3366 -121.3366 -121.3366

wAOBF 1.2968 1.1388 1.1388 1.1388 1.1388

-124.656 -121.3366 -121.3366 -121.3366 -121.3366

wR-AOBF 1.2968 1.1388 1.1388 1.1388 1.1388

WCSPs, i-bound=10

408.wcsp (200,4,34,87)

-2.6798 -2.6798 -2.6798 -2.6798 -2.6798

wAOBF 1.2968 1.2968 1.2968 1.2968 1.2968

-2.6811 -2.6811 -2.6811 -2.6811 -2.6811

wR-AOBF 1.2968 1.2968 1.2968 1.2968 1.2968

capmo5.wcsp (200,100,100,100)

-0.2622 -0.2622 -0.2622 -0.2622

wAOBF — 2.8284 2.8284 2.8284 2.8284

-0.2622 -0.2622 -0.2622 -0.2622

wR-AOBF — 2.8284 2.8284 2.8284 2.8284

Type4, i-bound=10

type4b 150 14 (5804,5,32,522)

-1698.1897 -1652.7112 -1652.7112 -1652.7112

wAOBF — 1.6818 1.2968 1.2968 1.2968

-1763.7714 -1763.7714 -1763.7714 -1763.7714

wR-AOBF — 1.2968 1.2968 1.2968 1.2968

type4b 190 20 (8186,5,29,625)

-2605.3849 -2605.3849 -2605.3849

wAOBF — — 1.2968 1.2968 1.2968

-2803.4548 -2603.6145 -2603.6145

wR-AOBF — — 1.2968 1.1388 1.1388

Table 3 Solution cost (on logarithmic scale) and corresponding weight for a fixed time bound for wAOBF

and wR-AOBF. ”—” denotes no solution found by the time bound. 4 GB memory, 1 hour time limit, MBE

heuristic. The entries mentioned in the text are highlighted.
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Fig. 9 Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max cost (optimal, if

known, otherwise - best cost found for the problem by any of the schemes). Corresponding weight - above

the bars. ’***’ indicated proven solution optimality. Instance parameters are in format (n,k,w∗ ,hT ), where n -

number of variables, k - max. domain size, w∗ - induced width, hT - pseudo tree height. Memory limit 4 GB,

time limit 1 hour. Grids and Pedigrees benchmarks, MBE heuristic.

5.4 Anytime behavior of weighted heuristic best-first search

We now turn to our main focus of evaluating the anytime performance of our two itera-

tive weighted heuristic best-first schemes wAOBF and wR-AOBF and comparing against

BRAOBB, A*, depth-first branch and bound on the OR search tree (DFBB) and Stochastic

Local Search (SLS). We ran each scheme on all instances from the same four benchmarks

using the MBE heuristic with i-bounds ranging from 2 to 20, respectively. We recorded the

solutions at different time points, up until either the optimal solution was found or until the

algorithm ran out of 4 GB of memory or the time cut off of 3600 seconds (1 hour) was

reached. When comparing two anytime algorithms, we consider one to be superior to an-

other if: 1) it discovers the initial solution faster and also 2) for a fixed time it returns a more

accurate solution. We rarely encounter conflict on these two measures.

We first illustrate the results using a selected set of individual instances in Table 3 and the

bar charts in Figures 9 and 10, respectively. Then, we provide summaries over all instances

using the bar charts in Figures 11-14 and the scatter plots in Figure 15, respectively.
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Fig. 10 Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max cost (optimal, if

known, otherwise - best cost found for the problem by any of the schemes). Corresponding weight - above

the bars. ’***’ indicated proven solution optimality. Instance parameters are in format (n,k,w∗ ,hT ), where n -

number of variables, k - max. domain size, w∗ - induced width, hT - pseudo tree height. Memory limit 4 GB,

time limit 1 hour. WCSPs and Type4 benchmarks, MBE heuristic.

5.4.1 wAOBF vs wR-AOBF

Table 3 shows solution cost and corresponding weight for wAOBF and wR-AOBF on two se-

lected instances from each benchmark, for medium i-bound, and for several time bounds. We

observe that for these instances (that are quite representative), the simpler scheme wAOBF

provides more accurate solutions than wR-AOBF (e.g., pedigree7, for 10-30 seconds). Still,

on some instances the solution costs are equal for the same time bound (e.g., capmo05.wcsp,

time between 30 and 3600 seconds), and there are examples, where wR-AOBF manages to

find a more accurate solution in a comparable time, such as on type4b 190 20, for 600 or

3600 seconds.

Figures 9 and 10 present the anytime performance of wAOBF, wR-AOBF, BRAOBB,

A*, DFBB and SLS on representative instances using bar charts. Figure 9 shows results for

Grids and Pedigrees, while Figure 10 for WCSPs and Type4, respectively. Each two rows

display two problems from the same benchmark for two i-bounds, smaller i-bounds on the

left and larger on the right. The height of each bar is proportional to the ratio between the

solution cost generated by an algorithm at a time point (at 10, 60, 600 and 3600 seconds)

and the optimal cost (if known) or overall maximal cost. The closer the ratio is to 1, the

better. For readability we display the ratios greater than 0.7. Above each bar we also show
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the weight corresponding to the returned solution, where w = 1 is shown in red. The symbol

’***’ above bars indicate proven solution optimality for the schemes using non-weighted

heuristic (i.e. BRAOBB, A*, and DFBB).

In these figures we again observe that wR-AOBF has worse anytime behavior than

wAOBF. For example, in Figure 9 for pedigree9 and pedigree13, i-bound=6, wAOBF finds

more accurate solutions for the same time bounds.

These observations, based on the selected instances displayed in the table and in the

figures, are quite representative, as we will see shortly in the summary section 5.4.3.

The overall superiority of wAOBF may be explained by the large overhead of wR-AOBF

at each iteration, due to the need to keep track of the already expanded nodes and to update

their values as the weight changes. As a result, wR-AOBF explores the search space slower

and discovers new improved solutions less frequently than wAOBF.

