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ABSTRACT OF THE DISSERTATION

Bottom-Up Approaches to Approximate Inference and Learning in Discrete Graphical
Models

By

Andrew Edward Gelfand

Doctor of Philosophy in Computer Science

University of California, Irvine, 2014

Professors Rina Dechter, Alexander Ihler, Co-Chairs

Probabilistic graphical models offer a convenient and compact way to describe complex and

uncertain relationships in data. A graphical model defines a joint probability distribution

over many random variables that factors over an underlying graph structure. Unfortunately,

inference is generally intractable in graphical models which accurately describe the complex

dependencies occurring in real data.

In this thesis, we focus on theory and algorithms for learning and approximate inference in

graphical models. We propose and investigate a bottom-up approach to inference and learn-

ing, where we start with an initial, computationally cheap approximation and then improve

upon the initial approximation through additional computation. We study the computation-

accuracy trade-off inherent to the bottom-up approach in three different settings.

First, we consider the task of finding the most probable (MAP) configuration of a model.

We focus on a class of graphical models corresponding to the weighted matching problem

– a classic combinatorial optimization problem – and on MAP inference algorithms based

on linear programming (LP) relaxations. In this setting, the optimum of the LP relaxation

provides an upper bound on the MAP solution to the weighted matching problem that may

be quite loose. We thus propose a bottom-up, cutting-plane algorithm which iteratively
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adds constraints that tighten the upper bound on the matching solution. We then derive

a max-product belief propagation algorithm that provably solves the matching problem for

certain choices of tightening constraints.

Second, we consider the task of computing the marginal probabilities of a model. Loopy Belief

Propagation (BP) is an algorithm for obtaining marginal probability estimates by iteratively

passing messages between neighboring nodes in a cyclic graphical model. Generalized Belief

Propagation (GBP) is a class of approximate inference algorithms that builds upon Loopy

BP by passing messages between clusters of nodes. GBP offers the promise to yield marginal

estimates that are far more accurate than Loopy BP, but is also very sensitive to the choice

of clusters used. We thus propose a criteria – tree-robustness – for choosing the collection

of clusters used by GBP that is, in some sense, no worse than Loopy BP when the factors

defining our model induce a tree. We propose a method to find a collection of clusters that

are tree-robust and empirically demonstrate the effectiveness of the proposed criteria.

Third, we consider the task of learning the parameters of a model from data. Maximum

likelihood estimation in graphical models is difficult to the intractability of computing the log-

partition function and marginals. In surrogate likelihood training, one approximates these

quantities using an approximate inference algorithm. We focus on approximate inference

methods that utilize a control parameter to trade computation for accuracy and examine

when investing more computation leads to more accurate parameter estimates and models

that yield more accurate predictions. Surprisingly, we show that it is not always beneficial

to increase computation during learning, particularly in data sets containing relatively few

observations and also when the model being fit is heavily mis-specified.
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Chapter 1

Introduction & Background

Statistical modeling is fundamentally concerned with building models that relate data, or

observations, to quantities of interest. For example, given an observed image we might like

to determine if the image contains a human being, a dog, or possibly a cat. Or, given a log

of historical activity at an online retailer, we might like to determine a set of items that each

user is likely to purchase. Statistical modeling is a powerful tool that can help extract such

meaningful insight from data.

Probabilistic graphical models are a specific class of statistical model that provide a prin-

cipled way to describe complex and uncertain relationships among observed and unknown

variables[48, 53, 18]. A graphical model defines a joint probability distribution over many

random variables that factors over an underlying graph structure. The graph structure makes

the model’s assumptions explicit and easily communicable to others. More importantly, the

model’s structure can be exploited by algorithms for efficient inference and learning.

This thesis focuses on theory and algorithms for both inference and learning in graphical mod-

els. Since exact inference is often infeasible in models with rich variable inter-dependencies,

we focus primarily on approximate methods. In particular, we advocate a bottom-up ap-
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proach to approximate inference and learning, where we start with some initial, base ap-

proximation to our problem and then improve upon the base approximation by increasing

our computational budget. We study the bottom-up approach in three different tasks.

In Chapter 2 we consider the task of finding the most probable (or MAP) configuration in

a model. We focus on a specific class of graphical model corresponding to the weighted

matching problem – a classic combinatorial optimization problem – and on MAP inference

algorithms based on linear programming (LP) relaxations. In this setting, the optimum of

the LP relaxation provides an upper bound on the MAP solution to the weighted matching

problem that may be loose. We thus propose a bottom-up, cutting-plane strategy which

iteratively adds constraints that tighten the upper bound on the matching solution. We

then derive a max-product belief propagation algorithm that provably solves the matching

problem when the upper-bound is made tight.

In Chapter 3 we consider the task of calculating marginal probabilities in a graphical model.

We focus on Loopy Belief Propagation (BP) and Generalized Belief propagation (GBP), two

popular algorithms for approximately computing marginals. The Loopy BP algorithm is

well-defined given a graphical model: just iteratively send messages between the nodes of

the model. The GBP algorithm expands upon Loopy BP by grouping the model’s nodes

into clusters and sending messages between the clusters. It is not a well-defined algorithm,

however, as many different clusterings are possible given a graphical model. Some of these

clusterings will produce more accurate marginal estimates than Loopy BP, while others may

not. We thus propose a criteria – tree-robustness – for selecting the collection of clusters

used by GBP that is guaranteed, in some sense, to be no worse than Loopy BP. We propose

a method to find a collection of clusters that are tree-robust and empirically demonstrate

the effectiveness of the criteria.

In Chapter 4 we consider the task of learning the parameters of a model from data using

maximum likelihood estimation. Finding the max likelihood estimate is not possible in

2



models where inference is intractable. In such settings, it is common to use approximate

inference and maximize the so-called ’surrogate’ likelihood[84]. We study the effect of using

different approximate methods and, therefore, different surrogate likelihoods in the joint

estimation and prediction problem, where one first estimates the parameters of a model and

then uses the fitted model to make predictions. In particular, we consider inference methods

that utilize a control parameter to trade computation for accuracy. In our experiments,

we identify regimes where it is beneficial to invest more computation and optimize a more

accurate surrogate to the true likelihood. We also identify regimes where the increased

computation and accuracy is actually detrimental.

1.1 Contributions

The main contributions of this dissertation are summarized by chapter as follows:

Chapter 2:

• We describe how to formulate Integer Linear Programming problems (ILPs), such as

the weighted matching problem, as an equivalent probabilistic graphical model.

• We characterize when the linear programming (LP) relaxation of an ILP is equiva-

lent to the pairwise LP relaxation of the MAP inference problem in its corresponding

graphical model. This elaborates the set of ILPs that can (potentially) be solved by

approximate inference methods based on pairwise LP relaxations, such as max-product

belief propagation (BP).

• We expand the class of weighted matching problems (and ILPs in general) that are

provably solvable by max-product BP to include matching problems whose LP relax-

ations are made tight by adding certain collections of “blossom” constraints. Prior

3



to this work, only matching problems whose natural LP relaxation was tight could

provably be solved by max-product BP.

• We propose a cutting-plane BP algorithm for solving weighted matchings that tight-

ens the LP relaxation by iteratively adding “blossom” constraints and employs max-

product BP as its LP solver.

Chapter 3:

• We introduce a new criteria – tree-robustness – for choosing the form of the Kikuchi

approximation to the entropy used in variational approximations solved by General-

ized Belief Propagation (GBP). The Kikuchi entropy uses a combination of marginal

entropies over clusters of variables to approximate the entropy. Tree-robustness re-

quires the Kikichi entropy to be exact on every tree-structured sub-model, where a

tree-structured sub-model is formed using a subset of the input model’s factors that

are tree-structured. We empirically demonstrate the effectiveness of the tree-robustness

criteria and justify its accuracy using properties of the free energy.

• We propose a method to automatically choose collection of clusters satisfying the tree-

robustness criteria and existing, “common-sense” criteria for Loop-Structured Region

Graphs (SRGs) – a specific family of variational approximations. To our knowledge,

this is the first automated bottom-up approach to constructing GBP approximations

on arbitrary graphical models1.

Chapter 4:

• We propose a framework for studying the error introduced by using approximate in-

ference in graphical models where maximum likelihood estimation is intractable. We

1In contrast, Dechter et al.[20, 60] propose a top-down scheme based on partitioning clusters.
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then use this framework to study the error introduced by approximate methods in

parameter estimation and when the fitted model is used for making predictions.

• We perform an empirical evaluation with approximate inference methods that utilize a

control parameter to trade computation for accuracy. We empirically demonstrate that

better (i.e. more computationally demanding) inference does not necessarily result in

learning a better model, particularly for small sized data sets and mis-specified models.

We also characterize the bias and variance of different inference-based estimation and

prediction strategies.

1.2 Discrete Graphical Models

Let y = {y1, ..., ym} ∈ Ym denote an assignment to the random variables Y1, ..., Ym, where

each random variable is assumed to be K-ary so that Y = {0, 1, ..., K − 1}. We will use yi

to denote the assignment Yi = yi to random variable Yi. Similarly, we will use y to denote

the assignment Y = y to the collection of random variables Y .

Probabilistic graphical models offer a convenient and compact way to describe probability

distributions over Y . A graphical model defines a joint probability distribution with respect

to an underlying graph G = (V,E). Each random variable is associated with a vertex and

the variable dependencies are specified by the graphs edge structure. We will index the

variables in a graphical model as either i = 1...m, or i ∈ V (meaning that m = |V |).

Graphical models come in two basic forms: directed and undirected. Directed graphical

models, or Bayesian Networks, specify a joint probability distribution over y by a directed

acyclic graph G = (V,E) and the factorization [70]:

p(Y = y) = p(y) =
∏
i∈V

p(yi|ypaG(i)
), (1.1)
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where p(yi|ypaG(i)
) is a conditional probability distribution and paG(i) is the set of parents of

node i in graph G.

Figure 1.1 illustrates a simple Bayesian network model of traffic flow. The joint distribution

over the 4 binary variables in this model factors in a manner consistent with the directed

acyclic graph structure

p(y) = p(yrush hr.)p(yrain)p(ycrash|yrain)p(ytraffic|yrush hr., yrain, ycrash).

The model tells us, for example, that the probability of a crash is influenced by the presence

of rain, where the conditional distribution p(ycrash|yrain) is defined by the table of values given

in Figure 1.1.

Figure 1.1: A Bayesian network model of traffic flow.

The second type of graphical model is an undirected graphical model, or Markov Random

Field (MRF) [53]. An MRF defines a joint probability as

p(y) =
1

Z

∏
C∈C(G)

ψC(yC), (1.2)

where C(G) is the set of maximal cliques2 in graph G, yC = {yi : i ∈ C} is the subset of

2A clique is a complete subgraph in G, meaning that every two vertices in C are connected by an edge.
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variables in clique C and Z is a normalization constant given by

Z =
∑
y∈Ym

∏
C∈C(G)

ψC(yC). (1.3)

The functions ψC(yC) are positive, ψC : Y |C|C 7→ R+, and define a local interaction between

the set of variables in clique C. Unlike Bayesian networks, these functions, or factors,

need not be normalized probability distributions and can take arbitrary positive values.

The functions ψC are required to be positive, however, to satisfy the conditions of the

Hammersley-Clifford theorem[6], which tell us when a joint probability distribution p(y)

that is Markov with respect to G, can be written in the factorized form in (1.2). The

normalization constant, Z, is often referred to as the partition function and it involves a

sum over all of the joint assignments to Y .

Figure 1.2a illustrates the undirected, or moral graph G, for an MRF on 4 variables. In

Chapters 3 and 4, we will restrict attention to pairwise MRFs. In a pairwise MRF, the

maximal cliques of G are assumed to be of cardinality two. As a result, the joint distribution

over y for the pairwise MRF in Figure 1.2a factors as:

p(y) =
1

Z
ψ(y1, y2)ψ(y1, y3)ψ(y1, y4)ψ(y2, y3)ψ(y2, y4)ψ(y3, y4)ψ(y1)ψ(y2)ψ(y3)ψ(y4). (1.4)

Note that the undirected graph, G, underlying an MRF does not make the factorization of

p(y) explicit. In other words, just by looking at G we cannot tell if p(y) factorizes as p(y) ∝

ψ(y1, y2, y3, y4) or via the pairwise factorization in (1.4). The factor graph specification of a

joint distribution, which we introduce next, removes this ambiguity.

A factor graph provides a compact representation of the factorization of a joint probability

distribution[55]. A factor graph is a bipartite graph G = (V, F,E), where V and F are two

sets of vertices and E ⊆ V ×F is a set of undirected edges. The vertices in V are referred to

as variable nodes and depicted by circles when visualized. The vertices in F are referred to as
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(a) MRF on 4 variables. (b) Factor Graph on 4 variables.

Figure 1.2: A Markov Random Field and Factor Graph on a fully-connected graph.

factor nodes and depicted as squares. Let δ(α) = {i ∈ V : (i, α) ∈ E} denote the neighbors

of factor α in factor graph G. A factor graph defines a joint probability distribution as:

p(y) =
1

Z

∏
α∈F

ψα(yα), (1.5)

where each ψα(yα) is a positive function over the subset of variables adjacent to factor α,

yα = {yi : i ∈ δ(α)}, and Z is once again the partition function.

Figure 1.2b depicts a factor graph that specifies a joint distribution that factorizes as

p(y) =
1

Z
ψ123(y1, y2, y3)ψ134(y1, y3, y4)ψ24(y2, y4).

Often times we are interested in modeling the conditional probability of y given an ob-

servation X = x. The conditional distribution p(Y = y|X = x) can be expressed as a

Conditional Random Field (CRF)[56], which factors as

p(Y = y|X = x) = p(y|x) =
1

Z(x)

∏
α

ψα(yα,x), (1.6)
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where ψα(yα,x) is a function over yα whose value depends on the observation x and

Z(x) =
∑
y∈Y

∏
α

ψα(yα,x) (1.7)

is a normalization constant dependent on the observation x. The dependence of the factor

ψα(yα,x) on x can be very complex. For example, in Chapter 4 we will use a CRF model that

integrates RGB color information to determine whether each pixel in an image is foreground

or background.

1.2.1 Exponential Families

The discrete probabilistic graphical models discussed so far can also be viewed as members

of the exponential family of distributions. Exponential families have been widely studied in

the statistics literature and their introduction here will facilitate our discussion of variational

inference in Section 1.4.2. In particular, the inference tasks of computing marginals, likeli-

hoods and most probable (MAP) configurations can all be interpreted as finding mappings

between different parameterizations of an exponential family distribution.

A probability distribution in the exponential family can be written as

p(Y = y;θ) = exp (θ · s(y)− logZ(θ)) , (1.8)

logZ(θ) = log
∑
y

exp (θ · s(y)) , (1.9)

where s(y) = (s1(y), ..., sd(y)) is a d-dimensional vector of sufficient-statistics, θ = (θ1, .., θd) ∈

Rd is a vector of canonical parameters and the log-partition function, logZ(θ), ensures that

the density function is properly normalized. Note that θ · s(y) is the inner product between

the parameters and sufficient statistics.
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The sufficient statistics can be arbitrary features of y and different sufficient statistics define

different probability distributions. For example, the MRF defined in (1.2) is a member of

the exponential family. To see this, let s(y) be a vector containing an indicator for every

configuration of each clique in G:

s(y) = {I[YC = yC ] | ∀C ∈ C(G),yC}. (1.10)

Also, let θ(YC = yC) denote the component of the parameter vector θ corresponding to

the indicator I[YC = yC ]. The MRF in (1.2) can then be expressed as a member of the

exponential family by setting θ(YC = yC) = logψC(YC = yC) for each configuration of

every clique.

Figure 1.3: Expressing a pairwise MRF in exponential family form.

Figure 1.3 illustrates this transformation for a pairwise MRF defined on a set of 3 binary

variables. The vector s(y) in this example is of length d = 18; however, a binary MRF

on 3 variables has a total of only 23 = 8 joint configurations, suggesting that there is

some redundancy in this representation of an MRF. In fact, this representation, which uses

indicators for each configuration of every clique, is referred to as the standard overcomplete

representation of an MRF and it is an example of an exponential family in a non-minimal

representation. In contrast, an exponential family model is in a minimal representation if the
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sufficient statistics, s(y), are linearly independent, meaning that one cannot find a non-zero

vector α ∈ Rd such that α · s(y) is constant for all settings of y.

To make the distinction between non-minimal and minimal representations concrete, con-

sider the following pairwise MRFs, where each variable i ∈ V is binary yi ∈ {0, 1}:

p(y;θ) = exp

∑
i∈V

θiI[yi = 1] +
∑

(i,j)∈E

θijI[yi = yj]

 , (1.11)

p(y; θ̃) = exp

∑
i∈V

θ̃iI[yi = 1] +
∑

(i,j)∈E

θ̃ijI[yi = yj = 1]

 . (1.12)

The model in (1.11) is non-minimal. The reason why is demonstrated in Figure 1.4.

Figure 1.4: Non-minimal MRF.

Let sij(yi, yj) = (I[yi = 1], I[yj = 1], I[yi = yj])

be the sufficient statistics on some edge (i, j) ∈ E

in our model. The table in Figure 1.4 shows the

setting of sij(yi, yj) for all four configurations of

yi and yj. Note that by setting α = 1 we have

that α · sij(yi, yj) = 1 for all four configurations.

This is true on any edge (i, j) ∈ E, meaning that the MRF representation in (1.11) is non-

minimal. In contrast, the MRF in (1.12) is in a minimal exponential family representation,

as the vector of sufficient statistics, s(y), is linearly independent for all y.

There is an important practical distinction between non-minimal and minimal representa-

tions of an exponential family distribution when it comes to parameter estimation – namely,

statistical identifiability. A model is identifiable if it is possible to learn the model’s true

parameter setting given an infinite number of observations: meaning that if we generate

data by sampling from an identifiable model p(y;θ?), then it is possible to recover the true

parameter setting, θ?, given enough samples. More formally,

Definition 1.1. A statistical model is identifiable if the mapping from θ 7→ p(y;θ) is

11



one-to-one, so that if two distributions are the same, p(y;θ) = p(y;θ′), then θ = θ′.

In a minimal representation, there is a unique distribution associated with each setting of

θ, meaning that the model is identifiable. In a nonminimal representation, however, many

distinct parameter settings may yield the same distribution.

Figure 1.5 illustrates two distinct parameter settings, θ 6= θ′, of an MRF that yield the same

probability distribution – i.e. p(y1, y2;θ) = p(y1, y2;θ′) for all configurations of y = (y1, y2).

These models are thus not identifiable. The parameter setting θ†, however, is statistically

identifiable for any distinct and non-zero setting of a, b, and c.

Figure 1.5: Illustration of Statistical identifiability.

Mean Parameterization

Up to this point we have discussed the exponential family as a distribution parametrized

by a vector θ ∈ Rd of canonical parameters. The exponential family has an alternative

parametrization, however, that is particularly useful in variational analysis. The mean pa-

rameters are found by computing the mean of the vector of sufficient statistics,

Eθ [s(y)] =
∑
y

p(y;θ)s(y)
def
= µ(θ) = (µ1(θ), ..., µd(θ)). (1.13)
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We will use µ(θ) to denote the d-dimensional mean vector of an exponential family model.

This notation helps to signify that each setting of the canonical parameters, θ, maps forward

to a unique mean parameter vector, µ(θ). The reverse mapping, θ(µ), from mean parameters

to canonical parameters is not unique in general (see e.g. Figure 1.5 for a counter-example).

However, if the model p(y;θ) is in a minimal representation, then the mapping between

mean parameters µ and canonical parameters θ is one-to-one.

The mean parameters have a particularly nice interpretation in the exponential family as

being equal to the first derivative of the log-partition function

d

dθ
logZ(θ) =

∑
y exp (θ · s(y)) s(y)∑
y exp (θ · s(y))

=
∑
y

p(y;θ)s(y) = µ(θ). (1.14)

In the case of an MRF in standard overcomplete representation, the vector of mean param-

eters µ(θ) is exactly the vector of marginal probabilities under the model p(y;θ),

Eθ [I[Yc = yc]] =
∑
y′

p(y′;θ)I[Yc = yc] = p(Yc = yc;θ) = µ(yc;θ), (1.15)

where once again we index the components of the vector µ(θ) by each configuration of every

clique in G. Figure 1.6 illustrates the mean parameterization of the pairwise MRF on three

variables introduced in Figure 1.3.

Finding the mapping from canonical parameters to the mean parameters of an MRF, µ(θ),

or equivalently computing the gradient of the log-partition function, d
dθ

logZ(θ), is a task

that requires computing marginals under the model p(y;θ). The variational approximations

we discuss in Section 1.4.2 leverage this interrelation between the marginals and log-partition

function.
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Figure 1.6: Illustration of the mean parameterization of the pairwise MRF in Figure 1.3.

1.3 Inference and Learning Tasks

The previous section presented different representations of a joint probability distribution

using the language of graphical models. In particular, we saw that the joint distribution of

a graphical model factors according to some underlying graph structure, where the form of

the model’s factors depended on whether the model was a Bayesian network, MRF or CRF.

After the form of a graphical model has been fully specified – meaning that the model’s

structure and parameterization have been determined – a few key tasks remain. The first task

is that of learning the parameters of the model from empirical data. The second is performing

inference in the learned model to, for example, find the most probable configuration under

the model or to compute the probability of certain events. We introduce each of these tasks

using the traffic flow Bayesian network from the previous section.

Consider the traffic flow model shown again in Figure 1.7. The Bayesian network’s structure

fully specifies the factorization of the joint distribution p(yrain, yrush hr., ycrash, ytraffic). And since

all of the variables are binary, the parameterization of each conditional probability table is

known as well. For example, the table p(ycrash|yrain) has a total of 4 entries with parameters

(θc̄|r̄, θc|r̄, θc̄|r, θc|r) as shown in the right-hand pane of Figure 1.7.
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Figure 1.7: Illustration of Learning and Inference in traffic flow model.

The task of learning involves estimating the setting of the real-valued parameters θ from an

empirical data set. The middle pane of Figure 1.7 shows some sample data that could be

used to train our traffic model, where in the first data point, for example, it wasn’t raining or

rush hour and no accidents or traffic were observed. We will assume throughout this thesis

that our data is fully observed and sampled independently from some true and unknown

probability distribution. We focus on learning using the maximum likelihood principle,

where our goal is find a setting of the model parameters θ that makes our learned model

p(yrain, yrush hr., ycrash, ytraffic;θ) as close as possible to the true and unknown distribution. The

maximum likelihood principle will be formally introduced in Chapter 4.

After learning, we want to use our learned model to answer queries given new data. One task

of particular importance is that of computing the maximum a posteriori (MAP) configuration

in our model. In particular, the goal of the MAP inference task is to find the assignment y

of maximum total probability

MAP : arg max
y∈Ym

p(y;θ). (1.16)

Often times, we are interested in finding the MAP configuration given a new observation, or

evidence. For example, we might be interested in knowing the most likely configuration of
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our system when we know that it is both raining (yrain = 1) and rush hour (yrush hr. = 1), i.e.

arg max
ycrash,ytraffic

p(ycrash, ytraffic|yrain = 1, yrush hr. = 1;θ).

Another important task is computing the marginal probability of events under our model.

In particular, the goal of the marginal inference task is to find the marginal distributions of

each factor in our model

MAR : p(YC = yC ;θ) ∀C ∈ C(G),yC . (1.17)

For example, given that it is raining and rush hour, we might want to know the probability

that there will be traffic on our drive home – i.e., p(ytraffic = 1|yrain = 1, yrush hr. = 1;θ).

In principle, both the MAP inference task and marginal inference task can be solved by first

generating the joint probability distribution under the current evidence and then finding the

maximizing assignment by exhaustive search, in the case of the MAP task, or by summing

over all variables not in the query factor, in the case of the marginal task. This brute

force approach results in an exponential explosion in the space and time needed to compute

even the simplest of queries in our model. In the next section, we discuss several inference

algorithms that exploit the underlying graph structure to more efficiently solve these tasks.

1.4 Inference Algorithms for Graphical Models

We now discuss a few key algorithms for performing inference in graphical models. We focus

in this section on solving the marginal inference task, only briefly discussing how the algo-

rithms can be modified for MAP inference. Our description of the algorithms in this section

will be based on the factor graph representation of a joint probability distribution introduced
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in (1.5) as this representation removes potential confusion by making the factorization of a

distribution explicit.

This section is divided into two parts. In the first part, we discuss inference from a purely

algorithmic, message-passing point of view. Then in the second part, we discuss the algo-

rithms from a variational perspective. In both parts, we begin by describing exact inference

and then move to approximate methods.

1.4.1 Inference: A Message-Passing Perspective

Consider computing the marginal probability of variable y2 for the distribution shown in

Figure 1.8. The brute force approach to this problem is to first generate the joint probability

distribution, p(y1, y2, y3), by taking the point-wise product, or combining, all of the model’s

factors and then summing out, or eliminating, variables y1 and y3

p(y2) ∝
∑
y1

∑
y3

p(y1, y2, y3) =
∑
y1

∑
y3

ψ12(y1, y2)ψ23(y2, y3)ψ1(y1)ψ2(y2)ψ3(y3). (1.18)

If all of the variables are K-ary, then the joint distribution p(y1, y2, y3) is represented as

a table with K3 entries and computing the single variable marginal, p(y2), has complexity

O(K3). For a chain of m variables, this brute force strategy has complexity O(Km) and

becomes infeasible for even modest m.

Figure 1.8: Illustration of inference on a chain.

We can reduce this complexity, however, by dividing the summation over the joint distribu-

tion into summations over smaller sub-problems. By grouping the factors and migrating the
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summation operators we arrive at the following expression for the marginal of y2,

p(y2) ∝ ψ2(y2)
∑
y1

ψ12(y1, y2)ψ1(y1)︸ ︷︷ ︸
m1→2(y2)

∑
y3

ψ23(y2, y3)ψ3(y3)︸ ︷︷ ︸
m3→2(y2)

. (1.19)

This reorganization of factors and summation operators reduces the complexity of computing

p(y2) to O(K2), as we now only need to sum over tables containing pairs of variables.

It is convenient to think of the computations performed in each sub-problem as computing

a message that is passed to a neighboring node in the factor graph. For example, the sub-

problem shown in red takes the product of factors ψ3(y3) and ψ23(y2, y3) and then eliminates

variable y3. The result is an intermediate table of K-values, one for each state of variable y2,

that we treat as a message passed from variable 3 to 2, denoted as m3→2(y2). Similarly, elim-

inating y1 from the product of factors ψ1(y1) and ψ12(y1, y2) generates a message m1→2(y2).

By normalizing the product of ψ2(y2), m1→2(y2) and m3→2(y2) we get the desired marginal

probability: p(y2) ∝ ψ2(y2)m1→2(y2)m3→2(y2).

Sum-Product Belief Propagation

While reducing the complexity from O(K3) to O(K2) is insignificant in this toy problem,

the idea of rearranging the factors and summation operators generalizes so that one can

reduce the complexity from O(Km) to O(K2) in arbitrary tree-structured factor graphs of

m variables. The core idea for achieving this efficiency in general tree-structured graphs is

to choose a root variable and then pass messages from the leaves of the tree towards the root

variable. An algorithm called Sum-Product Belief Propagation (BP) operationalizes this core

idea[70, 55].

Given a factor graph, G = (V, F,E), the Sum-Product BP algorithm works by passing two
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kind of messages: messages from variables to factors,

Variable-to-Factor : mi→α(yi) =
∏

α′∈δ(i)\α

mα′→i(yi), (1.20)

and messages from factors to variables,

Factor-to-Variable : mα→i(yi) =
∑
yα\yi

ψα(yα)
∏

j∈δ(α)\i

mj→α(yj), (1.21)

where δ(i) = {α ∈ F : (i, α) ∈ E} is the set of factors neighboring variable i in the factor

graph, δ(α) = {i ∈ V : (i, α) ∈ E} is the set of variables neighboring factor α, and
∑
yα\yi

is a summation over all variables yα except yi – i.e. yα \ yi = {yj : j ∈ δ(α), j 6= i}.

Note that the message updates in (1.20) and (1.21) are dependent on previously computed

messages. In a tree-structured graph, we can order our message computations so that all

dependencies are resolved prior to updating. This is accomplished by choosing a root vari-

able and passing messages forward from the leaves towards the root as described before.

The marginals of all variables and factors in the model can be computed by subsequently

passing messages from the root back towards the leaves. After passing messages forward and

backwards, the univariate marginals are computed as

p(yi) ∝
∏
α∈δ(i)

mα→i(yi) (1.22)

and the factor marginals are computed as

p(yα) ∝ ψα(yα)
∏
i∈δ(α)

mi→α(yi). (1.23)

In addition, the log-partition function, logZ, can be computed by summing all of the variable
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to factor messages into the root node, yroot,

logZ = log
∑
yroot

∏
α∈δ(root)

mα→root(yroot) (1.24)

Max-Product Belief Propagation

An algorithm called Max-Product Belief Propagation (BP) can be used to compute a MAP

assignment in a tree-structured graph using the same divide-and-conquer strategy as the

Sum-Product algorithm. However, rather than eliminating variables by summation, it elim-

inates by maximization. In particular, the factor to variable messages in Max-Product BP

are updated as

Factor-to-Variable : mα→i(yi) = max
yα\yi

ψα(yα)
∏

j∈δ(α)\i

mj→α(yj)

 , (1.25)

while the variable to factor messages are as in (1.20). After passing messages forward to the

root and then back towards the leaves, we can compute the max-marginals of each variable

using the formula in (1.22). We use the term max-marginals, to distinguish between the

actual single variable marginals computed by the sum-product algorithm. The MAP assign-

ment, y? = (y?1, ..., y
?
m) = arg max p(y), can then be determined by decoding each variable’s

assignment along the forward message passing order as follows. First, determine the assign-

ment y?root that maximizes the max-marginal at the root node. Then find the maximizing

assignment y?i to each variable yi, dependent upon the assignment to all previously assigned

variables.
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Loopy Belief Propagation

The BP algorithm exactly solves the MAP inference and marginal inference tasks in tree-

structured factor graphs. When the factor graph is not tree-structured, then BP is no longer

exact. The main difficulty is that in a loopy graph we can no longer order our message

computations so that all dependencies are resolved prior to updating each message. However,

if we initialize all of the messages in our system to some fixed value, e.g. mi→α(yi) =

mα→i(yi) = 1, then the message updates in (1.20) and (1.21) are still valid. Iteratively

applying these message updates on a factor graph yields an approximate inference method

known as Loopy Belief Propagation (BP).

Loopy BP is an iterative method that is not guaranteed to converge. And, when the algo-

rithm does converge, the resulting beliefs may poorly approximate the true marginals, in the

case of the marginal inference task, or give a poor approximation to the MAP assignment, in

the case of the MAP inference task. Despite the lack of theoretical guarantees, the algorithm

performs quite well in practice[66, 61]. Much progress has been made in characterizing the

fixed points of the iterative message-passing algorithm [99, 85, 42], improving and under-

standing its convergence properties [85, 26, 46, 64], and designing convergent alternatives

[93, 100, 33, 32, 40].

The Bucket Elimination Algorithm

The BP algorithm performs exact marginal inference in tree-structured factor graphs, but

is an approximate method in graphs containing cycles. A natural idea for restoring the

exactness of BP is to somehow transform a cyclic factor graph into a new tree-structured

graph and pass BP-like messages on the new graph structure. This is the core idea behind

exact inference methods like Bucket Elimination[19] and the Junction Tree algorithm[57]:

they create a tree-structured graph by grouping factors and variables into clusters and pass
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messages between these clusters. We focus on the Bucket Elimination algorithm in this

section, but the junction tree algorithm operates in a similar fashion. A review of different

message passing architectures can be found in [18, 53].

Bucket Elimination (BE) is an algorithm that groups factors into clusters that are referred

to as buckets. It operates along a particular variable elimination order, which specifies the

order in which variables are summed out. A bucket is associated with each variable to be

eliminated and each bucket is assigned a collection of functions. The assigned functions

are either: 1) the factors defining our model; or 2) messages generated by the algorithm.

Each bucket is processed by combining it’s set of assigned functions and then eliminating the

bucket variable. The resulting message is passed to some bucket that has yet to be processed

and buckets are processed sequentially along the elimination order.

