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Graphical models are a well-known convenient tool to describe complex interactions between

variables. A graphical model defines a function over many variables that factors over an

underlying graph structure. One of the popular tasks over graphical models is that of

combinatorial optimization. Although many algorithms have been developed with this task

in mind, the vast majority are designed to find an optimal solution, minimum or maximum,

of an objective function. In many applications, however, it is desirable to obtain not just a

single optimal solution, but a set of the first m best solutions for some integer m.

The main part of this dissertation focuses on this problem, which we call the m-best optimiza-

tion task. We show that the m-best task can be expressed within the unifying framework

of semirings, making known inference algorithms defined, and their correctness and com-

pleteness for the m-best task immediately implied. We subsequently describe elim-m-opt,

a new bucket elimination algorithm for solving the m-best task, provide algorithms for its

defining combination and marginalization operators and analyze its worst-case performance.

An extension of the algorithm to the mini-bucket framework provides bounds for each of the

m best solutions.
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Subsequently, we extend existing search algorithms to the m-best task. We present a new

algorithm m-A* and prove that all A*’s desirable properties, including soundness, complete-

ness and optimal efficiency, are maintained. Since best-first algorithms require extensive

memory, we also extend the memory-efficient depth-first branch and bound to the m-best

task. We adapt both algorithms to optimization tasks over graphical models (e.g., Weighted

Constraint Satisfaction Problems and Most Probable Explanation in Bayesian networks),

and provide complexity analysis and an empirical evaluation. Our experiments with 5 vari-

ants of best-first search and depth-first branch and bound search confirm that the best-first

approach is largely superior when memory is available, but branch and bound is more robust.

We also demonstrate that both styles of search benefit greatly from the heuristic evaluation

function with increased accuracy.

Unlike the leading previously developed m-best schemes that utilize LP-relaxation tech-

niques, e.g., algorithms by Fromer and Globerson (2009) and Batra (2012), our algorithms

always guarantee solution optimality. We will show that, when the number of required solu-

tions is small, our m-best search schemes are quite competitive with these related algorithms

in terms of runtime, while for a larger number of required solutions our methods are by far

superior.

The second part of this thesis focuses on finding approximate solutions to optimization

problems. Unfortunately solving exactly optimization problems over complex models, that

represent intricate dependencies occurring in real life domains, can often be infeasible within

practical time and space limits. Many approximation schemes exist, but most of them do not

come with any solution sub-optimality guarantees. We apply the ideas of weighted heuristic

search, popular in path-finding, to graphical models, yielding new search algorithms that

not only provide sub-optimality bounds, but also utilize extra available time and space to

improve the accuracy of the solution in an anytime manner and, if resources are available,

eventually terminate with an optimal solution. We report on a significant empirical evalu-

xv



ation, demonstrating the usefulness of weighted best-first search as approximation anytime

schemes (that have sub-optimality bounds) and compare against one of the best depth-first

branch and bound solvers to date. We also investigate the impact of different heuristic

functions on the behavior of the algorithms.

Additionally, we explore several algorithms taking advantage of two common approaches for

bounding MPE queries in graphical models: mini-bucket elimination and message-passing

updates for linear programming relaxations. Each method offers a useful perspective for the

other; our hybrid approaches attempt to balance the advantage of each. We demonstrate

the power of our hybrid algorithms through extensive empirical evaluation. Most notably,

a branch and bound search guided by the heuristic functions calculated by our new scheme

won the first place in the 2011 Pascal2 inference challenge.
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Chapter 1

Introduction

Graphical models, e.g., Bayesian, Markov or constraint networks, are a well-known frame-

work for representation of probabilistic and deterministic information. They allow to model

complicated interactions between variables in an intuitive way, using directed or undirected

graphs that capture problem structure.

Some of the most popular tasks over graphical models, arising in many practical applications,

are optimization queries, the goal of which is to find a variable assignment that either

maximizes or minimizes the objective function. In particular, the common tasks include

finding the most likely state of a belief network, known as Most Probable Explanation

(MPE) or as Maximum A Posteriori (MAP) problem. Another is finding a solution that

violates the least number of constraints in a constraint network, i.e., constraint satisfaction

(CSP) problem. These tasks are NP-hard.

Many effective optimization algorithms that exploit the underlying graph structure of the

problems have been developed over the years. Conceptually these algorithms typically fall

into either inference or search category.

The research presented in this dissertation is concerned with the advancement of graphical

model algorithms along three different dimensions:
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• extending the existing optimization schemes to finding not a single, but a set of multiple

solutions ordered by their costs

• extending to graphical models the ideas of anytime search that uses non-admissible

inflated heuristic (known as weighted heuristic search)

• improving the existing heuristics used by the graphical model-oriented search algo-

rithms

The following section describes the outline of the dissertation and the contributions. The

rest of this chapter contains preliminary definitions and gives examples of graphical models

and optimization algorithms that are relevant to our entire work. In each of Chapters 2, 4

and 5 the second section contains additional background relevant to this particular chapter.

Other sections of these chapters and the entire Chapter 3 present our original contributions.

� 1.1 Thesis Outline and Contributions

� 1.1.1 Bucket Elimination for M -best Optimization Task

Chapter 2 focuses on the task of generating the first m best solutions for a combinatorial

optimization problem defined over a graphical model (e.g., the m most probable explanations

for a Bayesian network), for some integer m. Such tasks often arise in practice, for example,

in situations where there exist multiple solutions to the problems with almost identical

probabilities and it is desirable to identify them all and present to an expert for further

analysis (as it happens in the area of genetic linkage analysis) or when some vague constraints

of a preference nature are hard to formally incorporate in the problems (e.g., in economics).

Though a number of algorithms solving the m-best task are available, many of them have

very obvious practical deficiencies. They either use a brute force approach for generating
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additional solutions, resulting in a large overhead compared to finding a single solutions (e.g.,

[61]), or assume availability of an entire search graph in memory (e.g., most path-finding

algorithms, see [30] for an overview), which is infeasible for most problems over graphical

models.

Contributions

• We show that the m-best task can be expressed within the unifying framework of semi-

rings, defining the corresponding combination and marginalization operators. Such

formulation makes known inference algorithms defined and their correctness and com-

pleteness for the m-best task immediately implied.

• We extend a well-known inference algorithm bucket elimination [19] to the m-best

task, yielding a new algorithm elim-m-opt, and provide algorithms for its defining

combination and marginalization operators.

• We analyze the worst-case performance of elim-m-opt, contrasting it with the previ-

ously developed related schemes.

• We propose an extension of the algorithm to the mini-bucket framework [25], generating

bounds for each of the m best solutions and provide an empirical demonstration of this

algorithm.

� 1.1.2 Heuristic Search for M -best Task

Chapter 3 is devoted to finding the m best solutions using best-first or depth-first branch

and bound search. While most exact schemes developed for solving the m-best optimization

problems in graphical models are inference based, they frequently suffer from large memory

and time requirements, including our elim-m-opt algorithm described above. At the same

time, for the regular optimization task of finding the single best solution there exists a class of
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algorithms known to be efficient: AND/OR search schemes, including AOBD/OR Best First

search [69], AND/OR Branch and Bound [68] and Breadth-Rotating AND/OR Branch and

Bound [76]. These algorithms are guided by heuristics, typically generated using mini-bucket

elimination algorithm [50, 51], and take advantage of problem decomposition by exploring

an AND/OR search space [23]. Note that throughout we use “efficient” in the intuitive

meaning of the word, rather than as the technical term used to imply polynomial-time

algorithms in computer science. Clearly, the optimization schemes over graphical models

never have polynomial complexity, since the tasks are NP-hard.

Contributions

• We present a new algorithm m-A*, extending the well-known A* to the m-best task,

and proving that all its desirable properties are maintained. In particular, we show

that m-A* is sound and complete, that it is optimally efficient in terms of expanded

nodes and optimally efficient in terms of number of times each node is expanded when

the heuristic is consistent.

• Since best-first algorithms require extensive memory, we also extend the memory-

efficient depth-first branch and bound to the m-best task, and analyze the search

space explored by this new algorithm, which we call m-BB.

• We adapt both algorithms to optimization tasks over graphical models (e.g., Weighted

CSP and MPE in Bayesian networks) and provide an analysis of their asymptotic worst

case time and space complexity.

• We present the first, to our best knowledge, systematic empirical evaluation of these m-

best search algorithms over graphical models. We evaluated 5 variants of m-best search

schemes on various real-world and simulated benchmarks, comparing and contrasting

the performance of m-best best-first and depth-first branch and bound search when
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exploring various underlying search spaces: an OR tree, an AND/OR tree or, in case

of m-best best-first search, additionally an AND/OR graph.

• Our empirical comparison of m-best search algorithms with some of the most efficient

to-date m-best schemes based on the Linear Programming relaxation [37, 5] showed

that our algorithms are often more efficient for large values of m, while guaranteeing

solution optimality.

� 1.1.3 Anytime Weighted Heuristic Search for Graphical Models

Chapter 4 discusses the applicability of the well-known notion of weighted heuristic search,

i.e., a search that uses a heuristic (originally admissible) multiplied by a positive weight

w > 1 to make it inadmissible. The idea of weighted heuristic search was proposed for

best-first search and, in particular, A*, in the context of path-finding [79] and proved to

often facilitate faster results and smaller search space, while yielding a solution, whose cost is

guaranteed to be within the factor of w from the optimal. A variety of anytime versions of the

weighted best-first search have been subsequently proposed [43, 64, 97, 80, 96, 80]. However,

their potential for graphical models was largely ignored, possibly because of their memory

costs and because the alternative depth-first branch and bound seemed very appropriate for

bounded depth problems. The weighted depth-first search has not been studied for graphical

models.

Contributions

• We import the ideas of anytime weighted best-first search from the path-finding do-

main, investigating the impact of weighted heuristic on the solution accuracy, runtime

and size of the explored search space for AOBF algorithm over graphical models.

• We present two anytime weighted heuristic search schemes: wAOBF and wR-AOBF.
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Both run the AOBF with a weighted heuristic iteratively, while decreasing the weight at

each iteration. Algorithm wAOBF runs each iteration from scratch, while wR-AOBF

exploits previous computations in the style of ARA* [64].

• We also suggest anytime weighted depth-first branch and bound algorithms based on

AOBB and BRAOBB schemes.

• We conduct an extensive empirical evaluation of the proposed schemes on a large

variety of benchmarks, demonstrating the potential of both weighted best-first search

and weighted depth-first branch and bound algorithms as anytime schemes (that have

sub-optimality bounds) and compare against one of the best depth-first branch and

bound solvers to date (BRAOBB).

• We also formulate the notion of focused search space, a space often yielding fast explo-

ration. We analyze its properties and derive the value of the weight that, when used by

weighted best-first search, guarantees the search to be focused. Moreover, this weight

value can be used to bound the optimal solution cost based on just a single arbitrary

solution to the problem.

� 1.1.4 Cost-Shifting Schemes for Better Approximation

Chapter 5 is focused on the ways to improve the accuracy of the bounds produced by the

mini-bucket elimination. This algorithm is valuable not only as an approximate optimization

scheme, but also as a heuristic generator for the AND/OR search schemes. The main source

of the error in mini-bucket elimination arises from the necessity to split a set of functions

containing a particular variable in their scope into smaller groups and process these groups

independently. Intuitively such operation is equivalent to making several copies of the vari-

able in the graph. If these copies take the same assignment, then the optimal solution to the

modified problem is also an optimal solution to the original optimization problem. However,
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in practice it is most often not the case, and thus the solution obtained by mini-bucket

elimination is not exact.

An alternative common approximate approach to optimization in graphical models is based

on Linear Programming relaxation [99]. This relaxation technique transforms an NP-hard

optimization problem into a related problem, that is solvable in polynomial time and whose

solution is a guaranteed to be a bound on the optimal solution to the original problem.

Contributions

• We take advantage of both of the methods for bounding MPE queries in graphical

models: mini-bucket elimination and message-passing updates for linear programming

relaxations, developing two hybrid algorithms, which attempt to balance the advan-

tages of each approach.

• We demonstrate the power of our hybrid algorithms through empirical evaluation,

assessing the schemes’ performance both as bounding schemes and as heuristic gener-

ators for the search algorithms. Most notably, a branch and bound search guided by

the heuristic function calculated by one of our new algorithms has won the first place

in the 2011 PASCAL2 inference challenge.

� 1.2 Preliminaries and Background

The remainder of this chapter is devoted to the background and concepts upon which this

work builds. Additional definitions, pertaining to individual tasks solved, are given at the

beginning of corresponding chapters. We start by introducing the notion of graphical models.
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� 1.2.1 Graphical Models

Many real life applications, for example, in the domains of machine vision [31, 93], genetic

linkage analysis [3, 32, 33] or natural language processing [18, 60], involve a large group

of random variables that interact with each other. The explicit representation of the joint

distribution over the entire set is exponential in the number of variables and thus is often

infeasible to specify explicitly. Graphical models constitute a formal framework that al-

lows to represent the joint distribution compactly in a factored form using a graph-based

representation that captures the problem’s structure. For more details see [78, 20, 21, 46].

� 1.2.1.1 Notation

We denote variables or sets of variables by capital letters (e.g., X, Y, Z, S ) and values of

variables by lower case letters (e.g., x, y, z, s). An assignment (X1 = x1, ..., Xn = xn) can be

abbreviated as x = (x1, ..., xn). The domain of variable Xj is denoted DXj or D(Xj). For

a set of variables S, DS denotes the Cartesian product of the domains of variables in S. If

X = {X1, ..., Xn} and S ⊆ X, xS denotes the restriction of x = (x1, ..., xn) to variables in

S (also known as the projection of x over S), namely ∀xj ∈ x, xj is in xS if and only if the

variable Xj belongs to the set S. We denote functions by letters f , g, h, etc., and the scope

(set of arguments) of a function f by Scope(f). The projection of a tuple x on the scope

of a function f can also be denoted by xScope(f) or, for brevity, by xf . We also denote a

function f over a subset of variables Sj = {X1, . . . , Xr} as fSj or, when the scope is clear,

by fj. Abusing notation, we sometime write fSj(x) to mean fSj(xSj). We will sometimes

denote the scope variables as arguments, writing, e.g., f(S) or f(X1, X2, X3). We will also

use the terms “instantiation” and “assignment” interchangeably.

Definition 1.1 (Elimination operators, [21]). Given a function fj over a scope Sj, the

functions (minX fj), (maxX fj), and (
∑

X fj), where X ⊆ Sj, are defined over U = Sj −X

as follows: for every U = u, denoting by (u,x) the extension of tuple u by the tuple X = x,
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(minX fj)(u) = minx fj(u,x), (maxX fj)(u) = maxx fj(u,x), and (
∑

X fj)(u) =
∑

x fj(u,x).

Given a set of functions f1, ..., fk defined over the scopes S1, ...,Sk, the product function
∏

j fj and the sum function
∑

j fj are defined over U = ∪jSj such that for every u ∈

DU, (
∏

j fj)(u) =
∏

j fj(uSj) and (
∑

j hj)(u) =
∑

j hj(uSj). The operator arg maxX fj (or

arg minX fj) returns a tuple x for which function fj attains its maximum (minimum) value.

Note that we use terms elimination and marginalization interchangeably. For convenience

when we denote a function obtained by an eliminating operator (e.g.,
∑

) over a function f

defined over a set of variables Y, where X ⊆ Y, we will use interchangeably
∑

X f ,
∑

x f(y)

and
∑

X f(Y), all defining a function over the scope Y −X, with the meaning made clear

by the context.

� 1.2.1.2 Graphical models

A graphical model is a collection of local functions over subsets of variables that conveys

probabilistic, deterministic, or preferential information, and whose structure is described

by a graph. The graph captures independencies or irrelevance information inherent in the

model, that can be useful for interpreting the modeled data and, most significantly, can be

exploited by reasoning algorithms. The set of local functions can be combined in a variety

of ways to generate a global function, whose scope is the set of all variables.

Definition 1.2 (Graphical model). A graphical modelM is a 4-tupleM = 〈X,D,F,⊗〉:

1. X = {X1, . . . , Xn} is a finite set of variables;

2. D = {D1, . . . , Dn} is the set of their respective finite domains of values;

3. F = {f1, . . . , fr} is a set of non-negative real-valued discrete functions, defined over

scopes of variables Si ⊆ X. They are called local functions.

4.
⊗

is a combination operator, e.g.,
⊗ ∈ {∏,∑} (product, sum)
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The graphical model represents a global function, whose scope is X and which is the combi-

nation of all the local functions:
⊗r

j=1 fj.

The choice of the variables, functions and the concrete combination operator defines a par-

ticular kind of graphical model. We focus on Bayesian networks, Markov networks and

Weighted Constraint Satisfaction Problems (WCSPs).

Definition 1.3 (Bayesian network, [78]). A Bayesian (also known as belief) network is

a graphical model B = 〈X,D,P,∏〉, where X is the set of discrete random variables with

domains D and where functions P = {Pj(Xj|paj)} are conditional probability tables defined

relative to a directed acyclic graph G over X, where for every Xj, paj = {Xj1 , . . . , Xjk} are

the parents of Xj, i.e., for each Xjk there is an edge pointing from Xjk to Xj. A Bayesian

network represents the joint probability distribution given by: P (X) =
∏n

j=1 P (Xj|paj).

For example, consider a Bayesian network with 5 variables, whose directed acyclic graph

(DAG) is given in Figure 1.1(a).

Given a Bayesian network B = 〈X,D,P,∏〉 the most common optimization task is to find

the Most Probable Explanation (MPE), also known as Maximum A Posteriori hypothe-

sis (MAP). Its aim is to compute the maximum probability P ∗ = maxX

∏
f∈P f and the

corresponding assignment x∗ = arg maxX

∏
f∈P f .

Definition 1.4 (Markov network, [78],[21]). A Markov network is a graphical model T =

〈X,D,F,∏〉, where F = {fS1 , . . . , fSr} is a set of functions, often referred to as potentials,

where each potential fSj is a non-negative real-valued function defined on scopes Sj ⊆ X.

A Markov network represents the joint probability distribution given by: P (X) = 1
Z

∏r
j=1 fj,

where Z =
∑

X

∏r
j=1 fj. The normalization constant Z is called the partition function,

computing it is one of the main tasks over Markov networks.
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Figure 1.1: (a) A DAG of a Bayesian network, (b) its primal graph (also called moral
graph), (c) its induced graph along o = (A,E,D,C,B), and (d) its induced graph along
o = (A,B,C,D,E) (after [41]).

Definition 1.5 (Weighted Constraint Satisfaction Problem, WCSP, [21]). WCSP is

a graphical model C = 〈X,D,F,∑〉, where F = {fS1 , . . . , fSr} is a set of real-valued non-

negative functions. Each function fSj , also called cost-component, has a scope Sj ⊆ X and

assigns ”0” (no penalty) to allowed tuples and a positive integer penalty cost to the forbidden

tuples.

The primary optimization task over WCSP is finding a minimal cost assignment (min-sum):

C∗ = minx

∑
j fj(x) and the optimizing configuration x∗ = arg minx

∑
j fj(x). Histori-

cally this task is also sometimes referred to as energy minimization. It is equivalent to

an MPE/MAP task in the following sense: if C∗max = maxx

∏
j fj(x) is a solution to an

MPE problem, then C∗max = exp (−C∗min), where C∗min is a solution to a min-sum problem

C∗min = minx

∑
j gj(x) and ∀j, gj(x) = − log (fj(x)).

A graphical model defines a primal graph capturing dependencies between the variables.

Definition 1.6 (Primal graph). The primal graph of a graphical model is an undirected

graph that has variables as its vertices. An edge connects any two variables that appear in

the scope of the same function.
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For a Bayesian network, the primal graph is also called a moral graph.

Definition 1.7 (Moral graph). The moral graph of a directed graph is an undirected graph

obtained by connecting all parents of a node to each other and removing direction.

Figure 1.1(b) depicts the primal graph of the Bayesian network in Figure 1.1(a). Note that

parents of variable E (variables B and C) are connected in the primal graph.

An important feature of a graphical model, that characterizes the complexity of its reasoning

tasks, is the induced width.

Definition 1.8 (Ordered graph, induced width ([21])). An ordered graph is a pair

(G, o) where G is an undirected graph, and o = (X1, . . . , Xn) is an ordering of nodes. The

width of a node is the number of the node’s neighbors that precede it in the ordering. The

width of a graph along an ordering o is the maximum width over all nodes. An induced

ordered graph is obtained from an ordered graph as follows: nodes are processed from last to

first based on o; when node Xj is processed, all its preceding neighbors are connected. The

width of an ordered induced graph along the ordering o is called induced width along o and

is denoted by w∗(o). The induced width of a graph, denoted by w∗, is the minimal induced

width over all its orderings. Abusing notation we sometimes use w∗ to denote the induced

width along a particular ordering, when the meaning is clear from the context.

Figures 1.1(c) and 1.1(d) depict the induced graphs of the example primal graph in Fig-

ure 1.1(b) along the orderings o = (A,E,D,C,B) and o′ = (A,B,C,D,E), respectively.

The dashed lines correspond to the induced edges, namely edges that are absent from the

moral graph, but were introduced in the induced graph. The induced width along ordering

o is w∗(o) = 4 and the one along ordering o′ is w∗(o′) = 2.
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� 1.2.2 Variable Elimination for Inference in Graphical Models

Common approaches to solving optimization tasks over graphical models include variable

elimination and conditioning algorithms, such as search (for details see [21]). In this section

we present two schemes based on the variable elimination idea, leaving the discussion of

search algorithms to Section 1.2.4.

� 1.2.2.1 Exact Inference: Bucket Elimination

Bucket elimination (BE) [19] is a framework that provides a unifying view of variable elimi-

nation algorithms for a variety of reasoning tasks.

Algorithm 1 presents the bucket elimination algorithm for the MPE task. As an input it

accepts a graphical model M = 〈X,D,F,∏〉, a variable ordering o and a marginalization

operator max. For WCSP the combination operator is
∑

and the marginalization operator

is min. Given a variable ordering, each variable is associated with a bucket constructed

as follows: all the functions defined on variable Xj, but not on variables appearing later

in the ordering, are placed into the bucket of Xj. We denote the bucket of variable Xj

as bucketXj or BXj . By Scope(BXj) we denote the variables appearing in the functions in

bucketXj . Namely, if BXj contains functions f1, . . . , fk with scopes S1, . . . ,Sk respectively,

then Scope(BXj) = ∪kp=1Sp. We say that the variable that appears later in the ordering o is

a higher-index variable than the ones that appear sooner.

Once the buckets are created, BE processes buckets from last to first. It computes new

functions by combining all the functions in the bucket and then applying to the resulting

function (known as the “bucket function”) the elimination operator (e.g., max). The newly

computed functions, also called messages, are placed in lower buckets using the following rule.

A function generated in BXj is placed in BXk , where Xk is the latest variable in Scope(BXj)

relative to ordering o, excluding Xj. We denote this function by hXj→Xk . This phase of
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Algorithm 1: Bucket Elimination [19]

Input: Graphical model M = 〈X,D,F,∏〉, variable ordering o, marginalization operator
max

Output: An optimal solution to the MPE task over M and the optimal assignment
1 //Initialize
2 Partition the functions in F into bucketX1 , . . . , bucketXn , where bucketXp contains all

functions whose highest-index variable according to the ordering o is Xp;
//Backward pass

3 for p← n down to 1 do
4 Let g1, . . . , gr be the functions in bucketXp (including both original functions and

previously generated messages) having scopes S1, . . . ,Sr, respectively;
5 if Xp is instantiated (Xp = xp) then
6 Assign Xp = xp to each gj and put each resulting function into its appropriate

bucket;

7 else
8 Generate the message function hXp→Xk : hXp→Xk = maxXp

∏r
j=1 gj , where Xk is the

highest-index variable in Scope(hXp→Xk) = ∪rj=1Sj −Xp;

9 place hXp→Xk in bucketXk ;

//Forward pass
10 Assign a value to each variable along ordering o which optimizes the combination of the

functions currently in the bucket ;
11 return The function computed in the bucket of the first variable and the corresponding

assignment;

the algorithm is known as “the backward pass”. Subsequently, during the “forward pass”,

the algorithm constructs a solution by assigning a value to each variable along the ordering,

consulting the functions created during the backward phase. Note that the forward pass

is relevant only to optimization tasks. For a summation task, such as finding the partition

function, the algorithm bucket elimination would have only a backward pass.

As an illustration we apply the bucket elimination algorithm to the network in Figure 1.1(a)
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along o = (A,E,D,C,B), solving an MPE problem. We compute P ∗ as

P ∗ = max
a,b,c,d,e

P (a, b, c, d, e) (1.1)

= max
a,b,c,d,e

P (a)P (c|a)P (e|b, c)P (d|a, b)P (b|a) (1.2)

= max
a
P (a) max

e
max
d

max
c
P (c|a) max

b
P (e|b, c)P (d|a, b)P (b|a). (1.3)

Bucket elimination computes this expression from right to left using the buckets, as shown:

1. bucketB: hB→C(a, d, c, e) = maxb P (e|b, c)P (d|a, b)P (b|a)

2. bucketC : hC→D(a, d, e) = maxc P (c|a)hB→C(a, d, c, e)

3. bucketD: hD→E(a, e) = maxd hC→D(a, d, e)

4. bucketE: hE→A(a) = maxehD→E(a, e)

5. bucketA: P ∗ = maxa P (a)hE→A(a),

A schematic trace of the algorithm is shown in Figure 1.2.

Bucket elimination can be viewed as message passing from leaves to root along a so-called

bucket tree, whose nodes are the buckets and bucketX is a child of bucketY , if there is a

function hX→Y which is generated in bucketX and placed in bucketY during BE. The root

bucket is often the first bucket. For example, the bucket tree of the problem in Figure 1.2

is a chain, since each bucket receives a message from only one other bucket. It was shown

that,

Theorem 1.1. [19, 21] Given a graphical model with variable ordering o having induced width

w∗(o), the time and space complexity of the bucket elimination scheme is O(r · kw∗(o)+1) and

O(n · kw∗(o)) respectively, where r is the number of functions, n is the number of problem

variables and k is the maximum domain size.
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bucket B

bucket A

bucket C

bucket D

bucket E

P (E|B,C) P (D|A,B) P (B|A)

P (C|A)

P (A)

max
B

∏

max
A,B,C,D,E

P (A,B,C,D,E)

hB→C(A,D,C,E)

hC→D(A,D,E)

hD→E(A,E)

hE→A(A)

Figure 1.2: A trace of bucket elimination algorithm

Since the complexity of bucket elimination algorithm is exponential in induced width along

the ordering, ideally we want to find a variable ordering that has the smallest induced width.

Although this problem has been shown to be NP-hard [4], there are a few greedy heuristic

algorithms that provide good orderings [20, 21].

� 1.2.2.2 Approximate Inference: Mini-Bucket Elimination

Bucket elimination is infeasible for many practical problems having large induced width.

Thus an approximate version of the algorithm, called mini-bucket elimination (MBE) was

proposed [25]. MBE (Algorithm 2) bounds the space and time complexity of the full bucket

elimination. Given a variable ordering, the algorithm associates each variable Xk with a

bucket, which contains all functions defined on this variable, but not on higher index vari-

ables, as bucket elimination does. Subsequently, when processing buckets, large buckets are

partitioned into smaller subsets, called mini-buckets, each containing at most i + 1 distinct

variables. The parameter i is called the i-bound. In the following we often use “i-bound”
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Algorithm 2: Mini-Bucket Elimination [25]

Input: A graphical model M = 〈X,D,F,∏〉, variable ordering o, marginalization operator
max, parameter i

Output: An approximate solution to the MPE task over M and an assignment to all
variables

//Initialize
1 Partition the functions in F into bucketX1 , . . . , bucketXn , where bucketXp contains all

functions whose highest-index variable is Xp.
//Backward pass

2 for p← n down to 1 do
3 Let g1, . . . , gr be the functions in bucketXp (including both original functions and

previously generated messages); let S1, . . . ,Sr be the scopes of functions g1, . . . , gr;
4 if Xp is instantiated (Xp = xp) then
5 Assign Xp = xp to each gj and put each resulting function into its appropriate

bucket;

6 else
7 Partition functions in BXp into mini-buckets, generating the partitioning

QXp = {q1
p, . . . , q

l
p}, where each qtp ∈ QXp has no more than i+ 1 variables;

8 foreach qtp ∈ QXp do

9 Generate the message function htXp→Xk = maxXp
∏
j g

t
j , where gtj ∈ qtp and Xk is

the highest-index variable in Scope(htXp→Xk) = ∪jScope(gtj)−Xp;

10 Add htXp→Xk to bucketXk ;

//Forward pass
11 Assign a value to each variable in the ordering o so that the combination of the functions in

each bucket is optimal, according to the marginalization operator max;
12 return The function computed in the bucket of the first variable and the corresponding

assignment;

and “i” interchangeably. We denote the mini-buckets obtained by partitioning the bucket

BXp by QXp = {q1
p, . . . , q

n
p }, where qjp is the jth mini-bucket of variable Xp. MBE generates

an upper bound on the optimal MPE/MAP value, P̂ ≥ P ∗ (and lower bound on the optimal

WCSP value).

To demonstrate the execution of MBE we again turn to the network in Figure 1.1(a), with

the ordering o = (A,E,D,C,B). Let us set i = 2, i.e., restrict each mini-bucket to contain

no more than 3 variables. Since the scope of bucketB is greater than 3, it is necessary to split

bucketB into two separate mini-buckets, which will then be processed independently. Let us

assume that one of them contains function P (E|B,C) and the other functions P (D|A,B)
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(a) (b)

P (A)

P (B|A)

P (C|A)

P (E|B,C)

P (D|A,B)

A

B'

D

C

E

P (A)

P (C|A)

B''

P (E|B′, C) P (D|A,B′′)

P (B′′|A)

Figure 1.3: (a) The original Bayesian network, (b) The network with duplicated variable B

and P (B|A). The question of how to best distribute the functions between mini-buckets is

not trivial and is usually solved heuristically. More information can be found in [81].

Splitting bucketB into two mini-buckets can be viewed as replacing variable B by two du-

plicate variables: B′ and B′′. We denote the corresponding mini-buckets as bucketB′ and

bucketB′′ . Figure 1.3(a) shows the original network, and 1.3(b) presents the network with

duplicated variables. Note that in Figure 1.3(b) variable A is no longer connected to B′,

since no function has both these variables in its scope. An execution of MBE is equivalent

to running an exact bucket elimination algorithm on the resulting modified problem1:

1. bucketB′ : hB′→C(c, e) = maxb P (e|b, c)

2. bucketB′′ : hB′′→D(a, d) = maxb P (d|a, b)P (b|a)

3. bucketC : hC→E(a, e) = maxc P (c|a)hB′→C(c, e)

1Notice also that the network in 1.3(b) is not fully legitimate as a Bayesian network since B′ has no
function. This however has no real consequence and will not be further discussed.
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4. bucketD: hD→A(a) = maxd hB′′→D(a, d)

5. bucketE: hE→A(a) = maxe hC→E(a, e)

6. bucketA: P̂ = maxa P (a)hE→A(a)hD→A(a)

Figure 1.4 shows the trace of the mini-bucket elimination algorithm.

bucket B

bucket A

bucket C

bucket D

bucket E

P (E|B,C)

max
A,B′,B′′,C,D,E

P (A,B′, B′′, C,D,E) ≥ max
A,B,C,D,E

P (A,B,C,D,E)

max
B

∏

P (D|A,B) P (B|A)︸ ︷︷ ︸

max
B

∏

P (C|A) hB′→C(C,E)︸ ︷︷ ︸

hB′′→D(A,D)

hC→E(A,E)

P (A) hE→A(A) hD→A(A)︸ ︷︷ ︸

Figure 1.4: A trace of mini-bucket elimination algorithm

Theorem 1.2. [25] Given a graphical model with variable ordering o having induced width

w∗(o) and an i-bound parameter i, the time complexity of the mini-bucket algorithm MBE(i)

is O(n · kmin(i,w∗(o))+1) and space complexity is O(n · kmin(i,w∗(o))), where n is the number of

problem variables and k is the maximum domain size.

Higher values of i take more computational resources, but yield more accurate bounds. When

i is large enough (i.e., i ≥ w∗(o)), MBE coincides with the full bucket elimination.
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As we will describe in greater details in Section 1.2.4.4, the mini-bucket elimination is often

used to generate heuristics for both best-first and depth-first branch and bound search over

graphical models [50, 51, 53].

� 1.2.3 Heuristic Search

Search algorithms are used in a vast variety of applications. Though we mostly concentrate

on the application of search to optimization tasks over graphical models, we will provide

some background on general purpose search schemes as well. For more information see, for

example, Pearl [77].

Consider a search space defined implicitly by a set of states (the nodes in the graph), op-

erators that map states to states, having costs or weights (the directed weighted arcs), a

starting state n0 and a set of goal states. We say that a node is generated, when its repre-

sentation code is computed based on the heuristic information and the information about

its parent. It is said that the parent of the node is then explored, or expanded, when all its

children have been generated. A node expansion consists of generating all successors of a

given parent node. We call a path explored, if all nodes on this path have been expanded.

The task typically assumed is to find the least cost solution path from n0 to a goal [72],

where the cost of a solution path is the sum or the product of the weights on its arcs.

Search procedure, or strategy, is a policy that determines the order, in which nodes are

generated. We distinguish between blind (or uninformed) search and informed (or heuristic)

search. The former operates based only on information obtained during the search process

(e.g., the cost of getting from the root to the current node).

A heuristic search algorithm uses partial (heuristical) information about the search space and

the goal in order to move towards more promising solutions. A heuristic function, denoted

h(n), provides an estimate of the cost of the least cost path from each node n to any of
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the goals. A heuristic function is called admissible, if and only if it never overestimates (for

minimization task) the true minimal cost, h∗(n), to reach the goal from node n, namely,

∀n h(n) ≤ h∗(n). A heuristic is called consistent or monotonic, if for every node n and for

every successor n′ of n we have:

h(n) ≤ c(n, n′) + h(n′) (1.4)

where c(n, n′) is the weight of the arc (n, n′).

The two main heuristic search strategies are best-first search and depth-first branch and

bound search. Both of them assess how promising each node is and make decisions concerning

node expansions based on a numerical estimation called evaluation function, which estimates

the minimal cost of the path from start to a goal that passes through node n.

� 1.2.3.1 Best-First Search

Best-first search (BFS) always expands the node with the best (e.g., smallest for minimization

problem) value of the evaluation function. It maintains a graph of explored paths, a list

CLOSED of expanded nodes and a frontier of OPEN nodes. BFS chooses from OPEN a

node n with lowest value of an evaluation function f(n), expands it, places it on CLOSED,

and places its child nodes on OPEN. The most popular variant of best-first search, A*,

uses the evaluation function f(n) = g(n) + h(n), where g(n) is the current minimal cost

from the root to n, and h(n) is a heuristic function that estimates the optimal cost-to-go

h∗(n) from n to a goal node. In the following we assume that the heuristic used by A* is

admissible, unless specified otherwise. If h(n) is consistent, then the values of evaluation

function f(n) along any path are non-decreasing. A path π is called C∗-bounded relative

to f , if ∀n ∈ π : f(n) < C∗, where C∗ is the cost of optimal solution. It is known that,

regardless of the tie-breaking rule, A* expands any node n that is reachable by a strictly
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C∗-bounded path from the root. Such a node is said to be surely expanded by A* [24].

A* search possesses a number of attractive properties [72, 77, 24]:

• Soundness and completeness: A* terminates with an optimal solution.

• When h is consistent, A* explores only the nodes in the set S = {n|f(n) ≤ C∗} and it

surely expands all the nodes having S = {n|f(n) < C∗}.

• Optimal efficiency under consistent heuristic: When h is consistent, any node

surely expanded by A* must be expanded by any other sound and complete search

algorithm having access to the same heuristic information. Also, in thise case A* will

expand each node at most once, when searching a graph, because at the time of node’s

expansion A* has found the least-cost path to it.

• Dominance: Given two heuristic functions h1 and h2, such that ∀n h1(n) < h2(n),

A∗1 will expand every node surely expanded by A∗2, where A∗j uses heuristic hj.

Though best-first search is known to be the best algorithm in terms of number of nodes

expanded [24], sometimes it requires storing the whole search space, which means often an

exponential memory in the worst-case.

� 1.2.3.2 Depth-First Branch and Bound

A popular alternative is depth-first branch and bound (DFBB), whose most attractive fea-

ture, compared to best-first search, is that it can be executed with linear memory. Yet, when

the search space is a graph, it can exploit additional memory to improve its performance by

flexibly trading space and time.

Depth-first branch and bound expands nodes in a depth-first manner, maintaining an upper

bound UB on the cost of the optimal solution, which equals to the best solution cost found
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(a)
Primal
graph

(b) OR search tree along ordering A, B, C, D, E, F

Figure 1.5: OR search space example problem (after [75])

so far (initially infinity). If the evaluation function of the current node n is greater than

the upper bound, the node is pruned and the subtree below it is never explored. In the

worst case depth-first branch and bound explores the entire search space. In the best case

the first solution found is optimal, in which case DFBB’s performance can be as good as

BFS. However, if the solution depth is unbounded, depth-first search might follow an infinite

branch and never terminate. Also, if the search space is a graph, DFBB may expand nodes

numerous times, unless it uses additional memory for caching and checks for duplicates.

The average case is hard to characterize for both DFBB and BFS because we do not know

C∗, and even if we did, we cannot easily estimate the set {n|f(n) ≤ C∗}. This depends

on the values of heuristic function and, for DFBB, on the order in which the solutions are

encountered.

� 1.2.4 Heuristic Search in Graphical Models

Search algorithms provide a way to systematically enumerate all possible assignments of a

given graphical model. Optimization problems can be naturally presented as the task of

finding an optimal cost path in an appropriate search space.

The simplest variant of a search space is a so-called OR search tree. Each level of this

tree corresponds to a variable from the original problem. The nodes correspond to variable
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assignments and the arc weights are derived from problems’ functions. The size of such

search tree is O(kn), where n is the number of variables and k is the maximum domain size.

Throughout this section we illustrate the concepts using the example problem with six vari-

ables (A,B,C,D,E, F ) and seven pairwise functions. Its primal graph is shown in the

Figure 1.5(a). Figure 1.5(b) displays the corresponding OR search tree along lexicographical

ordering (after [75]).

� 1.2.4.1 AND/OR Search Spaces

OR search trees are blind to the problem decomposition encoded in the graphical models

and can therefore be inefficient. They do not exploit the independencies in the model.

AND/OR search spaces for graphical models have been introduced to better capture the

problem structure [23]. The AND/OR search space is defined by a pseudo-tree of the primal

graph that captures problem decomposition.

Definition 1.9 (Pseudo-tree, [36]). A pseudo-tree of an undirected graph G = (V,E) is a

directed rooted tree T = (V,E ′), such that every arc of G not included in E ′ can be viewed

as a back-arc relative to T , namely it is an arc that connects a node to an ancestor relative

to T . A node n′ is an ancestor of n in T if it appears on the path from the root to n in T .

Definition 1.10 (AND/OR search tree, [23]). Given a graphical modelM = 〈X,D,F,⊗〉

with primal graph G and a pseudo-tree T of G, the AND/OR search tree ST contains alter-

nating levels of OR and AND nodes. Its structure is based on the underlying pseudo-tree T .

The root node of ST is an OR node labelled by the variable at the root of T . The children of

an OR node labeled Xj are AND nodes labelled with value assignments 〈Xj, xj〉 (or simply

〈xj〉); the children of an AND node 〈Xj, xj〉 are OR nodes labelled with the children of Xj

in T , representing conditionally independent subproblems.

Figure 1.6(a) shows a pseudo-tree of the example problem. The solid directed edges belong
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(c) Context-minimal AND/OR search graph

Figure 1.6: AND/OR search spaces example

to the pseudo-tree. The dashed lines represent the back-arcs in the primal graph depicted in

Figure 1.5(a), but are not part of the pseudo-tree. An AND/OR tree corresponding to the

pseudo-tree in Figure 1.6(a) is shown in Figure 1.6(b). The arcs from nodes Xj to 〈Xj, xj〉 in

an AND/OR search tree are annotated by weights that are derived from the cost functions

in F as follows.

Definition 1.11 (Arc weight, [23]). The weight w(Xj, xj) of the arc (Xj, 〈Xj, xj〉) is the

combination (i.e., sum for WCSP and product for MPE) of all the functions, whose scope
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includes Xj and which are fully assigned by values specified along the path from root to the

node to 〈Xj, xj〉.

Theorem 1.3. [23] Given a pseudo-tree T of a graphical model having height h, the size of

the AND/OR search tree based on T and the time complexity of an algorithm exploring it

are bounded by O(n ·kh), where n is the number of variables and k bounds their domain size.

Definition 1.12 (Context, [23]). Given the primal graph G = (V,E) of a graphical model

M and a corresponding pseudo-tree T , the context of a node Xj (referred to originally as

OR context) in T is the set of the ancestors of Xj in T that have connections in G to Xj

or its descendants.

In other words, the context of a variable Xj is a set of variables, for which any partial

instantiation separates the subproblem rooted at Xj from the rest of the network. When

talking about the context of a subproblem, we imply the context of the subproblem’s root

node.

Definition 1.13 (Context-minimal AND/OR search graph, [23]). A context-minimal

AND/OR search graph, denoted CT , is obtained from an AND/OR search tree by merging

all the identical subproblems that have the same context.

Theorem 1.4. [23] Given a graphical model M = 〈X,D,F,⊗〉 with a primal graph G,

whose induced width along the pseudo-tree T is w∗, the size of a context-minimal AND/OR

search graph is O(n · kw∗).

Definition 1.14 (Solution tree, [65]). A solution tree T of a context-minimal AND/OR

search graph CT is a subtree such that: (1) it contains the root node of CT ; (2) if an internal

AND node n is in T , then all its children are in T ; (3) if an internal OR node n is in T ,

then exactly one of its children is in T ; (4) every tip node in T (i.e., node with no children,

also known as leaf node) is a terminal node, namely it has no children in CT .
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Definition 1.15 (Cost of a solution tree, [65]). The cost of a solution tree is the product

(for MPE task) or sum (for WCSP) of the weights associated with its arcs (not to be confused

with computational cost of the tree construction, namely its time and space complexity).

Each node n in CT is associated with a value v(n) capturing the optimal solution cost of

the conditioned subproblem rooted in n. Assuming an MPE/MAP problem, it was shown

that v(n) can be computed recursively based on the values of n’s successors: OR nodes by

maximization and AND nodes by multiplication. In the case of WCSPs, v(n) for OR and

AND nodes is computed as a function of their child nodes by minimization and summation,

respectively [23].

We next provide an overview of a depth-first branch and bound and a best-first search al-

gorithms that explore AND/OR search spaces [69, 68, 76]. These schemes use heuristics

generated either by the mini-bucket elimination scheme (see Section 1.2.4.4 for details) or

through soft arc-consistency schemes [68, 69, 83, 16] or their composite [48]. As is custom-

ary in the heuristic search literature, when defining algorithms we assume without loss of

generality a minimization task (i.e., min-sum optimization problem).

� 1.2.4.2 AND/OR Best-First Search

The state-of-the-art version of A* for the AND/OR search space for graphical models is the

AND/OR Best-First algorithm (AOBF) [69]. AOBF is a variant of AO* [72] that explores

the AND/OR context-minimal search graph.

AOBF (Algorithm 3) maintains the explicated part, denoted G, of the context-minimal

AND/OR search graph CT , namely all the nodes of CT that AOBF generated so far and the

edges between them. It also keeps track of the current best partial solution tree T ∗. AOBF

interleaves iteratively a top-down node expansion step (lines 4-16), selecting a non-terminal

tip node of T ∗ and generating its children in the explored search graph G, with a bottom-
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Algorithm 3: AOBF(hi) exploring AND/OR search tree [69]

Input: A graphical model M = 〈X,D,F,∑〉, pseudo-tree T rooted in X1, heuristic hi calculated
with i-bound i;

Output: Optimal solution to M
1 create root OR node s labelled by X1 and let G (explored search graph) = {s};
2 initialize v(s) = hi(s) and best partial solution tree T ∗ to G;
3 while s is not SOLVED do
4 select non-terminal tip node n in T ∗. If there is no such node then exit;

// expand node n
5 if n = Xj is OR then
6 forall the xj ∈ D(Xj) do
7 create AND child n′ = 〈Xj , xj〉;
8 if n’ is TERMINAL then
9 mark n′ SOLVED;

10 succ(n)← succ(n) ∪ n′;

11 else if n = 〈Xj , xj〉 is AND then
12 forall the successor Xk of Xj in T do
13 create OR child n′ = Xk;
14 succ(n)← succ(n) ∪ n′;

15 initialize v(n′) = hi(n
′) for all new nodes;

16 add new nodes to the explored search space graph G ← G ∪ succ(n);
// update n and its AND and OR ancestors in G, bottom-up

17 repeat
18 if n is OR node then
19 v(n) = mink∈succ(n)(w(n, k) + v(k));
20 mark the best successor k of OR node n, such that k = arg mink∈succ(n)(w(n, k) + v(k))

(maintaining previously marked successor if still the best);
21 mark n as SOLVED if its best marked successor is solved;

22 else if n is AND node then
23 v(n) =

∑
k∈succ(n) v(k);

24 mark all arcs to the successors;
25 mark n as SOLVED if all its children are SOLVED;

26 n← p; //p is a parent of n in G
27 until n is not root node s;
28 recompute T ∗ by following marked arcs from the root s;

29 return 〈v(s), T ∗〉;

up cost revision step (lines 17-27), updating the values of the internal nodes based on the

children’s values. If a newly generated child node is terminal, it is marked solved (lines 8-9).

During the bottom-up phase the OR nodes having at least one solved child and the AND

nodes having all children solved are also marked as solved (lines 21 and 25). AOBF also

marks the arc to the best AND child of an OR node, through which the minimum is achieved

(line 20). After the bottom-up step, a new best partial solution tree T ∗ is recomputed (line
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28). AOBF terminates when the root node is marked solved. For admissible heuristic at

termination T ∗ is the optimal solution tree with the cost v(s), where s is the root node of

the search space.

Theorem 1.5. [69] The AND/OR Best-First search algorithm traversing the context-minimal

AND/OR graph has the time and space complexity of O(nkw
∗
), where n is the number of

variable in the problem, w∗ is the induced width along the pseudo-tree and k bounds the

domain size.

� 1.2.4.3 AND/OR Depth-First Branch and Bound

The AND/OR Branch and Bound [68] algorithm traverses the context-minimal AND/OR

graph in a depth-first rather than best-first manner, while keeping track of the current upper

bound on the minimal solution cost.

The algorithm (Algorithm 4) interleaves forward node expansion (lines 4-17) with a backward

cost revision (or propagation) step (lines 19-29) that updates node values (capturing the

current best solution to the subproblem rooted at each node), until search terminates and

the optimal solution is found. A node n is pruned (lines 12-13) if the current upper bound on

the best solution rooted in n is higher than the heuristic lower bound, computed recursively

using the procedure described in Algorithm 5.

Theorem 1.6. [66] The worst case time and space complexity of AND/OR Branch and

Bound exploring a context-minimal AND/OR search graph of a graphical model with n vari-

ables, maximum domain size k, and an induced width w∗ along the pseudo-tree T is O(nkw
∗
).

In practice AOBB is likely to expand more nodes than AOBF using the same heuristic, but

empirical performance of AOBB depends heavily on the order, in which the solutions are

encountered, namely on how quickly the algorithm finds an optimal solution, that it will use

as an upper bound for pruning.
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Algorithm 4: AOBB(hi) exploring AND/OR search tree [69]
Input: A graphical model M = 〈X,D,F,

∑
〉, pseudo-tree T rooted at X1, heuristic hi;

Output: Optimal solution to M
1 create root OR node s labelled by X1 and let stack of created but not expanded nodes be OPEN = {s};
2 initialize v(s) =∞ and best partial solution tree rooted in s T ∗(s) = ∅; UB =∞;
3 while OPEN 6= ∅ do
4 select top node n on OPEN.

//EXPAND
5 if n is OR node labelled Xj then
6 foreach xj ∈ D(Xj) do

//Expand node n:
7 add AND child n′ = 〈Xj , xj〉 to list of successors of n;
8 initialize v(n′) = 0, best partial solution tree rooted in n T ∗(n′) = ∅;

9 if n is AND node labelled 〈Xj , xj〉 then
10 foreach OR ancestor p of n do
11 recursively evaluate the cost of the partial solution tree rooted in p, based on heuristic hi, assign its cost

to f(p); // see evalPartialSolutionTree(T ∗n , hi(n)) in Algorithm 5
12 if evaluated partial solution is not better than current upper bound at p (e.g., f(p) ≥ v(p) for

minimization) then
13 prune the subtree below the current tip node n;

14 else
15 foreach successor Xk of Xj ∈ T do
16 add OR child n′ = Xk to list of successors of n;
17 initialize v(n′) =∞, best partial solution tree rooted in n T ∗(n′) = ∅;

18 add successors of n on top of OPEN;
//PROPAGATE
//Only propagate if all children are evaluated and the final v are determined

19 while list of successors of node n is empty do
20 if node n is the root node then
21 return solution: v(n), T ∗(n) ;

22 else
//update ancestors of n, AND and OR nodes p, bottom up:

23 if p is AND node then
24 v(p) = v(p) + v(n), T ∗(p) = T ∗(p) ∪ T ∗(n);

25 else if p is OR node then
26 vnew(p) = w(p, n) + v(n);
27 if the new value of better than the old one (e.g., vnew(p) > (w(p, n) + v(n)) for minimization then
28 v(p) = vnew(p), T ∗(p) = T ∗(p) ∪ 〈xj , Xj〉;

29 remove n from the list of successors of p;
30 move one level up: n← p;

Breadth Rotating AND/OR Branch and Bound (BRAOBB).

AOBB, though shown to be a powerful search scheme for graphical models, however, lacks

a proper anytime behavior: at each AND node all but one independent child subproblems

have to be solved completely, before the last one is even considered. To remedy this the

Breadth-Rotating AND/OR Branch and Bound algorithm has been introduced recently [76].

The basic idea is to rotate through different subproblems in a breadth-first manner. The
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Algorithm 5: Recursive computation of the heuristic evaluation function [69]

function evalPartialSolutionTree(T ′n, h(n))
Input: Partial solution subtree T ′n rooted at node n, heuristic function h(n);
Output: Heuristic evaluation function f(T ′n);

1 if succ(n) == ∅ then
2 return h(n);

3 else
4 if n is an AND node then
5 let k1, . . . , kl be the OR children of n;

6 return
∑l

j=1 evalPartialSolutionTree(T ′kj
, h(kj));

7 else if n is an OR node then
8 let k be the AND child of n;
9 return c(n, k) + evalPartialSolutionTree(T ′k, h(k));

concepts is illustrated in Figure 1.7. In Figure 1.7(a) the two subproblems on the left

have been solved completely before the subproblem on the right was even considered. In

Figure 1.7(b) the initial solutions to the three independent subproblems are found in parallel.

As an input parameter the algorithm has a threshold z, defining the limit on the number of

nodes expanded before switching to the next subproblem.

Algorithm 6 shows the pseudo-code of BRAOBB. As mentioned above, the main difference

between this algorithm and AOBB lies in the rotation of the subproblems. The subproblems

are added into a global queue (GLOBAL), that insures that they are processed in a breadth-

first manner. Each individual subproblem is explored as usual in a depth-first manner, using

the stack LOCAL for the current subproblem.

In the beginning there is only one subproblem, rooted in the first variable X1 in the GLOBAL

queue (line 3). As long as there are still subproblems in the GLOBAL queue, the next

subproblem is taken from the queue and put on the LOCAL stack (line 6). The subproblem is

then processed (lines 7-26) until either LOCAL becomes empty, i.e., the current subproblem

is fully solved, or the number of nodes expanded reaches the threshold z, or the current

subproblem decomposes further. In the latter case the new subproblems are added to queue

GLOBAL for subsequent processing (lines 27-28).
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processing
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Figure 1.7: Illustration of subproblem processing: (a) default by AOBB, (b) subproblem
rotation by BRAOBB

Empirically, BRAOBB was shown to find the first suboptimal solution significantly faster

than plain AOBB [76].

� 1.2.4.4 Mini-Bucket Heuristics

The AND/OR search algorithms presented (AOBF, AOBB and BRAOBB) most often use

the mini-bucket (also known as MBE ) heuristic h(n), formulated for OR search spaces by

Kask [50, 51, 53] and extended for AND/OR search by Marinescu [66].

As shown in [66], the intermediate bucket functions generated by MBE(i) underestimate

the optimal solution cost to subproblems rooted in each node of the AND/OR search graph

(assuming a minimization query), just as the overall bound returned by MBE(i) is a lower

bound on the overall solution. These intermediate functions can therefore be used to derive

a heuristic function that is admissible.

32



Algorithm 6: BRAOBB(hi)
Input: A graphical model M = 〈X,D,F,

∑
〉, pseudo-tree T rooted at X1; heuristic hi, rotation threshold Z;

Output: Optimal solution to M
1 Create root OR node s labelled by X1 (generate root subproblem)
2 Initialize UB =∞
3 GLOBAL←[ROOT] //put the root subproblem into queue
4 while GLOBAL 6= ∅ do

//next subproblem
5 for z from 1 to Z or until LOCAL is empty or until childSubprom(LOCAL) 6= ∅ do
6 n←top(LOCAL);

//next node in subproblem
// Expand node n:

7 if n is OR node labelled Xj then
8 foreach xj ∈ D(Xj) do
9 initialize AND child n′ = 〈Xj , xj〉 as in AOBB (line 7);

10 add it on top of LOCAL;

11 if n is AND node labelled 〈Xj , xj〉 then
12 foreach OR ancestor m of n do
13 evaluate the heuristic and prune like in AOBB (lines 10-13);
14 if no pruning happened then
15 Y1, . . . , Yk ← children of n in the pseudo-tree;
16 generate OR children of 〈Y1〉, . . . , 〈Yk〉 ;
17 if k=1 then

//if there is no decomposition
18 push Y1 to top of LOCAL;

19 else if k > 1 then
//problem decomposition

20 for r ← 1 to k do
21 NEW← {〈Yr〉};
22 //new child subproblem
23 push NEW to the back of GLOBAL;

24 if children(n)6= ∅ then
//if n is a leaf

25 do propagation as in AOBB (lines 18-30);
26 //upward in search space

27 if LOCAL6= ∅ then
//subproblem is not yet solved

28 push LOCAL to the end of GLOBAL;

29 return value(root) //root node has optimal solution

Recently more advanced heuristics for AND/OR search, such as mini-bucket elimination with

max-marginal-matching and Joint Graph Linear Programming have been proposed [48]. We

will discuss them and evaluate their performance in Chapters 5.