5.4.2 Comparing against state-of-the-art

Figures 9 and 10 provide a different perspective of the strength of weighted heuristic schemes

compared against several state-of-the-art anytime algorithms. We observe that the domi-

neering scheme varies from benchmark to benchmark. In Figure 9 we see that wAOBF is

superior on the Grid instances when the heuristic is weak. For example, for grid 75-20-5,

i-bound=6 wAOBF is the only scheme that finds a solution within 10 seconds, aside from

SLS. Note that SLS does not provide any guarantees, while wAOBF and wR-AOBF report

for time bounds of 60 seconds or more solutions that are guaranteed to be within a factor

of 1.68 from the optimal. A* and DFBB are always inferior to all other schemes. The for-

mer managed to find solutions for a small number of instances and only for highly accurate

heuristics, e.g., 90-20-5, i-bound=18. The latter often reports solutions of such low accuracy

that they are not seen on the plots, which only show solutions of relative accuracy greater

than 0.7.

On Pedigrees, BRAOBB seems to be superior among the complete schemes for weak

heuristics, e.g., pedigree9, i-bound=6. SLS reports optimal costs quite fast, usually under

10 seconds. When the heuristics are stronger, the performance is less varied, except for both

OR schemes on Grids and on many of the Pedigrees. A* and DFBB are usually inferior even

when the i-bound is high, e.g., pedigree13, i-bound=16.

Figure 10 shows that the weighted heuristic best-first schemes are superior to all other

schemes for the selected Type4 instances, for all levels of heuristic strengths. Interestingly,

on most of the Type4 problems even SLS did not report solutions with relative accuracy

greater than 0.7 and thus its results are not shown on our plots, while wAOBF often quickly

finds solutions close to optimal.

Notice that the weighted heuristic schemes provide tight w-optimality guarantees in

many cases. For example, on the two Type4 instances presented in Figure 10 wAOBF and

wR-AOBF guarantee that the costs reported at 60 seconds are 1.14-optimal. This is in con-

trast to competing schemes (e.g., BRAOBB) that do not prove optimality within the time

limit and so the accuracy of their solutions is unknown. On WCSPs, however, wAOBF and

wR-AOBF are less effective. For example, both are inferior to BRAOBB and SLS on the

42.wcsp instance, for both reported i-bounds. For stronger heuristic even DFBB, which in

general is not particularly successful, is superior to the weighted heuristic BF schemes.

As expected, A* and DFBB, both exploring an OR search tree, are clearly inferior to

AND/OR schemes, in particular to BRAOBB (see, for example, Marinescu and Dechter

(2005, 2007) for more comparisons between AND/OR and OR search). Additionally, A* is

not inherently anytime. Stochastic Local Search, although often finds accurate solutions fast,
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is not a complete algorithm and thus is outside the state-of-the-art schemes we systematically

compared with. It also does not provide any bound on its solution.

5.4.3 Summarizing performance of wAOBF and wR-AOBF against BRAOBB

We now show data summarizing the results from all the instances. Figures 11-14 provide

summaries of our experimental results in the form of bar charts. Note that the summaries

include also a weighted heuristic depth-first branch and bound algorithm wAOBB that will

be introduced in Section 6. We defer the comparison with wAOBB till Section 6.2.2.

The figures compare each of the three algorithms (wAOBF, wR-AOBF and wAOBB)

with BRAOBB. There are two columns of bar charts in each figure. The left one summa-

rizes the percentage of instances in which an algorithm is more accurate compared with

BRAOBB, and the right one provides the percentages on instances where an algorithm

yields the same costs as BRAOBB. Therefore, the heights of the bars in Figures 11-14 are

proportional to these percentages. The ratio at the top of each bar is the actual number of

instances where an algorithm is better (left column) or equal (right column), divided by the

total number of instances solved by the algorithm. The results in a table form, that include

an additional time bound, can be found in Appendix B.

From these figures we see that on two out of four benchmarks the weighted heuristic

schemes dominated, finding solutions of better accuracy within the time limits. This superior

behavior on Grids and Type4 benchmarks was mostly consistent across time bounds and

heuristics of various strengths and can be observed in Figures 11 and 13. Specifically, for

certain i-bounds and time bounds wAOBF returned more accurate solutions than BRAOBB

on up to 68% of the Grid instances and on 90-100% of the Type4 instances. Interestingly, for

the Type4 benchmark the weighted heuristic schemes almost never found the same solution

costs as BRAOBB, as is indicated by the zeros in the plots on the right side of Figure 13.

The comparative strength of wAOBF is more pronounced for short time intervals and for

weak heuristics. The dependence of wR-AOBF’s performance on time is less predictable.

We observe here that for most i-bounds and for most time limits wAOBF performs better

than wR-AOBF. This is especially obvious on the Type4 benchmark and for small i-bounds,

e.g., for i-bound=6, 3600 seconds, wR-AOBF is superior to BRAOBB only on 50% of the

instances, while wAOBF dominates on 90%.

Figure 15 uses scatter diagrams to compare between the most successful of the two

weighted heuristic best-first schemes, wAOBF, and BRAOBB. Each plot corresponds to

a specific time point. The x-axis gives the relative accuracy of the solution obtained by

wAOBF, while the y-axis corresponds to the relative accuracy of BRAOBB. As for the bar

charts, the accuracy is defined relative to the optimal cost, if known, or to the best cost

found. Values closer to 1.0 indicate better results. In each row we show two time bounds

for a particular benchmark. In parenthesis we show the number of instances, for which at

least one of the displayed algorithms found a solution, and the total number of instances

in the benchmark. Each marker represents an instance. The markers under the red diagonal

correspond to problems where wAOBF is superior. We do not account in these plots for the

MBE heuristic calculation time, which is the same for all schemes.