The BE algorithm is illustrated for the pairwise model in Figure 1.9, where it uses the

elimination order π = (2, 3, 4, 5, 1), eliminating variable y2 first, y3 second, ... In doing so,

the algorithm performs the following sequence of computations:

p(y1) ∝
∑

y2,y3,y4,y5

ψ12(y1, y2)ψ14(y1, y4)ψ15(y1, y5)ψ23(y2, y3)ψ34(y3, y4)ψ45(y4, y5) (1.26)

∝
∑

y3,y4,y5

ψ14(y1, y4)ψ15(y1, y5)ψ34(y3, y4)ψ45(y4, y5)
∑
y2

ψ12(y1, y2)ψ23(y2, y3)︸ ︷︷ ︸
m2→3(y1,y3)

∝
∑
y4,y5

ψ14(y1, y4)ψ15(y1, y5)ψ45(y4, y5)
∑
y3

ψ34(y3, y4)m2→3(y1, y3)︸ ︷︷ ︸
m3→4(y1,y4)

∝
∑
y5

ψ15(y1, y5)
∑
y4

ψ14(y1, y4)ψ45(y4, y5)m3→4(y1, y4)︸ ︷︷ ︸
m4→5(y1,y5)

∝
∑
y5

ψ15(y1, y5)m4→5(y1, y5)

Note that each summation produces a message that is passed to the next bucket in the
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Figure 1.9: Illustration of the Bucket Elimination Algorithm.

ordering. For example, by eliminating variable y2 in the first bucket, B2, we produce a

message defined over variables y1 and y3. This message is passed to the second bucket, B3,

associated with variable y3. We denote this message as m2→3(y1, y3) to indicate that it was

sent from bucket B2 to bucket B3. We will refer to bucket B3 as being the parent of bucket

B2 and bucket B2 as being a child of bucket B3. We note that a bucket may have multiple

children, but will only have one parent. The middle column of Figure 1.9 shows how the

original model factors and messages generated by the algorithm are assigned to each bucket,

where we have used ψij as shorthand for ψij(yi, yj).

Execution of the BE algorithm induces a tree structure, CT = (V,E), known as a cluster

tree or bucket tree. In particular, each bucket, Bi, is associated with a node i ∈ V in the

cluster tree and an edge e = (i, j) ∈ E is drawn between nodes i and j if the message

produced by processing bucket Bi is used in the computation of bucket Bj. Each node i

in the cluster tree is associated with a set of variables, yi ⊂ y, that appear in bucket Bi.

This subset of of variables is referred to as the cluster’s scope. Finally, we associate a set of

separator variables with each edge (i, j) ∈ E that is equal to the intersection of the scope of

cluster i and the scope of cluster j, yij = yi ∩ yj. An example of a cluster tree is shown in

the right pane of Figure 1.9, where the scope of each cluster is shown inside of each node.
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For example, the first cluster – associated with bucket B2 – has scope {y1, y2, y3}. Since each

bucket is associated with a cluster, we will use the two words interchangeably.

We can compute marginals over a set of variables in the cluster tree by passing messages in

a manner analogous to the Sum-Product BP algorithm. A message from cluster node i to

cluster j is computed as

CT-Update : mi→j(yij) =
∑
yi\yj

ψi(yi)
∏

k∈δ(i)\j

mk→i(yik), (1.27)

where ψi(yi) is the combination of the factors assigned to cluster (bucket) i and mk→i is a

message from some cluster k to cluster i. Note that the updates in (1.27) are dependent upon

previously computed messages, much like the Sum-Product BP updates. These dependencies

can be resolved, however, by ordering our message computations as follows: messages are

first passed forward, along the elimination order and then backwards, along the reverse

elimination order. The log-partition function, logZ, can be computed by summing over all

messages into the final, root cluster.

The complexity of message passing on a cluster tree (and of BE) depends on the size of the

largest cluster in the tree, where a cluster’s size is simply the number of variables in its scope.

For example, the complexity of BE in Figure 1.9 is O(K3) since the largest cluster contains

3 variables. The complexity of BE thus depends crucially on the elimination order used.

One can verify, for example, that using the order π = (1, 2, 3, 4, 5) has complexity O(K4) in

our sample problem. Finding an elimination order that yields small clusters is thus central

to efficient inference when using BE[49]. If we let Cmax(π) = maxi |scopei| denote the size

of the largest cluster produced using elimination order π, then in principle we can locate

the elimination order whose largest cluster is as small as possible: C? = minπ C
max(π). The

quantity C? is referred to as the treewidth of our model3 and the complexity of performing

3Technically, the treewidth is equal to C? − 1.
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exact inference in our model is O(KC?)[9]. Thus, when C? is large exact inference is generally

infeasible.

Mini-Bucket and Weighted Mini-Bucket Elimination

The treewidth of some problems is large enough to make exact inference infeasible. The main

difficulty in such problems is the existence of one or more large clusters on which elimination

cannot be performed efficiently. In this section, we consider an approximate inference method

that partitions such large clusters into several smaller clusters and performs elimination on

each mini-cluster independently.

Mini-Bucket Elimination (MBE) is an approximation algorithm based on BE that partitions

the set of functions assigned to each bucket[21]. Each partition is called a mini-bucket and,

as in standard BE, a mini-bucket is processed by first combining the functions in that mini-

bucket and then eliminating the bucket variable. The complexity of MBE is controlled by a

parameter known as the iBound, which limits the size of each mini-bucket to at most iBound

variables. When iBound = 1 each function is placed in its own mini-bucket and processed

independently; and when iBound ≥ Cmax(π), no partitioning occurs and MBE is equivalent

to BE.

Execution of the MBE algorithm with an iBound of 2 is illustrated in Figure 1.10 for the

pairwise model considered in the previous section. Notice that the factors ψ12 and ψ23 are

placed into two separate mini-buckets in bucket B2 as indicated by the brackets. This occurs

because their combination would produce a factor over the 3 variables {y1, y2, y3}, which is

greater than the iBound of 2. Each of these mini-buckets is processed separately: processing

the first mini-bucket containing factor ψ23 produces a message m2→3(y3) sent to bucket B3;

and processing the second mini-bucket containing factor ψ12 produces a second message

m2→1(y1) sent to bucket B1. Processing continues sequentially along the elimination order
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Figure 1.10: Illustration of the Mini-Bucket Elimination Algorithm.

as in BE, but we now partition the functions assigned to each bucket if needed.

Execution of the MBE algorithm induces a tree-structure much like the BE algorithm: each

mini-bucket corresponds to a cluster associated with a set of variables appearing in the mini-

bucket and an edge is drawn between cluster i and cluster j if mini-bucket i’s message is

used in the computation of mini-bucket j. It will be convenient to think of cluster j as being

the parent of cluster i in such cases.

The cluster tree for the MBE approximation to our sample problem is shown in the right pane

of Figure 1.10. As desired, each cluster in the tree has a scope containing

Figure 1.11: Splitting Se-

mantics of MBE.

at most iBound variables (in this case 2). Notice, however, that

the cluster tree contains copies of some of the variables, e.g. y1
2

and y2
2 in bucket B2. This is because eliminating the bucket

variable from each mini-bucket separately, effectively splits a

variable into one or more replicates[20, 15]. In particular, the

execution of MBE illustrated in Figure 1.10 will generate the

same messages as executing BE on the split pairwise model

shown in Figure 1.11.
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MBE can be used to provide an upper bound on the log-

partition function by summing out the bucket variable from one of the mini-buckets and

maximizing the bucket variable in the remaining mini-buckets. For example, summing out

y1
2 for each value of y3 and separately maximizing y2

2 for each value of y1, gives the following

inequality in bucket B2,

∑
y2

ψ23ψ12 ≤
∑
y1
2

ψ23 max
y2
2

ψ12. (1.28)

An upper bound on logZ follows by repeating this process in each bucket.

Weighted Mini-Bucket Elimination (WMB) [59] is a generalization of MBE that can be used

to iteratively tighten MBE’s bound. As its name suggests, the WMB bound is parameterized

by a set of weights that can be optimized to find the tightest bound, given a particular

elimination order and partitioning of functions into mini-buckets. Before discussing how to

optimize the weights, we first introduce the WMB bound and discuss a forward-backward

message-passing procedure for approximating logZ and the marginals.

WMB builds its bound using the weighted summation operator

w∑
y

f(y)
def
=

(∑
y

f(y)1/w

)w

(1.29)

and Hölder’s inequality

∑
y

∏
i

fi(y) ≤
∏
i

wi∑
y

fi(y), (1.30)

where {fi(y)}mi=1 are a collection of positive functions over the discrete variable y and {wi}mi=1

is a corresponding set of positive weights such that
∑

iwi = 1. Applying Hölder’s inequality
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to bucket B2 gives the following inequality,

∑
y2

ψ23ψ12 ≤
w1∑
y1
2

ψ23

w2∑
y2
2

ψ12. (1.31)

We note that the inequality used by the MBE algorithm in (1.28) is a specific case of the

WMB inequality in (1.31) – namely, lim
w2→0+

w2∑
y2
2

ψ12 = max
y2
2

ψ12.

We can compute a bound on the log-partition function and marginals over sets of variables

in each mini-bucket by passing messages in a manner analogous to the Sum-Product BP and

BE algorithms. These updates differ from the BE update rule in (1.27), however, due to the

weighted summation operator. A forward message from some cluster (mini-bucket) i to its

parent pai is computed as

WMB-Forward : mi→pai =

wi∑
yi

ψi(yi)
∏

j : i=pa(j)

mj→i =

∑
yi

ψi(yi) ∏
j : i=pa(j)

mj→i


1
wi


wi

,

(1.32)

where wi is the weight assigned to cluster i. A backward message from cluster i to one of its

children j is computed as

WMB-Backward : mi→j =

∑
yi\yj

ψi(yi) ∏
k∈δ(i)

mk→i

1/wi

m
−1/wj
j→i


wj

, (1.33)

where mk→i is a message from any neighbor of cluster i, δ(i), including its parent and wi

and wj are the weights of cluster i and cluster j, respectively. Note that a forward message

depends only on messages from a node’s children, while a backward message depends on

messages from both a node’s parent and children. These dependencies can be resolved by

passing messages forward along the elimination order first and then backwards along the

reverse elimination order.
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The upper bound on logZ is computed at the root cluster as

logZ ≤ logZ(w) = log
wroot∑
xroot

ψroot(xroot)
∏

i∈δ(root)

mi→root (1.34)

and approximate marginals over each cluster are computed as

q(xi) ∝

ψi(yi) ∏
j∈δ(i)

mj→i

1/wi

. (1.35)

Liu and Ihler discuss at length how to tighten the WMB bound in their paper [59]. The key

idea is to recognize that the weighted log-partition function in (1.34) is actually a jointly

convex function of both the weights used by the weighted summation operator and the

factors (or parameters) defining our model. They exploit this joint convexity to derive

efficient message passing updates for both the weights and model parameters, which can be

interleaved nicely with the forward-backward message updates in (1.32) and (1.33). We refer

the interested reader to their paper for further detail.

Generalized Belief Propagation

Recall that the Loopy BP algorithm was derived by directly applying the Sum Product BP

update rules to a loopy graph. While exactness guarantees were lost by applying the updates

to a loopy factor graph, we nonetheless gained a powerful and efficient approximate inference

method. Generalized Belief Propagation (GBP) is a class of approximate inference methods

with an analogous motivation: directly apply the cluster tree message passing updates to a

cluster graph, rather than a cluster tree. GBP is thus a generalization of Loopy BP because

it passes messages between clusters rather than on a factor graph.

We begin our discussion of GBP by providing a definition of a cluster graph. A cluster graph
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for some model p(y) ∝
∏
α∈F

ψα(yα) is a graph CG = (V,E) where:

• Each node i ∈ V is associated with a cluster of variables, yi ⊆ y;

• Each factor α ∈ F can be assigned to a cluster, where by assigned we mean that there

exists a cluster i ∈ V such that yα ⊆ yi for each factor α ∈ F ;

• Each edge e = (i, j) ∈ E is associated with a set of variables yij ⊆ yi ∩ yj referred to

as a separator ; and

• If a variable y appears in two clusters i and j, then there must be some path connecting

cluster i and j such that y is in every cluster and separator on that path. In other

words, the set of clusters {v ∈ V | y ∈ yv} must induce a connected subgraph of CG.

There is a considerable amount of flexibility in choosing both the clusters and edge structure

comprising a cluster graph. A factor graph, for example, is a specific type of cluster graph,

where a cluster is added for each factor and variable and edges are drawn between variable

clusters and factor clusters. A cluster tree is also a special type of tree-structured cluster

graph, where the separators are yij = yi ∩ yj.

Figure 1.12 contains an example of a cluster graph for a pairwise MRF model. A simplified4

cluster tree for this model is shown in the middle pane and a cluster graph is shown in the

right pane. The variables in each cluster are drawn inside the nodes and the variables in

each separator are denoted on each edge. Notice that the cluster graph structure contains

an undirected cycle. As a result we cannot choose a root node and order our message

computations so that all dependencies are resolved prior to updating. We can, however,

initialize our messages to some fixed value, e.g. mi→j(yij) = 1, and then iteratively apply

the cluster tree message-passing updates in (1.27).

4By simplified we mean that non-maximal clusters have been removed.

30



Figure 1.12: Illustration of a Cluster Graph.

GBP is an iterative method with complexity that depends on the size of the largest cluster

in the cluster graph. Like Loopy BP, it is not guaranteed to converge, much less converge

to a solution providing accurate marginal approximations. However, executing GBP is not

as straightforward as executing Loopy BP: while Loopy BP is a well-defined algorithm once

given a factor graph, executing GBP requires first specifying the cluster graph structure

upon which messages will be passed. As we shall in Chapter 3, the choice of clusters and

edges comprising a cluster graph profoundly impact both the convergence of message passing

and the accuracy of GBP approximations. Interesting connections between the fixed points

of GBP and extrema of an object from statistical physics, known as the Kikuchi free energy,

have been established that have helped guide the selection of clusters and separators[99,

91, 92]. We will review these concepts and other related approaches to selecting clusters in

Section 1.4.2.

1.4.2 Inference: A Variational Perspective

The previous section introduced Loopy BP and GBP as two approximations that result from

a common principle: take message-passing updates that are exact on tree-structured graphs
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and apply them directly to loopy graphs. In this section, we will see that these algorithms

result from applying similar approximations to a common optimization problem. We will also

see that the WMB algorithm can be understood as approximating the common optimization

problem, albeit in a manner that provides a bound on the log-partition function.

We begin this section by reviewing the relationship between the marginals and log-partition

function of an exponential family distribution discussed in Section 1.2.1. Recall from (1.14)

that the first derivative of the log-partition function, d
dθ

logZ(θ), is equal to the mean pa-

rameters, Eθ [s(y)] = µ(θ), of the model p(y;θ) = exp (s(y) · θ − logZ(θ)). We treat µ(θ)

as a mapping from canonical parameters to mean parameters. The reverse mapping from

mean parameters to canonical parameters, θ(µ), is not unique unless p(y;θ) is in a minimal

representation.

Up to this point, computing the log-partition function has been viewed as an intractable

summation task: logZ(θ) = log
∑
y p(y;θ). The framework of variational inference converts

the problem of computing the log-partition function to an optimization problem[87]:

logZ(θ) = max
µ∈M

[µ · θ +H(µ)] , (1.36)

whereM = {µ′ ∈ Rd | ∃θ s.t. µ′ = µ(θ)} is the marginal polytope, which is the set of mean

vectors µ′ that can arise from some joint distribution p(y;θ), and

H(µ) = −
∑
y

p(y;θ(µ)) log p(y;θ(µ)), (1.37)

is the entropy computed using the distribution p(y;θ(µ)) that results from finding parame-

ters θ that yield the mean vector µ. In addition, from Danskin’s theorem the setting of µ

that optimizes (1.36) yields the marginals of our distribution,

d

dθ
logZ(θ) = arg max

µ∈M
[µ · θ +H(µ)] ⇒ µ(θ) = arg max

µ∈M
[µ · θ +H(µ)] . (1.38)
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Thus, both the partition function and marginals can be computed from a common optimiza-

tion problem. Appendix A provides an intuitive development of the variational optimization

problem in (1.36) in terms of finding a parameter setting that minimizes the KL-divergence

between two distributions.

Unfortunately, simply casting the log-partition function as an optimization problem does

not cause the intractability of computing the log-partition function to disappear. The op-

timization in (1.36) remains intractable for the following two reasons. First, the entropy

H(µ) is intractable to compute in general. Second, the marginal polytope,M, is difficult to

characterize, requiring an exponential number of constraints in general.

To derive a tractable inference algorithm, one must approximate the optimization in (1.36).

Let H̃(µ) be some approximation to the entropy and M̃ be an approximation to the marginal

polytope. Now define the approximate log-partition function, log Z̃(θ), as

log Z̃(θ) = max
µ∈M̃

[
µ · θ + H̃(µ)

]
. (1.39)

Approximate marginals, µ̃(θ), can then be computed by taking the first derivative of log Z̃(θ)

as in (1.38). In the following sections, we show how Loopy BP, GBP and WMB arise from

different choices of H̃(µ) and M̃.

Loopy Belief Propagation

Loopy BP has, to this point, been described as an algorithm that resulted from applying the

Sum-Product updates, which are exact on a tree-structured graph, to a graph containing

loops. This arc of starting from a tree-structured graph and moving to a loopy graph is also

useful when introducing the variational perspective of Loopy BP. In particular, the approx-

imations to the entropy and marginal polytope made by Loopy BP follow from considering
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a convenient alternate factorization of distributions on tree-structured factor graphs.

Consider some model p(y) ∝
∏

α∈F ψα(yα) defined on a tree-structured factor graph T =

(V, F,E). Since p(y) is tree-structured it can be expressed, or re-parameterized, as [85]:

p(y) =
∏
i∈V

µi(yi)
∏
α∈F

µα(yα)∏
j∈δ(α) µj(yj)

, (1.40)

where, as described in Section 1.2.1, µi(yi) = p(yi) and µα(yα) = p(yα) are the marginal

probabilities of yi and yα, respectively. The entropy of a tree-structured distribution in this

alternate factorization can be written concisely as:

HT (µ) = −
∑
α∈F

∑
yα

µα(yα) log µα(yα) +
∑
i∈V

(1− |δ(i)|)
∑
yi

µi(yi) log µi(yi), (1.41)

where |δ(i)| is the number of factors neighboring variable i in the factor graph.

In addition, the marginal polytope for tree structured models, which we denote asM(T ) to

be distinct from M, can be compactly expressed as [85]:

M(T ) =ML =

µ ≥ 0

∣∣∣∣∣∣∣
Normalization :

∑
yi
µi(yi) = 1, ∀i ∈ V

Consistency :
∑
yα\yi

µα(yα) = µi(yi), ∀α ∈ F, i ∈ δ(α), yi

 .

(1.42)

The collection of linear constraints definingML are commonly referred to as local consistency

constraints because they ensure that any two factors α1 and α2 will have marginals that are

consistent on their shared variables – i.e.
∑
yα1\yi

µα(yα1) = µi(yi) =
∑
yα2\yi

µα(yα2) for

any i ∈ δ(α1), i ∈ δ(α2).
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Plugging (1.41) and (1.42) into (1.36) gives

logZ(θ) = max
µ∈ML

[µ · θ +HT (µ)] , (1.43)

which is an expression for the exact log-partition function of a tree-structured distribution.

The first term in (1.43) is linear in µ and the entropy is a concave function of µ. We can

solve this constrained optimization problem by exploiting Lagrange multiplier theory to write

down an expression for the stationary point conditions that hold at the maxima of (1.43).

With a little bit of algebraic manipulation, one can derive a fixed-point iteration from these

conditions that is equivalent to the Sum-Product BP updates in (1.20) and (1.21) [99].

The Loopy BP approximation to the log-partition function, log Z̃BP(θ), is revealed by solving

the optimization problem in (1.43) for non-tree-structured graphs. In a loopy graph, the

expression for the entropy, HT (µ), becomes approximate and is known as the Bethe entropy

approximation. In addition, the local consistency constraints are no longer sufficient to

ensure that M = ML in a loopy graph. In fact, the local consistency constraints provide

an outer bound ML ⊇ M on the marginal polytope, which means that there exist vectors

µ ∈ML that do not correspond to any actual joint distribution. As a result, the vector µ is

commonly referred to as a vector of pseudomarginals or beliefs to make the distinction from

the true marginals clear. Even though the expression for log Z̃BP(θ) is an approximation

to logZ(θ), we can optimize it via the same fixed-point iteration scheme, which results

in the Loopy BP algorithm discussed in 1.4.1. We note, however, that the Bethe entropy

approximation is typically not a concave function of µ, which means that if iterative message

passing converges we may not converge to the global maxima of (1.43). And, even if we do

find the global maxima of (1.43), we still only have an approximation to the marginals and

log-partition function.
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Generalized Belief Propagation

Generalized Belief Propagation (GBP) [98, 99, 43] was described in Section 1.4.1 as an

algorithm that directly applied the cluster-tree message passing updates to a loopy cluster

graph. In this section, we will see that GBP includes a much broader set of approximations.

In particular, the variational perspective allows us to consider rich approximations to the

entropy that cannot be realized by a cluster graph structure alone.

The GBP approximation is specified by a collection of regionsR. A region γ ∈ R is analogous

to a cluster in Section 1.4.1 and is simply a subset of variables yγ ⊆ y. We will assume that

the collection of regions R are chosen so that each factor can be assigned to some region:

meaning that there exists a γ ∈ R such that yα ⊆ yγ for all α ∈ F .

GBP approximates the true entropy through a combination of marginal entropies

H(µ) = −
∑
y

p(y; θ(µ)) log p(y; θ(µ)) ≈ −
∑
γ∈R

cγ
∑
yγ

p(yγ; θ(µ)) log p(yγ; θ(µ)) = H̃GBP(µ),

(1.44)

where cγ ∈ R is a parameter referred to as the over-counting number for region γ. This

is commonly referred to as the Kikuchi approximation to the entropy [52, 65] and different

collections of regions and settings of the counting numbers lead to different entropy approx-

imations. For example, the Bethe entropy approximation used by Loopy BP is a specific

instance of (1.44) with R equal to the union of the factors and variables, R = F ∪ V ,

the over-counting numbers for the factor regions equal to 1, cγ = 1 for γ ∈ F , and the

over-counting numbers for the inner regions set as cγ = 1− |δ(γ)| for γ ∈ V .

Like Loopy BP, GBP approximates the marginal polytope via local consistency constraints,
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MGBP =

µ ≥ 0

∣∣∣∣∣∣∣∣
Normalization :

∑
yγ
µγ(yγ) = 1, ∀γ ∈ R

Consistency :
∑
yγ\yβ

µγ(yγ) = µβ(yβ), ∀γ, β ∈ R, β ⊂ γ,yβ

 , (1.45)

where β ⊂ γ means that yβ ⊂ yγ. These local consistency constraints also provide an outer

bound on the marginal polytope, MGBP ⊇ M; however, they are often tighter than Loopy

BP’s local consistency constraints, ML ⊇MGBP.

Plugging (1.44) and (1.45) into (1.39) gives the GBP approximation to the log-partition

function

logZ(θ) ≈ log Z̃GBP(θ) = max
µ∈MGBP

[
µ · θ + H̃GBP(µ)

]
. (1.46)

We are often interested in GBP approximations with bounded computational complexity.

Following our discussion of Weighted Mini-Bucket Elimination in Section 1.4.1, we use the

iBound control parameter to limit the number of variables appearing in a region. We use

R(i) to denote a collection of regions R, such that |yγ| ≤ i for all γ ∈ R for an iBound

of i. We also use log Z̃GBP(θ, i) to indicate that the collection of regions R(i) defining the

log-partition function approximation were limited by an iBound of i.

The accuracy of the GBP approximation depends mainly on the collection of regions used

and the setting of the over-counting numbers. Many different methods exist for selecting

collections of regions and counting numbers. We briefly review a few of the most important

methods here. A far more detailed discussion of the issues related to region choice will follow

in Chapter 3.

1. Cluster Variation Method [52, 65]: In his 1951 paper, Kikuchi proposed the Cluster

Variation Method (CVM) which works as follows. We first choose a collection of outer
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regions, O. These outer regions can be the original factors in our model, O = F ,

or regions over larger sets of variables. After identifying O, we construct a collection

of inner regions, I, by taking the intersection of any k of the regions in O: I =

{β | β = ∩kγk, γk ∈ O}. In other words, we take the intersection of all of the outer

regions, the intersection of their intersections, ... The collection of regions used in the

approximation is the union of the outer and inner regions: R = O∪I. After identifying

R, the counting numbers are set via the recursion:

cβ = 1−
∑
γ⊃β

cγ, (1.47)

where it follows that cγ = 1 for all γ ∈ O.

2. Junction-Graphs [2]: A junction graph is a specific type of cluster graph. Recall from

Section 1.4.1 that a cluster graph CG = (V,E) is a graph where each node i ∈ V is

associated with a subset of variables yi ⊂ y referred to as its scope and each edge

e = (i, j) ∈ E is associated with a subset of variables yij ⊆ yi ∩ yj referred to as a

separator. A junction-graph requires, for each variable y, that the sub-graph of CG

consisting only of the nodes and edges with variable y in their scope and separators be

a tree. The collection of regions used in a junction-graph approximation is, R = O∪I,

where O = {yi | i ∈ V } is collection of outer regions corresponding to each cluster

node and I = {yij | (i, j) ∈ E} is a collection of inner regions on each separator.

Over-counting numbers are set by the recursion in (1.47), which means that cγ = 1 for

each γ ∈ O and cβ = −1 for each β ∈ I.

3. Join-Graphs [20, 60]: A join graph is equivalent to our definition of a cluster graph.

And a junction-graph, in which the sub-graph induced by each variable is required to be

tree-structured, is referred to as an edge-minimal join-graph. Dechter et al.[20] propose

a novel scheme for constructing join-graphs with cluster scopes limited by an iBound

of i. The Join-Graph-Structuring procedure works as follows. First, one applies the
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mini-bucket partitioning strategy (discussed in Section 1.4.1), which induces a cluster

tree over the collection of mini-buckets. To this cluster tree over mini-buckets we add

edges connecting all of the mini-buckets in a bucket along a chain. This construction

is illustrated in Figure 1.13, where the inter-mini-bucket edges are in bold red. The

collection of regions R and over-counting numbers used in a join-graph approximation

are identified as in the case of a junction-graph.

Figure 1.13: Illustration of Join-Graph-Structuring procedure.

The differences between these alternate constructions are most easily visualized using a data

structure known as a region graph. Given a collection of regions R, a region graph (or

Hasse diagram) is simply a directed acyclic graph whose nodes correspond to regions in

R and an edge is drawn from region γ to region β if region γ covers region β. By cover,

we mean that yγ ⊃ yβ and there exists no τ ∈ R such that yγ ⊃ yτ ⊃ yβ. Figure 1.14

illustrates region graphs for both the CVM and junction-graph constructions with outer

regions of O = {{1, 2, 5}, {2, 3, 5}, {3, 4, 5}, {1, 4, 5}}. Notice that the CVM region graph for

this collection of regions has three levels. The depth of a CVM region graph is dictated by

the overlap between the outer regions and may be much deeper than three levels in some

problems. In contrast, the region graph for a junction-graph or join-graph will only have two

levels: a top level for all of the cluster nodes and a bottom level for all of the edge separators.

The over-counting numbers for each region graph in Figure 1.14 are shown in red above each
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Figure 1.14: Illustration of Region Graphs for the CVM and Junction-Graph methods.

region graph node. Notice that the CVM region graph has inner regions with both positive

and negative over-counting numbers. In contrast, inner regions of a junction or join graph will

only ever have negative over-counting numbers. This is why at the beginning of this section

we stated that the class of GBP approximations are broader than the approximations that

can be realized by passing messages on a cluster graph structure. In particular, rich entropy

approximations can be formed by both adding and subtracting inner marginal entropies in

(1.44).

A region graph is also useful when organizing the computations needed to solve the con-

strained optimization problem in (1.46). Once again, we can use the theory of Lagrange mul-

tipliers to write down stationary point conditions and derive a fixed-point iteration. These

fixed point updates can be viewed as messages passed on the region graph structure[99].

It is possible to write down updates on the region graph structure that are similar to the

standard belief propagation updates – i.e., the belief at some region γ is a product of all

factors assigned to γ and all messages passed into region γ. However, the updates that result

for such two-way message-passing are far more complicated than the standard BP updates
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as they must properly account for the information sent by all ancestors and descendants of

a region. As a result, we focus on a parent-child form of the algorithm, where messages are

sent from a parent region γ to some child region β. Let

mγ→β(yβ) =

∑
yγ\yβ µγ(yγ)

µβ(yβ)
(1.48)

be a “correction” message and update the region beliefs as

µ(yτ ) ∝ µ(yτ ) ·mγ→β(yβ), (1.49)

for all regions τ ∈ ∆(β) \ ∆(γ), where ∆(i) = {j ∈ R | yj ⊇ yi} is the set of ancestors

of region i in the region graph and region i itself. The Kikuch entropy is typically not a

concave function of µ, which means that if these fixed point updates converge they may not

yield the vector of beliefs which maximize (1.46).

Weighted Mini-Bucket

Weighted Mini-Bucket Elimination (WMB) was described in Section 1.4.1 as an algorithm

that computed an upper bound on the log-partition function. It computed this bound by

passing weighted messages forward along the cluster tree induced by the mini-bucket parti-

tioning scheme. The messages were weighted because WMB used the weighted summation

operator (1.29) and Hölder’s inequality (1.30) to build its bound. In this section, we will

see that the WMB upper bound can be interpreted from a variational perspective as first

approximating the marginal polytope constraint by a marginal polytope constraint on the

partition-induced cluster tree and then approximating (actually bounding) the exact entropy

using a weighted conditional entropy.

We begin by recalling the form of the WMB bound. Let π denote some elimination order
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Figure 1.15: Demonstration of WMB notation.

and recall that the process of partitioning the functions assigned to a mini-bucket can be

interpreted as replicating a variable (see e.g. Figure 1.11). Let ȳi = {yri }
Ri
r=1 be the collection

of Ri replicates of variable yi. Let w̄i = {wri }
Ri
r=1 be a corresponding collection of weights for

each replicate, such that
∑Ri

r=1 w
r
i = 1. Let ȳ = {ȳ1, ..., ȳm} and w̄ = {w̄1, ..., w̄m} be the

collection of all replicates and weights, respectively. Let π̄ be the extension of elimination

order π to the split graph Ḡ. Given an ordering π̄ = (1, ..., m̄), the primal WMB bound is

logZ(θ) ≤ logZ(θ̄, w̄) = log
w̄m̄∑
ȳm̄

· · ·
w̄1∑
ȳ1

∏
α∈F

exp(θ̄α(ȳα)), (1.50)

where θ̄α(ȳα) is the set of factors defined over the set of replicates ȳ. The notation used to

build this bound is demonstrated in Figure 1.15 for a simple pairwise model.

The WMB bound can also be constructed from a variational perspective. First, we ap-

proximate (replace) the marginal polytope M on our original graph G, with the marginal

polytope on the split graph M(Ḡ). As a result, we replace searching for a mean vector

µ ∈ M(G) with a searching for some extended mean vector µ̄ ∈ M(Ḡ). We then bound

the entropy using a weighted sum of conditional entropies on the split graph

H(µ) ≤ H̃w̄(µ̄) =
∑
i∈π̄

w̄iH(ȳi|ȳδ(π̄,i); µ̄), (1.51)

where the sum is over all variables i in the extended ordering π̄, w̄i is the weight assigned to
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variable i in the extended ordering and ȳδ(π̄,i) is the set of neighbors subsequent to variable i in

ordering π̄ (e.g. δ(π̄, y1
2) = y1, δ(π̄, y2

2) = y3 and δ(π̄, y3) = y1 in Figure 1.15). The conditional

entropy Hw(ȳi|ȳδ(π̄,i); µ̄) is computed using the marginals µ̄. Plugging the marginal polytope

approximation and conditional entropy bound into (1.39) gives the dual WMB bound to the

log-partition function

logZ(θ) ≤ max
µ̄∈M(Ḡ)

[
µ̄ · θ̄ + H̃w̄(µ̄)

]
. (1.52)

The optimization problem in (1.52) is equivalent to the dual problems encountered when

using Tree Reweighted (TRW) Belief Propagation [83] or the Conditional Entropy Decom-

position (CED) approach [31]. A variety of methods could in principle be used to directly

optimize (1.52). However, as discussed in Section 1.4.1 and in [59] the primal WMB bound

in (1.50) can be optimized efficiently via simple message passing updates, which is the route

we follow in our later experiments involving WMB.
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Chapter 2

A Bottom-Up Approach to Solving

the Weighted Matching Problem

using Belief Propagation

Many combinatorial optimization problems can be formulated as MAP inference problems in

a graphical model. By formulating in this way, we can not only bring to bear a different set

of algorithms for tackling these computationally challenging problems, but also leverage the

vast literature on combinatorial optimization to inform our understanding of the performance

of different MAP inference algorithms. In fact, many interesting connections between MAP

inference and combinatorial optimization have been established over the years, including,

for example, that MAP inference in ferromagnetic Ising models can be solved exactly by

formulating it as a min-cut network optimization problem[3, 36].

In this chapter, we focus on a specific combinatorial optimization problem – the weighted

matching problem – and a particular MAP inference algorithm – max-product belief propaga-

tion (BP). We focus on the matching problem for several reasons. First, it is a combinatorial
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optimization that can be expressed as an Integer Linear Program (ILP). Second, it is a classic

problem with many known properties that can be utilized to provide a crisp characteriza-

tion of the performance of an algorithm like max-product BP. Finally, many applications in

wireless networking require the distributed computation of matchings – meaning that there

is also a practical benefit to studying a distributed algorithm like BP in this setting[81, 16].