Having established the necessary background, we will now turn to the main part of the thesis,

presenting our contributions.
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Chapter 2

Bucket Elimination for M-best

Optimization Task

� 2.1 Introduction1

The usual aim of combinatorial optimization is to find an optimal solution, minimum or

maximum, of an objective function. However, in many applications it is desirable to obtain

not just a single optimal solution, but a set of the first m best solutions for some integer m.

We are motivated by many real-life domains, in which such task arises. For instance, the

problem of finding the most likely haplotype in a pedigree can be presented as finding the

most probable assignment in a Bayesian network that encodes the genetic information [34].

In practice the data is often corrupted or missing, which makes the single optimal solution

unreliable. It is possible to increase the confidence in the answer by finding a set of m best

solutions and then choosing the final solution with an expert help or by obtaining additional

genetic data. More examples of the m-best task arise in procurement auction problems and in

probabilistic expert systems, where certain constraints often cannot be directly incorporated

into the model, either because they make the problem infeasibly complex or they are too

1Part of this work has already been published in Natalia Flerova, Emma Rollon, and Rina Dechter.
”Bucket and mini-bucket Schemes for M Best Solutions over Graphical Models”, Special Issue of Lecture
Notes in Computer Science: Graph structures for knowledge representation and reasoning, 2011.
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vague to formalize (e.g., idiosyncratic preferences of a human user). Thus in such domains it

may be more practical to first find several good solutions to a relaxed problem and then pick

the one that satisfies all additional constraints in a post-processing manner. Additionally,

sometimes a set of diverse assignments with approximately the same cost is required, as in

reliable communication network design. Finally, in the context of a summation problem,

such as probability of evidence or finding the partition function, an approximation can be

derived by summing over the m most likely tuples, though we do not expect this bound to

be tight in practice.

The problem of finding the m best solutions has been well studied. One of the earliest and

most influential works belongs to Lawler [61]. He provided a general scheme that extends

any optimization algorithm to the m-best task. The idea is to compute the next best

solution successively by finding a single optimal solution for a slightly different reformulation

of the original problem that excludes the solutions generated so far. This approach has

been extended and improved over the years and is still one of the primary strategies for

finding the m best solutions. Other approaches are more direct, trying to avoid the repeated

computation inherent to Lawler’s scheme. Two earlier works, that are most relevant and

provide the highest challenge to our work, are by Nilsson [73] and Aljazzar, et al., [2].

• Nilsson [73] proposed a junction-tree-based message-passing scheme that iteratively

finds the m best solutions. He claimed that it has the best runtime complexity among

m-best schemes for graphical models. Our analysis (Section 3.5) shows that indeed

Nilsson’s scheme has the second best worst case time complexity after our algorithm

BE+m-BF (Section 3.4.3). However, in practice this scheme is often not feasible for

problems having a large induced width.

• Aljazzar, et al., [2] proposed an algorithm called K*, an A* search-style scheme for find-

ing the k shortest paths, that is interleaved with breadth-first search. They used a very
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specialized data structure, and it is unclear if this approach can be straightforwardly

extended to graphical models, a point that we will leave to future work.

One of the popular approximate approaches to solving optimization problems is based on

an LP-relaxation of the problem [99]. The m-best extension of this approach [37] does not

guarantee exact solutions, but is quite efficient in practice. We will discuss these and other

related works further in Chapter 3, in Section 3.5.

Our main focus lies in optimization in the context of graphical models, such as Bayesian

networks, Markov networks and constraint networks. However, some of the algorithms de-

veloped can be used for more general tasks, such as finding m shortest paths in a graph.

Various graph-exploiting algorithms for solving optimization tasks over graphical models

were proposed in the past few decades. Such algorithms are often characterized as being ei-

ther of inference type (e.g., message-passing schemes, variable elimination) or of search type

(e.g., AND/OR search or recursive-conditioning). In this chapter we limit our treatment to

the class of inference schemes, as represented by the bucket elimination algorithm (BE) [19].

The discussion of search schemes is deferred till Chapter 3.

Our contribution. We will show that the extension of the bucket elimination to compute

the m-best solutions can be achieved by a relatively simple modification of its underlying

combination and marginalization operators [19]. In optimization tasks over probabilistic

graphical models the combination operator is a product, while the marginalization operator

is maximization or minimization (we assume maximization here). We will show that the

extension of the bucket elimination algorithm for the m-best solutions can be facilitated

by representing functions as vector functions, by defining the combination operator to be a

product between vector functions and the marginalization operator as m-sorting (rather than

maximization). Applying these modifications yielding the bucket-elimination algorithm elim-

m-opt is described within the framework of semirings [85, 1, 56, 7]. This unifying formulation
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ensures the soundness and completeness of any algorithm applied to any problem that fits into

the framework and in particular it implies that elim-m-opt solves the m-best optimization

task.

We show that the worst-case complexity of our algorithm increases by a factor of O(m·log(m·

deg)) over finding a single best solution, where deg is the highest degree of the bucket-tree

that underlies the computation. This yields an overall complexity of O(m·n·kw∗ ·log(m·deg))

when m is the number of solutions, n is the number of variables in the problem, k bounds

the domain size of each variable and w∗ bounds the induced-width of the graphical model.

Since the bucket elimination scheme can be approximated by the relaxation and bounding

scheme of mini-bucket elimination (MBE) [25], we can extend elim-m-opt straightforwardly

to a mini-bucket scheme mbe-m-opt, which computes a bound on each of them best solutions.

More significantly, we also show that the m bounds computed by mbe-m-opt can be used to

tighten the bound on the first best solution, since both are generated from the same relaxed

problem. In particular, it can facilitate a scheme for tightening any heuristic generation

scheme.

The formulation of the m-best problem using semiring framework makes a variety of schemes

immediately applicable to this task, such as the Generalized Distributive Law [1] and Iterative

Join-Graph Propagation [22].

The remainder of the chapter is organized in the following manner. In Section 2.2 we give

the background on the semirings framework and more formally re-define in the context of

semirings the combination and marginalization operators, as well as the reasoning task over

graphical models, previously introduced in Section 1.2.1.2. We also axiomatically state the

correctness of the bucket elimination algorithm, based on the results by Shenon and Shafer

[88, 87]. Section 2.3 presents the formulation of the m-best reasoning task in the semiring

framework. In Section 2.4 we describe the extension of bucket elimination algorithm to the
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m-best. Section 2.5 is devoted to the extension of mini-bucket elimination to the m-best

task. Section 2.6 presents empirical evaluation. Section 2.7.

� 2.2 Preliminaries and Background

Before moving on to our main contributions, in this section we give more formal definitions

of some graphical models concepts previously presented in Section 1.2.1.2 and axiomatically

describe the properties of the algorithms for solving the reasoning tasks over graphical mod-

els. Most of the results are based on the works of Shenon and Shafer [88, 87] and Bistarelli,

et al., [8]. Though some of the definitions included in this section may seem familiar from

the previous chapter, the mathematically formal formulations presented here are crucial for

proving the correctness of the new m-best algorithm we introduce in Section 2.4.

As before, let X = {X1, . . . , Xn} be an ordered set of variables and D = {D1, . . . ,Dn} an

ordered set of domains. Domain Dj is a finite set of potential values for Xj. Let us denote

the assignment (i.e., instantiation) of variable Xj with xj ∈ Dj as Xj = xj. A tuple is

an ordered set of assignments to different variables (X1 = x1, . . . , Xk = xk). A complete

assignment is an assignment to all variables in X. Let t and s be two tuples having the same

instantiations to the common variables. Their join, noted t · s, is a new tuple which contains

the assignments of both t and s. We use the symbol · for both join and multiplication,

however, the context usually makes the meaning unambiguous.

Definition 2.1 (Field, valuations). A field is an algebraic structure with notions of ad-

dition, subtraction, multiplication, and division, satisfying certain axioms. A valuation is a

function on the elements of a field that provides a measure of size or multiplicity of elements

of the field.

Alternatively, we can define valuations the following way. Let the scope of a function f be
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Y. For a subset of variables Y, we denote by DY the set of tuples over Y, namely the set

of all possible assignments to variables in Y. Let f : DY → A be a function having scope

Y, A is a set of valuations. When the correspondence between valuations and variable sets

can be ambiguous, we more specifically talk about valuations on Y denoted AY. Typical

ranges of valuations A are natural, real and boolean numbers. For example, in the case of

Bayesian networks a valuation is a set of non-negative, real-valued numbers.

For each set of valuations A there can be at most one valuation ζ ∈ A called a zero valuation.

In case of a Bayesian network the zero valuation is such valuation ζ that the values of the

function f : DY → ζ are zero for all configurations of Y. For a subset of variables Y and

function f : DY → A a subset of valuations P ∈ A is called proper valuations if P = A \ ζ,

where ζ is a zero valuation. The notion of proper valuations is important, as it will enable

us to define combinability of valuations. In the probability case, a valuation A is said to be

proper if the values of the function DY → A are not zero for all configurations of Y.

We assume two binary operations over valuations: ⊗ : A ×A → A called combination (or

multiplication) and ⊕ : A×A→ A called addition or marginalization. Both operators are

associative and commutative.

Following [88] we define these operators in the following way:

Definition 2.2 (Combination). We assume there is a mapping ⊗ : A ×A → A, called

combination, such that:

1. If GY and HZ are valuations on Y and Z, then GY ⊗HZ is a valuation on Y ∪ Z;

2. If either GY or HZ is not a proper valuation, then GY⊗HZ is not a proper valuation;

3. If GY and HZ are both proper valuations, then GY ⊗HZ may or may not be a proper

valuation.
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If GY⊗HZ is not a proper valuation, then we shall say that GY and HZ are not combinable.

If GY⊗HZ is a proper valuation, then we shall say that GY and HZ are combinable and that

GY ⊗HZ is the combination of GY and HZ.

As was pointed out in [88], intuitively, combination corresponds to aggregation. If GY

and HZ represent information about variable sets Y and Z, respectively, then GY ⊗ HZ

represents the aggregated information for variables in Y∪Z. In the Bayesian networks case,

combination corresponds to multiplication.

Definition 2.3 (Marginalization or addition). We assume that for each subset of vari-

ables Y and subset Z ⊆ Y there is a mapping ⊕Z : A ×A → A, called marginalization to

Z, such that

1. If GY is a valuation on Y and Z ⊆ Y, then ⊕ZGY is a valuation on W, where

W = Y \Z is a relative complement of a set Z with respect to a set Y, namely the set

of elements in Y, but not in Z;

2. If GY is a proper valuation, then ⊕ZGY is a proper valuation;

3. If GY is not a proper valuation, then ⊕ZGY is not a proper valuation.

Intuitively, marginalization corresponds to narrowing the focus of a valuation. If GY is

a valuation on Y representing some information about variables in Y, and Z ⊆ Y, then

⊕ZGY represents the information for variables in Y implied by GY, if we disregard variables

in Y \ Z. [88]. In the belief network case the marginalization corresponds to summation.

Definition 2.4 (Valuation structure). A valuation structure is a triple K = (A,⊗,⊕)

such that A is an arbitrary set of valuations.

In order to be able to formally define the reasoning task and discuss the algorithms which

can solve it we extend the combination and addition operators to operate also over functions.
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Definition 2.5 (Combination operator over functions). Let fSj : Dj → A and gSp :

Dp → A be two functions. Their combination, noted fSj
⊗

gSp relative to A, is a new

function hSk with scope Sk = Sj∪Sp, which returns for each tuple t ∈ DSj∪Sp the combination

of valuations of fSj and gSp. Formally,

∀t ∈ Dh, hk(t) = fj(t)⊗ gp(t)

In the framework of graphical models combination operator ⊗ is defined by enumeration as

⊗ ∈ {∏,∑, ./}.

Definition 2.6 (Marginalization operator over functions). Let fSj : Dj → A be a

function and W ⊆ X be a set of variables. The marginalization of W from fSj , noted

fSj ⇓W relative to A, is a new function hSk with the scope Sk = Sj \W that returns for each

tuple t ∈ DSj−W the addition of the valuations over the different extensions to W. Formally,

∀t ∈ Dk, hSk(t) = ⊕t′∈DW
fSj(t · t′)

In the framework of graphical models marginalization operator ⇓ is defined by enumeration

as ⇓= {max,min,
∏
,
∑}.

Example 2.1. For example, consider three variables X1, X2 and X3 with domains D1 =

D2 = D3 = {1, 2, 3}. Let f(X1, X2) = X1X2 and g(X2, X3) = 2X2 +X3 be two functions. If

the combination operator is product (i.e., ·), then (f × g)(X1, X2, X3) = X1X2 · (2X2 +X3).

If the marginalization operator is max, then (f ⇓X1)(X2) = max {1X2, 2X2, 3X2} = 3X2.

For completeness we re-state here the previously given definition of the graphical model and

the reasoning task, keeping in mind that they assume the new, more mathematically strict,

definitions of the combination and marginalization operators.

Definition 2.7 (Graphical model). A graphical model is a tuple M = 〈X,D,A,F,⊗〉,
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where: X = {X1, . . . , Xn} is a set of variables; D = {D1, . . . ,Dn} is the set of their

finite domains of values; A is a set of valuations (A,⊗,⊕); F = {f1, . . . , fr} is a set of

discrete functions, where var(fj) ⊆ X and fj : Dfj → A; and
⊗

is the combination

operator over functions (see Definition 2.5). The graphical model M represents the function

C(X) =
⊗

f∈F f .

Definition 2.8 (Reasoning task). A reasoning task is a tuple P = 〈X,D,A,F,⊗,⇓〉

where 〈X,D,A,F,⊗〉 is a graphical model and ⇓ is a marginalization operator over func-

tions as defined in Definition 2.6. The reasoning task is to compute F (X) ⇓X.

For a reasoning task M = (X,D,A,F,
⊗
,⇓) the choice of (A,⊗,⊕) determines the com-

bination
⊗

and marginalization ⇓ operators over functions, and thus the nature of the

graphical model and its reasoning task. For example, if A is the set of non-negative reals

and
⊗

is product, the graphical model is a Markov network or a Bayesian network. If ⇓ is

max, the task is to compute the Most Probable Explanation (MPE), while if ⇓ is sum, the

task is to compute the Probability of the Evidence.

The correctness of the algorithmic techniques for computing a reasoning task relies on the

properties of the set of valuations and the combination and marginalization operators. These

properties are axiomatically described by means of an algebraic structure over (A,⊗,⊕).

In other words, reasoning tasks on graphical models can be axiomatically described. As a

result, any new problem expressed in that axiomatization immediately inherits the techniques

developed for the existing ones.

Two main axiomatizations proposed in the literature are the Shenoy-Shafer [88] and the

semiring CSP framework [9]. In the first one, the triplet (A,⊗,⊕) is a commutative semiring,

while in the second one, the triplet (A,⊗,⊕) is a so-called c-semiring, that is, a commutative

semiring with ⊕ being idempotent. While Shenoy and Shafer focus in their work mainly on
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the tasks over belief networks, Bistarelli, et al., [9] propose SCSP (Semiring CSP), a general

framework for constraint satisfaction problems, that provide unification for classical CSPs,

fuzzy CSPs, weighted CSPs, partial constraint satisfaction, and others. The Shenoy-Shafer

framework ensures the correctness of inference algorithms, while the semiring CSP framework

also ensures the correctness of search algorithms within a unified definition of a search space.

We are going to use Shenoy-Shafer framework in our work and thus focus on it in this

background section.

The correctness of the inference algorithms using local computations, such as bucket elimi-

nation, is possible when the combination and marginalization operators obey the following

set of axioms, which we here present in the context of our operators over functions:

Axiom 2.1 (Commutativity and associativity of combination). : Let fj : Dj → A, gp :

Dp → A and hk : Dk → A be three functions. Then fj ⊗ gp = gp ⊗ fj and fj ⊗ (gp ⊗ hk) =

(fj ⊗ gp)⊗ hk.

Axiom 2.2 (Consonance of marginalization). Let fj : Dj → A be a function and Z and W

be disjoint subsets of variables. Then ⇓W (⇓Z fj) =⇓W∪Z fj.

Axiom 2.3 (Distributivity of marginalization over combination). Let fSj and hSk be func-

tions over scopes Sj and Sk, where Sj and Sk are disjoint subsets of variables. Then

⇓Sk (fSj ⊗ hSk) = fSj ⊗ (⇓Sk hSk).

Shenon and Shafer [88, 87] showed that the reasoning task P = 〈X,D,A,F,⊗,⇓〉 can be

solved by the sequential marginalization over subsets of functions, if the triplet (A,
⊗
,⇓)

obey the axioms above.

Proposition 2.1. If a triplet (A,
⊗
,⇓) is a commutative semiring, then the combination

operator
⊗

and marginalization operator satisfy the Shenon-Shafer theorems.
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Definition 2.9 (Commutative semiring). A commutative semiring is a triplet (A,⊗,⊕)

which satisfies the following three axioms:

A1. The operation ⊕ is associative and commutative, and there is an additive identity

element called 0 such that a ⊕ 0 = a for all a ∈ A. In other words, (A,⊕) is a

commutative monoid.

A2. The operation ⊗ is also associative and commutative, and there is a multiplicative

identity element called 1 such that a⊗ 1 = a for all a ∈ A. In other words, (A,⊗) is

also a commutative monoid.

A3. ⊗ distributes over ⊕, i.e., (a⊗ b)⊕ (a⊗ c) = a⊗ (b⊕ c).

Note that the operators
⊗

(Definition 2.5) and ⇓ (Definition 2.6) in fact correspond to

operators ⊗ and ⊕ forming a commutative semiring. This leads to such algorithms as

Bucket Elimination [19, 54] and joint-tree tree decomposition [88].

Namely, if the triplet (A,
⊗
,⇓) is a commutative semiring then F (X) ⇓Xj can be computed

by eliminating variable Xj from the set of functions in F containing Xj in their scope:

F (X) ⇓Xj=
⊗

fSj∈F,Xj 6∈Sj

f
⊗

(
⊗

fSj∈F,Xj∈Sj

f) ⇓Xj

In words, when eliminating variable Xj, the only relevant functions are the ones containing

Xj in their scope. This set of functions is the bucket of Xj, denoted Bj. Applying this

principle iteratively to a given variable ordering o that we assume, without loss of generality,

lexicographical (i.e., o = {X1, X2, . . . , Xn}), the reasoning task F (X) ⇓X is computed as:

F (X) ⇓X= (
⊗

f∈B1

· · · (
⊗

f∈Bn−1

(
⊗

f∈Bn

f) ⇓Xn) ⇓Xn−1 · · · ) ⇓X1
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Theorem 2.1 (Correctness of BE [87, 51, 54]). If a graphical modelM = 〈X,D,A,F,⊗〉

and a reasoning task P = 〈M,⇓〉 satisfy the Shenoy-Shafer axioms, BE is sound and com-

plete.

Throughout the paper we will assume that the graphical models and reasoning tasks dis-

cussed satisfy Shenon-Shafer axioms.

� 2.3 M -Best Reasoning Task

Having introduced the necessary notations and definitions, we will now present our first

contribution of the chapter. In this section we seek to show that the new task we consider,

namely finding the m-best solutions to an optimization problems over graphical models, can

be formulated as a semiring, which implies immediate applicability and correctness of the

existing algorithms for this task, based on Shenoy-Shaffner’s axioms.

Let us first consider the usual optimization tasks defined over a set of totally ordered valu-

ations; in other words, the reasoning tasks where the marginalization operator ⇓ is min or

max and the objective is to find a single solution. Without loss of generality, in the following

we assume a maximization task (i.e., ⇓ is max).

More formally, we define such optimization task the following way:

Definition 2.10 (Optimization task). Given a graphical model M, its optimization task

is P = 〈M,max〉. The goal is to find a complete assignment t such that ∀t′ ∈ DX, C(t) ≥

C(t′). C(t) is called the optimal solution.

This definition is very intuitively extended to the m-best task:

Definition 2.11 (M -best optimization task). Assuming a maximization task and given

a graphical model M, its m-best optimization task Pm is to find m complete assignments
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T = {t1, . . . , tm} such that C(t1) ≥, · · · ,≥ C(tm) and ∀t′ ∈ DX\T, C(tm) ≥ C(t′). The

solution to Pm is the set of valuations {C(t1), . . . , C(tm)}, called m-best solutions.

� 2.3.1 M -best Valuation Structure

Given an optimization task P over a graphical model M, in order to phrase the m-best

optimization task as a reasoning task over a semiring, we will now introduce a new formal

definition of a reasoning task Pm that corresponds to the set of m best solutions ofM. We

are going to achieve that by defining a new valuation structure, specified for the m-best task.

First we introduce the set of ordered m-best elements of a subset S ⊆ A.

Definition 2.12 (Set of ordered m-best elements). Let S be a subset of a set of

valuations A. The set of ordered m-best elements of S is Sortedm{S} = {s1, . . . , sj},

such that s1 ≥ s2 ≥ . . . ≥ sj where j = m if |S| ≥ m and j = |S| otherwise, and

∀s′ 6∈ Sortedm{S}, sj ≥ s′.

While typical reasoning tasks are defined over valuations, such as real or boolean numbers,

the m-best task returns an ordered subset of valuations, so the valuation structure (A,⊗,⊕)

needs to be extended over sets.

Definition 2.13 (M -space). Let A be a set of valuations. The m-space of A, denoted

Am, is a set of sorted subsets of valuations from A.

The combination and addition operators over the m-space Am, noted ⊗m and sortm respec-

tively, are defined as follows.

Definition 2.14 (Combination and addition over the m-space). Let A be a set of

valuations, and ⊗ and max be its combination and marginalization operators, respectively.

Let S, T ∈ Am. Their combination, noted S ⊗m T , is the set Sortedm{a⊗ b | a ∈ S, b ∈ T},

while their addition, noted sortm{S, T}, is the set Sortedm{S ∪ T}.
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It is easy to see that the special case of m = 1 corresponds to the valuation structure of an

ordinary optimization task.

Proposition 2.2. When m = 1, the valuation structure (Am,⊗m, sortm) is equivalent to

(A,⊗,max).

Now that we defined all the necessary entities, let us show that the new valuation structure

over the m-space is in fact a semiring.

Theorem 2.2. The valuation structure (Am,⊗m, sortm) is a semiring.

The proof can be found in Appendix A.1.

It is worthwhile to see the ordering defined by the semiring (Am,⊗m, sortm), because it

would be important in the extension of Mini-Bucket Elimination (Section 2.5). Recall that

by definitions 2.12 and 2.13, given two elements S, T ∈ Am, S ≥ T if S = Sortedm{T ∪W},

where W ∈ Am. We call S an m-best bound of T .

Definition 2.15 (M -best bound). Let T, S be two sets of ordered m-best elements. S is

an m-best bound of T iff there exists a set W , such that S = Sortedm{T ∪W}.

Let us illustrate the previous definition by the following example. Let T = {10, 6, 4}, S =

{10, 7, 4}, and R = {10, 3} be three sets of ordered 3-best elements. S is not a 3-best bound

of T , because there is no set W such that S = Sorted3{T ∪ W}. Note that a modified

set S ′ = {10, 7, 6} is in fact a 3-best bound of T , since there exists a set W = {7}, such

that Sorted3{T ∪ W} = Sorted3{{10, 6, 4} ∪ {7}} = {10, 7, 6} = S ′. At the same time,

S is a 3-best bound of R because there exists W ′ = {7, 4}, so that Sorted3{R ∪ W} =

Sorted3{{10, 3} ∪ {7, 4}} = {10, 7, 4} = S.
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h1: X1 X2 h2: X2 h1 ⊗m h2: X1 X2 sortmX2
{h1}: X1

a a {4,2} a {3,1} a a {12,6} a {4, 3}
a b {3,1} b {1} a b {3,1} b {5, 2}
b a {5} b a {15,5}
b b {2} b b {2}

Figure 2.1: Combination and marginalization over vector functions for m = 2 and ⊗ =
×. For each pair of values of (X1, X2) the result of h1 ⊗m h2 is an ordered set of size 2
obtained by choosing the 2 larger elements out of the result of pair-wise multiplication of the
corresponding elements of h1 and h2. The result of sortmX2

{h1} is an ordered set containing
the two larger values of function h1 for each value of X1.

� 2.3.1.1 Vector Functions

In order to be able to discuss the algorithms solving the m-best, task we will need to have

in our toolbox operators defined not just over valuations, but also over functions, as in

Section 2.2.

We will refer to functions over the m-space Am fj : Dj → Am as vector functions. Abusing

notation, we extend the ⊗m and sortm operators to operate over vector functions similar to

how operators ⊗ and ⊕ were extended to operate over scalar functions in Definition 2.5.

Definition 2.16 (Combination and marginalization over vector functions). Let fj :

Dj → Am and gp : Dp → Am be two vector functions. Their combination, noted fj
⊗
gp, is

a new function with scope Sj ∪ Sp, such that

∀t ∈ DSj∪Sp , (fj
⊗

gp)(t) = fj(t)⊗m gp(t)

Let W ⊆ X be a set of variables. The marginalization of fj over W, noted sort
W

m{fj}, is a

new function whose scope is Sj \W, such that

∀t ∈ DSj−W, sort
W

m{fj}(t) = sortmt′∈DW {fj(t · t′)}

Example 2.2. Figure 2.1 shows the combination and marginalization over two example
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vector functions h1 and h2 for m = 2 and ⊗ = ·, e.g., product.

� 2.3.2 M -best Optimization as a Graphical Model

Now we have necessary mathematical apparatus to formally define the m-best optimization

task over a graphical models.

The m-best extension of an optimization problem P is a new reasoning task Pm that ex-

presses the m-best task over P .

Definition 2.17 (M -best extension of optimization task). Let P = 〈X,D,A,F,⊗,⇓〉

be an optimization problem defined over a semiring (A,⊗,max). Its m-best extension is a

new reasoning task Pm = 〈X,D,Am,Fm,
⊗
, sortm〉 over semiring (Am,⊗m, sortm). Each

function f : Df → A in F is trivially transformed into a new vector function f ′ : Df → Am

defined as f ′(t) = {f(t)}. In words, function outcomes of f are transformed to singleton sets

in f ′. Then, the set Fm contains the new f ′ vector functions.

The following theorem shows that the optimum of Pm corresponds to the set of m-best

valuations of P .

Theorem 2.3. Let P = 〈X,D,A,F,⊗,⇓〉 be an optimization problem defined over semir-

ing (A,⊗,max) and let {C(t1), . . . , C(tm)} be its m best solutions. Let Pm be the m-best

extension of P. Then, the optimization task Pm computes the set of m-best solutions of P.

Formally,

sortX
m{
⊗

f∈Fm
f} = {C(t1), . . . , C(tm)}

Proof. By definition of sortm,

sortX
m{
⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

(
⊗

f∈Fm
f(t))}
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By definition of Fm,

sortX
m{
⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

(
⊗

f∈F
{f(t)})}

Since all {f(t)} are singletons, then {f(t)} ⊗m {g(t)} = {f(t)⊗ g(t)}. Then,

sortX
m{
⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

{
⊗

f∈F

f(t)}}

Since C is the combination of functions f ,

sortX
m{
⊗

f∈Fm
f} = Sortedm{

⋃

t∈DX

{C(t)}}

By definition of the set union,

sortX
m{
⊗

f∈Fm
f} = Sortedm{{C(t) | t ∈ DX}}

By definition of the set of ordered m-best elements,

sortX
m{
⊗

f∈Fm
f} = {C(t1), . . . , C(tm)}

Though the definition of the sortm operator and the proof of the theorem assumes maxi-

mization, it is easy to see how the same extension applies to minimization tasks. The only

difference is the set of valuations selected by operator sortm.

In the following we refer to Pm as the m-best reasoning task, implicitly assuming that its
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valuation structure is always a semiring.

� 2.4 Bucket Elimination for the M -Best Task

In this section we provide a formal description of the extension of bucket elimination al-

gorithm to the m-best best task, based on the operators over the m-space defined in the

previous section. We also provide algorithmic details for the operators and show through an

example how the algorithm can be derived from first principles.

� 2.4.1 Algorithm Definition

Consider an optimization task P = 〈X,D,A,F,⊗,max〉. Algorithm elim-m-opt (see Algo-

rithm 7, defined here for max-prod task) is the extension of bucket elimination to solve Pm,

i.e., the m-best extension of P , as defined in Section 2.3.2.

First, the algorithm transforms scalar functions in F to their equivalent vector functions

as described in Definition 2.17 (line 1) and partitions the functions into buckets, just like

bucket elimination does (line 2). Then the algorithm processes the buckets from last to

first as usual, using the two new combination and marginalization operators
⊗

and sortm,

respectively (lines 3-9). Roughly, the elimination of variable Xp from a vector function

will produce a new vector function hXp→Xk , where Xk is the highest-index variable in the

set Scope(bucketXp) − Xp, and hXp→Xk(t) will contain the m-best extensions of t to the

eliminated variables Xp+1, . . . , Xn with respect to the sub-problem below the bucket variable

in the bucket tree. Once all variables have been eliminated, the resulting zero-arity function

hX1 contains the m-best cost extensions to all variables in the problem. In other words, hX1

is the solution of the problem.

Theorem 2.4 (elim-m-opt correctness). Algorithm elim-m-opt is sound and complete
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Algorithm 7: The elim-m-opt algorithm
Input: An optimization task P = 〈X,D,A,F,∏,max〉; An ordering of variables o = {X1, . . . , Xn}
Output: A zero-arity function h1 : ∅ → Am containing the solution of the m-best optimization task

Pm

//Initialize
1 Transforms scalar functions in F to their equivalent vector functions;
2 Partition the functions in F into bucketX1 , . . . , bucketXn , where bucketXp contains all functions

whose highest-index variable according to the ordering o is Xp;
//Backward pass

3 for p← n down to 1 do
4 Let g1, . . . , gr be the functions in bucketXp

(including both original functions and previously
generated messages); let S1, . . . ,Sr be the scopes of functions g1, . . . , gr;

5 if Xp is instantiated (Xp = xp) then
6 Assign Xp = xp to each gj and put each resulting function into its appropriate bucket;

7 else

8 Generate the message function hXp→Xk
: hXp→Xk

= sortmXp

⊗
jgj , where Xk is the

highest-index variable in Scope(hXp→Xk
) = ∪rj=1Sj −Xp;

9 Add hXp→Xk
to bucketXk

;

//Forward pass
10 Assign a value to each variable in the ordering o so that the combination of the functions in each

bucket is optimal, according to the marginalization operator sortm;
11 return the function computed in the bucket of the first variable and the corresponding assignment

for finding the m best solutions over an optimization task P.

Proof. The correctness of the algorithm follows from the formulation of the m-best optimiza-

tion task as a reasoning task over a semiring (Section 2.3.2).

There could be several ways to generate the set of m-best assignments, one of which is

presented next and it uses the argsortm operator.

Definition 2.18 (argsortm operator). Operator argsortmXjfk returns a vector function xj(t)

such that ∀t ∈ DSk\Xj , where 〈fk(t · xj1), . . . , fk(t · xjm)〉 are the m-best valuations extending

t to Xj and where xj
j denotes the jth element of xj(t).

In words, xj(t) is the vector of assignments to Xj that yields the m-best extensions to t.

We recap the main algorithmic issues and demonstrate the intuition behind the method in
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the next section by deriving elim-m-opt through an example. For clarity reasons, we omit

the generation of actual m-best solution assignments.

� 2.4.2 Illustrating the Algorithm’s Derivation through an Example

We have in mind the MPE (most probable explanation) task in probabilistic networks.

Consider a graphical model with four variables {X, Y, Z, T} having the following functions

(for simplicity we use un-normalizes functions):

x z f1(z, x) y z f2(z, y) z t f3(t, z)

0 0 2 0 0 6 0 0 1

0 1 2 0 1 7 0 1 2

1 0 5 1 0 2 1 0 4

1 1 1 1 1 4 1 1 3

2 0 4 2 0 8

2 1 3 2 1 2

Let m = 3. Finding the m best solutions to P (t, z, x, y) = f3(t, z) · f1(z, x) · f2(z, y) can be

expressed as finding Sol, defined by:

Sol = sort
t,x,z,y

m

(
f3(t, z) · f1(z, x) · f2(z, y)

)
(2.1)

Since operator sortm is an extension of operator max, it inherits its distributive properties

over multiplication. Due to this distributivity, we can apply symbolic manipulation and

migrate each of the functions to the left of the sortm operator over variables that are not in

its scope. In our example we rewrite as:

Sol = sort
t

msort
z

m

(
f3(t, z)

(
sort
x

mf1(z, x)
)(

sort
y

mf2(z, y)

))
(2.2)
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Bucket Y :

Bucket X :

Bucket Z :

Bucket T :

f2(z, y)︸ ︷︷ ︸

f1(z, x)︸ ︷︷ ︸

f3(t, z) hX→Z(z) hY→Z(z)

hZ→T (t)

(a) Messages passed between buckets

T

Z

X Y

f3(t, z)

f1(z, x) f2(z, y)

hZ→T (t)

hX→Z(z) hY→Z(z)

(b) Bucket-tree

Figure 2.2: Example of applying elim-m-opt algorithm

The output of sortm is a set, so in order to make (2.2) well defined, we replace the multipli-

cation operator by the combination over vector functions, as in Definition 2.16.

Sol = sortm
t

sortm
z

(f3(t, z)
⊗

(sortm
x

f1(z, x))
⊗

(sortm
y

f2(z, y))) (2.3)

BE computes (2.3) from right to left, which corresponds to the elimination ordering o =

{T, Z,X, Y }. We assume the original input functions to be extended to vector functions,

e.g., fj is extended as f j(t) = {fj(t)}. Figure 2.2 shows the messages passed between buckets

and the bucket tree under o.

For brevity in the following we denote a bucket of variable Xj as BXj . Bucket BY containing

function f2(z, y) is processed first. The algorithm applies operator sortm
y

to f2(z, y), gener-

ating a message, which is a vector function denoted by hY→Z(z), that is placed in BZ . Note

that this message associates each z with the vector of m-best valuations of f2(z, y). Namely,

sortm
y

f2(z, y) = (h1
Y→Z(z), . . . , hjY→Z(z), . . . , hmY→Z(z)) = hY→Z(z) (2.4)

where for z each hjY→Z(z) is the jth best value of f2(z, y). Similar computation is carried in

BX yielding hX→Z(z) which is also placed in BZ .
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z hX→Z(z) x hY→Z(z) y

0 {5,4,2} { 1, 2, 0} {8,6,2} {2, 0, 1}

1 {3,2,1} { 2, 0, 1} {7,4,2} {0, 1, 2}

When processing BZ , we compute (see Eq. 2.3):

hZ→T (t) = sortmz [f 3(t, z)
⊗

hX→Z(z)
⊗

hY→Z(z)]

The result is a new vector function that has m2 elements for each tuple (t, z) as shown below.

t z f3(t, z)
⊗
hX→Z(z)

⊗
hY→Z(z)

0 0 {40, 32, 30, 16, 24, 12, 10, 8, 4}

0 1 {84, 56, 48, 32, 28, 24, 16, 16, 8}

1 0 {80, 64, 60, 48, 32, 24, 20, 16, 8}

1 1 {63, 42, 36, 24, 21, 18, 12, 12, 6}

Applying sortmz to the resulting combination generates the m-best elements out of those m2

yielding message hZ→T (t) along with its variable assignments:

t hZ→T (t) 〈x, y, z〉

0 {84,56,48} {〈2, 0, 1〉, 〈0, 0, 1〉, 〈2, 1, 1〉}

1 {80,64,63} {〈1, 2, 0〉, 〈2, 2, 0〉, 〈2, 0, 1〉}

In Section 2.4.3 we show that it is possible to apply a more efficient procedure that would

calculate at most 2m elements per tuple (t, z) instead.

Finally, processing the last bucket yields the vector of m best solution costs for the entire

problem and the corresponding assignments: Sol = hT () = sort
t

mhZ→T (t) (see Figure 2.2).

hZ→T (t) 〈x, y, z, t〉

{84,80,64} {〈2, 0, 1, 0〉, 〈1, 2, 0, 1〉, 〈2, 2, 0, 1〉}
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� 2.4.3 Bucket Processing

We will next show that the messages computed in a bucket can be obtained more efficiently

than through a brute-force application of
⊗

followed by sortm. Consider processing BZ (see

Figure 2.2(a)). A brute-force computation of

hZ→T (t) = sortm
z

(f3(z, t)
⊗

hY→Z(z)
⊗

hX→Z(z))

for each t combines f3(z, t), hY→Z(z) and hX→Z(z) for ∀z ∈ DZ first. This results in a vector

function with scope {T, Z} having m2 elements that we call candidate elements and denote

by E(t, z). The second step is to apply sortm
z

E(t, z) yielding the desired m best elements

hZ→T (t).

However, since hY→Z(z) and hX→Z(z) can be kept sorted, we can generate only a small subset

of these m2 candidates as follows. We denote by e
〈i,j〉
z (t) the candidate element obtained by

the product of the scalar function value f3(t, z) with the ith element of hY→Z(z) and jth

element of hX→Z(z), having cost c
〈i,j〉
z (t) =

(
f3(t, z) · hiY→Z(z) · hjX→Z(z)

)
. We would like to

generate the candidates e
〈i,j〉
z in decreasing order of their costs while taking their respective

indices i and j into account.

The child elements of e
〈i,j〉
z (t), denoted children(e

〈i,j〉
z (t)) are obtained by replacing in the

product either an element hiY→Z(z) with hi+1
Y→Z(z), or hjX→Z(z) with hj+1

X→Z(z), but not both.

This leads to a forest-like search graph whose nodes are the candidate elements, where each

search subspace corresponds to a different value of z denoted by GZ=z and rooted in e
〈1,1〉
Z=z(t).

Clearly, the cost along any path from a node to its descendants is non-increasing. It is easy

to see that the m best elements hZ→T (t) can then be generated using a greedy best-first

search across the forest search space GZ=0 ∪ GZ=1. It is easy to show that we do not need

to keep more than m nodes on the OPEN list (the frontier of the search) at the same time.
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e
〈1,1〉
Z=0

e
〈1,2〉
Z=0 e

〈2,1〉
Z=0

e
〈1,1〉
Z=1

e
〈2,1〉
Z=1e

〈1,2〉
Z=1

c = 80

c = 64c = 60

c = 63

c = 36 c = 42

Figure 2.3: The explored search space for T = 0 and m = 3. The resulting message is
hT (t = 1) = {80, 64, 63}.

Algorithm 8: Bucket processing

Input: BX of variable X containing a set of ordered m-vector functions {h1(S1, X), · · · , hd(Sd, X)}
Output: m-vector function hX(S), where S = ∪dj=1Sj \X

1 forall the t ∈ DS do
2 forall the x ∈ DX do

3 OPEN ← e
〈1,...,1〉
X=x (t);

4 Sort OPEN;

5 while j ≤ m, by +1 do

6 n← first element e
〈i1,··· ,id〉
X=x (t) in OPEN;

7 Remove n from OPEN;

8 hjX(s)← n; //the jth element is selected C ← children(n) = {e〈i1,··· ,ir+1,··· ,id〉
X=x (t)|r = 1..d};

9 Insert each c ∈ C into OPEN maintaining order based on its computed value. Check for
duplicates;

10 Retain the m best nodes in OPEN, discard the rest;

11 return Return hX(S);

The general algorithm is described in Algorithm 8. The trace of the search for the elements

of cost message hZ→T (t = 1) for our running example is shown in Figure 2.3.

Proposition 2.3 (complexity of bucket processing). Given a bucket of a variable X

over scope S having j functions {h1, ..., hj} of dimension m, where m is the number of

best solutions sought and k bounds the domain size, the complexity of bucket processing is

O(k|S| ·m · j logm), where |S| is the scope size of S.

Proof. To generate each of the m solutions, the bucket processing routine removes the current

best element from OPEN (in constant time), generates its j children and puts them on

OPEN, while keeping the list sorted, which takes O(log(m · j)) per child node, since the

maximum length of OPEN is O(m · j). This yields time complexity of O((m · j) · log(m · j))
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for all m solutions. The process needs to be repeated for each of the O(k|S|) tuples, leading

to overall complexity O(k|S| ·m · j log(m · j)).

Theorem 2.5 (Complexity of elim-m-opt). Given a graphical model 〈X,D,F,⊗〉 having

n variables, whose domain size is bounded by k, an ordering o with induced-width w∗(o) and

an operator ⇓= max, the time complexity of elim-m-opt is O(nkw
∗(o)+1m logm) and its space

complexity is O(mnkw
∗(o)).

Proof. Let degp be the degree of the node corresponding to the variable Xp in the bucket-tree.

Each bucket Bp contains degp functions and at most w∗(o)+1 different variables with largest

domain size k. We can express the time complexity of computing a message between two

buckets as O(kw
∗(o)+1m · degp logm) (Proposition 2.3), yielding the total time complexity

of elim-m-opt of O(
∑n

p=1 k
w∗(o)+1m · degp logm). Since

∑n
p=1 degp ≤ 2n, we get the total

time complexity of O(nmkw
∗(o)+1 logm). The space complexity is dominated by the size of

the messages between buckets, each containing m costs-to-go for each of O(kw
∗(o)) tuples.

Having at most n such messages yields the total space complexity of O(mnkw
∗(o)).

� 2.5 Mini-Bucket Elimination for M -Best

We next extend the elim-m-opt to the mini-bucket scheme. We prove that the new algorithm

computes an m-best bound on the set of m-best solutions of the original problem, and

describe how the m-best bound can be used to tighten the bound on the best solution of an

optimization task.

� 2.5.1 The Algorithm Definition

Algorithm mbe-m-opt (Algorithm 9) is a straightforward extension of MBE to solve the

m-best reasoning task, where the combination and marginalization operators are the ones
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Algorithm 9: The mbe-m-opt algorithm
Input: An optimization task P = 〈X,D,A,F,∏,max〉; An ordering of variables o = {X1, . . . , Xn};

parameter i.
Output: bounds on each of the m-best solution costs and the corresponding assignments for the

expanded set of variables (i.e., node duplication)
//Initialize:

1 Generate an ordered partition of functions f(t) = {f(t)} into buckets BX1 , . . . ,BXn , where BXp

contains all the functions whose highest variable in their scope is Xp along o;
//Backward pass:

2 forall the p← n down to 1 do
//Processing bucket BXp

3 Let g1, . . . , gr be the functions in BXp (including both original functions and previously
generated messages); let S1, . . . ,Sr be the scopes of functions g1, . . . , gr;

4 if Xp is instantiated (Xp = xp) then
5 Assign Xp = xp to each gj and put each resulting function into its appropriate bucket;

6 else
7 Partition functions in BXp

into mini-buckets, generating the partitioning

QXp
= {q1p, . . . , qlp}, where each qtp ∈ QXp

has no more than i+ 1 variables;

8 foreach qtp ∈ QXp
do

9 Generate the message function htXp→Xk
= sortmXp

⊗
jg

t
j , where gtj ∈ qtp and Xk is the

highest-index variable in Scope(htXp→Xk
) = ∪jScope(gtj)−Xp;

10 Generate assignment using duplicate variables for each mini-bucket:

xtXp→Xk
= argsortmXp

(
⊗

jg
t
j , concatenate with relevant elements of the previously

generated assignment messages;
11 Add htXp→Xk

to bucketXk
;

12 return The set of all buckets, and the vector of m-best costs bounds in the first bucket ;

defined over vector functions. The input of the algorithm is an optimization task P , and its

output is a collection of bounds (i.e., an m-best bound, see Definition 2.15) on the m best

solutions of P .

Theorem 2.6 (mbe-m-opt bound). Given a maximization task P, mbe-m-opt computes

an m-best upper bound on the m-best optimization task Pm.

Proof. Let Cm = {C(t1), . . . , C(tm)} be the m-best solutions of P . Let P̃ be the relaxed

version of P solved by mbe-m-opt, and let C̃m = {C̃(t′1), . . . , C̃(t′m)} be its m-best solutions.

We prove that (1) C̃m is an m-best upper bound of Cm; and (2) mbe-m-opt(P) computes

C̃m.
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1. It is clear that C̃m = Sortedm{Cm ∪W}, where W is the set of solutions for which

duplicated variables are assigned different domain values. Therefore, by definition, C̃m

is an m-best bound of Cm.

2. As shown in Theorem 2.4, elim-m-opt(P̃) computes C̃m, and by definition of mini-

bucket elimination, elim-m-opt(P̃) = mbe-m-opt(P). Therefore, mbe-m-opt(P ) com-

putes C̃m.

Theorem 2.7 (mbe-m-opt complexity). Given a maximization task P and an i-bound

i such that i ≤ w∗(o), where w∗(o) is the induced width of the ordering used, the time and

space complexity of mbe-m-opt is O(mnki+1 log(m)) and O(mnki), respectively, where k is

the maximum domain size and n is the number of variables.

Proof. Given a control parameter i, each mini-bucket contains at most i + 1 variables. Let

degj be the number of functions in the bucket Bj of variable Xj, i.e., the degree of the node

in the original bucket tree. Let lj be the number of mini-buckets created from Bj and let

mini-bucket Qjp contain degjp functions, where
∑lj

p=1 degjp = degj. The time complexity

of computing a message between two mini-buckets is bounded by O(ki+1m · degjp logm)

(Proposition 2.3) and the complexity of computing all messages in mini-buckets created out

of Bj is O(
∑lj

p=1 k
(i+1)im · degjp logm) = O(ki+1m · degj logm). Taking into account that

∑n
j=1 degj ≤ 2n, we obtain the total runtime complexity of mbe-m-opt of

∑n
j=1 k

i+1m ·

degjp logm) = O(nmki+1 logm). The space complexity is bounded by the size of the largest

message.
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� 2.5.2 Using the M -Best Bound to Tighten the First-Best Bound

Here is a simple, but quite fundamental observation: whenever upper or lower bounds are

generated by solving a relaxed version of a problem, the relaxed problem’s solution set

contains all the solutions to the original problem. We next discuss the ramification of this

observation.

Proposition 2.4. Let P be an optimization problem with an optimal solution popt and let

C̃ = {p̃1 ≥ p̃2 ≥, ...,≥ p̃m} be the m best approximate solution costs (or valuations) of the

m-best task Pm, generated by mbe-m-opt. There can be two cases: either the set C̃ contains

the optimal solution popt or p̃m is an upper bound on popt, and this bound is as tight or tighter

than all other bounds p̃1, ...p̃m−1.

Proof. Let C̃all = {p̃1 ≥ p̃2 ≥, ...,≥ p̃N1} be an ordered set of valuations of all tuples over the

relaxed problem (with duplicate variables). Clearly C̃ is the subset of the first m elements

in C̃all. By the nature of any relaxation, C̃all must also contain all the probability values

associated with solutions of the original problem P denoted by Call = {p1 ≥ · · · ≥ pN2}. Let

j be the first index such that p̃j coincides with popt = p1. Clearly, ∀k < j p̃k ≥ popt, with

p̃j−1 being the tightest upper bound. If j ≤ m, then p̃j ∈ C̃ and thus popt ∈ C̃. If j > m,

then p̃m is the tightest upper bound on popt from the set C̃. In particular p̃m is tighter than

the bound p̃1.

In other words, if j ≤ m, we already have the optimal value, otherwise we can use p̃m as our

better upper bound. Such tighter bounds would be useful as heuristics for search algorithm

such as A*. It is essential therefore to decide efficiently, whether a bound coincides with

the exact optimal cost. Luckily, the nature of the MBE relaxation supplies us with an

efficient decision scheme, since, as mentioned above, it is known that an assignment in which

duplicates of variables take on identical values yields an exact solution.
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Benchmark # inst n k w∗

Pedigrees 12 581-1006 3-7 16-39
Binary Grids 32 144-2500 2 15-90

WCSP 56 25-1057 2-100 5-287
Mastermind 15 1220-3692 2 18-37

Table 2.1: Benchmark parameters: # inst - number of instances, n - number of variables, k
- domain size, w∗ - induced width.

Proposition 2.5. Given a set of bounds produced by mbe-m-opt p̃1 ≥ p̃2 ≥, ... ≥ p̃m, deciding

if p̃j = popt can be done in polynomial time, more specifically in O(nm) steps.

Proof. The mbe-m-opt provides both the bounds on the m-best costs and, for each bound,

a corresponding tuple maintaining assignments to duplicated variables. The first of such

assignment tuples (going from the one with the largest cost to the one with the smallest),

whose duplicate variables are assigned identical values, is optimal. And if no such tuple is

observed, the optimal value is smaller than p̃m. Since the above tests require justO(nm) steps

applied to m-best assignments, already obtained in polynomial time, the claim follows.

� 2.6 Empirical Demonstrations

� 2.6.1 Overview and Methodology

In our experiments we used four benchmarks2 used in UAI 2008 competition [16], all, except

for binary grids, coming from real world domains:

• Pedigrees

• Binary grids

• WCSP

• Mastermind

2http://graphmod.ics.uci.edu/group/Repository
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The pedigrees instances (”pedigree*”) arise from the domain of genetic linkage analysis

and are associated with the task of haplotyping. The haplotype is the sequence of alleles at

different loci inherited by an individual from one parent, and the two haplotypes (maternal

and paternal) of an individual constitute this individual’s genotype. When genotypes are

measured by standard procedures, the result is a list of unordered pairs of alleles, one pair for

each locus. The maximum likelihood haplotype problem consists of finding a joint haplotype

configuration for all members of the pedigree which maximizes the probability of data. It can

be shown that given the pedigree data the haplotyping problem is equivalent to computing

the most probable explanation of a Bayesian network that represents the pedigree [32].

In binary grid networks (”50-*”, ”75-*” and ”90-*”)3 the nodes corresponding to

binary variables are arranged in an N by N square and the functions are defined over pairs

of variables and are generated uniformly randomly.

The WCSP (”*.wcsp”) benchmark includes random binary WCSPs, scheduling problems

from the SPOT5 benchmark, and radio link frequency assignment problems, providing a

large variety of problem parameters.

The mastermind benchmark (”mastermind ”) includes 15 instances. Each problem is a

ground instance of a relational Bayesian network, that models differing sizes of the popular

game of Mastermind. These networks were produced by the PRIMULA System4 and used

in, for example, Chavira, et al., [13]. The resulting instances are quite large, with the number

of binary variables n ranging between 1220 and 3692, each containing n unary and ternary

cost functions.

Table 2.1 contains the benchmark parameters: # inst - number of instances, n - number

of variables, k - maximum domain size and w∗ - induced width of the ordering used. The

3http://graphmod.ics.uci.edu/repos/mpe/grids/
4http://www.cs.auc.dk/jaeger/Primula
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induced width is one of the crucial parameters indicating the difficulty of the problem.

Moreover, the difference between the induced width and the mini-bucket i-bound signifies

the strength of the heuristic. When the i-bound is considerably smaller than the induced

width, the heuristic is weak, while the i-bound equal or greater than the induced width

yields an exact heuristic, which in turn yields much faster search. Clearly, a large number

of variables or a high domain size suggest harder problems.

We evaluated the performance of mbe-m-opt as an approximate m-best algorithm and com-

pared our algorithm with the BMMF scheme [106].

� 2.6.2 Weighted Constraint Satisfaction Problems

The first part of our empirical evaluation assumed solving the Weighted CSP task, i.e,

summation-minimization problem. We ran mbe-m-opt on 20 WCSP instances using i-bound

equal to 10 and number of solutions m equal to 10. Table 2.2 shows for each instance

the time in seconds it took mbe-m-opt to solve the 10-best problem and the values of the

lower bounds on each of the first ten best solutions. Higher values are preferable. For each

problem instance we also show the number of variables n, the largest domain size k and the

induced width w∗. Note that 9 of the instances have induced width less than the i = 10

and thus are solved exactly. We see that, as the index number of solution goes up, the value

of the corresponding lower bound increases, getting closer to the exact best solution. This

demonstrates, that there is a potential of improving the bound on the optimal assignment

using the m-best bounds as discussed in Section 2.5.2. Figure 2.4 illustrates this observation

in graphical form, showing the dependency of the lower bounds on the solution index number

for selected instances.
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Instance) n k w∗ time Solution index number
(sec) 1 2 3 5 6 7 8 10

1502.uai 209 4 6 0.11 228.955 228.955 228.955 229.053 229.053 229.053 229.054 229.142
29.uai 82 4 14 55.17 147.557 147.557 147.925 148.189 148.189 148.557 148.557 148.925
404.uai 100 4 19 3.96 147.056 148.002 148.056 149.056 149.056 150.001 150.001 151.001
408.uai 200 4 35 80.27 436.551 437.179 437.549 437.551 438.177 438.178 438.179 438.550
42.uai 190 4 26 61.16 219.981 219.981 220.015 220.04857 220.048 220.083 220.083 220.913
503.uai 143 4 9 3.58 225.039 225.039 225.0394 226.038 226.038 226.038 226.038 226.038

GEOM30a 3.uai 30 3 6 0.03 0.008 1.008 2.008 2.008 3.008 3.008 3.008 4.008
GEOM30a 4.uai 30 4 6 0.19 0.008 1.008 2.008 3.008 3.008 4.008 4.008 5.008
GEOM30a 5.uai 30 5 6 0.84 0.008 1.008 2.008 2.008 3.008 3.008 3.008 4.008
GEOM40 2.uai 40 2 5 0 0.008 2.007 2.008 3.008 3.008 3.008 4.008 4.008
GEOM40 3.uai 40 3 5 0.01 0.008 2.007 2.007 3.008 4.008 4.008 4.007 4.007
GEOM40 4.uai 40 4 5 0.11 0.008 2.008 2.008 2.008 2.008 3.007 3.008 4.007
GEOM40 5.uai 40 5 5 0.16 0.008 2.008 2.008 3.008 4.007 4.007 4.007 4.007
le450 5a 2.uai 450 2 293 6.06 0.571 1.571 1.571 1.571 1.571 1.571 2.571 20.569
myciel5g 3.uai 47 3 19 6.39 0.023 1.023 1.023 3.024 4.02 10.023 11.023 11.023
myciel5g 4.uai 47 4 19 129.54 0.024 1.024 2.024 2.023 2.023 2.023 2.023 3.023
queen5 5 3.uai 25 3 18 5.53 0.016 1.016 1.016 2.016 2.016 3.016 3.016 3.016
queen5 5 4.uai 25 4 18 122.26 0.016 1.016 1.016 1.016 2.016 2.016 2.016 2.016

Table 2.2: The lower bounds on the 10 best solutions found by mbe-m-opt ran with i = 10
and m = 10. We also report the runtime in seconds, number of variables n, induced width
w∗ and largest domain size k.