We show results with the relatively weak heuristic because it yields greater diversity in

solution accuracy by wAOBF and BRAOBB. Typically, for strong heuristics the algorithms

yield solutions having similar costs. Appendix B includes additional scatter diagrams show-

ing results for three i-bounds and three time bounds per benchmark, along with scatter plots

comparing wAOBF and wR-AOBF, respectively.
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Fig. 11 Grids: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo tree height. 4 GB memory, 1 hour time limit.

Figure 15 confirms our previous conclusions on the superiority of wAOBF over BRAOBB

on the Grids benchmark and its lack of success on WCSPs. On Type4 for small time limits

BRAOBB and wAOBF are on average equally successful (e.g., for 10 sec), but when given

more time, wAOBF produces more accurate solutions (e.g., for 600 seconds). For Pedigrees

there is no clear dominance.

6 Weighted heuristic depth-first branch and bound for graphical models

The primary reason for using weighted heuristics in the context of best-first search is to

convert it into memory-effective anytime scheme and to get a solution with some bounded

guarantee. Since depth-first branch and bound schemes are already inherently anytime, the
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Fig. 12 Pedigrees: percentage of instances for which each algorithm found solutions of more accurate cost

than BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with

BRAOBB, i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is

better than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters:

# inst - total number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ -

induced width, hT - pseudo tree height. 4 GB memory, 1 hour time limit.

idea of using weighted heuristic search may seem irrelevant. However, branch and bound

schemes do not provide any guarantees when terminating early. So a desire to have bene-

ficial w-optimality bounds on solutions and to possibly improve the anytime performance

intrigued us into exploring the principle of weighted heuristic search for depth-first search

schemes as well. Specifically, weighted heuristic may guide the traversal of the search space

in a richer manner and may lead to larger and more effective pruning of the space.

Therefore, in this section we extend the depth-first branch and bound algorithms AOBB

and BRAOBB to weighted heuristic anytime schemes, yielding wAOBB and wBRAOBB,

and evaluate their performance in much the same way we did for the weighted heuristic

best-first search algorithms.



Weighted Heuristic Search in Graphical Models 33

10 sec 60 sec 600 sec 3600 sec0

30

50

70

90

110

130
%

 m
or

e 
ac

cu
ra

te
 s

ol
ut

io
ns

 t
ha

n 
BR

AO
BB

2/
6

8/
10 9/

10

9/
10

2/
6 3/

10

5/
10

5/
10

2/
6 2/
10

5/
10

5/
10

10 sec 60 sec 600 sec 3600 sec0.0

%
 s

am
e 

co
st

 s
ol

ut
io

ns
 a

s 
BR

AO
BB

0/
6

0/
10

0/
10

0/
10

0/
6

0/
10

0/
10

0/
10

0/
6

0/
10

0/
10

0/
10

wAOBF
wR-AOBF
wAOBB

Type4(# inst=10, n=3907-8186, k=5, w*=21-32, h=319-625) i=6. 

10 sec 60 sec 600 sec 3600 sec0

30

50

80

100

120

150

%
 m

or
e 

ac
cu

ra
te

 s
ol

ut
io

ns
 t

ha
n 

BR
AO

BB

2/
6

10
/1

0

10
/1

0

10
/1

0

0/
6

5/
10 6/

10

6/
10

2/
6

6/
10

8/
10

10
/1

0

10 sec 60 sec 600 sec 3600 sec0.0

%
 s

am
e 

co
st

 s
ol

ut
io

ns
 a

s 
 B

RA
O

BB

0/
6

0/
10

0/
10

0/
10

0/
6

0/
10

0/
10

0/
10

0/
6

0/
10

0/
10

0/
10

Type4 i=10. 

10 sec 60 sec 600 sec 3600 sec0

30

50

80

100

120

150

%
 m

or
e 

ac
cu

ra
te

 s
ol

ut
io

ns
 t

ha
n 

BR
AO

BB

0/
0

9/
10 10

/1
0

10
/1

0

0/
0

6/
10

8/
10

6/
10

0/
0

8/
10 9/

10 10
/1

0

10 sec 60 sec 600 sec 3600 sec0.0

%
 s

am
e 

co
st

 s
ol

ut
io

ns
 a

s 
 B

RA
O

BB

0/
0

0/
10

0/
10

0/
10

0/
0

0/
10

0/
10

0/
10

0/
0

0/
10

0/
10

0/
10

Type4 i=14. 

10 sec 60 sec 600 sec 3600 sec0

30

50

80

100

120

150

%
 m

or
e 

ac
cu

ra
te

 s
ol

ut
io

ns
 t

ha
n 

BR
AO

BB

0/
0

1/
1

9/
9

9/
9

0/
0

1/
1

6/
9

4/
9

0/
0

1/
1

9/
9

9/
9

10 sec 60 sec 600 sec 3600 sec0.0
2.0
4.0
6.0
8.0

10.0
12.0
14.0
16.0

%
 s

am
e 

co
st

 s
ol

ut
io

ns
 a

s 
 B

RA
O

BB

0/
0

0/
1

0/
9

1/
9

0/
0

0/
1

0/
9

1/
9

0/
0

0/
1

0/
9

0/
9

Type4 i=18. 

Fig. 13 Type4: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo tree height. 4 GB memory, 1 hour time limit.

6.1 Introducing the weighted heuristic branch and bound schemes

The extension of AOBB to weighted heuristic search is straightforward. Just multiply the

heuristic value by the weight w> 1 and conduct AOBB as usual. We denote by AOBB(hi,w0,UB)

a weighted heuristic version of AOBB that uses the mini-bucket heuristic hi having i-bound=i,

multiplied by the weight w0, and an initial upper bound equal to UB, as shown in Algo-

rithm 2. It is easy to show that:

Theorem 9 Algorithm AOBB(hi,w0 > 1,UB= ∞) (and similarly BRAOBB) terminates with

a solution π, whose cost Cπ is a factor w0 away from the optimal cost C∗. Namely, Cπ ≤
w0 ·C∗.
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Fig. 14 WCSP: percentage of instances for which each algorithm found solutions of more accurate cost than

BRAOBB at a specific time bound (left), percentage of instances for which algorithm is tied with BRAOBB,

i.e. found solution of equal cost (right). Above bars - number of instances where algorithm is better than

BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm. Parameters: # inst - total

number of instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width,

hT - pseudo tree height. 4 GB memory, 1 hour time limit.