Our focus on the max-product BP algorithm is due to some recent results showing that

BP is provably exact for certain types of graphical models containing many loops. These

surprising results were shown for models corresponding to some well known combinatorial

optimization problems, including matchings [5, 73, 44], perfect matchings [4], independent

sets [74] and network flows[28]. The performance of BP in these problems can be charac-

terized by properties of the LP relaxation of their ILP formulation – namely, equivalence to

the LP optimized by BP, as well as uniqueness and tightness of the LP optima.

Unfortunately, the natural LP relaxation of the matching problem is often not tight in

general (non-bipartite) graphs. As a result, BP is no longer a provably exact solver for

many matching problems. The LP relaxation can be made tight, however, by iteratively

adding cutting plane constraints that remove non-integral optima from consideration, while

retaining all feasible solutions to the original ILP. So-called cutting plane methods are a

popular approach to solving ILPs [17, 38, 37] and have also received attention in the graphical

models community [80, 95, 63].

The main contributions of this chapter are:

1. We develop a cutting plane algorithm for the weighted matching problem that uses BP

as its LP solver.

2. As we show in Section 2.4, the addition of tightening constraints in our cutting plane

procedure ruins the convergence and correctness properties of BP, even when the re-

laxation is made tight. Another contribution of this chapter is thus the introduction
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of a “fix” to the max-product algorithm that makes it exact for certain collections of

cutting plane constraints.

3. Finally, the proposed “fix” to max-product BP increases the set of weighted matching

problems that are provably solvable by the max-product algorithm and also adds to

our understanding of the conditions needed for BP to be provaby exact.

2.1 Road Map of Chapter

In the remainder of this chapter we discuss several inter-related optimization problems. To

aid the reader’s navigation of this chapter, we provide a road map in Figure 2.1.

Figure 2.1: Road-map of inter-related combinatorial optimization problems.

We begin in Section 2.2 by reviewing the MAP inference problem in general graphical models

and discuss the standard LP relaxation of the MAP problem, MAP-LP, which replaces

the intractable marginal polytope with the local (pairwise) consistency polytope. We then

introduce the ILP problem and discuss its natural LP relaxation, denoted as LP in the road

map. Next, we introduce the MAP-ILP problem, which is nothing but the MAP problem for
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a specific class of graphical models encoding an ILP. We then discuss when the LP relaxation

of MAP-ILP, denoted BPLP, is equivalent to the LP relaxation of the ILP problem.

After introducing these problems and their LP relaxations, in Section 2.3 we consider the

cutting plane approach to tighten these relaxations and, ultimately, recover the global op-

tima. In particular, we contrast approaches that tighten the bound on the marginal polytope

in MAP-LP with approaches that remove non-integral solutions in LP and discuss how the

BPLP relaxation can profit from both perspectives.

Last, in Section 2.4 we introduce the weighted matching problem and discuss how the max-

product BP algorithm can be used in a cutting plane approach to solve matching problems.

We conclude with some experimental results showing the efficacy of the cutting plane pro-

cedure and then discuss some exciting problems exposed by the work in this chapter.

2.2 MAP inference, ILPs and their LP Relaxations

2.2.1 MAP and MAP-LP

We begin by restating the MAP inference problem first introduced in Section 1.3. Given a

factor graph, G = (V, F,E), defining the joint probability distribution

p(x) ∝
∏
i∈V

ψi(xi)
∏
α∈F

ψα(xα) ∝ exp

(∑
i∈V

θi(xi) +
∑
α∈F

θα(xα)

)
,

find the state x? of maximum total probability

MAP : x? = arg max
x

p(x) = arg max
x

∑
i∈V

θi(xi) +
∑
α∈F

θα(xα). (2.1)
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We now introduce the LP relaxation to the MAP problem. It was first proposed in [75] and

has subsequently been studied by many others, including [87, 94, 95, 90]. We first express

our distribution in the standard overcomplete representation introduced in Section 1.2.1. Let

b(x) be a vector containing an indicator for every state of each variable and an indicator for

every configuration of each factor:

b(x) = {I[Xi = xi] | i ∈ V, xi} ∪ {I[Xα = xα] | α ∈ F,xα} (2.2)

The MAP problem in (2.1) is equivalent to the following optimization problem:

arg max
∑
i∈V

∑
xi

θi(xi)bi(xi) +
∑
α∈F

∑
xα

θα(xα)bα(xα) (2.3)

s.t. bα(xα) ∈ {0, 1} ∀α ∈ F, xα (2.4)∑
xα

bα(xα) = 1 ∀α ∈ F, (2.5)

∑
xα\xi

bα(xα) = bi(xi) ∀α ∈ F, i ∈ δ(α), xi (2.6)

where bi(xi) is the component of b(x) corresponding the indicator I[Xi = xi] and bα(xα) is

the component of b(x) corresponding to the indicator I[Xα = xα]. Constraints (2.4) and

(2.5) ensure that the indicator for exactly one configuration of each factor is active. The

constraint in (2.6) ensures that the single active indicator for each factor is consistent with

the active state indicators of each variable i ∈ δ(α) in the factor.

The LP relaxation to the MAP problem, MAP-LP, is revealed by relaxing the integrality

constraint in (2.4). We express the MAP-LP problem compactly as

MAP-LP : b? = arg max
b∈PMAP−LP

b · θ (2.7)

where b is shorthand for b(x), θ = θ(x) is the corresponding vector of model parameters
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and PMAP−LP is the local consistency polytope:

PMAP−LP =

b ∈ [0, 1]l

∣∣∣∣∣∣∣
∑
xα
bα(xα) = 1 ∀α ∈ F∑

xα\xi bα(xα) = bi(xi) ∀α ∈ F, i ∈ δ(α), xi

 , (2.8)

where the dimension of the vector b is l = K|V |+
∑

α∈F K
|δ(α)|. MAP-LP is also commonly

referred to as the pairwise LP relaxation[79] because the consistency constraints ensure that

pairs of factors having a shared variable will have consistent beliefs on that shared variable.

2.2.2 ILP and LP

Many combinatorial optimization problems involve the optimization of a linear objective

function over the integral vectors in some polytope. Such problems are referred to as Integer

Linear Programs (ILPs) and take the following form:

ILP : max c · x s.t. Ax ≤ d, x ∈ Zm, (2.9)

where x is an m-dimensional vector of integers, c ∈ Rm is a vector of real-valued weights

and the bounded polyhedron, P , is defined by the r×m matrix A and the vector d ∈ Rr as

P = {x | Ax ≤ d}. (2.10)

In the remainder of this section, we will assume that x ∈ {0, 1}m is a binary vector.

The natural Linear Programming (LP) relaxation of the binary ILP in (2.9) is defined as:

LP : max c · x s.t. Ax ≤ d, x ∈ [0, 1]m, (2.11)

where the only change from (2.9) is that x is no longer required to be integral. Note that
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the ILP in (2.9) optimizes over the polytope PILP = {x ∈ {0, 1}m|Ax ≤ d}, while the LP

relaxation optimizes over PLP = {x ∈ [0, 1]m|Ax ≤ d}. This implies that PLP ⊇ PILP .

2.2.3 MAP-ILP and BPLP

The ILP in (2.9) can be formulated as a MAP inference problem by constructing a suitable

graphical model. Let x ∈ {0, 1}m be a vector of binary random variables associated with

each component of the vector x in (2.9). Let i = 1, ...,m index the variables and j = 1, ..., r

index the rows of the constraint matrix A. Consider the joint probability distribution

p(x) ∝
m∏
i=1

ecixi
r∏
j=1

ψj(xSj), (2.12)

ψj(xSj) =


1, if (Ax)j ≤ dj

0, otherwise

, (2.13)

where every row of matrix A is associated with a factor ψj defined over a subset of the

variables xSj , where Sj = {i : Aji 6= 0}. An illustration of this transformation is shown

in Figure 2.2, where each factor node (depicted as squares) corresponds to one of the 4

inequalities in the ILP.

Figure 2.2: Illustrating the transformation of an ILP to a graphical model.

The MAP-ILP problem is simply the MAP problem for graphical models of the specific form
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in (2.12)

MAP-ILP : x? = arg max
x

m∑
i=1

cixi +
r∑
j=1

θj(xSj). (2.14)

where θj(xSj) = logψj(xSj). It is clear that p(x) ∝
∏

i e
cixi for any ‘feasible’ assignment of

x and that p(x) = 0 otherwise. As a result, the MAP assignment in (2.14) will be equivalent

to the vector optimizing the ILP in (2.9)1.

We now formulate the natural LP relaxation to the MAP-ILP problem, which we refer to

as BPLP because it is precisely the LP relaxation that max-product BP attempts to solve.

Introducing a vector of indicators b(x) for each state of every variable and each configuration

of every factor, we arrive at the following LP representation:

BPLP : max
∑
i

cibi(xi = 1) (2.15)

s.t. bj(xSj) ∈ [0, 1] ∀j = 1..r, xSj , (2.16)∑
xSj

bj(xSj) = 1 ∀j = 1..r, (2.17)

∑
xSj \xi

bj(xSj) = bi(xi) ∀j = 1..r, i ∈ Sj, xi (2.18)

bj(xSj) = 0 if
∑
i∈Sj

Ajixi > dj ∀j = 1..r. (2.19)

The only difference between the BPLP problem and the MAP-LP problem in (2.7) is the

addition of the feasibility constraints (2.19). To make this difference explicit, we absorb the

feasiblity contraints into the local consistency polytop PMAP-LP and define the BPLP polytope

1This is true assuming that there is a unique optimal assignment.
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as:

PBPLP =

b ∈ [0, 1]l

∣∣∣∣∣∣∣∣∣∣

∑
xSj

bj(xSj) = 1 ∀j = 1..r∑
xSj \xi

bj(xSj) = bi(xi) ∀j = 1..r, i ∈ Sj, xi

bj(xSj) = 0 if
∑

i∈Sj Ajixi > dj ∀j = 1..r

 , (2.20)

where the dimensionality of the belief vector b in this formulation is l = 2m+
∑r

j=1 2|Sj |. We

note that the BPLP relaxation optimizes a vector b ∈ [0, 1]l, while the natural LP relaxation

of the ILP problem in (2.11) optimizes a vector x ∈ [0, 1]m.

2.2.4 Equivalence of LP and BPLP

The previous sections introduced two different LP relaxations of the binary ILP in (2.9) –

namely, LP and BPLP. Alternative representations of an LP are important for two main

reasons. First, the representation of an LP governs the performance of an LP solver. For

example, the ellipsoid algorithm has run-time that is polynomial in the number of variables

and constraints in an LP [51, 8], suggesting that solutions can be found more efficiently in

a compact LP representation. Second, different representations of an LP are also useful for

analytical purposes. For example, Feldman, Wainwright and Karger exploit an alternative

LP relaxation of the max likelihood decoding problem to bound the error in their decoder[27].

We are primarily interested in alternative LP representations for analytical reasons. In

particular, our characterization of the performance of BP will leverage properties of the

standard LP relaxation of the matching problem. We now introduce the main result of this

section, which is a precise characterization of when the LP problem in (2.11) and the BPLP

problem in (2.15) are equivalent. Establishing this equivalence is a prerequisite for our later

analysis of max-product BP.
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Since PLP is a polytope defined over variables x ∈ {0, 1}m and PBPLP is a is a polytope

defined over variables b ∈ {0, 1}l with l > m, we must first clarify what is meant by

equivalence. For the remainder of this section, we will assume that each variable xi in PLP

corresponds to the variable bi(xi = 1) in PBPLP . The remaining l − m variables in b are

considered to be auxiliary and we denote them by b̄ so that b = (x, b̄). We now define the

projection of the polytope PBPLP onto x as:

P̄BPLP = {x | ∃ b̄ s.t. (x, b̄) ∈ PBPLP}.

We then say that PBPLP is equivalent to PLP if P̄BPLP = PLP . A further discussion of

polytope equivalence can be found in [27, 97].

Theorem 2.1. Consider the polytope PLP = {x ∈ [0, 1]m | Ax ≤ d}. Then, the following

properties hold:

• If PLP has only 0− 1 integral vertices (i.e., extreme points), then PLP ⊆ P̄BPLP .

• P̄BPLP ⊆ PLP (without any conditions).

Proof. We first show that PLP ⊆ P̄BPLP . To do so, we must show that if a vector x ∈ PLP ,

then there exists a vector of beliefs b satisfying the constraints (2.18,2.17,2.19) of BPLP. In

other words, given any x ∈ PLP we can find a setting of b̄ such that b = (x, b̄) ∈ PBPLP . By

Caratheodorys theorem, since the polytope PLP has only 0− 1 vertices, any point x in the

polytope can be expressed as a convex combination of these vertices. The coefficients of the

convex combination provide values for the factor beliefs {bj(xSj)} and the beliefs bi(xi = 0)

correspond to the variables 1− xi in the LP.

We next show that P̄BPLP ⊆ PLP . In other words, if b = (x, b̄) ∈ PBPLP then x ∈ PLP . The

value of bi(xi = 0) is redundant within the BPLP polytope as bi(xi = 0) = 1 − bi(xi = 1).

From this, we derive for each row j of A:
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∑
i∈Sj

Ajixi =
∑
i∈Sj

Aji
∑

xSj :xi=1

bj
(
xSj
)

=
∑
i∈Sj

Aji
∑
xSj

xibj
(
xSj
)

=
∑
xSj

∑
i∈Sj

Ajixi

 bj
(
xSj
)

≤
∑
xSj

djbj
(
xSj
)

= dj
∑
xSj

bj
(
xSj
)

= dj,

where (2.19) was used in the inequality.

We note (arguing by contradiction) that the condition in Theorem 2.1 for PLP ⊆ P̄BPLP

is necessary. For example, consider a matrix A with a single constraint involving all the

variables, S1 = {1, . . . , n}, and imagine that the polytope PLP has a fractional vertex x.

Then there exists a vector of weights c such that x is the unique solution of the LP in (2.11).

However, {bi(xi = 1) = xi} cannot satisfy (2.18), (2.17) and (2.19) for any factor b1(xS1)

because x is a fractional vertex of PLP .

This contradiction is illustrated in Figure 2.3. The unique optima of the LP occurs at

x1 = 1/2, x2 = 1, meaning that b1(x1 = 1) = 1/2 and b2(x2 = 1) = 1. The normalization

constraints imply that b1(x1 = 0) = 1/2 and b2(x2 = 0) = 0 and the feasibility constraint

requires b12(x1 = 1, x2 = 1) = 0. However, there is no valid setting of the joint belief

b12(x1, x2) that can simultaneously satisfy the consistency constraints b12(x1 = 0, x2 = 0) +

b12(x1 = 0, x2 = 1) = b1(x1 = 0) = 1/2 and b12(x1 = 0, x2 = 1) + b12(x1 = 1, x2 = 1) =

b2(x2 = 1) = 1 because b12(x1 = 1, x2 = 1) = 0.

Theorem 2.1 implies the following corollary.

Corollary 2.2. If the elements of matrix A, Aji ∈ {−1, 0, 1} for all i, j, then PLP ≡ P̄BPLP .

Proof. Corollary 2.2 is proved using Theorem 2.1 and the fact that each vertex of a polytope
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Figure 2.3: Illustration of the necessity of the LP having integral vertices for PLP ⊆ PBPLP .

can be expressed as the unique solution to a system of ‘face’ linear equalities (see e.g. [77]).

In Section 2.4 we introduce a hierarchy of relaxations for the weighted matching problem

that satisfy the conditions in Corollary 2.2 – a condition that aids our analysis of the cutting

plane BP algorithm.

2.3 Cutting Plane Methods: A Bottom-Up Approach

to Tightening LP Relaxations

The cutting plane method is an iterative approach to solving ILPs originally developed by

Dantzig, Fulkerson and Johnson to tackle the Traveling Salesman Problem (TSP)[17]. It

begins by solving the natural LP relaxation of the ILP to optimality. If the LP optima, x?,

is integral, then it is an optimal solution to the ILP and the algorithm terminates; otherwise,

there exists a linear constraint a1x ≤ d1 that is satisfied by all solutions to the ILP, but

violated by x?. The inequality a1x ≤ d1 is referred to as a cutting plane and we add it to

the original LP, giving a new tighter polytope

PLP ⊇ PLP1 = {x ∈ [0, 1]m | Ax ≤ d, a1x ≤ d1}. (2.21)
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This process is repeated by optimizing over PLP1 , checking if its optima is integral and adding

a new cut constraint if necessary.

The cutting plane approach is illustrated in Figure 2.4. The solution to the natural LP

relaxation in the left-hand plot occurs at a fractional vertex of PLP (depicted by the dashed

blue line) that lies outside of the ILP polytope PILP (depicted by the dotted red line). In

the right-hand figure, we have added a cut inequality that removes the fractional solution

and makes the new LP polytope, PLP1 , equivalent to the ILP polytope. The optima of this

new LP is integral and coincides with the optima of the ILP.

Figure 2.4: Illustration of the cutting plane method.

For the cutting plane method to be a viable approach to solving ILPs, we require:

1. An efficient algorithm for finding cutting planes;

2. An efficient algorithm for solving LPs;

3. A guarantee that the procedure will converge to an integral solution in a bounded

(hopefully polynomial) number of cuts.

We discuss each of these requirements in turn.
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2.3.1 Cut Generation

Cut generation is a subject that has received a lot of attention in the operations research

community. Gomory popularized the use of cutting plane methods by extending the approach

of Dantzig, Fulkerson and Johnson to general ILPs[34, 35] and his “rounding” procedure finds

use in almost all commercial ILP solvers (e.g. CPLEX[1] and Gurobi[39]). However, far more

effective cutting plane methods have been identified for many well-known ILPs. In particular,

Padberg and Rao devised a polynomial time separation algorithm for the weighted matching

problem and discuss its usage in the ellipsoidal algorithm[68]. The authors in [37, 82] discuss

several cut generating heuristics for the matching problem and also consider their deployment

in a Simplex-based cutting plane approach.

Cutting plane methods have also received attention in the graphical models community. In

this setting, the cuts are employed to tighten the local (pairwise) relaxation, PMAP−LP , of

the marginal polytope. The authors in [63] describe a cut generation procedure that tightens

the pairwise relaxation of higher-order factors by enforcing consistency on larger subsets of

shared variables. For example, adding the constraints

 ∑
xα\xi,xj

bα(xα) = bij(xi, xj) ∀i, j ∈ α,
∑
xi

bij(xi, xj) = bj(xj),
∑
xj

bij(xi, xj) = bi(xi)


to PMAP−LP will ensure consistency on pairs of shared variables. Sontag and Jaakkola

propose a cutting plane algorithm for pairwise models that builds consistency in the opposite

direction, by adding constraints to ensure that beliefs along a cycle are consistent with the

beliefs on its constituent edges [80, 79]. It is an example of a lift-and-project method because

the higher level of consistency is enforced by adding new variables into the relaxation that

have no effect on the objective being optimized. Werner proposed a different lift-and-project

procedure that iteratively adds constraints which rule out inconsistent partial-configurations

in the model[95].
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Since the BPLP problem is the relaxation to both an ILP problem and a MAP problem

it can profit from both perspectives. That is, we can appeal to the heuristics discussed in

[37] for the matching problem or even Gomory’s generic procedure and add inequalities,

atx ≤ dt, to grow the set of feasibility constraints in PBPLP ; alternatively, we can appeal to

the growing literature on tightening the pairwise MAP-LP relaxation and add constraints to

ensure that are collection of belief b are consistent over larger set of variables.

2.3.2 LP Solvers

Since the BPLP problem is the relaxation to both an ILP problem and a MAP problem it

can seemingly benefit from using LP solvers designed for both types of problems. However,

as discussed in Section 2.2.4, the polytope PBPLP is much larger than the polytope PLP .

This means that if we were to employ an off-the-shelf LP solver, we would prefer to optimize

over PLP directly. Instead, we focus our attention on message-passing approaches to solving

LP relaxations of the MAP inference problem. For a review of classic LP solvers, such as

Dantzig’s Simplex method, we refer readers to the texts [76, 96].

We begin our discussion of message-passing algorithms with the max-product algorithm

itself. When viewed from a variational perspective, the max-product algorithm can be seen

as attempting to solve the LP in (2.15) by passing local messages. It is not guaranteed to

converge, however, and even if it does converge, it may converge to a solution that is not the

LP optima2.

These two difficulties – non-convergence and non-optimality – have both been addressed in

the literature. A number of convergent message-passing algorithms that optimize different

dual representations of the MAP-LP problem have been proposed, including Tree-Reweighted

Max Product [86, 54], MPLP [33] and Max-Sum Diffusion [94]. These algorithms also come

2The solution will be optimal, however, with respect to a neighborhood of single-loops and trees[89].

58



with a nice guarantee upon convergence: if they converge to a unique integral assignment,

then the assignment is the optima. Unfortunately, convergence to such an assignment is

not guaranteed (see [47] for a discussion of convergence issues and potential remedies). In

fact, global optimality is only guaranteed by the TRW-S algorithm [54] when the model’s

factors are pairwise and submodular – conditions that are not satisfied by the graphical

model formulation of the matching problem.

2.3.3 Convergence Guarantees

The last requirement of a viable cutting plane method is a bound on the number of iterations

needed for the method to converge using a specific cut generating routine. In other words,

we require a bound on the number of LPs needing to be solved. The first such bound was

established by Gomory for binary ILPs[35]. He showed that using his generic “rounding”

procedure he could produce an integral solution in 2m iterations. Though most cutting

plane methods come with weak or no convergence guarantees, they are usually quite efficient

in practice. For example, Sontag and Jaakkola’s cutting plane method is able to find the

MAP assignment in all but one instance in a set of 269 very challenging protein side-chain

prediction problems[80].

Better convergence guarantees appear to be possible for the matching problem for sev-

eral reasons. First, Edmond’s provided a complete polyhedral description of the matching

polytope[25]. While it has an exponential number of inequalities, a naive procedure that

simply added these constraints one-by-one would achieve the same guarantee as the Gomory

procedure. Better still, is a recent result from Chandrasekaran et al., who showed that

a cutting plane method using Edmond’s inequalities converges in polynomial time for the

weighted perfect matching problem[14]. While their procedure is quite involved and requires

both the addition and removal of cutting planes in every iteration, it is, nonetheless, a re-
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markable result and certainly inspired this investigation into solving matchings via a cutting

plane BP approach.

2.4 Finding Max Weight Matchings using BP

2.4.1 The Weighted Matching Problem

We now introduce the maximum weighted matching problem: given a graph G = (V,E)

with weights we on its edges e ∈ E, find a matching of maximum total weight, where a

matching M is a subset of the edges E such that no two edges share a vertex and the weight

of a matching is the sum of its constituent edge weights. If we let x = {xe}e∈E, then the

problem can be expressed as the following ILP:

match-ILP: arg max
x

∑
e∈E

wexe s.t.
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V ; xe ∈ {0, 1}, (2.22)

where δ(i) = {e = (i, j) ∈ E} is the set of edges adjacent to vertex i.

The natural LP relaxation of the matching ILP, which we refer to as m-ILP, is formed by

replacing xe ∈ {0, 1} by xe ∈ [0, 1]. The resulting relaxation is often referred to as the

bipartite relaxation because it is provably tight when G is bipartite. We can make the

relaxation tight on non-bipartite graphs, as famously shown by Edmonds [25], by adding a
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set of blossom inequalities:

match-blossom-LP : max
x

∑
e∈E

wexe (2.23)

s.t.
∑
e∈δ(i)

xe ≤ 1, ∀i ∈ V ;
∑

e∈E(S)

xe ≤
|S| − 1

2
, ∀S ∈ S; xe ∈ [0, 1],

where E(S) = {(i, j) ∈ E : i, j ∈ S} is the set of edges with both ends in S and S ⊂ 2|V |

is the set of all odd-sized sets of vertices in G, referred to as blossoms by Edmonds. The

blossom inequalities imply that an odd cycle of length 2l + 1 can have at most l edges in a

matching. For example, a matching can contain at most 1 edge in any set of 3 vertices.

Figure 2.5 illustrates four simple matching problems with fractional bipartite relaxations. In

matching (a), there is a unique fractional LP optima at x?12 = x?13 = x?23 = 1/2. The bipartite

relaxation of (a) can be made tight by adding the blossom constraint x12 + x13 + x23 ≤ 1,

in which case we recover the unique integral solution x?12 = 1, x?13 = x?23 = 0. The bipartite

relaxation of problem (b) has many LP optima – namely, x?12 = x?13 = x?23 = 1/2; x?12 =

1, x?13 = x?23 = 0; and any convex combination of the two. By adding the blossom constraint,

we recover the unique integral solution at x?12 = 1, x?13 = x?23 = 0. The bipartite relaxation of

problem (c) has a unique fractional LP optima at x?12 = x?13 = x?23 = 1/2, but a non-unique

LP optima upon adding the blossom constraint. Finally, the bipartite relaxation of problem

(d) is tight and has a unique integral optima at x?12 = 1, x?13 = x?23 = 0.

Figure 2.5: Illustration of simple matching problems with fractional and non-fractional LP optima.
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2.4.2 Weighted Matching as a MAP problem

The weighted matching problem can be formulated as a MAP problem by associating a

random variable with each edge, x = {xe}e∈E, and constructing the following model:

p(x) ∝
∏
e∈E

ewexe
∏
i∈V

ψi(xi)
∏
S∈S

ψS(xS), (2.24)

ψi(xi) =


1, if

∑
e∈δ(i) xe ≤ 1

0, otherwise

, ψS(xS) =


1, if

∑
e∈E(S) xe ≤

|S|−1
2

0, otherwise

, (2.25)

where ψi are vertex factors defined over variables xi = {xe : e ∈ δ(i)} and ψS are blossom

factors defined over xS = {xe : e ∈ E(S)}. The matching MAP problem is then

MAP-match: arg max
x

∑
e∈E

wexe +
∑
i∈V

θi(xi) +
∑
S∈S

θS(xS),

where θi(xi) = logψi(xi) and θS(xS) = logψS(xS).

Note that this is a specific realization of the MAP-ILP problem in (2.14). Further, notice

that the coefficients of the vertex constraints and blossom constraints in (2.23) are either 0

or 1. This means that the conditions of Corollary 2.2 are satisfied and implies that the LP

relaxation of the MAP-match problem is equivalent to the match-blossom-LP problem.

2.4.3 Max-Product BP for Weighted Matchings

We now introduce the max-product algorithm for the weighted matching model in (2.24).

We present the factor-graph form of max-product. The max-product algorithm updates the

set of messages between the edge variables and the vertex and blossom factors using the
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update rules shown in Figure 2.6, where we assume that edge e = (i, j) and t denotes time.

Figure 2.6: Max-product message updates for the Max Weight Matching problem.

At time t = 0 the messages are initialized to 1 and the belief on edge e at time t is

bt(xe) = ewexe mt
i→e(xe) m

t
j→e(xe)

∏
S:e∈E(S)

mt
S→e(xe).

The algorithm outputs a MAP estimate at time t, xBP (t) = {xBPe (t)}, using the beliefs and

the decoding rule:

xBPe (t) =


1 if bte(0) < bte(1)

? if bte(0) = bte(1)

0 if bte(0) > bte(1)

.

Sanghavi, Malioutov and Willsky proved the following theorem connecting the performance

of the max-product algorithm and the bipartite relaxation of the matching ILP [73]:

Theorem 2.3. If the solution to match-blossom-LP with S = ∅ (i.e. the bipartite relaxation)

is integral and unique, then the BP MAP estimate, xBP (t), of the model in (2.24) will

converge to the maximum weight matching, x?.

Figure 2.7 shows the MAP estimates produced by max-product for the four matching prob-
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Figure 2.7: BP MAP estimates for four sample matching problems.

lems discussed in the previous section. Notice that BP converges to the maximum weight

matching only in matching problem (d); in the other problems BP either converges to an

uncertain estimate, or fails to converge entirely.

One would hope that the result of Theorem 2.3 would extend beyond the bipartite relaxation

because the bipartite relaxation can be made tight by adding blossoms. However, even when

the match-blossom-LP is made tight and has a unique solution, max-product will still fail

when S 6= ∅. For example, one can observe that BP run on a model with an additional

factor encoding the lone blossom constraint will fail on both matching problems (a) and

(b) in Figure 2.5. This is true, despite the fact that the blossom constraint makes match-

blossom-LP tight!

We address this shortcoming in the remainder of this chapter by first proposing a transfor-
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mation to the model (2.24) that restores the convergence and correctness of BP. We then

introduce our cutting plane approach to solving matching problems.

2.4.4 A Graphical Transformation for Exact BP

The loss of convergence and correctness when the match-blossom-LP is tight (and unique)

but S 6= ∅ motivates the work in this section. We begin by first imposing a restriction on the

set S of blossom constraints that can be used to tighten the relaxation. In the remainder of

this chapter, we only consider sets of odd-sized cycles C ⊂ S that are non-intersecting in edges

– i.e., E(C1)∩E(C2) = ∅ for C1, C2 ∈ C. Under this restriction, we propose a new graphical

model that is equivalent to the model in (2.24), such that when BP is run on this new model

it will converge to the max weight matching assignment whenever match-blossom-LP is tight

(and unique).

The new graphical model is defined on an auxiliary graph G′ = (V ′, E ′) with new edge

weights {w′e : e ∈ E ′} defined as follows:

V ′ = V ∪ {iC : C ∈ C}, E′ = E ∪ {(iC , j) : j ∈ V (C), C ∈ C} \ {e : e ∈ ∪C∈CE(C)}

w′e =


1
2

∑
e′∈E(C)(−1)dC(j,e′)we′ if e = (iC , j) for some C ∈ C

we otherwise

.

Here dC(j, e) is the graph distance between vertex j and edge e in cycle C. For example, if

C = (j1, j2, . . . , j5) is a cycle on 5 vertices and e = (j2, j3), then dC(j1, e) = 1, dC(j4, e) = 1

and dC(j5, e) = 2.

Figure 2.8 illustrates the graphical transformation. The simple cycle C = (1, 2, 3, 4, 5) in

graph G on the left is collapsed and replaced by a single vertex iC represented as a square

in graph G′ on the right. Notice that each edge along the cycle, e.g. (1, 2), is replaced by
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Figure 2.8: Illustration of the graphical transformation from G (left) to G′ (right).

an edge into the newly introduced vertex, e.g. (1, iC), while the edges not in the cycle, e.g.

(2, 4), are unaltered. Importantly, while the transform introduces new vertices, meaning that

|V ′| > |V |, the number of edges in G and G′ remain the same |E ′| = |E|. This transformation

also explains our restriction to sets of blossoms that are odd-sized cycles not intersecting in

edge.

In the example in Figure 2.8, the maximum weight matching is M? = {(1, 2), (3, 4)} with

a total weight of 12. However, note that the bipartite relaxation is not tight as setting

x24 = x35 = 0 and x12 = x23 = x34 = x45 = x15 = 1/2 gives a total weight of 12.5. The

addition of a blossom constraint on cycle C = (1, 2, 3, 4, 5) makes the relaxation tight. In

the new graph G′, edge (1, iC) is given weight w′1C = 1/2(w12−w23 +w34−w45 +w15) = 9/2.

The remaining cycle edge weights are w′2C = 3/2, w′3C = 5/2, w′4C = 7/2 and w′5C = 1/2,

while the weights of edges (2, 4) and (3, 5) unchanged.

We now define a new graphical model that makes use of this graphical transformation. We

will use y = {ye | e ∈ E ′} to denote edge variables in the new model in order to provide a

distinction from the variables of the original matching model in (2.24).

We begin by noting that the blossom factor, ψC(xC), ensured that the set of edges e ∈ E(C)

constituted a matching on cycle C. Our graphical transformation eliminated each edge in

E(C) and replaced them with a new set of edges {(i, iC) | i ∈ V (C)}. As a result, we must

define a new blossom factor over the new edge variables, yC . Consider the following linear
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mapping between the original and new edge variables:

ye =


∑

e†∈E(C)∩δ(i) xe† if e = (i, iC)

xe otherwise

, xe =


1
2

∑
j∈V (C)(−1)dC(j,e)yiC ,j if e ∈

⋃
C∈C E(C)

ye otherwise

.

This mapping can be used to uniquely decode matchings from edges in G to edges in G′

and vice-versa. For example, consider the set of edges in the optimal matching of graph

G, x12 = x34 = 1. Using the mapping, we see that this corresponds to setting edges

y1,iC = y2,iC = y3,iC = y4,iC = 1 in G′. Now, consider the assignment y3,iC = y4,iC = y5,iC = 1

in G′. Using the mapping, we see that this corresponds to setting x34 = x45 = 1 in G, which

is clearly not a valid matching in G. As another example, consider the setting y3,iC = 1 in

graph G′. Using the mapping, we see that this corresponds to setting x23 = x34 = 1/2 in G,

which is also not a valid (integral) matching in G. One can easily verify that the following

factor definition is non-zero only for settings of yC that map to valid, integral matchings on

cycle C in graph G:

ψC(yC) =



0 if
∑

e∈δ(iC)

ye > |C| − 1

0 if
∑

j∈V (C)

(−1)dC(j,e)yiC ,j /∈ {0, 2} for some e ∈ E(C)

1 otherwise

. (2.26)

With this mapping established, we now introduce the new graphical model:

p(y) ∝
∏
e∈E′

ew
′
eye
∏
i∈V

ψi(yi)
∏
C∈C

ψC(yC), (2.27)

where ψC(yC is as defined in (2.26) and ψi(yi) =

{
1 if

∑
e∈δ(i)

ye ≤ 1; 0 otherwise. Under

the linear mapping between x and y one can easily verify that
∑
e∈E

wexe =
∑
e∈E′

w′eye. And,

since the factor ψC(yC) imposes the same blossom constraint as the factor ψC(xC), we can

67



conclude that the new graphical model (2.27) is equivalent to the original model (2.24) –

every feasible assignment of y corresponds to a feasible assignment of x of the same total

weight and vice-versa.

