Publications & Technical Reports | |
R222 | ||
Paralleizing AND/OR Branch-and-Bound
Lars Otten and Rina Dechter
|
Abstract
We present parallel AND/OR Branch-and-Bound which uses the power of a computational grid
to push the boundaries of feasibility for combinatorial optimization. Two variants of the scheme are described, one of which aims to use machine learning techniques for parallel load balancing. Indepth analysis identifies two inherent sources of parallel search space redundancies that, together with general parallel execution overhead, can impede parallelization and render the problem far from embarrassingly parallel. We conduct extensive empirical evaluation on hundreds of CPUs, the first of its kind, with overall positive results. In a significant number of cases parallel speedup is close to the theoretical maximum and we are able to solve many very complex problem instances orders of magnitude faster than before; yet analysis of certain results also serves to demonstrate the inherent limitations of the approach due to the aforementioned redundancies.
[pdf] |