Proof By definition, due to pruning, AOBB generates solutions in order of decreasing costs:

C1 ≥ ·· · ≥ Ci · · · ≥ Cπ , where Cπ is the returned solution. If π is not optimal (otherwise

the claim is trivially proved), there exists an optimal solution π∗ which must have been

pruned by the algorithm. Let n be the last node on π∗ that was generated and which was

pruned. Since the heuristic h is admissible, the un-weighted evaluation function of f along

π∗ satisfies that

fπ∗(n) = g(n)+h(n) ≤ g(n)+h∗(n) =C∗ (6)

Let Ci be the solution cost used to prune n (namely it pruned relative to the weighted evalu-

ation function). Therefore,

Ci ≤ g(n)+w0 ·h(n)
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Fig. 15 wAOBF vs BRAOBB: comparison of relative accuracy at times 10, 3600 sec. Each row - a single

time bound. Each marker represents a single instance. Memory limit 4 GB, time limit 1 hour. In parenthesis

(X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances, MBE heuristic.
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Therefore (as w0 ≥ 1) and from Equation 6

Ci ≤ w0 · (g(n)+h(n))≤ w0 ·C∗

and since Cπ ≤Ci, we get

Cπ ≤ w0 ·C∗.
⊓⊔

We present two iterative weighted heuristic branch and bound schemes denoted wAOBB

and wBRAOBB. Similar to wAOBF, these algorithms iteratively execute the corresponding

base algorithm with the weighted heuristic, AOBB(hi,w0,UB) and BRAOBB(hi,w0,UB), re-

spectively. However, there are some inherent differences between these two schemes and

wAOBF, explained next.

Iterative weighted heuristic AOBB (wAOBB). At the first iteration (Algorithm 6) wAOBB

executes AOBB(hi,w0,UB = ∞), namely AOBB with heuristic hi ·w0 and with default upper

bound of infinity. The algorithm does no pruning until it discovers its first solution. Then the

upper bound is set to the current best cost. At termination of the first iteration, the algorithm

returns the final solution and its cost C1 with the corresponding weight w1 = w0. During

each subsequent iteration j ≥ 2 wAOBB executes AOBB(hi,w j,UB j) to completion. The

weight w j is decreased according to the weight policy. The input upper bound UB j is the

cost of the solution returned in iteration j−1, i.e., UB j =C j−1. We denote by C′j the costs

of the intermediate solutions wAOBB generates during iteration j, until it terminates with

the final solution, having cost C j.

Proposition 4 At each iteration j > 0 the solution cost C j of AOBB(hi,w j,UB j) is guaran-

teed to be within the factor w j from the optimal cost C∗. Moreover, for iterations j≥ 1 all the

intermediate solutions generated by AOBB(hi,w j,UB j) are guaranteed to have costs within

the factor of w j−1 from the optimal.

Proof The solution cost C j with which AOBB(hi,w j,UB j) terminates at iteration j is bounded:

Cw j
≤ w j ·C∗. The upper bound used for pruning at iteration j > 1 is equal to the cost of

the solution on the previous iteration (UB j = C j−1). No intermediate solutions worse than

this upper bound are ever explored. Thus the costs C′j of all solutions generated at iteration

j prior to its termination are bounded by the upper bound C′j ≤C j−1. Since C j−1 is bounded

by a factor of w j−1 from the optimal, it follows C′j ≤ w j ·C∗. ⊓⊔

Figure 16 shows the search space explored by AOBB with unweighted heuristic (on the

left) and by the first iteration of wAOBB with weight w = 10 (on the right), when solving

the problem from Figure 4. In this example, AOBB explores 15 nodes in order to find an

optimal solution. wAOBB explores 12 nodes, discovering a sub-optimal solution with cost

C = 8 and assignment x = {A = 0,B = 0,C = 1,D = 0}.

Iterative weighted heuristic BRAOBB (wBRAOBB). wBRAOBB extends BRAOBB(hi,w0,UB)

to a weighted heuristic iterative scheme in the same manner. Clearly, for both schemes the

sequence of the solution costs is non-increasing.

Theorem 10 The worst case time and space complexity of each iteration of wAOBB and

wBRAOBB that uses full caching is bounded by O(n · kw∗). The number of iterations varies

based on weight policy and start value w0, respectively.
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Fig. 16 Search graphs explored by (a) AOBB, (b) First iteration of wAOBB, w=10. The numbers in grey

boxes indicate the order in which the nodes are expanded. vSN indicates that value v was last assigned during

step N, i.e. while expanding the Nth node.

Algorithm 6: wAOBB(w0, hi)

Input: A graphical model M = 〈X,D,F,∑〉; heuristic hi obtained with i-bound i; initial weight w0

Output: C - a set of sub-optimal solutions Cw, each with a bound w

1 Initialize j = 1, UB j = ∞, w j = w0, weight update schedule S and let C ← /0;

2 while w j >= 1 do

3 while AOBB(hi,w j , UB j) not terminated do

4 run AOBB(hi ,w j , UB j)

5 if AOBB found an intermediate solution C′j then

6 output the solution bounded by the weight of previous iteration: C ← C ∪{〈w j−1,C
′
j〉}

7 output the solution with which AOBB terminated, bounded by the current weight:

C ← C ∪{〈w j ,C j〉}
8 Decrease weight w according to schedule S;

9 UB←C j

10 return C

Proof At each iteration wAOBB and wBRAOBB execute AOBB and BRAOBB respec-

tively, exploring at most the entire context-minimal AND/OR search graph. The precise

number of expanded nodes depends on the pruning and is hard to characterize in general, as

is always the case for branch and bound search. ⊓⊔
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6.2 Empirical evaluation of weighted heuristic BB

We carry out an empirical evaluation of the two weighted heuristic depth-first branch and

bound schemes: wAOBB and wBRAOBB, described above. The algorithms were imple-

mented in C++ and the experiments were conducted in the same setting as before.