� 2.6.3 Most Probable Explanation Problems

For the second part of the evaluation the mbe-m-opt was solving the MPE problem, i.e.,

max-product task on three sets of instances: Pedigrees, Grids and Mastermind. We search

for m ∈ [1, 5, 10, 20, 50, 100, 200] solutions with i-bound equal to 10.

Pedigrees. Table 2.3 contains the runtimes in seconds for each of the number of solutions

m along with the parameters of the problems. We see that the empirical scaling factor for

the runtime with m is much smaller than theoretical analyses implies. Figure 2.5 presents

the runtime in seconds against the number of solutions m for chosen pedigrees. We see that

for small number of solutions (m ≤ 10) for all instances, but one (pedigree38), the runtime

increases very slowly with m.

Figure 2.6 demonstrates the difference between the way the runtime would scale according

to the theoretical worst case performance analysis and the empirical runtimes obtained for

various values of m. For three chosen instances we plot the experimental runtimes in seconds

against the number of solutionsm and the theoretical curve obtained by multiplying the value

of empirical runtime for m = 1 by the factor of m logm for m equal to 5, 10, 50, 100 and
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Figure 2.4: The change in the cost of the jth solution as j increases for chosen WCSP
instances. Results are obtained by mbe-m-opt with i = 10.

200. We see that the empirical curve lays much lower than theoretical for all instances.

Figure 2.7 illustrates the potential usefulness of the upper bounds on m best solutions as

an approximation of the best solution. We plot in logarithmic scale the values of upper

bounds on the 100 best solutions found by mbe-m-opt for the i-bounds ranging from 10 to

15. When using MBE as an approximation scheme, the common rule of thumb is to run the

algorithm with the highest i-bound possible. In general, higher i-bound indeed corresponds

to better accuracy, however increasing the parameter by a small amount (one or two) does

not provably produce better results, as we can see in our example, where mbe-m-opt with

i = 10 achieves better accuracy than the ones with i = 11 and i = 12. Such behavior can

be explained by the differences in partitioning of the buckets into mini-buckets due to the

changing of the control parameter i, which greatly influences the accuracy of MBE results.

On the other hand, the upper bound on each next solution is always at least as good as the

previous one. Thus the increase in m never leads to a worse bound and possibly can produce

a better one.
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However, we acknowledge that the power of mbe-m-opt with largerm for improving the upper

bound on the 1st best solution is quite weak compared with using higher i-bound. Although

theory suggests that the time and memory complexity of mbe-m-opt is exponential in the

parameter i, while only depending as a factor of m logm on the number of solutions, our

experiments show that, in order to obtain a substantial improvement of the bound, it might

be necessary to use high values of m. For example, for a problem with binary variables

mbe-m-opt with m = 1 and a certain i-bound i is equivalent in terms of complexity to mbe-

m-opt with m = 3 and i-bound (i − 1). We observed that the costs of the first and third

solutions are quite close for the instances we considered. In order to characterize, when the

use of mbe-m-opt with higher m would add power over increasing the i-bound, a study of

additional classes of instances is required.

Instances n k w∗
Runtime (sec)

m = 1 m = 5 m = 10 m = 20 m = 50 m = 100 m = 200
pedigree1 334 4 15 0.22 0.57 1.01 1.46 3.35 6.87 25.46
pedigree13 1077 3 30 0.64 1.06 1.32 1.65 2.77 5.06 23.80
pedigree19 793 3 21 1.84 4.67 7.65 10.17 24.12 44.17 194.79
pedigree20 437 5 20 0.54 1.22 1.83 2.34 5.00 9.43 50.36
pedigree23 402 5 20 0.92 2.09 2.89 3.58 7.51 14.63 87.22
pedigree30 1289 5 20 0.38 0.66 1.00 1.26 2.48 4.58 19.53
pedigree31 1183 5 28 0.83 1.82 2.68 3.60 7.65 13.16 57.35
pedigree33 798 4 24 0.38 0.76 1.11 1.23 2.60 4.72 27.81
pedigree37 1032 5 20 1.64 3.27 4.56 6.25 14.15 26.43 158.74
pedigree38 724 5 16 4.52 11.77 19.63 28.87 73.21 127.65 552.30
pedigree39 1272 5 20 0.33 0.63 0.89 1.25 2.42 4.64 18.31
pedigree41 1062 5 28 1.45 3.33 4.43 5.56 11.67 20.59 120.79
pedigree51 871 5 39 0.76 1.24 1.65 2.16 3.98 6.97 33.95
pedigree7 867 4 32 0.66 1.17 1.61 2.15 4.45 8.01 39.26
pedigree9 935 7 27 0.85 1.48 2.12 2.77 5.70 9.49 50.58

Table 2.3: Runtime (sec) of mbe-m-opt on pedigree instances searching for the following
number of solutions: m =∈ [1, 5, 10, 20, 50, 100, 200] with the i = 10. We report the number
of variables n, largest domain size k and induced width w∗.

Grids. Table 2.4 shows the runtimes in seconds for each value of number of solutions m.

Theory suggests that the runtimes for m = 1 and m = 100 should differ by at least two

orders of magnitude, however, we can see that in practice mbe-m-opt scales much better.

Figure 2.8 shows graphically the dependency of the runtime in seconds on the number of

solutions m for 10 selected instances.
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Instances n w∗
Runtime (sec)

m = 1 m = 5 m = 10 m = 20 m = 50 m = 100 m = 200
50-15-5 144 15 0.07 0.15 0.22 0.30 0.68 1.27 5.68
50-16-5 256 21 0.07 0.17 0.25 0.33 0.68 1.34 6.30
50-17-5 289 22 0.11 0.24 0.33 0.45 1.00 1.87 8.70
50-18-5 324 24 0.14 0.29 0.35 0.52 1.05 2.04 9.13
50-19-5 361 25 0.13 0.29 0.41 0.54 1.15 2.24 9.87
50-20-5 400 27 0.18 0.33 0.44 0.59 1.20 2.28 10.65
75-16-5 256 21 0.08 0.17 0.21 0.27 0.56 1.09 5.92
75-17-5 289 22 0.10 0.21 0.27 0.36 0.75 1.46 7.83
75-18-5 324 24 0.12 0.23 0.30 0.40 0.79 1.58 8.34
75-19-5 361 25 0.14 0.26 0.34 0.47 0.94 1.86 9.22
75-20-5 400 27 0.18 0.30 0.38 0.52 0.97 1.80 9.78
75-21-5 441 28 0.20 0.36 0.44 0.60 1.07 2.03 10.91
75-22-5 484 30 0.25 0.40 0.53 0.68 1.28 2.49 12.40
75-23-5 529 31 0.29 0.47 0.56 0.71 1.36 2.44 13.11
75-24-5 576 32 0.34 0.51 0.65 0.81 1.49 2.87 14.58
75-25-5 625 34 0.41 0.62 0.74 0.93 1.71 3.18 16.08
75-26-5 676 36 0.49 0.73 0.90 1.17 2.06 3.86 19.06
90-20-5 400 27 0.17 0.27 0.35 0.44 0.81 1.57 9.26
90-21-5 441 28 0.02 0.35 0.41 0.52 0.97 1.91 10.72
90-22-5 484 30 0.25 0.41 0.47 0.61 1.10 2.08 11.85
90-23-5 529 31 0.29 0.46 0.55 0.66 1.17 2.27 12.63
90-24-5 576 33 0.34 0.49 0.60 0.74 1.36 2.61 13.98
90-25-5 625 34 0.42 0.58 0.70 0.83 1.50 2.80 15.26
90-26-5 676 36 0.49 0.71 0.85 1.01 1.87 3.42 18.36
90-30-5 900 42 0.93 1.25 1.40 1.59 2.60 4.62 24.26
90-34-5 1156 48 1.69 2.07 2.29 2.60 4.15 6.77 32.93
90-38-5 1444 55 2.86 3.26 3.57 3.98 5.72 9.27 41.33
90-42-5 1764 60 4.57 5.10 5.49 5.88 8.32 12.31 50.70
90-46-5 2116 68 6.81 7.42 7.97 8.33 11.09 16.06 64.88
90-50-5 2500 74 11.3 12.07 12.51 13.2 16.25 22.09 78.70

Table 2.4: Binary grid instances: runtime (sec) of mbe-m-opt for the number of required
solutions m ∈ [1, 5, 10, 20, 50, 100, 200] with the i = 10. We report the number of variables
n and induced width w∗.

Mastermind. Table 2.5 presents the run time changes with various numbers of best solu-

tions m. We refrain from reporting and discussing the values of the upper bounds found,

since mastermind instances in question typically have a large set of solutions with the same

costs, making the values of the bounds not particular informative.

� 2.6.4 Comparison with BMMF

BMMF [106] is a Belief Propagation-based algorithm, which is exact, when ran on junction

trees, and approximate, if the problem graph has loops. We compared the performance of

mbe-m-opt and BMMF on randomly generated 10 by 10 binary grids. The algorithms differ

in the nature of the outputs: BMMF provides approximate solutions with no guarantees,
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Instances n k w∗
Runtime (sec)

m = 1 m = 5 m = 10 m = 20 m = 50 m = 100 m = 200
mastermind 03 08 03-0006 1220 2 19 0.44 0.57 0.64 0.72 1.03 2.68 13.11
mastermind 03 08 03-0007 1220 2 18 0.25 0.33 0.35 0.40 0.67 1.81 8.90
mastermind 03 08 03-0014 1220 2 20 0.68 0.84 0.92 0.98 1.51 3.76 17.77
mastermind 03 08 04-0004 2288 2 30 1.98 2.25 2.28 2.49 3.42 7.11 32.12
mastermind 03 08 04-0005 2288 2 30 1.92 2.20 2.35 2.50 3.44 7.16 32.08
mastermind 03 08 04-0010 2288 2 29 2.53 2.82 2.97 3.09 4.17 8.25 34.89
mastermind 03 08 04-0011 2288 2 29 3.55 3.85 4.00 4.16 5.40 9.90 38.48
mastermind 03 08 05-0001 3692 2 37 6.33 6.73 7.02 7.24 9.10 15.83 59.03
mastermind 03 08 05-0005 3692 2 37 6.33 6.85 7.04 7.29 9.08 15.6 58.77
mastermind 03 08 05-0009 3692 2 37 3.44 3.72 3.81 3.97 5.18 9.59 38.62
mastermind 03 08 05-0010 3692 2 37 6.23 6.57 6.90 7.10 8.80 14.87 56.43
mastermind 04 08 03-0000 1418 2 24 1.12 1.30 1.41 1.49 2.16 4.51 20.33
mastermind 04 08 03-0013 1418 2 23 1.12 1.33 1.43 1.51 2.19 4.60 20.73
mastermind 05 08 03-0004 1616 2 27 1.22 1.43 1.47 1.57 2.22 4.60 20.39
mastermind 05 08 03-0006 1616 2 27 0.21 0.23 0.25 0.26 0.37 0.82 3.84

Table 2.5: The runtime (sec) of mbe-m-opt for the mastermind instances. Number of required
solutions m ∈ [1, 5, 10, 20, 50, 100, 200], i = 10. We report the number of variables n, induced
width w∗, domain size k.
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Figure 2.9: The runtime (sec) of mbe-m-opt run time as a function of number of solutions
m for the mastermind instances. The i = 10.

while mbe-m-opt generates bounds on all the m-best solutions. Moreover, the runtimes of

the algorithms are not comparable since our algorithm is implemented in C and BMMF in

Matlab, which is inherently slower. For most instances that mbe-m-opt can solve exactly in

under a second, BMMF takes more than 5 minutes.

71



!"#$

!%&$

!%"$

!%'$

!%($

!%#$

!'&$

!'"$

!''$

!'($

!$ "$ %$ '$ )$ ($ *$ #$ +$ !&$

!"
#
$%

&
'
()

*"!+,"-).-/01)-+2304)

5%%6)78)230929":;)

!&,!&-!&$./01.1234$562789:!&$ !&,!&-!&$6;;<$ !&,!&-*$./01.1234$562789:!&$

!&,!&-*$6;;<$ !&,!&-!&$23=.>?$@2?7=28$ !&,!&-*$23=.>?$@2?7=28$

Figure 2.10: Comparison of mbe-m-opt with i-bound equal to 10 and BMMF on random
10x10 grids. The exact solutions obtained by elim-m-opt. The mbe-m-opt provides upper
bounds on the solutions, BMMF gives no guarantees whether it outputs an upper or a lower
bound. In this particular example BMMF outputs lower bounds on the exact solutions.
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Figure 2.11: Comparison of mbe-m-opt with i-bound equal to 10 and BMMF on random
10x10 grids. The exact solutions obtained by elim-m-opt. The mbe-m-opt provides upper
bounds on the solutions, BMMF gives no guarantees whether it outputs an upper or a lower
bound. In this particular example BMMF outputs lower bounds on the exact solutions.
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Still, some information can be learned from viewing the two algorithms side by side, as is

demonstrated by typical results in Figure 2.11. For two chosen instances we plot the values

of the 10-best bounds reported by both algorithms in logarithmic scale as a function of the

solution index. We also show the exact solutions found by the algorithm elim-m-opt. We

can see that mbe-m-opt with the i-bound equal to 10 can produce upper bounds that are

considerably closer to the exact solutions than the results reported by BMMF.

� 2.7 Conclusion

We presented a formulation of the m-best reasoning task within a framework of semirings,

thus making all existing inference and search algorithms immediately applicable for the task

via the definition of the combination and elimination operators. We then focused on inference

algorithms and provided a bucket elimination algorithm, elim-m-opt, for the m-best task.

We analyzed its performance and empirically evaluated the algorithm, demonstrating that

in practice mbe-m-opt scales as a function of m better than worst-case analysis predicted.

We emphasize that the practical significance of the algorithm is primarily for approximation

through the mini-bucket scheme, since other exact schemes have better worst-case perfor-

mance. Indeed, as we will show in the next chapter, heuristic search methods are quite

efficient for the m-best task, because they can benefit from the power of the guiding heuris-

tic function. The promise of the elim-m-opt inference algorithm is in its potential to yield

viable lower- and upper-bounds for the m-best solutions via the mini-bucket algorithm, as

we discussed. Furthermore, it could also lead to loopy propagation message-passing schemes

that are highly popular for approximations in graphical models.
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Chapter 3

Heuristic Search for M-best Task

� 3.1 Introduction1

In Chapter 2 we extended inference schemes as represented by the bucket elimination al-

gorithm (BE) [19] to the task of finding the m best solutions. However, due to their large

space requirements, variable elimination algorithms, including bucket elimination, cannot

be used in practice for finding exact solutions to combinatorial optimization tasks when the

problem’s tree width is high. Depth-first branch and bound, or DFBB, and best-first search,

or BFS, both presented in Section 1.2.3 are more flexible and can trade space for time. This

chapter explores the possibilities of adapting such search algorithms to finding the m best

solutions.

Our contribution lies in extending the heuristic search algorithms to the m best solutions

task. We described general purpose m-best variants of both depth-first branch and bound

and best-first search (A*), yielding algorithms m-BB and m-A* respectively, and analyzed

their properties. Specifically, we showed that m-A* inherits all of A*’s desirable properties

[24], most significantly it is optimally efficient compared to any other exact search-based

scheme. We also discussed the size of the search space explored by m-BB. We then extended

1Part of this work has already been published in Rina Dechter, Natalia Flerova, and Radu Marinescu.
”Search Algorithms for m Best Solutions for Graphical Models” in Proceedings of AAAI 2012.
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our new m-best algorithms to graphical models by exploring the AND/OR search space.

We evaluated the resulting algorithms on six benchmarks having more than 300 instances in

total, examining the impact of the number of solutions m on the algorithms’ behavior. In

particular, we observed that the runtime of most of the schemes (except for the depth-first

branch and bound exploring an AND/OR tree) scales much better with m than what worst

case theoretical analysis suggests. We also showed that a m-A* search armed with exact

bucket elimination heuristic (a scheme we called BE+m-BF) is highly efficient on easier

problems but suffers severely from memory issues over dense graphs, far more than the A*-

based schemes using approximate mini-bucket heuristic. Finally, we compared our schemes

with some of the most efficient algorithms based on the LP-relaxation [37, 5], showing com-

petitiveness and even superiority for large values of m (m ≥ 10), while providing optimality

guarantees.

The chapter is organized as follows. Section 3.2 presents the extension of best-first search to

the m-best task. In particular, we define m-A*, the extension of A* algorithm to the m-best

(3.2.1), and prove its main properties (3.2.2). Section 3.3 describes algorithm m-BB, an

extension of depth-first branch and bound algorithm to solving the m-best solution task. In

Section 3.4 we discuss the adaptation of the two newly proposed m-best search algorithms for

AND/OR search spaces over graphical models, including a hybrid method BE+m-BF that

incorporates both variable elimination and heuristic search. Section 3.5 elaborates on the

related work and contrasts it with our methods. Section 3.6 presents the empirical evaluation

of our m-best schemes and Section 3.7 concludes.
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� 3.2 Best-First Search for M -best Solutions

Extending best-first search (Section 1.2.3) and in particular its most popular version, A*, to

the m-best task is fairly straightforward and was suggested, for example, by Charniak [12].

Instead of stopping after finding the optimal solution, the algorithm continues exploring the

search space, reporting the next discovered solutions up until m of them are obtained. Our

contribution is in showing that these solutions are indeed the m best and that they are found

in a decreasing order of their optimality. In particular, the second solution reported is the

second best solution and, in general, the ith solution discovered is the ith best. Moreover, we

explore and prove the main properties of the newly formulated algorithm.

� 3.2.1 m-A*: Definition

The m-best tree-search variant of A* denoted m-A* (Algorithm 10, assumes a consistent

heuristic) solves an m-best optimization problem over any general search graph. We will

show later how it can be extended to general admissible heuristics.

The scheme expands the nodes in the order of increasing value of f in the usual A* man-

ner. It keeps the lists of generated nodes OPEN and expanded nodes CLOSED, as usual,

maintaining a search tree, denoted by Tr. Beginning with the start node s, m-A* picks the

node with the smallest evaluation function f(n) on OPEN and puts it on CLOSED (line

7). If the node is a goal, a new solution is reported (lines 8-13). Otherwise, the node is

expanded and its children are created (lines 14-23). The algorithm may encounter each node

multiple times and will maintain up to m its copies on OPEN and CLOSED lists combined

(line 17), with separate paths to each copy in the explored search tree (lines 22-23). Nodes

encountered beyond m times are discarded (line 18). We denote by C∗i the ith best solution

cost, by f ∗i (n) the cost of the ith best solution going through node n, by fi(n) the heuristic

evaluation function estimating f ∗i (n) and by gi(n) and hi(n) the estimates of the ith best
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costs from s to n and from n to a goal, respectively.

If the heuristic is not consistent, whenever the algorithm reaches a node it has seen before

(if the search space is a graph and not a tree), there exists a possibility of the new path

improving on the previously discovered ones. Therefore, lines 17-18 should be revised in the

following way to account for the possibility that a better path to n′ is discovered:

17 If n′ appears already more than m times in the union of OPEN or CLOSED then

18 If g(n′) is strictly smaller than gm(n′), the current m-best path to n′ then

19 Keep n′ with a pointer to n and put n back in OPEN

20 Discard the earlier subtree rooted at n

Figure 3.1 shows an example of m-A* finding the m = 3 shortest paths on a toy problem.

On the left, Figure 3.1(a) shows the problem graph with 7 variables and 8 edges, along with

the admissible heuristic functions for each node. Note that the heuristic is not consistent.

For example, h(A) > h(C) + c(A,C). A is the start node, G is the goal node. On the right,

Figure 3.1(b) presents the trace of m-A*, with the evaluation function for each copy of a

node, created by the time that the 3rd solution is found. The white nodes are on CLOSED,

the grey one (node G4) was created, but never put on OPEN.The algorithm expands the

nodes on OPEN in increasing order of the evaluation functions. We assume that ties are

broken in favor of deeper nodes. First m-A* discovers the solution A−C −D−F −G with

cost C∗1 = 8, next the solution A− C −D − E −G with cost C∗1 = 10. The third solutions

was A−B −D− F −G with cost C∗1 = 10. Note that two copies of each node D, E and F

and four copies of G were created. The goal node G4 was discarded, because we bound the

total number of copies of a particular node by m = 3.

Theorem 3.1. Given a graphical model M = 〈X,D,F,⊗〉 with n variables whose domain

size is bounded by k, the worst case time and space complexity of m-A* exploring an OR

search tree of M is O(kn).
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Algorithm 10: m-A* exploring a graph, assuming consistent heuristic
Input: An implicit directed search graph G = (N,E), with a start node s and a set of goal nodes

Goals, a consistent heuristic evaluation function h(n), parameter m
Output: the m best solutions

1 Initialize: OPEN=∅, CLOSED=∅, a tree Tr = ∅, i = 1 (i counts the current solution being searched
for)

2 OPEN ← {s}; f(s) = h(s);
3 Make s the root of Tr;
4 while i ≤ m do
5 if OPEN is empty then
6 return the solutions found so far;

7 Remove a node, denoted n, in OPEN having a minimum f (break ties arbitrarily, but in favor of
goal nodes and deeper nodes) and put it in CLOSED;

8 if n is a goal node then
9 Output the current solution obtained by tracing back pointers from n to s (pointers are

assigned in step 22); denote this solution as Soli;
10 if i = m then
11 return;

12 else
13 i← i+ 1;

14 else
15 Expand node n, generating all its children Ch ;
16 foreach n′ ∈ Ch do
17 if n′ already appears in OPEN or CLOSED m times then
18 Discard node n′;

19 else
20 Compute current path cost g(n′) = g(n) + c(n, n′);
21 Compute evaluation function f(n′) = g(n′) + h(n′) ;
22 Attach a pointer from n′ back to n in Tr;
23 Insert n′ into the right place in OPEN based on f(n′);

24 return The set of the m best solutions found

Proof. In worst case m-A* would explore the entire OR search tree, whose size is O(kn)

(Section 1.2.4). Since the underlying search space is a tree, the algorithm will never encounter

any of the nodes more than once, thus no nodes will be duplicated.

� 3.2.2 Properties of m-A*

In this section we extend the desirable properties of A*, listed in Section 1.2.3, to the m-best

case. For simplicity and without loss of generality, we assume throughout that the search

graph accommodates at least m distinct solutions.
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Figure 3.1: Example problem. On the left: problem graph. h(n) - heuristic values. On the
right: trace of m-A*, solving minimization-summation problem for m = 3, f(n) - evaluation
function. White nodes are on CLOSED, the grey one was created, but discarded.

Theorem 3.2. Given an optimization task over a graphical model and some integer param-

eter m ≥ 1, m-A* aimed with admissible heuristic possesses the following properties:

1. Soundness and completeness: m-A* terminates with the m best solutions generated in

order of their costs.

2. Optimal efficiency under consistent heuristic: Any node that is surely expanded2 by

m-A* must be expanded by any other search algorithm guaranteed to find the m best

solutions having the same heuristic information.

3. Optimal efficiency for node expansions: m-A* expands each node at most m times

when the heuristic is consistent. The ith path found to a node is the ith best path.

4. Dominance: Given two heuristic functions h1 and h2, such that for every n h1(n) <

2to be precisely defined in Section 3.2.2.3
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h2(n), m-A*1 will expand every node surely expanded by m-A*2, when m-A*i is using

heuristic hi.

We prove the properties of m-A* in Sections 3.2.2.1-3.2.2.2.

� 3.2.2.1 Soundness and Completeness

Algorithm m-A* maintains up to m copies of each node and discards the rest. We will next

show that this restriction does not compromise completeness.

Proposition 3.1. Any node discarded by m-A* does not lead to any of the m-best solutions.

Proof. Consider a consistent heuristic first (as described in Algorithm 10). At the moment

when m-A* discovered a node n for the (m + 1)th time, m copies of n reside on OPEN or

CLOSED, and the algorithm maintains m distinct paths to each. Let πm be the (m + 1)th

path. As we will prove in Theorem 3.8, when node n is discovered for the (m + 1)th time,

the cost Cnew of the newly discovered path πnew is the (m+ 1)th best, namely it is no better

than the costs already discovered: Cnew ≥ Cπm . Therefore, the eliminated (m+ 1)th path to

node n is guaranteed to be worse than the remaining m ones and thus cannot be a part of

any of the potential m-best optimal solutions that might be passing through node n.

If the heuristic is not consistent, m-A* can be modified to replace the worst of the previously

discovered paths πm with the newly found πnew, if the cost of the latter is better and place

the new copy in OPEN. Thus, again, it is safe to bound the number of copies by m.

It is clear that along any particular solution path π the evaluation function over all the nodes

on π is bounded by the path’s cost C(π), when the heuristic is admissible.

Proposition 3.2. The following is true regarding m-A*:
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1. For any solution path π, for all nodes n ∈ π, f(n) ≤ C(π).

2. Unless π was already discovered by m-A*, there is always a node n on π which resides

in OPEN.

3. Therefore, as long as m-A* did not discover π, there must be a node in OPEN having

f(n) ≤ C(π).

Proof. 1. fπ(n) = gπ(n) + h(n) and since h(n) ≤ cπ(n, t) due to admissibility, where cπ(n, t)

is the actual cost from n to the goal node t along π, we conclude that f(n) ≤ gπ(n) +h(n) =

C(π).

2. Any path reachable from the root always has a leaf on OPEN unless all the nodes along

the path are expanded and are on CLOSED.

3. Follows easily from 1 and 2.

It follows immediately from Proposition 3.2 (similar to [74]) that:

Proposition 3.3. [Necessary condition for node expansion.] Any node n expanded during

m-A*, when searching for the ith best solution (1 ≤ i ≤ m), satisfies f(n) ≤ C∗i .

and it is also clear that

Proposition 3.4. [Sufficient condition for node expansion.] Every node n on OPEN, such

that f(n) < C∗i , must be expanded by m-A* before the ith best solution is found.

Soundness and completeness of m-A* follows quite immediately.

Theorem 3.3 (Soundness and completeness). Algorithm m-A* generates the m-best

solutions in order, namely, the ith solution generated is the ith best solution.
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Proof. Let us assume that it is not the case. Let the ith generated solution path πi be the

first one that is not generated according to the best-first order. Namely the ith solution

generated has a cost C such that C > C∗i . However, when the algorithm selected the goal

ti along πi, its evaluation function was f(ti) = gπi(ti) = C, while, based on Proposition 3.2,

there was a node n′ on OPEN whose evaluation function was at most C∗i . Thus n′ should

have been selected for expansion instead of ti - a contradiction.

� 3.2.2.2 The Impact of the Heuristic Strength

Like for A*, the performance of m-A* improves with more accurate heuristic.

Proposition 3.5. Consider two heuristic functions h1 and h2. Let us denote by m-A*1 the

algorithm that uses heuristic h1 and by m-A*2 the one using heuristic h2. If the heuristic

h1 is more informed than h2, namely for every node n h2(n) < h1(n), algorithm m-A*2

will expand every node that will be expanded by the algorithm m-A*1 before finding the jth

solution for any j ∈ [1,m], assuming the same tie-breaking rule.

Proof. Since h1 is more informed than h2, h1(n) > h2(n) for every non-goal node n. Let us

assume that m-A*1 expands some non-terminal node n before finding the jth best solution

with cost C∗j . If node n is expanded, it means that (a) at some point it is on OPEN and (b)

its evaluation function satisfies f1(n) = g(n) + h1(n) ≤ C∗j (Proposition 3.3). Consider the

current path π from start node to n. Each node n′ ∈ π on the path was selected at some

point for expansion and thus the evaluation functions of all these nodes are also bounded by

the cost of the jth best solution: f1(n′) ≤ C∗j . Since h1(n′) > h2(n′) for every node n′ along

the path π, their evaluation functions according to heuristic h2(n) obeys:

f2(n′) = g(n′) + h2(n′) < g(n′) + h1(n′) < C∗j (3.1)

and thus each node n′ must also be expanded by m-A*2.

82



Consider the case of the exact heuristic. It is easy to show that

Theorem 3.4. If h = h∗ is the exact heuristic, then m-A* generates solutions only on

j-optimal paths 1 ≤ j ≤ m.

Proof. Since h is exact, the f values on OPEN are expanded in sequence of values C∗1 ≤

C∗2 ≤ . . . ≤ C∗i . . . ≤ C∗m. All the generated nodes having evaluation function f = C∗1 are

by definition on optimal paths (since h = h∗), all those who have f = C∗2 must be on paths

that can be second best and so on. Notice that some solutions can have the same costs.

When h = h∗, m-A*’s complexity is clearly linear in the number of nodes having evaluation

function f ∗ ≤ C∗m. However, when the cost function has only a small range of values,

there may be an exponential number of solution paths having the cost C∗m. To avoid this

exponential frontier we chose the tie-breaking rule of expanding deeper nodes first, yielding

a number of node expansions bounded by m ·n, when n bounds the solution length. Clearly

then:

Theorem 3.5. When m-A* has access to h = h∗, then using a tie-breaking rule in favor of

deeper nodes it expands at most #N =
∑

i #Ni nodes, where #Ni is the length of the ith

optimal solution path. Clearly, #N ≤ m · n.

� 3.2.2.3 m-A* with Consistent Heuristic

When m-A* uses a consistent heuristic, it has several useful properties.

Optimal efficiency under consistent heuristic. Algorithm A* is known to be optimally

efficient for consistent heuristic [24]. Namely, any other algorithm that extends search paths

from the root and uses the same heuristic information as A* will expand every node that

is surely expanded by A*, i.e., it will expand every n, such that f(n) < C∗. We extend the

notion of nodes surely expanded by A* for m-best case:
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Figure 3.2: The graph G′ represents a new problem instance constructed by appending a
branch leading to a new goal node t to node n.

Proposition 3.6. Algorithm m-A* will expand any node n reachable by a strictly C∗m-

bounded path from the root, regardless of the tie-breaking rule. The set of such nodes is

referred to as surely expanded by m-A*s.

Proof. Let us consider the strictly C∗m-bounded path π = {s, n1, n2, . . . n}. The start node

s is clearly expanded at the beginning of the search and its children, including node n1, are

placed on OPEN. Since f(n1) < C∗m, node n1 must be expanded by m-A* before finding the

mth best solution (Proposition 3.4), its children, including n2, in turn are placed on OPEN.

The same is true for all nodes of π, including n.

Theorem 3.6 (M-optimal efficiency). Any search algorithm that is guaranteed to find

the m-best solutions and that explores the same search graph as m-A* and has the same

consistent heuristic will have to expand any node that is surely expanded by m-A*. Namely

it will expand every node that lies on any path π dominated by C∗m, i.e., f(n′) < C∗m,∀n′ ∈ π.

The proof idea is similar to [24]. Namely we can show that any algorithm that does not

expand a node n, surely expanded by m-A*, can miss one of the m-best solutions, when

applied to a slightly modified problem:

Proof. Let us consider a problem having the search graph G and a consistent heuristic h.

Assume that node n is surely expanded by m-A* before finding the jth best solution. Let
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B be an algorithm that uses the same heuristic h and is guaranteed to find the m best

solutions. Let also assume that node n is not expanded by B.

We can create a new problem graph G′ (see Figure 3.2) by adding a new goal node t with

h(t) = 0, connecting it to n by an edge having cost c = h(n) + δ, where δ = 0.5(C∗j − D)

and D = max f(n′)
n′∈Sj

. Sj is the set of nodes surely expanded by m-A* before finding the jth

solution, namely Sj = {n|f(n) < C∗j }. It is possible to show that the heuristic h is admissible

for the graph G′ [24]. Since δ = 0.5(C∗j −D), C∗ = D− 2δ. By construction, the evaluation

function of the new goal node is:

f(t) = g(t) + h(t) = g(n) + c = g(n) + h(n) + δ = f(n) + δ ≤ D + δ = C∗j − δ < C∗j (3.2)

which means that t is reachable from s by a path whose cost is strictly bounded by C∗j .

That guarantees that m-A* will expand t (Proposition 3.6), discovering a solution with cost

C∗j−δ. On the other hand, algorithm B, that does not expand node n in the original problem,

will still not expand it, thus not reaching node t, and will only discover the solution with

cost C∗j , not returning the true set of m best solutions to the modified problem. From the

contradiction the theorem follows.

Proposition 3.7. If the heuristic function employed by m-A* is consistent, the values of

the evaluation function f of the sequence of expanded nodes are non-decreasing.

The proof is a straightforward extension of a result from [72].

Proof. Let node n2 be expanded immediately after n1. If n2 was already on OPEN at the time

when n1 was expanded, then from the node selection rule it follows that f(n1) ≤ f(n2). If n2

was not on OPEN, then it must have been added to it as a result of expansion of n1, i.e., be a

child of n1. In this case the cost of getting to n2 from the start node is g(n2) = g(n1)+c(n1, n2)
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and the evaluation function of node n2 is f(n2) = g(n2) + h(n2) = g(n1) + c(n1, n2) + h(n2).

Since h(n) is consistent, h(n1) ≤ c(n1, n2) + h(n2) and f(n2) ≥ g(n1) + h(n1). Namely,

f(n2) ≥ f(n1).

If the heuristic function is consistent, we have a stronger condition of Proposition 3.4:

Theorem 3.7. Algorithm m-A* using a consistent heuristic function:

1. expands all nodes n such that f(n) < C∗m

2. never expands any nodes with evaluation function f(n) > C∗m

3. expands some nodes such that f(n) = C∗m, subject to a tie-breaking rule

Proof. 1. Assume that there exists a node n such that f(n) < C∗m and node n is never

expanded by m-A*. Such situation can only arise if node n has never been on OPEN list,

otherwise it would have been expanded, according to Proposition 3.4. That implies that the

parent of node n in the search space (let us denote is node p) has never been expanded.

However, similarly how it is done in the proof of Proposition 3.7, it is easy to show that

f(p) ≤ f(n) and, consequently f(p) < C∗m. Thus node p must also have never been on

OPEN, otherwise it would be expanded. Clearly, this is true for all the ancestors of n, up to

the start node s. Since node s is clearly on OPEN at the beginning of the search, the initial

assumption is incorrect and property follows.

2. and 3. Directly follow from Proposition 3.3

Figure 3.3 provides a schematic summary of the search space explored by m-A* having a

consistent heuristic.

Optimal efficiency for node expansions. Whenever a node n is selected for expansion

for the first time by m-A*, the algorithm has already found the shortest path to that node.
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Figure 3.3: The nodes explored by m-A* algorithm with consistent heuristic.

We can extend this property as follows:

Theorem 3.8. Given a consistent heuristic h, when m-A* selects a node n for expansion

for the ith time, then g(n) = g∗i (n), namely it has found the ith best path from start node s

to n.

Proof. By induction. For the i = 1 the theorem holds [72]. Assume that it also holds for

(i− 1)th expansion of node n. Let us consider the ith case, i > 1. We have already expanded

the node n (i−1) times and due to the induction hypothesis we have already found the (i−1)

distinct best paths to the node n. Let us assume that the cost of the newly found solution

path is greater than the ith optimal one, i.e., gi(n) > g∗i (n). Then there exists a different,

undiscovered path π from s to n with cost gπ(n) = g∗i (n) < gi(n). From Proposition 3.2

there exists on OPEN a node n0 ∈ π. Obviously node n0 must be located between the start

node s and node n. Denoting by Cπ(n0, n) = c(n0, n1) + · · · + c(nk, n), from the heuristic

consistency it easily follows that h(n0) < Cπ(n0, n) + h(n) and that the evaluation function

of node n0 along path π is fπ(n0) = gπ(n0) + h(n0) < gπ(n0) +Cπ(n0, n) + h(n). Seeing that

the cost of path π from s to n is gπ(n) = gπ(n0) + Cπ, we conclude that fπ(n0) < fπ(n).

However, that contradicts our assumption that node n was expanded for the ith time before

87



node n0. The theorem follows.

� 3.2.2.4 The Impact of the Required Number of Best Solutions m

The sequence of the sizes of search space explored by m-A* as a function of m is obviously

monotonically increasing with m. Denoting by j-A* and i-A* the versions of m-A* algorithm

that search respectively for j and i best solutions, we can make the following straightforward

characterization:

Proposition 3.8. Given a search graph and consistent heuristic,

1. Any node expanded by i-A* is expanded by j-A* if i < j and if both use the same

tie-breaking rule.

2. The set S(i, j) of nodes defined by S(i, j) = {n|C∗i < f(n) < C∗j } will surely be expanded

by j-A* and surely not expanded by i-A*.

3. If C∗j = C∗i , the difference in the number of nodes expanded by i-A* and j-A* is

determined by the tie-breaking rule.

The proof follows trivially from Theorem 3.7. As a result, larger discrepancy between the

respective costs C∗j − C∗i yields larger difference in the search spaces explored by j-A* and

i-A*. This difference, however, also depends on the granularity with which the values of

a sequence of observed evaluation functions increase, which is related to the arc costs (or

weights) of the search graph. If C∗i = C∗j = C, then the search space explored by i-A* and

j-A* will differ only in the frontier of nodes satisfying f(n) = C. Figure 3.4 schematically

represents the explored search spaces of i-A* algorithm.
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Figure 3.4: The schematic representation of the search spaces explored by m-A* algorithm,
depending on m and cost C∗m

� 3.3 Depth-First Branch and Bound for Finding the M -best Solutions

Along with its valuable properties, m-A* inherits also the disadvantages of A*: its expo-

nential space complexity, which makes the algorithm infeasible for many applications. An

alternative approach is searching using depth-first branch and bound (DFBB), which can be

implemented in linear space if necessary and is therefore often more practical. DFBB finds

the optimal solution by exploring the search space in a depth first manner. The algorithm

maintains a cost U of the best solution encountered so far and prunes search nodes whose

lower-bounding evaluation function f(n) = g(n) + h(n) is larger than U . Extending DFBB

to the m-best task is straightforward, as we describe next.

� 3.3.1 The m-BB Algorithm

Algorithm m-BB, the depth-first branch and bound extension to the m-best task, that ex-

plores a search tree is presented in Algorithm 11. As usual, the algorithm maintains lists

of OPEN and CLOSED nodes. The algorithm also maintains a sorted list of CANDIDATE

that contains the best m solutions found so far. Nodes on OPEN are organized in a ”last in

- first out” manner in order to facilitate depth-first exploration of the search space. At each
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step m-BB expands the next node n on OPEN (line 5). If it is a goal node, a new complete

solution is found (lines 7-8) and it is stored on the CANDIDATE list (line 9), which is then

re-sorted (line 10). Only up to m best solutions are maintained (lines 11-13).

The main modification of depth-first branch and bound, when extended to the m-best task,

is in its pruning condition. Let U1 ≤ U2 ≤ . . . ≤ Um denote the costs of the m best solutions

encountered thus far,then Um is the upper bound used for pruning. Before m solutions are

discovered, no pruning takes place. Algorithm m-BB expands the current node n, generates

its children (lines 15-17) and computes their evaluation function (line 18-19). It prunes a

subproblem below n iff f(n) ≥ Um (lines 20-23). It is easy to see that when the algorithm

terminates, it outputs the m-best solutions to the problem.

Theorem 3.9. Algorithm m-BB is sound and complete for the m-best solution task.

Proof. Algorithm m-BB explores the search space systematically. The only solutions that

are skipped are the ones satisfying f(n) ≥ Um (see lines 20-21). Since Um ≥ C∗m, where C∗m

is the m best solution cost, it implies f(n) ≥ C∗m and therefore that path cannot lead to a

newly discovered m-best cost.

Theorem 3.10. Given a graphical modelM = 〈X,D,F,⊗〉, the worst case time complexity

of m-BB that explores an OR search tree of M is O(kn + logm), where n is the number of

variables, k is the domain size and m is the number of required solutions. Space complexity

is O(n).

Proof. In worst case m-BB would explore the entire OR search tree of size O(kn). The

maintaining of CANDIDATE list introduces additional time overhead of O(logm). Since

the OR search tree yields no caching, m-BB uses space linear in the number of variables.
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Algorithm 11: Algorithm m-BB exploring OR tree
Input: An implicit directed search graph G = (N,E) with a start node n0 and a set of goal nodes

Goals. A heuristic evaluation function h(n). Parameter m (the number of desired solutions).
Output: the m best solutions

1 Initialize: OPEN=∅, CLOSED=∅, a tree Tr = ∅, sorted list CANDIDATE = ∅, UpperBound = −∞,
i = 1 (i counts the current solution being searched for)

2 Put the start node n0 in OPEN, g(n0) = 0, f(n0) = h(n0)
3 Assign n0 to be the root of Tr
4 while OPEN is not empty do
5 Remove the top node from OPEN, denoted n, and put it on CLOSED.
6 if n is a goal node then
7 soli ← solution obtained by tracing back pointers from n to n0 (pointers assigned at step 17)
8 Ci ← cost of soli
9 place solution soli on CANDIDATE

10 sort CANDIDATE in increasing order of solution costs
11 if size of CANDIDATE list ≥ m then
12 Um ← cost of the mth element in CANDIDATE
13 Keep first m elements of CANDIDATE, discard the rest

14 else
15 Expand node n, generating its children
16 forall the n′ ∈ Successors of n do
17 Attach a pointer from n′ back to n in Tr
18 g(n′) = g(n) + c(n, n′);
19 f(n′) = g(n′) + h(n′)
20 if f(n′) < Um then
21 Place n′ on OPEN

22 else
23 Discard n′

24 return the solutions on CANDIDATE list

� 3.3.2 Characterization of Search Space Explored by m-BB

We have already shown that m-A* is superior to any exact search algorithm for m-best

solutions when heuristic is consistent (Theorem 3.6). In particular, m-BB must expand all

the nodes that are surely expanded by m-A*, namely the set of nodes {n|f(n) < C∗m}. From

Theorem 3.6 and the pruning condition it is clear that:

Proposition 3.9. Given a consistent heuristic m-BB must expand any node in the set

{n|f(n) < C∗m}. Also, there are instances for which m-BB will expands nodes satisfying

f(n) > C∗m.
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Several sources of overhead of m-BB are discussed next.

m-BB vs. BB. Pruning in m-BB does not occur until the upper bound on the current mth

best solution is assigned a valid value, i.e., until m solutions are found. In the absence of

determinism, when all solutions are consistent, the time it takes to find m arbitrary solutions

in depth-first manner is O(m·n), where n is the length of solution and is equal to the number

of problem variables. If the problem contains determinism it may be difficult to find even

a single solution. This means that for m-BB the search may be exhaustive for quite some

time.

The impact of solution order. The difference in the number of nodes expanded by BB

and m-BB depends greatly on the variance between the solution costs. If all the solutions

have the same cost, then U1 = Um. However, such a situation is unlikely and therefore the

conditions for m-BB’s node expansions are impacted by the order in which solutions are

discovered. Let {U1
m, . . . , U

j
m} be the non-increasing sequence of the upper bounds on the

mth best solution, up to a point when m-BB uncovered the jth solution. Initially U j
m = ∞,

for j ∈ [1,m− 1].

Proposition 3.10. Between the discovery of the (j−1)th and the jth solutions the set of nodes

expanded by m-BB are included in Sj = {n|f(n) ≤ U j−1
m }, where C∗m ≤ U j

m ≤ U j−1
m ≤ ∞.

Proof. Between discovering the (j−1)th and jth solutions m-BB expands only nodes satisfying

{n|f(n) ≤ U j−1
m }, hence ∀j : Cj ≤ U j−1

m . Once the jth solution is found, it either replaces the

previous bound on mth solution U j
m = Cj or some kth upper bound, k ∈ [1,m− 1], yielding

U j
m = U j−1

m−1. Either way, C∗m ≤ U j
m ≤ U j−1

m .

Ordering overhead. The need to keep a list of m sorted solutions (the CANDIDATE list)

implies O(logm) overhead for each new solution discovered. The total number of solutions

encountered before termination is hard to characterize.
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Caching overhead. The overhead related to caching arises only when m-BB explores a

search graph and uses caching. This version of the algorithm (not explicitly presented) stores

the m best partial solutions to any fully explored subproblems (and a subset of m when only

a partial set is discovered) and re-uses these results whenever the subproblem is encountered

again. In order to implement caching, m-BB requires to store a list of length m for each

node that is cached. Moreover, the cached partial solutions need to be sorted, which yields

an O(m logm) time overhead per cached node.

� 3.4 M -best Best-First Search for Graphical Models

Our main task is to find the m best solutions to optimization tasks over graphical models.

Therefore we adapt the m-best search algorithms m-A* and m-BB to explore the AND/OR

search space over graphical models, yielding algorithms m-AOBF and m-AOBB. We will also

describe a hybrid algorithm BE+m-BF, combining Bucket Elimination and m-A*.

� 3.4.1 Introducing M -best Best-First Search to Graphical Models

The extension of algorithm AOBF (Section 1.2.4.2) to the m-best task seems fairly straight-

forward, in principle. m-AOBF is AOBF that continues searching after discovering the first

solution, until the required number of m best solutions is obtained. The actual implemen-

tation requires several modifications as we discuss next.

It is not easy to extend AOBF’s bottom-up node values updates and corresponding arc

marking mechanism to the m-best task. Therefore, in order to keep track of the current best

partial solution tree while searching for the ith best solution we adopt a naive approach that

maintains explicitly a list OPEN containing entire partial solution trees (not just nodes),

sorted in ascending order of their heuristic evaluation costs. Algorithm 12 presents the

pseudo-code of our simple scheme that explores the AND/OR search tree and generates
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solutions one by one in order of their costs. At each step, the algorithm removes the next

partial solution tree T ′ from OPEN (line 4). If T ′ is a complete solution, it is added to the

list of solutions along with its cost (lines 5-8), otherwise the algorithm expands a tip node n

of T ′, generating its successors (line 10-17). Each such newly generated node n′ is added to

T ′ separately, yielding a new partial solution tree T ′′ (lines 19-23), whose cost is recursively

evaluated using Algorithm 5, as in AOBB (line 28). These new partial trees are then placed

in OPEN (line 29). Search stops when all m solutions have been found.

We note that the maintenance of the OPEN list containing explicit partial solution subtrees

is a source of significant additional overhead which will become apparent in the empirical

evaluation from Section 3.6. Thus, the question whether the performance of m-AOBF can

be improved further is open and is therefore a rich topic of future work.

All m-A* properties (Section 3.2.2) can be extended to m-AOBF. In particular, algorithm

m-AOBF with an admissible heuristic is sound and complete, terminating with the m best

solutions generated in order of their costs. m-AOBF is also optimal in terms of the number

of nodes expanded compared with any other algorithm that explores the same AND/OR

search space with the same consistent heuristic function.

� 3.4.1.0.1 Complexity of m-AOBF We discuss the algorithm’s complexity as a function

of the underlying search space, considering both the tree- and graph-exploring versions.

Theorem 3.11 (Complexity of m-AOBF). The complexity of algorithm m-AOBF travers-

ing either the AND/OR search tree or the context-minimal AND/OR search graph is time

and space O(kdeg
h−1

), where h is the depth of the underlying pseudo-tree, k is the maximum

domain size, and deg bounds the degree of the nodes in the pseudo-tree. If the pseudo-tree

is balanced (i.e., each internal node has exactly deg child nodes), then the time and space

complexity is O(kn), where n is the number of variables.
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Algorithm 12: m-AOBF exploring an AND/OR search tree

Input: A graphical model M = 〈X,D,F〉, pseudo-tree T rooted at X1, heuristic function h(·),
parameter m;

Output: The m best solutions to M
1 Create root OR node s labelled by X1, let G = {s} (explored search space) and T = {s} (partial

solution tree);
2 Initialize S ← ∅; OPEN ← {T}; i = 1; (i counts the current solution being searched for);
3 while i ≤ m and OPEN 6= ∅ do
4 Select the top partial solution tree T ′ and remove it from OPEN;
5 if T ′ is a complete solution then
6 S ← S ∪ {〈f(T ′), T ′〉};
7 i← i+ 1;
8 continue;

9 Select a non-terminal tip node n in T ′;
// Expand node n

10 if n is OR node labeled Xi then
11 forall the xi ∈ D(Xi) do
12 Create AND child n′ labeled 〈Xi, xi〉;
13 succ(n)← succ(n) ∪ {n′};

14 else if n is AND node labeled 〈Xi, xi〉 then
15 forall the successor Xj of Xi in T do
16 Create an OR child n′ labeled Xj ;
17 succ(n)← succ(n) ∪ {n′};

18 G ← G ∪ {succ(n)};
// Generate new partial solution trees

19 L ← ∅;
20 forall the n′ ∈ succ(n) do Initialize v(n′) = h(n′);
21 if n is OR node then
22 forall the n′ ∈ succ(n) do
23 Create a new partial solution tree T ′′ ← T ′ ∪ {n′};
24 L ← L ∪ {T ′′};

25 else if n is AND node then
26 Create a new partial solution tree T ′′ ← T ′ ∪ {succ(n)};
27 forall the T ′′ ∈ L do
28 Recursively evaluate and assign to f(T ′′) the cost of the partial solution tree T ′′, based on

heuristic function h(·); // see Algorithm 5
29 Place T ′′ in OPEN, keeping it sorted in the ascending order of costs f(T ′′);

30 return The m best solutions found S;

The proof of the theorem can be found in Appendix B.1.
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Algorithm 13: m-AOBB exploring an AND/OR search tree
Input: A graphical model M = 〈X,D,F〉, pseudo-tree T rooted at X1, heuristic function h(·), parameter m;
Output: The m best solutions to M
// INITIALIZE

1 Create root OR node s labeled by X1 and let the stack of created but not expanded nodes OPEN = {s};
2 Initialize v(s) =∞ (a set of bounds on m best solutions under s) and a set of best partial solution trees rooted in s

T ∗(s) = ∅; UB =∞, sorted list CANDIDATE = ∅;
3 while OPEN 6= ∅ do
4 Select top node n in OPEN;

// EXPAND

5 if n is OR node labeled Xi then
6 foreach xi ∈ D(Xi) do
7 Add AND child n′ labeled 〈Xi, xi〉 to list succ(n) containing the successors of n;

8 Initialize v(n′) = 0, a set of best partial solution trees rooted in n T ∗(n′) = ∅;

9 if n is AND node labeled 〈Xi, xi〉 then
10 Let p be ancestor of n;
11 Recursively evaluate and assign to f(p) the cost of the partial solution tree rooted in p, based on the

heuristic h(·); // see Algorithm 5
12 if vm(p) <∞ and f(p) ≥ vm(p) then
13 Prune the subtree below the current tip node n;

14 else
15 foreach successor Xj of Xi ∈ T do
16 Add OR child n′ labeled Xj to list succ(n) containing the successors of n;

17 Initialize v(n′) =∞, a set of best partial solution trees rooted in n T ∗(n′) = ∅;

18 Remove n from OPEN and add succ(n) on top of OPEN;
// PROPAGATE

19 while list of successors of node n is empty do
20 if n is the root node then

21 return a set of solutions rooted at n and their costs: T ∗(n), v(n) ;

22 else
23 Update ancestors of n, AND and OR nodes p, bottom up:
24 if p is AND node then

25 Combine the set of the partial solution trees to the subproblem rooted in p T ∗(p) and the set of

partial solution trees rooted in n T ∗(n) and their costs v(p) and v(n); // see Algorithm 14
26 Assign the resulting set of the costs and the set of the best partial solution trees respectively to

v(p) and T ∗(p);

27 else if p is OR node then
28 foreach solution cost vi(n) in the set v(n) do

29 Update the cost with the weight of the arc, creating a new set of costs v′(n):
v′i(n) = c(p, n) + vi(n);

30 Merge the sets of partial solutions v(n) and v(p) and the sets of partial solution trees rooted in p

and n: T ∗(p) and T ∗(n), keeping m best elements; //Algorithm 15
31 Assign results of merging respectively to v(p) and T ∗(p);

32 Remove n from the list of successors of p;
33 Move one level up: n← p;

34 return v(s) and T ∗(s)

� 3.4.2 m-AOBB: M -best BB for Graphical Models

Algorithmm-AOBB extends the AND/OR Branch and Bound search (AOBB, Section 1.2.4.3)

to the m-best task. The main difference between AOBB and m-AOBB is in the value function
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computed for each node.

m-AOBB tracks the costs of the m best partial solutions of each solved subproblem. Thus

it extends the node value v(n) and solution tree T ∗(n) rooted by n in AOBB to ordered

sets of length m, denoted by v(n) and T ∗(n), respectively, where v(n) = {v1(n), . . . , vm(n)}

is an ordered set of the costs of the m best solutions to the subproblem rooted by n, and

T ∗(n) = {T ∗1 (n), . . . , T ∗m(n)} is a set of corresponding solution trees. This extension arises

due to the depth-first manner of search space exploration of m-AOBB in conjunction with the

AND/OR decomposition. Therefore, due to the AND/OR decomposition m-AOBB needs to

completely solve the subproblems rooted in all the children n′ of an AND node n, before even

a single solution to a subproblem above n is acquired (unlike the m-BB case). Consequently,

during the bottom-up phase sets of m costs have to be propagated and updated. m-AOBF

on the other hand, only maintains a set of partial solution trees.

Unlike m-AOBF that discovers solutions one by one in order of their costs, m-AOBB (pseudo-

code in Algorithm 13) reports the entire set of m solutions at once, at termination. m-

AOBB interleaves forward node expansion (lines 5-18) with a backward propagation (or

cost revision) step (lines 19-33) that updates node values until search terminates. A node

n will be pruned (lines 12-13) if the current upper bound on the mth solution under n,

vm(n), is lower than the node’s evaluation functions f(n), which is computed recursively as

in AOBB (Algorithm 5). During the bottom-up propagation phase at each AND node the

partial solutions to the subproblems rooted in the node’s children are combined (line 24-26,

Algorithm 14). At each parent OR node p v(p) and T ∗(p) are updated to incorporate the new

and possibly better partial solutions rooted in a child node n (lines 27-31, Algorithm 15).