It is not hard to check that the number of operations required to update messages at each

round of BP under the new GM is O(|V ||E|), as messages updates involving factor ψC

require solving a matching problem on a simple cycle – which can be done efficiently via

dynamic programming in time O(|C|) – and the summation of the numbers of edges of

non-intersecting cycles is at most |E|. We are now ready to state the main result of this

section.

Theorem 2.4. If the solution of match-blossom-LP is integral and unique, then the BP MAP

estimate yBP(t) under the model (2.27) converges to the MAP assignment y∗. Furthermore,

the max weight matching assignment x∗ is recoverable from y∗ as:

x∗e =


1/2

∑
j∈V (C)(−1)dC(j,e)y∗iC ,j if e ∈

⋃
C∈C E(C)

y∗e otherwise

. (2.28)

The proof of Theorem 2.4 is quite involved and is provided in Appendix B. We also estab-

lish the convergence time of the BP algorithm under the model in (2.27). We devote the

remainder of this section to a sketch of the main ideas involved in the proof.

To prove the theorem, we need to show that when t is large enough the BP MAP estimate

yBP(t) can be used to recover the edges e ∈M? of the max weight matching. Since the new

matching model is equivalent to the original matching model, the MAP assignment x? in

(2.24) is recoverable from the MAP assignment y? in (2.27). We therefore focus on showing

that BP recovers the MAP assignment y? when match-blossom-LP has a unique integral

optima.
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Figure 2.9: Computation tree for matching model in Figure 2.8.

The main tool utilized by the proof is the computation tree [88, 89]. Computation trees

“unwrap” a factor graph in order to show the messages passed by BP – the basic idea being

that the messages sent at time t depend, on the messages received at time t−1, which in turn

depend on the messages received at time t− 2, etc... Figure 2.9 illustrates the computation

tree rooted at edge variable y24 out to a depth of t = 6. As in a regular factor graph, variables

are depicted by circles and vertex and blossom factors by squares in the computation tree.

Our proof derives a contradiction via the following fact relating BP and computation trees:

the BP MAP estimate at time t is the MAP assignment of the computation tree of depth

t[88]. We start by constructing a computation tree Te(t) of depth t rooted at some variable

ye, where the root variable e is chosen so that it is in the true MAP assignment – i.e.

y?e = 1. To derive a contradiction, we assume that bte(0) ≥ bte(1), which implies that the

MAP assignment yTMAP on the computation tree has the root assignment yTMAP
e = 0. We

use the assignment yTMAP to construct a new assignment yNEW by “flipping” some of the
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variables in yTMAP . We then compare the total weight of the new matching, w′(yNEW ),

to the total weight of the MAP matching on the computation tree, w′(yTMAP ), and show

that w′(yNEW ) > w′(yTMAP ). This contradicts the optimality of yTMAP and proves that

bte(0) < bte(1) and yBPe (t) = 1.

Figure 2.9 illustrates the core contradiction. We start with a weighted graph G′ and construct

a computation tree to depth t = 6 rooted at some variable in the graph. We root the tree

at edge (2, 4). Edge (2, 4) does not appear in the optimal matching M?, meaning that

y?24 = 0. To derive a contradiction, we assume that bt24(1) ≥ bt24(0) so that the root variable

yTMAP
24 = 1 appears in a MAP assignment on the computation tree. The left-hand tree

illustrates yTMAP , the max weight assignment on the computation tree assuming that the

root variable appears in the MAP assignment (variables in the MAP assignment are shown

in green; variables not in the MAP are shown in red). The right-hand tree illustrates a

new assignment yNEW on the computation tree constructed from yTMAP by flipping some

of the variables in yTMAP . For example, the root variable is flipped from 1 to 0 indicated

by the change in color from green to red. The total weight of the left-hand assignment is

w′(yTMAP ) = 24, while the total weight of the right-hand assignment is w′(yNEW ) = 26.

We thus have a contradiction as yTMAP cannot be the actual MAP assignment on the

computation tree. Thus, our assumption that bt24(1) ≥ bt24(0) is incorrect.

Of course, showing that w′(yNEW ) > w′(yTMAP ) in general is not trivial. The two main

ingredients for proving this are: 1) establishing that the set of variables that are “flipped”

in going from yTMAP to yNEW induces a path on the computation tree Te(t); and 2) using

a perturbation argument to show that the total weight of the edges “flipped” from 0 → 1

along the path is greater than the total weight of the edges “flipped” from 1→ 0. Our proof

strategy is thus similar to the one adopted in [72], but is complicated considerably by the

incorporation of blossom factors.
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2.4.5 A Cutting Plane BP Algorithm

The previous section established that max-product BP can be used to solve the max-weight

matching problem when the matching LP relaxation, match-blossom-LP, is tight and only

uses blossoms defined over non-intersecting odd-sized cycles. However, finding a collection of

non-intersecting odd-sized cycles that tighten the match-blossom-LP remains a challenging

task.

It was recently shown that the cutting plane method is polynomial time for the matching

problem [14]. One would thus hope that the LP solver could be replaced by max-product BP

in order to produce a distributed, polynomial time cutting plane algorithm for finding max

weight matchings. Unfortunately, BP cannot be utilized in the procedure of [14] for a couple

of reasons. First, their cut generation procedure requires solving an auxiliary LP to identify

blossoms that should be added and removed. Second, and perhaps more important, the set

of blossoms used to tighten match-blossom-LP are not guaranteed to be non-intersecting

cycles. Due to these difficulties, we provide a heuristic cutting plane algorithm, which we

call cutting-plane using BP (or CP-BP), that employs a heuristic to identify sets of odd-sized

cycles to tighten the LP relaxation.

The cutting plane BP algorithm is presented in Figure 2.1. We note that the cut recognition

heuristic in Step 10 was also employed by [37, 82]. We also note that BP can be replaced by

an off-the-shelf LP solver to obtain the LP optima x in Step 4. This results in a “traditional”

cutting-plane LP method for the max-weight matching problem, which refer to as CP-LP.

The reason why CP-BP terminates when x /∈ {0, 1/2, 1}|E| is because the solution x of match-

blossom-LP with non-intersecting cycles is half-integral. In other words, x /∈ {0, 1/2, 1}|E|

occurs when BP fails to find the solution to the current match-blossom-LP problem. A proof

of 1
2
-integrality, which we did not find in the literature, can be found in the supplementary

material of [78].
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Algorithm 2.1 Cutting Plane BP (CP-BP) Algorithm

1: Set C = ∅
2: Run max-product BP on the graphical model in (2.27) for T iterations.

3: For each edge e ∈ E ′, set ye =


1 if bTe (1) > bTe (0) and bT−1

e (1) > bT−1
e (0)

0 if bTe (1) < bTe (0) and bT−1
e (1) < bT−1

e (0)

1/2 otherwise

.

4: Compute x = (xe) from y = (ye) as per (2.28).
5: if x /∈ {0, 1/2, 1}|E| then
6: Terminate.
7: else if there is no edge e ∈ E with xe = 1/2 then
8: Return x and Terminate.
9: else

10: Find a non-intersecting, odd-sized cycle of half-integral edges C = {e : xe = 1/2}
11: if no such cycle exists (i.e. C = ∅) then
12: Terminate.
13: else
14: Add C to C and go to step 2
15: end if
16: end if

2.4.6 Experiments

The CP-BP procedure described in Algorithm 2.1 is a heuristic and it is not guaranteed to

find the max weight matching of a general weighted matching problem for several reasons.

First, it may be that match-blossom-LP requires overlapping and/or non-cyclic blossom

constraints to be made tight for a given problem, in which case, CP-BP will terminate in

Step 12. Second, it may be that our heuristic of finding cuts by searching for non-intersecting

cycles on half-integral edges cannot be used to generate a violated cut, in which case, CP-

BP will also terminate in Step 12. Last, BP is not guaranteed to find the LP optima when

match-blossom-LP is not tight, in which case, CP-BP will terminate in Step 6.

We conducted a variety of experiments to gauge the effectiveness of using the CP-BP heuristic

to solve weighted matching problems. We ran experiments on two types of synthetically

generated problems: 1) Sparse Graph instances; and 2) Triangulation instances. The sparse

graph instances were generated by forming a complete graph on |V | = {50, 100, 200} nodes

72



and independently eliminating edges with probability p = {0.5, 0.9}. Integral weights, drawn

uniformly in [1, 220], were assigned to the edges that remained. The Triangulation instances

were generated by randomly placing |V | = {100, 200} points in the 220 × 220 square and

computing a Delaunay triangulation on this set of points. Edge weights were set to the

rounded Euclidean distance between two points. A set of 100 instances were generated for

each setting of |V | and CP-BP was run in all cases for T = 100 iterations.

We compared our CP-BP heuristic to a CP-LP heuristic that used an off-the-shelf, simplex

based LP-solver rather than BP. This comparison allowed us to distinguish between those

failures caused by being unable to locate a tightening cycle constraint and those failures due

to the non-exactness of BP on non-tight relaxations. The results from our experiments are

presented in Tables 2.1 and 2.2. Columns # CP-BP and # CP-LP indicate the percentage

of instances in which the cutting plane methods found the maximum weight matching. The

column # Tight LPs indicates the percentage of instance for which the bipartite relaxation

was tight (i.e. match-blossom-LP with C = ∅). The column # Correct indicates the number

of correct matchings found by the solvers, while the column # Converged indicates the

number of instances in which CP-BP converged upon termination, but we were unable

to find a non-intersecting, odd-sized cycle using our heuristic. Finally, the Time column

indicates the mean [min,max] run-times of the different solvers.

50 % sparse graphs 90 % sparse graphs

|V | / |E| # CP-BP # Tight LPs # CP-LP |V | / |E| # CP-BP # Tight LPs # CP-LP

50 / 490 94 % 65 % 98 % 50 / 121 90 % 59 % 91 %

100 / 1963 92 % 48 % 95 % 100 / 476 63 % 50 % 63 %

200 / 7864 76 % 64 % 84 % 200 / 1902 87 % 53 % 93 %

Table 2.1: Evaluation of CP-BP and CP-LP on Sparse graph instances.

These results seem to indicate a few things. First, CP-BP is almost as good as CP-LP for

solving the max weight matching problem. In other words, most of the failures are a result

of being unable to find a tightening cut constraint C ∈ C, rather than due to inexactness of

BP for non-tight relaxations. Second, our graphical transformation allows us to use max-
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Triangulation, |V | = 100, |E| = 285 Triangulation, |V | = 200, |E| = 583

Algorithm # Correct / # Converged Time (sec) # Correct / # Converged Time (sec)

CP-BP 33 / 36 0.2 [0.0,0.4] 11 / 12 0.9 [0.2,2.5]

CP-LP 34 / 100 0.1 [0.0,0.3] 15 / 100 0.8 [0.3,1.6]

Table 2.2: Evaluation of CP-BP and CP-LP on Triangulation instances.

product BP to solve significantly more max weight matching problems than were provably

solvable by BP prior to our result. This is clear by noting the increase from the # Tight

LPs column to the # CP-BP column in Table 2.1.

2.5 Discussion

We began this chapter by introducing the MAP-ILP problem, which is the MAP problem

for a specific class of graphical model that encode an ILP. We then established conditions

under which the LP relaxation to the ILP encoded by the graphical model is equivalent to

the pairwise LP relaxation to the MAP problem, MAP-LP. This equivalence suggests that

the MAP-LP relaxation can be tightened not only by adding constraints that tighten the

outer bound on the marginal polytope, but also by adding constrains that directly tighten

the LP relaxation to the original ILP. This finding has important implications for the design

of cutting plane algorithms, as one may now be able to leverage existing cut generation

heuristics and separation algorithms when stipulating a problem-specific MAP solver.

We then introduced the weighted matching problem and discussed a recent result due to

Sanghavi et al. showing that max-product BP is exact when the bipartite relaxation to the

matching problem is tight and unique[72]. Unfortunately, as shown in our experiments, the

bipartite relaxation of the matching problem is often not tight. The bipartite relaxation can

be made tight by introducing blossom constraints, but the addition of such constraints ruins

the exactness results of Sanghavi et al. We thus introduced a “fix” to BP that overcomes

this limitation by transforming the original match-MAP problem to a MAP problem on an
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auxiliary graphical model for which BP is provably convergent. We incorporated our “fixed”

BP algorithm into a cutting plane BP approach that performed well when used to find the

maximum weight matching on several synthetic problem instances.

Several questions and directions for future research were exposed by the work in this chap-

ter. One important open problem is: what are the properties common to convergent and

correct max-product BP algorithms? We now are aware of several combinatorial optimiza-

tion problems for which BP is exact, including matchings [5, 73, 44], perfect matchings [4],

independent sets [74] and network flows[28]. Necessary conditions for exactness of BP in

these problems seem to be uniqueness and tightness of the corresponding LP relaxation.

However, these conditions are not sufficient and it appears that structural properties of the

factor graph and of the factors themselves play an important role. It is thus worth explor-

ing the underlying mechansim that our graphical transformation restored and, ultimately,

identifying the core principles governing the exactness of BP.
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Chapter 3

A Bottom-Up Approach to

Constructing GBP Approximations

In this chapter, we turn our attention to the task of computing marginal probabilities. Sum-

Product Belief Propagation (BP) is an algorithm originally invented by Pearl for performing

inference in Bayesian networks[70]. BP is a simple, distributed algorithm that passes mes-

sages between the nodes of a graphical model. When the model is tree-structured, the BP

algorithm requires just two iterations to compute the exact marginals of the input distribu-

tion, p(y). When the network is not tree-structured, then BP is no longer exact. We can

nonetheless apply the BP message-passing updates to the loopy model. The result is an

iterative, approximate inference algorithm known as Loopy BP that has proven to be quite

effective in practice (see e.g. Section 1.4.1).

Generalized Belief Propagation (GBP) is a broad class of approximate inference algorithms

that extends BP by grouping the network’s nodes into clusters and (iteratively) passing

messages between the clusters of variables. The main motivation behind clustering the

nodes of a model is that if we can convert a loopy graphical model into an equivalent tree-
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structured graphical model, then we can directly utilize the BP updates to compute exact

marginals. In fact, this is precisely the aim of the Bucket Elimination[19] and Junction

Tree[57] algorithms (see e.g. Section 1.4.1). They seek a re-parameterization of the model

into factors on some cluster tree that are the marginals of the distribution.

Unfortunately, we cannot always find an equivalent tree-structured graphical model for which

the marginal computations are tractable. GBP relaxes the requirement of finding an equiv-

alent tree-structured model and instead finds an equivalent model on a loopy, cluster graph.

By grouping the variables into clusters we can find an equivalent model that is more tree-like

than the model on which Loopy BP operates, but maintain tractability by limiting the size

of the largest cluster considered. In fact, by raising or lowering the size of the largest cluster

considered one can imagine a spectrum of message-passing algorithms: Loopy BP, which

does no clustering, is at one end of the spectrum; Junction Tree (or Bucket Elimination),

which finds an equivalent tree-structured model, is at the other end of the spectrum; and

GBP approximations lie between these two extremes.

By passing messages between clusters, rather than the nodes of the model, GBP offers the

promise to produce estimates that are far more accurate than Loopy BP without adding that

much computation. However, GBP is quite difficult to apply in practice. While Loopy BP

is a procedure that is fully specified given a graphical model, GBP requires first identifying

a collection of clusters and then specifying the messages that will be passed between the

clusters. Moreover, GBP is very sensitive to the choice of clusters used: a bad choice can

lead to poor convergence and marginals estimates that are worse than Loopy BP, while a

good choice can lead to rapid convergence and accurate estimates.

Figure 3.1 illustrates the sensitivity of GBP to cluster choice for a simple pairwise model

on 6 variables. Figure 3.1a (3.1b) plots the error in the marginal estimates (log-partition

function), where inference in the model becomes harder as we move from left to right1.

1The reported errors are actually an average over 50 randomly generated models with unary interactions
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The GBP approximation shown in blue utilizes all 20 clusters of size 3 in the model of 6

variables, while the GBP approximation in green utilizes a specific subset of 10 of these

clusters. Clearly, utilizing all of the clusters is a bad choice and leads to estimates that are

actually worse than Loopy BP’s estimates shown in red. In contrast, the green line shows

how a good choice of clusters can lead to far more accurate estimates than Loopy BP.
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Figure 3.1: Error of GBP approximations defined using both good and bad clusters.

Our understanding of how to chose good clusters has been aided by the variational perspec-

tive of inference discussed in Section 1.4.2. The framework of variational inference converts

computation of the log-partition function and marginals from a summation task to an op-

timization problem. Although this optimization problem is intractable, it suggests a way

to create approximations by relaxing the problem’s constraints and approximating the en-

tropy term appearing in the problem’s objective function. In fact, the collection of clusters

defining a GBP approximation specify exactly how the problem is relaxed and the entropy

is approximated.

This perspective has led to the development of several criteria guiding the specification of

GBP algorithms. A common theme among the criteria is that the collection of clusters

chosen yield accurate entropies for specific choices of input distribution (e.g. when the input

drawn from N (0, 0.12) and pairwise interactions drawn from N (0, σ2
ij)
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distribution p(y) is uniform). Our developments in this chapter build upon this existing

criteria.

The main contributions of this chapter are:

1. We introduce a new criteria – tree-robustness – for choosing the collections of clus-

ters defining a GBP approximation in a pairwise graphical model. Tree-robustness

requires the entropy to be exact on every possible tree embedded in the model, where

an embedded tree is obtained by ignoring factors on off-tree edges. We provide a the-

oretical justification of the tree-robustness criteria and demonstrate its effectiveness

empirically.

2. We propose a method for automatically choosing collection of clusters satisfy tree-

robustness and existing, “common-sense” criteria for Loop-Structured Region Graphs

(SRGs) – a specific family of GBP approximations. Our construction procedure relates

choosing clusters in a Loop-SRG to the task of finding Fundamental Cycle Bases in

the underlying graph.

3.1 Two Perspectives of GBP

In Chapter 1, we introduced GBP from two different perspectives. The first was as a natural

extension to Loopy BP, where messages were passed between the nodes of a cluster graph

rather than the nodes of a factor graph. In this section, we will see that such message

passing algorithms can be interpreted as finding alternate factorizations of an input distri-

bution. The second perspective arose by making certain approximations to the variational

optimization problem. In this section, we briefly review these two different motivations for

GBP approximations, before unifying them via the region graph formalism in the following

section.
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3.1.1 GBP as a Re-parameterization Procedure

A graphical model defines a distribution as a product of factors, p(y) = 1
Z

∏
α∈F ψα(yα). The

factorization of p(y) is not unique, however, as the combination of many different factors

can yield the same probability distribution. For example, consider the re-parameterization

ψ̃α(yα) = c · ψα(yα) for some positive constant c. It follows that p̃(y) = 1
Z̃

∏
α∈F ψ̃α(yα) =

p(y), where Z̃ = c|F | · Z.

An important observation made in [85] is that when the BP algorithm is run on a tree-

structured model, it produces an alternate factorization of the distribution p(y) as a product

of factors that correspond to the marginals of the model,

p(y) =
∏
i∈V

p(yi)
∏
α∈F

p(yα)∏
j∈δ(α) p(yj)

, (3.1)

where p(yα) is the joint marginal over variables yα and p(yi) is the marginal of variable yi.

Moreover, this factorization into a product of marginals is unique in a tree-structured model.

When the model contains cycles, it is generally not possible to re-parameterize the distribu-

tion p(y) into a quotient of a product of factor marginals in the numerator and a product

of single variable marginals in the denominator as in (3.1). We can apply the BP updates

nonetheless, resulting in the Loopy BP algorithm. Upon convergence, the Loopy BP algo-

rithm will have found a re-parameterization of p(y) of the form

p(y) =
1

Z ′

∏
i∈V

b(yi)
∏
α∈F

b(yα)∏
j∈δ(α) b(yj)

, (3.2)

where b(yα) is an approximate joint marginal over variables yα and b(yi) is an approximate

marginal of variable yi. Note that the normalization constant in this new parameterization,

Z ′, will generally not be equal to the normalization constant of our original factorization, Z 6=

Z ′. In addition, Z ′ 6= 1 unless the collection of b(yα)’s and b(yi)’s define a joint distribution.
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Further, computation of Z ′ after re-parameterization is no easier than computing Z in our

original model, which is why we simply take b(yα) ≈ p(yα) and b(yi) ≈ p(yi) as approximate

marginals and avoid computation of Z ′.

When the model is cyclic, it is always possible to group the model’s nodes into a cluster

tree (see Section 1.4.1 for a definition). Bucket Elimination[19] and Junction Tree [57] are

algorithms that pass BP messages on a cluster tree CT = (V,E) to compute marginals on

pairs of neighboring clusters. By doing so, they produce a factorization of p(y) of the form

p(y) =

∏
i∈V p(yi)∏

(i,j)∈E p(yij)
, (3.3)

where p(yi) and p(yij) are cluster marginals and separator marginals, respectively, defined

over subsets of variables, yi ⊆ y, where yij = yi ∩ yj for each edge (i, j) ∈ E.

In many problems of interest, it is not possible to efficiently compute the cluster marginals

that define p(y) as an equivalent tree-structured model. We can, however, take the clusters

in our cluster-tree that are too large to perform computations on and break them up into

computationally tractable sub-clusters. If we add separators between each of these sub-

clusters, the result is a collection of clusters and separators forming a loopy, cluster graph,

CG = (V,E). If we apply the BP updates on this cluster graph, the result is a generalized

form of the Loopy BP algorithm, or GBP. Upon convergence, the GBP algorithm will have

found an alternate parameterization of p(y) of the form

p(y) =
1

Z†

∏
i∈V b(yi)∏

(i,j)∈E b(yij)
, (3.4)

where b(yi) and b(yij) are approximate cluster and separator marginals. As in (3.2), the

normalization term Z† 6= Z and is generally not equal to 1 either. This is precisely the type

of re-parameterizations sought by GBP algorithms, such as the Junction-Graph algorithm[2]

and Iterative Join Graph Propagation (IJGP)[20], that pass messages on a cluster graph.
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3.1.2 GBP as a Variational Approximation

Recall from Section 1.4.2 that variational inference converts the problem of computing

the log-partition function to an optimization problem [87]. In particular, given a model

p(y) = exp (
∑

α θα(yα)− logZ(θ)), with θα(yα) = logψα(yα), the log-partition function is

the solution to the optimization problem

logZ(θ) = max
µ∈M

[µ · θ +H(µ)] , (3.5)

whereM = {µ′ ∈ Rd | ∃θ s.t. µ′ = µ(θ)} is the marginal polytope and H(µ) is the entropy

computed using the distribution p(y;θ(µ)) that results from finding parameters θ that yield

the mean vector µ. Unfortunately, the marginal polytopeM is difficult to characterize and

the entropy is intractable in general.

GBP approximates both M and H(µ) using a collection of regions R, where a region (or

cluster) γ ∈ R is simply a subset of variables yγ ⊆ y 2. GBP approximates the true entropy

through a combination of marginal entropies

H(µ) ≈ H̃GBP(µ) = −
∑
γ∈R

cγ
∑
yγ

µ(yγ;θ) log µ(yγ;θ), (3.6)

where cγ ∈ R is the over-counting number for region γ and µ(yγ;θ) = p(yγ; θ(µ)) is the

marginal probability of yγ.

GBP approximates the marginal polytope, M, via a collection of local consistency con-

straints,

MGBP =

µ ≥ 0

∣∣∣∣∣∣∣∣
Normalization :

∑
yγ
µγ(yγ) = 1, ∀γ ∈ R

Consistency :
∑
yγ\yβ

µγ(yγ) = µβ(yβ), ∀γ, β ∈ R, β ⊂ γ,yβ

 , (3.7)

2Once again, we assume that each factor α ∈ F can be assigned to some region γ ∈ R.
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where β ⊂ γ means that yβ ⊂ yγ. Since, MGBP ⊇ M, there exist vectors µ ∈ MGBP

that could not have come from any joint distribution p(y;θ(µ)), which is why the vector of

marginals µ are referred to as beliefs or approximate marginals.

Now, let us make the connection between the re-parameterization perspective of GBP and

the variational perspective more concrete. Consider the GBP approximation corresponding

to the cluster graph in (3.4) and make the following correspondence:

θ ↔ {logψα(yα) | α ∈ F,yα} (3.8)

µ↔ {b(yi) | i ∈ V,yi} ∪ {b(yij) | (i, j) ∈ E,yij} (3.9)

H̃GBP(µ)↔ −
∑
i∈V

∑
yi

b(yi) log b(yi) +
∑

(i,j)∈E

∑
yij

b(yij) log b(yij) (3.10)

MGBP ↔


∑
yi
b(yi) = 1 ∀i ∈ V∑

yi\yij b(yi) = b(yij) ∀(i, j) ∈ E,yij

b(yi) ≥ 0 ∀i ∈ V,yi

 . (3.11)

As a result, the optimization problem max
µ∈MGBP

[
µ · θ + H̃GBP(µ)

]
is equivalent to

max
b

∑
α∈F

∑
yα

b(yα) logψα(yα)−
∑
i∈V

∑
yi

b(yi) log b(yi) +
∑

(i,j)∈E

∑
yij

b(yij) log b(yij), (3.12)

subject to the constraints in (3.11).

3.2 Region Graphs and Structured Region Graphs

In Section 1.4.2, we introduced a data structure known as a region graph that served two main

purposes. First, it helped visualize the collection of regions R defining a GBP approxima-

tion, which provided a clear distinction between the CVM constructions[52], Junction-Graph

constructions[2] and Join Graph constructions[60]. Second, it helped to organize message-
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passing computations, much in the way that a factor graph helps to organize the BP com-

putations. In this section, we will see that the region graph structure can be expanded to

include a specification of how each region is factored. This provides an additional level of

flexibility when constructing a GBP approximation, which will ultimately be exploited in

Section 3.4.

We begin this section by reviewing the definition of a region graph, before discussing its

extension to structured region graphs. Given a collection of regions R, a Region Graph is

simply a directed acyclic graph whose nodes correspond to regions in R and an edge is drawn

from region γ to region β if region γ covers region β. By cover, we mean that yγ ⊃ yβ and

there exists no τ ∈ R such that yγ ⊃ yτ ⊃ yβ. We associate an over-counting number, cγ

with each region. We also assume that each factor α ∈ F is assigned to an outer region

γ ∈ O, where by assigned we require that yα ⊆ yγ. Let ψ(γ) denote the collection of factors

assigned to outer region γ.

The region graph’s structure makes explicit the set of local consistency constraints defining

the approximation, MGBP, to the marginal polytope. In particular, for every region γ we

have that

∑
yγ\yβ

bγ(yγ) = bβ(yβ), ∀β ∈ ch(γ), yβ, (3.13)

where ch(γ) is the set of children of region γ in the region graph. In other words, the marginal

of each parent region’s belief must agree with the belief of its children.

The region graph’s structure also helps organize the computations needed to optimize the

variational optimization problem. As discussed in Section 1.4.2, if the marginal of parent

region γ is not consistent with the belief of some child β ∈ ch(γ), we can make the child
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belief consistent by defining a correction message

mγ→β(yβ) =

∑
yγ\yβ bγ(yγ)

bβ(yβ)
(3.14)

and updating the region beliefs as

bτ (yτ ) ∝ bτ (yτ ) ·mγ→β(yβ)α, (3.15)

for all regions τ ∈ ∆(β) \ ∆(γ), where ∆(i) = {j ∈ R | yj ⊇ yi} is the set of ancestors of

region i in the region graph and region i itself. In these updates, α is a damping factor that

controls how greedy of an update is made. If α = 1 we make a full update and the marginal

of parent region γ will be consistent with the belief of child region β, while if α < 1 we make

partial update.

A Structured Region Graph (SRG) is a region graph in which each region γ is also associated

with a set of cliques C(γ). Every variable in xγ must appear in some clique or factor. The set

of factors, ψ(γ), and cliques, C(γ), associated with a region define a structure G(γ), which

is an undirected graph with vertices for each variable in xγ and edges connecting any pair

of variables appearing in the same factor or clique. The structure of a region, G(γ), defines

how a region factors. In particular, the belief of each region γ is represented by a local

distribution of the form

bγ(yγ) ∝
∏

α∈ψ(γ)

ψα(yα)
∏

C∈C(γ)

fC(yC), (3.16)

where ψα(yα) is an original factor and fC(yC) is a factor associated with clique C.

The hierarchy conditions of an SRG are different than a regular region graph. In a region

graph, an edge is drawn from some region γ to some region β if region γ covers region β,

meaning that yγ ⊃ yβ and there exists no τ ∈ R such that yγ ⊃ yτ ⊃ yβ. In an SRG, an
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edge is drawn from region γ to region β if the structure of region β is a sub-graph of the

structure of region γ, G(β) ⊂ G(γ). In other words, every clique in some child region β

appears in its parent regions γ ∈ pa(β).

Figure 3.2 illustrates both a region graph and an SRG for the same pairwise model on a

3 × 3 grid. Notice that the outer regions in the SRG are loop structured, where the set of

original factors, ψα, assigned to each region are denoted with a square and the set of cliques,

ψC associated with each region are are drawn without the square. For example, the graph

structure, G(γ), for region yγ = {y1, y2, y4, y5} is a single loop which indicates that the belief

over region γ factors as

bγ(y1, y2, y4, y5) ∝ ψ(y1, y2)ψ(y1, y4)ψ(y2, y5)ψ(y4, y5). (3.17)

As a result, we need only 4 ·K2 values to represent the belief of this outer region, as opposed

to the K4 values that would be required if it factored as bγ(y1, y2, y4, y5) ∝ ψ(y1, y2, y4, y5).

The structure of a region can also be exploited when computing the message updates in

(3.14). In particular, we can exploit the loop structure of outer region yγ = {y1, y2, y4, y5}

to efficiently compute the message mγ→β to the child edge region yβ = {y2, y5} in O(K3)

time. While exploiting a region’s structure may not be significant in this example, one can

imagine a collection of loop-structured outer regions where the computational savings would

be quite substantial.

In addition to making the factorization of a region explicit, the graph structure of a region

also allows us to define a richer set of local consistency constraints than the parent-child

constraints considered in 3.13. In particular, the beliefs at a parent region γ in an SRG must

satisfy

∑
yγ\yC

b(yγ) =
∑
yβ\yC

, ∀β ∈ ch(γ), C ∈ C(β),yC . (3.18)
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Figure 3.2: Illustration of a Region Graph and Structured Region Graph on a 3× 3 grid.

In other words, the marginals of each parent region’s belief must agree with the belief of each

of its children’s cliques. This is why we required the graph structure of a parent region to

be a super-graph of its child regions in the definition of an SRG. As an illustration, consider

the collection of structured regions in Figure 3.3. Notice that the child edge inner region

yβ = {y2, y5} factors into independent marginals bβ(yβ) = bβ(y2)bβ(y5). As a result, we

require the belief of the loop-structured region yγ1 = {y1, y2, y4, y5} to satisfy the consistency

constraints:
∑

y1,y4,y5
bγ1(yγ1) = bβ(y2) and

∑
y1,y2,y4

bγ1(yγ1) = bβ(y5). In addition, the

region yγ2 = {y2, y3, y5, y6} factors as bγ2(yγ2) = bγ2(y2, y3)bγ2(y5, y6) and must satisfy the

consistency constraints:
∑

y3
bγ2(y2, y3) = bβ(y2) and

∑
y6
bγ2(y5, y6) = bβ(y5).

In the remainder of this chapter, we will restrict our attention to Loop-SRGs, which are a

particular type of SRG, defined as follows.

Definition 3.1. A Loop-SRG is a 3-level SRG consisting of loop outer regions and edge and

node inner regions, where a loop outer region has a structure G(γ) that forms an (elementary)

cycle. Loop outer regions are connected to the set of edge inner regions comprising the loop

and edge inner regions are connected to the two node regions comprising the edge.

The SRG in Figure 3.2 is an example of a Loop-SRG.
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Figure 3.3: Illustration of consistency between structured regions.

3.3 Region Selection Criteria

There is a considerable amount of flexibility in choosing the collection of regions R defining

a GBP approximation. And, as illustrated in Figure 3.1, the choice of regions used has a

profound effect on the quality of the estimates produced by GBP. In this section we review

some criteria for choosing collections of regions found in the literature, before introducing

our new criteria, tree-robustness.

The GBP approximation to the exact variational problem introduces two approximations.

First, we relax the constraint that our beliefs correspond to marginals of some joint dis-

tribution, i.e. µ = {bγyγ)} ∈ MGBP ⊇ M. Second, we approximate the true entropy

H̃GBP(µ) ≈ H(µ). The criteria that follow try to ensure that both of these approxima-

tions are accurate. In particular, the connectedness criteria considers the quality of the

marginal polytope approximation, while the balance, MaxEnt-Normality, Over-Counting

Number Unity and Tree-Robustness criteria consider the quality of the entropy approxi-

mation.