We compared the two weighted heuristic branch and bound schemes against each other

and against wAOBF, the superior of the weighted heuristic best-first schemes. We also com-

pared against the state-of-the-art anytime BRAOBB. All algorithms use the same MBE

heuristic. We use the same sqrt(1.0) policy and starting weight equal to 64 as we did for the

weighted heuristic best-first schemes in Section 5.

6.2.1 Weighted heuristic BB as approximation

In Table 4 we report the entire runtime required to find a first solution for a particular weight

level (e.g., w = 2.8284) for each algorithm. In this sense these tables are different from

Table 2, where we only reported the time it took the scheme to find the w-optimal solu-

tion starting from a particular weight, e.g., w = 2.8284, and not starting with initial weight

w0 = 64. The difference is due to the fact that wAOBB and wBRAOBB use the results of

previous iterations as upper bounds and their iterations are not completely independent runs

of AOBB(hi,w j,UB j) and BRAOBB(hi,w j,UB j), respectively.

We also report the runtime and the solution cost found by BRAOBB at termination.

The time equal to 3600 seconds for BRAOBB indicates that it failed to report the optimal

solution within the time bound and we then report the best solution found. Interesting entries

are highlighted.

Comparing with weighted heuristic best-first search. Based on the table we see that time-

wise none of the schemes dominates for a given weight. For example, in Table 4 for grid 75-

22-5, for weight w= 1.033 wAOBB reports the solution the fastest, while for type4b 130 21

wAOBF reaches a 1.2968-optimal solution almost ten seconds before either wAOBB or

wBRAOBB.

Time saving for w-bounded sub-optimality. Comparing pairs of columns, in particular col-

umn 2 (exact results for BRAOBB) and columns 4-5 (1.2968- and 1.0330-optimal solutions)

in Table 4, we observe remarkable time savings of the weighted heuristic schemes compared

with BRAOBB.

Overall, based on these instances, which are quite representative, we see as before, that

the weighted heuristic schemes can often provide good approximate solutions with tight sub-

optimality bounds, yielding significant time savings compared to finding optimal solutions

by running BRAOBB to completion. The weighted heuristic branch and bound schemes

are more memory efficient than wAOBF. However, on the instances feasible for all three

weighted heuristic schemes there is no clear winner.

6.2.2 Anytime performance comparison

Figures 17 and 18 display the anytime behavior of the schemes for typical instances from

each benchmark using bar charts that show the ratio between the cost available at a particular

time point (at 10, 60, 600 and 1800 sec) and the optimal (if known) or best cost found

(similarly to Figures 9 and 10 in the previous section). Figure 17 shows the results for Grids

and Pedigrees, while Figure 18 presents WCSPs and Type4 instances.
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Instance

BRAOBB

Weights

2.8284 1.2968 1.0330 1.000

wAOBF wAOBF wAOBF wAOBF

wAOBB wAOBB wAOBB wAOBB

wBRAOBB wBRAOBB wBRAOBB wBRAOBB

time / cost time / cost time / cost time / cost time / cost

Grids, I-bound=18

75-22-5
(484, 2, 30, 107)

115.45 / -15.605

5.92 / -15.72 6.66 / -15.72 59.81 / -15.61 423.76 / -15.61

5.87 / -19.08 6.1 / -17.55 52.46 / -15.65 — / —

5.91 / -19.08 6.22 / -17.55 79.91 / -15.7 — / —

75-25-5

(625, 2, 34, 122)
3582.08 / -20.836

8.0 / -23.38 9.77 / -21.7 — / — — / —

8.08 / -31.0 8.34 / -22.55 — / — — / —

8.14 / -31.0 8.56 / -22.84 — / — — / —

Pedigrees, I-bound=18

pedigree9

(935, 7, 27, 100)
220.34 / -122.904

26.75 / -129.55 26.96 / -123.06 33.56 / -122.9 — / —

12.44 / -129.76 12.47 / -128.56 13.63 / -123.2 — / —

12.59 / -129.76 12.61 / -128.56 13.74 / -123.2 — / —

pedigree51

(871, 5, 39, 98)
3600 / -111.55

120.94 / -119.16 — / — — / — — / —

29.01 / -121.77 31.15 / -121.77 — / — — / —

26.41 / -121.77 28.36 / -121.77 3035.48 / -109.83 — / —

WCSP, I-bound=6

capmo2.wcsp

(200, 100, 100, 100)
3600 / -0.28

26.81 / -0.31 — / — — / — — / —

22.43 / -0.31 — / — — / — — / —

22.47 / -0.31 — / — — / — — / —

myciel5g 3.wcsp

(47, 3, 19, 24)
12.93 / -64.0

2.52 / -72.0 50.47 / -64.0 — / — — / —

0.96 / -72.0 7.8 / -64.0 37.63 / -64.0 — / —

0.9 / -72.0 7.37 / -64.0 35.63 / -64.0 — / —

Type4, I-bound=18

type4b 120 17

(4072, 5, 24, 319)
3600 / -1332.18

80.49 / -1354.93 81.24 / -1329.59 84.98 / -1327.6 — / —

49.79 / -1353.83 49.97 / -1337.37 50.25 / -1334.85 — / —

54.91 / -1353.83 55.12 / -1337.37 55.44 / -1334.85 — / —

type4b 130 21

(4874, 5, 29, 416)
3600 / -1383.74

86.21 / -1438.24 88.89 / -1386.34 — / — — / —

58.12 / -1414.3 97.66 / -1405.72 — / — — / —

96.61 / -1512.32 96.93 / -1489.57 — / — — / —

Table 4 Runtime (sec) and cost (on logarithmic scale) obtained by wAOBF, wAOBB and wBRAOBB for

selected w, and by BRAOBB (that finds C∗ - optimal cost). Instance parameters: n - number of variables,

k - max domain size, w∗ - induced width, hT - pseudo tree height. ”time out” - running out of time, ”—” -

running our of memory. 4 GB memory limit, 1 hour time limit, MBE heuristic.