� 3.4.2.0.2 Characterizing node processing overhead In addition to the increase in

the explored search space that m-BB experiences compared with BB due to the reduced

pruning (Section 3.3.2), AND/OR search introduces additional overhead for m-AOBB. The
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Algorithm 14: Combining the sets of costs and partial solution trees

1 function Combine(v(n), v(p), T ∗(n),T ∗(n))

Input: Input sorted sets of costs v(n), v(p), corresponding partial solution trees T ∗(n), T ∗(p),
number of required solutions m

Output: A set of costs m best combined solutions v′(p), corresponding partial solution trees T ∗′(p)
// INITIALIZE

2 Sorted list OPEN, initially empty; //contains potential cost combinations

3 v′(p)← ∅; T ∗′(p)← ∅;
4 k = 1; //number of partial solutions already assembled, up to m in total
// Search over possible combinations

5 OPEN← v1(n) + v1(p);
6 while k < m and OPEN is not empty do
7 Remove the top node V on OPEN, where V = Svi(n) + vj(p);
8 v′k(p)← V ;

9 T ∗
′
(p)← T ∗i (n) ∪ T ∗j (p);

10 if vi+1(n) + vj(p) not in OPEN then
11 Put vi+1(n) + vj(p) in OPEN ;

12 if vi(n) + vj+1(p) not on OPEN then
13 Put vi(n) + vj+1(p) in OPEN ;

14 k ← k + 1;

15 return v′(p), T ∗(p);

propagation of a set of m costs and of m partial solution trees leads to an increase in memory

by a factor of m per node. Processing the partial solutions at both OR and AND nodes

introduces an additional overhead.

Theorem 3.12 (Complexity of m-AOBB). Algorithm m-AOBB exploring the AND/OR

search tree has a time overhead of O(m·deg ·logm) per AND node and O(m·k) per OR node,

where deg bounds the degree of the pseudo-tree and k is the largest domain size. Assuming

k < deg · log(m), the total worst case time complexity is O(n ·khdeg ·m log(m)) and the space

complexity is O(m · n). The time complexity of m-AOBB exploring the AND/OR search

graph is O(n · kw∗deg ·m log(m)), space complexity O(mn · kw∗).

Proof. Combining the sets of current m-best partial solutions (Algorithm 14) introduces an

overheard of O(m log(m)). The resulting time overhead per AND node is O(deg ·m log(m)).

Merging two sorted sets of costs (Algorithm 15) can be done in O(m) steps. If an OR

node has O(k) children, the resulting overhead is O(m · k). Assuming k < deg · log(m),
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Algorithm 15: Merging the sets of costs and partial solution trees

1 function Merge(v(n),v(p),T ∗(n),T ∗(p))
Input: Input sorted cost sets v(n) and v(p), sets of corresponding partial solution trees T ∗(n) and

T ∗(p), number of required solutions m

Output: v′(p), a merged set of m best solution costs, T ∗′(p) a set of corresponding partial solution
trees

// INITIALIZE

2 v′(p)← ∅;
3 T ∗′(p)← ∅;
4 i, j ← 1; //indices in the cost sets
5 k ← 1; //index in the resulting array
// Merge two sorted sets

6 while k ≤ m do
7 if vi(p) ≤ vj(n) then
8 v′k(p)← vi(p);

9 T ∗
′

k (p)← T ∗i (p);
10 i← i+ 1;
11 k ← k + 1;

12 else
13 v′k(p)← vj(n);

14 T ∗
′

k (p)← T ∗j (n);

15 j ← j + 1;
16 k ← k + 1;

17 return v′(p) and T ∗′(p);

the complexity is dominated by processing of the AND nodes. In the worst case, the tree

version of m-AOBB, called m-AOBB-tree, would explore the complete search space of size

O(n · kh), where h bounds the depth of the pseudo -tree, while the graph version, called

m-AOBB-graph, would visit a space of of size O(n · kw∗), where w∗ is the induced width of

the pseudo-tree. The space complexity of m-AOBB-tree follows from the need to propagate

the sets of O(m) partial solutions of length O(n). The time overhead for m-AOBB is the

same for AND/OR trees and AND/OR graphs. The space complexity of m-AOBB-graph is

explained by the need to store m partial solutions for each cached node.

� 3.4.3 Algorithm BE+m-BF

It is known that exact heuristic for graphical models can be generated by the bucket elimi-

nation (BE, [19]) algorithm described in Section 1.2.2.1. We can therefore first compile the
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exact heuristics along an ordering using BE and then apply m-A* (or m-AOBF, both will

work the same at this point), using these exact heuristics. The resulting algorithm is called

BE+m-BF. Worst-case analysis of this algorithm will show that it yields the best worst-case

complexity compared with any known m-best algorithm for graphical models.

Theorem 3.13 (Complexity of BE+m-BF). The time complexity of BE+m-BF is bounded

by O(nkw∗+1 +nm) when n is the number of variables, k is the largest domain size, w∗ is the

induced width of the problem and m is the desired number of solutions. The space complexity

is O(nkw∗ + nm).

Proof. BE’s time complexity is O(nkw∗+1) and space complexity of O(nkw∗) [19]. Since BE

compiles an exact heuristic function, m-A* with this exact heuristic expands nodes for which

f(n) = C∗j only while searching for ith solution. If the algorithm breaks ties in favor of deeper

nodes, it will only expand nodes on solution paths. Each path has length n, yielding total

time and space complexity of this step of the algorithm equal to O(n ·m).

� 3.5 Related Work

We can distinguish several primary approaches employed by earlier m-best exact algorithms,

some mentioned already in the introduction. Note that some of the original works we discuss

here do not include space complexity analysis and the bounds provided are often our own.

The first and most influential approach was introduced by Lawler [61]. It aimed to use of-

the-shelf optimization schemes for best solutions. Lawler showed how to extend any given

optimization algorithm to the m-best task. At each step the algorithm seeks the best solution

to a re-formulation of the original problem that excludes the solutions already discovered.

The scheme has been improved over the years and is still one of the primary strategies for

finding the m-best solutions. The time and space complexity bounds of Lawler’s scheme
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are O
(
n ·m · T (n)

)
and O(S(n)) respectively, where T (n) and S(n) are the time and space

complexity of finding a single best solution. For example, if we use AOBF as an underlying

optimization algorithm, the use of Lawler’s method yields time complexity of O(n2mkw
∗
)

and space complexity of O(nkw
∗
).

Hamacher and Queyranne [42] built upon Lawler’s work, but used as building blocks al-

gorithms that find both the first and second best solutions. Once two best solutions are

generated, a new problem is formulated so that the second best solution is the best solution

to the new problem. Then the second best solution for the new problem becomes the over-

all third best solution and the procedure is repeated. The algorithm has time complexity

of O(m · T2(n)) and space complexity of O(S2(n)), where T2(n) and S2(n) are respectively

the time and space for finding the second best solution. The complexity of this method

is always bounded from above by that of Lawler, seeing as Lawler’s scheme can be used

as an algorithm for finding the second best solution. Using m-AOBB to solve the 2-best

task, we obtain time complexity of O(2mnkw
∗
deg log 2) and space complexity O(2nkw

∗
), or

O(mnkw
∗
deg) and O(nkw

∗
), respectively, if we discard the constants.

Nilsson [73] applied Lawler’s method using a join-tree algorithm. On top of that, his algo-

rithm reuses computations from previous iterations. His scheme, called max-flow algorithm,

applies message-passing on a junction tree to calculate the initial max-marginal functions

for each cluster (e.g., probability values of the most probable assignments task), yielding the

best solution. Note that this step is equivalent to running the bucket-elimination algorithm.

Subsequent solutions are recovered by conditioning search, which consults the generated

functions. The time complexity [73] is O(2p|C| + 2mp|R| + pm log (pm)), where p is the

number of cliques in the joint tree, |C| is the size of the largest clique and |R| is the size of

the largest residual (i.e., the number of variables in a particular cluster, but not in neighbor-

ing clusters). The space complexity can be bounded by O(p|C|+p(|S|)), where |S| is the size

of a separator between the clusters. If applied to a bucket-tree, Nilsson’s scheme has time
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and space complexity of O(2nkw∗+1 +mn(2k+ log(mn)) and O(nkw
∗+1 +nkw

∗
) respectively,

since the the bucket tree has p = n cliques, whose size is bounded by |C| = kw
∗+1, and the

residual in each cluster is |R| = k (the domain of a single variable). Thus the algorithm has

better time complexity than all other schemes mentioned so far, except for BE+m-BF.

More recently, Yanover and Weiss [106] developed an iterative scheme based on belief prop-

agation, called BMMF. At each iteration BMMF uses loopy Belief Propagation to solve two

new problems obtained by restricting the values of certain variables. When applied to a junc-

tion tree having induced width w∗ (whose largest cluster size is bounded by kw
∗+1), it is an

exact algorithm having time complexity O(2mnkw∗+1) and space complexity O(nkw∗+mnk).

When applied on a loopy graph, BMMF is not guaranteed to find exact solutions.

Another approach based on Lawler’s idea uses optimization via the LP-relaxation [99], for-

mulated by Fromer and Globerson [37]. Their method, called Spanning TRee Inequalities

and Partitioning for Enumerating Solutions (STRIPES) also partitions the search space,

while systematically excluding all previously determined assignments. At each step new

constraints are added to a LP optimization problem, which is solved via an off-the-shelf

LP-solver. In general the algorithm is approximate. However, on trees or junction-trees

it is exact, if the underlying LP solver reports solutions within the time limit. PESTEE-

LARS is an extension of the above scheme by Batra [5]. It solves the LP relaxation using

message-passing approach that, unlike conventional LP solvers, exploits the structure of the

problem’s graph. The complexity of these LP-based algorithm is hard to characterize using

the usual graph parameters.

Another approach extends variable elimination (or dynamic programming) schemes to di-

rectly obtain the m best solutions. In Chapter 2 we extended bucket elimination and mini-

bucket elimination to the m-best solutions, yielding an exact scheme elim-m-opt and its ap-

proximate version mbe-m-opt. The time complexity of the elim-m-opt is O(nkw
∗+1m logm),
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space is O(mnkw
∗
).

Two related dynamic programming based ideas are by Seroussi and Golmard [84] and by

Elliot [29]. Seroussi and Golmard extract the m solutions directly, by propagating the m

best partial solutions along a junction tree. Given a junction tree with p cliques, largest

cluster size |C|, separator size bounded by |S| and branching degree deg, the time com-

plexity of the algorithm is O(m2 · p · |C| · deg) and the space complexity is O(m · p · |S|).

Adapted to bucket tree, this algorithm has a time complexity equal to O(m2nkw
∗+1deg) and

a space complexity of O(mnkw
∗
). Elliot propagates the m best partial solutions along a

representation called Valued And-Or Acyclic Graph, also known as a smooth determinis-

tic decomposable negation normal form (sd-DNNF) [15]. The time complexity of Elliot’s

algorithm is O(nkw
∗+1m log (m · deg)) and the space complexity is O(mnkw

∗+1).

Several methods focus on search schemes obtaining multiple optimal solution for the k short-

est paths task (KSP). For a survey see [30]. The majority of these algorithms assume that

the entire search graph is available in memory, and thus are not directly applicable. A recent

exception is by Aljazzar, et al., [2], whose K∗ algorithm finds the k shortest paths during

search ”on-the-fly” and thus can be potentially useful for graphical models. The algorithm

interleaves A* search on the problem’s implicit graph G and Dijkstra’s algorithm [27] on a

specific path graph structure denoted P (G). P (G) is a directed graph, the vertices of which

correspond to edges in the problem graph G. Given a consistent heuristic, when applied to

an AND/OR search graph, K∗ has time and space complexity O(nkw
∗
w∗ log(n · k) +m).

More recently, Gosh, et al., [39] introduced a best-first search algorithm for generating or-

dered solutions for explicit AND/OR trees or graphs. The time complexity of their algorithm

can be bounded by O(mnkw∗), when applied to a context-minimal AND/OR search graph.

The space complexity is bounded by O(s ·nkw∗+1), where s is the number of candidate solu-

tions generated and stored by the algorithm, hard to quantify using usual graph parameters.
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Figure 3.5: Time complexity comparison of the exact m-best algorithms specified for bucket
tree. A parent node in the graph has a better complexity than its children. Problem
parameters: n - number of variables, k - largest domain size, w∗ - induced width, deg - the
degree of the join (bucket elimination) tree. Our algorithms are highlighted.

However, this approach, which explores the space of complete solutions, does not seem to

be practical for graphical models because it requires the entire AND/OR search space to be

fully explicated in memory before attempting to generate even the second best solution. In

contrast, our algorithms generate the m best solutions while traversing the space of partial

solutions.

Figure 3.5 provides a visual comparison between the worst-case time complexity bounds of
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the discussed schemes in a form of a directed graph, where each node corresponds to an

algorithm and a parent in the graph has a better complexity than its child. We assume in

our analysis that n >> m > k > 2.

We see that the best scheme, as far as worst-case performance goes, is BE+m-BF. However,

since it requires compiling of the exact heuristics, it is often infeasible. We see also that

algorithm elim-m-opt appears to have relatively good time complexity, superior, e.g., to m-

AOBB search. However, as we showed in the Chapter 2, it is quite limited empirically. Note

that the worst-case analysis often fails to capture the practical behavior of algorithms, either

because it ignores the power of the cost function in bounding the performance, or because

the algorithms that have good worst-case runtime performance require too much memory.

� 3.6 Experimental Results

Our experiments consist of two parts: evaluation of the m-best search algorithms on the

benchmarks from recent UAI and Pascal2 competitions and comparison of our schemes with

some of the previously developed algorithms on randomly generated networks, whose parame-

ters and structure had to be restricted due to the limitations of the available implementations

of the competing schemes. We defer the discussion of the second part of experiments till

Section 3.6.5, concentrating now on evaluating our m-best search schemes only.

� 3.6.1 Overview and Methodology

Evaluation on real-world problems. We used 6 benchmarks, all, except for binary grids,

came from real world domains:

• Pedigrees

• Binary grids
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Benchmark # inst n k w∗ hT
Pedigrees 13 581-1006 3-7 16-39 52-104

Grids 32 144-2500 2 15-90 48-283
WCSP 61 25-1057 2-100 5-287 11-337

Promedas 86 197-2113 2 5-120 34-187
Proteins 72 15-242 18-81 5-16 7-44

Segmentation 47 222-234 2-21 15-18 47-67

Table 3.1: Benchmark parameters: # inst - number of instances, n - number of variables, k
- domain size, w∗ - induced width, hT - pseudo-tree height.

• WCSP

• Promedas

• Proteins

• Segmentation

The benchmark parameters are shown in Table 3.1. Pedigree, Binary Grids and WCSP

benchmark have been previously described in Section 2.6.1.

Protein side-chain prediction (”pdb*”) networks correspond to side-chain conformation

prediction tasks in the protein folding problem [105]. The resulting instances have relatively

few nodes, but very large variable domains, generally rendering most instances very complex.

Promedas (”or chain *”) and segmentation (”* s.binary”) are probabilistic networks

that come from the set of problems used in the 2011 Probabilistic Inference Challenge3.

Promedas instances are based on a Bayesian network model developed for expert systems

for medical diagnosis [102]. Segmentation is a common benchmark used in computer vision,

modeling as a MPE problem the task of image segmentation, namely assigning a label to

every pixel in an image, such that pixels with the same label share certain characteristics.

� 3.6.1.1 Algorithms

We can distinguish 6 algorithms: BE+m-BF, m-A*-tree and m-BB-tree exploring a reg-

ular OR search tree and their modifications that explore an AND/OR search tree, denoted

3http://www.cs.huji.ac.il/project/PASCAL/archive/mpe.tgz
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m-AOBF-tree and m-AOBB-tree. We also consider a variant of m-AOBF that explores

the AND/OR search graph, m-AOBF-graph. We did not implement the m-AOBB over

AND/OR search graph, because the overhead due to book-keeping looked prohibitive. We

used m-AOBF as representative for AND/OR graph search, and, as we will see, it proved

indeed to be not cost-effective. All algorithms were guided by pre-compiled mini-bucket

heuristics, described in Section 1.2.4.4. We used 10 i-bounds, ranging from 2 to 22. How-

ever, for some hard problems computing the mini-bucket heuristic with the larger i-bounds

proved infeasible, so the actual range of i-bounds varies among the benchmarks and among

instances within a benchmark. All algorithms were restricted to a static variable order-

ing computed using a min-fill heuristic [55]. Both AND/OR schemes explored the same

pseudo-tree. In our implementation algorithms m-BB, m-BF and m-AOBF break ties lex-

icographically, algorithm m-AOBB solves the independent subproblems rooted at an AND

node in increasing order of their lower bound heuristic estimates.

The algorithms were implemented in C++ (32-bit) and the experiments were run on a 2.6

GHz quad-core processor. The memory limit was set for 4 GB per problem, the time limit

to 3 hours. We report the CPU time (in seconds) and the number of nodes expanded during

search. For uniformity we consider the task throughout to be the maximization-product

problem, also known as Most Probable Explanation task (MPE or MAP). We focus on

complete and exact solutions only and thus do not report the results if the algorithm found

less than m solutions (for best-first schemes) or if the optimality of the solutions was not

proved (for branch and bound schemes).

� 3.6.1.2 Goals of the Empirical Evaluation

We will address the following aspects:

1. Comparing best-first and depth-first branch and bound approaches
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2. The impact of AND/OR decomposition on the search performance

3. Scalability of the algorithms with the number of required solutions m

4. Comparison with earlier proposed algorithms

� 3.6.2 The Main Trends in the Behavior of the Algorithms

Tables 3.2, 3.4, 3.6, 3.8, 3.10, and 3.12 present for each of our algorithms the raw results in

the form of runtime in seconds and number of expanded nodes for select instances from each

benchmark, selected to best illustrate the prevailing trends. For each benchmark we show

the results for two values of i-bound, corresponding, in most cases, to relatively weak and

strong heuristics. Note that the i-bound has no impact on the BE+m-BF, since it always

calculates the exact heuristic. We show three values of number of solutions m, equal to 1

(ordinary optimization problem), 10 and 100.

In order to see the bigger picture, in Figures 3.6-3.11 we show bar charts representing for

each benchmark a median runtime and a number of instances solved by each algorithm for a

particular level of heuristic for m ∈ {1, 2, 5, 10, 100}. The y-axis is on logarithmic scale. The

numbers above the bars indicate the actual values of median time in seconds and number of

solved instances, respectively. It is important to note that in these figures we only account

for harder instances, for which the i-bound did not yield exact heuristic. We acknowledge

that the median times are not strictly comparable since they are calculated over a varied

number of instances solved by each algorithm. However, this metric is robust to outliers and

gives us an intuition about the algorithms’ relative success. In addition, Tables 3.3, 3.5, 3.7,

3.9, 3.9, 3.11 and 3.13 show for each benchmark the number of instances, for which a given

algorithm is the best in terms of runtime and in terms of number of expanded nodes. If

several algorithms show the same best result, it counts towards the score of all of them.
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

503.wcsp 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree Timeout Timeout Timeout
BE+m-BF 0.05 6647 0.06 6671 0.06 6984

(144, 4, 9, 44) 8

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree 1269.0 348648825 1275.65 348648869 1255.46 348651775

m-AOBB tree 22.99 2320223 164.72 12110559 8010.42 568148386
BE+m-BF 0.05 6647 0.06 6671 0.06 6984

myciel5g 3.wcsp 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree OOT OOT OOT

m-AOBB tree 1461.76 46419482 2389.32 74629839 3321.47 83802828
BE+m-BF OOM OOM OOM

(47,2, 19, 46) 8

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree 151.49 33563300 152.27 33609110 148.08 36255491

m-AOBB tree 107.03 4274313 185.66 7245553 251.98 8319419
BE+m-BF OOM OOM OOM

satellite01ac.wcsp 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 5760.25 14260410 OOT OOT
BE+m-BF OOM OOM OOM

(79, 8, 19, 56) 8

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 793.56 2579416 OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 484.69 1530768 551.67 1995114 858.29 3507104
BE+m-BF OOM OOM OOM

29.wcsp 4

m-AOBF tree 10.23 464134 10.22 464182 10.29 464698
m-AOBF graph OOM OOM OOM

m-A* tree 11.59 938812 11.58 938869 11.57 939508
m-BB tree 12.96 2243619 12.89 2245137 12.77 2279587

m-AOBB tree 1.81 87717 2.63 147851 115.3 9189667
BE+m-BF 0.0 111 0.0 168 0.01 739

(83, 4, 18, 58) 8

m-AOBF tree 0.05 2347 0.05 2395 0.08 2899
m-AOBF graph 0.09 1401 0.09 1447 0.13 1482

m-A* tree 0.02 2098 0.02 2155 0.02 2724
m-BB tree 0.17 37629 0.17 38463 0.25 55125

m-AOBB tree 0.02 1577 0.33 24239 79.38 6731546
BE+m-BF 0.0 111 0.0 168 0.01 739

Table 3.2: WCSP: CPU time (in seconds) and number of nodes expanded. A ’Timeout’
stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB memory. In
bold we highlight the best time and number of nodes for each m. Parameters: n - number
of variables, k - domain size, w∗ - induced width, h - pseudo-tree height.

We next provide some elaboration and interpretation of the results.

� 3.6.2.1 WCSP

Table 3.2 shows the results for two values of i-bound for select instances chosen to best

illustrate the common trends seen across the WCSP benchmark. Figure 3.6 presents the

median time and number of solved instances for each algorithm for i = 16. Table 3.3 shows

for the same i-bound the number of instances for which each of the schemes had the best
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algorithm
WCSPs: # inst=61, n=14-1058

k=2-100, w∗=6-287, hT=8-585, i-bound=16
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 43 43 43 43 43

m-AOBF tree 1 / 2 1 / 1 0 / 1 1 / 1 0 / 0
m-AOBF graph 1 / 2 0 / 2 0 / 2 0 / 2 0 / 3

m-A* tree 5 / 1 4 / 3 5 / 3 4 / 3 5 / 2
m-BB tree 1 / 0 2 / 0 1 / 0 1 / 0 0 / 0

m-AOBB tree 1 / 2 2 / 0 0 / 0 0 / 0 0 / 0
BE+m-BF 2 / 1 2 / 1 2 / 1 2 / 1 2 / 1

Table 3.3: Number of instances, for which each algorithm has the best runtime (#BT)
and best number of expanded nodes (#BN), WCSPs. Out of 61 instances 12 have exact
heuristics. The table accounts for remaining 49, i = 16.

runtime and best number of expanded nodes. For many problems of this benchmark the

mini-bucket elimination with the large i-bounds is infeasible, thus we present the results for

a small and a medium i-bounds.

BE+m-BF. As suggested by theory, whenever BE+m-BF does not run out of memory, it

is the most efficient scheme. See for example Table 3.2, 503.wcsp and 29.wcsp. However,

calculation of the exact heuristic is only feasible for easier instances and, as Figure 3.6 shows,

it can only solve 2 WCSP instances. As seen in Table 3.3, on these two instances BE+m-BF

demonstrated the best runtime among all the schemes.

m-AOBB-tree. For a number of problems for small values ofm, m-AOBB-tree is superior to

m-BB-tree both in terms of the runtime and in number of expanded nodes. For example, for

29.wcsp, i = 4, m = 10 m-AOBB-tree requires 2.63 seconds to solve the problem and expands

147851 nodes while the runtime of m-BB-tree is 12.89 seconds and it expands 2245137 nodes.

However, on the majority of instances m-AOBB-tree is slower than all other schemes, as

seen in Figure 3.6. Moreover, m-AOBB-tree scales poorly with the number of solutions. For

m = 100 very often it has both the worst runtime and the largest explored search space

among all the schemes, e.g., i = 8, 503.wcsp. Such striking decrease in performance as m

grows is consistent across various benchmarks and can be explained by the need to combine

sets of partial solutions at AND nodes, as we described earlier. The overhead connected
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to AND/OR decomposition also accounts for the larger time per node ratio of m-AOBB-

tree, compared to other schemes. For example, in Table 3.2 for instance myciel5g 3.wcsp,

i = 8, for m = 10 and m = 100 m-AOBB-tree expands less nodes than m-BB-tree, but

its runtime is larger. Nevertheless, m-AOBB-tree has its benefits. Since it is more space

efficient than the other algorithms, it is often the only scheme able for find solutions for the

harder instances, especially when the heuristic is weak, as we see for myciel5g 3.wcsp for i=4

and satellite01ac.wcsp for both i = 4 and i = 8.

m-BB-tree. In Figure 3.6 we see that m-BB-tree solves almost the same number of problems

as m-AOBB-tree while having considerably better median time.

m-AOBF-tree and m-AOBF-graph. Unsurprisingly, best-first search algorithms often

run out of space on problems feasible for branch and bound, such as 503.wcsp and my-

ciel5g 3.wcsp for i = 8. m-AOBF-based schemes are overall inferior to other algorithms,

solving, as Figure 3.6 shows, the least number of problems. Both schemes run out of mem-

ory much more often than m-A*-tree. We believe this is due to overhead of maintaining an

OPEN list of partial solution trees, as opposed to an OPEN list of individual nodes as m-

A*-tree does. Whenever the m-AOBF schemes do manage to find solutions, as for example

for instance 29.wcsp, i = 8, m-AOBF-graph explores the smallest search space among the

schemes, except for BE+m-BF. At the same time m-AOBF-tree sometimes expands more

nodes than both m-AOBF-graph and m-A*-tree. m-AOBF-tree and m-AOBF-graph have

almost the same median time and number of solved problems, as seen in Figure 3.6.

m-A*-tree. Out of the three best first algorithms m-A*-tree is overall the best. In Figure 3.6

we see that it solves more instances than all other schemes for all values of m and its median

runtime is close to that by BE+m-BF. Table 3.3 proves that for i = 16 this scheme is the

fastest among all the schemes on largest number of instances, showing best runtime on 4-5

instances, depending on m.
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

pedigree33 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 7814.77 145203641 Timeout Timeout
BE+m-BF OOM OOM OOM

(798, 4, 24, 132)
22

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 1.32 73625 1.55 77138 3.76 112422
m-BB tree 2.98 145717 4.15 177397 21.48 655141

m-AOBB tree 2.88 70644 Timeout Timeout
BE+m-BF OOM OOM OOM

pedigree30 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 2510.59 33453995 OOT OOT
BE+m-BF OOM OOM OOM

(1290, 5, 20, 105) 16

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 65.43 4866388 65.86 4867551 67.01 4882985
m-BB tree 84.28 12243789 85.72 12298570 127.25 13027245

m-AOBB tree 594.36 6907399 Timeout Timeout
BE+m-BF 0.31 5039 0.4 6202 1.73 21636

pedigree23 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 8.44 713664 8.46 715729 11.15 904802
m-BB tree 23.0 4446224 24.56 4676953 35.46 6179124

m-AOBB tree 32.11 831096 1077.9 75355901 Timeout
BE+m-BF 7.11 630 7.24 2482 7.68 19297

(403, 5, 21, 64) 22

m-AOBF tree 0.12 867 0.21 1425 1.31 7912
m-AOBF graph 0.16 379 0.32 395 2.03 634

m-A* tree 0.01 493 0.07 2558 0.5 19297
m-BB tree 0.03 1917 0.16 9913 1.74 111736

m-AOBB tree 0.05 1474 610.93 44099247 Timeout
BE+m-BF 0.01 493 0.07 2558 0.5 19297

pedigree20 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 27.0 2321986 26.66 2324701 27.47 2353927
m-BB tree 34.23 7239379 37.63 7434961 66.81 9155747

m-AOBB tree 88.85 4365855 1019.76 63940515 Timeout
BE+m-BF 24.95 491 24.99 3482 26.16 32643

(438, 5, 20, 65)
22

m-AOBF tree 1.89 16101 2.11 17049 4.32 26525
m-AOBF graph 2.85 1512 3.18 1554 6.67 1581

m-A* tree 0.14 6350 0.23 9065 1.28 38291
m-BB tree 2.76 163985 3.12 184127 8.08 474074

m-AOBB tree 0.03 1230 704.0 37534080 Timeout
BE+m-BF 0.14 6350 0.23 9065 1.28 3829

Table 3.4: Pedigrees: CPU time (in seconds) and number of nodes expanded. A ’Timeout’
stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB memory. In
bold we highlight the best time and number of nodes for each m.Parameters: n - number of
variables, k - domain size, w∗ - induced width, h - pseudo-tree height.

� 3.6.2.2 Pedigrees

Table 3.4 displays the results for select instances from Pedigree benchmark for two i-bounds

each. Overall, the difference between the results for the algorithms greatly diminishes as

the heuristic strength increases. Figure 3.7 shows the median time and number of solved

instances for select values of m for i = 16. The number of instances for which each of the

schemes had the best runtime and best number of expanded nodes for the same i-bound is

presented in Table 3.5.
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algorithm
Pedigrees: # inst=13, n=335-1290

k=3-7, w∗=15-47, hT=52-204, i-bound=16
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 6 6 6 6 6

m-AOBF tree 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
m-AOBF graph 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

m-A* tree 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1
m-BB tree 0 / 0 0 / 0 1 / 1 1 / 1 1 / 1

m-AOBB tree 1 / 1 1 / 1 0 / 0 0 / 0 0 / 0
BE+m-BF 4 / 4 4 / 4 4 / 4 4 / 4 4 / 4

Table 3.5: Number of instances, for which each algorithm has the best runtime (#BT)
and best number of expanded nodes (#BN), Pedigrees. Out of 13 instances 1 have exact
heuristics. The table accounts for remaining 12, i = 16.

BE+m-BF. BE+m-BF is again often superior to other algorithms, especially when the other

schemes use lower i-bounds, e.g., pedigree23, i = 12, all ms. For large i-bounds, and thus a

more accurate heuristic, the difference is much smaller, e.g., pedigree23, i = 22. Table 3.5

shows that BE+m-BF is overall the fastest. We see that on the Pedigree benchmark this

scheme is quite successful, as is evident from the many instances it solved (see Figure 3.7).

m-AOBB-tree. For low values of m m-AOBB-tree is slightly superior to all other algo-

rithms, solving the most number of instances, (see Figure 3.7). On the other hand, its median

time is the largest. It fails to solve any instances for m = 100. From Table 3.4 we see that

m-AOBB-tree is the slowest, (e.g., pedigree23, i = 22, all ms). Yet, for instance pedigree33,

i = 12, m = 1, this scheme is the only one to find any solution.

m-BB-tree. As expected, m-BB-tree is inferior to the best-first schemes unless the latter

run out of memory. As was the case for WCSP, this scheme is often faster than m-AOBB-

tree, as for example, for pedigree30, i = 16, all values of m. The bar charts show that

m-BB-tree has the second worst median time for all values of m, but solves the most number

of problems for m = 100.

m-AOBF schemes. Both m-AOBF algorithms are unsuccessful on Pedigree benchmark.

They often run out of memory even for m = 1 (e.g., pedigree33, i = 22). For most instances,
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Figure 3.7: Median time and number of solved instances (out of 12) for select values of m
for Pedigrees, i = 16. Numbers above bars - actual values of time (sec) and # instances.
Total instances in benchmark: 13 , discarded instances due to exact heuristic: 1.

where they do report solution, m-AOBF-tree is slightly faster than m-AOBF-graph.

m-A*-tree. As we saw for WCSPs, on some pedigree instances m-A*-tree is faster than
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

50-15-5 10

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 8.83 866865 11.97 1177549 20.22 1931039
m-BB tree 8.75 1967152 11.91 2647393 22.06 4708311

m-AOBB tree 3.29 251502 34.28 2485393 Timeout
BE+m-BF 2.11 225 2.11 1469 2.30 11240

(400, 2, 27, 99)
18

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 347.24 17332742 692.59 28676212 2277.92 75442102
BE+m-BF OOM OOM OOM OOM OOM OOM

50-17-5
10

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 82.95 3290939 368.18 16431707 Timeout
BE+m-BF 18.45 289 18.47 1220 18.67 9534

(289, 2, 22, 84)
18

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.35 51205 0.39 55783 0.89 104621
m-BB tree 1.39 355700 1.83 421798 4.92 892065

m-AOBB tree 1.79 85289 116.77 7505310 Timeout
BE+m-BF 18.45 289 18.47 1220 18.67 9534

90-20-5 10

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 347.24 17332742 692.59 28676212 2277.92 75442102
BE+m-BF OOM OOM OOM OOM OOM OOM

(400, 2, 27, 99) 18

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 1.3 153399 1.88 211547 3.53 362344
m-BB tree 74.83 14968683 76.93 15403354 85.42 16631321

m-AOBB tree 46.53 2450725 118.26 4940247 563.22 18306275
BE+m-BF OOM OOM OOM OOM OOM OOM

75-19-5 10

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 3591.1 119431966 Timeout Timeout
BE+m-BF 143.11 361 143.11 2330 144.11 16897

(361, 2, 25, 89)
18

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 14.3 1609506 18.76 2029844 28.04 2995437
m-BB tree 16.27 4005082 22.28 5320573 37.26 8191215

m-AOBB tree 39.66 1367955 94.0 3480629 Timeout
BE+m-BF 143.11 361 143.11 2330 144.11 16897

Table 3.6: Grids: CPU time (in seconds) and number of nodes expanded. A ’Timeout’
stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB memory. In
bold we highlight the best time and number of nodes for each m. Parameters: n - number
of variables, k - domain size, w∗ - induced width, h - pseudo-tree height.

the two m-AOBF schemes, e.g., pedigree23, i = 22, all values of m. Moreover, it is superior

on harder instances infeasible for both m-AOBF schemes and BE+m-BF, e.g., pedigree33,

i = 22. As shown in Figure 3.7, it solves 5 instances for i = 16, for all ms, which is the best

or second best results, depending on the number of solutions. However, the median time of

m-A*-tree is considerably larger than that of BE+m-BF for i = 16, while for this i-bound

the latter solves only a single instance less.
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� 3.6.2.3 Binary Grids

Table 3.6 shows the results for select instances from the grid networks domain. Figure 3.8

shows the median runtime and number of solved instances for i = 18, while Table 3.7 presents

the number of instances, for which an algorithm is the best, for the same i-bound. Most

trends in the algorithms’ behavior observed on WCSP and Pedigree benchmarks can be

also noticed on Grid benchmark. In particular, m-AOBB-tree is very successful when m is

small, even solving the most instances, as seen in Figure 3.8. But it shows worse results

for m = 100 and for any number of solutions has the largest median time. m-BB-tree has

smaller median time for all ms, but is still considerably slower than any of the best-first

schemes. m-A*-tree presents the best compromise between a small medium running time

and a relatively large number of solved instances. Table 3.7 shows that for majority of grid

instances it is the fastest algorithm. The two m-AOBF schemes have results quite similar

to each other, solving almost the same number of instances for all ms with little difference

in median runtimes, as is shown in Figure 3.8. They both are consistently inferior to all

other schemes except for BE+m-BF, which often runs out of memory. The main difference

of the Grid benchmark compared with the previously discussed ones lies in the behavior of

BE+m-BF when the i-bound is high. Even though it expands less nodes, for many problems

BE+m-BF is slower than the other schemes, due to the large time required to compute the

exact heuristic. For example, for instance 75-19-5, i = 18, for m = 10 the runtime of BE+m-

BF is 143.11 seconds, while even m-AOBB-tree, known to be slow, terminates in just 94.0

seconds. At the same time, for this instance BE+m-BF explores the smallest search space

for all values of m.

� 3.6.2.4 Promedas

Table 3.8 shows the results for the Promedas benchmark. Figure 3.9 presents the median

time and number of solved instances for the benchmark for i = 16. Table 3.9 shows for the
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same i-bound the number of instances, for which each of the schemes had the best runtime

and best number of expanded nodes. A significant fraction of the instances is not solved by
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algorithm
Grids: # inst=32, n=144-2500

k=2-2, w∗=15-74, hT=48-312, i-bound=18
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 12 12 13 13 14

m-AOBF tree 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
m-AOBF graph 0 / 0 0 / 1 0 / 2 0 / 1 0 / 3

m-A* tree 8 / 2 8 / 2 8 / 6 9 / 6 7 / 6
m-BB tree 1 / 0 1 / 0 0 / 0 1 / 0 2 / 2

m-AOBB tree 7 / 10 7 / 10 5 / 5 5 / 5 2 / 2
BE+m-BF 5 / 7 5 / 6 6 / 5 6 / 6 6 / 4

Table 3.7: Number of instances, for which each algorithm has the best runtime (#BT) and
best number of expanded nodes (#BN), Grids. Out of 32 instances 1 have exact heuristics.
The table accounts for remaining 31, i = 18.

any of the algorithms, especially for low and medium i-bounds. Unlike the other benchmarks,

on Promedas m-AOBB-tree not only solves the most instances for small ms, but also is quite

successful for m = 100, solving only one instance less than the best scheme for this value of m,

m-BB-tree. Moreover, sometimes m-AOBB-tree is the only scheme to report any solutions,

especially for weak heuristic, e.g., or chain 50.fg and or chain 212.fg, i = 12. BE+m-BF

runs out of memory on most instances, as seen in Table 3.8. Overall, the variance of the

algorithms’ performance is more significant for Promedas than for the previously discussed

benchmarks. For example, as we see in Figure 3.9, for i = 16 m-A*-tree, m-BB-tree and

m-AOBB-tree solve between 25 and 33 instances for m ∈ [1, 10], while BE+m-BF and both

m-AOBB-based schemes solve only between 4 and 8 instances. Table 3.9 demonstrates that

m-A*-tree most often is the fastest of the algorithms.

� 3.6.2.5 Protein

Table 3.10 shows select Protein instances for i = 4 and i = 8. Figure 3.10 and Table 3.11

show the summary of the results for i = 4. This benchmark is fairly difficult due to very

large domain size (up to 81). The heuristic calculation is not feasible for higher i-bounds. In

particular, BE+m-BF has considerable problems in calculating the exact heuristic. Even for

low i-bounds only relatively easy instances are solved. Both m-AOBF-tree and m-AOBF-
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

or chain 107.fg 16

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 7.89 919865 18.89 2108122 44.61 4641627
m-BB tree 14.58 3139711 35.15 7051974 102.6 18494630

m-AOBB tree 67.95 1398364 229.49 5134280 627.94 13594667
BE+m-BF OOM OOM OOM

(620, 2, 30, 64) 22

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 9.2 1093564 20.83 2465364 56.59 6356871
m-BB tree 17.0 3861414 42.36 9205755 100.45 19217427

m-AOBB tree 122.01 3214924 418.46 11123810 855.84 21388619
BE+m-BF OOM OOM OOM

or chain 141.fg 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree 9553.91 1276222668 OOT OOT

m-AOBB tree 272.0 9878480 721.67 25481595 2091.26 64400241
BE+m-BF OOM OOM OOM

(676, 2, 30, 70) 16

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 14.16 1261489 38.48 3379926 OOM
m-BB tree 279.61 56821714 460.15 87947802 885.72 160581726

m-AOBB tree 140.9 6490042 315.2 14103095 909.48 33842266
BE+m-BF OOM OOM OOM

or chain 212.fg 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 1772.8 49808550 4206.07 111853485 Timeout
BE+m-BF OOM OOM OOM

(773, 2, 33, 79)
22

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 9.91 1118792 33.87 3669711 78.37 8186757
m-BB tree 78.08 15922806 141.66 27615033 342.51 58246101

m-AOBB tree 584.83 11336657 1239.88 24717964 5032.11 86444575
BE+m-BF OOM OOM OOM

or chain 50.fg 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 1404.27 33495406 3748.85 93992107 10070.0 245628104
BE+m-BF OOM OOM OOM

661, 2, 36, 76)
22

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 53.87 5673948 OOM OOM
m-BB tree 91.15 18515503 176.14 34915510 447.46 85945673

m-AOBB tree Timeout Timeout Timeout
BE+m-BF OOM OOM OOM

Table 3.8: Promedas: CPU time (in seconds) and number of nodes expanded. An ’Timeout’
stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB memory. In
bold we highlight the best time and number of nodes for each m. Parameters: n - number
of variables, k - domain size, w∗ - induced width, h - pseudo-tree height.

graph fail to find any solutions within the memory limit on the majority of instances, e.g.,

pdb1b2v and pdb1cxy, i = 4. There is not much difference between the runtimes of all

algorithms, with an exception of m-AOBB-tree. For example, for pdb1b2v, i = 8, m-

AOBB-tree requires 6.46 seconds to find m = 10 solutions, while the runtimes of other

algorithms range from 0.03 to 0.09 seconds (except for BE+m-BF which runs out of memory).

However, the slow performance of m-AOBB-tree on easier problems, that are feasible for all

algorithms, is compensated by the fact that for many instances it is the only scheme to report
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Figure 3.9: Median time and number of solved instances (out of 86) summary for select
values of m for Promedas, i = 16. Numbers above bars - actual values of time (sec) and #
instances. Total instances in benchmark: 75, discarded instances due to exact heuristic: 11.

any solution, solving most instances by considerable amount for m ∈ [1, 10] (Figure 3.10).

Table 3.11 shows that m-AOBB-tree is the best both in terms of time and space for the

121



algorithm
Promedas: # inst=86, n=197-2113

k=2-2, w∗=5-120, hT=34-187, i-bound=16
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 42 42 45 44 46

m-AOBF tree 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0
m-AOBF graph 0 / 1 0 / 2 0 / 2 0 / 3 0 / 2

m-A* tree 22 / 17 21 / 17 18 / 17 18 / 15 9 / 9
m-BB tree 1 / 0 1 / 0 1 / 0 2 / 0 10 / 5

m-AOBB tree 4 / 8 4 / 8 3 / 5 4 / 8 2 / 7
BE+m-BF 8 / 7 8 / 6 8 / 6 8 / 5 8 / 6

Table 3.9: Number of instances, for which each algorithm has the best runtime (#BT)
and best number of expanded nodes (#BN), Promedas. Out of 86 instances 11 have exact
heuristics. The table accounts for remaining 75, i = 16.

overwhelming majority of problems for all values of m except for m = 100.

� 3.6.2.6 Segmentation

Table 3.12 shows the results for the select instances from the Segmentation benchmark for

two i-bounds. Figure 3.11 and Table 3.13 present the summary of the results for i = 12.

Unlike WCSP, for this benchmark we chose to display relatively low i-bounds not because

calculating heuristic with larger i’s is infeasible, but because the problems have low induced

width and we wished to avoid displaying results obtained with exact heuristics. The main

peculiarity of this benchmark is the striking success of BE+m-BF. Overall it solves as many

instances as usually superior m-A*-tree and m-BB-tree, as is seen in Figure 3.11. Moreover,

its runtime is superior to the other schemes, as is true for all instances in Table 3.12 and is

also illustrated by the results in the Table 3.13. When the heuristic is very weak, m-AOBB-

tree is fairly successful, for example, finding solutions for all values of m for 12 4 s.binary,

i = 4, which is infeasible for any other scheme, except for BE+m-BF. However, as usual,

m-AOBB-tree is the overall slowest of the schemes.
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

pdb1b2v 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.12 2508 0.17 3186 0.34 6249
m-BB tree 10.23 948337 11.09 1034645 14.4 1404370

m-AOBB tree 6.51 100584 35.14 827365 4462.0 230849005
BE+m-BF OOM OOM OOM

(133, 36, 13, 33) 8

m-AOBF tree 0.02 95 0.06 294 0.42 1956
m-AOBF graph 0.03 95 0.09 108 0.64 135

m-A* tree 0.0 139 0.03 597 0.15 3051
m-BB tree 0.01 2401 0.07 8861 0.5 67330

m-AOBB tree 0.29 6563 6.46 256588 Timeout
BE+m-BF OOM OOM OOM

pdb1cxy 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.38 3708 0.48 4434 0.94 10854
m-BB tree 0.4 51020 0.6 73849 1.45 191203
BE+m-BF OOM OOM OOM

(70, 81, 9, 19) 8

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.01 121 0.04 480 0.1 2870
m-BB tree 0.03 5791 0.07 11429 0.27 53702

m-AOBB tree 0.66 7029 2.04 34567 44.28 1335157
BE+m-BF OOM OOM OOM

pdb1ctj 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 10.43 35400 13.23 43538 19.74 65340
m-BB tree 844.08 76609260 1039.96 94422614 1325.84 120786833

m-AOBB tree 5.64 74833 18.29 306054 157.43 5307198
BE+m-BF 0.01 62 0.02 265 0.07 1050

(62, 81, 8, 21) 8

m-AOBF tree 0.0 49 0.07 302 0.42 1825
m-AOBF graph 0.02 45 0.11 74 0.75 95

m-A* tree 0.01 62 0.03 265 0.08 1057
m-BB tree 0.01 1118 0.03 5385 0.15 31066

m-AOBB tree 0.22 3098 2.32 54324 71.86 3273324
BE+m-BF 0.01 62 0.02 265 0.07 1050

pdb1dlw 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 46.17 579108 46.26 579405 46.49 582375
m-BB tree 47.27 6380302 47.33 6391107 50.72 6762911

m-AOBB tree 187.38 1451906 544.55 12759004 OOT
BE+m-BF 0.01 294 0.05 635 0.39 4265

(84, 81, 8, 29) 8

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.14 6900 0.18 7240 0.52 10855
m-BB tree 1.06 162913 1.09 167037 1.86 280189

m-AOBB tree 18.53 154850 157.01 8632114 OOT
BE+m-BF 0.01 294 0.05 635 0.39 4265

Table 3.10: Protein: CPU time (in seconds) and number of nodes expanded. An ’Timeout’
stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB memory. In
bold we highlight the best time and number of nodes for each m. Parameters: n - number
of variables, k - domain size, w∗ - induced width, h - pseudo-tree height.

� 3.6.3 Best-First vs Depth-First Branch and Bound for M -best Solutions

Let us again consider the data presented in Tables 3.2-3.13 and Figures 3.6-3.11 in order to

summarize our observations and contrast the performance of best-first and depth-first branch

and bound schemes. Among the best-first schemes m-A*-tree is the most successful. It is

often very effective when armed with a good heuristic and requires less space than the other

best-first schemes. As we already noted, BE+m-BF shows good results on Segmentation

benchmark, where it is the best algorithm in terms of the mean runtime, while solving at

123



1 2 5 10 100m
100

101

102

103

104

105
M
ed

ia
n 
tim

e
Pr
ot
ei
n,
 i=

4

0.
01

0.
01

0.
01

0.
03

0.
14

0.
13

0.
14

0.
17

0.
19

0.
38

0.
25

0.
27

0.
32

0.
39 0.

67

2.
84

2.
87

2.
89

2.
95 3.
39

37
.4
6

39
.4
5

41
.9
1

45
.2
8

50
.7
2

17
7.
3

19
0.
28

22
0.
64 59

7.
38 14

57
.6
1

BE+m-BF
m-AOBF tree

m-AOBF graph
m-A* tree

m-BB tree
m-AOBB tree

1 2 5 10 100m
100

101

So
lv

ed
 in

st
an

ce
s

Pr
ot

ei
n,

 i=
4

6 6 6 6 6

13 13 13 13

10

13 13 13 13

10

25 25 25 25 25

35 35 35 35 35

44 44 42 42

20

BE+m-BF
m-AOBF tree

m-AOBF graph
m-A* tree

m-BB tree
m-AOBB tree

Figure 3.10: Median time and number of solved instances (out of 72) for select values of m
for Protein, i = 4. Numbers above bars - actual values of time (sec) and # instances. Total
instances in benchmark: 72, discarded instances due to exact heuristic: 0.

least the same number of problems as the other schemes. However, on the other benchmarks

the calculation of the exact heuristic is often infeasible. The two m-AOBF-based schemes
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algorithm
Protein: # inst=72, n=15-242

k=18-81, w∗=5-16, hT=7-44, i-bound=4
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 26 26 27 27 34

m-AOBF tree 8 / 3 7 / 1 7 / 1 7 / 0 5 / 0
m-AOBF graph 1 / 10 2 / 12 2 / 12 1 / 13 1 / 10

m-A* tree 11 / 9 9 / 9 12 / 9 14 / 10 17 / 13
m-BB tree 8 / 1 9 / 2 8 / 3 6 / 3 11 / 10

m-AOBB tree 21 / 22 21 / 21 18 / 19 17 / 17 3 / 3
BE+m-BF 6 / 4 6 / 2 5 / 2 5 / 2 6 / 2

Table 3.11: Number of instances, for which each algorithm has the best runtime (#BT) and
best number of expanded nodes (#BN), Protein. Out of 72 instances 0 have exact heuristics.
The table accounts for remaining 72, i = 4.

are overall inferior due to prohibitively large memory, solving less instances then the other

algorithms. Both branch and bound algorithms are more robust in terms of memory re-

quirements and dominate on many benchmarks in terms of the number of instances solved.

However, they tend to have considerably larger median time and expand more nodes com-

pared to m-A*-tree and other best-first schemes. In particular, m-AOBB-tree does not scale

well with the number of solutions and for large values of m the runtime increases drastically.

Overall, whenever the calculation of the exact heuristic is feasible, BE+m-BF should be the

algorithm of choice. Otherwise, m-A*-tree is superior for the relatively easy problems, while

m-AOBB-tree is the best scheme for hard memory-intensive instances.

� 3.6.4 Scalability of the Algorithms with the Number of Required Solutions

Figures 3.12-3.14 present the plots showing the runtime in seconds and the number of ex-

panded nodes as a function of number of solutions m (on a log scale) for two instances

from each benchmark. Figure 3.12 displays results for WCSP and Pedigree benchmarks,

Figure 3.13 - for Grids and Promedas, Figure 3.14 - for Proteins and Segmentation. Lower

values (on a y-axis) are preferable. Each row contains two instances from each benchmarks

for a specific value of i-bound, the runtime plots above the expanded nodes plots. The

examples are chosen to best illustrate the prevailing tendencies.
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instance
i-bound algorithm

number of solutions

(n,k,w∗,h)
m = 1 m = 10 m = 100

time nodes time nodes time nodes

12 4 s.binary 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 164.91 5653312 505.82 18888321 4371.05 189179726
BE+m-BF 0.0 225 0.02 1619 0.21 11194

(225, 2, 16, 48) 12

m-AOBF tree 7.31 103327 10.36 143333 OOM
m-AOBF graph 10.47 1843 OOM OOM

m-A* tree 0.03 3754 0.06 5692 0.3 18616
m-BB tree 0.04 8251 0.21 24349 1.32 131571

m-AOBB tree 0.08 4158 1.62 118074 489.57 40961080
BE+m-BF 0.0 225 0.02 1619 0.21 11194

16 16 s.binary 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 71.71 2733703 360.14 14906212 OOT
BE+m-BF 0.01 227 0.02 1365 0.19 11157

(227, 2, 16, 57) 12

m-AOBF tree 0.23 3338 3.75 46121 OOM
m-AOBF graph 0.33 799 5.72 1827 OOM

m-A* tree 0.01 585 0.09 9103 0.38 30542
m-BB tree 0.05 10687 0.19 30119 1.2 141591

m-AOBB tree 0.21 11076 14.28 1054628 OOT
BE+m-BF 0.01 227 0.02 1365 0.19 11157

7 9 s.binary 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 127.17 3337949 505.08 17976200 OOT
BE+m-BF 0.01 234 0.03 1337 0.21 10212

(234, 2, 16, 53) 12

m-AOBF tree 8.85 122663 OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 0.02 1978 0.06 4170 0.28 15807
m-BB tree 0.03 4415 0.11 13357 0.95 89675

m-AOBB tree 0.05 2750 10.54 806490 OOT
BE+m-BF 0.01 234 0.03 1337 0.21 10212

11 4 s.binary 4

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree OOM OOM OOM
m-BB tree Timeout Timeout Timeout

m-AOBB tree 110.19 4227437 555.6 23302165 OOT
BE+m-BF 0.01 231 0.03 1615 0.28 14241

(231, 2, 16, 57) 12

m-AOBF tree OOM OOM OOM
m-AOBF graph OOM OOM OOM

m-A* tree 1.02 102671 1.17 115407 1.86 167983
m-BB tree 2.07 428791 2.9 527967 7.1 1010155

m-AOBB tree 0.75 39170 11.99 809403 8497.93 617227854
BE+m-BF 0.01 231 0.03 1615 0.28 14241

Table 3.12: Segmentation: CPU time (in seconds) and number of nodes expanded. An
’Timeout’ stands for exceeding the time limit of 3 hours. ’OOM’ indicates out of 4GB
memory. In bold we highlight the best time and number of nodes for each m. Parameters:
n - number of variables, k - domain size, w∗ - induced width, h-pseudo-tree height.

Note that the theoretical analysis suggests that runtime of BE+m-BF should scale with

m the best among the algorithms, since its worst case complexity is O(nkw
∗

+ mn). The

theoretical complexity of the best-first schemes m-AOBF-tree and m-A*-tree is linear in the

number of solutions, while for m-BB-tree the overhead due to m-best task is a factor of

(m · logm) and for m-AOBB-tree it is (m logm · deg), where deg is the degree of the pseudo-

tree for m-AOBB. We observed that compared to other schemes the runtime of BE+m-BF

indeed rises quite slowly as the number of solutions increases, even as m reaches 100. The
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Figure 3.11: Median time and number of solved instances (out of 47) for select values of m
for Segmentation, i = 12. Numbers above bars - actual values of time (sec) and # instances.
Total instances in benchmark: 47, discarded instances due to exact heuristic: 0.

runtime m-A*-tree also scales well with m. The behavior of m-BB-tree depends a lot on a

benchmark. On Pedigrees and Protein its runtime changes little on most instances as the
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algorithm
Segmentation: # inst=47, n=222-234

k=2-21, w∗=15-18, hT=47-67, i-bound=12
m = 1 m = 2 m = 5 m = 10 m = 100

#BT / #BN #BT / #BN #BT / #BN #BT / #BN #BT / #BN
Not solved 23 23 23 23 23

m-AOBF tree 0 / 5 0 / 0 0 / 0 0 / 0 0 / 0
m-AOBF graph 0 / 5 0 / 7 0 / 11 0 / 15 0 / 14

m-A* tree 15 / 0 11 / 0 12 / 0 11 / 0 3 / 0
m-BB tree 7 / 0 5 / 0 3 / 0 2 / 0 0 / 0

m-AOBB tree 0 / 0 3 / 0 0 / 0 0 / 0 0 / 0
BE+m-BF 21 / 19 20 / 17 22 / 13 24 / 9 24 / 10

Table 3.13: Number of instances, for which each algorithm has the best runtime (#BT) and
best number of expanded nodes (#BN), Segmentation. Out of 47 instances 0 have exact
heuristics. The table accounts for remaining 47, i = 12.

number of solutions grows, but on the other benchmarks, the runtime for m = 100 tends to be

significantly larger than for m = 1. m-AOBF-tree and m-AOBF-graph often do not provide

any solutions even for m = 1 or, alternatively, run out of memory as m slightly increases

(m ∈ [2, 10]). These algorithms are clearly not successful in practice. Both the runtime and

number of expanded nodes of m-AOBB-tree increase drastically as m gets larger.

� 3.6.5 Comparison with Competing Algorithms

We compare our methods with a number of previously developed schemes described in more

details in Section 3.5: STRIPES, PESTEELARS and Nilsson’s algorithm. The first two

schemes are based on ideas of LP relaxations and are approximate, but are known to often

find exact solutions, though they provide no guarantees of optimality. Nilsson’s algorithm is

an exact message-passing scheme operating on a junction tree. For the first set of experiments

(on a tree benchmark) we also show results for STILARS algorithm, an older version of the

PESTEELARS algorithm. However, this scheme is consistently inferior to the other two

LP-based schemes and is not considered for the other two benchmarks.