We begin with a list of criteria compiled from [99, 91, 69, 92].
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1. Connectedness - Let RG = (V,E) be a region graph, where each vertex γ ∈ V corre-

sponds to a region γ ∈ R. Let R(yi) = {γ ∈ R | yi ∈ yγ} be the collection of regions

containing variable yi. A region graph is 1-connected if the sub-graph consisting of

regions R(yi) is connected for all yi ∈ y. Since an edge (γ, β) ∈ E from region γ to

region β in a region graph ensures parent-child consistency in (3.13), 1-connectedness

ensures that every region will have consistent single variable marginals. This would of

course be true if the collection of beliefs {bγ(yγ)} were the marginals of some actual

distribution, i.e. bγ(yγ) = p(yγ).

We can strengthen the notion of 1-connectedness by considering larger sets of variables.

In particular, let yS ⊂ y be some subset of variables and let R(yS) = {γ ∈ R | yS ⊆

yγ} be the collection of regions containing variables yS. Clearly we would like R(yS)

to be connected to ensure that the collection of beliefs {bγ(yγ)} will have consistent

marginals on yS.

Finally, we say that a region graph, is totally-connected if it is connected for all sets

of variables that are subsets of some outer region, i.e. for any yS ⊆ yγ where γ ∈ O

[69]. Intuitively, total-connectedness ensures that the collection of beliefs {bγ(yγ)} will

be consistent on any subset of their variables. Of course, total-connectedness will not

guarantee that µ = {bγ(yγ)} ∈ M, but will lead to finding a collection of beliefs that

are more marginal-like. We also note that the CVM method[52] produces a collection

of clusters R that are totally connected[69].

2. Balance - Once again, let R(yi) = {γ ∈ R | yi ∈ yγ} be the collection of regions

containing variable yi. A region graph is 1-balanced if:

∑
γ∈R(yi)

cγ = 1 ∀yi ∈ y. (3.19)

A motivation for the 1-balance criteria comes from [99]. Let the true joint distribution

p(y) take each state y ∈ {0, ..., K − 1}m with equal probability and assume that the
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region beliefs {bγ(yγ)} are equal to the exact marginal probabilities {p(yγ)}. Then

a collection of regions that are 1-balanced will return the exact entropy, Hexact =

− log 1
Km = m logK, because

H̃GBP = −
∑
γ∈R

cγ
∑
yγ

bγ(yγ) log bγ(yγ) =−
∑
γ∈R

cγ log
∏
i∈γ

1

K
(3.20)

=
∑
γ∈R

∑
i∈γ

cγ logK (3.21)

=
m∑
i=1

∑
γ∈R(yi)

cγ logK (3.22)

We can extend the notion of 1-balance to larger sets of variables. In particular, let

R(yS) = {γ ∈ R | yS ⊆ yγ} be the collection of regions containing some subset of

variables yS ⊂ y. A region graph is balanced with respect to the set yS if
∑

γ∈R(yS)

cγ = 1.

We say that a region graph, is totally-balanced if it is balanced for all sets of variables

that are subsets of some outer region[69]. We note that the CVM method[52] produces

a collection of clusters R that are totally balanced[69].

3. MaxEnt-Normality and non-Singularity - In the variational optimization problem, we

seek a vector of beliefs µ = {bγ(yγ)} that maximize max
µ∈MGBP

[
µ · θ + H̃GBP(µ)

]
. Since

we are maximizing the entropy H̃GBP(µ), under the constraint that µ ∈MGBP, it seems

reasonable to focus our attention on ensuring that our choice of entropy approximation

H̃GBP behaves like the exact entropy near its maximum. We know that a true joint

distribution achieves maximum entropy when all of its states are equi-probable, i.e.

p(y) = 1
Km . As a result, it seems reasonable to require that our approximate entropy

also achieve its maximum when all of the beliefs µ = {bγ(yγ)} are uniform.

More formally, a GBP approximation is considered to be MaxEnt-Normal if the entropy

approximation H̃GBP(µ) is maximized by a collection of uniform beliefs µ = {bγ(yγ)}

[99]. The entropy approximation for the all-triplets GBP approximation used in Figure
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3.1 is not MaxEnt-Normal, as we now shall see. Figure 3.4 illustrates the all-triplets

region graph used in the poor performing GBP approximation in Figure 3.1.

Figure 3.4: Illustration of the all-triplets region graph for a complete pairwise model on 6 nodes.

Assume that the beliefs of all regions {bγ(yγ)} are uniform. There are total of 20 outer

triplet regions, each with over-counting number 1; a total of 15 inner edge regions,

each with over-counting number −3; and a total of 6 inner node regions, each with

over-counting number 6. Assuming that all regions beliefs are uniform, the entropy of

each triplet region is Htriplet = 3 logK, the entropy of each edge region is Hedge = 2 logK

and the entropy of each node region is Hnode = logK. Thus, when all region beliefs are

uniform, the total entropy under our approximation is 20Htriplet−45 ·Hedge +36 ·Hnode =

6 logK.

Now consider a situation where our model p(y) takes just two states with equal proba-

bility, e.g. the all-zeros state and the all-ones state are equi-probable. Assume that our

beliefs {bγ(yγ)} correspond to the exact marginals under this model. In this case, each

triplet region, edge region and node region will have entropy log 2. Plugging, into the

expression for the total approximate entropy, gives 20Htriplet − 45 ·Hedge + 36 ·Hnode =

11 log 2. As a result, for a model with binary variables (K = 2), the all-triplets ap-

proximate entropy does not achieve its maximum when the beliefs are uniform. Thus,
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the all-triplets GBP approximation is not MaxEnt-Normal, which may partly explain

its poor performance in Figure 3.1.

Another way to think about MaxEnt-Normality is as follows. Imagine, that our dis-

tribution p(y) ∝
∏
α∈F

ψα(yα) is uniform. This can occur, for example, if ψα(yα) = 1

for all configurations yα and all factors α ∈ F . However, any uniform setting of the

factors will suffice to make p(y) uniform. When all of the factors are uniform, then

MaxEnt-Normality ensures that the beliefs that optimize max
µ∈MGBP

[
µ · θ + H̃GBP(µ)

]
are uniform as well.

Non-Singularity is a criteria that goes beyond requiring the entropy approximation to

take its maximum when all beliefs are uniform and thinks about the message-passing

procedure used to find a set of optimizing beliefs, in the special case when p(y) is

uniform. In particular, since we optimize the constrained variational objective using

the updates in (3.14) and (3.15), it would be nice if we were assured that this message

passing algorithm would return beliefs µ = {bγ(yγ)} that are uniform, whenever p(y) is

uniform. More formally, a region graph is non-singular if message-passing with uniform

factors has a unique fixed point at which the beliefs µ = {bγ(yγ)} are uniform[92]. In

this way, non-singularity is a stronger condition than MaxEnt-Normality.

4. Over-Counting Number Unity - A region graph satisfies over-counting number unity

if the sum of all the over-counting numbers is equal to one[99]:
∑
γ∈R

cγ = 1. The

motivation for this criteria is similar to that of the balance criteria. In particular,

consider a situation where our model p(y) takes just two states with equal probability.

For convenience, assume that p(0, 0, ..., 0) = p(1, 1, ..., 1) = 1
2

and all other states have

probability zero. In this case, the entropy of p(y) is just log 2. Further, assume that

the beliefs of each region {bγ(yγ)} correspond to the exact marginals of p(y). In that

case, the entropy of every region is also log 2. Over-counting number unity thus ensures

that our entropy approximation is exact in the case that p(y) takes two states with
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equal probability.

3.3.1 Tree-Robustness

Both the balance criteria and the over-counting number unity criteria sought exactness of

the approximate entropy when p(y) took a specific form: p(y) was assumed to be uniform in

the case of balance and p(y) took two states with equal probability in the case of counting

number unity. Tree-robustness takes this idea a little further, by requiring the approximate

entropy to be exact when some of the factors defining the model p(y) are uniform.

Consider a pairwise model p(y) ∝
∏

(i,j)∈E ψij(yi, yj) defined on some graph G = (V,E),

where for notational simplicity, we have absorbed any unary factors into the pairwise terms.

Let T ⊆ E be some subset of the edges of G, such that the subgraph, G′ = (V, T ), induced

by the edges in T is tree-structured. Assume that the factors on the off tree edges, T̄ = E\T ,

are uniform3 and let pT (y) denote the distribution induced on tree T . Further, assume that

the beliefs on each clique of each region in the SRG are equal to the exact marginals of

pT (y). Then an SRG is Tree-Exact with respect to tree T if the entropy approximation

H̃GBP is exact under these two assumptions. We say that an SRG is Tree-Robust if it is

Tree-Exact with respect to all embedded trees in p(y). In other words, a tree-robust SRG

ensures that our entropy approximation is exact on any embedded, tree-structured model in

p(y) when the beliefs on all cliques of the SRG are correct.

Figure 3.5 illustrates the concept of tree-robustness for an MRF on a simple 3× 3 grid. The

middle pane of Figure 3.5 shows some embedded, tree-structured model, pT (y), in which the

grayed-out factors ψ25, ψ36, ψ47 and ψ58 are assumed to be uniform. The exact entropy for

3On each edge (i, j) ∈ T̄ , we require that ψij(yi, yj) = 1 for all K2 joint configurations of (yi, yj).
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Figure 3.5: Illustration of tree-robustness on a 3× 3 grid.

pT (y) is

HT = H23 +H12 +H14 +H45 +H56 +H69 +H89 +H78−H2−H1−H4−H5−H6−H9−H8,

where Hij is the joint entropy on (yi, yj) and Hi is the entropy of variable i.

The right-pane shows a SRG for this model that, as we will see in the next Section, is

tree-robust. Notice that the structure of region {y2, y3, y5, y6} is tree-structured because the

factor ψ36 is uniform. We do, however, include the clique factor f25 because edge region

{y2, y5} is a child of region {y2, y3, y5, y6}. The approximate entropy, H̃GBP, of this SRG is:

H̃GBP = H̃1245 + H̃2356 + H̃4578 + H̃5689 − H̃25 − H̃45 − H̃56 − H̃58 + H̃5. (3.23)

Assuming that the beliefs on the cliques of each region correspond to the exact marginals
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Figure 3.6: Illustration of a tree-robust and non-tree-robust SRG.

pT (y), then the entropy of each outer region can be re-written as

H̃1245 =H1245 = H2|1,4,5 +H1|4,5 +H45 = (H12 −H1) + (H14 −H4) +H45

H̃2356 =H̃3|2 + H̃2|5 + H̃56 = (H23 −H2) + (H25 −H5) +H56

H̃4578 =H̃7|8 + H̃8|5 + H̃45 = (H78 −H8) + (H58 −H5) +H45

H̃5689 =H5689 = H5|6,8,9 +H6|8,9 +H89 = (H56 −H6) + (H69 −H9) +H89.

By substituting these expressions for the entropy of each outer region into (3.23) and simpli-

fying, we can see that H̃GBP is indeed exact on the embedded, tree-structured model pT (y).

In comparison, one can verify that the Bethe entropy is not exact on this embedded model.
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Figure 3.6 illustrates two different Loop-SRGs for a pairwise model on 5 nodes. The left

pane of Figure 3.6 shows an embedded, tree-structured model, pT (y), in which all factors are

uniform, except ψ14, ψ23, ψ35 and ψ45. The entropy of pT (y) is HT = H1|4 +H4|5 +H5|3 +H23.

The top SRG is tree-robust. It has approximate entropy

H̃ top = H̃123 + H̃124 + · · ·+ H̃135 + H̃145 − 2H̃12 − 2H̃13 − 2H̃14 − 2H̃15 + 3H̃1. (3.24)

Assuming that the clique beliefs in each region are exact, we can re-write the entropy of the

outer regions as:

H̃123 =H123 = H2|1,3 +H13 = H2|3 +H13

H̃124 =H̃2|1 + H̃14 = H2|1 +H14

H̃125 =H̃2|1 + H̃15 = H2|1 +H15

H̃134 =H̃3|1 + H̃14 = H3|1 +H14

H̃135 =H135 = H3|1,5 +H15 = H3|5 +H15

H̃145 =H145 = H1|4,5 +H45 = H1|4 +H45.

By plugging these expressions for the outer region entropies into (3.24) and canceling entropy

terms for the edge and node inner regions, we can show that the entropy of the top Loop-SRG

is exact for pT (y), i.e. H̃ top = HT .

Now consider the Loop-SRG on the bottom of Figure 3.6, which differs from the top SRG in

only a single outer region: region (y1, y4, y5) has been replaced with region (y2, y4, y5). The

entropy approximation for the bottom SRG is

H̃bottom = H̃123+H̃124+· · ·+H̃135+H̃245−2H̃12−2H̃13−H̃14−H̃15−H̃24−H̃25+2H̃1+H̃2. (3.25)

Once again, assume that the clique beliefs in each region are exact and consider the entropies
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for the first three outer regions,

H̃123 =H123 = H2|1,3 +H13 = H2|3 +H13

H̃124 =H124 = H1|2,4 +H24 = H1|4 +H24

H̃125 =H125 = H1|2,5 +H25 = H1|5 +H25.

These are the only three outer regions that are parents of edge region (y1, y2) in the region

graph. However, none of the entropies of these regions decompose in a fashion that can

cancel the with the entropy H12 in (3.25). As a result, there is no way that H̃bottom of the

bottom Loop-SRG can be equal to, HT , the exact entropy of pT (y). This, in turn, implies

that the bottom Loop-SRG is not tree-robust.

3.4 A Bottom-Up Approach to Constructing Region

Graphs

The previous section identified a set of criteria that should be satisfied by the collection

of regions R defining a GBP approximation. However, it is not immediately clear how to

satisfy these criteria, given an arbitrary model p(y). The brute force strategy of searching

over all collections of regions R ⊂ 2m and evaluating each possible collection on each of

the criteria is clearly infeasible. In this section, we restrict attention to finding Loop-SRGs

of pairwise models p(y). We introduce an algorithm for choosing collections R that works

in a bottom-up fashion, by grouping edges into loop-structured regions, that satisfy the 5

criteria discussed in the previous section. This is in contrast to top-down approaches, like

the Join-Graph-Structuring procedure[60] mentioned in Section 1.4.1, which start from a

junction-tree and split large regions into smaller, tractable sub-regions.
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Our approach to finding good collections of regions makes explicit use of the form of the

Loop-SRG. In particular, we focus on on finding a collection of loop outer regions O and then

fill in the edge and node inner regions using the CVM, which guarantees that our Loop-SRG

is totally-connected and totally-balance[69]. To find the collection of loop outer regions,

we map each loop outer region in O to a cycle in the undirected graph, G, underlying the

pairwise model p(y) and then search for collections of cycles that satisfy certain structural

properties. We can thus appeal to tools from graph theory to find O, rather than searching

over subsets of variables.

The remainder of this section is organized as follows. We begin by reviewing some basic

theory of cycle spaces and cycle bases. We then show that if our collection of loop outer

regions comprise a special type of cycle basis, known as a fundamental cycle basis, then our

Loop-SRG will be non-Singular and satisfy counting-number unity. We then introduce and

define tree-robust cycle bases, which are a special kind of fundamental basis, and show that if

O comprises a tree-robust bases, our Loop-SRG will be tree-robust as well. We then identify

tree-robust bases in planar graphs and complete graphs, two structures that are common

in pairwise graphical models. Finally, we introduce an algorithm for finding tree-robust, or

nearly tree-robust collections of loop outer regions given some arbitrary pairwise model p(y).

3.4.1 Cycle Spaces and Cycle Bases

We begin with some background on cycle bases taken from [50]. Let G = (V,E) be a 2-

connected graph. A simple cycle C in G is a connected Eulerian subgraph in which every

vertex has degree 2. The cycle space C(G) of a graph G consists of all simple and non-simple

cycles of G, including the empty cycle ∅. The dimension of a cycle space for a graph with 1

connected component is ρ ≡ ρ(G) = |E| − |V |+ 1.

Definition 3.2. A Cycle Basis of C(G) is a set of simple cycles B = {C1, ..., Cρ} such that
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for every cycle C of G, there exists a unique subset BC ⊆ B such that the set of edges

appearing an odd number of times in BC comprise the cycle C.

Figure 3.7: Illustration of a graph, its cycle space and a cycle basis.

Figure 3.7 depicts the cycle space for the complete graph of 4 nodes (K4) and a sample cycle

basis. The cycle basis can be used to generate any cycle in the cycle space. As an example,

the cycle C7 = {3, 2, 4} is generated by combining basis cycle C1 = {1, 2, 3, 4} with basis

cycle C4 = {1, 2, 3}.

Definition 3.3. A cycle basis B is a Fundamental Cycle Basis (FCB) if there exists a per-

mutation π of the cycles in B such that Cπ(i) \
{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅ for i = 2...ρ. In

other words, the cycles can be ordered so that cycle Cπ(i) has some edge that does not appear

in any cycle preceding it in the ordering.

Figure 3.8 depicts a graph and a cycle basis that is clearly non-fundamental, as every edge

in the graph appears in at least 2 cycles in the basis.

Consider mapping each loop outer region γ ∈ O to a cycle C in the basis B of the undirected

graph of p(y) 4. Using this mapping, we can claim the following:

Theorem 3.1. A Loop-SRG is Non-Singular and satisfies Over-Counting Number Unity if

its loop outer regions are a Fundamental Cycle Basis (FCB) of G.

4More specifically, the structure G(γ) of each outer region γ ∈ O is chosen to be a unique cycle C ∈ B.
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Figure 3.8: Illustration of a graph and a cycle basis that is non-fundamental.

The proof of this theorem appears in Appendix C. It uses a set of reduction operators

introduced in [92] that modify an SRGs structure while preserving the fixed points of the

constrained variational optimization problem. In proving Theorem 3.1, we use the reduction

operators to show that a loop outer region with a unique edge (i.e. an edge not shared with

any other loop region) can be reduced to the set of edges comprising that loop. Since the

set of loop outer regions form a FCB, we are guaranteed to find a loop region with a unique

edge if we reduce the loops along the order π - i.e. beginning with the loop corresponding

to Cπ(ρ) and ending at loop Cπ(1).

Recall the two Loop-SRGs considered in Figure 3.6. They specified two different GBP

approximations for a pairwise model on the complete graph of 5 nodes. The cycle space

for the graph K5 has dimension ρ = |E| − |V | + 1 = 10 − 5 + 1 = 6. One can verify that

the collection of 6 loop outer regions used in both SRGs are fundamental cycle bases. As a

result, both of the SRGs are non-singular and satisfy over-counting number unity. However,

only one of the SRGs was tree-robust.

This result implies that the loop regions in a Loop-SRG should form a FCB. This greatly

reduces the set of loops considered when constructing a Loop-SRG. However, a graph may

have many fundamental bases, so it is natural to ask if Loop-SRGs formed from certain

FCBs are better than others. We now introduce and define a class of Loop-SRGs with loop

regions corresponding to tree-robust cycle basis, a specific type of FCB.
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3.4.2 Tree Robust Cycle Bases

The previous section established that a Loop-SRG is non-singular and satisfies over-counting

number unity if its loops form a FCB. In this section, we first define a tree-robust cycle basis

and then show that a Loop-SRG is tree-robust if its loops form a tree-robust cycle basis.

Definition 3.4. Let T be some spanning tree of G. A cycle basis B is Tree Exact w.r.t. T if

there exists an ordering π of the cycles in B such that
{
Cπ(i) \ {Cπ(1) ∪ · · · ∪ Cπ(i−1)}

}
\T 6= ∅

for i = 2...ρ. In other words, the cycles in the basis can be ordered so that cycle Cπ(i) has

some edge that:

1. Does not appear in any cycle preceding it in the ordering; and

2. Does not appear in the spanning tree T .

Definition 3.5. A cycle basis B is Tree Robust (TR) if it is Tree Exact w.r.t. all spanning

trees of G.

By mapping each loop outer region to a cycle in basis B, we can show that:

Theorem 3.2. A Loop-SRG is Tree Robust if its loop outer regions are a Tree Robust cycle

basis of G.

The proof of this result appears in Appendix C and is similar in spirit to the proof that

loop outer regions forming an FCB are non-singular and satisfy counting number unity. The

proof is of course complicated by the spanning tree requirement.

In the remainder of this section, we introduce two theorems that characterize TR cycle bases.

These results prove useful in showing that, for example, the faces of a planar graph constitute

a TR cycle basis. The ensuing theorems require the following definition.
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Definition 3.6. The Unique Edge Graph of a set of cycles C = {C1, ..., Ck} is a graph

comprised of the set of edges that are in exactly one cycle in C. We will use I(C) to denote

the unique edge graph for cycle set C. I(C) is cyclic if it contains at least one cycle.

Using this definition we can now state the following, equivalent characterization of TR cycle

bases.

Theorem 3.3. Let B|k| denote all size k subsets of cycles in B. A FCB B is Tree Robust

iff I(Bk) is cyclic and not empty for all Bk ∈ B|k| for 1 ≤ k ≤ ρ. In other words, the unique

edge graph must be cyclic for all pairs of cycles, and all triples of cycles,..., and all of the ρ

cycles.

Corollary 3.4. An FCB is TR iff Bk is TR for all Bk ∈ B|k| for 1 ≤ k ≤ ρ.

The full proof is in Appendix C, but we sketch the main idea here. Sufficiency follows because

the unique edge graph will be cyclic no matter what ordering, π, we choose to remove the

cycles in. Since the unique edge graph is always cyclic, there can be no spanning tree T that

covers all of the edges of the unique edge graph. Necessity follows because if there were a

subset of cycles for which the unique edge graph is acyclic, then there exists no ordering π

that can avoid that subset (or a larger subset with an acyclic unique edge graph). Hence, by

choosing the tree T to block all edges of the acyclic unique edge graph under consideration

we prove that the basis is not tree robust.

In fact, this is precisely how we showed that the bottom Loop-SRG in Figure 3.6 was not

tree-robust. The unique edge graph for that Loop-SRG is acyclic after reducing loop region

(y1, y3, y4) and has the set of edges used to define the embedded, tree-structured model,

pT (y), in that example.
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3.4.3 Planar and Complete Graphs

Using the theorems from the previous section, we now identify TR cycle bases of planar and

complete graphs. In the case of planar graphs, a TR basis can be constructed from the set

of cycles forming the faces of the planar graph. This supports the observation of previous

authors that GBP run on the faces of planar graphs gives accurate results.

Theorem 3.5. Consider a planar graph G. The cycle basis B comprised of the faces of G

is TR.

Proof. We use theorem 3.3. Consider the graph formed by any subset of k faces of the planar

graph. Consider any of its connected components. The path that traces the circumference

of that component is a loop and also consists of unique edges.

In the case of complete graphs, a TR basis can be constructed by choosing some vertex as a

root, creating a spanning tree with edges emanating from that root and constructing loops

of length 3 using each edge not in the spanning tree. This is exactly the ’star’ construction

proposed in [92], which was shown empirically to be superior to other Loop-SRGs on complete

graphs.

Theorem 3.6. Consider a complete graph G on n vertices (i.e. Kn). Construct a cycle

basis B as follows. Choose some vertex v as the root. Create a ’star’ spanning tree rooted

at v (i.e. with all edges v-u). Now construct cycles of the form v-i-j from each off-tree edge

i-j. The basis B constructed in this way is TR.

Proof. We use again theorem 3.3. Consider the graph constructed from any subset of k

triangles. The edges not on the spanning tree (i.e. not connecting to the root) are all unique

and will either form a loop (in which case we are done) or a tree. In case of a tree, consider

a path connecting two leaf nodes, which are both also connected to the root, thus forming a
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loop. Because the two edges connecting to the root are also unique (since they correspond

to leaf nodes) we have proven the existence of a cycle in the unique edge graph.

This result can be extended to partially complete graphs where there exists some vertex v

that is connected to all the other vertices in G.

3.4.4 Finding TR SRGs in General Pairwise Graphical Models

The previous section identified TR cycle bases for probability distributions defined over two

specific classes of graphs: planar and complete. The prescription for how to construct TR

SRGs for MNs on these types of graphs is clear: find a TR basis B of the underlying graph,

make the cycles in B the loop outer regions and fill in edge and node inner regions using

the CVM. This prescription can be generalized in some cases to graphs containing many TR

components. More formally,

Theorem 3.7. Consider a graph G comprised of components (subgraphs) H1, ..., Hk. Let

the components H1, ..., Hk be mutually singly connected if for any two components Hi and

Hj there exist vertices vi ∈ Hi and vj ∈ Hj that are singly connected (i.e. connected through

a single path). Let BH1 , ...,BHk denote the TR cycle bases for each component. Then a

TR cycle basis of G is simply the union of the TR cycle bases of each component: BG =

{BH1 ∪ · · · ∪ BHk}.

Proof. First note that by singly connecting the components H1, ..., Hk we do not create any

new cycles. Thus BG is a cycle basis of G. Every subset of cycles of BG is the union of some

subset of cycles from the component cycle bases {BHi}. Moreover, for any of these subsets

the unique edge graph must be cyclic (by theorem 3.3). Since the component cycle bases do

not overlap, it follows that the unique edge graph for every subset of cycles of BG must also

be cyclic.
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Algorithm 3.1 Find partially-TR Cycle Basis

Input: A pairwise graphical model, p(y), with underlying undirected graph G
Output: A Cycle Basis B

1: Find a TR subgraph H of G with TR basis B(H)
2: if G contains no TR subgraph (i.e. H = ∅) then
3: Let H be some simple cycle in G
4: end if
5: Add cycles B(H) to B
6: Mark all edges in H as used
7: Mark all vertices in H as visited
8: while ∃ unused edge e = (s, t) from a visited vertex s do
9: If t is visited, then set p1 = e

10: Else, find an ear p1 from s through edge e = (s, t) to some visited vertex u.
11: Find shortest path p2 from s to u on used edges
12: Add cycle C consisting of p1 ∪ p2 to the bases B
13: Mark all edges (vertices) on C as used (visited)
14: end while

For pairwise models defined over more general graphs, the picture of how to construct a TR

SRG is less clear. Since verifying that a basis is TR requires inspecting all subsets of cycles

in that basis, searching for a TR basis in a general graph seems difficult. Moreover, not

every graph will admit a TR basis. As a result, we now describe a method for constructing

Loop-SRGs that are partially TR. In other words, we sacrifice finding a TR basis of G to

find a basis that is Tree Exact for many (just not all) spanning trees of G.

The method for finding a partially TR basis works as follows. We first find the largest

complete or planar subgraph H of G and construct a TR basis B(H) for H as described in

the previous section. Since the TR core H is a subgraph of G, the ρ(H) cycles in B(H) will

not form a complete basis of G. We choose the remaining ρ(G) − ρ(H) cycles so that the

basis of G is fundamental. We do so by finding a sequence of ears (simple paths or cycles) in

G, such that each new ear has some edge not occurring in some previous ear. This process

is described in Algorithm 3.1.

Figure 3.9 illustrates Algorithm 3.1 on a 2 × 3 grid. The pairwise model p(y) is shown on

the left and its TR core H on the right. We first add the faces (1, 2, 5, 4) and (2, 3, 6, 5) of
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the TR core H to the basis B. We then mark all of the edges in H as used and all of the

vertices as visited. Edge (1, 6) is an ear, or unused edge. The path 6, 3, 2, 1 connects the

start vertex, 6, to the end vertex, 1, of this ear along used edges. As a result, cycle (1, 6, 3, 2)

is added to B. Similarly, cycle (3, 4, 5, 6) is added for ear (3, 4), giving us the partially TR

basis B = {(1, 2, 5, 4), (2, 3, 6, 5), (1, 6, 3, 2), (3, 4, 5, 6)}.

Figure 3.9: Illustration of finding a partially-Tree-Robust cycle basis.

3.5 Experiments

In section 3.3 we introduced several region selection criteria, including our new tree-robustness

criteria. Tree-robustness guarantees exactness of the GBP entropy approximation when a

tree-inducing collection of factors in our model are uniform and the GBP beliefs correspond

to the exact marginals of p(y). Unfortunately, both of these assumptions are unlikely to

hold in practice. Of course, the same can be said of the assumptions motivating the balance,

over-counting number unity and MaxEnt-Normality and non-Singularity criteria as well.

We thus conducted a series of experiments to validate the recommendations for constructing

Loop-SRGs made in this chapter.

We begin our empirical analysis by justifying the recommendation that the collection of

loop outer regions constitute a fundamental cycle basis and thus satisfy both over-counting
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number unity and non-Singularity. We then move to justifying the recommendation that

the collection of outer regions be tree-robust. Finally, we demonstrate the effectiveness of

Algorithm 3.1 in pairwise models that do not readily emit a tree-robust cycle basis.

In the experiments that follow, we focus on pairwise MRFs, p(y) ∝
∏
i∈V

ψi(yi)
∏

(i,j)∈E
ψij(yi, yj),

defined over many different underlying graph structures G = (V,E). Every variable i ∈

V in the model is binary and has an associated unary potential of the form ψi(yi) =

[exp(θi); exp(−θi)], where θi ∼ N (0, σ2
i ). Each edge (i, j) ∈ E in the model has a pair-

wise potential of the form ψij(yi, yj) = [exp(θij) exp(−θij); exp(−θij) exp(θij)], where

θij ∼ N (0, σ2
ij). Two different error measures are reported. ErrorZ = | logZ − log Z̃| is the

absolute error between the exact (logZ) and approximate (log Z̃) values of the log partition

function. ErrorL1 measures the mean absolute error in the marginal probability estimates

and is computed as ErrorL1

def
= 1

m

m∑
i=1

∑
yi∈{0,1}

|b(yi)− p(yi)|, where m = |V | is number of vari-

ables in the model, b(yi) is the estimated marginal (or belief) of variable yi and p(yi) is the

true marginal of variable yi.

3.5.1 Empirical Justification of Over-Counting Number Unity

We first ran an experiment to validate our recommendation that the collection of loop outer

regions satisfy the over-counting number unity criteria. One can verify that the sum of the

counting numbers in a Loop-SRG is:
∑

γ∈R cγ = L−E + V , where L is the number of loop

outer regions, E is the number of edge inner regions and V is the number of node inner

regions (see e.g. [92]). Importantly,
∑

γ∈R cγ = 1, when the number of loops is equal to the

dimension of the cycle space of G, i.e. L = ρ(G). Further,
∑

γ∈R cγ < 1 when L < ρ(G) and∑
γ∈R cγ > 1 when L > ρ(G).

We considered a pairwise model on the complete graph of 6 nodes (K6) and construct a

sequence of Loop-SRGs as follows: starting with the Bethe region graph, which contains
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no loop outer regions, we successively add triplet loop outer regions to our SRG. There are

a total of 20 triplets in the graph K6 and we add these 20 triplets as outer regions along

several different orderings. First, is a canonical ordering, where we begin by adding triplet

(1, 2, 3), followed by triplet (1, 2, 4) and end by adding triplet (4, 5, 6). Adding triplets

along the canonical order produces an SRG with a tree-robust cycle basis when exactly

ρ(K6) = 15 − 6 + 1 = 10 triplets have been added. We also considered adding triplet loop

regions along two distinct random orderings.

Figure 3.10 contains a few plots of error as a function of the number of triplet outer regions

added to our GBP approximation. The top row contains ErrorL1 (left) and ErrorZ (right)

averaged over a collection of 50 random models generated with σi = 0.1 and σij = 0.5. The

bottom row contains ErrorL1 (left) and ErrorZ (right) for a collection of 50 random models

generated with σi = 0.1 and σij = 1.0. To negate any errors stemming from non-convergence,

in these experiments we used a convergent, double-loop, form of GBP discussed in [43].

Notice that for both settings of σij, we see a strong dip when the collection of outer regions

contains L = ρ(K6) = 10 triplets – precisely when the over-counting number unity property

is satisfied. While the dip is more pronounced along the canonical ordering (shown in blue),

where we know our triplet outer regions form a cycle basis when L = 10, the dip exists even

along the random orderings where the collection of L = 10 regions need not form a cycle

basis. After 10 outer regions have been added, the quality of GBP’s log-partition function

estimate deteriorates rapidly, quickly becoming worse than Loopy BP. These experimental

results seem to support our recommendation that the collection of loop outer regions should

satisfy the over-counting number unity property.
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(b) ErrorZ for model with σi = 0.1, σij = 0.5.
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(c) ErrorL1 for model with σi = 0.1, σij = 1.0.
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(d) ErrorZ for model with σi = 0.1, σij = 1.0.

Figure 3.10: Error as the number of loop outer regions added to a Loop-SRG is increased.

3.5.2 Empirical Justification of non-Singularity

We next ran an experiment to show that choosing loop regions that form a fundamental

cycle basis leads to better approximations than choosing a collection of regions that form a

cycle basis. In other words, the goal of this experiment is to empirically validate the claim

that non-Singularity is desirable characteristic of a GBP approximation.