Grids (Figure 17): we observe that the weighted heuristic branch and bound schemes are

typically inferior to wAOBF, finding solutions slower and of lower accuracy. For exam-

ple, wAOBF is the only scheme to return a solution within 10 seconds on grid 75-23-5,

i-bound=6. However, there are exceptions (e.g., grid 50-16-5, i-bound=6).

Pedigrees: both weighted heuristic branch and bound schemes are often the best (e.g.,

pedigree13, i-bound=6). For some problems they even provide solutions with accuracy ap-

proaching 1.0 while the other schemes fail to find any solution, e.g., pedigree7, i-bound=6.
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Fig. 17 Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost =

optimal, if known, otherwise = best cost found for the problem. Corresponding weight - above the bars. The

cases where BRAOBB proved solution optimality is indicated by ’***’ above bars. In red - optimal solutions.

Instance parameters are in format (n,k,w∗ ,hT ), where n - number of variables, k - max. domain size, w∗ -

induced width, hT - pseudo tree height. Grids and Pedigrees. Memory limit 4 GB, time limit 1 hour, MBE

heuristic.

WCSPs (Figure 18): The wAOBB and wBRAOBB algorithms perform better than BRAOBB

and wAOBF on these instances (e.g., capmo2.wcsp for all i-bounds), except for a number of

problems (not explicitly shown), for which BRAOBB is the only scheme to return solutions.

Type4: wAOBF typically dominates the branch and bound schemes, including the weighted

heuristic ones (wAOBB, wBRAOBB). However, for larger i-bounds on Type4, weighted

heuristic branch and bound schemes can find good solutions, sometimes even providing

tighter sub-optimality guarantees than wAOBF. For example, for type4b 140 20, i-bound=12,

for 1800 seconds the bound by wAOBF is w = 1.3, while for wAOBB it is w = 1.14.

BRAOBB is inferior for this benchmark.

We now turn to Figures 11-14 in order to summarize the performance of weighted

heuristic depth-first branch and bound search algorithms, concentrating on wAOBB, as it

is slightly better among the two. From these bar charts we see that wAOBB is more suc-

cessful than BRAOBB when the heuristics are weak. For example, for Grids, 60 second,

for i-bound=10, wAOBB finds solutions of higher accuracy than BRAOBB on 23.1% of

instances, while for i-bound=18, superiority is 16.7%. The two schemes are tied on 82.1%

of instances for Grids, i-bound=18, 3600 seconds, and in general, when the i-bound is high,

the difference between the solution costs reported by various algorithms diminishes.
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Fig. 18 Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and max cost. Max. cost =

optimal, if known, otherwise = best cost found for the problem. Corresponding weight - above the bars. The

cases where BRAOBB proved solution optimality is indicated by ’***’ above bars. In red - optimal solutions.

Instance parameters are in format (n,k,w∗ ,hT ), where n - number of variables, k - max. domain size, w∗ -

induced width, hT - pseudo tree height. Type4 and WCSPs. Memory limit 4 GB, time limit 1 hour, MBE

heuristic.

We conclude from these figures that wAOBB can definitely be superior to wAOBF on 2

out of 4 benchmarks (Pedigrees and WCSPs) for more instances, and can find solutions of

better accuracy than BRAOBB on a number of instances from all four benchmarks.

7 Summary and concluding remarks

The paper provides the first study of weighted heuristic best-first and weighted heuristic

depth-first branch and bound search for graphical models. These algorithms are distin-

guished by their ability to provide a w-optimality guarantee (namely they can guarantee

solutions that are at most a w factor away from the optimal cost, for a given weight w). Al-

ternatively, when run in anytime fashion, whenever stopped, they generate the best solution

encountered thus far and a weight w bounding its sub-optimality.

The idea of weighted heuristic best-first search is widespread in the path-finding and

planning communities. In this paper, we extended this idea to graphical models optimiza-

tion tasks, specifically, to the AND/OR Best-First search scheme (AOBF) and the AND/OR

Depth-First Branch and Bound scheme (AOBB) (see [Marinescu and Dechter (2009b)]).

This resulted in two anytime weighted heuristic best-first schemes, wAOBF and wR-AOBF,

and two weighted heuristic depth-first schemes, wAOBB and wBRAOBB. We evaluated
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these algorithms against each other and against several competing schemes, and especially

against the state-of-the-art BRAOBB [Otten and Dechter (2011)], on a large variety of in-

stances from four benchmarks. We evaluated the algorithms for varying heuristic strength

and for different time bounds. The heuristic functions were generated by the mini-bucket

elimination scheme [Dechter and Rish (2003)], whose strength is controlled by an i-bound

parameter. Our experiments revealed the following primary trends:

– On the anytime performance of weighted heuristic schemes: First and foremost we

showed that the weighted heuristic schemes can perform better than BRAOBB in many

cases. In addition, the schemes provide the useful w-optimality guarantee. We saw that

overall wAOBF had a better anytime behavior than wR-AOBF and produced more ac-

curate solutions in a comparable time on many instances (see Figures 11-15).

– Performance varied per benchmark: On two out of four benchmarks wAOBF and

wR-AOBF dominated BRAOBB, often finding better accuracy solutions within the time

limit. This good behavior on Grids and Type4 benchmarks was mostly consistent across

heuristic strengths and time bounds. The weighted heuristic depth-first search schemes

wAOBB and wBRAOBB were better than wAOBF and BRAOBB on Pedigrees and,

especially, on WCSPs. This dominance often corresponded to cases where wAOBF ran

out of memory, since branch and bound schemes are more memory efficient. There-

fore, together the weighted heuristic schemes had an effective performance on instances

across all benchmarks.