Randomly generated benchmarks.

The comparison was performed on three benchmarks: random trees, random binary grids
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Benchmark # inst n k w∗ hT
Random trees 12 10-5994 2-4 1 5-132

Random Binary Grids 24 16-3192 2 6-79 9-221
Random submodular graphs 12 16-3192 2 4-74 9-208

Table 3.14: Benchmark parameters: # inst - number of instances, n - number of variables,
k - domain size, w∗ - induced width, hT - pseudo-tree height.

instance algorithm
i-bound=4. k=2

m = 1 m = 2 m = 5 m = 10 m = 100
time time time time time

tree nnodes245 ps1 k2

m-AOBF tree 0.02 0.02 0.05 0.09 0.61
m-AOBF graph 0.02 0.03 0.08 0.13 0.95

m-A* tree 0.0 0.0 0.01 0.02 0.12

(245, 2, 2, 32)

m-BB tree 0.0 0.0 0.02 0.03 0.37
m-AOBB tree 0.02 0.02 0.06 14.14 3045.25

STILARS 0.0 0.04 7.93 33.3 1757.41
STRIPES 0.09 0.17 0.4 0.88 13.88

PESTEELARS 0.0 0.13 0.51 1.32 47.32

tree nnodes880 ps1 k4

m-AOBF tree 0.3 0.46 1.06 1.9 OOM
m-AOBF graph 0.48 0.76 1.8 3.28 OOM

m-A* tree 0.08 0.17 0.24 0.48 3.67

(880, 4, 2, 52)

m-BB tree 0.1 0.3 0.54 1.23 14.38
m-AOBB tree 1.17 1.37 52.36 927.12 Timeout

STILARS 0.0 0.11 28.19 81.21 2440.22
STRIPES 5.67 11.26 28.09 56.41 607.01

PESTEELARS 0.0 0.87 6.13 9.26 79.0

tree nnodes5994 ps1 k4

m-AOBF tree OOM OOM OOM OOM OOM
m-AOBF graph OOM OOM OOM OOM OOM

m-A* tree 5.44 10.68 18.31 37.21 206.26

(5994, 4, 2, 189)

m-BB tree 5.77 29.04 36.49 97.73 1112.2
m-AOBB tree 851.48 922.19 Timeout Timeout Timeout

STILARS 0.05 2.72 64.48 250.36 7325.4
STRIPES 248.53 506.25 1279.87 2576.87 Timeout

PESTEELARS 0.05 18.28 91.17 169.39 Timeout

Table 3.15: Random trees, i = 4. Timeout - out of time, OOM - out of memory. 3 GB, 1 h.

and random graphs with submodular potentials, that we call ”submodular graphs” in the

remainder of the section. Table 3.14 shows the parameters of the benchmarks. The instances

where generated in the following manner. First a vector of 12 logarithmically spaced integers

between 10 and 103.5 was generated, serving as the number of variables for the instances.

For binary grids benchmarks each value was used to generate two problems with the same

number of variables. The edges between the variables were generated uniformly randomly,

while making sure that the end graph is a tree, a grid or a loopy graph, depending on the

benchmark. For each edge we define a binary potential and each vertex a uniary potential in

an exponential form: f = eθ, where θ is a real number sampled from a uniform distribution.

For the third benchmark the potentials are further modified to be submodular. On the

129



instance algorithm
i-bound=20

m = 2 m = 5 m = 10 m = 25
time time time time

grid nnodes132 ps1 k2

m-AOBF tree 0.01 0.01 0.03 0.06
m-AOBF graph 0.01 0.02 0.04 0.1

m-A* tree 0.01 0.0 0.01 0.03

(132, 2, 13, 33)

m-BB tree 0.01 0.02 0.03 0.08
m-AOBB tree 0.02 0.05 0.43 10.15

Nilsson 9.53 62.49 148.86 OOM
STRIPES 0.68 5.22 13.3 Timeout

PESTEELARS 3.01 8.94 18.95 Timeout

grid nnodes380 ps2 k2

m-AOBF tree OOM OOM OOM OOM
m-AOBF graph OOM OOM OOM OOM

m-A* tree 0.2 0.23 0.26 0.36

(380, 2, 25, 61)

m-BB tree 0.32 0.36 0.58 0.95
m-AOBB tree 7.62 12.82 67.59 1964.18

Nilsson 110.4 757.14 1820.45 OOM
STRIPES 2.23 19.41 38.54 Timeout

PESTEELARS 3.98 11.5 24.34 Timeout

grid nnodes3192 ps2 k2

m-AOBF tree OOM OOM OOM OOM
m-AOBF graph OOM OOM OOM OOM

m-A* tree OOM OOM OOM OOM

(3192, 2, 75, 217)

m-BB tree Timeout Timeout Timeout Timeout
m-AOBB tree Timeout Timeout Timeout Timeout

Nilsson OOM OOM OOM OOM
STRIPES 123.45 658.05 3035.29 Timeout

PESTEELARS 26.86 81.27 172.35 Timeout

Table 3.16: Random binary grids, i = 20. Timeout - out of time, OOM - out of memory. 3
GB, 1 h.

random trees the m-best optimization LP problem is guaranteed to be tight, on the graphs

with submodular potentials the LP optimization problem is tight, but its m-best extension is

not, and on the arbitrary loopy graphs, including grids, the algorithms provide no guarantees.

Tables 3.15-3.17 show the runtimes for select instances from each of the three random bench-

marks for our 5 m-best search schemes and the competing LP schemes STILARS, PESTEE-

LARS and STRIPES. The time limit was set to 1 hour, memory limit to 3 GB. Since we

observed that STILARS is always inferior to the other two schemes, we excluded it from the

remainder of evaluation, instead adding for comparison Nilsson’s max-flow algorithm. The

implementations of all these algorithms were provided by Dhruv Batra. In the following

we collectively refer to these 4 algorithms as ”competing schemes”. The behavior of the

algorithms is quite consistent across the instances.

STILARS and Nilsson’s schemes are always dominated by the other two competing schemes
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instance algorithm
i-bound=20

m = 2 m = 5 m = 10 m = 25
time time time time

gen nnodes132 ps1 k2

m-AOBF tree 0.01 0.02 0.03 0.05
m-AOBF graph 0.01 0.03 0.06 0.09

m-A* tree 0.0 0.01 0.02 0.02

(132, 2, 13, 34)

m-BB tree 0.0 0.0 0.03 0.05
m-AOBB tree 0.03 0.09 5.44 120.67

Nilsson 9.34 60.81 144.93 394.26
STRIPES 0.5 1.32 3.13 13.24

PESTEELARS 2.9 8.52 18.56 48.76

gen nnodes380 ps1 k2

m-AOBF tree OOM OOM OOM OOM
m-AOBF graph OOM OOM OOM OOM

m-A* tree 0.47 0.51 0.57 0.72

(380, 2, 25, 61)

m-BB tree 0.54 0.61 0.73 1.03
m-AOBB tree 51.77 110.96 141.68 2027.05

Nilsson 105.58 728.0 1753.98 4817.09
STRIPES 2.07 6.2 13.21 76.0

PESTEELARS 4.38 14.09 29.96 75.04

gen nnodes1122 ps1 k2

m-AOBF tree OOM OOM OOM OOM
m-AOBF graph OOM OOM OOM OOM

m-A* tree OOM OOM OOM OOM

(1122, 2, 43, 112)

m-BB tree Timeout Timeout Timeout Timeout
m-AOBB tree Timeout Timeout Timeout Timeout

Nilsson OOM OOM OOM OOM
STRIPES 16.46 57.96 107.73 282.4

PESTEELARS 9.69 28.84 61.04 158.7

Table 3.17: Random loopy graphs with submodular potentials, i = 20. Timeout - out of
time, OOM - out of memory. 3 GB, 1 h.

in terms of runtime. STRIPES and PESTEELARS are sometimes faster than all our schemes

for m = 1, e.g., tree nnodes880 ps1 k4 in Table 3.15. However, on all three benchmark they

scale rather poorly with m. For m ≥ 5 they are almost always inferior to our algorithms,

provided that the latter report any results, with occasional exception with m-AOBB-tree,

which also tends to be slow for large m. The only problems, on which PESTEELARS

and STRIPES are superior to our search schemes, are the largest networks having over

a 1000 variables, such as grid nnodes3192 ps2 k2, which are infeasible for our algorithms.

Overall, our five m-best algorithms proved superiority over the considered competing schemes

on the majority of instances, often having better runtime, especially when m > 2, while

guaranteeing solution optimality.
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� 3.7 Conclusion

Most of the previous work on finding the m best solutions over graphical models was fo-

cused on either iterative schemes based on Lawler’s idea or on dynamic programming (e.g.,

variable-elimination or tree-clustering). We showed for the first time that for combinatorial

optimization defined over graphical models the traditional heuristic search paradigms are

not only directly applicable, but often superior.

Specifically, we extended best-first and depth-first branch and bound search algorithms to

solve the m-best optimization tasks, presenting m-A* and m-BB. We showed that the prop-

erties of A* extend to the m-A* algorithm and, in particular, proved that m-A* is superior

to any other search scheme for the m-best task. We also analyzed the overhead of both algo-

rithms caused by the need to find multiple solutions. We introduced BE+m-BF, a hybrid of

variable elimination and best-first scheme, and showed that it has the best worst-case time

complexity among all m-best algorithms over graphical models known to us.

We evaluated our schemes empirically. We observed that the AND/OR decomposition of

the search space, which significantly boosts the performance of traditional heuristic search

schemes, was not cost-effective for m-best search algorithms, at least with our current imple-

mentation. As expected, the best-first schemes dominate the branch and bound algorithms

whenever sufficient space is available, but fail on the more memory-intensive problems. We

compared our schemes with 4 previously developed algorithms: three approximate schemes

based on LP-relaxation of the problem and an algorithm performing message passing on a

junction tree. We showed that our schemes often dominate the competing schemes, known

to be efficient, in terms of runtime, especially when the required number of solutions is large.

Moreover, our schemes guarantee solution optimality.
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Figure 3.12: CPU time in seconds and number of expanded nodes as a function of number
of solutions m. WCSP and Pedigrees, 4 GB, 3 hours.
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Figure 3.13: CPU time in seconds and a number of expanded nodes as a function of number
of solutions m. Grids and Promedas, 4 GB, 3 hours.
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Figure 3.14: CPU time in seconds and number of expanded nodes as a function of number
of solutions m. Protein and Segmentation, 4 GB, 3 hours.
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Chapter 4

Anytime Weighted Heuristic Search for

Graphical Models

� 4.1 Introduction1

In this chapter we focus on the pure optimization problems, such as Most Probable Expla-

nation and Weighted Constraint Satisfaction Problems (Section 1.2.1.2), describing all our

algorithms in terms of summation-minimization task. Solving such problems is known to

be NP-hard, can require considerable time and would often be infeasible within the existing

time and space limits for an exact search algorithm. It is therefore often desirable to ob-

tain an approximate solution or provide solutions in an anytime manner, namely report a

suboptimal solution fast and gradually improve its accuracy over time.

One well known method, that allows a search algorithm to produce approximate solutions

faster, is the idea of weighting the heuristic evaluation function, which guides the search,

by a fixed (or varying) constant [79]. This idea was revived in recent years in the context

of path-finding domains, where a variety of algorithms using this concept emerged. The

1Part of this work has already been published in Natalia Flerova, Radu Marinescu and Rina Dechter.
”Evaluating Weighted DFS Branch and Bound over Graphical Models ” in Proceedings of Symposium on
Combinatorial Search (SoCS), 2014, and in Natalia Flerova, Radu Marinescu, Pratyaksh Sharma and Rina
Dechter. ”Weighted Best-First Search for W-Optimal Solutions over Graphical Models.” in Proceedings of
Planning, optimization and search (a workshop of AAAI’15), 2015.
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attractiveness of this scheme of weighted heuristic search is in transforming best-first search

into an anytime scheme, where the weight serves as a control parameter trading-off time,

memory and accuracy. The common approach is to have multiple executions, gradually

reducing the weight along some schedule. A valuable by-product of these schemes is that

the weight offers a sub-optimality bound on the generated cost.

In this chapter we investigate the potential of weighted heuristic search for probabilistic

and deterministic graphical models queries. Because graphical models are characterized

by having many solutions which are all at the same depth, they are typically solved by

depth-first schemes. These schemes allow flexible use of memory and they are inherently

anytime (though require a modification for AND/OR spaces). Best-first search schemes, on

the other hand, do not offer a significant advantage over depth-first schemes for this domain,

yet they come with a significant memory cost and lack of anytime behavior, and therefore

are rarely used. In this chapter we show that weighted heuristics can facilitate an effective

and competitive best-first search scheme, useful for graphical models as well. The following

paragraphs elaborate.

In path-finding domain, where solution length varies (e.g., planning), best-first search, and

especially its popular variant A* [44], is clearly favored among the exact schemes. How-

ever, A*’s exponential memory needs, coupled with its inability to provide a solution any

time before termination, lead to extension into more flexible anytime schemes based on the

Weighted A* (WA*) [79]. Several anytime weighted heuristic best-first search schemes were

proposed in the context of path-finding problems in the past decade [43, 64, 97, 80, 96, 80].

Our contribution.

We extend and evaluate weighted heuristic search for graphical models. As a basis we used

AND/OR Best First search (AOBF,[69]) and AND/OR Branch and Bound search (AOBB,

[68]), both described in Section 1.2.4. We compare against a variant called Breadth-Rotating
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AND/OR Branch and Bound (BRAOBB [76]). As already mentioned, BRAOBB (under the

name daoopt) was instrumental in winning the 2011 Probabilistic Inference Challenge2 in

all optimization categories. This algorithm also won second place for 20 minutes and 1 hour

time bounds in MAP category and first place for all time bounds in MMAP category in

UAI Inference Challenge 20143. We also compare our schemes against traditional depth-first

branch and bound (DFBB) and A* exploring OR search graph, and against Stochastic Local

Search (SLS).

We explored a variety of weighted heuristic schemes. After an extensive preliminary empirical

evaluation, the two best-first schemes that emerged as most promising were wAOBF and

wR-AOBF. Both apply weighted heuristic best-first search iteratively while decreasing w.

wAOBF starts afresh at each iteration, while wR-AOBF reuses search efforts from previous

iterations, extending ideas presented in Anytime Repairing A* (ARA*) [64]. Our empirical

analysis revealed that weighted heuristic search can be competitive with BRAOBB on a

significant number of instances from a variety of domains.

We also explored the benefit of weighting for depth-first search, resulting in wAOBB and

wBRAOBB schemes. The weights facilitate an alternative anytime approach and most im-

portantly equip those schemes with sub-optimality guarantees. Our empirical evaluation

showed that for many instances our algorithms yielded best results.

To explain the behavior of weighted heuristic search we introduce a notion of focused search

that yields a fast search. Moreover, we derive the optimal value of the weight that a) yields

a greedy search with least loss of accuracy; b) when computed over an arbitrary solution

path provides a guarantee on the solution accuracy.

Note that for the purpose of this work we intentionally focus primarily on the complete

2http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
3http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html
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schemes that guarantee optimal solutions if given enough time and space. Thus many ap-

proximate schemes developed for graphical models, e.g., [47, 71, 35, 89, 100], remain beyond

the scope of our consideration, as do a number of exact methods, developed for weighted

CSP problems, e.g., [63, 26]. A relevant work on generating both a lower bound and an

upper-bound in an anytime fashion and providing a gap of optimality when terminating

was done by Cabon, et al., [10], though their approach is orthogonal to our investigation

of the power of weighted heuristic search in generating anytime schemes with optimality

guarantees.

The chapter is organized as follows. In Section 4.2 we present relevant background informa-

tion on weighted heuristic search. In Section 4.3 we consider the characteristics of the search

space explored by the weighted heuristic best-first search and reason about values of the

weights that make this exploration efficient. Section 4.4 presents our extension of anytime

weighted heuristic Best-First schemes to graphical models. Section 4.5 shows the empirical

evaluation of the resulting algorithms. It includes the overview of methodology used (4.5.1),

shows the impact of the weight on runtime and accuracy of solutions found by the weighted

heuristic best-first (4.5.2), reports on our evaluation of different weight policies (4.5.3) and

compares the anytime performances of our two anytime weighted heuristic best-first schemes

against the previously developed schemes (4.5.4). Section 4.6 introduces the two anytime

weighted heuristic depth-first branch and bound schemes (4.6.1) and presents their empirical

evaluation (4.6.2). Section 4.7 presents the evaluation of weighted heuristic search schemes

when using advanced heuristics. Section 4.8 summarizes and concludes.

� 4.2 Background

We previously discussed the A* search in Section 1.2.3.1. Here we give some background

on the weighted A* search. Note that throughout the chapter we define all algorithms for
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min-sum problem, as is the convention in weighted heuristic search literature.

Weighted A* Search (WA*) [79] differs from A* only in using the evaluation function:

f(n) = g(n) + w · h(n), where w > 1. Higher values of w typically yield greedier behavior,

finding a solution earlier during search and with less memory. WA* is guaranteed to termi-

nate with a solution cost C such that C ≤ w · C∗, where C∗ is the optimal solution’s cost.

Such solution is called w-optimal.

Formally, after [79]:

Theorem 4.1. The cost C of the solution returned by Weighted A* is guaranteed to be

within a factor of w from the optimal cost C∗.

Proof. Consider an optimal path to the goal t. If all nodes on the path were expanded by

WA*, the solution found is optimal and the theorem holds trivially. Otherwise, let n′ be the

deepest node on the optimal path, which is still on the OPEN list when WA* terminates.

It is known from the properties of A* search that the unweighted evaluation function of n′,

equal to g(n′) + h(n′), is bounded by the optimal cost C∗, namely: g(n′) + h(n′) ≤ C∗ [77].

Using some algebraic manipulations: f(n′) = g(n′) + w · h(n′), f(n′) ≤ w · (g(n′) + h(n′)).

Consequently, f(n′) ≤ w · C∗.

Let n be an arbitrary node expanded by WA*. Since it was expanded before n′, f(n) ≤ f(n′)

and f(n) ≤ w · C∗. It holds true to all nodes expanded by WA*, including goal node t:

g(t) + w · h(t) ≤ w · C∗. Since g(t) = C and h(t) = 0, C ≤ w · C∗.

� 4.3 Some Properties of Weighted Heuristic Search

In this section we present our new original exploration of the interplay between the weight

w and heuristic function h and their impact on the explored search space. It was observed
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early on that the search space explored by WA* when w > 1 is often smaller than the

one explored by A*. Intuitively the increased weight of the heuristic h transforms best-first

search into a greedy search. Consequently, the number of nodes expanded tends to decrease

as w increases, because a solution may be encountered early on. In general, however, such

behavior is not guaranteed [103]. For some domains greedy search can be less efficient than

A*.

A search space is a directed graph having a root node. Its leaves are solution nodes or

dead-ends. A greedy depth-first search always explores the subtree rooted at the current

node representing a partial solution path. This leads us to the following definition.

Definition 4.1 (Focused search space). An explored search space is focused along a path

π, if for any node n ∈ π once n is expanded, the only nodes expanded afterwards belong to

the subtree rooted at n.

Having a focused explored search space is desirable, because it would yield a fast and memory

efficient search. However, if not every path leads to a goal node, e.g., if we have determinism

in the problem, focused search can lead to a dead-end and not to a solution, and thus is not

likely to be effective. In the following paragraphs we will show that there exists a weight wh

that guarantees a focused search for WA*, and that its value depends on the costs of the

arcs on the solution paths and on the heuristic values along the path.

Proposition 4.1. Let π be a solution path in a rooted search space. Let arc (n, n′) ∈ π be

such that f(n) > f(n′). If n is expanded by A* guided by f , then a) any node n′′ expanded

after n and before n′ satisfies that f(n′′) ≤ f(n′), b) n′′ belongs to the subgraph rooted at n,

and c) under the weaker condition that f(n) ≥ f(n′), parts a) and b) still holds given that

the algorithm breaks ties in favor of deeper nodes.

Proof. a). From the definition of best-first search, the nodes n′′ are chosen from OPEN
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(which after expansion of n include all n’s children, and in particular n′). Since n′′ was

chosen before n′ it must be that f(n′′) ≤ f(n′).

b) Consider the OPEN list at the time when n is chosen for expansion. Clearly, any node q on

OPEN satisfy that f(q) ≥ f(n). Since we assured f(n) > f(n′), it follows that f(q) > f(n′)

and node q will not be expanded before n′, and therefore any expanded node is in the subtree

rooted at n.

c) Assume f(n) ≥ f(n′). Consider any node q on OPEN: it either has an evaluation function

f(q) > f(n), and thus f(q) > f(n′), or f(q) = f(n) and thus f(q) ≥ f(n′). However, node

q has smaller depth than n, otherwise it would have been expanded before n (as they have

the same f value), and thus smaller depth than n′, which is not expanded yet and thus is

the descendant of n. Either way, node q will not be expanded before n′.

In the following we assume that the algorithms we consider always break ties in favor of

deeper nodes.

Definition 4.2 (f non-increasing along a path). Given a path π = {s, . . . , n, n′ . . . , t}

and a heuristic evaluation function h ≤ h∗, if f(n) ≥ f(n′) for every n′ (a child of n along

π), f is said to be monotonically non-increasing along π.

From Proposition 4.1 it immediately follows:

Theorem 4.2. Given a solution path π, along which evaluation function f is monotonically

non-increasing, the search space is focused along path π.

We will next show that this focused search property can be achieved by WA* when w passes

a certain threshold. We denote by c(n, n′) the cost of the arc from node n to its child n′.

Definition 4.3 (The h-weight of an arc). Restricting ourselves to problems where h(n)−
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h(n′) 6= 0, we denote the h-weight of an arc as

wh(n, n
′) =

c(n, n′)

h(n)− h(n′)

Assumption 1. We will assume that for any arc (n, n′), wh(n, n
′) ≥ 0 .

Assumption 1 is satisfied iff c(n, n′) and h(n)−h(n′) have the same sign, and if h(n)−h(n′) 6=

0. Without loss of generality we will assume that for all (n, n′), c(n, n′) ≥ 0.

Definition 4.4 (The h-weight of a path). Consider a solution path π. Then its h-weight

is

wh(π) = max
(n,n′)∈π

wh(n, n
′) = max

(n,n′)∈π

c(n, n′)

h(n)− h(n′)
(4.1)

Theorem 4.3. Given a solution π in a search graph and a heuristic function h, such that

wh(π) is well defined, then WA* using w > wh(π) yields a focused search along π.

Proof. We will show that under the theorem’s conditions f is monotonically non-increasing

along π. Consider an arbitrary arc (n, n′) ∈ π. Since w ≥ wh(π) , then

w ≥ c(n, n′)

h(n)− h(n′)

or, equivalently,

c(n, n′) ≤ w · h(n)− w · h(n′).

Adding gπ(n) to the both sides and some algebraic manipulations yields

gπ(n) + c(n, n′) + w · h(n′) ≤ gπ(n) + w · h(n)

which is equivalent to

gπ(n′) + w · h(n′) ≤ gπ(n) + w · h(n)
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Figure 4.1: WA* with the exact heuristic

and therefore, for the weighted evaluation functions we have f(n′) ≤ f(n). Namely, f is

monotonically non-increasing. From Theorem 4.1 it follows that WA* is focused along π

with this w.

Clearly therefore,

Corollary 4.1. If WA* uses w > wh(π) for each solution path π, then WA* performs a

greedy search, assuming ties are broken in favor of deeper nodes.

Corollary 4.2. When h = h∗, then on an optimal path π, c(n,n′)
h(n)−h(n′)

= 1. Therefore, any

value w ≥ 1 will yield a focused search relative to all optimal paths.

Clearly, when h is exact, the weight w = 1 should be preferred since it guarantees the optimal

solution. But if w > 1 and h = h∗, the solution found by the greedy search may not be

optimal.

Example 4.1. Consider the graph in Figure 4.1. Given w = 10, WA* will always find the

incorrect path A-B-D instead of the optimal solution path A-C-D.

Notice that, if the search is focused only along some solution paths, it can still be very

unfocused relative to the entire solution space. More significantly, as we consider smaller

weights, the search would be focused relative to a smaller set of paths, and therefore less

contained. Yet with smaller weights upon termination WA* yields a superior guarantee
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on the solution quality. We next provide an explicit condition showing that under certain

conditions the weight on a path can provide a bound on the relative distance of the cost of

the path from the optimal cost.

Theorem 4.4. Given a search space, and given an admissible heuristic function h having

wh(π) function for each π. Let π be a solution path from s to t, satisfying:

1) for all arcs (n, n′) ∈ π, c(n, n′) ≥ 0, and for one arc at least c(n, n′) > 0

2) for all arcs (n, n′) ∈ π, h(n)− h(n′) > 0,

then the cost of the path Cπ is within a factor of wh(π) from the optimal solution cost C∗.

Namely,

Cπ ≤ wh(π) · C∗ (4.2)

Proof. Denote by f(n) = fπ(n) the weighted evaluation function of node n using weight

w = wh(π): fπ(n) = g(n) + wh(π) · h(n). Clearly, based on Theorem 4.2 we have that

∀(n, n′) ∈ π, f(n) ≥ f(n′). Namely, that search is focused relative to π.

Since for any arc (n, n′) on path π, starting with s and ending with t, f is monotonically

non-increasing when using wh(π), we have f(s) ≥ f(t). Since g(s) = 0, f(s) = wh(π) · h(s)

and since h(t) = 0, f(t) = g(t) = Cπ, we get that

wh(π) · h(s) ≥ Cπ

Since h is admissible, h(s) ≤ h∗(s) and h∗(s) = C∗, we have h(s) ≤ C∗ and

wh(π) · h(s) ≤ wh(π) · h∗(s) = wh(π) · C∗
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We get from the above two inequalities that

wh(π) · C∗ ≥ Cπ or
Cπ
C∗
≤ wh(π)

In practice, conditions (1) and (2) hold for many problems formulated over graphical models,

in particular for many instances in our datasets (described in Section 4.5.1), when MBE

heuristic is used. However, in the presence of determinism the h-value is sometimes not

well-defined, since for certain arcs c(n, n′) = 0 and h(n)− h′(n) = 0.

In the extreme we can use wmax = maxπ wh(π) as the weight, which will yield a focused

search relative to all paths, but we only guarantee that the accuracy factor will be bounded

by wmax and in the worst case the bound may be loose.

It is interesting to note that

Proposition 4.2. If the heuristic evaluation function h(n) is consistent and if for all arcs

(n, n′) ∈ π, h(n)− h(n′) > 0 and c(n, n′) > 0, then wh(π) ≥ 1.

Proof. From definition of consistency: h(n) ≤ c(n, n′) + h(n′). After some algebraic manip-

ulation it is easy to obtain: max(n,n′)∈Eπ
c(n,n′)

h(n)−h(n′)
≥ 1 and thus wh(π) ≥ 1.

We conclude

Proposition 4.3. For every π, and under the conditions of Theorem 4.4

Cπ ≥ C∗ ≥ Cπ
wh(π)

and therefore, min
π
{Cπ} ≥ C∗ ≥ max

π
{ Cπ
wh(π)

}

146



Algorithm 16: AOBF(hi, w0) exploring AND/OR search tree [69]

Input: A graphical model M = 〈X,D,F,∑〉, weight w0 (default value 1), pseudo-tree T rooted at
X1, heuristic hi calculated with i-bound i;

Output: Optimal solution to M
1 create root OR node s labelled by X1 and let G (explored search graph) = {s};
2 initialize v(s) = w0 · hi(s) and best partial solution tree T ∗ to G;
3 while s is not SOLVED do
4 select non-terminal tip node n in T ∗. If there is no such node then exit;

// expand node n
5 if n = Xi is OR then
6 forall the xi ∈ D(Xi) do
7 create AND child n′ = 〈Xi, xi〉;
8 if n’ is TERMINAL then
9 mark n′ SOLVED;

10 succ(n)← succ(n) ∪ n′;

11 else if n = 〈Xi, xi〉 is AND then
12 forall the successor Xj of Xi in T do
13 create OR child n′ = Xj ;
14 succ(n)← succ(n) ∪ n′;

15 initialize v(n′) = w0 · hi(n′) for all new nodes;
16 add new nodes to the explores search space graph G ← G ∪ succ(n);

// update n and its AND and OR ancestors in G, bottom-up
17 repeat
18 if n is OR node then
19 v(n) = mink∈succ(n)(c(n, k) + v(k));
20 mark best successor k of OR node n, such that k = arg mink∈succ(n)(c(n, k) + v(k))

(maintaining previously marked successor if still best);
21 mark n as SOLVED if its best marked successor is solved;

22 else if n is AND node then
23 v(n) =

∑
k∈succ(n) v(k);

24 mark all arcs to the successors;
25 mark n as SOLVED if all its children are SOLVED;

26 n← p; //p is a parent of n in G
27 until n is not root node s;
28 recompute T ∗ by following marked arcs from the root s;

29 return 〈v(s), T ∗〉;

In summary, the above analysis provides some intuition as to why the weighted heuristic

best-first search is likely to be more focused and therefore more time efficient for larger

weights and how it can provide a user-control parameter exploring the trade-off between

time and accuracy. There is clearly room for exploration of the potential of Proposition 4.3

that we leave for future work.
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� 4.4 Tailoring Weighted BFS to Graphical Models

After analyzing a number of existing weighted heuristic search approaches we extended some

of the ideas to the AND/OR search space over graphical models. In this section, we describe

wAOBF and wR-AOBF - the two approaches that proved to be the most promising after

our initial empirical evaluation (not reported here).

� 4.4.1 Weighted AOBF

The fixed-weighted version of the AOBF algorithm is obtained by multiplying the mini-

bucket heuristic function by a weight w > 1 (i.e., substituting hi(n) by w ·hi(n), where hi(n)

is the heuristic obtained by mini-bucket elimination with i-bound equal to i). This scheme

is identical to WAO*, an algorithm introduced by [11], but it is adapted to the specifics of

AOBF. Clearly, if hi(n) is admissible, which is the case for mini-bucket heuristics, the cost

of the solution discovered by weighted AOBF is w-optimal, same as is known for WA* [79]

and WAO* [11].

Consider an example problem with four binary variables in Figure 4.2 that we will use to

illustrate the work of our algorithms. Figure 4.2(a) shows the primal graph. We assume

weighted CSP problem, namely the functions are not normalized and the task is the min-

sum one: C∗ = minA,B,C,D
(
f(A,B) + f(B,C) + f(B) + f(A,D)

)
. Figure 4.2(c) presents

the AND/OR search graph of the problem, showing the heuristic functions and the weights

derived from functions defined in Figure 4.2(b) on the arcs. Since the problem is very easy,

the MBE heuristic is exact.

Figure 4.3 shows the part of the search space explored by AOBF (on the left) and weighted

AOBF with weight w = 10 (on the right). The numbers in boxes mark the order of node

expansions. For clarity the entire sequence of node values’ updates is not presented and
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Figure 4.2: Example problem with four variables, the functions defined over pair of variables
and resulting AND/OR search graph.
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Figure 4.3: Search graphs explored by (a) AOBF, (b) Weighted AOBF, w=10. Boxed
numbers indicate the order in which the nodes are expanded. vSN indicates that value v was
last assigned during step N , i.e., while expanding the N th node.

only the latest assigned values v are shown. We use notation vSN to indicate that the

value was last updated during step N , namely when expanding the N th node. The reported

solution subtree is highlighted in bold. AOBF finds the exact solution with cost C∗ = 7 and

assignment x∗ = {A = 1, B = 0, C = 1, D = 1}. Weighted AOBF discovers a suboptimal

solution with cost C = 12 and assignment x = {A = 0, B = 1, C = 1, D = 0}. In this

example both algorithms expand 8 nodes.

� 4.4.2 Iterative Weighted AOBF (wAOBF)

Since Weighted AOBF yields w-optimal solutions, it can be extended to an anytime scheme

wAOBF (Algorithm 17), decreasing the weight from one iteration to the next. This ap-
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Algorithm 17: wAOBF(w0, hi)

Input: A graphical model M = 〈X,D,F〉; heuristic hi calculated with i-bound i; initial weight w0,
weight update schedule S

Output: Set of suboptimal solutions C
1 Initialize w = w0 and let C ← ∅;
2 while w >= 1 do
3 〈Cw, T

∗
w〉 ← AOBF(w · hi);

4 C ← C ∪ {〈w,Cw, T
∗
w〉};

5 Decrease weight w according to schedule S;

6 return C;

Algorithm 18: wR-AOBF(hi, w0)

Input: A graphical model M = 〈X,D,F〉; pseudo-tree T rooted at X1; heuristic hi for i-bound=i;
initial weight w0, weight update schedule S

Output: Set of suboptimal solutions C
1 initialize w = w0 and let C ← ∅;
2 create root OR node s labelled by X1 and let G = {s};
3 initialize v(s) = w · hi(s) and best partial solution tree T ∗ to G;
4 while w >= 1 do
5 expand and update nodes in G using AOBF(w,hi) search with heuristic function w · hi;
6 if T ∗ has no more tip nodes then C ← C ∪ {〈w, v(s), T ∗〉};
7 decrease weight w according to schedule S;
8 for all leaf nodes in n ∈ G, update v(n) = w · hi(n). Update the values of all nodes in G using the

values of their successors. Mark best successor of each OR node.;
9 recalculate T ∗ following the marked arcs;

10 return C;

proach is identical to the Restarting Weighted A* by Richter, et al. [80] applied to AOBF.

Theorem 4.5. Worst case time and space complexity of a single iteration of wAOBF with

caching is O(n · kw∗), where n is the number of variables, k is the largest domain size and

w∗ is the induced width of the problem.

Proof. During each iteration wAOBF executes AOBF from scratch with no overhead. The

number of iterations depends on the start weight and on weight decreasing policy.

� 4.4.3 Anytime Repairing AOBF (wR-AOBF).

Running each search iteration from scratch seems redundant, so we introduce Anytime Re-

pairing AOBF (Algorithm 18), which we call wR-AOBF. It is an extension of the Anytime
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Repairing A* (ARA*) algorithm [64] to the AND/OR search spaces over graphical models.

The original ARA* algorithm utilizes the results of previous iterations by recomputing the

evaluation functions of the nodes with each weight change, and thus re-using the inherited

OPEN and CLOSED lists. The algorithm also keeps track of the previously expanded nodes,

whose evaluation function changed between iterations and re-inserts them back to OPEN

before starting each iteration.

Extending this idea to the AND/OR search space is fairly straightforward. Since AOBF

does not maintain explicit OPEN and CLOSED lists, wR-AOBF keeps track of the partially

explored AND/OR search graph, and after each weight update it performs a bottom-up

update of all the node values starting from the leaf nodes (whose h-values are multiplied

by the new weight) and continuing towards the root node (line 8). During this phase, the

algorithm also marks the best AND successor of each OR node in the search graph. These

markings are used to recompute the best partial solution tree T ′. Then, the search resumes

in the usual manner by expanding a tip node of T ′ (line 9).

Like ARA*, wR-AOBF is guaranteed to terminate with a solution cost C such that C ≤

w · C∗, where C∗ is the optimal solution’s cost.

Theorem 4.6. Worst case space complexity of a single iteration of wR-AOBF with caching

is O(n · kw∗), where n is the number of variables, k is the largest domain size and w∗ is

the induced width of the problem. The worst case time complexity can be loosely bounded by

O(2 · n · kw∗). Total number of iterations depends on the weight parameters.

Proof. In worst case at each iteration wR-AOBF explores the entire search space of size

O(n · kw∗), having the same theoretical space complexity as AOBF and wAOBF. In practice

there exist an additional space overhead due to required book-keeping.

The time complexity comprises the time it takes to expand nodes and time overhead due to
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updating node values during each iteration. Every time the weight is decreased, wR-AOBF

needs to update the values of all nodes in the partially explored AND/OR graph, at most

O(n · kw∗) of them.

The updating of node values is a costly step because it involves all nodes the algorithm has

ever generated. Thus, though wR-AOBF expands less nodes that wAOBF, in practice it is

considerably slower, as we will see next in the experimental section.

� 4.5 Empirical Evaluation of Weighted Heuristic BFS

Our empirical evaluation of weighted heuristic search schemes consists of two parts. In this

section we focus on the two weighted heuristic best-first algorithms described in Section 4.4:

wAOBF and wR-AOBF. In Section 4.6.2 we additionally compare these algorithms with

the two weighted heuristic depth-first branch and bound schemes that will be introduced in

Section 4.6.1.

� 4.5.1 Overview and Methodology

In this section we evaluate the behavior of wAOBF and wR-AOBF and contrast their per-

formance with a number of previously developed algorithms. The main point of reference for

our comparison is the depth-first branch and bound scheme, BRAOBB [76], which is known

to be one of the most efficient anytime algorithms for graphical models 4,5. In a subset

of experiments we also compare against A* search [44] and depth-first branch and bound

(DFBB) [62], both exploring an OR search tree, and against Stochastic Local Search (SLS)

[47, 52]. We implemented our algorithms in C++ and ran all experiments on a 2.67GHz

Intel Xeon X5650, running Linux, with 4 GB allocated for each job.

4http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
5http://www.hlt.utdallas.edu/ vgogate/uai14-competition/leaders.html
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All schemes traverse the same context-minimal AND/OR search graph, defined by a common

variable ordering, obtained using well-known MinFill ordering heuristic [55]. The algorithms

return solutions at different time points until either the optimal solution is found, until a

time limit of 1 hour is reached or until the scheme runs out of memory. No evidence was

used.

All schemes use the Mini-Bucket Elimination heuristic, described in Section 1.2.4.4, with 10

i-bounds, ranging from 2 to 20. However, for some hard problems computing mini-bucket

heuristic with the larger i-bounds proved infeasible, so the actual range of i-bounds varies

among the benchmarks and among instances within a benchmark.

For a subset of experiments we also evaluated the impact of more sophisticated heuristics that

we will discuss in more detail in Chapter 5: Mini-Bucket Elimination with Max-marginal-

Matching (MBE-MM, Section 5.4) and Join-Graph Linear Programming (JGLP, Section 5.3).

We evaluated the algorithms on 4 benchmarks: Binary grids, Pedigree networks, Weighted

CSPs and Type4 genetic networks. The former three were already discussed in Section 2.6.1.

Type4 instances come from the domain of genetic linkage analysis, just as the Pedigree

problems, but are known to be significantly harder. Table 4.1 describes the benchmark

parameters.

For each anytime solution by an algorithm we record its cost, CPU time in seconds and

the corresponding weight (for weighted heuristic schemes) at termination. For uniformity

we consider all problems as solving the max-product task, also known as Most Probable

Explanation problem (MPE). The computed anytime costs returned by the algorithms are

lower bounds on the optimal solutions. In our experiments we evaluate the impact of the

weight on the solution accuracy and runtime, analyze the choice of weight decreasing policy,

and study the anytime behavior of the schemes and the interaction between heuristic strength

and the weight.
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Benchmark # inst n k w∗ hT
Pedigrees 11 581-1006 3-7 16-39 52-104

Grids 32 144-2500 2-2 15-90 48-283
WCSP 56 25-1057 2-100 5-287 11-337
Type4 10 3907-8186 5-5 21-32 319-625

Table 4.1: Benchmark parameters: # inst - number of instances, n - number of variables, k
- domain size, w∗ - induced width, hT - pseudo-tree height.

� 4.5.2 The Impact of Weights on the Weighted AOBF Performance

One of the most valuable qualities of weighted heuristic search is the ability to flexibly control

the trade-off between speed and accuracy of the search using the weight, which provides a

w-optimality bound on the solution.

In order to evaluate the impact of the weight on the solution accuracy and runtime we run

wAOBF and we consider iterations individually. Each iteration j is equivalent to a single

run of AOBF(wj, hi), namely the AND/OR Best First algorithm that uses MBE heuristic

hi, obtained with an i-bound equal to i, multiplied by weight wj.

Table 4.2 reports the results for selected weights (w=2.828, 1.033, 1.00), for several selected

instances representative of the behavior prevalent over each benchmark. Following the names

and parameters of each instance, the table is vertically split into two blocks, corresponding

to two i-bounds. In the second column of each block we report the time in seconds it took

BRAOBB to find the optimal solution to the problem (the higher entry in each row) and

the solution cost on a logarithmic scale (the lower entry in each row). The symbol “—”

indicates that the corresponding algorithm ran out of memory. The next three columns

show the runtime in seconds and the cost on the log scale obtained by AOBF when using a

specific weight value. The entries mentioned in this section are highlighted. Note that, since

calculation of the mini-bucket heuristics is time and space exponential in i-bound, for some

instances the heuristics can’t be obtained for large i-bounds (e.g., 1502.wcsp, i = 10).

Comparison between the exact results by AOBF obtained with weight w = 1 (columns 5
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Instance
(n, k, w∗, hT )

BRAOBB
AOBF(w, hi) weights

BRAOBB
AOBF(w, hi) weights

2.828 1.033 1.00 2.828 1.033 1.00

time
C∗

time
log(cost)

time
log(cost)

time
log(cost)

time
C∗

time
log(cost)

time
log(cost)

time
log(cost)

Grids I-bound=6 I-bound=20

50-16-5
(256, 2, 21, 79)

2601.46
-16.916

0.16
-21.095 — —

7.16
-16.916

7.01
-17.57

7.01
-16.916

7.02
-16.916

50-17-5
(289, 2, 23, 77)

1335.44
-17.759

0.05
-23.496 — —

9.42
-17.759

9.44
-17.829

9.44
-17.759

9.44
-17.759

75-18-5
(324, 2, 24, 85)

390.72
-8.911

0.42
-10.931

74.69
-8.911

88.53
-8.911

13.52
-8.911

13.95
-9.078

13.95
-8.911

13.96
-8.911

75-20-5
(400, 2, 27, 99) time out

1.78
-16.282 — —

22.52
-12.72

19.35
-14.067

24.96
-12.72

27.85
-12.72

90-21-5
(441, 2, 28, 106)

187.75
-7.658

1.13
-8.871

41.38
-7.658

42.48
-7.658

17.01
-7.658

17.32
-9.476

17.65
-7.658

17.74
-7.658

Pedigrees I-bound=6 I-bound=16
pedigree9

(935, 7, 27, 100) time out
0.83

-137.178 — —
1082.02
-122.904

6.24
-133.063

34.66
-122.904 —

pedigree13

(888, 3, 32, 102) time out
0.18

-88.563 — — time out
4.13

-76.429 — —
pedigree37

(726, 5, 20, 72)
4.36

-144.882
0.08

-163.325
4.42

-145.082
9.99

-144.882
388.36

-144.882
388.96

-155.259
389.02

-145.341
389.07

-144.882
pedigree39

(953, 5, 20, 77) time out
0.11

-174.304 — —
4.34

-155.608
4.3

-162.381
4.37

-155.608
4.83

-155.608

WCSP I-bound=2 I-bound=10

1502.wcsp

(209, 4, 5, 11) time out
0.0

-1.258
0.01

-1.258
0.0

-1.258 — — — —
42.wcsp

(190, 4, 26, 72) time out — — —
1563.44
-2.357

11.69
-2.418 — —

bwt3ac.wcsp

(45, 11, 16, 27)
2.47

-0.561
0.93

-0.561
1.84

-0.561
1.85

-0.561
54.34
-0.561

54.88
-0.561

54.92
-0.561

54.92
-0.561

capmo5.wcsp

(200, 100, 100, 100) time out
1.18

-0.262 — — time out
24.04
-0.262 — —

myciel5g 3.wcsp

(47, 3, 19, 24)
2661.91

-64.0 — — —
12.93
-64.0

2.5
-72.0 — —

Type4 I-bound=6 I-bound=16

type4b 100 19

(3938, 5, 29, 354) time out
5.02

-1309.91 — — time out
33.32

-1171.002 — —
type4b 120 17

(4072, 5, 24, 319) time out
4.16

-1483.588 — — time out
26.06

-1362.607
104.37

-1327.776 —
type4b 140 19

(5348, 5, 30, 366) time out
7.28

-1765.403 — — time out
44.94

-1541.883 — —
type4b 150 14

(5804, 5, 32, 522) time out
16.15

-2007.388 — — time out
38.22

-1727.035 — —
type4b 170 23

(5590, 5, 21, 427) time out
9.65

-2191.859 — — time out
18.62

-1978.588
38.4

-1925.883 —

Table 4.2: Runtime (sec) and cost (on logarithmic scale) obtained by AOBF(w, hi) for
selected w, and by BRAOBB (that finds C∗ - optimal cost). Instance parameters: n -
number of variables, k - max domain size, w∗ - induced width, hT - pseudo-tree height. ”—”
- running out of memory. 4 GB memory limit, 1 hour time limit, MBE heuristic. The entries
mentioned in the text are highlighted.
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and 9) and by BRAOBB (columns 2 and 6) with any one of the other columns reveals that

abandoning optimality yields run time savings and allows to find approximate solutions when

exact ones cannot be obtained within an hour.

In more details, let us consider, for example, the columns of Table 4.2 where the costs

generated are guaranteed to be a factor of 2.828 away from the optimal. We see orders

of magnitude time savings compared to BRAOBB, for both i-bounds. For example, for

pedigree9, i = 16, for w = 2.828 weighted AOBF’s runtime is merely 6.24 seconds, while

BRAOBB’s is 1082.02 seconds. For WCSP networks, the algorithms’ runtimes are often

quite similar. For example, for bwt3ac.wcsp, i = 10, BRAOBB takes 54.34 seconds and

weighted AOBF takes 54.88 seconds. On some WCSP instances, such as myciel5g 3.wcsp,

i = 2, BRAOBB is clearly superior, finding an optimal solution within the time limit, while

weighted AOBF runs out of memory and does not report any solution for w = 2.828.

Comparing columns 5 and 9, exhibiting full AOBF with w = 1 (when it did not run out of

memory) against w = 2.828 we see similar behavior. For example, for grid 75-18-5, i = 6,

we see that exact AOBF (w = 1) requires 88.53 seconds, which is about 200 times longer

than with weight w = 2.828 which requires 0.42 seconds.

More remarkable results can be noticed when considering the column of weight w = 1.033,

especially for the higher i-bound (strong heuristics). These costs are just a factor of 1.033

away from optimal, yet the time savings compared with BRAOBB are impressive. For

example, for pedigree9, i = 16 weighted AOBF runtime for w = 1.033 is 34.66 seconds as

opposed to 1082.02 seconds by BRAOBB. Observe that often the actual results are far more

accurate than the bound suggests. In particular, in a few of the cases, the optimal solution

is obtained with w > 1. For example, see grid 75-18-5, i = 20, w = 1.003. Sometimes exact

AOBF with w = 1 is faster than BRAOBB.

Impact of heuristic strength. The i-bound parameter allows to flexibly control the strength of
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mini-bucket heuristics. Clearly, more accurate heuristics yield better results for any heuristic

search and thus should be preferred. However, running the mini-buckets with sufficiently high

i-bound is not always feasible due to space limitations and has a considerable time overhead,

since the complexity of Mini-Bucket Elimination algorithm is exponential in the i-bound.

Thus we are interested to understand how the heuristic strength influences the behavior of

weighted heuristic best-first schemes when the value of the i-bound is considerably smaller

than the induced width of the problem.

Comparing the results Table 4.2 across i-bounds for the same algorithm and the same weight,

we observe a number of instances where more accurate heuristic comes at too high a price.

For example, for pedigree37 weighted AOBF finds a w-optimal solution with w = 2.828 in

0.08 seconds for i = 6, but takes 388.96 seconds for i = 16. One of the examples to the

contrary, where the higher i-bound is beneficial, is grid 90-21-5, where weighted AOBF takes

41.38 seconds to terminate for w = 1.033 when i = 6, but only 17.65 seconds, when i = 20.

Table 4.2 shows that weighted AOBF is less sensitive to the weak heuristics compared with

BRAOBB. For example, for grid 90-21-5 and for i = 20, BRAOBB terminates in 17.01

seconds. However, if the heuristic is weak (i = 6), it requires 187.75 seconds, 2 orders of

magnitude more. On the other hand, for the same instance weighted AOBF with weight

w = 1.033 has much smaller difference in performance for the two i-bounds. weighted AOBF

terminates in 17.65 seconds for i = 20 and in 41.38 seconds for i = 6. This may suggest

that wAOBF could be preferable when the i-bound is small relative to the problem’s induced

width.

Overall, weighted AOBF solves some hard problems that are infeasible for the exact scheme

and often yields solutions with tight bounds considerably faster than the optimal solutions

obtained by BRAOBB or exact AOBF.
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� 4.5.3 Exploring Weight Policies

How should we choose the starting weight value and weight decreasing policy? Previous

works on weighted heuristic search usually avoid disclosing the details of how the starting

weight is defined and how it is decreased at each iteration, e.g., [43], [64], etc. To answer

this we evaluated 5 different policies.

The first two policies we considered were subtract, which decreases the weight by a fixed

quantity, and divide, which at each iteration divides the current weight by a constant. These

policies lay on the opposite ends of the strategies spectrum. The first method changes the

weight very gradually and consistently, leading to a slow improvement of the solution. The

second approach yields less smooth anytime behavior, since the weight rapidly approaches 1.0

and much fewer intermediate solutions are found. This could potentially allow the schemes

to produce the exact solution fast, but on hard instances presents a danger of leaping directly

to a prohibitively small weight and thus failing prematurely due to memory issues. The other

policies we considered were constructed manually based on the intuition that it is desirable

to improve the solution rapidly by decreasing the weight fast initially and then “fine-tune”

the solution as much as the memory limit allows, by decreasing the weight slowly as it

approaches 1.0.

Overall, we evaluated the following five policies, each for several values of parameters. We

denote by wj the weight used at the jth iteration of the algorithm, k and d denote real-valued

policy parameters, where appropriate. Given k and d, assuming w1 = w0 (start weight), for

j > 1:

• subtract(k): wj = wj−1 − k

• divide(k): wj = wj−1/k

• inverse: wj = w1/j
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• piecewise(k, d): if wj ≥ d then wj = w1/j else wj = wj−1/k

• sqrt(k): wj =
√
wj−1/k

The initial weight value needs to be large enough a) to explore the schemes’ behavior on

a large range of weights; b) to make the search focused enough initially to solve harder

instances, known to be infeasible for regular BF within the memory limit. After some

preliminary experiments (not included) we chose the starting weight w0 to be equal to 64.

We noticed that further increase of w0 typically did not yield better results. Namely, the

instances that were infeasible for wAOBF and wR-AOBF with w = 64 also did not fit in

memory when weight was larger. Such behavior can be explained by many nodes having

evaluation function values so similar, that even a very large weight did not yield much

difference between them, resulting in a memory-prohibitive search frontier.
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Figure 4.4: The dependency of the weight value on iteration index according to considered
weight policies, showing first 50 iterations, starting weight w0= 64.

Figure 4.4 illustrates the weight changes during the first 50 iterations according to the

considered policies. We use the parameter values that proved to be more effective in the

preliminary evaluation: subtract(k = 0.1), divide(k = 2), inverse(), piecewise(k = 1.05, d =

8), sqrt(k = 1.0).
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Figure 4.5: wAOBF: solution cost (on logarithmic scale) vs time (sec) for different weight
policies, starting weight = 64. Instance parameters are in format (n,k,w∗,hT ), where n -
number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height.
Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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Figure 4.6: wR-AOBF: solution cost (on logarithmic scale) vs time (sec) for different weight
policies, starting weight = 64. Instance parameters are in format (n,k,w∗,hT ), where n -
number of variables, k - max. domain size, w∗ - induced width, hT - pseudo-tree height.
Time limit - 1 hour, memory limit - 2 GB, MBE heuristic.
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Figures 4.5 and 4.6 show the anytime performance of wAOBF and wR-AOBF with various

weight scheduling schemes, namely how the solution cost changes as a function of time in

seconds. We plot the solution cost on a logarithmic scale. Figure 4.5 displays the results

for wAOBF using each of our five weight policies. We display results for an i-bound from

mid-range, on two instances from each of the benchmarks: Grids, Pedigrees, WCSPs and

Type4. Figure 4.6 shows analogous results for wR-AOBF, on the same instances.

Comparing the anytime performances of two schemes, we consider as better the one that

finds the initial solutions faster and whose solutions are more accurate (i.e., have higher

costs). Graphically, the curves closer to the left top corner of the plot are better.

Several values of numerical parameters for each policies were tried, only the ones that yielded

the best performance are presented. The starting weight is 64 and w! denotes the weight

at the time of algorithms termination. The behavior depicted here was quite typical across

instances and i-bounds. In this set of experiments the memory limit was 2 GB, with time

limit of 1 hour and MBE heuristic was used.

We observe in Figure 4.5 that for most Pedigrees, Grids and Type4 problems wAOBF finds

the initial solution the fastest using the sqrt policy (the reader is advised to consult the

colored graph online). This can be seen, for example, on grid instance 75-23-5 and on

type4b 120 17. The sqrt policy typically facilitates the fastest improvement of the initial

solutions. For most of the WCSP instances, however, there is no clear dominance between

the weight policies. On some instances (not shown) the sqrt policy is again superior. On

others, such as instance 505, the difference in negligible.

Figure 4.6 depicts the same information for wR-AOBF. The variance between the results

yielded by different weight policies is often very small. On many instances, such as pedigree31

or instance 505, it is almost impossible to tell which policy is superior. The dominance of

sqrt policy is less obvious for wR-AOBF, than is was for wAOBF. On a number of problems
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piecewise and inverse policies are superior, often yielding almost identical results, see for

example, pedigree7 or WCSP 404. However, there are still many instances, for which sqrt

policy performs well, for example, pedigree7.

Overall, we chose to use the sqrt weight policy in our subsequent experiments, as it is superior

on more instances for wAOBF than other policies, and is often either best or close second

best for wR-AOBF.