We conducted a simple experiment on a 9 × 9 grid of variables in standard 4-neighbor

connectivity. We constructed a Loop-SRG using a collection of loop outer regions comprised

of the 64 faces of the 9 × 9 grid. As we saw in Section 3.4.3 the faces of a planar graph
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Figure 3.11: A non-Fundamental Cycle Basis on a 3× 3 grid.
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Figure 3.12: Comparison of Loop-SRGs formed with Fundamental and non-Fundamental Cycle Bases.

constitute a tree-robust, and therefore, fundamental cycle basis. We also chose a collection

of 64 loop outer regions comprising a non-fundamental cycle basis by repeating the non-FCB

construction of the 3× 3 grid shown in Figure 3.11 a total of 16 times in the 9× 9 grid.

Figure 3.12 shows the error in the marginal estimates and log-partition function estimates

of both the FCB construction (green) and the non-FCB construction (blue). In these ex-

periments, we generated 50 random grid instances for each setting of σij, holding σi fixed at

0.1. We ran a damped version of GBP discussed in Section 3.2, where beliefs were updated

as in (3.15) using α = 1
2
. The errors reported are averaged across the 50 instances at each

setting of σij.

Notice that the error of the non-FCB SRG is much worse than the FCB SRG construction
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as σij is increased and the models become increasingly frustrated. In fact, the error of the

non-FCB estimates quickly becomes larger than the error of the Loopy-BP estimates shown

in red. Interestingly, both MaxEnt-Normality and non-Singularity only require the entropy

approximation to behave sensibly when the factors of the model are uniform. As σij is

increased, however, the factors become increasingly less uniform. This fact, coupled with

the empirical evidence in Figure 3.12 certainly suggest that choosing a collection of regions

that are non-singular is a good idea.

3.5.3 Empirical Justification of Tree-Robustness

We next ran a set of experiments to justify our recommendation that the collection of regions

be tree-robust. Since every tree-robust cycle basis is a fundamental basis, and therefore

satisfies both non-Singularity and counting number unity, we wanted to show that one gets

more accurate estimates when using a Loop-SRG comprised of a tree-robust cyle basis rather

than a Loop-SRG comprised of fundamental, but not tree-robust cycle basis.

To test this hypothesis, we generated 31 different Loop-SRGs for a pairwise model on a

complete graph with 20 binary variables (K20). We first constructed a tree-robust basis BTR,

using the star construction process described in Section 3.4.3. Under this construction our

tree-robust basis is comprised of all cycles of length 3 (i.e. all triplets) passing through vertex

1. From this tree-robust basis, a sequence of 30 fundamental, but non-tree-robust cycle bases

were created as follows: for i = 1...30, we choose a cycle Ci of the form Ci = (1, u, v) from

BTR and modify it by swapping vertex 1 with some vertex w (w 6= u 6= v 6= 1) so that

Ci = (w, u, v). At every iteration we choose cycles that have not been modified previously

and reject modifications that make the basis non-fundamental. In this way, as i increases

the cycle basis is made less tree-robust, while remaining fundamental.

Figure 3.13 shows ErrorL1 and ErrorZ as the Loop-SRG is made less tree-robust. In this
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(a) ErrorL1
on increasingly non-TR Loop SRGs. (b) ErrorZ on increasingly non-TR Loop SRGs.

Figure 3.13: Performance of GBP run on a sequence of increasingly non-TR Loop-SRGs.

figure, we generated 500 random model instances with σi = 1 and σij = 1/
√

20− 1. Note

that by keeping the cycle length at 3 and ensuring that each basis is fundamental, the

increase in error can only be explained by the change in the tree-robust core of the basis.

Since error increases as the basis is made less tree-robust, these results support our claim that

tree robustness is a desirable property. It was also observed that GBP took an increasing

number of iterations to converge as the basis was made less tree-robust.

3.5.4 Experiments on Partially Tree-Robust GBP Approximations

The previous experiments considered pairwise models with an underlying graph structure

for which a tree-robust basis was known. In this section, we consider more general pairwise

models, which are neither planar nor complete, and use Algorithm 3.1 to find a collection of

cycles that form a partially tree-robust cycle basis.

Algorithm 3.1 seeks an initial, tree-robust subgraph H ⊂ G of the graph, G, underlying our

pairwise model. The previous experiments indicated that GBP yields accurate approxima-

tions when H = G. When a graph contains no tree-robust core (i.e. H = ∅), then Algorithm

3.1 simply finds a fundamental cycle basis of G. We wish to study the performance of GBP
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between these two extremes - i.e. on partially tree-robust SRGs. We conducted experiments

on two types of models, where the size of the sub-graph H (relative to G) can be controlled.

The following experiments include a comparison to the Iterative Join Graph Propagation

(IJGP) method [20] discussed in Section 1.4.1. Recall that IJGP forms a join (cluster)

graph, which is just a two level region graph, in a top-down fashion. Starting from a cluster

tree decomposition, it uses the mini-bucket heuristic to divide large, intractable clusters

into smaller, computationally manageable sub-clusters. The number of variables appearing

in any outer region of an IJGP approximation is less than or equal to a control parameter

known as the iBound. The iBound controls the complexity of message computations in IJGP

because each outer region forms a clique over all of the variables in a region. Importantly,

since Loop-SRGs assume a loop structure in the outer regions, message computations on

Loop-SRGs are equivalent to IJGP with iBound = 3.

Partial K-Trees

In these experiments we construct a set of partial K-tree instances via the following pro-

cedure5. We first build a random K-tree on m vertices using the process described in [29].

The number of neighbors (or degree) of the vertices in K-trees constructed by this procedure

follow a power law. This means there will exist a few vertices that are adjacent to most of

the vertices in G. As a result, the tree-robust core will comprise a large portion of G. To re-

duce the size of the tree-robust core, we iteratively remove edges from the K-tree as follows.

First choose a vertex v with probability proportional to the current degree of that vertex.

Then modify G by removing an edge from v to one of its neighbors, so long as removing

that edge does not disconnect G. This process is repeated until the ratio of the maximum

degree in G to the number of vertices m falls below some threshold. We refer to this ratio as

5K-trees are chordal graphs with maximal cliques of size K. Partial K-trees are non-chordal graphs with
maximal cliques of size K.
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the connectivity of the graph. A random pairwise MRF is formed over each partial K-tree

structure by assigning random unary and pairwise potentials to the vertices and edges.

Figure 3.14 shows the performance of GBP as a function of connectivity. In these plots, we

generated 100 random models at each level of connectivity, with K = 10, m = 100, σi = 1

and σij = 0.3 held fixed. The partially tree-robust SRGs are found by first choosing the

tree-robust core H ⊂ G as follows. We find the vertex vroot with maximum degree in G and

designate it as our root. We then use the star construction described in Section 3.4.3 to

find all triplets that include the designated root vertex, vroot. Cycles are added to this tree-

robust core as described in Algorithm 3.1. The partially tree-robust SRGs are compared to

Loop-SRGs that are formed by finding a random FCB of each partial K-tree. In particular,

we use Algorithm 3.1 with H = ∅ to find a random FCB. Importantly, these random FCBs

do not build upon the tree-robust core, which as we now demonstrate, leads to less accurate

estimates.

Figure 3.14 shows that the benefit of the partially tree-robust SRG diminishes as connectivity

is decreased. This behavior confirms our belief that the benefit of finding a tree-robust core

decreases as the core comprises a smaller proportion of cycles in the fundamental basis.

Even so, it is important to note that choosing a Loop-SRG with outer regions forming a

FCB yields more accurate approximations than both IJGP and Loopy BP.

Figure 3.15 shows the performance of GBP as a function of iBound for a fixed connectivity

level. The iBound is increased from 2 (which is equivalent to Loopy BP) to 10 (which is

exact). These plots show that GBP run on the partial tree-robust SRG is roughly equiv-

alent to IJGP with iBound = 7, while GBP run on the FCB is equivalent to IJGP with

iBound = 6. The fact that GBP run on both of these Loop-SRGs performs better than IJGP

with iBound = 6 is quite remarkable considering that message passing on a Loop-SRG is

computationally equivalent to IJGP with iBound = 3.
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(a) ErrorL1
as a function of connectivity. (b) ErrorZ as a function of connectivity.

Figure 3.14: Performance of GBP on the partial tree-robust construction, FCB construction and
IJGP with iBound = 3 as a function of connectivity.

(a) ErrorL1 as a function of iBound. (b) ErrorZ as a function of iBound.

Figure 3.15: Performance of the Loop-SRG constructions as a function of iBound with fixed
connectivity of 0.7.

Grids with long range interactions

We also considered grid instances that are made non-planar by adding a number of edges

between vertices that are non-adjacent in the standard 4-neighbor connectivity. These ad-

ditional long range interactions were added via the following procedure. We begin with a

10 × 10 grid. Let G0 denote this initial graph. Two vertices u and v are randomly chosen

from the grid. If edge (u, v) exists in graph Gi−1, new vertices u and v are chosen randomly;
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if edge (u, v) is not in Gi−1, then graph Gi is created by adding edge (u, v) to Gi−1. This

process is repeated until a specified number of long range edges have been added to G0.

Figure 3.16 compares the ErrorL1 and ErrorZ of GBP run on different loop SRG construc-

tions. A total of 25 instances were generated each with 5, 10, ..., 50 additional edges. In all

250 of these models the unary and pairwise terms were drawn with σi = 1 and σij = 0.5.

For the partially tree-robust SRG construction, we take the tree-robust core H to be G0 and

fill out the cycle basis using Algorithm 3.1 (as illustrated in Figure 3.9). As in the partial

K-tree experiments, for the FCB construction we choose a fundamental basis that does not

build upon the tree-robust core by using Algorithm 3.1 with H = ∅.

In Figure 3.16, we see that both the partially tree-robust and FCB constructions outperform

IJGP with an equivalent iBound = 3. Interestingly, when adding 50 additional edges we do

not see the ErrorL1 of the partially TR and the FCB constructions coalesce. This may be

explained by the fact that even with 50 additional edges more than 60% of the loop outer

regions in the SRG are from the tree-robust core (131 cycles in the basis, 81 of which come

from the tree-robust core).

(a) ErrorL1
on grids with long range interactions. (b) ErrorZ on grids with long range interactions.

Figure 3.16: Performance of the different Loop-SRG constructions as an increasing number of long
range interactions are added to a 10× 10 grid.
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3.6 Discussion

Generalized Belief Propagation (GBP) is a broad class of approximate inference algorithms

that extends Loopy BP by grouping the nodes of a graphical model into regions and it-

eratively passing messages between these regions. In this chapter, we provided some new

guidance on how to choose the collection or regions (cliques, or clusters) defining a GBP

algorithm. In particular, we connected the problem of choosing the loop outer regions of

a Loop-Structured Region Graph (Loop-SRG) to that of finding a fundamental cycle basis

of the undirected graph underlying a pairwise graphical model. We showed that choosing a

collection of outer regions that comprise a fundamental cycle basis give GBP approximations

that behave sensibly when the factors defining a model are extremely weak (non-Singularity)

and extremely strong (over-counting number unity) and demonstrated the effectiveness of

this recommendation empirically.

We then proposed a new criteria – tree-robustness – which is a refinement to the criterion

that the loop regions form a fundamental basis. We offered a graph-theoretic characterization

of the class of tree-robust cycle bases and identified tree-robust cycle bases for planar and

complete graphs – two commonly occurring classes of pairwise models. This characterization

helps explain the success of GBP on the star construction of [92] for complete graphs and

the all faces construction on planar graphs. We also proposed an algorithm to automatically

construct a high-performing Loop-SRG in pairwise models on arbitrary graph structures.

The algorithm works by first identifying a tree-robust core and expanding the core to a full,

fundamental cycle basis using an ear construction.

The experiments in this chapter confirm that GBP can yield very accurate approximations

when the loop regions of a Loop-SRG form a fundamental basis and that these approxi-

mations can be further improved by choosing a fundamental basis that is at least partially

tree robust. The criteria proposed in this chapter also lead to approximations that are
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comparable to IJGP run at a much higher computational complexity.

These findings open the door for much future work. Rather than simply finding a tree-robust

subgraph, as is required in Algorithm 3.1, it would be preferable to have an algorithm that

searches for tree-robust bases in a graph, or at the very least identifies when a graph does not

admit a tree-robust basis. In addition, the recommendations made in this paper are purely

structural in nature. A natural extension would be to incorporate interaction strengths into

the search for suitable loop regions. In other words, search for (fundamental) cycle bases

that are somehow weighted by the level of determinism along each cycle.

Finally, and perhaps most important, the current recommendations are only for models with

pairwise interactions. A natural extension is to consider factor graphs or, more generally,

region graphs. In this more general setting, it seems reasonable to require the collection

of outer regions (or factors), {Ci}, to have the property that there exists an ordering π for

which Cπ(i) \
{
Cπ(1) ∪ · · · ∪ Cπ(i−1)

}
6= ∅. In other words, the subsets can be ordered so

that region Cπ(i) has some element that does not appear in any subset preceding it in the

ordering. This definition is identical to that of a fundamental cycle basis (see definition

3.3) and will guarantee, through the reduction rules of [? ], that the region graph is non-

Singular. A next step would then be to define tree-robustness as a collection of regions that

can be decomposed along some ordering if we do not allow certain elements that correspond

to the cliques of an embedded junction tree to become unique. Again this is very similar

to definitions 3.4 and 3.5 of tree-robust cycle bases. Whether these generalizations can be

captured with mathematical structures as elegant as the theory of cycle spaces (or more

generally matroids) remains to be seen.
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Chapter 4

Investigating the Bottom-Up

Approach to Learning and Prediction

with Approximate Inference

In this chapter, we turn our attention to the task of learning graphical models with discrete

random variables. A graphical model represents a joint distribution as a product of factors

over subsets of variables. In the context of learning, these factors are parameterized functions

and given some data one seeks to find a setting of the parameters that optimize some criterion.

We consider the joint estimation and prediction problem, where our desire is to first estimate

the parameters of some discrete graphical model and then use the learned model to make

predictions. For example, say we want to learn some model, p(y|x,θ), that given an observed,

noise-corrupted image, x, can be used to recover the original, uncorrupted version of that

image, y. We can estimate the model parameters, θ, given some training data consisting

of (x,y) pairs and then use the learned model to de-noise newly observed, noise-corrupted

images. The approach we adopt in this chapter is to estimate the model parameters using
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the principle of maximum likelihood and make predictions using Bayesian decision theory.

Several difficulties arise when estimating the parameters of a discrete graphical model from

data and using the learned model to make predictions. First, the model being learned

may fail to capture important variable dependencies in the data. Such modeling difficulties

ultimately diminish our ability to make accurate predictions on new data. Second, we face

statistical difficulties because there may not be enough training data to accurately estimate

the model parameters. This is often the case in supervised learning settings, such as image

de-noising, where the training data is hand-labeled and expensive to collect. Finally, we face

computational difficulties. Optimizing the likelihood criterion requires computing the log-

partition function and its derivatives, both of which are computationally intractable. And,

even after the model parameters have been estimated, making predictions under the learned

model often requires intractable inference, such as computing the MAP configuration.

In this chapter, we examine the effect of using different approximate inference methods

on the accuracy of both parameter estimation and prediction. In particular, we consider

approximate inference methods that utilize a control parameter - the iBound - to trade

computation for accuracy. In such methods, a smaller iBound requires less memory and

time, but typically provides a worse approximation.

In theory, more accurate approximate inference leads to more accurate estimation of model

parameters and ultimately better predictions. However, modeling and statistical issues con-

found our ability to learn a model that yields accurate predictions. As a result, it is not

clear when, or even if, increasing the iBound computational limit will actually lead to better

parameter estimates and predictions. This chapter is fundamentally about understanding

the trade-off between the computational, modeling and statistical issues faced in the joint

estimation and prediction setting.

The main contributions of this chapter are:
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1. We formalize the computation-accuracy trade-off for likelihood-based learning of MRFs

and CRFs.

2. We show that better inference does not necessarily result in learning a better model

for small sized data sets and mis-specified models (reduction in bias may be smaller

than increase in variance)

4.1 Learning & Prediction

Suppose that we are given a collection of independent and identically distributed (i.i.d)

samples {y(1), ...,y(N)} from some distribution p(y;θ?), where the true parameter setting

θ? is unknown. Given these samples, we seek to find a setting of θ that makes the model

p(y; θ) as close as possible to the unknown distribution p(y;θ?).

In this chapter we focus on finding a setting of the parameters that maximize the likelihood:

meaning that the parameters are set so the training data has largest total probability under

the model. More formally, for a model p(y;θ) with parameters θ ∈ RD, the maximum

likelihood estimate (MLE) is the point estimate

θML = arg max
θ∈RD

`N(θ) = arg max
θ∈RD

1

N

N∑
n=1

log p(y(n);θ). (4.1)

Note that even though we write the likelihood as a function of the parameters, `N(θ), it

also depends on the choice of data set. Different collections of samples from the unknown

distribution p(y;θ?) will yield different likelihood functions and therefore different MLEs.

Often times we are interested in learning a model and then using it to make predictions

on unseen data. In particular, we are given a dataset {(y(1),x(1)), ..., (y(N),x(N))} of (x,y)

pairs drawn i.i.d. from some true (unknown) distribution p(y,x;θ?). We use the training
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data to first estimate the parameters θ ∈ RD of a model p(·;θ) and then use the learned

model to predict ŷtst given an observation xtst. An application that we consider later in the

chapter is image de-noising, where the input, x, is a noise-corrupted version of an image and

the output, y, is the original, noise-free version of the image. Our objective is thus to learn

a model that can be used to de-noise a new, noisy image xtst.

Making a prediction requires access to the conditional distribution p(y|x;θ). While it is

possible to follow a generative approach that first estimates a joint distribution p(y,x;θ)

and then converts it to a conditional distribution, such an approach requires modeling p(y)

which may be difficult in practice. For example, in the image de-noising application, p(y) is

a distribution over noise-free images. Discriminative approaches avoid this issue by directly

estimating the conditional distribution p(y|x;θ). To find such a model, we once again

consider finding a setting of θ that maximizes the likelihood. The Conditional MLE is the

point estimate

θML = arg max
θ∈RD

`N(θ) = arg max
θ∈RD

1

N

N∑
n=1

log p(y(n)|x(n);θ). (4.2)

After finding the conditional MLE, we can appeal to Bayesian decision theory to make

our predictions [71]. Bayesian decision theory requires the specification of a loss function,

∆(ŷ,y), that encodes how unhappy we are if we predict ŷ when the true output is y. For

example, if y is the original version of an image and ŷ is our predicted noise-free version, then

we might be unhappy if we don’t restore all of the pixels exactly. This would be encoded by

the 0/1-loss function: ∆0/1(ŷ,y) = I [ŷ 6= y], where I [·] is the indicator function. Another

possibility is that our level of unhappiness is proportional to the number of pixels that we

incorrectly restore. This would be encoded by the Hamming loss function: ∆Hamming(ŷ,y) =∑
i I [ŷi 6= yi], where i sums over all the pixels in an image.

Given our choice of loss function, the optimal prediction will be the one that minimizes the
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expected loss [71]:

y? = arg min
ŷ

Ep(y|x;θ?) [∆(ŷ,y)] . (4.3)

Different inference tasks arise from several common choices of loss function. For example,

if the 0/1-loss is used in (4.3), then the Bayes optimal predictor is the MAP assignment:

y? = arg maxy p(y|x;θ?). If the Hamming-loss is used in (4.3), then the Bayes optimal

predictor is the max-marginal assignment: y?i = arg maxyi p(yi|x;θ?) for each pixel i, where

p(yi|x;θ?) is the true marginal distribution1.

The joint learning and prediction problem is illustrated in Figure 4.1. In the estimation

phase, we find the maximum likelihood parameter setting, θML, which provides an estimate,

p(y|x;θML), to the true conditional distribution, p(y|x;θ?). Then in the prediction phase,

we appeal to decision theory to incorporate our loss function, ∆(ŷ,y), and devise a prediction

rule f(x;θML) that utilizes our parameter estimate. For example, if ∆(ŷ,y) is the 0/1 loss,

then f(x,θML) = arg maxy p(y|x;θML) is the MAP prediction rule. Finally, when given a

new input xtst we apply the prediction rule to produce the prediction, ŷtst.

Figure 4.1: The joint learning and prediction problem.

Figure 4.1 nicely illustrates the two places where inference is needed. Finding the MLE,

1In practice we do not have access to the true conditional p(y|x;θ?) and instead use the model p(y|x;θ).
If p(y|x;θ) does not match p(y|x;θ?), the optimality of these prediction rules is no longer guaranteed.
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as we discuss in the next section, requires inference to compute the log-partition function

and marginals of the model p(y|x;θ). And predicting ŷtst requires inference in the model

p(y|xtst,θML), for example, to find the MAP assignment. Since exact inference is infeasible,

approximate inference must be used in both the estimation and prediction phases.

We focus in this chapter on approximate inference methods that utilize a control parameter

to trade computation for accuracy. Such methods provide a family of approximations to the

MLE that have different computational requirements and ultimately yield different predic-

tions on the test set. A primary objective of this chapter is to clarify what computational

limit should be imposed during estimation – i.e., is it beneficial to find an approximation to

the MLE using an expensive, but accurate method over a cheap, but inaccurate method.

In Section 4.2 we discuss several different approximations to the likelihood function. Then

in Section 4.3 we analyze the error introduced by our choice of likelihood approximation

and propose a framework for comparing this source of training error to both statistical and

modeling sources of error. Finally, in Sections 4.4 and 4.5 we put this theory into practice

and empirically study the impact of different likelihood approximations on both estimation

and test error.

Before concluding this opening section, we note that the joint estimation and prediction

problem has been studied by Wainwright [84]. He showed that for convex variational re-

laxations, it is best to match the approximate inference method used in learning to the

approximate method used in prediction. For example, if in the prediction phase we plan

to approximate the max-marginal assignment using the Tree Re-Weighted (TRW) method,

then in the estimation phase we should use TRW to approximate the log-partition function

and marginals as well. The intuition behind this finding is that even though approximate

methods can lead to errors in both estimation and prediction, the errors will partially cancel

each other. Our investigation is thus orthogonal to Wainwright’s, as we focus on the effect

of increasing the computational limit.
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4.2 Likelihood-Based Learning of Graphical Models

We begin this section by introducing the MLE problem for MRFs and CRFs. These opti-

mization problems have no closed form solution, meaning that we are forced to use numerical

methods to find the MLE. The likelihood is a smooth, concave function that is well-suited for

gradient-based optimization. However, its gradients cannot be computed efficiently. Thus, in

Sections 4.2.2 and 4.2.3 we review a few important approximations to the likelihood function.

4.2.1 The Likelihood and Conditional Likelihood

Recall from Section 1.2.1 that an MRF p(y) = 1
Z

∏
α ψα(yα) can be written in exponential

family form as

p(y|θ) = exp (θ · s(y)− logZ(θ)) (4.4)

where s(y) is vector of sufficient statistics, s(y) = {I [Yα = yα] | ∀α,yα}, with an indicator

function for every configuration of each factor and where θ is a vector of parameters with

components θα(yα) = logψα(yα) corresponding to each configuration in s(y).

Plugging (4.4) into `N(θ) gives the following expression for the likelihood of an MRF:

`MRF

N (θ) =
1

N

N∑
n=1

log p(y(n);θ) = µ̄N · θ − logZ(θ), (4.5)

where µ̄N = 1
N

∑
n s(y(n)) is a vector of empirical marginals with components computed

from the training data as

µ̄N(Yα = yα) =
1

N

∑
n
I
[
Y (n)
α = yα

]
.
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The likelihood function in (4.5) cannot be optimized in closed form because of the log-

partition function’s non-linear and non-trivial dependence on θ. However, `MRF
N (θ) is a con-

cave function of θ: the first term is linear in θ and, as we have already seen, the log-partition

function, logZ(θ), is a convex function of θ. Thus, the MLE can be found by standard

numerical optimization methods if we can evaluate `MRF
N (θ) and its gradients. Evaluating

`MRF
N (θ) requires computing the log partition function and its derivatives are:

∂`MRF
N (θ)

∂θα(yα)
= µ̄N(yα)− µ(yα;θ), (4.6)

where µ(yα;θ) = p(yα;θ) is the marginal probability of yα under the model p(y;θ).

Conditional models have an analogous form. A CRF p(y|x) = 1
Z(x)

∏
α ψα(yα,x) can be

written in exponential family form as

p(y|x;θ) = exp (θ · s(y,x)− logZ(θ,x)) , (4.7)

where the distribution over y is now determined by both the input x and the parameters θ.

The parameter vector θ is no longer indexed by components corresponding to configurations

I [Yα = yα] as in the MRF. Instead, the vector θ may index sufficient statistics that are rich

functions of both y and x. For example, in the image denoising problem the dth component

of θ might correspond to a function sd(y,x) =
∑

i I [yi = xi] that counts the number of

pixels in which the input xi matches the output yi.

Plugging (4.7) into `N(θ) gives the following expression for the likelihood of a CRF:

`CRF

N (θ) =
1

N

N∑
n=1

log p(y(n)|x(n);θ) =
1

N

N∑
n=1

θ · s(y(n),x(n))− logZ(θ,x(n)), (4.8)

where the log-partition function, logZ(θ,x(n)), is dependent on data point n. The condi-

tional likelihood `CRF
N (θ) is also a concave function of θ and can be optimized by standard
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numerical methods if we can evaluate its gradients, which have components

∂`CRF
N (θ)

∂θd
=

1

N

N∑
n=1

sd(y
(n),x(n))− 1

N

N∑
n=1

∑
y

p(y|x(n);θ)sd(y,x
(n)). (4.9)

Unfortunately, gradient-based optimization methods cannot immediately be used to optimize

the likelihood `MRF
N (θ) or conditional likelihood `CRF

N (θ) because the log-partition function and

marginals are intractable. In the next section, we consider using approximate inference to

estimate these quantities. Then in Section 4.2.3 we discuss the pseudo-likelihood and com-

posite likelihood that replace the intractable likelihood function with tractable alternatives.

4.2.2 Approximate Inference and the Surrogate Likelihood

As the gradient of the likelihood can be written in terms of marginals, a reasonable idea would

be to approximate these marginals (and the actual likelihood gradient) using an algorithm

such as Weighted Mini-Bucket (WMB). The use of approximate methods can be put on

stronger theoretical ground, however, by viewing them from a variational perspective. The

approximate marginals found by a variational approximation, such as WMB, are in fact

the exact gradient of an approximate log-partition function. As a result, we can think of

replacing the true log-partition function with a surrogate, approximate log-partition function

and ultimately optimizing a surrogate to the likelihood function.

This perspective on approximate inference-based estimation and the term “surrogate likeli-

hood” are due to Wainwright [84]. We briefly review the variational representation of the

likelihood function and then discuss the surrogate likelihood functions that arise from using

the WMB and GBP approximations.

Recall from Section 1.4.2 that the log-partition function can be written as a constrained
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optimization problem [87]:

logZ(θ) = max
µ∈M

[θ · µ+H(µ)] , (4.10)

where M = {µ′ | ∃θ, µ′ = µ(θ)} is the marginal polytope and H(µ) is the entropy of the

distribution p(y;θ(µ)) that produces the marginals µ.

Now consider an approximation to the optimization problem in (4.10)

log Z̃(θ) = max
µ∈M̃

[
θ · µ+ H̃(µ)

]
, (4.11)

where M̃ is a relaxation of the marginal polytope and H̃ approximates the exact entropy H.

The first derivative of the surrogate log-partition function, log Z̃(θ), yields the approximate

marginals

µ̃(θ) =
d log Z̃(θ)

dθ
= arg max

µ∈M̃
θ · µ+ H̃(µ) (4.12)

and plugging (4.11) into 4.6 yields the surrogate likelihood,

˜̀MRF

N (θ) = µ̄N · θ −max
µ∈M̃

θ · µ+ H̃(µ). (4.13)

Thus, we can see that using a variational method to find approximate marginals, µ̃(θ), can

be seen as computing the exact gradient of the surrogate likelihood, ˜̀MRF
N (θ). This is a much

stronger justification for using approximate inference to estimate the MLE than the heuristic

argument that it approximates the true likelihood gradients,
d`MRF
N (θ)

dθ
.

We now consider two approximations to logZ(θ) that utilize a control parameter – the

iBound – to trade computation for accuracy. The iBound was defined in Section 1.4.1 when

the Mini-Bucket Elimination (MBE) and Weighted Mini-Bucket (WMB) algorithms were
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first introduced. The iBound limits the number of variables appearing in any intermediate

message computations. In the remainder of this chapter we will use log Z̃(θ, i) to denote an

approximation to logZ(θ) with an iBound of i variables.

The Generalized Belief Propagation (GBP) Surrogate

Generalized Belief Propagation (GBP) [98, 99, 20] is a family of approximate inference meth-

ods introduced in Section 1.4.2. Recall that GBP approximates the log-partition function

as

logZ(θ) ≈ log Z̃GBP(θ, i) = max
µ∈MGBP

[
µ · θ + H̃GBP(µ, i)

]
, (4.14)

where H̃(µ, i) is the Kikuchi entropy approximation defined in (1.44) andMGBP is the GBP

approximation to the marginal polytope defined in (1.45). We assume that GBP is defined

on a collection of regions R(i) on subsets of at most i variables (|yγ| ≤ i for all γ ∈ R(i)).

Plugging (4.14) into `n(θ) gives the GBP surrogate to the likelihood:

˜̀GBP

N (θ) = µ̄N · θ − log Z̃GBP(θ, i) = µ̄N · θ − max
µ∈MGBP

[
µ · θ + H̃(µ, i)

]
(4.15)

As noted in [41, 67], the GBP surrogate likelihood is a concave function of θ. This follows

because log Z̃GBP(θ, i) is a point-wise maximum over functions that are linear in θ [12].

However, it is non-smooth as there are many vectors µ that maximize (4.14) and small

changes in θ may lead to finding very different µ. It is therefore unprincipled to use numerical

routines that utilize line searches to optimize the GBP surrogate because basic continuity

and differentiability assumptions are violated.

To remedy this issue, throughout this chapter we consider a “convexified” form of GBP

discussed in [43, 62] that ignores any terms in the Kikuchi entropy approximation, H̃(µ, i),
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with negative over-counting numbers. This restriction makes (4.14) a concave function of µ

and ensures that: 1) the approximate marginals µ are a continuous function of the parameters

θ; and 2) there is a unique optimum for every setting of θ.

This effect of convexifying the GBP surrogate is illustrated in Figure 4.2, which depicts the

surrogate likelihood functions arising from using GBP as well as the true likelihood function

computed using exact inference. The likelihoods are computed for a statistically identifiable

pairwise MRF on a 10× 10 grid

p(y; θ1, θ2) ∝ exp

∑
ij

θ1I [|yi − yj | = 1] + θ2I [|yi − yj | = 2]

 , (4.16)

where θ1 = −0.5 and θ2 = −0.7 are the two model parameters and yi ∈ {0, 1, 2} are ternary

variables. Notice that the BP surrogate likelihood in Figure 4.2a has several local-optima

(e.g. at θ1 = θ2 = −2.2), while the convexified BP surrogate in Figure 4.2b and the true

likelihood in Figure 4.2c do not.
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Figure 4.2: Comparison of GBP-based surrogate likelihoods and the true likelihood.

Finding the approximate MLE, θ̃, using the GBP surrogate results in the following saddle-

point optimization problem

θ̃ = arg max
θ∈RD

µ̄N ·θ− max
µ∈MGBP

[
µ · θ + H̃(µ, i)

]
= arg max

θ∈RD
min

µ∈MGBP

µ̄N ·θ−µ·θ−H̃(µ, i). (4.17)

Optimizing (4.17) typically involves a “double-loop” procedure: in the outer loop we up-
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date the parameters θ by steepest ascent or second order method and in the inner loop

we minimize over µ given the current setting of θ. This exposes another practical issue.

The approximate marginals µ computed in the inner loop are typically found by iteratively

passing messages. To expedite the entire learning procedure, we often run message pass-

ing to some loose convergence and thus fail to solve the optimization problem in (4.14)

exactly2. Moreover, the approximate marginals computed by approximate inference may

be non-deterministic if message initialization and passing schedules are randomized. These

issues could result in estimating likelihood gradients that are not an ascent direction and

could further confuse line searches. In our experience, however, these issues do not affect

the operation of numerical routines.

The Weighted Mini-Bucket (WMB) Surrogate

Weighted Mini-Bucket Elimination (WMB) [59, 21] is another family of approximate infer-

ence methods introduced in Section 1.4.2. Given some elimination order π and a partitioning

of the functions assigned to each bucket, WMB provides an upper bound on the log-partition

function

logZ(θ) ≤ max
µ̄∈M(Ḡ)

[
µ̄ · θ̄ + H̃w̄(µ̄)

]
, (4.18)

where ȳ is an expanded set of variables on the split graph Ḡ, θ̄ is an extended set of factors

defined over ȳ, µ̄ is an expanded set of approximate marginals and w̄ is a collection of

positive weights. The entropy approximation H̃w̄(µ̄) was defined in (1.51) and is a weighted

sum of conditional entropies.

Plugging (4.18) into the expression for `MRF
N (θ) in (4.6) gives us an expression for the WMB

surrogate log-likelihood. However, as mentioned in Section 1.4.2, it is far more convenient

2For a further discussion of “truncated fitting” procedures see [23, 24].
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to optimize the primal form of the WMB bound than its dual form. As we now explain,

it happens that optimizing the form of the WMB surrogate likelihood involving the primal

bound is easier than the dual form too.