– On the impact of the heuristic strength: the weighted heuristic schemes were more

powerful compared with BRAOBB for weak heuristics. Namely, when the i-bound char-

acterizing the heuristic strength was far smaller than the problem’s induced width. One

explanation is that the weight may make the weak admissible heuristic more accurate (a

weak lower bound may become stronger lower bound, closer to the actual optimal cost,

when multiplied by a constant).

– On w-optimality in practice: In quite a few cases the weighted heuristic schemes (e.g.,

wAOBF,wR-AOBF, wAOBB and wBRAOBB) reported solutions orders of magnitude

faster, even for small w, than the time required to generate an exact solution by the

schemes BRAOBB or AOBF that used admissible (un-weighted) heuristics. Moreover,

in some cases the weighted heuristic schemes generated w-optimal solutions for a small

w even for some hard instances that were infeasible (within the time limit) for the base-

line algorithms.

Selection and combination of algorithms. Clearly, however, due to the fact that no algorithm

is always superior, the question of algorithm selection requires further investigation. We aim

to identify problem features that could be used to predict which scheme is best suited for

solving a particular instance, and to combine the algorithms within a portfolio framework,

known to be successful for such solvers as SATzilla [Xu et al (2008)] and PBP [Gerevini

et al (2009)].

In this context, however, it is important to note that the weighted heuristic schemes

can be valuable anyway by supplying any approximation with w-optimality guarantees. For

example, it can be used alongside an incomplete approximate schemes, such as Stochastic

Local Search. If the solution by SLS has a cost better or equal to that of the generated

w-optimal solution, it yields a w-optimal solution to SLS solution.

The potential impact of weights on various heuristics While we evaluated the weighted

heuristic schemes relative to the mini-bucket heuristics only, these ideas are orthogonal
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Fig. 19 wAOBF vs wR-AOBF, all benchmarks: comparison of relative accuracy at 600 sec. Each marker

represents a single instance. Memory limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for

which at least one algorithm found a solution, Y - total # instances, MBE heuristic.

to the heuristic type and they are likely to similarly boost the anytime behavior with any

other heuristics. We have recently provided some initial empirical evaluation on the impact

of the weighted heuristic schemes for cost-shifting relaxation schemes that augment the

mini-bucket scheme, introduced in [Ihler et al (2012)]. Our initial findings can be found in

[Sharma et al (2014)].
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A Weighted heuristic BF: summaries by scatter diagrams

In this section we include additional scatter plots showing in Figure 19 the comparison between wAOBF

and wR-AOBF for two time bound and two levels of heuristic strength and, in Figures 20-20 the comparison

between wAOBF and BRAOBB for three values of i-bounds and three time bounds for each instance. For

completeness, we also include some of the plots previously presented in Section 5.4.3.

B Comparing weighted heuristic search schemes against BRAOBB

Tables 5 and 6 present the summary of the results for wAOBF, wR-AOBF and wAOBB compared against

BRAOBB. For each benchmark, for five time bounds and for four i-bounds, we show the percentages of the



44 Natalia Flerova et al.

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 10 sec, (16/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 3600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 10 sec, (21/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 3600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 10 sec, (24/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 600 sec, (25/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 3600 sec, (25/32)

Fig. 20 wAOBF vs BRAOBB on Grids: comparison of relative accuracy at times 10, 600 and 3600 sec. Each

row - a single time bound. Each marker represents a single instance. Memory limit 4 GB, time limit 1 hour.

In parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances,

MBE heuristic.

instances for which a particular weighted heuristic algorithm found a more accurate solution than BRAOBB

(%X), and for which the algorithm found the solution of the same cost as BRAOBB (%Y ). We also show the

number of instances solved by each algorithm (N).
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Fig. 21 wAOBF vs BRAOBB on Pedigrees. comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker represents a single instance. Memory limit 4 GB, time limit

1 hour. In parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total #

instances, MBE heuristic.
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Fig. 22 wAOBF vs BRAOBB on WCSPs: comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker is a single instance. Memory limit 4 GB, time limit 1 hour. In

parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances,

MBE heuristic.
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Fig. 23 wAOBF vs BRAOBB on Type4: comparison of relative accuracy at times 10, 600 and 3600 sec.

Each row - a single time bound. Each marker is a single instance. Memory limit 4 GB, time limit 1 hour. In

parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y - total # instances,

MBE heuristic.
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=32, n=144-2500, k=2, w∗=15-90, hT =48-283)

i=6

wAOBF 66.7 / 12.5 / 24 64.0 / 16.0 / 25 68.0 / 20.0 / 25 40.0 / 40.0 / 25 16.0 / 44.0 / 25

wR-AOBF 29.2 / 12.5 / 24 45.8 / 16.7 / 24 40.0 / 20.0 / 25 32.0 / 40.0 / 25 12.0 / 44.0 / 25

wAOBB 33.3 / 12.5 / 24 40.0 / 12.0 / 25 44.0 / 12.0 / 25 32.0 / 32.0 / 25 28.0 / 44.0 / 25

i=10

wAOBF 58.3 / 20.8 / 24 56.0 / 32.0 / 25 46.2 / 42.3 / 26 22.2 / 55.6 / 27 14.8 / 55.6 / 27

wR-AOBF 21.7 / 30.4 / 23 37.5 / 33.3 / 24 28.0 / 44.0 / 25 12.0 / 60.0 / 25 7.7 / 57.7 / 26

wAOBB 54.2 / 20.8 / 24 44.0 / 24.0 / 25 23.1 / 30.8 / 26 11.1 / 44.4 / 27 18.5 / 55.6 / 27

i=14

wAOBF 42.3 / 42.3 / 26 38.5 / 46.2 / 26 30.8 / 61.5 / 26 14.8 / 74.1 / 27 3.4 / 69.0 / 29

wR-AOBF 19.2 / 42.3 / 26 19.2 / 50.0 / 26 15.4 / 65.4 / 26 7.4 / 70.4 / 27 3.7 / 70.4 / 27

wAOBB 19.2 / 42.3 / 26 19.2 / 46.2 / 26 7.7 / 57.7 / 26 11.1 / 66.7 / 27 10.3 / 75.9 / 29

i=18

wAOBF 14.3 / 57.1 / 21 16.7 / 66.7 / 24 16.7 / 66.7 / 24 3.7 / 77.8 / 27 0.0 / 75.0 / 28

wR-AOBF 14.3 / 61.9 / 21 12.5 / 75.0 / 24 12.5 / 75.0 / 24 3.8 / 80.8 / 26 0.0 / 75.0 / 28

wAOBB 4.8 / 61.9 / 21 8.3 / 58.3 / 24 16.7 / 62.5 / 24 7.4 / 77.8 / 27 3.6 / 82.1 / 28

Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT =52-104)

i=6

wAOBF 11.1 / 0.0 / 9 11.1 / 11.1 / 9 30.0 / 30.0 / 10 10.0 / 30.0 / 10 10.0 / 20.0 / 10

wR-AOBF 11.1 / 11.1 / 9 11.1 / 22.2 / 9 22.2 / 22.2 / 9 11.1 / 22.2 / 9 11.1 / 22.2 / 9

wAOBB 55.6 / 11.1 / 9 22.2 / 11.1 / 9 30.0 / 10.0 / 10 40.0 / 10.0 / 10 60.0 / 20.0 / 10

i=10

wAOBF 44.4 / 11.1 / 9 50.0 / 30.0 / 10 50.0 / 30.0 / 10 40.0 / 40.0 / 10 30.0 / 40.0 / 10

wR-AOBF 25.0 / 12.5 / 8 44.4 / 22.2 / 9 40.0 / 30.0 / 10 45.5 / 27.3 / 11 27.3 / 27.3 / 11

wAOBB 66.7 / 22.2 / 9 60.0 / 20.0 / 10 60.0 / 30.0 / 10 50.0 / 30.0 / 10 30.0 / 40.0 / 10

i=14

wAOBF 14.3 / 0.0 / 7 28.6 / 14.3 / 7 33.3 / 22.2 / 9 33.3 / 33.3 / 9 22.2 / 44.4 / 9

wR-AOBF 14.3 / 0.0 / 7 14.3 / 14.3 / 7 22.2 / 22.2 / 9 10.0 / 30.0 / 10 10.0 / 30.0 / 10

wAOBB 28.6 / 14.3 / 7 42.9 / 14.3 / 7 44.4 / 22.2 / 9 33.3 / 44.4 / 9 22.2 / 44.4 / 9

i=20

wAOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 50.0 / 2 20.0 / 20.0 / 5 0.0 / 40.0 / 5

wR-AOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 0.0 / 2 0.0 / 20.0 / 5 0.0 / 20.0 / 5

wAOBB 0 / 0 / 0 0 / 0 / 0 50.0 / 0.0 / 2 20.0 / 80.0 / 5 0.0 / 80.0 / 5

Table 5 X% - percentage of instances for which each algorithm is the better than BRAOBB at a specific time

bound, Y% - percentage of instances for which algorithm ties with BRAOBB, N - number of instances for

which at least one of algorithms found a solution. # inst - total number of instances in benchmark, n - number

of variables, k - maximum domain size, w∗ - induced width, hT - pseudo tree height. 4 GB memory, 1 hour

time limit, MBE heuristic.

.
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

WCSP (# inst=56, n=25-1057, k=2-100, w∗=5-287, hT =11-337)

i=6

wAOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 22.0 / 41 0.0 / 20.9 / 43

wR-AOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 20.0 / 40 0.0 / 19.0 / 42

wAOBB 15.2 / 27.3 / 33 15.2 / 27.3 / 33 17.1 / 25.7 / 35 14.6 / 36.6 / 41 14.0 / 34.9 / 43

i=10

wAOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wR-AOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wAOBB 0.0 / 85.7 / 7 28.6 / 50.0 / 14 25.0 / 50.0 / 16 16.7 / 41.7 / 24 20.8 / 41.7 / 24

i=14

wAOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wR-AOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wAOBB 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 42.9 / 42.9 / 7 37.5 / 50.0 / 8

i=18

wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

Type4 (# inst=10, n=3907-8186, k=5, w∗=21-32, hT =319-625)

i=6

wAOBF 16.7 / 0.0 / 6 44.4 / 0.0 / 9 80.0 / 0.0 / 10 90.0 / 0.0 / 10 90.0 / 0.0 / 10

wR-AOBF 16.7 / 0.0 / 6 33.3 / 0.0 / 9 30.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

wAOBB 16.7 / 0.0 / 6 11.1 / 0.0 / 9 20.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

i=10

wAOBF 33.3 / 0.0 / 6 100.0 / 0.0 / 9 100.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0.0 / 0.0 / 6 44.4 / 0.0 / 9 50.0 / 0.0 / 10 60.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 33.3 / 0.0 / 6 44.4 / 0.0 / 9 60.0 / 0.0 / 10 80.0 / 0.0 / 10 100.0 / 0.0 / 10

i=14

wAOBF 0 / 0 / 0 71.4 / 0.0 / 7 90.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0 / 0 / 0 57.1 / 0.0 / 7 60.0 / 0.0 / 10 80.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 0 / 0 / 0 71.4 / 0.0 / 7 80.0 / 0.0 / 10 90.0 / 0.0 / 10 100.0 / 0.0 / 10

i=18

wAOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 100.0 / 0.0 / 9 88.9 / 11.1 / 9

wR-AOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 55.6 / 0.0 / 9 44.4 / 11.1 / 9

wAOBB 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 88.9 / 0.0 / 9 88.9 / 0.0 / 9

Table 6 X% - percentage of instances for which each algorithm is the better than BRAOBB at a specific time

bound, Y% - percentage of instances for which algorithm ties with BRAOBB, N - number of instances for

which at least one of algorithms found a solution. # inst - total number of instances in benchmark, n - number

of variables, k - maximum domain size, w∗ - induced width, hT - pseudo tree height. 4 GB memory, 1 hour

time limit, MBE heuristic.

.
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