Instance Algorithm

Time bounds
10 30 60 600 3600

log(cost) log(cost) log(cost) log(cost) log(cost)
weight weight weight weight weight

Grids, i-bound=10

75-16-5 (256,2,21,73)

-8.1262 -8.0642 -8.0642 -8.0642 -8.0642
wAOBF 1.0671 1.0082 1.0 1.0 1.0

8.0642 -8.0642 -8.0642 -8.0642 -8.0642
wR-AOBF 1.0 1.0 1.0 1.0 1.0

75-26-5 (676,2,36,129)

-24.5951 -23.0522 -23.0522 -23.0522 -23.0522
wAOBF 2.8284 1.6818 1.6818 1.6818 1.6818

-25.2884 -25.2884 -25.2884 -25.2884 -25.2884
wR-AOBF 1.6818 1.6818 1.6818 1.6818 1.6818

Pedigrees, i-bound=10

pedigree7 (867,4,32,90)

-114.4256 -114.4256 -113.8887 -113.8887 -113.8887
wAOBF 1.2968 1.2968 1.1388 1.1388 1.1388

-118.8305 -118.8305 -114.5481 -114.5481 -114.5481
wR-AOBF 1.2968 1.2968 1.1388 1.1388 1.1388

pedigree41 (885,5,33,100)

-123.6391 -121.3366 -121.3366 -121.3366 -121.3366
wAOBF 1.2968 1.1388 1.1388 1.1388 1.1388

-124.656 -121.3366 -121.3366 -121.3366 -121.3366
wR-AOBF 1.2968 1.1388 1.1388 1.1388 1.1388

WCSPs, i-bound=10

408.wcsp (200,4,34,87)

-2.6798 -2.6798 -2.6798 -2.6798 -2.6798
wAOBF 1.2968 1.2968 1.2968 1.2968 1.2968

-2.6811 -2.6811 -2.6811 -2.6811 -2.6811
wR-AOBF 1.2968 1.2968 1.2968 1.2968 1.2968

capmo5.wcsp (200,100,100,100)

-0.2622 -0.2622 -0.2622 -0.2622
wAOBF — 2.8284 2.8284 2.8284 2.8284

-0.2622 -0.2622 -0.2622 -0.2622
wR-AOBF — 2.8284 2.8284 2.8284 2.8284

Type4, i-bound=10

type4b 150 14 (5804,5,32,522)

-1698.1897 -1652.7112 -1652.7112 -1652.7112
wAOBF — 1.6818 1.2968 1.2968 1.2968

-1763.7714 -1763.7714 -1763.7714 -1763.7714
wR-AOBF — 1.2968 1.2968 1.2968 1.2968

type4b 190 20 (8186,5,29,625)

-2605.3849 -2605.3849 -2605.3849
wAOBF — — 1.2968 1.2968 1.2968

-2803.4548 -2603.6145 -2603.6145
wR-AOBF — — 1.2968 1.1388 1.1388

Table 4.3: Solution cost (on logarithmic scale) and corresponding weight for a fixed time
bound for wAOBF and wR-AOBF. ”—” denotes no solution found by the time bound. 4 GB
memory, 1 hour time limit, MBE heuristic. The entries mentioned in the text are highlighted.
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Figure 4.7: Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max
cost (optimal, if known, otherwise - best cost found for the problem by any of the schemes).
Corresponding weight - above the bars. ’***’ indicated proven solution optimality. Instance
parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size,
w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time limit 1 hour. Grids
and Pedigrees benchmarks, MBE heuristic.

� 4.5.4 Anytime Behavior of Weighted Heuristic Best-First Search

We now turn to our main focus of evaluating the anytime performance of our two itera-

tive weighted heuristic best-first schemes wAOBF and wR-AOBF and comparing against

BRAOBB, A*, depth-first branch and bound of OR search tree (DFBB) and Stochastic Lo-

cal Search (SLS). We ran each scheme on all instances from the same 4 benchmarks with

MBE heuristic using the i-bound ranging from 2 to 20. We recorded the solutions at different

time points, up until either the optimal solution was found or until the algorithm ran out

of 4 GB of memory or the time cut off of 3600 seconds was reached. When comparing two
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anytime algorithms, we consider one to be superior to another if: 1) it discovers the initial

solution faster and also 2) for a fixed time it returns a more accurate solution. We rarely

encounter conflict on these two measures.

We first illustrate the results using a selected set of individual instances in the Table 4.3 and

in bar charts in Figures 4.7 and 4.8. Then we provide summaries over all instances using bar

charts in Figures 4.9-4.12 and scatterplots in Figure 4.13.

� 4.5.4.1 wAOBF vs wR-AOBF

Table 4.3 shows solution cost and corresponding weight by wAOBF and wR-AOBF for 2

selected instances from each benchmark, for medium i-bound, for several time bounds. We

observe that for these instances (that are quite representative), the simpler scheme wAOBF

provides more accurate solutions than wR-AOBF, (e.g., pedigree7, for 10-30 seconds). Still,

on some instances the solution costs are equal for the same time bound (e.g., capmo05.wcsp,

time between 30 and 3600 seconds), and there are examples, where wR-AOBF manages to

find a more accurate solution in a comparable time, such as type4b 190 20, for 600 or 3600

seconds.

Figures 4.7 and 4.8 present the anytime performance of wAOBF, wR-AOBF, BRAOBB,

A*, DFBB and SLS for representative instances using bar charts. Figure 4.7 shows results for

Grids and Pedigrees, Figure 4.8 - for WCSPs and Type4. Each two rows display two problems

from the same benchmark for two i-bounds, smaller i-bounds on the left and larger on the

right. The height of each bar is proportional to the ratio between the solution cost generated

by an algorithm at a time point (at 10, 60, 600 and 3600 seconds) and the optimal cost (if

known) or overall maximal cost. The closer the ratio is to 1, the better. For readability we

display the ratios greater than 0.7. Above each bar we also show the weight corresponding to

the returned solution, where w = 1 is shown in red. The symbol ’***’ above bars indicates
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Figure 4.8: Ratio of the cost obtained by some time point (10, 60, 600 and 3600 sec) and max
cost (optimal, if known, otherwise - best cost found for the problem by any of the schemes).
Corresponding weight - above the bars. ’***’ indicated proven solution optimality. Instance
parameters are in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size,
w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time limit 1 hour. WCSPs
and Type4 benchmarks, MBE heuristic.

proven solution optimality.

We again observe that wR-AOBF has worse anytime behavior than wAOBF. For example,

in Figure 4.7 for pedigree9, i = 6, wAOBF finds better solutions for the same time bounds.

These observations, based on the selected instances displayed in the table and in the figures,

are quite representative, as we will see from the summaries in the next section.

The overall superiority of wAOBF may be explained by the large overhead of wR-AOBF at

each iteration, due to the need to keep track of already expanded nodes and to update their
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evaluation function as the weight changes. As a result, wR-AOBF explores the search space

slower and discovers new improved solutions less frequently than wAOBF.

� 4.5.4.2 Comparing Against State of the Art

Figures 4.7 and 4.8 provide a different perspective of the strength of weighted schemes

compared against several state of the art anytime algorithms. We observe that the dominant

scheme varies from benchmark to benchmark. In Figure 4.7 we see that wAOBF is superior

on the Grid instances when the heuristic is weak. For example, for grid 75-20-5, i = 6 wAOBF

is the only scheme that finds a solution within 10 seconds, aside from SLS. Note that SLS

does not provide any guarantees, while wAOBF and wR-AOBF report for time bounds of 60

seconds or more solutions that are guaranteed to be within a factor of 1.68 from the optimal.

A* and DFBB are always inferior to all other schemes. The former managed to find any

solution for a small number of instances and only for highly accurate heuristics, e.g., 90-20-5,

i = 18. The latter often reports solutions of such low accuracy that they are not seen on the

plots, which only show solutions of relative accuracy greater than 0.7.

On Pedigrees BRAOBB seems to be superior among the complete schemes for weak heuris-

tics, e.g., pedigree9, i = 6. SLS reports optimal costs quite fast, usually under 10 seconds.

When the heuristics are stronger, the performance is less varied, except for both OR schemes

on Grids and many of the Pedigrees. A* and DFBB are usually inferior even when the i-

bound is high, e.g., pedigree13, i = 16.

Figure 4.8 shows that the weighted heuristic best-first schemes are superior to all other

schemes for Type4 instances shown, for all levels of heuristic strengths. Interestingly, on

most of Type4 problems even SLS did not report solutions with relative accuracy greater

than 0.7 and thus its results are not shown on our plots, while wAOBF often quickly finds

solutions close to optimal.
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Notice that the weighted schemes provide tight w-optimality guarantees in many cases.

For example, on the two Type4 instances presented in Figure 4.8 wAOBF and wR-AOBF

guarantee that the costs reported at 60 seconds are 1.14-optimal. This is in contrast to

competing schemes (e.g., BRAOBB) that do not prove optimality within the time limit.

On WCSPs, however, wAOBF and wR-AOBF are less effective. For example, both are

inferior to BRAOBB and SLS on 42.wcsp instance, for both i-bounds. For stronger heuristic

even DFBB, which in general is not particularly successful, is superior to the weighted

heuristic BF schemes.

As expected, A* and DFBB, both exploring an OR search tree, are clearly inferior to

AND/OR schemes, in particular to BRAOBB (see, for example, [66, 67] for more com-

parisons between AND/OR and OR search). Additionally, A* is not an inherently anytime

scheme. Stochastic Local Search, though it often finds accurate solutions quickly, is not a

complete algorithm and thus is outside state of the art schemes with which we systematically

compared. It also does not provide any bound on its solution.

We now show data summarizing the results from all the instances. Figures 4.9-4.12 provide

summaries of our experimental results in the form of bar charts. Note that the summaries

include also a weighted depth-first branch and bound algorithm wAOBB that will be intro-

duced in Section 4.6. We defer the comparison with wAOBB until Section 4.6.2.2.

The figures compare each of the three algorithms (wAOBF, wR-AOBF and wAOBB) with

BRAOBB. There are two columns of bar charts in each figure. The left one summarizes the

percentage of instances in which an algorithm is more accurate compared with BRAOBB,

and the right one provides the percentages on instances where an algorithm yields the same

costs as BRAOBB. Therefore, the heights of the bars in Figures 4.9-4.12 are proportional to

these percentages.
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The ratio at the top of each bar is the actual number of instances where an algorithm is better

(left column) or equal (right column), divided by the total number of instances solved by the

algorithm. Tables 4.4 and 4.5 present the summary of the results in table form, including an

additional time bound. For each benchmark for 5 time bounds and for 4 i-bounds we show

the percentages of the instances for which a particular weighted algorithm found a more

accurate solution than BRAOBB (%X), and for which the algorithm found the solution of

the same cost as BRAOBB (%Y ). We also show the number of instances solved by each

algorithm (N).

From these figures we see that on two out of four our benchmarks the weighted heuristic

schemes dominated, finding costs of better accuracy within the time limits. This superior

behavior on Grids and Type4 benchmarks was mostly consistent across time bounds and

heuristics of various strengths and can be observed in Figures 4.9 and 4.11. Specifically,

for certain i-bounds and time bounds wAOBF returned more accurate costs than BRAOBB

on up to 68% of the Grid instances and on 90-100% of the Type4 instances. Interestingly,

for Type4 benchmark the weighted schemes almost never found the same solution costs as

BRAOBB, as is indicated by the zeros in the plots on the right side of Figure 4.11.

The comparative strength of wAOBF is more pronounced for short time intervals and for

weak heuristics. The dependence of wR-AOBF’s performance on time is less predictable.

We observe here that for most i-bounds and for most time limits wAOBF performs better

than wR-AOBF. This is especially obvious on Type4 benchmark and for small i-bound, e.g.,

for i = 6, 3600 seconds wR-AOBF is superior to BRAOBB only on 50% of the instances,

while wAOBF dominates on 90%.

Figure 4.13 uses scatter diagrams to compare between the more successful of the two

weighted heuristic best-first schemes, wAOBF, and BRAOBB. Each plot corresponds to a

specific time point. The x-axis coordinate gives the relative accuracy of the solution obtained
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Figure 4.9: Grids: percentage of instances for which each algorithm found solutions of more
accurate cost than BRAOBB at a specific time bound (left), percentage of instances for
which algorithm is tied with BRAOBB, i.e., found solution of equal cost (right). Above bars
- number of instances where algorithm is better than BRAOBB (tied with BRAOBB) and
number of instances solved by the algorithm. Parameters: # inst - total number of instances
in benchmark, n - number of variables, k - maximum domain size, w∗ - induced width, hT -
pseudo-tree height. 4 GB memory, 1 hour time limit.
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Figure 4.10: Pedigrees: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (right). Above
bars - number of instances where algorithm is better than BRAOBB (tied with BRAOBB)
and number of instances solved by the algorithm. Parameters: # inst - total number of
instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced
width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit.
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Figure 4.11: Type4: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (right). Above
bars - number of instances where algorithm is better than BRAOBB (tied with BRAOBB)
and number of instances solved by the algorithm. Parameters: # inst - total number of
instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced
width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit.
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Figure 4.12: WCSP: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (right). Above
bars - number of instances where algorithm is better than BRAOBB (tied with BRAOBB)
and number of instances solved by the algorithm. Parameters: # inst - total number of
instances in benchmark, n - number of variables, k - maximum domain size, w∗ - induced
width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit.
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=32, n=144-2500, k=2, w∗=15-90, hT=48-283)

i = 6

wAOBF 66.7 / 12.5 / 24 64.0 / 16.0 / 25 68.0 / 20.0 / 25 40.0 / 40.0 / 25 16.0 / 44.0 / 25

wR-AOBF 29.2 / 12.5 / 24 45.8 / 16.7 / 24 40.0 / 20.0 / 25 32.0 / 40.0 / 25 12.0 / 44.0 / 25

wAOBB 33.3 / 12.5 / 24 40.0 / 12.0 / 25 44.0 / 12.0 / 25 32.0 / 32.0 / 25 28.0 / 44.0 / 25

i = 10

wAOBF 58.3 / 20.8 / 24 56.0 / 32.0 / 25 46.2 / 42.3 / 26 22.2 / 55.6 / 27 14.8 / 55.6 / 27

wR-AOBF 21.7 / 30.4 / 23 37.5 / 33.3 / 24 28.0 / 44.0 / 25 12.0 / 60.0 / 25 7.7 / 57.7 / 26

wAOBB 54.2 / 20.8 / 24 44.0 / 24.0 / 25 23.1 / 30.8 / 26 11.1 / 44.4 / 27 18.5 / 55.6 / 27

i = 14

wAOBF 42.3 / 42.3 / 26 38.5 / 46.2 / 26 30.8 / 61.5 / 26 14.8 / 74.1 / 27 3.4 / 69.0 / 29

wR-AOBF 19.2 / 42.3 / 26 19.2 / 50.0 / 26 15.4 / 65.4 / 26 7.4 / 70.4 / 27 3.7 / 70.4 / 27

wAOBB 19.2 / 42.3 / 26 19.2 / 46.2 / 26 7.7 / 57.7 / 26 11.1 / 66.7 / 27 10.3 / 75.9 / 29

i = 18

wAOBF 14.3 / 57.1 / 21 16.7 / 66.7 / 24 16.7 / 66.7 / 24 3.7 / 77.8 / 27 0.0 / 75.0 / 28

wR-AOBF 14.3 / 61.9 / 21 12.5 / 75.0 / 24 12.5 / 75.0 / 24 3.8 / 80.8 / 26 0.0 / 75.0 / 28

wAOBB 4.8 / 61.9 / 21 8.3 / 58.3 / 24 16.7 / 62.5 / 24 7.4 / 77.8 / 27 3.6 / 82.1 / 28

Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT=52-104)

i = 6

wAOBF 11.1 / 0.0 / 9 11.1 / 11.1 / 9 30.0 / 30.0 / 10 10.0 / 30.0 / 10 10.0 / 20.0 / 10

wR-AOBF 11.1 / 11.1 / 9 11.1 / 22.2 / 9 22.2 / 22.2 / 9 11.1 / 22.2 / 9 11.1 / 22.2 / 9

wAOBB 55.6 / 11.1 / 9 22.2 / 11.1 / 9 30.0 / 10.0 / 10 40.0 / 10.0 / 10 60.0 / 20.0 / 10

i = 10

wAOBF 44.4 / 11.1 / 9 50.0 / 30.0 / 10 50.0 / 30.0 / 10 40.0 / 40.0 / 10 30.0 / 40.0 / 10

wR-AOBF 25.0 / 12.5 / 8 44.4 / 22.2 / 9 40.0 / 30.0 / 10 45.5 / 27.3 / 11 27.3 / 27.3 / 11

wAOBB 66.7 / 22.2 / 9 60.0 / 20.0 / 10 60.0 / 30.0 / 10 50.0 / 30.0 / 10 30.0 / 40.0 / 10

i = 14

wAOBF 14.3 / 0.0 / 7 28.6 / 14.3 / 7 33.3 / 22.2 / 9 33.3 / 33.3 / 9 22.2 / 44.4 / 9

wR-AOBF 14.3 / 0.0 / 7 14.3 / 14.3 / 7 22.2 / 22.2 / 9 10.0 / 30.0 / 10 10.0 / 30.0 / 10

wAOBB 28.6 / 14.3 / 7 42.9 / 14.3 / 7 44.4 / 22.2 / 9 33.3 / 44.4 / 9 22.2 / 44.4 / 9

i = 20

wAOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 50.0 / 2 20.0 / 20.0 / 5 0.0 / 40.0 / 5

wR-AOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 0.0 / 2 0.0 / 20.0 / 5 0.0 / 20.0 / 5

wAOBB 0 / 0 / 0 0 / 0 / 0 50.0 / 0.0 / 2 20.0 / 80.0 / 5 0.0 / 80.0 / 5

Table 4.4: X% - percentage of instances for which each algorithm is the better than BRAOBB
at a specific time bound, Y% - percentage of instances for which algorithm ties with
BRAOBB, N - number of instances for which at least one of algorithms found a solution. #
inst - total number of instances in benchmark, n - number of variables, k - maximum domain
size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit, MBE
heuristic.

by wAOBF, the y-axis coordinate gives the relative accuracy of BRAOBB. As for the bar

charts, the accuracy is defined relative to the optimal cost, if known, or the maximum cost

available. Values closer to 1.0 indicate better results. In each row we show two time bounds

for a particular benchmark. In parenthesis we show the number of instances, for which at

least one of the displayed algorithms found a solution, and the total number of instances

in benchmark. Each marker represents an instance. The markers under the red diagonal

correspond to problems where wAOBF is superior. We do not account in these plots for the
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I-bound Algorithm
Time bounds

10 30 60 600 3600

X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

WCSP (# inst=56, n=25-1057, k=2-100, w∗=5-287, hT=11-337)

i = 6

wAOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 22.0 / 41 0.0 / 20.9 / 43

wR-AOBF 6.1 / 15.2 / 33 3.0 / 18.2 / 33 2.9 / 20.0 / 35 0.0 / 20.0 / 40 0.0 / 19.0 / 42

wAOBB 15.2 / 27.3 / 33 15.2 / 27.3 / 33 17.1 / 25.7 / 35 14.6 / 36.6 / 41 14.0 / 34.9 / 43

i = 10

wAOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wR-AOBF 0.0 / 57.1 / 7 7.1 / 28.6 / 14 6.3 / 37.5 / 16 0.0 / 25.0 / 24 0.0 / 25.0 / 24

wAOBB 0.0 / 85.7 / 7 28.6 / 50.0 / 14 25.0 / 50.0 / 16 16.7 / 41.7 / 24 20.8 / 41.7 / 24

i = 14

wAOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wR-AOBF 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 0.0 / 42.9 / 7 0.0 / 50.0 / 8

wAOBB 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 66.7 / 3 42.9 / 42.9 / 7 37.5 / 50.0 / 8

i = 18

wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 50.0 / 2 0.0 / 50.0 / 2

Type4 (# inst=10, n=3907-8186, k=5, w∗=21-32, hT=319-625)

i = 6

wAOBF 16.7 / 0.0 / 6 44.4 / 0.0 / 9 80.0 / 0.0 / 10 90.0 / 0.0 / 10 90.0 / 0.0 / 10

wR-AOBF 16.7 / 0.0 / 6 33.3 / 0.0 / 9 30.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

wAOBB 16.7 / 0.0 / 6 11.1 / 0.0 / 9 20.0 / 0.0 / 10 50.0 / 0.0 / 10 50.0 / 0.0 / 10

i = 10

wAOBF 33.3 / 0.0 / 6 100.0 / 0.0 / 9 100.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0.0 / 0.0 / 6 44.4 / 0.0 / 9 50.0 / 0.0 / 10 60.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 33.3 / 0.0 / 6 44.4 / 0.0 / 9 60.0 / 0.0 / 10 80.0 / 0.0 / 10 100.0 / 0.0 / 10

i = 14

wAOBF 0 / 0 / 0 71.4 / 0.0 / 7 90.0 / 0.0 / 10 100.0 / 0.0 / 10 100.0 / 0.0 / 10

wR-AOBF 0 / 0 / 0 57.1 / 0.0 / 7 60.0 / 0.0 / 10 80.0 / 0.0 / 10 60.0 / 0.0 / 10

wAOBB 0 / 0 / 0 71.4 / 0.0 / 7 80.0 / 0.0 / 10 90.0 / 0.0 / 10 100.0 / 0.0 / 10

i = 18

wAOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 100.0 / 0.0 / 9 88.9 / 11.1 / 9

wR-AOBF 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 55.6 / 0.0 / 9 44.4 / 11.1 / 9

wAOBB 0 / 0 / 0 0 / 0 / 0 100.0 / 0.0 / 1 88.9 / 0.0 / 9 88.9 / 0.0 / 9

Table 4.5: X% - percentage of instances for which each algorithm is the better than BRAOBB
at a specific time bound, Y% - percentage of instances for which algorithm ties with
BRAOBB, N - number of instances for which at least one of algorithms found a solution. #
inst - total number of instances in benchmark, n - number of variables, k - maximum domain
size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour time limit, MBE
heuristic.

MBE heuristic calculation time, which is the same for all schemes.

We show results with weak heuristic because it yields greater diversity in solution accuracy

by wAOBF and BRAOBB. Typically, for strong heuristics the algorithms yields solutions

having similar costs. Appendix C.1 includes additional scatter diagrams showing results for

3 i-bounds and 3 time bounds per benchmark, along with scatter plots comparing wAOBF

and wR-AOBF.
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Figure 4.13: wAOBF vs BRAOBB: comparison of relative accuracy at times 10, 3600 sec.
Each row shows a single time bound. Each marker represents a single instance. Memory
limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for which at least one
algorithm found a solution, Y - total # instances, MBE heuristic.
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Algorithm 19: AOBB(hi, w0, UB =∞) exploring AND/OR search tree [69]
Input: A graphical model M = 〈X,D,F,

∑
〉, weight w0 (default value 1), pseudo-tree T rooted at X1, heuristic hi;

Output: Optimal solution to M
1 create root OR node s labelled by X1 and let stack of created but not expanded nodes OPEN = {s};
2 initialize v(s) =∞ and best partial solution tree rooted in s T ∗(s) = ∅; UB =∞;
3 while OPEN 6= ∅ do
4 select top node n on OPEN.

//EXPAND
5 if n is OR node labelled Xi then
6 foreach xi ∈ D(Xi) do

//Expand node n:
7 add AND child n′ = 〈Xi, xi〉 to list of successors of n;
8 initialize v(n′) = 0, best partial solution tree rooted in n T ∗(n′) = ∅;

9 if n is AND node labelled 〈Xi, xi〉 then
10 foreach OR ancestor k of n do
11 recursively evaluate the cost of the partial solution tree rooted in k, based on heuristic hi and weight

w0, assign its cost to f(k); // see evalPartialSolutionTree(T ∗n , hi(n), w0) in Algorithm 20
12 if evaluated partial solution is not better than current upper bound at k (e.g., f(k) ≥ v(k) for

minimization then
13 prune the subtree below the current tip node n;

14 else
15 foreach successor Xj of Xi ∈ T do
16 add OR child n′ = Xj to list of successors of n;
17 initialize v(n′) =∞, best partial solution tree rooted in n T ∗(n′) = ∅;

18 add successors of n on top of OPEN;
//PROPAGATE
//Only propagate if all children are evaluated and the final v are determined

19 while list of successors of node n is empty do
20 if node n is the root node then
21 return solution: v(n), T ∗(n) ;

22 else
//update ancestors of n, AND and OR nodes p, bottom up:

23 if p is AND node then
24 v(p) = v(p) + v(n), T ∗(p) = T ∗(p) ∪ T ∗(n);

25 else if p is OR node then
26 if the new value of better than the old one, e.g., v(p) > (c(p, n) + v(n)) for minimization then
27 v(p) = c(p, n) + v(n), T ∗(p) = T ∗(p) ∪ 〈xi, Xi〉;

28 remove n from the list of successors of p;
29 move one level up: n← p;

Figure 4.13 confirms our previous conclusions of superiority of wAOBF over BRAOBB on

Grids and its lack of success on WCSPs. On Type4 for small time limits BRAOBB and

wAOBF are on average equally good (e.g., for 10 sec), but when given more time, wAOBF

produces better solutions (e.g., for 600 sec). For Pedigrees there is no clear dominance.
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Algorithm 20: Recursive computation of the heuristic evaluation function [69]

function evalPartialSolutionTree(T ′n, h(n), w)
Input: Partial solution subtree T ′n rooted at node n, heuristic function h(n);
Output: Heuristic evaluation function f(T ′n);

1 if succ(n) == ∅ then
2 return h(n) · w;

3 else
4 if n is an AND node then
5 let k1, . . . , kl be the OR children of n;

6 return
∑l

i=1 evalPartialSolutionTree(T ′ki
, h(ki), w);

7 else if n is an OR node then
8 let k be the AND child of n;
9 return c(n, k) + evalPartialSolutionTree(T ′k, h(k), w);

� 4.6 Weighted Heuristic Depth-First BB for Graphical Models

The primary reason for using weighted heuristics in the context of best-first search is to

convert it into memory effective anytime scheme and to get a solution with some bounded

guarantee. Since depth-first branch and bound schemes are already inherently anytime, the

idea of using weighted heuristic search may seem irrelevant. However, branch and bound

schemes do not provide any guarantees when terminating early. So a desire to have beneficial

w-optimality bounds on solutions and to possibly improve the anytime performance intrigued

us into exploring the principle of weighted heuristic search for depth-first search schemes as

well. Specifically, weighted heuristic may guide the traversal of the search space in a richer

manner and may lead to larger and more effective pruning of the space.

Therefore, in this section we extend the depth-first branch and bound algorithms AOBB and

BRAOBB to weighted anytime schemes, yielding wAOBB and wBRAOBB, and evaluate

their performance in much the same way we did for the weighted heuristic best-first search

algorithms.
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� 4.6.1 Introducing the Weighted Branch and Bound Schemes

The extension of AOBB to weighted heuristic search is straightforward. Just multiply

the heuristic value by the weight w > 1 and conduct AOBB as usual. We denote by

AOBB(hi,w0,UB) a weighted version of AOBB that uses the mini-bucket heuristic hi having

i-bound equal to i, multiplied by the weight w0, and an initial upper bound equal to UB, as

shown in Algorithm 19. It is easy to show that:

Theorem 4.7. Algorithm AOBB(hi,w0 > 1,UB= ∞) (or BRAOBB) terminates with a

solution π, whose cost Cπ is a factor w0 away from the optimal cost C∗. Namely, Cπ ≤ w0·C∗.

Proof. By definition, due to pruning, AOBB generates solutions in order of decreasing costs:

C1 ≥ · · · ≥ Ci · · · ≥ Cπ, where Cπ is the returned solution. If π is not optimal (otherwise the

claim is trivially proved), there exists an optimal solution π∗ which must have been pruned

by the algorithm. Let n be the last node on π∗ that was generated and which was pruned.

Since the heuristic h is admissible, the un-weighted evaluation function of f along π∗ satisfies

that

fπ∗(n) = g(n) + h(n) ≤ g(n) + h∗(n) = C∗ (4.3)

Let Ci be the solution cost used to prune n (namely it pruned relative to the weighted

evaluation function). Therefore,

Ci ≤ g(n) + w · h(n)

Therefore (as w ≥ 1) and from Equation 4.3

Ci ≤ w · (g(n) + h(n)) ≤ w · C∗

and since Cπ ≤ Ci, we get

Cπ ≤ w · C∗.
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Algorithm 21: wAOBB(w0, hi)

Input: A graphical model M = 〈X,D,F〉; heuristic hi obtained with i-bound i; initial weight w0

Output: C - a set of suboptimal solutions Cw, each with a bound w
1 Initialize j = 1, UBj =∞, wj = w0, weight update schedule S and let C ← ∅;
2 while wj >= 1 do
3 while AOBB(hi,wj, UBj) not terminated do
4 run AOBB(hi,wj , UBj)
5 if AOBB found an intermediate solution C ′j then
6 output the solution bounded by the weight of previous iteration: C ← C ∪ {〈wj−1, C ′j〉}

7 output the solution with which AOBB terminated, bounded by the current weight:
C ← C ∪ {〈wj , Cj〉}

8 Decrease weight w according to schedule S;
9 UB← Cj

10 return C

We present two iterative weighted heuristic branch and bound schemes denoted wAOBB and

wBRAOBB. Similar to wAOBF, these algorithms iteratively execute the corresponding base

algorithm with the weighted heuristic, AOBB(hi,w0,UB) and BRAOBB(hi,w0,UB). How-

ever, there are some inherent differences between these two schemes and wAOBF, explained

next.

Iterative Weighted AOBB (wAOBB). At the first iteration (Algorithm 21) wAOBB

executes AOBB(hi,w0,UB = ∞), namely AOBB with heuristic hi · w0 and with default

upper bound of infinity. The algorithm does no pruning until it discovers its first solution.

Then the upper bound is set to the current best cost. At termination of the first iteration, the

algorithm returns the final solution and its cost C1 with the corresponding weight w1 = w0.

During each subsequent iteration j ≥ 2 wAOBB executes AOBB(hi,wj,UBj) to completion.

The weight wj is decreased according to the weight policy. The input upper bound UBj is

the cost of the solution returned in iteration j − 1, i.e., UBj = Cj−1. We denote by C ′j the

costs of the intermediate solutions wAOBB generates during iteration j, until it terminates

with the final solution, having cost Cj.
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Figure 4.14: Search graphs explored by (a) AOBB, (b) First iteration of wAOBB, w=10.
Boxed numbers indicate the order in which the nodes are expanded. vSN indicates that value
v was last assigned during step N , i.e., while expanding the N th node.

Proposition 4.4. At each iteration j > 0 the cost of the solution of AOBB(hi,wj,UBj) Cj

is guaranteed to be within the factor wj from the optimal cost C∗. Moreover, for iterations

j ≥ 1 all the intermediate solutions generated by AOBB(hi,wj,UBj) are guaranteed to have

costs within the factor of wj−1 from the optimal.

Proof. The solution cost Cj with which AOBB(hi,wj,UBj) terminates at iteration j is

bounded: Cwj ≤ wj · C∗. The upper bound used for pruning at iteration j > 1 is equal

to the cost of the solution on the previous iteration (UBj = Cj−1). No intermediate so-

lutions worse than this upper bound are ever explored. Thus the costs C ′j of all solutions

generated at iteration j prior to its termination are bounded by the upper bound C ′j ≤ Cj−1.
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Since Cj−1 is bounded by a factor of wj−1 from the optimal, it follows C ′j ≤ wj · C∗.

Figure 4.14 shows the search space explored by AOBB (on the left) and by the first iteration

of wAOBB with weight w = 10 (on the right), when solving the problem from Figure 4.2.

In this example AOBB explores 15 nodes in order to find an optimal solution. wAOBB

explores 12 nodes, discovering a suboptimal solution with cost C = 8 and assignment x =

{A = 0, B = 0, C = 1, D = 0}.

Iterative Weighted BRAOBB (wBRAOBB): extends BRAOBB(hi,w0,UB) to a weighted

iterative scheme in the same manner. Clearly, for both schemes the sequence of the solution

costs is non-increasing.

Theorem 4.8. Worst case time and space complexity of each iteration of wAOBB and

wBRAOBB that uses caching is bounded by O(n · kw∗). Number of iterations varies based on

weight policy and start value w0.

Proof. At each iteration wAOBB and wBRAOBB execute AOBB and BRAOBB respectively,

exploring at most the entire context-minimal AND/OR search graph. The precise number of

expanded nodes depends on the pruning and is hard to characterize in general, as is always

the case for branch and bound search.

� 4.6.2 Empirical Evaluation of Weighted Heuristic BB

We carry out an empirical evaluation of the two weighted heuristic depth-first branch and

bound schemes: wAOBB and wBRAOBB, described above. The algorithms were imple-

mented in C++ and the experiments were conducted in the same setting as before.

We compared the two weighted heuristic branch and bound schemes against each other and

against wAOBF, the superior of the weighted heuristic best-first schemes. We also compared
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against the state-of-the-art anytime BRAOBB. All algorithms use the same MBE heuristic.

We use the same sqrt(1.0) policy and starting weight equal to 64 as we did for the weighted

heuristic best-first schemes in Section 4.5.

� 4.6.2.1 Weighted Heuristic BB as Approximation

In Table 4.6 we report the entire runtime required to find a first solution for a particular

weight level (e.g., w = 2.8284) for each algorithm. In this sense these tables are different

from Table 4.2, where we only reported the time it took the scheme to find the w-optimal

solution starting from a particular weight, e.g., w = 2.8284, not starting with initial weight

w0 = 64. The difference is due to the fact that wAOBB and wBRAOBB use the results

of previous iterations as upper bounds and their iterations are not completely independent

runs of AOBB(hi,wj,UBj) and BRAOBB(hi,wj,UBj), respectively.

We also report the runtime and the cost by BRAOBB at termination. The time equal to

3600 seconds for BRAOBB signifies that it failed to report the optimal solution within the

time bound and we then report the best solution found.

Comparing with weighted heuristic best-first search. Based on Table 4.6 we see that time-wise

none of the schemes dominates for a given weight. For example, for grid 75-22-5 for weight

w = 1.033 wAOBB reports the solution the fastest, while for type4b 130 21 wAOBF reaches

a 1.2968-optimal solution almost ten seconds before either wAOBB or wBRAOBB.

Time saving for w-bounded sub-optimality. Comparing pairs of columns, in particular column

2 (exact results for BRAOBB) and columns 4-5 (1.2968- and 1.0330-optimal solutions) in

Table 4.6, we observe remarkable time savings of the weighted heuristic schemes compared

with BRAOBB.

Overall, based on these instances, which are quite representative, we see as before that
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Instance

BRAOBB

Weights

2.8284 1.2968 1.0330 1.000

wAOBF wAOBF wAOBF wAOBF

wAOBB wAOBB wAOBB wAOBB

wBRAOBB wBRAOBB wBRAOBB wBRAOBB

time / cost time / cost time / cost time / cost time / cost

Grids, I-bound=18

75-22-5
(484, 2, 30, 107) 115.45 / -15.605

5.92 / -15.72 6.66 / -15.72 59.81 / -15.61 423.76 / -15.61

5.87 / -19.08 6.1 / -17.55 52.46 / -15.65 — / —

5.91 / -19.08 6.22 / -17.55 79.91 / -15.7 — / —

75-25-5
(625, 2, 34, 122) 3582.08 / -20.836

8.0 / -23.38 9.77 / -21.7 — / — — / —

8.08 / -31.0 8.34 / -22.55 — / — — / —

8.14 / -31.0 8.56 / -22.84 — / — — / —

Pedigrees, I-bound=18

pedigree9

(935, 7, 27, 100)
220.34 / -122.904

26.75 / -129.55 26.96 / -123.06 33.56 / -122.9 — / —

12.44 / -129.76 12.47 / -128.56 13.63 / -123.2 — / —

12.59 / -129.76 12.61 / -128.56 13.74 / -123.2 — / —

pedigree51

(871, 5, 39, 98)
3600 / -111.55

120.94 / -119.16 — / — — / — — / —

29.01 / -121.77 31.15 / -121.77 — / — — / —

26.41 / -121.77 28.36 / -121.77 3035.48 / -109.83 — / —

WCSP, I-bound=6

capmo2.wcsp

(200, 100, 100, 100)
3600 / -0.28

26.81 / -0.31 — / — — / — — / —

22.43 / -0.31 — / — — / — — / —

22.47 / -0.31 — / — — / — — / —

myciel5g 3.wcsp

(47, 3, 19, 24)
12.93 / -64.0

2.52 / -72.0 50.47 / -64.0 — / — — / —

0.96 / -72.0 7.8 / -64.0 37.63 / -64.0 — / —

0.9 / -72.0 7.37 / -64.0 35.63 / -64.0 — / —

Type4, I-bound=18

type4b 120 17

(4072, 5, 24, 319)
3600 / -1332.18

80.49 / -1354.93 81.24 / -1329.59 84.98 / -1327.6 — / —

49.79 / -1353.83 49.97 / -1337.37 50.25 / -1334.85 — / —

54.91 / -1353.83 55.12 / -1337.37 55.44 / -1334.85 — / —

type4b 130 21

(4874, 5, 29, 416)
3600 / -1383.74

86.21 / -1438.24 88.89 / -1386.34 — / — — / —

58.12 / -1414.3 97.66 / -1489.57 — / — — / —

96.61 / -1512.32 96.93 / -1489.57 — / — — / —

Table 4.6: Runtime (sec) and cost (on logarithmic scale) obtained by wAOBF, wAOBB
and wBRAOBB for selected w, and by BRAOBB (that finds C∗ - optimal cost). Instance
parameters: n - number of variables, k - max domain size, w∗ - induced width, hT - pseudo-
tree height. ”time out” - running out of time, ”—” - running our of memory. 4 GB memory
limit, 1 hour time limit, MBE heuristic.
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Figure 4.15: Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and
max cost. Max. cost = optimal, if known, otherwise = best cost found for the problem.
Corresponding weight - above the bars. The cases where BRAOBB proved solution opti-
mality is indicated by ’***’ above bars. In red - optimal solutions. Instance parameters are
in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size, w∗ - induced
width, hT - pseudo-tree height. Grids and Pedigrees. Memory limit 4 GB, time limit 1 hour,
MBE heuristic.

the weighted heuristic schemes can often provide good approximate solutions with tight sub-

optimality bounds, yielding significant time savings compared to finding optimal solutions by

competing BRAOBB. The weighted branch and bound schemes are more memory efficient

than wAOBF. However, on the instances feasible for all three weighted heuristic schemes

there is no clear winner.
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Figure 4.16: Ratio of the cost obtained by some time point (10, 60, 600 and 1800 sec) and
max cost. Max. cost = optimal, if known, otherwise = best cost found for the problem.
Corresponding weight - above the bars. The cases where BRAOBB proved solution opti-
mality is indicated by ’***’ above bars. In red - optimal solutions. Instance parameters are
in format (n,k,w∗,hT ), where n - number of variables, k - max. domain size, w∗ - induced
width, hT - pseudo-tree height. Type4 and WCSPs. Memory limit 4 GB, time limit 1 hour,
MBE heuristic.

� 4.6.2.2 Anytime Performance Comparison

Figures 4.15 and 4.16 display the anytime behavior of the schemes for typical instances

from each benchmark using bar charts that show the ratio between the cost available at a

particular time point (at 10, 60, 600 and 1800 sec) and the optimal (if known) or best cost

found (similarly to Figures 4.7 and 4.8 in the previous section). Figure 4.15 shows the results

for Grids and Pedigrees, while Figure 4.16 presents WCSPs and Type4 instances.

Grids (Figure 4.15): we observe that the weighted heuristic branch and bound schemes are

187



typically inferior to wAOBF, finding solutions slower and of lower accuracy. For example,

wAOBF is the only scheme to return a solution within 10 seconds on grid 75-23-5, i = 6.

However, there are exceptions (e.g., grid 50-16-5, i = 6).

Pedigrees: both weighted heuristic branch and bound schemes are often the best (e.g.,

pedigree13, i=6). For some problems they even provide solutions with accuracy approaching

1.0 while the other schemes fail to find any solution, e.g., pedigree7, i = 6.

WCSPs (Figure 4.16): The wAOBB and wBRAOBB perform better than BRAOBB and

wAOBF on such instances (e.g., capmo2.wcsp for all i-bounds), except for a number of

problems (not explicitly shown), for which BRAOBB is the only scheme to return solutions.

Type4: wAOBF mostly dominates over the branch and bound schemes, included the

weighted heuristic ones. However, for larger i-bounds on Type4 weighted heuristic branch

and bound schemes can find good solutions, sometimes even providing tighter sub-optimality

guarantees than wAOBF. For example, for type4b 140 20, i = 12, for 1800 sec the bound by

wAOBF is w = 1.3 while for wAOBB it is w = 1.14. BRAOBB is inferior for this benchmark.

We turn now to Figures 4.9-4.12 in order to summarize the performance of weighted heuristic

depth-first branch and bound search algorithms, concentrating on wAOBB as a slightly

better of the two. From these bar charts we see that wAOBB is more successful than

BRAOBB when the heuristics are weak. For example, for Grids, 60 second, for i = 10,

wAOBB finds solutions of higher accuracy than BRAOBB on 23.1% of instances, while for

i = 18, superiority is 16.7%. The two schemes are tied on 82.1% of instances for Grids,

i = 18, 3600 seconds, and in general, when the i-bound is high, the difference between the

solution costs reported by various algorithms diminishes.

We conclude from these figures that the wAOBB can definitely be superior to wAOBF on

2 out of 4 benchmarks (Pedigrees and WCSPs) for many problems, and can find solution of
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better accuracy than BRAOBB on a number of instances from all four benchmarks.

� 4.7 On the Weighted Heuristic Strengthened by Cost-Shifting

We conducted a set of experiments with Mini-Bucket with the Moment-Matching (MBE-

MM) and Join Graph Linear Programming (JGLP) heuristics, known to be overall superior to

MBE [48]. These more sophisticated heuristics will be discussed in more details in Chapter 5.

For now we treat them as black-boxes, providing heuristic evaluations in the same format as

MBE, though, in most cases, more accurate. The accuracy of both algorithms is controlled

by i-bound parameter, similar to MBE. MBE-MM is a single-pass algorithm. JGLP is an

iterative scheme that has been run for 60 seconds in our experiments.

Figures 4.17 and 4.18 show the anytime performance of wAOBF, wR-AOBF and BROABB

for MBE-MM heuristic in a form of bar charts, similar to Figures 4.7-4.8. We show the ratio

of the cost obtained by some time point by each algorithm and max cost available for 10,

65, 300, 600 and 3600 seconds. Each two rows correspond to a particular benchmark, upper

row showing smaller i-bound, the lower row showing the higher i-bound. Figures 4.19 and

4.20 present the results for JGLP heuristic. Note that none of the weighted heuristic search

algorithms report any solution before 60 second time bound when employing JGLP, since

the calculation of heuristic always requires at least a minute.

The behavior of the algorithms using the MBE-MM and JGLP heuristics is consistent with

our previous observations. Again wAOBF and wR-AOBF are quite successful on many

grids, pedigrees and type4 instances. On WCSP instances the calculation of the advanced

heuristics (both MBE-MM and JGLP) fails due to memory limitations on a significant

portion of instances for medium and large i-bounds, for example, on 41 problems out of 56,

for JGLP, i = 10, as opposed to 33 instances out of 56 for MBE, same i-bound.
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Figure 4.17: Ratio of the cost obtained by some time point (10, 65, 300, 600 and 3600
sec) and max cost (optimal, if known, otherwise - best cost found for the problem by any
of the schemes). Corresponding weight - above the bars. ’***’ indicated proven solution
optimality. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k
- max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time
limit 1 hour. Grids and Pedigrees benchmarks, MBE-MM heuristic.

Figures 4.21-4.24 show the summary of the experiments with MBE-MM and JGLP. The

figures show the percentage of instances for which wAOBF and wR-AOBF respectively find

strictly better solutions than BRAOBB (leftmost plot in each row), the percentage for which

they find the solution of equal cost with BRAOBB (center plot), as was done in Figures 4.9-

4.12. Additionally, on the right the weight at termination averaged over the instances for

which the weighted scheme has found any (possibly suboptimal) solution is presented. This

metric allows to estimate how tight, on average, is the w-optimality bound by each algorithm.

We show the results for a relatively small and large i-bounds, for two time bounds each.

Appendix C.2 presents supplementary summaries in table form, including results for wAOBB,
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Figure 4.18: Ratio of the cost obtained by some time point (10, 65, 300, 600 and 3600
sec) and max cost (optimal, if known, otherwise - best cost found for the problem by any
of the schemes). Corresponding weight - above the bars. ’***’ indicated proven solution
optimality. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k
- max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time
limit 1 hour. Type4 and WCSP benchmarks, MBE-MM heuristic.

in addition to wAOBF and wR-AOBF, for a large variety of i-bounds and time points.

From the results in Figures 4.21-4.24 we once again observe many trends also evident in our

previous experiments when MBE heuristics were used.

1. Anytime weighted heuristic best-first schemes are superior to BRAOBB in quite a

few cases. However, their performance varies a lot across benchmarks. wAOBF and

wR-AOBF yield better solutions than BRAOBB on a large percentage of instances on

Grids (e.g., 58.3% at 120 sec for wR-AOBF with MBE, i = 6) and Type4 (e.g., at

least 80.0% for wAOBF for MBE, both time bounds). They are also quite effective

on Pedigrees (better than BRAOBB on up to 33% instances for certain time bounds

and heuristic strength). On WCSP weighted heuristic BF schemes are mostly inferior,

often not producing a single solution more accurate than BRAOBB. One outlier is
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Figure 4.19: Ratio of the cost obtained by some time point (10, 65, 300, 600 and 3600
sec) and max cost (optimal, if known, otherwise - best cost found for the problem by any
of the schemes). Corresponding weight - above the bars. ’***’ indicated proven solution
optimality. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k
- max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time
limit 1 hour. Grids and Pedigrees benchmarks, JGLP heuristic.

i = 6 for JGLP, where wAOBF and wR-AOBF are better than BRAOBB in up to 50%

cases. However, these results pertain to just the 4 easiest instances of the benchmark

and thus are not very conclusive.

2. Weighted heuristic best-first algorithms tend to be superior when the i-bound is small

(e.g., i = 6). When it is large (i.e., strong heuristics) their dominance is usually less

pronounced. This ability to produce good solutions when there is a large gap between

the i-bound and the problem’s induced width should be especially beneficial when

solving hard problems, for which calculation of accurate heuristics is infeasible.

3. Same trends are seen when comparing different heuristics schemes. Weighted heuristic
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Figure 4.20: Ratio of the cost obtained by some time point (10, 65, 300, 600 and 3600
sec) and max cost (optimal, if known, otherwise - best cost found for the problem by any
of the schemes). Corresponding weight - above the bars. ’***’ indicated proven solution
optimality. Instance parameters are in format (n,k,w∗,hT ), where n - number of variables, k
- max. domain size, w∗ - induced width, hT - pseudo-tree height. Memory limit 4 GB, time
limit 1 hour. Type and WCSP benchmarks, JGLP heuristic.

BF algorithms are more successful than BRAOBB when heuristic is relatively weaker,

as in case of using MBE algorithm, as opposed to stronger heuristic yielded by JGLP.

4. Though JGLP generally provides more accurate heuristics, it is known to have higher

time and space requirements [48], which is why on some benchmarks, e.g., Pedigrees

and Type4, it can be infeasible for higher i-bounds on many problems and yields less

solved instances.

5. wAOBF and wR-AOBF almost always demonstrate better performance for short time

limits. For example, for Pedigrees, i = 6, MBE, wAOBF is superior to BRAOBB on

33.3% of problems for 120 seconds, but only on 18.8% for 3600 seconds.

6. Even on benchmarks where weighted heuristic BF schemes are inferior to BRAOBB,
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Figure 4.21: Grids: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (center), average
weight at termination (right). Above bars - number of instances where algorithm is better
than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm.
Parameters: # inst - total number of instances in benchmark, n - number of variables, k -
maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour
time limit.
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Figure 4.22: Pedigrees: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (center), average
weight at termination (right). Above bars - number of instances where algorithm is better
than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm.
Parameters: # inst - total number of instances in benchmark, n - number of variables, k -
maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour
time limit.
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Figure 4.23: WCSP: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (center), average
weight at termination (right). Above bars - number of instances where algorithm is better
than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm.
Parameters: # inst - total number of instances in benchmark, n - number of variables, k -
maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour
time limit.
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Figure 4.24: Type4: percentage of instances for which each algorithm found solutions of
more accurate cost than BRAOBB at a specific time bound (left), percentage of instances
for which algorithm is tied with BRAOBB, i.e., found solution of equal cost (center), average
weight at termination (right). Above bars - number of instances where algorithm is better
than BRAOBB (tied with BRAOBB) and number of instances solved by the algorithm.
Parameters: # inst - total number of instances in benchmark, n - number of variables, k -
maximum domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 1 hour
time limit.
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e.g., WCSPs, they sometime provide tight w-optimality bounds, as indicated by the

average weights being close to 1.0. For example, the average weight for wR-AOBF on

Type4, i = 18, 120 sec for all heuristics is at most 1.08. Such bounds are especially

valuable for instances where optimal solution can not be obtained within the time and

memory limit, as is the case for majority of Type4 problems.

7. wAOBF seems somewhat superior to wR-AOBF in terms of accuracy, dominating

BRAOBB more often, especially on Type4 benchmark. wR-AOBF typically provides

tighter w-optimality bounds, i.e., has lower average weight.

Overall, we see that, as we noticed when analyzing different i-bounds, a stronger heuris-

tic improves the power of BRAOBB compared with the weighted heuristic schemes. The

advantage of the latter remains throughout to be the generation of an optimality guarantee.

� 4.8 Summary and Concluding Remarks

The chapter provides a study of weighted heuristic best-first and weighted heuristic depth-

first branch and bound search for graphical models. These algorithms are distinguished by

their ability to provide a w-optimality guarantee (namely they can guarantee solutions that

are at most a w factor away from the optimal cost, for a given w). Alternatively, when run

in anytime fashion, whenever stopped they generate the best solution encountered thus far

and a weight w bounding its sub-optimality.

The idea of weighted heuristic best-first search is widespread in the path-finding and plan-

ning communities. In this chapter we extended this idea to graphical models optimization

tasks, specifically, to AND/OR best-first search scheme AOBF and AND/OR depth-first

branch and bound scheme AOBB (see [69]). This resulted in two anytime weighted heuris-

tic best-first schemes, wAOBF and wR-AOBF, and two weighted depth-first, wAOBB and
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wBRAOBB. We evaluated these algorithms against each other and against several compet-

ing schemes, and especially against the state of the art BRAOBB [76], on a large variety of

instances from 4 benchmarks. We evaluated the algorithms for varying heuristic strength

and for different time bounds. The heuristic functions were generated by the mini-bucket

elimination scheme [25], whose strength is controlled by an i-bound parameter.

Our experiments revealed the following primary trends:

• On the anytime performance of weighted heuristic schemes: First and fore-

most we showed that the weighted schemes can perform better than BRAOBB in many

cases. In addition the schemes provide the useful w-optimality guarantee. We saw that

overall wAOBF had a better anytime behavior than wR-AOBF and produced more

accurate solutions in a comparable time on many instances (see Figures 11-15).

• Performance varied per benchmark: On two out of four benchmarks wAOBF

and wR-AOBF dominated over BRAOBB, more often finding costs of better accu-

racy within the time limit. This good behavior on Grids and Type4 benchmarks was

mostly consistent across heuristic strengths and time bounds. The weighted heuristic

DFS branch and bound schemes wAOBB and wBRAOBB were better than wAOBF

and BRAOBB on Pedigrees and, especially, WCSPs. This dominance often corre-

sponded to cases where wAOBF ran out of memory, since branch and bound schemes

are more memory efficient. Therefore, together the weighted schemes had an effective

performance on instances across all benchmarks.

• On the impact of the heuristic strength: the weighted heuristic schemes were

more powerful compared with BRAOBB for weak heuristics, namely, when the i-bound

characterizing the heuristic strength was far smaller than the problem’s induced width.

One explanation is that the weight may make the weak admissible heuristic more

accurate (a weak lower bound becomes stronger lower bound, closer to the actual
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optimal cost, when multiplied by a constant).

• On w-optimality in practice: In quite a few cases the weighted schemes (e.g.,

wAOBF, wR-AOBF, wAOBB and wBRAOBB) reported solutions orders of magnitude

faster, even for small w, than the time required to generate an exact solution by the un-

weighted schemes BRAOBB or AOBF. Moreover, in some cases the weighted heuristic

schemes generated w-optimal solutions for a small w even for some hard instances that

were infeasible (within the time limit) for the baseline algorithms.

Selection and combination of algorithms. Clearly, however, due to the fact that no

algorithm is always superior, the question of algorithm selection requires further investiga-

tion. We aim to identify problem features that could be used to predict which scheme is best

suited for solving a particular instance, and to combine the algorithms within a portfolio

framework, known to be successful for such solvers as SATzilla [104] and PbP [38].

In that context, however it is important to note that the weighted heuristic schemes can

be valuable anyway by supplying any approximation with w-optimality guarantees. For

example, it can be used alongside incomplete approximate schemes, such as Stochastic Local

Search. If the solution by SLS has a cost better or equal to that of the generated w-optimal

solution, it yields a w-optimal bound on the SLS solution.

The potential impact of weights on various heuristics. While we evaluated the

weighted schemes relative to the mini-bucket heuristics only, these ideas are orthogonal to

the heuristic type and they are likely to similarly boost the anytime behavior with any other

heuristics. We have recently provided some initial empirical evaluation of the impact of the

weighted schemes for cost-shifting relaxation schemes that augment the mini-bucket scheme,

introduced in [48]. Our initial findings are presented in [86].
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Chapter 5

Cost-Shifting for Better Approximation

� 5.1 Introduction1

Finding the exact solutions to combinatorial optimization tasks over graphical models is often

infeasible, since these problems are typically NP-hard. Various approximation approaches

have been suggested over the years.

Mini-bucket elimination (MBE), described in Section 1.2.2.2 of Chapter 1, is a popular

bounding scheme that generates upper and lower bounds by applying the exact bucket

elimination algorithm (Section 1.2.2.1) to a simplified (or relaxed) problem obtained by du-

plicating variables. The relaxation view of MBE is closely related to a family of iterative

approximation techniques based on linear programming (LP). These include “re-weighted”

max-product [98], Max-Product Linear Programming (MPLP) [40], dual decomposition [58],

and soft arc consistency [83, 8]. These algorithms simplify the graphical model into indepen-

dent components and tighten the resulting bound via iterative cost-shifting updates. They

can be thought of as “re-parametrizing” the original functions without changing the global

model. Most of the schemes operate on the original factors of the model, although some

works tighten the approximations by introducing larger clusters [92].