Recall from (1.50) that the primal WMB bound takes the following form

logZ(θ) ≤ log Z̃WMB(θ̄, w̄) = log
w̄m̄∑
ȳm̄

· · ·
w̄1∑
ȳ1

∏
α∈F

exp(θ̄α(ȳα)) (4.19)

where
w̄i∑̄
yi

is the weighted summation operator (see (1.29) for a definition). The tightest

upper bound is

min
θ̄∈D(θ̄),w̄∈D(w̄)

log Z̃WMB(θ̄, w̄), (4.20)

where D(θ̄) = {θ̄ | θ̄(y) = θ(y), when yri = yi ∀i, Ri} is the set of valid reparameterizations

of θ and D(w̄) = {w̄ |
∑Ri

r=1w
r
i = 1, ∀i} is the set of valid weights.

Plugging (4.20) into `N(θ) gives the primal form of the WMB surrogate likelihood

˜̀WMB

N (θ) = µ̄N · θ − min
θ̄∈D(θ̄),w̄∈D(w̄)

log Z̃WMB(θ̄, w̄). (4.21)

Since the WMB log-partition function upper bounds the true partition function, it follows

that the WMB surrogate likelihood lower bounds the true likelihood. Finding the ML

estimate using the WMB surrogate involves the joint maximization

arg max
θ∈RD

max
θ̄∈D(θ),w̄∈D(w)

µ̄N · θ − log Z̃WMB(θ̄, w̄). (4.22)

which is in a much nicer form than the saddle-point problem faced by GBP in (4.17). The

weighted log-partition function, log Z̃WMB, is a differentiable and jointly convex function of θ̄

and w̄. We can therefore update the weights, w̄ , and/or update the extended parameters,
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θ̄, in every iteration. Further, there is also no need to completely tighten the primal bound

by exactly solving the problem in (4.20).
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Figure 4.3: Comparison of WMB-based likelihood surrogates and the true likelihood.

Figure 4.3 illustrates the WMB surrogate likelihood for the two parameter MRF described in

(4.16) of the previous section. Plots 4.3a and 4.3c show the surrogate likelihood surfaces for

iBounds of 2 and 8, respectively. Figures 4.3b and 4.3d illustrate the difference between the

true likelihood function and the WMB-based surrogates. Notice that all the differences are

positive because the WMB surrogate likelihood lower bounds the true likelihood. Also notice

that the difference between the true likelihood and the iBound 2-based surrogate (Figure

4.3b) are larger than the differences involving the iBound 8-based surrogate (Figure 4.3b).

In this problem, the better surrogate results in an optima (show by the red asterisk) that is

closer to the true optima (shown by the blue circle).
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4.2.3 Pseudo and Composite Likelihood Approximations

The fundamental problem encountered when optimizing the likelihood is intractability of the

likelihood gradient. The approach adopted in the previous section was to approximate the

likelihood gradient via approximate inference. Fortunately, the use of approximate inference

could be justified by interpreting it as exactly optimizing an approximation, or surrogate, to

the true likelihood function. In this section, we consider methods that directly replace the

likelihood function with alternatives that can be tractably optimized.

The Pseudo-Likelihood Approximation

We begin by discussing the pseudo-likelihood, which was first introduced by Besag [7]. The

pseudo-likelihood approximation can be described in many ways. We motivate it by expand-

ing the joint distribution p(y) using the chain rule and then approximating the terms in the

chain rule expansion by adding extra conditioning variables

p(y;θ) =
∏
j

p(yj|yj, ..., yj−1;θ) ≈
∏
j

p(yj|y1, ..., yj−1, yj+1, ..., yM ;θ) =
∏
j

p(yj|y¬j;θ).

(4.23)

In the case of an MRF, the terms p(yj|y¬j;θ) take a particularly nice form as yj is indepen-

dent of the other variables in y given its neighbors δ(j)

p(yj|y¬j;θ) = p(yj|yδ(j);θ) =
p(yj,yδ(j);θ)∑
y′j
p(y′j,yδ(j);θ)

= exp

 ∑
α:yj∈yα

θα(yα)− logZ(yδ(j);θ)

 .

(4.24)

Note that Z(yδ(j);θ) =
∑

yj
exp

(∑
α:yj∈yα θα(yα)

)
is a local partition function that is effi-

ciently computable – it is just a sum over the states of variable yj.
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The pseudo-likelihood function is revealed by plugging the approximation in (4.23) into the

expression for the likelihood

`PL

N (θ) =
1

N

N∑
n=1

∑
j

log p(y
(n)
j |y

(n)
N(j);θ)

=
∑
j

∑
α:yj∈yα

∑
yα

µ̄N(yα)θα(yα)−
∑
j

∑
yδ(j)

µ̄N(yδ(j)) logZ(yδ(j);θ), (4.25)

where once again µ̄N(·) are empirical marginals computed on the training set. The pseudo-

likelihood is also a concave function of θ and all of the terms in (4.25) are tractable. The

max pseudo-likelihood estimate θPL = arg maxθ `
PL
N (θ) can be found by gradient-based opti-

mization. We refer the reader to [45] for details on optimizing `PL(θ).

The pseudo-likelihood is a well-studied object and it is known to be statistically consistent

[30, 45]: meaning that if the parameters of the true (unknown) distribution p(y;θ?) are in

some parametric family θ? ∈ Θ and our model happens to be in the same family θ ∈ Θ, then

the max pseudo-likelihood estimate, θPL, converges to the true parameter setting θPL → θ?

as the size of the training data is increased N →∞ 3. The intuition for this result is that the

max pseudo-likelihood estimate, θPL, attempts to match all of the conditional distributions

p(yj|yδ(j);θ) to the empirical conditionals. If θPL matches all of these empirical conditionals

exactly, then running a Gibbs sampler on the model p(y;θPL) will have the same stationary

distribution as the true distribution p(y;θ?).

The Composite Likelihood Approximation

The composite likelihood can be seen as a direct generalization of the pseudo-likelihood[58,

22]. Rather than approximating the likelihood as a sum of terms involving single variable

conditionals, log p(yj|yδ(j);θ), the composite likelihood considers terms over larger sets of

3Technically, for this to occur the model must be statistically identifiable.
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variables. In particular, let {(yAc ,yBc)}Cc=1 be a collection of disjoint subsets of y (i.e.

yAc ∩ yBc = ∅, yAc ,yBc ⊆ y) such that yAc 6= ∅, then the composite likelihood is defined as:

`CL

N (θ) =
1

N

N∑
n=1

C∑
c=1

log p(yAc|yBc ;θ). (4.26)

Note that when {yAc} = {yj}j and {yBc} = {y \ yj}j we recover the pseudo-likelihood.

The max composite likelihood estimate θCL = arg maxθ `
CL
N (θ) can also be found by gradient-

based optimization. The complexity of optimizing `CL
N (θ) now depends on the size of the

clusters yAc . However, as the size of yAc is increased, the model will capture more inter-

variable dependencies and hopefully provide a better estimate of θCL. This computation-

accuracy trade-off was explored in [22], where it was also shown that the composite likelihood

is statistically consistent if a proper set of clusters are chosen4.

The composite likelihood is quite flexible as one is free to select arbitrary subsets yAc and

yBc . Nowozin recently proposed two novel composite likelihoods for undirected graphical

models [67]. His criss-cross likelihood is applicable to pairwise models on a grid and the sets

{yAc} are chosen to be horizontal and vertical “strips” in the grid structure. He also proposed

a composite likelihood for general graphs where the sets {yAc} come from very-acyclic sub-

graph decompositions[11] – thus ensuring that computing the conditional p(yAc|yBc ;θ) only

requires inference on a chain.

4.3 Error in Approximate Likelihood Optimizations

The previous section discussed different methods for approximating the intractable likelihood

computation. In general, these approximations will introduce error that prevent us from

4The conditional distributions must be in the model and every variable must appear in some cluster yAj .
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finding the MLE, θML. In most cases, however, other sources of error cause the model

p(y;θML) to be an approximation to the true (unknown) distribution p(y;θ?) of interest. In

this section, we present two frameworks for describing the distinct sources of error affecting

parameter estimation. We utilize these frameworks in the following section to systematically

study the effect that using different likelihood approximations has on our ability to accurately

estimate θ?.

4.3.1 Excess Error Decomposition

Recall that our data {y(1), ...,y(N)} is sampled i.i.d from some true (unknown) distribution

p(y;θ?), where θ? ∈ Θ is a member of some parametric family of distributions. Let us

further assume that the true probability model, p(y;θ?), is statistically identifiable5 so that

we can uniquely recover the parameter setting θ? given large enough N .

The maximum likelihood estimate of θ?, given our set of N i.i.d. samples from p(y;θ?) is:

θML

N = arg max
θ∈Θ

1

N

N∑
n=1

log p(y(n);θ), (4.27)

where we now use a subscript N to make the point estimate’s dependence on the choice of

data set explicit. By the strong law of large numbers, as N →∞ the monte-carlo estimate

converges to an expectation under p(y;θ?):

1

N

N∑
n=1

log p(y(n);θ)
a.s.→ Eθ? [log p(y;θ)] =

∑
y

p(y;θ?) log p(y;θ). (4.28)

Since we assumed that p(y;θ?) is statistically identifiable, θML
N → θ? as N → ∞. In other

words, the maximum likelihood estimator is asymptotically consistent [13].

5see Definition 1.1
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Unfortunately, the true parameter setting θ? is unattainable for several practical reasons.

First, we are often interested in learning models for which the true parametric family Θ is

unknown. As a result, we often restrict attention to easy-to-specify model families Θ ⊂ Θ.

For example, in the image-denoising task, we often learn pairwise MRFs that model the

interaction between adjacent pixels in an image, but ignore longer range interactions that

may also be important. Let

θ? = arg max
θ∈Θ

Eθ? [log p(y;θ)] (4.29)

be the best parameter setting in this restricted family of models.

Second, note that Eθ? [·] is an expectation over the true and unknown distribution p(y;θ?).

Since we usually don’t have access to the marginals of p(y;θ?) we instead use our samples

to compute an empirical approximation to Eθ? [·]. Let

θN = arg max
θ∈Θ

1

N

∑
n

log p(y(n);θ) = arg max
θ∈Θ

`N(θ) (4.30)

be the empirical estimate in the restricted family of models.

Finally, as discussed in Section 4.2, it is often infeasible to optimize the true likelihood

function `N(θ). Instead, we optimize an approximation to it ˜̀
N(θ). Let

θ̃N = arg max
θ∈Θ

˜̀
N(θ) (4.31)

be the empirical estimate found under our choice of approximate likelihood function. The

optimization problem in (4.31) implicitly defines θ̃N = θ̃(y(1), ...,y(N)) as a function of the

N observations. In other words, it defines an approximate inference-based estimator, where

different approximate inference methods yield different estimators.
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The expected excess error in our likelihood-based estimate, E , is:

E = E
[
Eθ? [log p(y;θ?)]− Eθ?

[
log p(y; θ̃N)

]]
, (4.32)

where since θ̃N is a function of the N observations, the outer-most expectation is taken with

respect to the random choice of data set. Following [10], the excess error in our likelihood-

based estimate can be decomposed as:

E = EModel + EEstimation + EOptimization (4.33)

where

• EModel = E [Eθ? [log p(y;θ?)]− Eθ? [log p(y;θ?)]], is the model error. It measures how

well the best model in Θ can represent the true (unknown) model p(y;θ?).

• EEstimation = E [Eθ? [log p(y;θ?)]− Eθ? [log p(y;θN)]], is the estimation error. It mea-

sures the error due to optimizing an empirical likelihood using only N samples.

• EOptimization = E
[
Eθ? [log p(y;θN)]− Eθ?

[
log p(y; θ̃N)

]]
, is the optimization error. It

measures the error introduced by our approximate likelihood function. It can be seen

as a bias inherent to the approximate inference-based estimator.

Figure 4.4 depicts the excess error, E , for the case when there is no model error. The

empirical likelihood function, `N(θ), is shown in red and takes its maxima at the point

estimate θN . The empirical surrogate likelihood function, ˜̀
N(θ), is shown by the dashed

red line and takes its maxima at the point estimate θ̃N . Finally, the solid black line depicts

the expected likelihood, `(θ) = Eθ? [log p(y;θ)]. It takes its maxima at the true parameter

setting θ?.

We note that there is a fundamental trade-off between model error and estimation error:
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Figure 4.4: Illustration of excess error in the approximate likelihood-based estimate.

a larger family of models may reduce or even eliminate model error, but will require many

additional samples to maintain a constant level of estimation error. As a result, if θ ∈ RD and

N is small relative to the degrees of freedom in the model, D, then one typically optimizes

a regularized form of the (approximate) likelihood: arg max
θ∈RD

˜̀
N(θ) + λ||θ||2, where λ > 0

controls the model-estimation error trade-off. We will keep the regularization parameter λ

fixed throughout this chapter as doing so will allow us to study the robustness of different

approximate inference-based estimators to varying levels of model and estimation error.

4.3.2 Bias-Variance Decomposition

The excess error maps closeness in parameter setting to closeness in expected likelihood

so that two parameter settings θ1 and θ2 are presumed to be close only if their expected

likelihoods `(θ1) and are `(θ2) close. However, we can also measure error directly in terms

of the difference between the true parameter setting, θ?, and the estimate produced by

our approximate inference-based estimator, θ̃. In Figure 4.4 this corresponds to measuring

error on the horizontal, rather than vertical axis. The mean-squared error (MSE) describes
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precisely this error

MSE : E
[
||θ̃ − θ?||2

]
= Tr[V ar(θ̃)] + ||Bias(θ̃))||2, (4.34)

where once again the outer expectation is with respect to the random choice of data set. We

have decomposed the MSE into a variance component and a bias component. The variance

term measures how sensitive the estimator is to changes in the data set of N samples and is

computed as: Tr[V ar(θ̃)] =
D∑
d=1

V ar(θ̃d) for θ ∈ RD. The bias term measures whether the

estimator θ̃(y(1), ...,y(N)) is correct on average and is computed as: Bias(θ̃)) = E(θ̃)− θ?.

While one normally considers the asymptotic properties of an estimator (e.g. consistency and

efficiency) it is important to note that the bias and variance of an estimator are a function

of sample size, N . An estimator θ† = θ†(y(1), ...,y(N)) may be unbiased as N → ∞, but

exhibit large bias when N is small. In contrast, an estimator θ′ = θ′(y(1), ...,y(N)) may be

asymptotically biased, but exhibit smaller bias than θ† when N is small. The variance of an

estimator will, in general, decrease as N grows, but the rate at which it decreases will differ

among estimators. As a result, an unbiased estimator θ† may be asymptotically efficient,

meaning that it has the minimum variance among all possible estimators as N → ∞, but

exhibit larger variance than some asymptotically inefficient estimator, θ′, for small N .

Ideally, both the bias and variance of an estimator will be small at any N , but one usually

has to increase bias in order to reduce variance (or vice-versa). In the experiments that

follow, we will see exactly this trade-off: certain estimators will exhibit low variance and

high bias, while others will exhibit high variance, but low bias. By studying the bias and

variance characteristics of many different estimators, we are in a good position to select an

estimator suited for our particular application.
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4.4 Empirical Study of Inference-Based Estimation

We conducted a variety of experiments to study the effect of using different approximate

inference methods and, therefore, different surrogate likelihood functions on the accuracy of

parameter estimation. In particular, we focus on GBP and WMB as both methods utilize

the iBound control parameter to trade computation for accuracy. In such methods, a smaller

iBound requires less computation, but typically provides a less accurate approximation to

the true likelihood function.

Since increasing iBound also increases computation, a natural question to ask is: when will

the additional computation of a higher iBound actually yield a more accurate parameter

estimate? This of course depends on properties of the problem under consideration, but our

study exposes regimes where it is clearly beneficial to invest more computation. Interestingly,

we also found regimes where it is in fact detrimental to use a higher iBound method.

4.4.1 Experimental Setup

We focus in this section on estimating the parameters of pairwise MRFs defined over many

different underlying graph structures. Every variable in the MRF model is K-ary – i.e.

yi ∈ {1, .., K} – and has an associated unary potential, with parameters sampled as θi(yi) ∼

N (0, σ2
i ). Each edge in the model has a pairwise potential, with parameters sampled as

θij(yi, yj) ∼ N (0, σ2
ij).

To ensure that the model is statistically identifiable, we force the pairwise potentials to

be symmetric θij(yi, yj) = θij(yj, yi) and set θi(yi = 1) = 0 and θij(yi = 1, yj) = 0 for

yj ∈ {1, .., K}[101]. For example, if K = 3 then the unary and pairwise potentials are as
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follows:

θi(yi) =


0

θi(yi = 2)

θi(yi = 3)

 θij(yi, yj) =


0 0 0

0 θij(yi = 2, yj = 2) θij(yi = 2, yj = 3)

0 θij(yi = 3, yj = 2) θij(yi = 3, yj = 3)


with θij(yi = 2, yj = 3) = θij(yi = 3, yj = 2).

After specifying the parameters of the unary and pairwise potentials, we generate a set of N

samples from the model using a Gibbs sampler. In order to generate samples that are nearly

i.i.d., we run the sampler for 5000 burn-in iterations and retain every 100th sample. We then

compute the sufficient statistics over the N samples and use Marc Schmidt’s minFunc solver6

to find the parameter setting that optimizes the surrogate likelihood function, ˜̀
N(θ), where

different approximate inference methods are used to specify different surrogate likelihoods.

Unless otherwise specified, the minFunc solver was run to a convergence threshold of 1e−6.

As mentioned in the previous section, we keep the regularization parameter fixed at λ = 1e−6

throughout these experiments. While one would typically set λ to an appropriate value for

their learning task, in this chapter we are interested in studying the effect that different

surrogate likelihoods have on estimation accuracy as both model and estimation error are

systematically varied. In particular, we want to understand the bias and variance properties

of the different inference-based estimators, which would undoubtedly be obscured if the

regularization parameter were varied too.

We focus on surrogates based on the WMB and GBP inference methods. In particular, we use

the WMB method with iBound = {2, 4, 8} and GBP with iBound = {2, 4}. The WMB-based

estimators utilize the same, optimal elimination order for all iBound settings. GBP with

iBound 2 is just a convexified form of Loopy BP described in Section 4.2.2. The collection

of regions R used by GBP with iBound 4 depends on the problem under consideration. In

6http://www.di.ens.fr/ mschmidt/Software/minFunc.html
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experiments involving a grid of variables, the set of regions R are comprised of the faces and

all interior edges and vertices of the grid. In all other experiments, GBP takes the collection

of regions to be R = O ∪ I, where the outer regions, O, are chosen to be the cluster of

variables in each mini-bucket used by WMB with an iBound of 4, and the inner regions, I,

are identified using the cluster-variation method discussed in Section 1.4.2.

4.4.2 Estimation and Optimization Error Comparison

We begin with a set of experiments for which Θ = Θ so there is no model error (Emodel = 0).

This is an admittedly artificial setting as model error is unavoidable in practice, but it is

useful because it allows us to examine the interplay between estimation and optimization

error in some commonly used models and, ultimately, identify regimes in which a better

(higher iBound) surrogate is actually beneficial.

Synthetic Grids: Varying Interaction Strength

We begin with a set of experiments on a 20× 20 grid of binary variables in the standard 4-

neighbor connectivity. The (identifiable) parameters θ? of each pairwise model are sampled

as described in Section 4.4.1. 8 different models were generated with unary potentials sam-

pled using σi = 0.1 and pairwise potentials sampled using σij = {0.5, 1.0, 2.0}, for a total of

24 different models. As the interaction strength, σij, is increased, the models become increas-

ingly frustrated and the accuracy of approximate inference will, in general, degrade. This

is thus an important setting to study as it tells us how the error of the different surrogates

scales as inference in model being learned gets increasingly difficult.

Data sets of size N = {100, 250, 500, 1000, 2500, 5000, 10000} were generated for each of the

24 models. We report the mean and standard deviation of the MSE, ||θ̃N − θ?||2, across
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the 8 models for each setting of σij. We also report the mean and standard deviation of the

run-times of the WMB- and GBP-based estimators, which is the time in seconds required by

the minFunc solver to find the maxima of each surrogate likelihood function. The run-time

depends not only on the time complexity of each inference algorithm, but also the curvature

of each algorithm’s surrogate likelihood function. As a result, it is possible for WMB with

iBound 8 to have a smaller run-time than WMB with iBound 2 simply because the minFunc

solver needs fewer evaluations to find the optima θ̃iBound=8
N than the optima θ̃iBound=2

N .

Figure 4.5 shows the MSE and run-times for the three WMB-based and two GBP-based

estimators. The left column contains the MSEs and the right column the run-times. The

top, middle and bottom rows are for models generated with σij = 0.5, σij = 1.0 and σij = 2.0,

respectively. As expected, the size of the MSE for all estimators increases as we move from

the top row to the bottom row. Interestingly, the run-times also increase as we move from

top to bottom. This suggests that the curvature of the surrogates decreases as the models

become increasingly frustrated, causing the minFunc solver to use more function evaluations

to find a maxima.

As expected, the MSE of all methods decreases as the training set size N is increased.

However, two other interesting trends appear. First, we see that higher iBound methods

have greater error when N is small. For example, the MSE of WMB with iBound 2 (WMB2

in red) lies below the MSE of WMB8 for N < 500. As N is increased, the MSE of WMB8

drops below the MSE of WMB2, which is the expected behavior. Second, we see that the

GBP-based estimators have smaller error for large N than the WMB-based estimators. This

suggests that the WMB upper bound on the log-partition function is loose and less accurate

than the GBP-based log-partition function approximation.
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Figure 4.5: MSE and run-times of inference-based estimators on 20× 20 grids.
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Synthetic Grids: Varying Grid Size

We also conducted experiments to see how the estimation error scales as the size of the

underlying grid is increased. In particular, we considered d×d grids with d ∈ {10, 20, 30, 40}.

For each setting of d, we generated 8 different models with parameters θ? sampled using

σi = 0.1 and σij = 0.5.

Figure 4.6 shows the MSE and run-times for the WMB and GBP-based estimators. Once

again, the left column contains the MSEs and the right column the run-times. The top,

middle and bottom row show the error in the estimates found using data sets of size N = 100,

N = 1000 and N = 10000, respectively.

As we would hope, the MSE of all the estimators decreases as N is increased. In Figure 4.6a

when N = 100 we once again see that WMB2 estimator has smaller MSE than both the

WMB4 and WMB8 estimators. While, in Figure 4.6e when N = 10000, the situation has

reversed and WMB8 has smaller MSE than both the WMB4 and WMB2 estimators.

As expected, the run-times of the estimators grow as grid size is increased. However, the

error of the different estimators remains fairly flat as d is increased from 10 to 40. As in

the previous experiments, the MSE of the GBP-based estimators is smaller than the MSE of

the WMB-based estimators for large N . However, the difference in run-times of the WMB

and GBP-based estimators is quite large. As d is increased, the run-time of the WMB2

estimator is much smaller than the BP-based estimator even though they are in the same

iBound 2 complexity class. Similarly, the run-time of the WMB4 estimator is much smaller

than the GBP-based estimator even though both are iBound 4 methods.

In order to determine if this disparity in run-time is due to differences in the curvature of

the WMB and GBP-based surrogates or implementation differences, we recored the number

of surrogate likelihood evaluations needed by the minFunc solver to find a maxima. Figure
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4.7 plots the number of function evaluations for each grid size when N = 10000. Since,

the GBP-based estimator requires fewer function evaluations (on average) than the WMB4

based estimator, the run-time discrepancies appear to be due to implementation differences.

Synthetic Grids: Changing Variable Domain Size

We also conducted experiments to see how the estimation error scales as the domain size of

the variables in our model is changed. In particular, we considered a 10× 10 grid of K-ary

variables with K ∈ {2, 3, 4, 5}. For each setting of K, we generated 8 different models with

parameters θ? sampled using σi = 0.1 and σij = 0.5.

Figure 4.8 shows the MSE and run-times for the WMB and GBP-based estimators. Once

again, the left column contains the MSEs and the right column the run-times. The top,

middle and bottom row show the error in the estimates found when training with data sets

of size N = 100, N = 1000 and N = 10000, respectively.

As K is increased, we see that the MSE of all the estimators grows. Interestingly, with a

data set of size N = 100 in Figure 4.8a, the MSE of the WMB2 estimator is below that of

the WMB4 estimator for all K. When N = 1000 in Figure 4.8c, we see that the MSE of

the WMB2 estimator is below that of the WMB4 estimator for K >= 4. However, when

K < 4, the WMB4 estimator has smaller MSE. Since the number of parameters needing to

be estimated grows as K is increased it is not that surprising that more data is needed to

fit a model with larger K. Once again, when N = 10000 the GBP-based estimators have

smaller MSE than the WMB-based estimators.
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(c) MSEs for N = 1000
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(d) Run-times for N = 1000
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(e) MSEs for N = 10000
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(f) Run-times for N = 10000

Figure 4.6: MSE and run-times of inference-based estimators on differently sized grids.
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Figure 4.7: Number of Surrogate Likelihood evaluations with N = 10000.

Synthetic Planar Graphs

The previous set of experiments have all considered models with a regular grid structure.

This somewhat limits the utility of our empirical findings because the quality of approximate

inference depends not only on the models parameters, but also on the underlying graph

structure. We thus decided to conduct a set of experiments on some less regularly structured

planar graphs. MRFs on planar graphs are a useful class of models to study as they are

commonly used in computer vision tasks such as image segmentation.

We formed the planar graph structure underlying each MRF by randomly placing d ∈

{50, 100, 150, 200, 250} points in the unit square and computing a Delaunay triangulation

on the set of d points. For each setting of d, we generated 25 different models with parame-

ters θ? sampled using σi = 0.1 and σij = 0.5.

Figure 4.9 shows the MSE and run-times for the WMB and BP-based estimators. Once

again, the left column contains the MSEs, the right column contains the run-times and the

top, middle and bottom rows show the errors with training sets of size N = 100, N = 1000

and N = 10000, respectively.

The trends for the planar graphs are quite similar to the grid instances. As N is increased
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(a) MSEs for N = 100
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(b) Run-times for N = 100
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(c) MSEs for N = 1000
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(d) Run-times for N = 1000
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(e) MSEs for N = 10000
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(f) Run-times for N = 10000

Figure 4.8: MSE and run-times of inference-based estimators for different K.
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the MSE of all the estimators improves. Once again, the WMB2 estimator has smallest

MSE for N = 100 samples (Figure 4.9a), but largest error when N = 10000 (Figure 4.9e).

The BP-based estimator once again has smaller error than the WMB-based estimators for

large N .

One interesting new trend in these set of instances is the clear reduction in run-time of the

WMB-based estimators as N is increased. Note that in Figure 4.9b, it takes the minFunc

solver more than 200 seconds to find the WMB8 point estimate, θ̃iBound=8
N , while in Figure

4.9f it takes fewer than 100 seconds to find the maxima. This is a clear instance where the

larger data set size increases the curvature or our surrogate likelihood function and makes it

easier for the minFunc solver to find the optima. Figure 4.10 is a zoomed-in view of the run-

times of the different estimators for the models with d = {50, 100} variables. Note that the

run-time of the WMB8 estimator (in green) is in fact lower than the run-time of the WMB2

estimator (in red) in this chart. This is remarkable given that the run-time complexity of

the WMB8 is 4 times that of WMB4 and demonstrates the role that curvature plays when

finding a point estimate.

Bias-Variance Comparison

The results in the previous sections suggested that lower iBound methods are (on average)

more accurate than higher iBound methods in the small data setting. However, as N is

increased our intuition that higher iBound methods have asymptotically smaller bias was

also confirmed. In other words, it appears that lower iBound methods trade larger bias for

reduced variance, while higher iBound methods trade smaller bias for increased variance.

We conducted a simple experiment in order to study the bias and variance characteristics of

different approximate inference-based estimators. To estimate the bias and variance of each

estimator we first fix the parameters θ? of a 20×20 binary grid of variables. We then sample
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(b) Run-times for N = 100
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(c) MSEs for N = 1000
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(d) Run-times for N = 1000
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(e) MSEs for N = 10000
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(f) Run-times for N = 10000

Figure 4.9: MSE and run-times of inference-based estimators on planar graphs.
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Figure 4.10: Zoom of run-times of estimators on planar graphs with N = 10000.

L = 25 different data sets from p(y;θ?) for each N ∈ {100, 250, 500, 1000, 2500, 5000, 10000},

giving a total of 175 different data sets. We then estimate the parameters θ̃N using each

approximate inference-based estimator on each of the 175 data sets. For each data set size,

N , we estimate the bias of each estimator as

Bias(θ̃N) =
D∑
d=1

Bias(θ̃N,d) with Bias(θ̃N,d) ≈ mean(θ̃N,d)− θ?d (4.35)

where θ̃N,d is the dth element of the parameter vector θ̃N ∈ RD and

Mean(θ̃N,d) =
1

L

L∑
l=1

θ̃
(l)
N,d (4.36)

with θ̃
(l)
N,d the setting of θ̃N,d estimated using data set l. The variance of each estimator is

estimated as

V ar(θ̃N) =
D∑
d=1

V ar(θ̃N,d) with V ar(θ̃N,d) ≈
1

L

L∑
l=1

(
θ̃

(l)
N,d −Mean(θ̃N,d)

)2

. (4.37)

Figure 4.11 exposes the bias-variance trade-off for WMB-based estimators with iBounds of

2, 4 and 8. Each column corresponds to estimating the parameters of a different MRF: the
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(b) MSE in grid with σij = 1.0

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
0

1

2

3

4

5

6

7

MSE: d=20, K=2, σ
i
=0.1, σ

ij
=2.0

log10(Data Set Size)

M
S

E

 

 

WMB
2

WMB
4

WMB
8

(c) MSE in grid with σij = 2.0
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(d) Bias in grid with σij = 0.5
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(e) Bias in grid with σij = 1.0
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(f) Bias in grid with σij = 2.0
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(g) Variance in grid with σij = 0.5
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(h) Variance in grid with σij = 1.0
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(i) Variance in grid with σij = 2.0

Figure 4.11: MSE, Bias and Variance of WMB-based estimators.

left column is a model in which the unary and pairwise potentials were drawn with σi = 0.1

and σij = 0.5, respectively; in the middle column, the potentials were drawn with σi = 0.1

and σij = 1.0; and, in the right column with σi = 0.1 and σij = 2.0. The top, middle and

bottom rows show the MSE, bias2 and variance, respectively.

The top row shows the MSE as a function of data set size, N , for the different WMB-based

estimators. Notice that for small N , the WMB-based estimator with an iBound of 2 has

smaller MSE than the WMB-based estimators with higher iBounds. As N is increased,

however, the MSE of the iBound 2 estimator becomes larger than the other WMB-based
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estimators. Interestingly, the point N at which the iBound 2 estimator becomes worse (in

terms of MSE) than the other estimators increases as we move from the MRF in the left

column to the MRF in the right column. In other words, as the underlying model becomes

increasingly frustrated more data is needed for the MSE of the higher iBound methods to

dip below the MSE of the lower iBound methods.

The second and third rows of Figure 4.11 provide an explanation for this behavior. The

middle row shows the bias and the bottom row the variance of the estimators as a function

of data set size. For all three settings of σij and for almost all N , the bias of the iBound 8

estimator is less than the bias of the iBound 2 estimator. However, this reduced bias comes

at the expense of increased variance. In particular, for small N the variance of the iBound 8

estimator is typically much larger than the variance of the iBound 2 estimator. As a result,

when the difference between the bias of the WMB2 and WMB8 estimators is less than the

difference in their variance, the MSE of the WMB2 is smaller than the MSE of the WMB8

estimator.

This finding has important practical consequences. In practice, we only observe one data

set {y(1), ...,y(N)}. If the data set size, N , is small relative to the dimensionality, D, of the

parameter vector being estimated, then it is probably best to use a lower iBound method.

This decision would be justified from the experiments conducted so far, but there is yet

another motivation for using the lower iBound method. Figure 4.12 plots the 2-norm of

the parameter vectors found by the different WMB-based estimators as a function of data

set size. Notice that the WMB2 curve (in red) is always below the curves of the WMB4

and WMB8 estimators (in blue and green, respectively). This indicates that the WMB2

estimator effectively regularizes, or controls the complexity of our learned model, in a data-

dependent manner!
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Figure 4.12: 2-Norm of parameter vectors for WMB-based estimators.

4.4.3 Model, Estimation and Optimization Error Comparison

We also consider an experiment in which Θ ⊂ Θ. In particular, we generate our data

from a pairwise grid with 8-neighbor connectivity, but learn a model with only 4-neighbor

connectivity (see Figure 4.13). So for a d × d grid, we have Θ = R2(d(d−1)+(d−1)2) and

Θ = R2d(d−1). The pairwise potentials on the new diagonal edges are drawn from N (0, σ2
ik)

and we increase σik from 0 to 1 to increase the level of model error. The unary potentials

and standard edge potentials are drawn from σi = 0.1 and σij = 0.3, respectively.

Figure 4.13: Illustration of 4- and 8-neighbor connecivity.