1Part of this work has already been published in Alexander Ihler, Natalia Flerova, Rina Dechter, and
Lars Otten. ”Join-graph based cost-shifting schemes” in Proceedings of UAI, 2012.
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Contribution. We combine the ideas of MBE and re-parametrization to define two new

hybrid schemes. One algorithm, called mini-bucket elimination with max-marginal matching

(MBE-MM), is a non-iterative algorithm that applies a single pass of cost-shifting during the

mini-bucket construction bucket by bucket. It is closely related to horizontal mini-bucket

elimination (h-MBE) by Rollon and Larossa [82]; the two methods differ primarily in the

form of the cost-shifting update within each bucket. However, our update is motivated by

its connection to a globally applicable tightening algorithm, while the horizontal MBE seems

somewhat ad hoc.

The second approach, Join Graph Linear Programming (JGLP), iteratively applies cost-

shifting updates to the full mini-bucket join-graph. Our empirical evaluation demonstrates

the increased power of these hybrid approximation schemes over their individual components.

From an LP perspective, JGLP is a variant of generalized Max-Product Linear Programming

(MPLP) [91]. Its main novelty is in showing how the mini-bucket elimination approach can

facilitate effective construction of a join graph. JGLP works “top down”, creating large

clusters immediately, compared with other methods, e.g., [91, 6] that work “bottom up”

(gradually including triplets of variables, then clusters over four variables and so forth).

One of the primary uses of bounding algorithms is in generating heuristics for best-first and

branch and bound search (Section 1.2.4.4). Our hybrid schemes, when used as heuristics

to guide search, help to efficiently prune the search space explored by AND/OR Branch

and Bound, thus significantly increasing its power. This is evident in both our empirical

evaluation and the results of the 2011 Probabilistic Inference Challenge2, where our algorithm

won first place in all optimization categories. Our experiments also demonstrate the benefit

of the improved new heuristics for other anytime search schemes, using as examples weighted

anytime AND/OR Best First (previously introduced in Section 4.4) and weighted AND/OR

Branch and Bound (Section 4.6).

2http://www.cs.huji.ac.il/project/PASCAL/
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The remainder of the chapter is organized as follows. Section 5.2 provides the background

information on the Linear Programming methods. Section 5.3 describes Join Graph Lin-

ear Programming (JGLP) and Section 5.4 presents the mini-bucket elimination with max-

marginal matching (MBE-MM). In Section 5.5 we describe how to use the new bounding

schemes to provide heuristics for the search algorithms. Section 5.6 presents empirical eval-

uation and Section 5.7 concludes.

� 5.2 Background: Linear Programming Methods

We discussed the mini-bucket elimination algorithm in Section 1.2.2.2. Here we provide

background on the alternative approximation approach for solving optimization tasks, using

existing LP-relaxation methods. Note that throughout we describe algorithms in terms of a

maximization task, unless specified otherwise.

Wainwright, et al., [98] established the connections between LP relaxations of integer pro-

gramming problems and approximate dynamic programming methods using message passing

in the max-product algebra. Subsequent improvements in algorithms such as Max-Product

Linear Programming (MPLP) include coordinate-descent updates that ensure convergence

[40, 91]. We next introduce some of these ideas in more details.

Coordinate descent is a popular optimization approach [45, 101, 17], widely used for

solving LP-relaxation tasks. Consider a general minimization task: minxj f(x1, . . . , xn). A

simple way to bound the solution of this problem is by iteratively minimizing the objective

function with respect to a single variable Xj, while fixing the values of all other variables:

xki j ← arg min
xj

f(xk1, x
k
2, . . . , xj, . . . , x

k−1
n )
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where xkj is the value of variable Xj during kth iteration.

Bounding the solution to a max-sum problem. To match the style and notation

of LP-relaxation literature, we assume that the network consists only of pairwise functions

fij(Xi, Xj) and that the problem is max-sum, i.e., to compute C∗ = maxX

∑
fij∈F fij(Xi, Xj).

A simple bound on the max-sum objective is then given by maxima of the individual func-

tions, exchanging the sum and max operators:

C∗ = max
X

∑

fij∈F

fij(Xi, Xj) ≤
∑

fij∈F

max
X

fij(Xi, Xj) =
∑

fij∈F

max
Xi,Xj

fij(Xi, Xj) (5.1)

One can interpret this operation as making an individual copy of each variable for each

function, and optimizing over them separately. See, for example, the problem in Figure 5.1(a)

with 3 variables and 3 functions. Figure 5.1(e) shows the modified problem with each variable

duplicated, so that each function can be maximized over independently. Note that the

notation of the bucket in this figure is slightly different from the one used previously: by Bp

we denote the bucket of variable Xp.

We can also derive a bound on the optimal cost by introducing a collection of functions

{λij(Xi), λji(Xj)} for each edge (ij) and requiring

λ ∈ Λ ⇔ ∀i,
∑

j

λij(Xi) = 0 (5.2)

Then, we have

C∗ = max
X

∑

fij∈F

fij(Xi, Xj)

= max
X

∑

fij∈F

fij(Xi, Xj) +
∑

i

∑

j

λij(Xi)

≤ min
λ∈Λ

∑

fij∈F

max
Xi,Xj

(
fij(Xi, Xj) + λij(Xi) + λji(Xj)

)

(5.3)

The last expression is obtained by distributing each λij to its associated factor and applying
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the inequality (5.1).

The new functions f̃ij = fij(Xi, Xj) + λij(Xi) + λji(Xj) define a re-parametrization of the

original distribution, i.e., they change the individual functions without modifying the global

function F (X) =
∑

X fij =
∑

X f̃ij. Depending on the literature, the λij are interpreted as

“cost-shifting” operations that transfer cost from one function to another while preserving

the overall cost [83, 82], or as Lagrange multipliers enforcing consistency among the copies

of Xi [107, 98]. In the former interpretation, the updates are called “soft arc-consistency”

due to their similarity to arc-consistency for constraint satisfaction [14]. Under the latter

view, the bound corresponds to a dual decomposition solver for a linear programming (LP)

relaxation of the original problem [57, 90].

The main distinguishing feature among such dual decomposition approaches is the way in

which the bound is tightened by updating the functions λ. This is done either by sub-gradient

or gradient approaches [57, 49] or by coordinate descent updates that can be interpreted as

“message passing” [40, 91]. Without going into the details of these approaches, we refer to

these iterative bound improvement updates as “LP-tightening” updates, although technically

we are tightening the decomposition bound (5.3) which is the dual of the LP. This is in

contrast to literature that uses “tightening” to mean the inclusion of additional constraints

(higher-order consistency), e.g., [92].

LP-tightening algorithm. Next we will show a derivation of a particular simple, yet

effective scheme that minimizes over λs the expression

∑

fij∈F

max
Xi,Xj

(
fij(Xi, Xj) + λij(Xi) + λji(Xj)

)
(5.4)

tightening the upper bound on C∗ (Eq. 5.3). This scheme, though formulated by us, is closely

related to the “tree-block” coordinate descent updates derived by Sontag and Jaakkola [91].
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′
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(d) Model with duplicated variables in a
mini-bucket
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X3
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′
2, x3)f3(x
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′
3)

(e) Model with all variables duplicated

Figure 5.1: The mini-bucket procedure for a simple graph. (a) Primal graph; (b) the buckets
and messages computed in MBE; (c) join-graph, dotted line corresponds to an edge absent
from a mini-bucket tree; (d) interpreting MBE as variable duplication, X1 is duplicated in
each of two mini-buckets q1

1 = {f1(X1, X2)} and q2
1 = {f3(X1, X3)}; (e) The graph on which

FGLP runs with all variables duplicated and each factor processed separately.

The intuition behind the iterative updates used in this scheme is very similar to the ones

employed by our algorithms JGLP (Section 5.3) and MBE-MM (Section 5.4).

The LP-tightening scheme is initialized with all λij(Xi) = 0. In the spirit of well-known

coordinate descent approaches we iteratively minimize expression 5.4 with respect to each

λij(Xi) separately, while fixing the values of all other λs. For simplicity of derivation, without

loss of generality, we assume that each variable Xi appears in scope of at most two functions,

fij(Xi, Xj) and fik(Xi, Xk). Identifying only the terms relevant to variable Xi, we obtain:
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min
λij(Xi),λik(Xi)

[[
max
Xi,Xj

fij(Xi, Xj) + λij(Xi)
]

+
[

max
Xi,Xk

fik(Xi, Xk) + λik(Xi)
]]

= min
λij(Xi),λik(Xi)

[
max
Xi

[
max
Xj

fij(Xi, Xj) + λij(Xi)
]

+ max
Xi

[
max
Xk

fik(Xi, Xk) + λik(Xi)
]]

Let us define the so-called “max-marginals” γij(Xi) = maxXj fij(Xi, Xj) and re-arrange the

terms in the above expression, yielding the following bound:

min
λij(Xi),λik(Xi)

[
max
Xi

[
max
Xj

fij(Xi, Xj) + λij(Xi)
]

+ max
Xi

[
max
Xk

fik(Xi, Xk) + λik(Xi)
]]

= min
λij(Xi),λik(Xi)

[
max
Xi

[
γij(Xi) + λij(Xi)

]
+ max

Xi

[
γik(Xi) + λik(Xi)

]]

≥ min
λij(Xi),λik(Xi)

[
max
Xi

[
γij(Xi) + γik(Xi) + λij(Xi) + λik(Xi)

]]
(5.5)

We require that λij(Xi) + λik(Xi) = 0 to make sure that the total cost of the problem is not

changed (Equation 5.2).

Many choices of λij are known to achieve the minimum of the right-hand side of expres-

sion 5.5. We chose to use the following one:

λij(Xi) =
1

2

(
γik(Xi)− γij(Xi)

)
=

1

2

(
max
Xk

fik(Xi, Xk)−max
Xj

fij(Xi, Xj)
)

(5.6)

Iterating over all functions, while updating each function ∀i, j, fij(Xi, Xj) ← fij(Xi, Xj) +

λij(Xi) and recalculating λij at each step until convergence, yields a minimization procedure

that can be interpreted as a max-marginal or moment-matching procedure on the functions
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Algorithm 22: LP-tightening (based on [91])

Input: A graphical model M = 〈X,D,F,∑〉, where fSi
is a potential defined on variables Si

Output: Upper bound on the optimum value of maxX

∑
F

1 while NOT converged do
2 for any pair of function scopes Si, Sj such that Sij = Si ∩ Sj 6= ∅ do
3 Compute max-marginals:

γSi
(Sij) = maxSi\Sij

fSi
;

γSj
(Sij) = maxSj\Sij

fSj
;

4 Update parametrization:

fSi ← fSi + 1
2

(
γSj (Sij)− γSi(Sij)

)
;

fSj
← fSj

+ 1
2

(
γSi

(Sij)− γSj
(Sij)

)
;

fij(Xi, Xj). Intuitively, we would like the updates to diminish in magnitude and converge to

zero as fast as possible. To achieve that, taking into account Equation 5.6, we would like to

make the max-marginals γij(Xi) and γik(Xi) of each variable Xi to be equal. Algorithm 22

generalizes this update to higher-order functions fSi over scopes of variables Si ⊆ X.

A well-known algorithm quite similar to our LP-tightening in Algorithm 22 is a message-

passing scheme called Max-Product Linear Programming (MPLP) [40]. Algorithm 23 presents

a version of MPLP that we call Factor Graph Linear Programming (FGLP). At each step

FGLP simultaneously updates all functions fij(Xi, Xj) involving a single variable Xi. The

messages sent by the algorithms on a factor graph are schematically illustrated in Figure 5.2.

In this example variable Xi is in the scope of three functions: fSt(Xi, Xk, Xm), fSp(Xi, Xj)

and fSq(Xi, Xn), where St = {Xi, Xk, Xm}, Sp = {Xi, Xj} and Sq = {Xi, Xn}. Note that

in the figure we only show the messages involving Xi. The max-marginals are: γSq(Xi) =

maxXn fSq(Xi, Xn), γSp(Xi) = maxXj fSp(Xi, Xj) and γSt(Xi) = maxXk,Xm fSt(Xi, Xk, Xm).
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Algorithm 23: Factor Graph Linear Programming (FGLP, based on [40])

Input: A graphical model M = 〈X,D,F,∑〉, variable ordering o
Output: Upper bound on the optimum value of MPE cost

1 while NOT converged do
2 for each variable Xi do
3 Get factors Fi = fSk

: Xi ∈ Sk with Xi in their scope;
//for each function compute max-marginals γ marginalizing out all variables except for Xi:

4 ∀fSk
γSk

(Xi) = maxSk\Xi
fSk

;
// compute messages βSk

(Xi) from Xi back to a function fSk
correcting for the function’s

own max-marginal γSk
:

5 ∀fSk
βSk

= 1
|Fi|

∑
{Sj|fSj

∈Fi} γSj (Xi)− γSk
(Xi)

// update (re-parametrize) each function:
6 ∀fSk

, fSk
← fSk

+ βSk
;

The update messages from variable Xi back to the functions are:

βSq(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSq(Xi)

βSp(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSp(Xi)

βSt(Xi) =
1

3
(γSq(Xi) + γSp(Xi) + γSt(Xi))− γSt(Xi)

The benefit of messages passing is that it can be performed asynchronously. The issue of

efficient message scheduling has been extensively studied [e.g., 28, 94, 95].

Theorem 5.1 (Complexity of FGLP). The total time complexity of a single iteration of

FGLP is O(n · Q · kSc), where n is the number of variables in the problem, k is the largest

domain size, |F| is the number of functions, Sc bounds the largest scope of the original

functions, Q is the largest number of functions having the same variable Xj in their scopes.

The space complexity is O(|F| · kSc).

Proof. Given a variable Xj, in a single iteration the algorithm:

1. computes max-marginals of all the functions (Q of them) that have Xj in their scopes
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Figure 5.2: FGLP example: local messages involving variable Xi.

by marginalizing out all variables in the scope, except Xj (line 4). The required time

is O(Q · kSc−1).

2. computes messages from Xj back to the factor nodes based on max-marginals (line 5),

requiring O(Q · kSc) time.

3. updates the functions (line 6). It takes O(Q · kSc) time.

The space complexity is bounded by the size of the input factor graph.

The main distinction between MPLP and FGLP lies in the fact that MPLP is formulated

as an update to a single multi-variate factor (that we can refer to as an ”edge”, since it

corresponds to a graph edge in the case of pairwise functions, or a hyperedge in the problem

hypergraph otherwise), along with its corresponding singleton factors over variables, in such
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a way that as much ”cost” as possible is placed into the singleton factors, with the ”edge”

being left with best-cost zero, similar to cost-shifting schemes in constrain programming

domain [83, 82]. Conversely, FGLP updates all edges adjacent to a particular variable,

spreading the cost equally between the edges.

� 5.3 Join Graph Linear Programming

In this section we introduce a way of using the well-known mini-bucket elimination scheme to

construct a join-graph with a particular cluster size. Moreover, we present a new bounding

scheme called Join Graph Linear Programming.

Join-Graph MBE Structuring. The mini-bucket procedure defines a mini-bucket tree,

as discussed in Section 1.2.4.4. Each mini-bucket defines a cluster. Two mini-buckets are

connected if there exists a message between them. Once the mini-buckets of the same

variables are connected, the mini-bucket tree yields a join-graph, where each cluster has at

most i+ 1 variables, where i is the i-bound [70].

Join-Graph MBE Structuring (Algorithm 24) constructs a join-graph using the mini-bucket

elimination. Note that the separators between the clusters corresponding to the mini-buckets

of the same variable may be over more than a single variable, so the resulting graph may

not be a join-graph in a strict sense, not satisfying the induced tree property. However, this

minor point does not impact the use of the graph by our algorithms.

As usual, the original functions fSk are assigned to the buckets of the highest-index variable

in their scope Sk, based on ordering o (lines 1-2). Each bucket Bk, whose scope is larger than

i variables, is split into mini-buckets Qk = {q1
k, . . . , q

p
k} (line 4). Note that Join-Graph MBE

Structuring algorithm does not compute the actual messages between the mini-buckets, but

only creates sets of variables corresponding to the messages’ scopes and places them into
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Algorithm 24: Join-Graph MBE Structuring(i)

Input: A graphical model M = 〈X,D,F,∑〉, variable ordering o, parameter i-bound i
Output: Join-graph with cluster size ≤ i+ 1
//Initialize:

1 Order the variables from X1 to Xn according to ordering o;
2 Generate an ordered partition of functions F = {fSi} into buckets BX1 , . . . ,BXn , where BXk

is a
bucket of variable Xk;
//Processing bucket BXk

3 for k ← n down to 1 do
4 Partition functions in BXk

into mini-buckets QXk
= {q1k, . . . , qpk}; //Each qpk has no more than

i+ 1 variables
//emulate sending messages between mini-buckets without computing actual functions

5 For each mini-bucket qpk create a new set of variables Sp
k = {X|X ∈ qpk} −Xk and place it in the

bucket of its highest variable in the ordering;
6 Maintain an arc between qpk and the mini-bucket that includes Sp

k ;

7 Associate each resulting mini-bucket with a node in the join-graph;
8 Creating arcs: keep the arcs created in step 6 and also connect the mini-bucket clusters belonging

to the same bucket (for example, in a chain);

9 return A set of functions and variables, corresponding to graph nodes, and the edges between them

appropriate buckets, to define the edges of the graph (lines 5-6).

Figure 5.1 presents an example of a problem with 3 variables, whose primal graph is shown

in Figure 5.1(a). In Figure 5.1(b) we see the trace of MBE on the problem, namely the

buckets and the messages computed. Figure 5.1(c) shows the join-graph created by Join-

Graph MBE Structuring. The dotted line corresponds to an edge absent from a mini-bucket

tree and added during step at line 8.

The join-graph created by mini-bucket procedure can be used by an LP-tightening algorithm.

Join-Graph MBE Structuring is a “top-down” approach, in which i is set to the induced width

and reduced until the computational resource constraints are met. In contrast, most existing

generalized LP solvers work in a “bottom-up” fashion, running the LP to convergence on

the original graph, then proposing slightly larger cliques (for example, from among fully

connected triplets of variables [92]) based on some greedy heuristic and running the LP

again. Clearly, when representation of large clusters (i = 15 to 25) is feasible, the top-down

MBE-like approach is far more effective
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Algorithm 25: Algorithm JGLP
Input: A graphical model M = 〈X,D,F,∑〉, variable order o = {X1, . . . , Xn}, parameter i.
Output: Upper bound on the optimum value of MPE cost
//Initialize: Partition the functions in F into BX1

, . . . ,BXn
, where BXp

contains all functions fSj

whose highest variable is Xp;
1 Build mini-bucket join graph; // (Algorithm 24)
2 Find the function of each mini-bucket qpk:
F p
k =

∑
fSj
∈qpk fSj

3 while NOT converged OR NOT time limit reached do
4 for all pairs of mini-buckets qpk, qlk connected by an edge do
5 Find the separators S = Scope(qpk) ∩ Scope(qlk) ;
6 Find the max-marginals of each mini-bucket

qpk: γpk = maxScope(qpk)−S(F p
k );

qjk: γlk = maxScope(qlk)−S(F l
k);

7 Update functions in both mini-buckets

qpk: F p
k ← F p

k − 1
2 (γpk − γlk)

qlk: F l
k ← F l

k + 1
2 (γpk − γlk);

Join-Graph Linear Programming. From the perspective of linear programming relax-

ation (Section 5.2) mini-bucket elimination can be interpreted as running a single pass of

LP-tightening, sending messages top down only along edges of the spanning tree of the mini-

bucket join graph. A straightforward extension of MBE can be an iterative procedure that

repeatedly performs LP-tightening along all of the join graph edges. Algorithm 25 shows the

resulting Join-Graph Linear Programming (JGLP) scheme. It constructs the join graph (line

1), calculated mini-bucket functions F p
k (line 2) and performs re-parametrization updates to

F p
k (as in Algorithm 22) until convergence (lines 2-7). Note that once JGLP converges,

performing mini-bucket elimination on the resulting graph will not change the bound value.

Theorem 5.2 (Complexity of JGLP). Given a problem with n variables with largest

domains of size k, where at most Q functions have the same variable in their scope, and

i-bound i, the time complexity of a single iteration of JGLP is O(n · Q · ki). The time

complexity of join-graph construction step is O(n · ki+1). The overall space complexity is

O(n · ki+1 + n · ki).

Proof. The complexity of constructing a join-tree is the same as the complexity of running
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full mini-bucket elimination algorithm, namely O(n · ki+1). The time complexity of a single

iteration of JGLP consists of performing for each edge the following steps:

1. compute max-marginals of a pair of clique functions, requires time equal to O(2 ·

ki+1−|S|), where |S| is the size of a separator between the mini-buckets of the same

variable.

2. compute the mean, which takes O(2 · k|S|) time.

3. update the clique functions, requiring O(2 · ki+1) time.

In the worst case there are O((n − 1) · Q + 1) edges. Thus the total complexity of a single

iteration is O
(

2 ·
(
(n− 1) ·Q+ 1

)
·
(
ki+1−|S| + kS + ki+1

))
= O(n ·Q · ki+1).

The space complexity of the algorithm is dominated by the necessity of storing in memory

the join-graph, whose size is bounded by O(n · ki+1) and the messages between the clusters

of size O(n · ki), yielding the overall space complexity of O(n · ki+1).

� 5.4 MBE-MM

While the iterative nature of JGLP yields more accurate bounds, in practice it can have a

significant additional time and space overhead compared to MBE. The latter scheme does not

need to store the entire functions computed in mini-buckets, requiring space of O(nk(i+1) +

nki), only the messages between them, reducing the space complexity to O(nki) [25]. The

difference may seem insignificant worst-case wise, but makes a practical impact, as we will

see in the empirical section. Moreover, the non-iterative nature of MBE makes it easier to

estimate the runtime.

There are two orthogonal ways for increasing the accuracy of MBE while keeping the value of

parameter i fixed. The first one, extensively studied in [81], involves choosing a partitioning
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Algorithm 26: Algorithm MBE-MM
Input: A graphical model M = 〈X,D,F,∑〉, variable order o = {X1, . . . , Xn}, i-bound parameter i
Output: Upper bound on the optimum value of MPE cost
//Initialize:

1 Partition the functions in F into BX1
, . . . ,BXn

, where BXk
contains all functions fj whose highest

variable is Xk;
//processing bucket BXk

2 for k ← n down to 1 do
3 Partition functions g (both original and messages generated in previous buckets) in BXk

into the
mini-buckets defined QXk

= {q1k, . . . , qtk}, where each qpk has no more than i+ 1 variables;
4 Find the set of variables common to all the mini-buckets of variable Xk:

Sk = Scope(q1k) ∩ · · · ∩ Scope(qtk);
Find the function of each mini-bucket
qpk: F p

k ←
∏

g∈qpk g;

5 Find the max-marginals of each mini-bucket
qpk: γpXk

= maxScope(qpk)\Sk
(F p

k );

6 Update functions of each mini-bucket

F p
k ← F p

k − γ
p
Xk

+ 1
t

∑t
j=1 γ

j
Xk

;

7 Generate messages hpXk→Xm
= maxXk

F p
k and place each in the bucket of highest in the ordering

o variable Xm in Scope(qpk);

8 return All the buckets and the cost bound from B1;

of the bucket into mini-buckets in a way that introduces the least possible error for a fixed

complexity. In this work, however, we do not focus on this issue, assuming in most cases a

given partitioning that only takes into account the sizes of function scopes.

We take a different approach, attempting to increase the accuracy of MBE by defining a

non-iterative scheme that performs re-parametrization between the mini-buckets of the same

variable only. The algorithm mini-bucket elimination with max-marginal matching (MBE-

MM, Algorithm 26) proceeds by following the standard mini-bucket downward pass. When

each mini-bucket qpk ∈ Qk is processed, before eliminating variable Xk, we first perform an

LP-tightening update (that is, a re-parametrization) to the mini-bucket functions fqpk . For

storage and computational efficiency reasons, we perform a single update on all mini-buckets

of the same variable simultaneously, matching their max-marginals on their joint intersection.

Alternatively, the updates can be done between all possible pairs of mini-buckets.

Although any max-marginal matching step strictly improves the bound within each bucket
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(Equation 5.3), it is not guaranteed to increase the overall accuracy. However, it is reasonable

to expect that the update will help, and in practice we find that the bounds are almost always

significantly improved (see the experiments, Section 5.6).

Theorem 5.3 (Complexity of MBE-MM). Given a problem with n variables having

domain of size k and an i-bound i, the worst-case time complexity of MBE-MM is O(n ·Q ·

ki+1) and its space complexity is O(n · ki), where Q bounds the number of functions having

the same variable Xi in their scopes.

Proof. Assuming that |S| bounds the size of separator between the mini-buckets of variable

Xj, the complexity of processing a single bucket comprises of:

1. computing functions of the mini-bucket, requiring time O(Q · ki+1)

2. marginalizing out the variables that are not in the separator: O(Q · ki+1−|S|)

3. calculating the geometric mean: O(Q · k|S|)
4. updating the mini-bucket functions: O(Q · ki+1)

5. generating the message: O(Q · ki)

Steps 2-4 contribute to the overhead of MBE-MM compared with MBE by O
(
Q · (ki+1−|S|+

k|S| + ki+1)
)

per bucket. However, the overall complexity is dominated by O(Q · ki+1) per

bucket and O(n · Q · ki+1) overall. The space complexity is dominated by the size of the

messages stored: O(n · ki).

Interestingly, our algorithms are related to known methods in constraint satisfaction. MBE(i)

and JGLP(i), parametrized by an i-bound, are analogous to directional i-consistency and

full i-consistency, respectively. Our algorithm MBE-MM represents an intermediate step

between these two, and is analogous to an improvement of directional i-consistency with full

iterative relational consistency schemes within each bucket [20].
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� 5.5 Heuristics for AND/OR search

The mini-bucket scheme yields a powerful heuristic for informed search algorithms, as dis-

cussed in Section 1.2.4.4. The intermediate messages h recorded by MBE (see Figure 5.1(b))

are used to express upper bounds on the best extension of any partial assignment, and so

can be used as admissible heuristics guiding best-first or branch and bound search.

Algorithms JGLP and FGLP do not produce heuristic functions directly; we obtain one

by applying MBE to the modified (re-parametrized) functions output by the iterative algo-

rithms. As noted earlier, for JGLP constructed with the same i-bound i, this additional pass

does not change the value of the bound. In contrast, applying MBE to the (much smaller)

functions re-parametrized by FGLP forms new clusters and typically tightens the bound,

yielding a hybrid heuristic generator “FGLP+MBE”. MBE-MM algorithm directly yields a

heuristic function suitable for informed search.

� 5.6 Empirical Evaluation

We investigate the impact of single-pass and iterative LP-tightening for the task of finding

the most probable explanation (MPE) over Bayesian networks. Specifically, we evaluate the

performance of MBE-MM, FGLP (applied to the original functions) and JGLP (applied to

the mini-bucket-based join graph). We compare these three algorithms against each other

and against “pure” MBE, both as stand-alone bounding schemes (Section 5.6.3) and as

heuristic evaluation function generators (Section 5.6.4) for three AND/OR search schemes.

The first one is AND/OR Branch and Bound (AOBB, Section 1.2.4.3). We also use two

weighted heuristic search schemes discussed in Chapter 4: weighted anytime AND/OR Best

First search (wAOBF) and weighted AND/OR Branch and Bound (wAOBB).
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Benchmark # inst n k w∗ hT
Pedigrees 10 581-1006 3-7 16-39 52-104

Grids 32 144-2500 2 15-90 48-283
LargeFam 40 863-1400 17-58 33-111

Type4 10 3907-8186 5-5 21-32 319-625
WCSP 56 25-1057 2-100 5-287 11-337

Table 5.1: Benchmark parameters: # inst - number of instances, n - number of variables, k
- domain size, w∗ - induced width, hT - pseudo-tree height.

� 5.6.1 Experimental Settings

Our benchmark problems include three sets of instances from genetic linkage analysis net-

works [32] (denoted Pedigrees, Type4 and LargeFam) and Grid networks from the UAI 2008

competition [16]. In total we evaluated 10 Pedigrees, 10 Type4, 40 LargeFam and 32 Grid

networks. We also ran some experiments (Section 5.6.4.2) on the WCSP instances. We previ-

ously discussed all these benchmarks, except for LargeFam, in Sections 2.6.1 and 3.6.1, which

can be consulted for the details on the datasets. The LargeFam instances come from the

same domain of haplotyping networks as the Pedigrees, but are larger and more difficult. All

instances are available online3. Table 5.1 shows the benchmark parameters. Unless specified

differently, each algorithm was run for 24 hours, with memory limit of 3 GB, with i-bounds

equal to 10, 15 and 20. The algorithms were implemented in C++ (64-bit). Four schemes

were evaluated: plain MBE with no re-parametrization (MBE), MBE with Max-Marginal-

Matching (MBE-MM), FGLP followed by MBE (FGLP) and JGLP, that uses cluster size

equal to i-bound divided by two, followed by MBE (JGLP). The duration of the run of the

two latter heuristic schemes was chosen arbitrarily to be equal to 30 seconds (the configuring

pre-processing time requires further exploration).

Our empirical evaluation aims to assess: 1. the impact of moment-matching on the perfor-

mance of MBE; 2. the value of LP-relaxation and the mini-bucket algorithms as approxima-

tion schemes; 3. their effectiveness as search heuristics.

3http://graphmod.ics.uci.edu/
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� 5.6.2 Impact of Moment-Matching on the Performance of MBE

We compare MBE and MBE-MM on the Pedigree benchmark when employing various heuris-

tics for splitting a bucket of a variable into several mini-buckets. We use a scope-based heuris-

tic and six content-based partitioning heuristics, some of which were suggested by Rollon,

et al., [81]. Note that L1, L2 and Linf errors are calculated in relation to the logarithms of

the factors, not the original functions.

• L1: integrated absolute error

• L2: integrated squared error

• Linf: maximum absolute error

• KL: Kullback-Leibler divergence

• HPM: Hilberts projective metric, HPM(f1, f2) = max(log f1

f2
)−min(log f1

f2
)

• MAS: MAS(f1, f2) = max(max( log f1

log f2
), 1

min(
log f1
log f2

)
)− 1

Table 5.2 displays the percentage of Pedigree problems for which the version with the particu-

lar partitioning heuristic (with or without max-marginal-matching) found the best solution.

Here we mainly focus on the accuracy of the solution, using the runtime only as a tie-

breaker, whenever more than one scheme found the same best solution. We considered small

i-bounds equal to 5 and 10, in order to highlight the impact of moment-matching and differ-

ent partitioning strategies when the heuristic is weak. There is no clear winner between the

partitioning heuristics, though there is a definite loser: KL distance measure never yields the

best solution for either MBE or MBE-MM. The scope-based heuristic fares very well for both

values of i-bound. There is no doubt that overall the use of moment-matching almost always

yields more accurate results. It yields better performance for all partitioning strategies and

both i-bounds. The sole exception is the Linf heuristic for i = 10.
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Algorithm % best, i-bound=5 % best, i-bound=10
Scope-based heuristic + no MM 0.0 0.0

Scope-based heuristic + MM 21.4 21.4
L1 heuristic + no MM 7.1 7.1

L1 heuristic + MM 14.3 7.1
L2 heuristic + no MM 0.0 0.0

L2 heuristic + MM 14.3 21.4
Linf heuristic + no MM 0.0 14.3

Linf heuristic + MM 7.1 14.3
KL heuristic + no MM 0.0 0.0

KL heuristic + MM 0.0 0.0
HPM heuristic + no MM 7.1 0.0

HPM heuristic + MM 14.3 14.3
MAS heuristic + no MM 0.0 0.0

MAS heuristic + MM 14.3 0.0

Table 5.2: The percentage of the instances for which each algorithm found the best bound,
for i-bounds equal to 5 and 10. Pedigrees (total 14 problems). Ties broken based on runtime.

Instance n k w
MBE-MM FGLP

L2 Linf 5 iter 500 iter 1500 iter
1502.uai 209 4 6 -2.8954 -2.8954 -2.6753 -2.6886 -2.6886
29.uai 82 4 14 -3.6906 -3.6888 -3.2006 -3.2259 -3.2259
404.uai 100 4 19 -5.2229 -5.0545 -3.5222 -3.7092 -3.7432
408.uai 200 4 35 -3.1147 -3.1177 -3.6974 -3.9934 -4.0735
42.uai 190 4 26 -3.1872 -3.0472 -2.1092 -2.3906 -2.5227
503.uai 143 4 9 -3.1872 -3.1872 -2.9683 -3.2905 -3.4497
505.uai 240 4 22 -1.1207 -2.1888 -2.7076 -3.0725 -3.2433
54.uai 67 4 11 -3.0701 -2.9848 -1.8466 -2.0719 -2.0812

Table 5.3: The upper bounds on the log(MPE) for the select WCSP instances by MBE-
MM with two content-based heuristics using L2 and Linf distance measures with i = 10
and FGLP ran for 5, 500 and 1500 iterations. For each instance we report the number of
variables n, the largest domain size k and the induced width along the ordering used w. The
best bounds are shown in bold. Memory limit 3 GB, time limit 24h.

� 5.6.3 LP-tightening Algorithms as Bounding Schemes

We next compare the single-pass schemes MBE and MBE-MM against the iterative FGLP

and JGLP schemes. In Table 5.3 we see the upper bounds produced by MBE-MM and FGLP

for select WCSP instances. MBE-MM used two content-based heuristics using L2 and Linf

distance measures and i = 10. FGLP ran for 5, 500 and 1500 iterations. We show the upper

bounds on the log scale (lower values are better). We see that even for a large number of
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instance name i MBE MBE-MM FGLP time cut-offs JGLP time cut-offs
(n, k, w∗) 5 300 3600 5 300 3600

UB/time UB/time UB UB UB UB UB UB
Grids

75-25-5 10 -15.4553/1 -18.4089/1
-16.6853 -16.6854 -16.6854

-20.0289 -20.8364 -20.8364
(625, 2, 34) 20 -17.4417/4 -20.0576/4 -20.0576 -20.1278 -20.7067

90-30-5 10 -8.2481/1 -10.2597/1
-10.2450 -10.2705 -10.2705

-11.8469 -12.9594 -13.015
(900, 2, 42) 20 -9.7424/7 -11.6004/7 -11.6004 -11.6942 -12.5259

90-34-5 10 -8.42007/1 -10.3708/1
-9.65003 -9.69458 -9.69458

-12.3469 -13.2262 -13.2883
(1156, 2, 48) 20 -9.58332/8 -12.3670/9 -12.3670 -12.5621 -13.1538

90-42-5 10 -12.7401/1 -15.9680/1
-15.2480 -15.3653 -15.3653

-18.4100 -20.7714 -20.8136
(1764, 2, 60) 20 -14.6136/13 -18.5487/14 -18.5487 -18.7679 -13.2883

LargeFam
largeFam4 11 51 10 -201.136/1 -211.656/1

-201.582 -201.673 -201.673
-211.671 -216.500 -217.176

(1002, 4, 40) 20 OOM OOM OOM OOM OOM
largeFam4 11 55 10 -229.43/1 -242.489/1

-226.075 -226.328 -226.328
-242.657 -249.551 -250.453

(1114, 4, 38) 20 OOM OOM OOM OOM OOM
largeFam4 12 51 10 -218.229/2 -239.896/3

-217.564 -217.740 -217.740
-239.896 -245.900 -253.153

(1461, 4, 56) 20 OOM OOM OOM OOM OOM
Pedigrees

pedigree7 10 -105.854/1 -109.569/1
-110.179 -110.187 -110.187

-109.960 -110.810 -111.293
(867, 4, 32) 20 -108.011/33 -111.120/42 OOM OOM OOM
pedigree13 10 -69.0973/1 -70.0999/1

-71.8561 -71.8591 -71.8591
-70.4581 -71.9869 -72.0374

(888, 3, 32) 20 -69.8890/8 -71.1071/11 -71.1071 -71.1071 -71.3658
pedigree31 10 -125.032/1 -126.629/1

-126.667 -126.678 -126.678
-126.644 -129.158 -129.277

(1006, 5, 30) 20 OOM OOM OOM OOM OOM
pedigree41 10 -110.156/1 -114.858/1

-114.681 -114.681 -114.681
-115.050 -118.133 -118.419

(885, 5, 33) 20 -112.153/29 -117.638/37 OOM OOM OOM
pedigree51 10 -97.741/1 -103.461/1

-101.927 -101.977 -101.977
-103.791 -106.542 -107.276

(871, 5, 39) 20 -102.110/13 -105.734/16 -105.734 -105.734 -106.619
Type4

type4 120 17 10 -1128.22/1 -1203.08/1
-1049.34 -1049.85 -1049.86

-1203.21 -1221.21 -1223.69
(4302, 5, 23) 20 -1235.94/18 -1237.95/21 -1237.95 OOM OOM
type4 170 23 10 -1682.9/1 -1747.18/1

-1509.96 -1511.61 -1511.65
-1747.22 -1769.96 -1772.16

(6933, 5, 21) 20 -1783.18/7 -1783.76/7 -1783.76 -1783.76 -1783.76

Table 5.4: Upper bound (log scale) and runtime (# seconds) for a typical set of instances,
i = 10 and i = 20. Lower values are better. OOM shows that the algorithm ran out
of memory (4 GB). We report the number of variables n, largest domain size k, and the
induced width w along the ordering used. Memory limit 3 GB, time limit 24h. The best
cost for each instance and i-bound are highlighted in bold. Highlighted FGLP solution
corresponds to i = 20, cases where JGLP runs out of memory.

iterations FGLP does not achieve the same accuracy as MBE-MM (i = 10) for more than

half of these instances.

In Table 5.4 we present a subset of the results obtained by MBE, MBE-MM, MPLP and

JGLP from 4 benchmarks (Pedigrees, Type4, LargeFam and Binary Grids) for the i-bound

values of i = 10 and i = 20. Note that the value of i does not influence the results of FGLP

that runs on the original functions.

As before, we observe that for all instances MBE-MM is superior to pure MBE. For most

instances the MBE-MM bounds are also tighter than pure FGLP (at the comparable point

in time), especially for i = 20, but only if the memory required by MBE-MM is not too

high, see, for example, instances 75-25-5 and largeFam4 11 51 for both i-bounds. JGLP
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usually finds the best solution for a given i-bound, even for a small number of iterations,

e.g., instances 90-30-5 and pedigree51. However, for larger i-bound it often runs out of

memory, including the instances feasible for both MBE schemes, such as pedigree41, i = 20.

It confirms our earlier observation that, though the worst case space complexity bounds are

the same for JGLP and MBE-MM, the former requires more space in practice. Overall, it

is clear that, given enough time and memory, JGLP eventually produces the most accurate

bounds.

� 5.6.4 LP-tightening Algorithms as Search Guiding Heuristics

In addition to evaluating the algorithms as approximate bounding schemes, we explore their

potential as generators of heuristic evaluation functions for search, as described in Sec-

tion 1.2.4.4. We consider three anytime algorithms: AOBB (see Section 1.2.4.3 for details),

wAOBF (Section 4.4.2) and wAOBB (Section 4.6). For each of them we tested five heuristics

generated prior to search by pure MBE, by MBE with Max-Marginal-Matching, by FGLP

followed by MBE, by JGLP and by FGLP followed by JGLP. The iterative FGLP and JGLP

algorithms were run for 30 seconds each. The total time bound for AOBB with each of the

heuristics was set to 24 hours (including the pre-processing), memory limit was 3 GB, and

the mini-bucket i-bound was set to i ∈ {10, 15, 20}.

� 5.6.4.1 Heuristics for AOBB

In Tables 5.5-5.7 we show results comparing the heuristics for AOBB on a representative

set from the full 92 instances from 4 benchmarks. The table reports the total runtime in

seconds and the number of nodes expanded by each of the AOBB with each of the heuristic

schemes for finding the optimal solution.

We see that the heuristic generated by MBE-MM yields more efficient search, compared
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Instances

AOBB-MBE(i) AOBB-MBE(i) AOBB-MBE(i)
AOBB-MBE-MM(i) AOBB-MBE-MM(i) AOBB-MBE-MM(i)

AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i)
AOBB-JGLP(i) AOBB-JGLP(i) AOBB-JGLP(i)

(n,k,w∗,hT ) i-bound=10 i-bound=15 i-bound=20
time / # nodes time / # nodes time / # nodes

Pedigrees (# inst=11, n=581-1006, k=3-7, w∗=16-39, hT=52-104)
pedigree13 — / — 21992 / 4924235937 2380 / 608940710

(888, 3, 32, 102) 66156 / 11726505961 8150 / 1441111422 704 / 164319080
5658 / 905160506 926 / 182970673 357 / 73658489
3943 / 623204366 1687 / 309201030 193 / 26959464

pedigree31 — / — — / — — / —
(1006, 5, 30, 85) 61382 / 10617627744 3856 / 750931932 — / —

24896 / 3695993630 1033 / 188749113 — / —
5711 / 987186989 374 / 65064202 — / —

pedigree37 2 / 230972 13 / 10236 — / —
(726, 5, 20, 72) 1 / 26334 9 / 4086 — / —

31 / 9108 39 / 2796 — / —
30 / 3898 54 / 2328 — / —

pedigree38 101 / 19704583 — / — — / —
(581, 5, 16, 52) 1 / 105984 — / — — / —

31 / 23980 — / — — / —
33 / 2760 — / — — / —

pedigree41 — / — 6592 / 1471067842 1192 / 326841387
(885, 5, 33, 100) 4434 / 784381348 257 / 53398086 75 / 9235144

1252 / 214639049 168 / 29612599 88 / 7495210
833 / 135586985 72 / 8336890 — / —

pedigree51 — / — — / — — / —
(871, 5, 39, 98) — / — — / — 3395 / 679214977

— / — 64554 / 10177661600 1790 / 338647575
— / — 11402 / 1724160339 — / —

pedigree7 76552 / 14504177460 15291 / 3319803362 — / —
(867, 4, 32, 90) 2171 / 348425451 428 / 78953096 — / —

805 / 140665826 227 / 36619862 — / —
531 / 83548121 90 / 10110416 — / —

pedigree9 37198 / 7509543280 14224 / 3161690948 263 / 73694367
(935, 7, 27, 100) 4748 / 521695781 189 / 41599090 9 / 185567

685 / 130633536 143 / 25036271 38 / 169196
650 / 125778651 34 / 757844 44 / 27751

Type4 linkage (# inst=10, n=3907-8186, k=5, w∗=21-32, hT=319-625)
type4b 120 17 — / — — / — — / —

(4072, 5, 24, 319) — / — — / — 33 / 720778
— / — — / — 71 / 1168656
— / — — / — OOM

type4b 170 23 — / — — / — 9 / 121182
(5590, 5, 21, 427) — / — — / — 10 / 122064

— / — 28603 / 2576275134 37 / 45156
— / — 79917 / 5485723239 OOM

Table 5.5: Pedigree, Type4, search time (seconds) / # nodes expanded for selected instances.
FGLP and JGLP ran for 30 seconds. “OOM” indicates that search ran out of memory (3GB)
and “— / —” that it ran out of time (24h). In bold we highlight the best runtime for each
instance. n - number of variables, k - maximum domain size, w∗ -induced width, hT -
pseudo-tree height.
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Instances

AOBB-MBE(i) AOBB-MBE(i) AOBB-MBE(i)
AOBB-MBE-MM(i) AOBB-MBE-MM(i) AOBB-MBE-MM(i)

AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i)
AOBB-JGLP(i) AOBB-JGLP(i) AOBB-JGLP(i)

(n,k,w∗,hT ) i-bound=10 i-bound=15 i-bound=20
time / # nodes time / # nodes time / # nodes

LargeFam (# inst=30, n=863-1400, k=3, w∗=17-58, hT=33-111)
largeFam3-haplo 10 51 2 / 380359 2 / 45618 OOM

(863, 3, 21, 48) 1 / 190092 0 / 3228 OOM
31 / 152663 31 / 3472 OOM
30 / 50125 43 / 2683 OOM

largeFam3-haplo 10 52 OOM OOM OOM
(959, 3, 39, 68) OOM OOM 528 / 115676769

OOM OOM 262 / 4734126
OOM 7505 / 1246219453 OOM

largeFam3-haplo 10 54 11 / 3388405 1 / 156267 13 / 3246
(962, 3, 21, 51) 1 / 364635 0 / 5724 13 / 2293

30 / 149820 31 / 4346 45 / 2292
31 / 11644 41 / 3041 OOM

largeFam3-haplo 11 50 82 / 20303320 2 / 346742 23 / 202050
(874, 3, 26, 44) 4 / 869775 2 / 132695 14 / 2262

31 / 305170 31 / 3213 44 / 2265
31 / 11968 42 / 2434 OOM

largeFam3-haplo 11 51 — / — — / — — / —
(1020, 3, 33, 66) — / — 31043 / 6879525475 — / —

— / — 13489 / 3088790310 — / —
— / — — / — — / —

largeFam3 11 53 — / — — / — OOM
(1094, 3, 39, 71) — / — — / — OOM

— / — 44663 / 8080262337 OOM
— / — 10292 / 1878168857 OOM

largeFam3-haplo 11 55 — / — — / — — / —
(1133, 3, 40, 66) — / — — / — — / —

— / — 34359 / 6896094744 — / —
— / — 65066 / 10458952821 — / —

largeFam3 11 57 — / — — / — — / —
(1128, 3, 39, 77) — / — 58112 / 9421606282 OOM

— / — 4683 / 782421094 OOM
— / — 10801 / 1715700802 OOM

largeFam3 11 59 — / — — / — OOM
(1119, 3, 33, 73) — / — — / — OOM

— / — 59012 / 8098379409 OOM
— / — 22538 / 3025470612 OOM

largeFam3-haplo 12 56 4 / 737612 0 / 8258 OOM
(1101, 3, 17, 51) 1 / 196081 1 / 2655 1 / 2207

31 / 169153 31 / 2396 30 / 2203
30 / 63448 31 / 2203 30 / 2203

Table 5.6: LargeFam search time (seconds) / # nodes expanded for selected instances. FGLP
and JGLP ran for 30 seconds. “OOM” indicates that search ran out of memory (3GB) and
“— / —” that it ran out of time (24h). In bold we highlight the best runtime for each
instance. n - number of variables, k - maximum domain size, w∗ -induced width, hT -
pseudo-tree height.
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Instances

AOBB-MBE(i) AOBB-MBE(i) AOBB-MBE(i)
AOBB-MBE-MM(i) AOBB-MBE-MM(i) AOBB-MBE-MM(i)

AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i) AOBB-FGLP+MBE(i)
AOBB-JGLP(i) AOBB-JGLP(i) AOBB-JGLP(i)

(n,k,w∗,hT ) i-bound=10 i-bound=15 i-bound=20
time / # nodes time / # nodes time / # nodes

Binary Grid (# inst=32, n=144-2500, k=2, w∗=15-90, hT=48-283)
50-15-5 1 / 301067 0 / 15251 1 / 451

(225, 2, 19, 76) 0 / 23525 0 / 3676 0 / 451
30 / 4925 30 / 739 30 / 451
30 / 2711 30 / 451 31 / 451

50-17-5 17 / 5832680 1 / 102141 2 / 6533
(289, 2, 22, 84) 0 / 8816 0 / 1119 1 / 1096

30 / 1556 30 / 870 31 / 579
30 / 579 31 / 722 83 / 579

75-17-5 11 / 3038949 0 / 76197 2 / 4168
(289, 2, 22, 78) 1 / 233137 0 / 1845 1 / 579

31 / 205205 31 / 1134 32 / 579
31 / 178737 32 / 698 60 / 579

75-18-5 24 / 7480037 1 / 157973 2 / 2247
(324, 2, 24, 85) 0 / 80168 0 / 1688 1 / 649

30 / 2309 30 / 1015 32 / 649
30 / 649 32 / 649 62 / 649

75-19-5 908 / 256088880 3 / 1036278 3 / 39763
(361, 2, 25, 89) 6 / 1559857 0 / 11627 2 / 723

31 / 228145 31 / 6862 32 / 723
30 / 14687 31 / 1489 33 / 723

75-20-5 1936 / 422432794 6 / 1686365 7 / 1180807
(400, 2, 27, 99) 14 / 3340985 1 / 11539 2 / 1287

33 / 577327 30 / 2115 33 / 962
30 / 4967 30 / 816 34 / 801

90-30-5 — / — 54415 / 10603123693 5853 / 1299094138
(900, 2, 42, 151) 8601 / 1790747055 423 / 97620783 12 / 1125656

5928 / 1084067942 337 / 67303699 47 / 2101919
350 / 62930133 31 / 28688 48 / 7493

90-34-5 — / — — / — — / —
(1156, 2, 48, 186) — / — 2517 / 396585142 9 / 413587

— / — 5439 / 886872519 38 / 174323
270 / 35270820 31 / 8445 58 / 4029

90-42-5 — / — — / — — / —
(1764, 2, 60, 229) — / — 62051 / 8399774202 2471 / 340122171

— / — 17628 / 2349582057 651 / 93715978
40 / 1411953 134 / 13038792 OOM

90-50-5 — / — — / — — / —
(2500, 2, 74, 312) — / — — / — — / —

— / — — / — — / —
— / — 48781 / 4187198638 OOM

Table 5.7: Grids, search time (seconds) / # nodes expanded for selected instances. FGLP
and JGLP ran for 30 seconds. “OOM” indicates that search ran out of memory (3GB) and
“— / —” that it ran out of time (24h). In bold we highlight the best runtime for each
instance, italics indicate the smallest search space explored. n - number of variables, k -
maximum domain size, w∗ -induced width, hT - pseudo-tree height.
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with “pure” MBE, both in terms of runtime and nodes expanded, as we would expect based

on our evaluation of MBE-MM as a bounding scheme. The two iterative schemes are even

more powerful as heuristic generators. JGLP is the overall best-performing scheme, as long

as memory is available. For some memory-intense problems, infeasible for JGLP with large

i-bound, such as pedigree13, i = 15, FGLP+MBE presents a good balance between accuracy

of the heuristic and the runtime.

The i-bound value has a similar impact on the results for all the schemes. As expected,

larger i-bounds yield more accurate heuristics, but lead to increased memory requirements.

See, for example, pedigree37 and pedigree38, in Table 5.5, where all the schemes run out of

memory while attempting to compute heuristics for i = 20.

Figures 5.3 and 5.4 illustrate the anytime behavior of AOBB when employing each of the

bounding schemes to generate heuristics. We plot solution cost as a function of time (both

on log scale) for two instances from Grids, Pedigrees, LargeFam and Type4 benchmarks,

chosen to best illustrate prevailing tendencies in algorithms’ behavior, for a relatively high i-

bound. Higher values are better. As expected, AOBB-MBE has the least accurate heuristic

and is consistently inferior to other schemes. For both AOBB-FGLP-MBE and AOBB-

JGLP the choice of the maximum number of iterations (or, equivalently, maximum heuristic

computation time) plays an essential role in determining the success as anytime schemes.

In our experiments both FGLP and JGLP ran for 30 seconds which caused them to often

report the first solution considerably later than AOBB-MBE and AOBB-MBE-MM. See, for

example, Figure 5.3, pedigree31. AOBB-MBE-MM usually finds initial solution the fastest.

An interesting exception is the instance largeFam3-haplo 10 56 in Figure 5.4. This instance

is memory intensive with 1127 variables and induced width equal to 49. JGLP runs out of

memory on this instance without reporting any results. FGLP produces a tighter bound

than MBE and MBE-MM, yielding search with better anytime behavior.
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Figure 5.3: Lower bounds by the AOBB as a function of time (sec), memory limit 3 GB,
time limit 24h. Grids and Pedigrees. Parameters: (n,k,w∗,hT ), n - number of variables, k -
maximum domain size, w∗ -induced width, hT - pseudo-tree height.

� 5.6.4.2 Heuristics impact on wAOBF and wAOBB

We evaluated the performance of wAOBF and wAOBB with the same 5 heuristic options as

AOBB. Each instance was run with i-bounds ranging from 2 to 18. The FGLP and JGLP

were ran for 30 sec each. The time limit was 1 hour, the memory limit was 4 GB.
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Figure 5.4: Lower bounds by the AOBB as a function of time (sec), memory limit 3 GB,
time limit 24h. LargeFam and Type4. Parameters: (n,k,w∗,hT ), n - number of variables, k
- maximum domain size, w∗ -induced width, hT - pseudo-tree height.

Tables 5.8 and 5.9 show the comparison between the heuristics for wAOBF and wAOBB

respectively. We consider a subset of the hardest instances from all benchmarks. Since the

algorithms are anytime, we show the number of problems, for which an algorithm with a
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Figure 5.5: Heuristic comparison: Grids, wAOBF. Cost (on log scale) as a function of time
(sec). 4 GB memory limit, 1 hour time limit. n - number of variables, k - maximum domain
size, w -induced width, h - pseudo-tree height.
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Figure 5.6: Heuristic comparison: Pedigrees, wAOBF. Cost (on log scale) as a function of
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Figure 5.7: Heuristic comparison: Type4, wAOBF. Cost (on log scale) as a function of time
(sec). 4 GB memory limit, 1 hour time limit. n - number of variables, k - maximum domain
size, w -induced width, h - pseudo-tree height.
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Figure 5.8: Heuristic comparison: WCSPs, wAOBF. Cost (on log scale) as a function of
time (sec). 4 GB memory limit, 1 hour time limit. n - number of variables, k - maximum
domain size, w -induced width, h - pseudo-tree height.
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particular heuristic finds a better solution for a specific time bound. If the solution costs

are equal, the smaller weight is preferred (since it corresponds to a tighter bound on the

solution accuracy, as we discussed in Chapter 4). The time accounts for pre-processing, i.e.,

heuristic calculation. The results are consistent for both wAOBF and wAOBB. For shortest

time periods MBE-MM is the best heuristic, since it is more powerful than plain MBE and

requires much less time to compute than the iterative schemes that we ran for 30 sec, or

60 sec, in the case of FGLP+JGLP. For longer time periods JGLP and FGLP+JGLP are

superior, with the latter having a slight edge over the former.

Figures 5.5-5.8 display for wAOBF the plots of a cost on a logarithmic scale as a function

of time. For each benchmark we show a subset of instances best representing typical trends

in the results, for two i-bounds: relatively low (top row in each figure) and high (bottom

row). For most instances (e.g., Figure 5.8, myciel5g 3.wcsp) we see once again that for

the short time periods the algorithm using MBE-MM heuristic is superior and reports the

initial solutions first, while JGLP and FGLP+JGLP require more time to produce solutions

of similar accuracy. However, on other instances, such as pedigree51, i = 6 in Figure 5.6,

JGLP is often more successful than MBE-MM and finds the initial solutions faster. For

higher i-bounds for many instances, such as 75-22-5, i = 18 in Figure 5.5, the difference in

the solution costs often becomes negligible, given time. However MBE-MM is still clearly

the superior, reporting solutions much faster in most cases. It is easy to explain, considering

that the high i-bound allows both MBE-MM and JGLP to generate almost equally accurate

heuristics, while the calculation of the MBE-MM heuristic is considerably faster, which gives

wAOBF with MBE-MM an advantage in terms of the anytime performance.

Figures 5.9 - 5.12 show the plots of the cost as a function of time of wAOBB with various

heuristics for some select instances from all four benchmarks. For low i-bounds the dominance

between heuristics is not as obvious: there are instances, for which FGLP (e.g., 75-25-5, i = 2

in Figure 5.9) and even plain MBE (e.g., 75-23-5, i = 2) yield superior anytime performance.
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Algorithms Time bound (sec)
Assorted, # inst=225, n=25-5590, k=2-100, w∗=15-100, hT=21-453

Heuristics 10 30 60 600 1200 2400 3600
MBE 0.0 0.0 1.2 0.0 0.0 0.0 0.0

MBE-MM 70.6 73.1 22.4 8.7 9.2 9.2 9.2
FGLP+MBE 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JGLP 0.0 0.0 32.7 15.6 14.5 14.5 14.5
FGLP+JGLP+MBE 0.0 0.0 0.0 15.0 15.0 15.0 15.0

Table 5.8: wAOBF: Moment-matching heuristics, mixed ”difficult” problems: The % of
instances, for which an algorithm finds better solution than others. 4 GB memory, 1 hour
time limit. # - number of instances, n - number of variables, k - domain size, w∗ - induced
width, hT - pseudo-tree height.

Algorithms Time bound (sec)
Assorted, # inst=225, n=25-5590, k=2-100, w∗=15-100, hT=21-453

Heuristics 10 30 60 600 1200 2400 3600
MBE 0.0 0.0 1.2 1.2 1.2 1.2 1.2

MBE-MM 68.5 73.8 20.4 9.9 9.9 8.7 8.7
FGLP+MBE 0.0 0.0 0.0 0.0 0.0 0.0 0.0

JGLP 0.0 0.0 30.9 12.3 12.8 11.0 12.7
FGLP+JGLP+MBE 0.0 0.0 0.0 12.3 13.4 12.1 11.0

Table 5.9: wAOBB: Moment-matching heuristics, mixed ”difficult” problems: The % of
instances, for which an algorithm finds better solution than others. 4 GB memory, 1 hour
time limit. # - number of instances, n - number of variables, k - domain size, w∗ - induced
width, hT - pseudo tree height.

On certain other instances (e.g., type4b 120 17, i = 2, Figure 5.11) we see behavior similar

to that by wAOBF, namely JGLP is quite successful while MBE and FGLP are inferior. On

many other instances MBE-MM is superior, especially for large i-bound (e.g., Figures 5.10,

pedigree13, i = 18 and Figures 5.12, type4b 120 17, i = 18).

� 5.6.4.3 Summary

Based on our empirical evaluation we conclude that LP-tightening can significantly improve

the power of the MBE heuristics. The question of instance-based balance, namely tailoring
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the right level of i-bound and LP-tightening to the problem instance, is clearly a central

issue and a direction of future research. In this study we observed that MBE-MM always

improves over MBE, using comparable time and memory, while FGLP quickly converges

and is less memory-consuming than the other schemes. On the other hand, given sufficient

time and memory JGLP produces the tightest bound. The use of FGLP- and JGLP-based

heuristics reduces the search space explored for most instances, compared to MBE. For

simpler problems runtime may be dominated by the heuristic calculation time and thus faster

schemes like MBE and MBE-MM may be cost-effective. None of the three max-marginal

matching schemes dominates always. The use of larger clusters can significantly reduce the

search space, in some cases enabling quick solutions to problems that were infeasible within

the time limit for smaller i-bound, but can increase memory requirements exponentially.

� 5.7 Conclusion

In this chapter we describe the systematic combination of iterative cost-shifting updates

with elimination-order based clustering algorithms and provide extensive empirical evalu-

ation demonstrating its effectiveness. We present Join Graph Linear Programming, a new

bounding scheme for optimization tasks in graphical models that combines MBE bounds with

LP-based cost-shifting. We discuss the connection between JGLP and previously developed

methods: a) shifting costs procedure, e.g., [82, 59, 83]; b) Max-Product Linear Program-

ming [40]. Empirically, JGLP utilizes the available memory to produce better bounds than

FGLP that runs on the original clusters. We showed the schemes’ ability to improve informed

search algorithms; without requiring significantly more computational power than classical

MBE (for fixed i) they can drastically reduce the search space. Notably, the algorithm that

used as a heuristic generator a sequence FGLP+JGLP+MBE-MM won the first place in all

optimization categories in 2011 Pascal2 Probabilistic Inference Challenge4.

4http://www.cs.huji.ac.il/project/PASCAL/realBoard.php
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Figure 5.9: Heuristic comparison: wAOBB. Grids. Cost (on log scale) as a function of time
(sec). 4 GB memory limit, 1 hour time limit. Low i-bounds. n - number of variables, k -
maximum domain size, w -induced width, h - pseudo-tree height.
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Figure 5.10: Heuristic comparison: wAOBB. Pedigrees. Cost (on log scale) as a function of
time (sec). 4 GB memory limit, 1 hour time limit. Low i-bounds. n - number of variables,
k - maximum domain size, w -induced width, h - pseudo-tree height.
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Figure 5.11: Heuristic comparison: wAOBB. Type4. Cost (on log scale) as a function of
time (sec). 4 GB memory limit, 1 hour time limit. Low i-bounds. n - number of variables,
k - maximum domain size, w -induced width, h - pseudo-tree height.
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Figure 5.12: Heuristic comparison: wAOBB. WCSP. Cost (on log scale) as a function of
time (sec). 4 GB memory limit, 1 hour time limit. Low i-bounds. n - number of variables,
k - maximum domain size, w -induced width, h - pseudo-tree height.
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Chapter 6

Conclusion

The research presented in this dissertation is focused on advancing the existing schemes for

optimization in graphical models in several directions.

The first issue we focused on was finding m-best solutions to the optimization problem. For

the first time we formally defined the m-best task in the context of a semiring, thus making

existing inference algorithms directly applicable through the newly formulated combination

and marginalization operators. As an example of such algorithms we proceeded to adapt the

well-known bucket elimination algorithm to the m-best task, analyzing its asymptotic worst

case time and space complexity and contrasting it with previously developed schemes. We

also presented an approximate extension to the m-best task of the mini-bucket elimination

scheme, that provides bounds on the m-best solutions.

We also extended to the m-best task the best-first, in particular A*, and depth-first branch

and bound search algorithms, formulating new schemes called m-A* and m-BB. We analyzed

the m-A* properties and proved that it is, among other things, sound, complete and optimally

efficient. Though the idea behind m-A* is fairly simple and intuitive, this work, to the best

of our knowledge, is the first one ever to provide a systematical theoretical analysis of its

properties.

Moreover, we presented the m-best versions of popular AND/OR search algorithms, known
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to efficiently solve optimization task by exploiting problem decomposition. We empirically

evaluated the resulting schemes m-AOBF and m-AOBB, contrasting them with m-A* and

m-BB and comparing with efficient m-best LP-based schemes, showing that all our algo-

rithms have comparable runtimes for small number of required solutions m, while scaling

significantly better as m increases.

The other focus of this dissertation was the application of the ideas of weighted heuristic

search, popular in path-finding, to the graphical models domain. We proposed and em-

pirically evaluated two versions of anytime weighted best-first and two versions of anytime

depth-first branch and bound search algorithms. Our extensive experiments on a large

collection of real-life benchmarks showed the potential of the weighted schemes as any-

time algorithms, yielding reasonably accurate solutions while significantly reducing runtime

and explored search space. Crucially the weighted heuristic search schemes report a sub-

optimality bound for each solution equal to the weight used. This bound is often quite tight

and is invaluable for solving hard instances, for which the optimal costs are not known.

The final contribution of this dissertation lies in the advancement of the mini-bucket elimina-

tion heuristics, used in all the AND/OR search algorithms we mentioned. Presenting the first

systematic combination of the ideas of elimination-order based clustering algorithms, such

as MBE, and iterative cost-shifting updates, used in such algorithms as MPLP or h-MBE,

we propose three new bounding schemes. Among them, there are two iterative algorithms:

Factor Graph Linear Programming (FGLP) and Join Graph Linear Programming (JGLP);

and a single-pass scheme Mini-Bucket Elimination with Moment-Matching (MBE-MM). Our

empirical evaluation demonstrates superiority of the new schemes over ordinary MBE both

as approximate schemes and, more importantly, as heuristic generators. The new schemes

significantly improve the performance of all tested search algorithms.
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� 6.1 Directions for Future Research

The work presented leaves room for additional improvements that can be pursued in the

future, some of which has been already mentioned in the respective chapters.

Inference algorithms for m-best task.

The formulation of the m-best problem as a semiring makes existing inference algorithms

applicable to the m-best optimization. In particular, it might be possible, using the proposed

combination and optimization operators, to extend a popular loopy belief propagation algo-

rithm, the Pearl polytree algorithm [78]. This could yield an efficient approximate m-best

algorithm.

Search algorithms for m-best task.

Our empirical evaluation showed the inferiority of the m-AOBF scheme when exploring

AND/OR search graph while using caching. Such poor performance is not suggested by

theory and thus leaves potential opening for the improvement of the implementation. Addi-

tionally, we have yet to implement and experimentally test a graph version of m-AOBB.

An important way to improve the performance of the m-best search schemes lies in the

use of more sophisticated heuristics. In our evaluation we used the regular mini-bucket

elimination. We expect that the use of more advanced MBE-MM and JGLP heuristic would

considerably improve the efficiency of the schemes, making them even more competitive with

the previously developed m-best algorithms.

Weighted anytime schemes.

As we have shown in our empirical evaluation, none of the proposed algorithms is always

superior, with the performance varying greatly depending on the benchmark and heuristic

242



strength. Thus one of the very important directions of future work is the issue of automatic

algorithm selection and identification of particular problem features, that would allow to

predict which algorithm has most potential for a particular instance.

Instead of selecting a single algorithm for a specific class of instances a promising alternative

is to combine the algorithms within a portfolio framework. A question of portfolio building

and scheduling also requires a further investigation.

The performance of the algorithms can likely be improved by employing dynamic weights,

namely the weight that changes its value during a search iteration, for example, based on

the current node depth.

Finally, the potential of newly introduced quantity h-weight for bounding the optimal costs

remains an open question and requires further exploration.
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Appendices

� A Bucket Elimination for M-best Optimization Task: Additional Proofs

� A.1 Theorem 2.2

Theorem 2.2. The valuation structure (Am,⊗m, sortm) is a semiring.

Proof. Let S, T , R be arbitrary elements of Am. We prove one by one the required conditions.

1. commutativity of ⊗m. By definition, S⊗m T = Sortedm{a⊗ b | a ∈ S, b ∈ T}. Since ⊗ is

commutative, the previous expression is equal to Sortedm{b⊗ a | b ∈ T, a ∈ S} = T ⊗m S.

2. associativity of ⊗m. We have to prove that (S ⊗m T )⊗m R = S ⊗m (T ⊗m R). Suppose

that the previous equality does not hold. Then, it would imply that:

i. there may exist an element a ∈ (S ⊗m T )⊗m R, s.t. a 6∈ S ⊗m (T ⊗m R); or

ii. there may exist an element a ∈ S ⊗m (T ⊗m R), s.t. a 6∈ (S ⊗m T )⊗m R.

We show that both cases are impossible.

Consider the first case. Let {a1, . . . , am} = S ⊗m (T ⊗m R) where ∀1≤i<m, ai > am. Since

a 6∈ S ⊗m (T ⊗m R), it means that am > a. Element a comes from the combination of three

elements a = (s ⊗ t) ⊗ r. Each element ai comes from the combination of three elements

ai = sai ⊗ (tai ⊗ rai). By associativity of operator ⊗, ai = (sai ⊗ tai)⊗ rai . Then,

• If ∀1≤i≤m, sai ⊗ tai ∈ S ⊗m T , then (sai ⊗ tai)⊗ rai > (s⊗ t)⊗ r for all 1 ≤ i ≤ m, and
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a 6∈ (S ⊗m T )⊗m R, which contradicts the hypothesis.

• If ∃1≤j≤m, saj ⊗ taj 6∈ S ⊗m T , then there exists an element s′ ⊗ t′ > saj ⊗ taj . By

monotonicity of >, (s′⊗t′)⊗raj > (saj⊗taj)⊗raj . As a consequence (sam⊗tam)⊗ram 6∈

(S⊗mT )⊗mR. Since am > a, then a 6∈ (S⊗mT )⊗mR, which contradicts the hypothesis.

The proof for the second case is the same as above, but interchanging the role of a and

{a1, . . . , am}, and S and R.

3. commutativity of sortm. By definition, sortm{S, T} = Sortedm{S ∪ T}. Since

set union is commutative, Sortedm{S ∪ T} = Sortedm{T ∪ S} which is by definition

sortm{T, S}.

4. associativity of sortm. By definition, sortm{sortm{S, T}, R} = Sortedm{Sortedm{S∪

T} ∪ R}, and sortm{S, sortm{T,R}} = Sortedm{S ∪ Sortedm{T ∪ R}}. Clearly, the

two expressions are equivalent to Sortedm{S ∪ T ∪R}.

5. ⊗m distributes over sortm. Let us proceed by induction:

1. Base case. Whenm = 1, by Proposition 2.2, the valuation structure (Am,⊗m, sortm)

is a semiring and, as a consequence, ⊗m distributes over sortm.

2. Inductive step. Up to m, operator ⊗m distributes over sortm, and let {a1, . . . , am}

be its result. We have to prove that S ⊗m+1 (sortm+1{T,R}) = sortm+1{S ⊗m+1

T, S ⊗m+1 R}. By definition of the operators, the result is the same ordered set

of elements {a1, . . . , am} plus one element am+1. Suppose that ⊗m+1 does not

distribute over sortm+1. Then, it would imply that:

i. Element am+1 ∈ S ⊗m+1 (sortm+1{T,R}), but am+1 6∈ sortm+1{S ⊗m+1

T, S ⊗m+1 R}; or,

ii. Element am+1 6∈ S ⊗m+1 (sortm+1{T,R}), but am+1 ∈ sortm+1{S ⊗m+1

T, S ⊗m+1 R}

We show that both cases are impossible.
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Consider the first case. Since am+1 6∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R}, it means

that ∃a′ ∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R} such that a′ > am+1. Element a′ comes

from the combination of two elements a′ = s′ ⊗ u′, where s′ ∈ S and u′ ∈ T or

u′ ∈ R. Then:

• If u′ ∈ sortm+1{T,R}, then since a′ > am+1, by definition of ⊗m+1, am+1 6∈

S ⊗m+1 (sortm+1{T,R}), which contradicts the hypothesis.

• If u′ 6∈ sortm+1{T,R}, then ∃u′′ ∈ sortm+1{T,R} such that u′′ > u′. By

monotonicity of the order, u′′⊗s′ > u′⊗s′ and, by transitivity, u′′⊗s′ > am+1.

By definition of ⊗m+1, am+1 6∈ S⊗m+1 (sortm+1{T,R}), which contradicts the

hypothesis.

Consider now the second case. Since am+1 6∈ S ⊗m+1 (sortm+1{T,R}), it means

that ∃a′ ∈ S ⊗m+1 (sortm+1{T,R}) such that a′ > am+1. Element a′ comes from

the combination of two elements a′ = s′ ⊗ u′, where s′ ∈ S and u′ ∈ T or u′ ∈ R.

Then:

• If u′ ∈ T :

∗ and a′ ∈ S ⊗m+1 T . If a ∈ S ⊗m+1 T , since a′ > am+1 and by definition

of ⊗m+1, am+1 6∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R}, which contradicts the

hypothesis. If a 6∈ S⊗m+1T , since a′ > am+1 and by definition of sortm+1,

am+1 6∈ sortm+1{S ⊗m+1 T, S ⊗m+1 R}, which contradicts the hypothesis.

∗ and a′ 6∈ S ⊗m+1 T . Then, ∃a′′ ∈ S ⊗m+1 T such that a′′ > a′. By

transitivity of the order, a′′ > am+1. Then, either by definition of ⊗m+1

or by definition of sortm+1, am+1 6∈ sortm+1{S⊗m+1 T, S⊗m+1 R}, which

contradicts the hypothesis.

• If u′ ∈ R. The reasoning is the same as above, but interchanging the role of

T and R.
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� B Heuristic Search for M -best Task: Additional Proofs

� B.1 Theorem 3.11

Theorem 3.11 (Complexity of m-AOBF). The complexity of algorithm m-AOBF travers-

ing either the AND/OR search tree or the context minimal AND/OR search graph is time

and space O(kdeg
h−1

), where h is the depth of the underlying pseudo-tree, k is the maximum

domain size, and deg bounds the degree of the nodes in the pseudo-tree. If the pseudo-tree

is balanced (i.e., each internal node has exactly deg child nodes), then the time and space

complexity is O(kn), where n is the number of variables.

Proof. It is easy to see that the complexity of m-AOBF is dominated by the time and space

required to process the OPEN list (lines 3-29 in Algorithm 12). Therefore, in the worst case,

m-AOBF needs to go through the entire OPEN list of partial solution subtrees.

We denote by N the number of partial solution subtrees contained by an AND/OR search

tree ST relative to a pseudo-tree T with depth h. Let k be the maximum domain size, and

let deg be the maximum number of children for any node in the pseudo-tree.

We also define a partial solution subtree T ′ to be a subtree of ST such that: (1) T ′ contains

the root s of ST ; (2) if a non-terminal OR node n is in T ′, then T ′ contains exactly one AND

child node m of n; (3) if a non-terminal AND node n is in T ′ then T ′ contains all OR child

nodes m1, . . . ,mp of n; (4) a leaf or tip node of T ′ doesn’t have any successors in T ′.

Let NOR
i (respectively TORi ) be the number of (respectively set of) partial solution subtrees

whose leaf nodes correspond to the ith level of OR nodes in ST . Similarly, NAND
i (resp.

TANDi ) is the number of (respectively set of) partial solution subtrees whose leaf nodes

correspond to the ith level of AND nodes in ST . We assume that the ith level of OR nodes

in ST contains the OR nodes labeled by the variables at depth i in the pseudo-tree T , while
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the ith level of AND nodes in ST contains the AND nodes whose parents are the OR nodes

of the ith level. For example, the first level (i = 1) of OR nodes contains the root OR node

s of ST while the first level of AND nodes contains the children of s.

We can estimate the total number of partial solution subtrees as:

N =
h∑

i=1

(NOR
i +NAND

i )

Let T ′ ∈ TORi having m OR leaf nodes. Clearly, T ′ can be extended to at most km partial

solution subtrees {T ′′|T ′′ extends T ′} because each of the OR leaf nodes in T ′ can have

exactly one AND child node in T ′′ and an OR node can have at most k AND child nodes in

ST . On the other hand, if T ′ ∈ NAND
i has m AND leaf nodes, then T ′ can be extended to a

single partial solution subtree T ′′ such that each of the m AND leaf nodes in T ′ has at most

deg OR child nodes in T ′′.

Let mOR
i (respectively mAND

i ) be the number of leaf nodes for a partial solution subtree

T ′ ∈ TORi (resp. T ′ ∈ TANDi ). Then, mOR
i = mAND

i−1 · deg because a leaf AND node in

T ′ ∈ TANDi−1 can have at most deg OR child nodes in T ′′ ∈ TORi , while mAND
i = mOR

i because

a leaf OR node in T ′ ∈ TORi can have exactly one AND child node in T ′′ ∈ TANDi . Since

mOR
1 = 1 and mAND

1 = 1, we have that mOR
i = mAND

i = degi−1.

It follows that NOR
i = NAND

i−1 and NAND
i = NOR

i · kmORi = NOR
i · kdegi−1

, where NOR
1 = 1 and

NAND
1 = k, respectively. Therefore, we can write:
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N = (1 + k)

+ (k + kdeg+1)

+ (kdeg+1 + kdeg
2+deg+1)

+ ...

+ (kdeg
h−2+degh−3+...+1 + kdeg

h−1+degh−2+...+1)

≈ O(k
degh−1
deg−1 )

Thus, the worst-case number of partial solution subtrees that need to be stored in OPEN is

N ≈ O(kdeg
h−1

). Therefore, the time and space complexity of m-AOBF follows as O(kdeg
h−1

).

When the pseudo-tree T is balanced, namely each internal node has exactly deg child nodes,

the time and space complexity bound is to O(kn), since n ≈ O(degh−1).

� C Weighted Heuristic Search: Additional Results

� C.1 Scatter Diagrams Summaries: Weighted Heuristic Best-First Search

In this section we include additional scatter plots, summarizing the performance of weighted

heuristic search schemes. Figure C.1 shows the comparison between wAOBF and wR-AOBF

for two time bound and two levels of heuristic strength and, Figures C.2-C.2 show the

comparison between wAOBF and BRAOBB for 3 values of i-bounds and 3 time bounds for

each instance. For completeness we include also some of the plots previously presented in

Chapter 4.
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Figure C.1: wAOBF vs wR-AOBF, all benchmarks: comparison of relative accuracy at 600
sec. Each marker represents a single instance. Memory limit 4 GB, time limit 1 hour. In
parenthesis (X/Y): X - # instances, for which at least one algorithm found a solution, Y -
total # instances, MBE heuristic.

258



0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 10 sec, (16/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=4, 3600 sec, (21/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 10 sec, (21/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=10, 3600 sec, (23/31)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO

BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 10 sec, (24/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 600 sec, (25/32)

0.0 0.2 0.4 0.6 0.8 1.0
wAOBF, relative accuracy

0.0

0.2

0.4

0.6

0.8

1.0

BR
AO
BB
, r
el
at
iv
e 
ac
cu
ra
cy

Grids, i=20, 3600 sec, (25/32)

Figure C.2: wAOBF vs BRAOBB on Grids: comparison of relative accuracy at times 10,
600 and 3600 sec. Each row - a single time bound. Each marker represents a single instance.
Memory limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for which at
least one algorithm found a solution, Y - total # instances, MBE heuristic.
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Figure C.3: wAOBF vs BRAOBB on Pedigrees. comparison of relative accuracy at times
10, 600 and 3600 sec. Each row - a single time bound. Each marker represents a single
instance. Memory limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for
which at least one algorithm found a solution, Y - total # instances, MBE heuristic.
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Figure C.4: wAOBF vs BRAOBB on WCSPs: comparison of relative accuracy at times 10,
600 and 3600 sec. Each row - a single time bound. Each marker is a single instance. Memory
limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for which at least one
algorithm found a solution, Y - total # instances, MBE heuristic.
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Figure C.5: wAOBF vs BRAOBB on Type4: comparison of relative accuracy at times 10,
600 and 3600 sec. Each row - a single time bound. Each marker is a single instance. Memory
limit 4 GB, time limit 1 hour. In parenthesis (X/Y): X - # instances, for which at least one
algorithm found a solution, Y - total # instances, MBE heuristic.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=10, n = 144− 2500, k = 2, w∗ = 15− 74, hT = 48− 312

i=2
wAOBF 56.3 / 6.3 / 16 73.7 / 5.3 / 19 63.2 / 21.1 / 19 47.6 / 19.0 / 21 31.8 / 18.2 / 22

wR-AOBF 43.8 / 6.3 / 16 42.1 / 5.3 / 19 31.6 / 21.1 / 19 4.8 / 19.0 / 21 9.1 / 18.2 / 22
wAOBB 18.8 / 112.5 / 16 31.6 / 89.5 / 19 26.3 / 84.2 / 19 38.1 / 71.4 / 21 18.2 / 72.7 / 22

i=4
wAOBF 50.0 / 9.1 / 22 58.3 / 20.8 / 24 37.5 / 29.2 / 24 20.8 / 33.3 / 24 16.0 / 32.0 / 25

wR-AOBF 27.3 / 9.1 / 22 33.3 / 16.7 / 24 25.0 / 29.2 / 24 8.3 / 29.2 / 24 4.0 / 28.0 / 25
wAOBB 36.4 / 68.2 / 22 16.7 / 58.3 / 24 8.3 / 79.2 / 24 16.7 / 66.7 / 24 12.0 / 72.0 / 25

i=6
wAOBF 45.8 / 25.0 / 24 46.2 / 46.2 / 26 34.6 / 53.8 / 26 18.5 / 51.9 / 27 10.7 / 50.0 / 28

wR-AOBF 29.2 / 29.2 / 24 23.1 / 46.2 / 26 23.1 / 53.8 / 26 14.8 / 51.9 / 27 7.1 / 50.0 / 28
wAOBB 16.7 / 79.2 / 24 15.4 / 76.9 / 26 11.5 / 76.9 / 26 11.1 / 85.2 / 27 7.1 / 85.7 / 28

i=8
wAOBF 40.7 / 25.9 / 27 37.0 / 51.9 / 27 22.2 / 59.3 / 27 11.1 / 63.0 / 27 3.6 / 60.7 / 28

wR-AOBF 33.3 / 40.7 / 27 25.9 / 51.9 / 27 3.7 / 59.3 / 27 3.7 / 59.3 / 27 3.6 / 57.1 / 28
wAOBB 29.6 / 59.3 / 27 14.8 / 74.1 / 27 7.4 / 88.9 / 27 11.1 / 96.3 / 27 7.1 / 92.9 / 28

i=10
wAOBF 29.6 / 55.6 / 27 18.5 / 66.7 / 27 14.8 / 81.5 / 27 7.4 / 81.5 / 27 0.0 / 79.3 / 29

wR-AOBF 18.5 / 59.3 / 27 7.4 / 74.1 / 27 3.7 / 81.5 / 27 0.0 / 81.5 / 27 0.0 / 75.9 / 29
wAOBB 18.5 / 74.1 / 27 3.7 / 100.0 / 27 0.0 / 111.1 / 27 7.4 / 100.0 / 27 3.4 / 93.1 / 29

i=12
wAOBF 22.7 / 54.5 / 22 4.3 / 78.3 / 23 4.3 / 87.0 / 23 0.0 / 87.5 / 24 0.0 / 91.7 / 24

wR-AOBF 13.6 / 68.2 / 22 0.0 / 82.6 / 23 0.0 / 87.0 / 23 0.0 / 79.2 / 24 0.0 / 79.2 / 24
wAOBB 9.1 / 95.5 / 22 0.0 / 95.7 / 23 4.3 / 91.3 / 23 4.2 / 95.8 / 24 0.0 / 104.2 / 24

i=14
wAOBF 10.3 / 75.9 / 29 12.9 / 80.6 / 31 9.4 / 81.3 / 32 9.4 / 84.4 / 32 6.3 / 84.4 / 32

wR-AOBF 3.4 / 82.8 / 29 6.5 / 80.6 / 31 0.0 / 78.1 / 32 0.0 / 78.1 / 32 0.0 / 78.1 / 32
wAOBB 3.4 / 93.1 / 29 3.2 / 90.3 / 31 6.3 / 84.4 / 32 0.0 / 87.5 / 32 0.0 / 90.6 / 32

i=18
wAOBF 0.0 / 86.7 / 30 6.5 / 87.1 / 31 9.7 / 87.1 / 31 3.2 / 87.1 / 31 3.2 / 87.1 / 31

wR-AOBF 10.0 / 90.0 / 30 3.2 / 87.1 / 31 3.2 / 87.1 / 31 0.0 / 87.1 / 31 0.0 / 87.1 / 31
wAOBB 0.0 / 86.7 / 30 6.5 / 90.3 / 31 6.5 / 93.5 / 31 3.2 / 100.0 / 31 3.2 / 100.0 / 31

Table C.1: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
MBE-MM heuristic, Grids.

� C.2 Impact of Advanced Heuristics on Weighted Heuristic Search

� C.2.1 MBE-MM heuristic

Tables C.1-C.4 present the summary of relative accuracy of wAOBF, wR-AOBF and wAOBB

compared to BRAOBB for several time bounds (10, 30, 600, 3600 and 21600 seconds),

using Mini-Bucket Elimination with Max-Marginal-Matching (MBE) heuristic. For each

time bound we show X% - percentage of instances, for which each algorithm is the better

than BRAOBB at a specific time bound, Y% - percentage of instances, for which algorithm

ties with BRAOBB and N - number of instances, for which at least one of algorithms found

a solution. The memory limit was 4 GB, time limit 6 hours.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Pedigrees (# inst=16, n = 298− 1015, k = 3− 7, w∗ = 15− 33, hT = 59− 140

i=2
wAOBF 68.8 / 6.3 / 16 56.3 / 6.3 / 16 62.5 / 6.3 / 16 43.8 / 12.5 / 16 31.3 / 12.5 / 16

wR-AOBF 25.0 / 6.3 / 16 50.0 / 6.3 / 16 37.5 / 6.3 / 16 25.0 / 6.3 / 16 12.5 / 6.3 / 16
wAOBB 37.5 / 37.5 / 16 31.3 / 31.3 / 16 31.3 / 31.3 / 16 37.5 / 25.0 / 16 37.5 / 37.5 / 16

i=4
wAOBF 26.7 / 6.7 / 15 31.3 / 25.0 / 16 37.5 / 25.0 / 16 25.0 / 25.0 / 16 18.8 / 25.0 / 16

wR-AOBF 20.0 / 6.7 / 15 25.0 / 18.8 / 16 25.0 / 18.8 / 16 18.8 / 18.8 / 16 6.3 / 18.8 / 16
wAOBB 13.3 / 46.7 / 15 6.3 / 62.5 / 16 31.3 / 50.0 / 16 25.0 / 62.5 / 16 12.5 / 62.5 / 16

i=6
wAOBF 18.8 / 18.8 / 16 31.3 / 31.3 / 16 18.8 / 43.8 / 16 31.3 / 43.8 / 16 18.8 / 43.8 / 16

wR-AOBF 18.8 / 25.0 / 16 25.0 / 37.5 / 16 18.8 / 43.8 / 16 18.8 / 43.8 / 16 12.5 / 43.8 / 16
wAOBB 25.0 / 43.8 / 16 31.3 / 50.0 / 16 18.8 / 68.8 / 16 18.8 / 75.0 / 16 12.5 / 81.3 / 16

i=8
wAOBF 25.0 / 25.0 / 16 31.3 / 31.3 / 16 25.0 / 37.5 / 16 12.5 / 50.0 / 16 12.5 / 50.0 / 16

wR-AOBF 12.5 / 25.0 / 16 37.5 / 31.3 / 16 18.8 / 43.8 / 16 12.5 / 43.8 / 16 6.3 / 43.8 / 16
wAOBB 12.5 / 43.8 / 16 18.8 / 56.3 / 16 25.0 / 62.5 / 16 18.8 / 68.8 / 16 12.5 / 81.3 / 16

i=10
wAOBF 6.3 / 37.5 / 16 12.5 / 62.5 / 16 6.3 / 62.5 / 16 6.3 / 62.5 / 16 6.3 / 62.5 / 16

wR-AOBF 18.8 / 43.8 / 16 12.5 / 56.3 / 16 6.3 / 56.3 / 16 6.3 / 56.3 / 16 0.0 / 56.3 / 16
wAOBB 12.5 / 62.5 / 16 6.3 / 75.0 / 16 12.5 / 87.5 / 16 6.3 / 93.8 / 16 0.0 / 93.8 / 16

i=14
wAOBF 14.3 / 50.0 / 14 14.3 / 64.3 / 14 7.1 / 64.3 / 14 0.0 / 64.3 / 14 0.0 / 64.3 / 14

wR-AOBF 7.1 / 57.1 / 14 0.0 / 64.3 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14
wAOBB 0.0 / 92.9 / 14 0.0 / 100.0 / 14 0.0 / 100.0 / 14 0.0 / 92.9 / 14 0.0 / 100.0 / 14

i=18
wAOBF 0.0 / 50.0 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12

wR-AOBF 0.0 / 58.3 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12 0.0 / 66.7 / 12
wAOBB 0.0 / 91.7 / 12 0.0 / 100.0 / 12 0.0 / 100.0 / 12 0.0 / 100.0 / 12 0.0 / 100.0 / 12

Table C.2: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
MBE-MM heuristic, Pedigrees.

� C.2.2 JGLP heuristic

Tables C.5-C.8 show the summary of the result for wAOBF, wR-AOBF and wAOBB us-

ing Join-Graph Linear Programming (JGLP) heuristic in the same for as used in Subsec-

tion C.2.1.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

WCSPs (# inst=8, n = 100− 665, k = 2− 3, w∗ = 19− 89, hT = 45− 287

i=2
wAOBF 16.7 / 0.0 / 6 0.0 / 12.5 / 8 0.0 / 12.5 / 8 0.0 / 25.0 / 8 0.0 / 25.0 / 8

wR-AOBF 0.0 / 0.0 / 6 0.0 / 25.0 / 8 0.0 / 25.0 / 8 0.0 / 25.0 / 8 0.0 / 25.0 / 8
wAOBB 33.3 / 16.7 / 6 12.5 / 25.0 / 8 0.0 / 25.0 / 8 0.0 / 25.0 / 8 25.0 / 37.5 / 8

i=4
wAOBF 33.3 / 16.7 / 6 16.7 / 16.7 / 6 0.0 / 33.3 / 6 16.7 / 33.3 / 6 16.7 / 33.3 / 6

wR-AOBF 33.3 / 16.7 / 6 16.7 / 33.3 / 6 16.7 / 33.3 / 6 16.7 / 33.3 / 6 16.7 / 33.3 / 6
wAOBB 33.3 / 33.3 / 6 16.7 / 33.3 / 6 0.0 / 33.3 / 6 0.0 / 50.0 / 6 0.0 / 50.0 / 6

i=6
wAOBF 0.0 / 20.0 / 5 20.0 / 20.0 / 5 0.0 / 20.0 / 5 0.0 / 20.0 / 5 0.0 / 20.0 / 5

wR-AOBF 20.0 / 20.0 / 5 20.0 / 20.0 / 5 0.0 / 20.0 / 5 0.0 / 20.0 / 5 0.0 / 20.0 / 5
wAOBB 0.0 / 40.0 / 5 0.0 / 40.0 / 5 0.0 / 40.0 / 5 0.0 / 40.0 / 5 0.0 / 40.0 / 5

i=8
wAOBF 0.0 / 25.0 / 4 0.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4

wR-AOBF 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4
wAOBB 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4

i=10
wAOBF 100.0 / 0.0 / 1 0.0 / 50.0 / 2 0.0 / 33.3 / 3 0.0 / 33.3 / 3 0.0 / 33.3 / 3

wR-AOBF 100.0 / 0.0 / 1 0.0 / 50.0 / 2 0.0 / 33.3 / 3 0.0 / 33.3 / 3 0.0 / 33.3 / 3
wAOBB 100.0 / 0.0 / 1 0.0 / 100.0 / 2 0.0 / 33.3 / 3 0.0 / 33.3 / 3 0.0 / 33.3 / 3

i=14
wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

i=18
wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

Table C.3: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
MBE-MM heuristic, WCSP.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Type4 (# inst=10, n = 3938− 8186, k = 5, w∗ = 24− 32, hT = 319− 625

i=2
wAOBF 100.0 / 0.0 / 1 66.7 / 0.0 / 3 66.7 / 0.0 / 3 66.7 / 0.0 / 3 100.0 / 0.0 / 3

wR-AOBF 0.0 / 0.0 / 1 33.3 / 0.0 / 3 33.3 / 0.0 / 3 66.7 / 0.0 / 3 66.7 / 0.0 / 3
wAOBB 0.0 / 400.0 / 1 33.3 / 66.7 / 3 33.3 / 133.3 / 3 33.3 / 100.0 / 3 33.3 / 166.7 / 3

i=4
wAOBF 100.0 / 0.0 / 1 75.0 / 0.0 / 4 83.3 / 0.0 / 6 50.0 / 0.0 / 6 100.0 / 0.0 / 6

wR-AOBF 0.0 / 0.0 / 1 25.0 / 0.0 / 4 33.3 / 0.0 / 6 50.0 / 0.0 / 6 50.0 / 0.0 / 6
wAOBB 100.0 / 200.0 / 1 25.0 / 75.0 / 4 33.3 / 33.3 / 6 16.7 / 33.3 / 6 33.3 / 33.3 / 6

i=6
wAOBF 0.0 / 0.0 / 1 75.0 / 0.0 / 4 60.0 / 0.0 / 5 80.0 / 0.0 / 5 80.0 / 0.0 / 5

wR-AOBF 0.0 / 0.0 / 1 0.0 / 0.0 / 4 0.0 / 0.0 / 5 0.0 / 0.0 / 5 20.0 / 0.0 / 5
wAOBB 0.0 / 200.0 / 1 25.0 / 50.0 / 4 20.0 / 20.0 / 5 60.0 / 0.0 / 5 20.0 / 20.0 / 5

i=8
wAOBF 66.7 / 0.0 / 3 50.0 / 0.0 / 6 33.3 / 0.0 / 6 100.0 / 0.0 / 6 100.0 / 0.0 / 6

wR-AOBF 33.3 / 0.0 / 3 33.3 / 0.0 / 6 66.7 / 0.0 / 6 66.7 / 0.0 / 6 66.7 / 0.0 / 6
wAOBB 33.3 / 66.7 / 3 50.0 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 0.0 / 6 50.0 / 0.0 / 6

i=10
wAOBF 25.0 / 0.0 / 8 11.1 / 0.0 / 9 70.0 / 0.0 / 10 80.0 / 0.0 / 10 90.0 / 0.0 / 10

wR-AOBF 12.5 / 0.0 / 8 33.3 / 0.0 / 9 20.0 / 0.0 / 10 20.0 / 0.0 / 10 20.0 / 0.0 / 10
wAOBB 25.0 / 0.0 / 8 11.1 / 11.1 / 9 30.0 / 0.0 / 10 20.0 / 0.0 / 10 30.0 / 0.0 / 10

i=12
wAOBF 60.0 / 0.0 / 5 16.7 / 0.0 / 6 66.7 / 0.0 / 6 83.3 / 0.0 / 6 83.3 / 0.0 / 6

wR-AOBF 20.0 / 0.0 / 5 16.7 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 0.0 / 6
wAOBB 20.0 / 20.0 / 5 33.3 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 16.7 / 6

i=14
wAOBF 22.2 / 0.0 / 9 30.0 / 0.0 / 10 90.0 / 0.0 / 10 80.0 / 0.0 / 10 70.0 / 0.0 / 10

wR-AOBF 0.0 / 0.0 / 9 0.0 / 0.0 / 10 0.0 / 0.0 / 10 0.0 / 0.0 / 10 0.0 / 0.0 / 10
wAOBB 11.1 / 11.1 / 9 10.0 / 10.0 / 10 0.0 / 30.0 / 10 0.0 / 30.0 / 10 0.0 / 30.0 / 10

i=18
wAOBF 0.0 / 0.0 / 4 0.0 / 11.1 / 9 33.3 / 22.2 / 9 44.4 / 22.2 / 9 44.4 / 22.2 / 9

wR-AOBF 0.0 / 25.0 / 4 0.0 / 22.2 / 9 0.0 / 22.2 / 9 0.0 / 22.2 / 9 0.0 / 22.2 / 9
wAOBB 0.0 / 0.0 / 4 0.0 / 55.6 / 9 0.0 / 66.7 / 9 0.0 / 66.7 / 9 22.2 / 55.6 / 9

Table C.4: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
MBE-MM heuristic, Type4.

266



I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Grids (# inst=10, n = 144− 2500, k = 2, w∗ = 15− 74, hT = 48− 312

i=2
wAOBF 0 / 0 / 0 57.1 / 23.8 / 21 59.1 / 31.8 / 22 30.4 / 30.4 / 23 16.7 / 33.3 / 24

wR-AOBF 0 / 0 / 0 38.1 / 19.0 / 21 31.8 / 22.7 / 22 13.0 / 26.1 / 23 8.3 / 25.0 / 24
wAOBB 0 / 0 / 0 19.0 / 76.2 / 21 31.8 / 77.3 / 22 39.1 / 73.9 / 23 25.0 / 70.8 / 24

i=4
wAOBF 0 / 0 / 0 18.5 / 40.7 / 27 13.8 / 48.3 / 29 13.8 / 58.6 / 29 6.9 / 62.1 / 29

wR-AOBF 0 / 0 / 0 25.9 / 37.0 / 27 17.2 / 48.3 / 29 6.9 / 55.2 / 29 6.9 / 55.2 / 29
wAOBB 0 / 0 / 0 11.1 / 63.0 / 27 10.3 / 65.5 / 29 13.8 / 72.4 / 29 3.4 / 89.7 / 29

i=6
wAOBF 0 / 0 / 0 3.2 / 77.4 / 31 0.0 / 87.1 / 31 0.0 / 90.3 / 31 0.0 / 90.3 / 31

wR-AOBF 0 / 0 / 0 6.5 / 87.1 / 31 3.2 / 87.1 / 31 0.0 / 90.3 / 31 0.0 / 90.3 / 31
wAOBB 0 / 0 / 0 3.2 / 80.6 / 31 0.0 / 96.8 / 31 0.0 / 100.0 / 31 0.0 / 103.2 / 31

i=8
wAOBF 0 / 0 / 0 6.5 / 90.3 / 31 3.2 / 90.3 / 31 3.2 / 93.5 / 31 0.0 / 93.5 / 31

wR-AOBF 0 / 0 / 0 3.2 / 90.3 / 31 3.2 / 93.5 / 31 3.2 / 93.5 / 31 0.0 / 93.5 / 31
wAOBB 0 / 0 / 0 0.0 / 93.5 / 31 0.0 / 100.0 / 31 6.5 / 93.5 / 31 0.0 / 103.2 / 31

i=10
wAOBF 0 / 0 / 0 3.2 / 93.5 / 31 0.0 / 96.8 / 31 0.0 / 96.8 / 31 0.0 / 96.8 / 31

wR-AOBF 0 / 0 / 0 0.0 / 96.8 / 31 0.0 / 96.8 / 31 0.0 / 96.8 / 31 0.0 / 96.8 / 31
wAOBB 0 / 0 / 0 3.2 / 100.0 / 31 0.0 / 100.0 / 31 0.0 / 100.0 / 31 0.0 / 103.2 / 31

i=12
wAOBF 0 / 0 / 0 11.1 / 81.5 / 27 3.7 / 85.2 / 27 0.0 / 88.9 / 27 0.0 / 88.9 / 27

wR-AOBF 0 / 0 / 0 7.4 / 85.2 / 27 3.7 / 88.9 / 27 0.0 / 88.9 / 27 0.0 / 88.9 / 27
wAOBB 0 / 0 / 0 3.7 / 88.9 / 27 7.4 / 85.2 / 27 3.7 / 92.6 / 27 3.7 / 96.3 / 27

i=14
wAOBF 0 / 0 / 0 3.1 / 84.4 / 32 3.1 / 87.5 / 32 3.1 / 90.6 / 32 3.1 / 90.6 / 32

wR-AOBF 0 / 0 / 0 9.4 / 87.5 / 32 3.1 / 90.6 / 32 3.1 / 90.6 / 32 3.1 / 90.6 / 32
wAOBB 0 / 0 / 0 0.0 / 87.5 / 32 3.1 / 90.6 / 32 3.1 / 96.9 / 32 3.1 / 96.9 / 32

i=18
wAOBF 0 / 0 / 0 0.0 / 89.3 / 28 0.0 / 90.0 / 30 3.3 / 93.3 / 30 0.0 / 93.3 / 30

wR-AOBF 0 / 0 / 0 3.6 / 96.4 / 28 6.7 / 93.3 / 30 3.3 / 93.3 / 30 0.0 / 93.3 / 30
wAOBB 0 / 0 / 0 3.6 / 92.9 / 28 0.0 / 86.7 / 30 0.0 / 93.3 / 30 0.0 / 100.0 / 30

Table C.5: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
JGLP heuristic, Grids.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Pedigrees (# inst=16, n = 298− 1015, k = 3− 7, w∗ = 15− 33, hT = 59− 140

i=2
wAOBF 0 / 0 / 0 43.8 / 6.3 / 16 31.3 / 25.0 / 16 37.5 / 25.0 / 16 25.0 / 25.0 / 16

wR-AOBF 0 / 0 / 0 31.3 / 18.8 / 16 25.0 / 31.3 / 16 25.0 / 31.3 / 16 12.5 / 31.3 / 16
wAOBB 0 / 0 / 0 56.3 / 31.3 / 16 12.5 / 62.5 / 16 18.8 / 75.0 / 16 25.0 / 68.8 / 16

i=4
wAOBF 0 / 0 / 0 31.3 / 18.8 / 16 12.5 / 37.5 / 16 25.0 / 37.5 / 16 6.3 / 37.5 / 16

wR-AOBF 0 / 0 / 0 37.5 / 25.0 / 16 12.5 / 37.5 / 16 12.5 / 37.5 / 16 0.0 / 37.5 / 16
wAOBB 0 / 0 / 0 18.8 / 62.5 / 16 25.0 / 62.5 / 16 25.0 / 75.0 / 16 6.3 / 93.8 / 16

i=6
wAOBF 0 / 0 / 0 6.3 / 50.0 / 16 12.5 / 56.3 / 16 0.0 / 56.3 / 16 0.0 / 56.3 / 16

wR-AOBF 0 / 0 / 0 6.3 / 43.8 / 16 6.3 / 50.0 / 16 0.0 / 50.0 / 16 0.0 / 50.0 / 16
wAOBB 0 / 0 / 0 12.5 / 68.8 / 16 12.5 / 87.5 / 16 6.3 / 93.8 / 16 0.0 / 100.0 / 16

i=8
wAOBF 0 / 0 / 0 0.0 / 46.7 / 15 6.3 / 50.0 / 16 0.0 / 50.0 / 16 0.0 / 50.0 / 16

wR-AOBF 0 / 0 / 0 6.7 / 53.3 / 15 6.3 / 50.0 / 16 0.0 / 50.0 / 16 0.0 / 50.0 / 16
wAOBB 0 / 0 / 0 6.7 / 80.0 / 15 6.3 / 87.5 / 16 0.0 / 87.5 / 16 0.0 / 87.5 / 16

i=10
wAOBF 0 / 0 / 0 6.3 / 50.0 / 16 0.0 / 62.5 / 16 0.0 / 62.5 / 16 0.0 / 62.5 / 16

wR-AOBF 0 / 0 / 0 0.0 / 56.3 / 16 0.0 / 62.5 / 16 0.0 / 62.5 / 16 0.0 / 62.5 / 16
wAOBB 0 / 0 / 0 0.0 / 81.3 / 16 0.0 / 81.3 / 16 0.0 / 87.5 / 16 0.0 / 100.0 / 16

i=12
wAOBF 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0

wR-AOBF 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0
wAOBB 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0 0 / 0 / 0

i=14
wAOBF 0 / 0 / 0 7.1 / 57.1 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14

wR-AOBF 0 / 0 / 0 0.0 / 57.1 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14 0.0 / 57.1 / 14
wAOBB 0 / 0 / 0 0.0 / 92.9 / 14 0.0 / 92.9 / 14 0.0 / 92.9 / 14 0.0 / 100.0 / 14

i=18
wAOBF 0 / 0 / 0 0.0 / 75.0 / 8 0.0 / 77.8 / 9 0.0 / 77.8 / 9 0.0 / 77.8 / 9

wR-AOBF 0 / 0 / 0 0.0 / 75.0 / 8 0.0 / 77.8 / 9 0.0 / 77.8 / 9 0.0 / 77.8 / 9
wAOBB 0 / 0 / 0 0.0 / 100.0 / 8 0.0 / 100.0 / 9 0.0 / 100.0 / 9 0.0 / 100.0 / 9

Table C.6: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
JGLP heuristic, Pedigrees.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

WCSPs (# inst=8, n = 100− 665, k = 2− 3, w∗ = 19− 89, hT = 45− 287

i=2
wAOBF 0 / 0 / 0 25.0 / 37.5 / 8 25.0 / 37.5 / 8 25.0 / 37.5 / 8 25.0 / 37.5 / 8

wR-AOBF 0 / 0 / 0 25.0 / 37.5 / 8 25.0 / 37.5 / 8 25.0 / 37.5 / 8 25.0 / 37.5 / 8
wAOBB 0 / 0 / 0 25.0 / 50.0 / 8 25.0 / 50.0 / 8 25.0 / 50.0 / 8 37.5 / 50.0 / 8

i=4
wAOBF 0 / 0 / 0 33.3 / 33.3 / 6 33.3 / 33.3 / 6 33.3 / 33.3 / 6 33.3 / 33.3 / 6

wR-AOBF 0 / 0 / 0 33.3 / 33.3 / 6 33.3 / 33.3 / 6 33.3 / 33.3 / 6 33.3 / 33.3 / 6
wAOBB 0 / 0 / 0 33.3 / 33.3 / 6 33.3 / 50.0 / 6 33.3 / 50.0 / 6 33.3 / 50.0 / 6

i=6
wAOBF 0 / 0 / 0 25.0 / 25.0 / 4 50.0 / 50.0 / 4 50.0 / 50.0 / 4 25.0 / 50.0 / 4

wR-AOBF 0 / 0 / 0 50.0 / 25.0 / 4 25.0 / 25.0 / 4 25.0 / 25.0 / 4 0.0 / 25.0 / 4
wAOBB 0 / 0 / 0 50.0 / 25.0 / 4 25.0 / 50.0 / 4 25.0 / 50.0 / 4 0.0 / 50.0 / 4

i=8
wAOBF 0 / 0 / 0 66.7 / 33.3 / 3 66.7 / 33.3 / 3 66.7 / 33.3 / 3 66.7 / 33.3 / 3

wR-AOBF 0 / 0 / 0 33.3 / 33.3 / 3 33.3 / 33.3 / 3 66.7 / 33.3 / 3 66.7 / 33.3 / 3
wAOBB 0 / 0 / 0 33.3 / 33.3 / 3 33.3 / 33.3 / 3 66.7 / 33.3 / 3 66.7 / 33.3 / 3

i=10
wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

i=14
wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

i=18
wAOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

Table C.7: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
JGLP heuristic, WCSP.
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I-bound Algorithm
Time bounds

10 30 600 3600 21600
X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N X% / Y% / N

Type4 (# inst=10, n = 3938− 8186, k = 5, w∗ = 24− 32, hT = 319− 625

i=2
wAOBF 0 / 0 / 0 66.7 / 0.0 / 3 33.3 / 0.0 / 3 66.7 / 0.0 / 3 66.7 / 0.0 / 3

wR-AOBF 0 / 0 / 0 33.3 / 0.0 / 3 66.7 / 0.0 / 3 100.0 / 0.0 / 3 100.0 / 0.0 / 3
wAOBB 0 / 0 / 0 33.3 / 100.0 / 3 33.3 / 133.3 / 3 33.3 / 166.7 / 3 33.3 / 166.7 / 3

i=4
wAOBF 0 / 0 / 0 50.0 / 0.0 / 2 75.0 / 0.0 / 4 80.0 / 0.0 / 5 60.0 / 0.0 / 5

wR-AOBF 0 / 0 / 0 50.0 / 0.0 / 2 25.0 / 0.0 / 4 20.0 / 0.0 / 5 20.0 / 0.0 / 5
wAOBB 0 / 0 / 0 0.0 / 100.0 / 2 50.0 / 50.0 / 4 80.0 / 20.0 / 5 60.0 / 0.0 / 5

i=6
wAOBF 0 / 0 / 0 50.0 / 0.0 / 4 50.0 / 0.0 / 6 83.3 / 0.0 / 6 66.7 / 0.0 / 6

wR-AOBF 0 / 0 / 0 25.0 / 0.0 / 4 50.0 / 0.0 / 6 50.0 / 0.0 / 6 50.0 / 0.0 / 6
wAOBB 0 / 0 / 0 50.0 / 25.0 / 4 33.3 / 16.7 / 6 66.7 / 33.3 / 6 50.0 / 33.3 / 6

i=8
wAOBF 0 / 0 / 0 60.0 / 0.0 / 5 50.0 / 0.0 / 6 66.7 / 0.0 / 6 83.3 / 0.0 / 6

wR-AOBF 0 / 0 / 0 0.0 / 0.0 / 5 16.7 / 0.0 / 6 16.7 / 0.0 / 6 16.7 / 0.0 / 6
wAOBB 0 / 0 / 0 40.0 / 40.0 / 5 33.3 / 0.0 / 6 0.0 / 0.0 / 6 0.0 / 0.0 / 6

i=10
wAOBF 0 / 0 / 0 33.3 / 0.0 / 9 50.0 / 0.0 / 10 60.0 / 0.0 / 10 70.0 / 0.0 / 10

wR-AOBF 0 / 0 / 0 0.0 / 0.0 / 9 10.0 / 0.0 / 10 10.0 / 0.0 / 10 10.0 / 0.0 / 10
wAOBB 0 / 0 / 0 33.3 / 0.0 / 9 10.0 / 0.0 / 10 0.0 / 0.0 / 10 10.0 / 10.0 / 10

i=12
wAOBF 0 / 0 / 0 16.7 / 0.0 / 6 66.7 / 0.0 / 6 83.3 / 0.0 / 6 83.3 / 0.0 / 6

wR-AOBF 0 / 0 / 0 33.3 / 0.0 / 6 33.3 / 0.0 / 6 33.3 / 0.0 / 6 33.3 / 0.0 / 6
wAOBB 0 / 0 / 0 0.0 / 0.0 / 6 16.7 / 16.7 / 6 16.7 / 16.7 / 6 16.7 / 16.7 / 6

i=14
wAOBF 0 / 0 / 0 0.0 / 0.0 / 8 66.7 / 0.0 / 9 66.7 / 0.0 / 9 66.7 / 0.0 / 9

wR-AOBF 0 / 0 / 0 0.0 / 0.0 / 8 0.0 / 0.0 / 9 0.0 / 0.0 / 9 0.0 / 0.0 / 9
wAOBB 0 / 0 / 0 0.0 / 0.0 / 8 0.0 / 33.3 / 9 11.1 / 33.3 / 9 11.1 / 33.3 / 9

i=18
wAOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

wR-AOBF 0 / 0 / 0 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1
wAOBB 0 / 0 / 0 0 / 0 / 0 0.0 / 100.0 / 1 0.0 / 100.0 / 1 0.0 / 100.0 / 1

Table C.8: X% - percentage of instances for which each algorithm is the better than
BRAOBB at a specific time bound, Y% - percentage of instances for which algorithm ties
with BRAOBB, N - number of instances for which at least one of algorithms found a solu-
tion. # inst - total number of instances in benchmark, n - number of variables, k - maximum
domain size, w∗ - induced width, hT - pseudo-tree height. 4 GB memory, 6 hour time limit,
JGLP heuristic, Type4.
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