As usual, we generate 8 different models for each setting of the diagonal interactions σik ∈

{0, 0.2, 0.4, 0.6, 0.8, 1.0} and then sample data sets of various size for each model. Since

Θ ⊂ Θ we compute the estimation error by projecting the true parameters θ? ∈ Θ onto the

reduced space Θ, ignoring the parameter settings on the diagonal edges.

157



Figures 4.14a and 4.14b plot the estimation accuracy of the different inference-based estima-

tors as a function of mis-specification level, σik, for data sets of size N = 100 and N = 10000,

respectively. Notice that WMB2 is more robust to model error (i.e. has smaller estimation

error) than the other inference-based estimators when N = 100. However, for N = 10000

the situation flips and it is the least robust.
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(a) Error vs. noiselevel (σik) with N = 100
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(b) Error vs. noiselevel (σik) with N = 10000

Figure 4.14: Estimation error of inference-based estimators as function of model error.

Figures 4.15a and 4.15b plot the estimation error as a function of data set size for noise levels

of σik = 0.4 and σik = 1.0, respectively. Note that the estimation error of the estimators

decreases as N is increased for both noiselevels. This suggests that even though the learned

model is incorrect, with increasing data we can separate the standard 4-neighbor interactions

from the new diagonal interactions with higher fidelity.

Figure 4.15 also shows how the regime for which the WMB2 estimator is preferable to higher

iBound estimators changes as a function of mis-specificaiton. In Figure 4.15a, the WMB2 has

the smallest error for N <= 500; while in Figure 4.15b, the WMB2 estimator has smallest

error for N <= 2000. This is once again a result of the natural regularization enforced by

the WMB2 estimator: the WMB2 estimators is less likely to capture correlations introduced

by the diagonal interactions as they appear as noise under the assumed 4-neighbor model.
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(a) Error vs. data size (N) for σik = 0.4
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(b) Error vs. data size (N) for σik = 1.0

Figure 4.15: Estimation error of inference-based estimators as function of data set size.

4.5 Empirical Study of Inference-Based Prediction

The joint estimation and prediction problem, as illustrated in Figure 4.1, involves estimating

the parameters of a model and then using the fitted model to make predictions on new

data. The experiments in Section 4.4 focused on the estimation problem and, in particular,

examined the effect of using different approximate inference methods on the accuracy of

parameter estimation (as measured by MSE). In this section, we focus on the prediction

task and study the effect of using different inference methods on prediction accuracy. In

other words, rather than focusing on how well we can learn the parameters of a model, we

focus on how accurately we can predict under the learned model.

We follow the classical approach to joint estimation and prediction described in Section 4.1,

where we first estimate the parameters of our model, θ, on a training set and then appeal to

Bayesian decision theory to construct a prediction rule ytst = f(xtst,θ) for our chosen loss

function [71]. We focus in this section on the Hamming loss and Mean Squared Error loss.

The Bayes optimal predictor for the Hamming-loss is: ytst
i = arg maxyi p(yi|x;θ), for each

variable i in our model. The Bayes optimal predictor for the Mean Squared Error loss is:

ytst
i =

∑
yi
yip(yi|x;θ).
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Inference is thus needed in both the estimation phase and the prediction phase. We once

again focus on approximate inference methods that utilize an iBound parameter to trade

computation for accuracy – with a smaller iBound requiring less computation, but typically

providing a less accurate approximation. Since increasing the iBound increases computation,

in this section we consider whether higher iBound methods actually yield more accurate pre-

dictions. As in the previous section, the answer depends on the problem under consideration:

in some cases the higher iBound is beneficial and in other cases it is actually detrimental.

This section is split into three different experiments. In the first experiment, we estimate the

parameters of a joint MRF model, p(y,x;θ), and then fix the elements of x to an observed

value xtst to form the conditional distribution p(y|xtst,θ used for prediction. Importantly, we

choose a statistically identifiable parameterization of the joint model, p(y,x;θ), so that we

can compute both the estimation error and the prediction error. In the second and third

experiments, we use a CRF model to directly learn a conditional distribution p(y|x;θ).

Since the underlying parameters of the conditional model are not known, we evaluate the

prediction accuracy of the learned model on a held out test set.

MRF Image De-noising

We conducted an experiment involving the real world task of image de-noising, where we

are given a noisy image, x, and our goal is to reconstruct the original, noise free image y.

We model the joint probability of noisy and noise-free images, p(y,x), as an MRF with the

undirected graph structure in Figure 4.16. Each pixel i is modeled with a binary variable

yi ∈ {0, 1} and the noisy pixels are also assumed to be binary xi ∈ {0, 1}. The joint

distribution over the collection of all pixels y and x is given by

p(y,x;θ) ∝ exp

(∑
i

θiyi +
∑
ij

θijyiyj +
∑
i

θiiyixi

)
(4.38)
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Figure 4.16: Markov Random Field (MRF) model for image de-noising.

where θi is a bias parameter for pixel i, θij is a parameter governing how likely neighboring

pixels i and j are to be ‘on’ at the same time and θii is a parameter governing how likely both

the noisy and original pixel at site i are to be ‘on’. This MRF is in a minimal parameterization

and is therefore statistically identifiable.

We generated a training and test set using the usps handwritten digits data set7, which

contains 1100, 16× 16 pixel grayscale images of each digit ’0’ to ’9’. We construct a data set

for each digit by first binarizing the original grayscale images and then constructing a noisy

version of each binarized image by randomly flipping pixels with probability pnoise = 0.3. We

then randomly split each digit’s data set {(y(1),x(1)), ..., (y(1100),x(1100))} into a test set of

Ntst = 200 images and a training set of Ntrn = 900 images. The entire process is repeated

10 times and the reported errors are averaged across these 10 folds.

We estimate the parameters θ̃N of the de-noising MRF using different WMB-based estimators

on subsets of the training data of sizes N = {25, 50, 100, 250, 500, 900}. We also compute the

MLE, θN=900, of the de-noising MRF using exact inference. The regularization parameter

was fixed to λ = 1e−2.

Figure 4.17 shows the estimation error of the different estimators on digits 2 − 9. Since we

do not know the true parameters, θ?, in this experiment, we measure the error between the

7http://www.cs.nyu.edu/ roweis/data.html
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MLE and the WMB-based estimate: ||θN=900− θ̃N ||2. Notice that much like the experiments

in Section 4.4, we see that for small N , the reduced variance of the WMB2 estimator lead

to smaller estimation error than the higher iBound methods. However, unlike the prior

experiments these parameters are being estimated from real image data. This suggests that

the bias-variance trade-off of the WMB-based estimators is a real phenomena and not simply

an artifact of the experimental setup in Section 4.4.
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(a) Estimation error for digits 2− 5.
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(b) Estimation error for digits 6− 9.

Figure 4.17: Estimation error of WMB-based estimators in MRF de-noising task with pnoise = 0.3.

We then used the model learned using each of the WMB-based estimators to make predictions

on the test set of images. In particular, we fix the elements of x to be the observed pixel

values in each test image xtst. This implicitly defines the distribution p(y|xtst; θ̃N) which

we can then use to make predictions. We take the loss in these experiments to be the

Mean Squared Error (MSE) and make predictions in our binary de-noising model as: ytst
i =

p(yi = 1|xtst
i , θ̃N). The inference method used to estimate θ̃N was also used to compute the

marginals needed for prediction – i.e., if WMB2 was used in learning, then WMB2 was also

used in prediction.

Figure 4.18 shows the prediction error for digits 2 − 9 as a function of the size, N , of the

data set used to estimate θ̃N . The prediction error for all of the methods decreases as N

is increased as we would hope. However, we see that the prediction error of higher iBound
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methods is consistently less than the error of lower iBound methods. This is quite interesting

given that in Figure 4.17 the higher iBound methods had larger estimation error for small

N . In other words, it seems that the error introduced by having the wrong parameters is far

less important for prediction accuracy than the error introduced by computing the wrong

(or approximate) marginals on the model.
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(a) Prediction error for digits 2− 5.
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(b) Prediction error for digits 6− 9.

Figure 4.18: Prediction error of WMB-based estimators in MRF de-noising task with pnoise = 0.3.

CRF Image De-noising

We conducted another set of image de-noising experiments on the usps digits dataset. Since

we are ultimately interested in recovering an image, y, given a noisy observation, x, in these

experiments we directly model the conditional distribution, p(y|x;θ), using a CRF of the

following form:

p(y|x;θ) = exp

(∑
i

∑
u

θufu(yi,x) +
∑
ij

∑
p

fp(yi, yj,x)

)
, (4.39)

where fu = {fu(·)} is a collection of unary features and fp = {fp(·)} is a collection of

pairwise features. θu = {θu} and θp = {θp} are the parameters for each of these features

and the entire CRF model is parameterized by θ = (θu,θp).
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The set of univariate and pairwise features used to de-noising are:

fu(yi) =



f1(yi,x) = 1

f2(yi,x) = xi

f3(yi,x) = loc(i, 1)

f4(yi,x) = loc(i, 2)

...

f18(yi,x) = loc(i, 16)


, fp(yi, yj) =



f1(yi, yj ,x) = 1 & hz(i, j)

f2(yi, yj ,x) = |xi − xj | & hz(i, j)

f3(yi, yj ,x) = 1 & vt(i, j)

f4(yi, yj ,x) = |xi − xj | & vt(i, j)


,

where loc(i, j) =

 1 if pixel i in tile j,

0 otherwise
is a function that indicates if pixel i is in a

specific region j of the image. In particular, we partition the 16× 16 pixel image into a set

of 16, non-overlapping 4× 4 tiles where, for example, the first tile corresponds to the 4× 4

pixel region in the top left corner of the image. The functions hz(i, j) and vt(i, j) indicate if

the edge between adjacent pixels i and j is oriented horizontally or vertically, respectively.

We use one copy of fu(yi,x) for each setting of yi and one copy of fp(yi, yj,x) for each joint

configuration of (yi, yj), so that fu = (fu(0),fu(1)) and fp = (fp(0, 0), ...,fp(1, 1)). This

gives a total of 36 unary features and 16 pairwise features so that θu ∈ R36 and θp ∈ R16.

As in the MRF de-noising experiments, we took the set of 1100, 16 × 16 pixel grayscale

images of each digit, binarized the original grayscale images and then constructed a noisy

version of each binarized image. In these experiments the noisy images are generated as

xi = yi(1−tnli )+(1−yi)tnli , where yi ∈ {0, 1} is the true binary label of pixel i, ti ∼ Unif [0, 1]

is random, and nl ∈ (0,∞] is a parameter controlling the noise-level[24]. Here, smaller values

of nl correspond to more noise.

We randomly split the 1100 data points into 900 training points and 200 test points and

estimate the parameters, θ̃N , of the de-noising CRF model using different WMB-based esti-

mators on data sets of size N = {2, 5, 10, 15, 20, 40, 80}. After training, we make predictions
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(a) Prediction error for digit 4 with nl = 3.
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(b) Prediction error for digit 4 with nl = 5.
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(c) Prediction error for digit 5 with nl = 3.
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(d) Prediction error for digit 5 with nl = 5.

Figure 4.19: Prediction error of WMB-based estimators in CRF de-noising task.

on the 200 test images using the MSE prediction rule. The process of splitting into a training

and test set is repeated 10 times and the errors reported are computed across these 10 folds.

Figure 4.19 reports the MSE prediction error on digits 4 and 5 at two different noise levels.

The top row is the prediction error on digit 4 and the bottom row is the error on digit 5.

The left column contains results for a noise level of nl = 3 and the right column for the

easier noise level of nl = 5. Rather surprisingly, we see that the WMB8 method has larger

prediction error than either the WMB4 or WMB2 method across all training set sizes. In

addition, the gap between the WMB8 method and the lower iBound methods is larger in

the harder de-noising problems in the left column.
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Figure 4.20: Sample images de-noised by the WMB.

Figure 4.20 depicts the de-noised images produced by the WMB-based estimators for a couple

of digits at the two different noise-levels, nl = 3 and nl = 5.

CRF foreground-background labeling

We also considered a simple problem from computer vision, where one takes an RGB image

with M pixels x ∈ R3M as input and wishes to predict a foreground-background labeling

y ∈ {0, 1}M as output. In particular, we consider the collection of 328 images from the

Weizmann horse database8. Each image in this data set contains a horse in some natural

setting and our objective is to predict if each pixel i in an image is part of a horse (yi = 1)

or is background (yi = 0).

Since we are only interested in predicting a foreground-background labeling of the RGB

image x, we directly model the conditional distribution p(y|x;θ) using the pairwise CRF

model in (4.39). The set of univariate and pairwise features used for foreground-background

8http://www.msri.org/people/members/eranb/
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labeling are:

fu(yi) =



f1(yi,x) = 1

f2(yi,x) = Ri

f3(yi,x) = Gi

f4(yi,x) = Bi

f5(yi,x) = hPosi

f6(yi,x) = vPosi


, fp(yi, yj) =



f1(yi, yj ,x) = 1 & hz(i, j)

f2(yi, yj ,x) = ∆RGB(i, j) < 1
20 & hz(i, j)

...

f16(yi, yj ,x) = ∆RGB(i, j) < 15
20 & hz(i, j)

f17(yi, yj ,x) = ∆Sobel(i, j) <
1
20 & hz(i, j)

...

f31(yi, yj ,x) = ∆Sobel(i, j) <
15
20 & hz(i, j)

f32(yi, yj ,x) = 1 & vt(i, j)

f33(yi, yj ,x) = ∆RGB(i, j) < 1
20 & vt(i, j)

...

f47(yi, yj ,x) = ∆RGB(i, j) < 15
20 & vt(i, j)

f48(yi, yj ,x) = ∆Sobel(i, j) <
1
20 & vt(i, j)

...

f62(yi, yj ,x) = ∆Sobel(i, j) <
15
20 & vt(i, j)



,

where Ri, Gi and Bi are the Red, Green, Blue intensities of pixel i scaled to the [0, 1]

interval, hPosi and vPosi are the horizontal and vertical position of pixel i also scaled to the

interval [0, 1], ∆RGB(i, j) is the L-2 difference of the (scaled) RGB intensities between pixel i

and pixel j and ∆Sobel(i, j) is the max between the response of a Sobel edge filter at pixel i

and the response of the filter at pixel j.

We expand this initial set of 6 unary features, fu(yi), into a set of 21 features, f̃u(yi) by

adding all pairwise interaction terms (e.g. Ri ·hPosi). As in the CRF de-noising experiment,

we use one copy of these 21 features when yi = 0 and a separate copy when yi = 1, giving

a total a total of 42 unary features, fu = (f̃u(0), f̃u(1)), in our CRF foreground-background

model. We also expand the set of 62 edge features to a total of 248 edge features by using

one set of features for each of the 4 possible joint configurations of (yi, yj). The foreground-
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background CRF model thus has θ ∈ R290.

We split the horse data set of 328 images into 200 training images and 128 test images. Since

the images are irregularly sized and typically quite large, we randomly sample 40×40 patches

from the images. In particular, we create a training set of 500 patches by first choosing one

of the 200 training images at random and then randomly choosing a fully-labeled 40 × 40

patch within that image. The test set is constructed in a similar fashion, but we randomly

sample a total of 200 patches from the 128 test images instead.

We then randomly sample 144 patches from the training set of 500 patches and train our CRF

model on subsets of size N = {12, 24, 48, 96, 144} using the different WMB-based estimators.

We evaluate each learned model on the 200 test patches using both the MSE and Hamming

prediction rules. We repeat this process 5 times and report averages across these 5 folds.

Figure 4.21 contains the results from this experiment. The top row contains the Mean Pixel

(Hamming) Error 4.21a and the Mean Squared Error 4.21b as a function of training set size.

As in the CRF de-noising experiments, we see that training and predicting with the WMB8

method yields greater error than training and predicting with lower iBound methods. Figure

4.21c shows the training times of the different methods. As expected, training takes the most

time when using the WMB8 method. However, we see that the WMB4 method requires

less training time than the WMB2 method for most N . Finally, Figure 4.21d shows the

training set likelihoods as a function of data set size. In this plot we see that the WMB8

method has the highest likelihood for all N , which means that it provides a tighter bound

on the log-partition function than the lower iBound methods as we would expect.

Figure 4.22 contains the predicted marginals for several test patches. Each column depicts

the input patch, the true labeling and the marginals predicted by the WMB2, WMB4 and

WMB8 methods, respectively. These patches qualitatively demonstrate the difference be-

tween the predictions made by each of the methods. In particular, test images 4 and 8
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(a) Mean Pixel Error on horses data set.
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(b) Mean Squared Error on horses data set.
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(c) Training times on horses data set.
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(d) Training likelihood on horses data set.

Figure 4.21: Results of foreground-background labeling in Weizmann horses data.

demonstrate how the WMB8 method seems to prefer smoother transitions between fore-

ground and background than the lower iBound methods.

4.6 Discussion

This chapter focused on the joint estimation and prediction problem, where the goal is to

estimate the parameters of a model from data and then use the learned model to make

predictions. Estimating model parameters via maximum likelihood is not possible in general
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graphical models due to the intractability of the log-partition function. However, if one

replaces the true log-partition function with an approximation computed, for example, by

Loopy BP, the result is an approximation to the true likelihood function known as the

surrogate likelihood. As a result, different approximate inference methods will yield different

surrogate likelihood functions which will differ from the true likelihood in different ways.

By maximizing the surrogate likelihood function we can produce an approximation to the

true max likelihood parameter estimate. The difference between the true MLE and our

approximation can be viewed as a source of error that will vary depending on our choice of

approximate inference method. In this chapter, we considered inference methods that utilize

a control parameter - the iBound - to trade computation for accuracy. In principle, as the

iBound is increased, the accuracy of our approximation to the log-partition function and the

likelihood function will improve and the error between the true MLE and our approximation

should decrease. However, as demonstrated theoretically in Section 4.3 and empirically in

Section 4.4, the gap between the surrogate and true likelihood is not the only source of error

we face. In practice, we encounter model error, due to our inability to accurately describe

the true data generating mechanism, and statistical error because our estimates are made

using a finite sample.

Through a large empirical study, we examined the question of when higher iBound methods

should be used in favor of lower iBound methods - i.e. when better inference actually means

better learning and prediction. Through our study we observed that:

1. Smaller iBound estimators exhibit less variance than higher iBound methods. As a

result, they are less likely to overfit on small sized data sets and are more robust to

model mis-specification.

2. Higher iBound estimators exhibit smaller bias than lower iBound methods. As a result,

they are preferred for large data sets, where the gap between the surrogate and true
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likelihood functions is the primary source of error.

3. When training and predicting using CRF models where there is likely lots of model

error, it is best to use a lower iBound method. Lower iBound methods are far more

efficient to train and yield predictions that are as accurate, if not more accurate, than

higher iBound methods.

The experiments conducted in this chapter revealed many directions for future study. First,

there appears to be a rich relationship between the complexity of the inference method used

during training and regularization. We saw in Section 4.4.2, for example, that training with

a low iBound estimator led to an increase in the effective level of regularization. In other

words, even if we have a complex model, a given inference-based estimator seems to find pa-

rameters that lie in some particular complexity class. A direction worth exploring is to better

understand this interplay between the choice of surrogate and its inherent regularization.

Another idea, along these same lines, is that the inference method and surrogate used should

adapt to the model being learned and the data used to learn it. For example, the mini-bucket

partitioning scheme which underlies the WMB method can be interpreted as introducing

independences that make inference feasible9. Ideally, the partitioning scheme used would

consult both the model and training data so as to capture important variable dependencies,

while ignoring unimportant ones. In this way, we can trade computational efficiency for

statistical efficiency in a more fine-grained manner.

One final idea is to develop a statistical test to determine if increasing the iBound will in fact

be beneficial. In other words, we envisage an iterative learning scheme where we initially

train using some cheap, low iBound method and then must determine whether to continue

training using a higher iBound method, or terminate and use the current parameter estimates

for prediction. One way to make such a decision is to develop problem specific estimates of

9See Section 1.4.1 for a discussion of the WMB splitting semantics.
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the variance and bias of both the current low iBound estimator and the prospective higher

iBound estimator. Determining whether to continue training with the higher iBound method

then amounts to comparing the sum of these bias and variance estimates.
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Figure 4.22: Sample foreground-background labelings in Weizmann horses data.
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Chapter 5

Conclusion

Graphical models have become the favored approach for representing and reasoning about

probability distributions over many random variables. Unfortunately, inference is funda-

mentally intractable for most models which accurately describe the complex dependencies

of data. Developing better approximate inference and learning algorithms is thus central

to improving the fidelity of our learned models and the quality of predictions made under

those learned models. In this thesis, we advocated a bottom-up approach to approximate

inference and learning, where we start with the natural, initial approximation to our problem

and then improve upon the initial approximation through increased computation.

In Chapter 2 we focused on solving the weighted matching problem using max-product BP.

The weighted matching problem is easily formulated as an Integer Linear Program (ILP) and

its natural LP relaxation replaces integrality constraints on the mass assigned to each edge,

with linear inequality constraints. When the natural LP relaxation of the weighted matching

problem is tight, it can be solved by the max-product algorithm[5, 73]. However, when the

natural LP relaxation is loose, max-product is no longer provably exact. As a result, we

devised a cutting-plane approach that iteratively adds constraints to tighten the relaxation
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by removing fractional optima and developed a max-product algorithm that provably solves

the weighted matching problem when the LP relaxation is made tight. This result expands

the set of graphical models that are provably solvable by the max-product algorithm and

have improved our understanding of the properties needed for max-product to be convergent

and correct.

In Chapter 3 we focused on calculating marginal probabilities in a graphical model using

GBP. GBP is a class of approximate inference algorithm that builds upon Loopy BP by

passing messages between larger clusters of variables. GBP offers the promise to yield

marginal estimates that are far more accurate than Loopy BP, but is also very sensitive to the

choice of regions (or clusters) used. We connected the problem of choosing the outer regions

which define a Loop-Structured Region Graph (Loop-SRG) to that of finding a fundamental

cycle basis in the graph underlying a pairwise graphical model. We showed that choosing

such a collection of outer regions give GBP approximations that behave sensibly when a

model has extremely weak (non-Singularity) and extremely strong (over-counting number

unity) factors. We then proposed a new criteria – tree-robustness – that corresponds to

finding a special class of fundamental cycle bases which give GBP approximations that are,

in some sense, no worse than Loopy BP when the factors defining a model induce a tree.

We then demonstrated empirically that GBP can give accurate estimates when a Loop-SRG

is formed from a fundamental basis and that the estimates can be improved by choosing a

fundamental basis that is at least partially tree-robust.

In Chapter 4 we focused on learning the parameters of a model from data. Maximum

likelihood estimation in graphical models is difficult to the intractability of computing the log-

partition function and marginals. In surrogate likelihood training, one approximates these

quantities using an approximate inference algorithm. We focused on approximate inference

methods that utilize a control parameter to trade computation for accuracy and examined

when investing more computation leads to more accurate parameter estimates and models
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that yield more accurate predictions. The accuracy of approximate inference is only one

factor affecting our ability to learn a good model, so we introduced a framework for analyzing

and comparing the different sources of error in likelihood-based learning. We then used this

framework to conduct a large empirical evaluation of different approximate inference-based

learning approaches and demonstrated that better inference does not necessarily result in

learning a better model, for small sized data sets and mis-specified models. This work also

exposed an interesting bias-variance trade-off between low computation inference methods

and high computation inference methods.

We close by remarking that the increasing availability of massive data sets brings incredible

opportunities to the graphical models community. Capitalizing on all of this data requires

increasingly complex models that can better explain the phenomena occurring in the data.

However, the more expressive a model is and the better it can represent real-life distributions,

the harder inference becomes in that model. In addition, as we saw in Chapter 4, there is

a fundamental trade-off between statistical efficiency and computational efficiency when

learning richer models: more data is needed to reliably estimate and make predictions under

a more complex model, but more data, of course, requires better algorithms if training is to

occur within a particular computational budget. As a result, there is and will continue to

be an increasing need for better approximate inference methods!
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Appendix A

Overview of Variational Inference

Computing the log-partition function is typically viewed as an intractable summation task:

logZ(θ) = log
∑
y p(y;θ). We will now convert computing the log-partition function to

an optimization problem using the framework of variational inference. The development

borrows heavily from [87, 24].

Let p(y;θ) and p(y;θ′) be two distributions with canonical parameters θ and θ′, respectively.

Consider evaluating the KL-divergence between these two distributions:

DKL (p(y;θ)||p(y;θ′)) =Eθ

[
log

p(y;θ)

p(y;θ′)

]
=Eθ [log p(y;θ)]− Eθ [s(y)θ′ + logZ(θ′)]

=−H(µ)− µ · θ′ + logZ(θ′) (A.1)

where µ = µ(θ) = Eθ [s(y)] is the mean vector corresponding to parameter setting θ and

H(µ) is the entropy of the distribution p(y;θ), written as a function of the mean vector,

−H(µ) = Eθ [log p(y;θ)] = Eθ [s(y) · θ − logZ(θ)] = µ · θ − logZ(θ). (A.2)
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The KL-divergence between two distributions is always non-negative, DKL (p(y;θ)||p(y;θ′)) ≥

0. Assume that the sufficient statistics s(y) are linearly independent, so that both distribu-

tions are in a minimal exponential family representation. Then, DKL (p(y;θ)||p(y;θ′)) = 0,

if and only if θ = θ′. As a result, we can write that

−H(µ) = sup
θ′∈Rd

[−µ · θ′ + logZ(θ′)] = inf
θ′∈Rd

[µ · θ′ − logZ(θ′)] (A.3)

This expression for the negative entropy is the conjugate dual of the log-partition function,

which means that we can re-write this as [87]:

logZ(θ) = sup
µ′

[µ′ · θ +H(µ′)] . (A.4)

Now the entropy is undefined if the vector µ′ does not correspond to a valid joint distribution.

As a result, we restrict attention to vectors µ′ ∈ M, where M = {µ′ ∈ Rd | ∃θ s.t. µ′ =

µ(θ)} is the marginal polytope, which is the set of mean vectors µ′ that can arise from some

joint distribution p(y;θ). This gives the result in (1.36).
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Appendix B

Proof of Convergence of BP on the

auxiliary Weighted Matching Model

This appendix provides the proof of Theorem 2.4. We also establish the convergence time

of the BP algorithm under the transformed graphical model in (2.26) (see Lemma B.1).

Our proof requires careful study of the computation tree induced by BP with appropriate

truncations at its leaves.
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B.1 Main Lemma for Proof of Theorem 2.4

Let us introduce the following auxiliary LP over the new graph and weights.

match-aux-LP : max
∑
e∈E′

w′eye

s.t.
∑
e∈δ(i)

ye ≤ 1, ∀i ∈ V, ye ∈ [0, 1], ∀e ∈ E′, (B.1)

∑
j∈V (C)

(−1)dC(j,e)yiC ,j ∈ [0, 2], ∀e ∈ E(C),
∑

e∈δ(iC)

ye ≤ |C| − 1, ∀C ∈ C.

(B.2)

Once again, consider the following one-to-one linear mapping between the original edge

variables x = {xe : e ∈ E} and the new edge variables y = {ye : e ∈ E ′}:

ye =


∑

e′∈E(C)∩δ(i) xe′ if e = (i, iC)

xe otherwise

xe =


1
2

∑
j∈V (C)(−1)dC(j,e)yiC ,j if e ∈

⋃
C∈C E(C)

ye otherwise

.

Since
∑
e∈E

wexe =
∑
e∈E′

w′eye and the mapping between x and y is linear, it is easy to verify

that every feasible solution in match-blossom-LP induces a feasible solution in match-aux-

LP of the same total weight (and vice versa). Thus, we refer to aux-blossom-LP as being

equivalent to aux-match-LP. As a result, if the solution xmatch-blossom-LP of match-blossom-

LP is unique and integral, the solution ymatch-aux-LP of match-aux-LP will be as well, i.e.,

ymatch-aux-LP = y?. Hence, (2.28) in Theorem 2.4 follows.

Furthermore, since the solution y? to match-aux-LP is unique and integral, there exists c > 0

such that

c = inf
y 6=y? : y is feasible for match-aux-LP

w′ · (y? − y)

|y? − y|
,

where w′ = {w′e | e ∈ E ′}. Using this notation, we establish the following lemma character-
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izing the performance of the max-product BP algorithm on the model (2.26). Theorem 2.4

follows directly from this lemma.

Lemma B.1. If the solution ymatch-aux-LP of match-aux-LP is integral and unique, i.e.,

ymatch-aux-LP = y?, then

• If y?e = 1, bte(1) > bte(0) for all t > 6w′max
c + 6,

• If y?e = 0, bte(1) < bte(0) for all t > 6w′max
c + 6,

where bte(·) denotes the BP belief of edge e at time t under the graphical model (2.26) and

w′max = maxe∈E′ |w′e|.

B.2 Proof of Main Lemma B.1

This section provides the complete proof of Lemma B.1. We focus here on the case of y∗e = 1,

while translation of the result to the opposite case of y∗e = 0 is straightforward. To derive a

contradiction, assume that bte(1) ≤ bte(0) and construct a computational tree Te(t) of depth

t+ 1, using the following scheme:

Construct Computation Tree:

1. Add a copy of Ye ∈ {0, 1} as the (root) variable (with variable function ew
′
eYe).

2. Repeat the following t times for each leaf variable Ye on the current tree:

2-1. For each i ∈ V such that e ∈ δ(i) and ψi is not associated to Ye of the current model,

add ψi as a factor (function) with copies of {Ye′ ∈ {0, 1} : e′ ∈ δ(i)\e} as child variables

(with corresponding variable functions, i.e., {ew
′
e′Ye′}).

2-2. For each C ∈ C such that e ∈ δ(iC) and ψC is not associated to Ye of the current model,

add ψC as a factor (function) with copies of {Ye′ ∈ {0, 1} : e′ ∈ δ(iC) \ e} as child

variables (with corresponding variable functions, i.e., {ew
′
e′Ye′}).
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This construction was illustrated in Figure 2.9 in Section 2.4.4. We now utilize the following

fact relating BP and computation trees: the BP MAP estimate at time t is the MAP

assignment of the computation tree of depth t [88]. Since bte(1) ≤ bte(0) by assumption, we

then know that there exists a MAP configuration yTMAP on Te(t) with yTMAP
e = 0 at the

root variable. We construct a new assignment, yNEW on the computational tree Te(t) as

follows:

Flipping Procedure

1. Initially, set yNEW ← yTMAP and e is the root of the tree.

2. yNEW ← FLIPe(y
NEW).

3. For each child factor ψ of e, which is either a vertex factor, ψi, if e ∈ δ(i) or a blossom factor,

ψC , if e ∈ δ(iC):

(a) If ψ is satisfied by yNEW and FLIPe(y
?) (i.e., ψ(yNEW) = ψ(FLIPe(y

?)) = 1), then do

nothing.

(b) Else if there is a child e′ of e through factor ψ such that yNEW
e′ 6= y?e′ and ψ is satisfied

by FLIPe′(y
NEW) and FLIPe′(FLIPe(y

?)), then go to the step 2 with e← e′.

(c) Else, report ERROR.

An illustration of this flipping procedure was provided in Figure 2.9 in Section 2.4.4. In the

construction, FLIPe(y) is the 0 − 1 vector made by flipping (i.e., changing from 0 to 1 or 1

to 0) the assignment of e in y. By the construction of the computation tree, there is exactly

one child factor ψ in Step 3. Furthermore, we only choose one child e′ in Step 3 (b) (even

though there are many possible candidates). For this reason, the Flipping Procedure induces

a path structure P in tree Te(t).
1

We now state the following lemma for the construction of yNEW.

1P may not be an alternating path since both yNEW
e and its child yNEW

e′ can be flipped the same way.
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Lemma B.2. ERROR is never reported in the Flipping Procedure described above.

Proof. This lemma tells us that if we follow the Flipping Procedure, we can flip the as-

signments along a path so that they agree with the MAP assignment without needing to

backtrack. With this in mind, it is easy to verify that ERROR is not reported when ψ = ψi

is a vertex factor. We therefore only provide a proof for the case when ψ = ψC is a blossom

factor. We also assume that yNEW
e is flipped from 1→ 0 (i.e., y?e = 0); the proof for the case

0→ 1 follows in a similar manner. First, one can observe that y satisfies ψC if and only if y

is the 0− 1 indicator vector of a union of disjoint even paths in the cycle C. Since yNEW
e is

flipped from 1→ 0, the even path including e is broken into an even (possibly, empty) path

and an odd (always, non-empty) path. We consider two cases: (a) there exists an edge e′

within the odd path (i.e., yNEW
e′ = 1) such that y?e′ = 0 and flipping yNEW

e′ from 1→ 0 breaks

the odd path into 2 even (disjoint) paths; (b) there exists no such e′ within the odd path.

For case (a), it is easy to see that we can maintain the structure of disjoint even paths in

yNEW after flipping yNEW
e′ as 1 → 0, i.e., ψ is satisfied by FLIPe′(y

NEW). For case (b), we

choose e′ as a neighbor of the farthest end point (from e) in the odd path, i.e., yNEW
e′ = 0

(before flipping). Then, y?e′ = 1 since y? satisfies factor ψC and induces a union of disjoint

even paths in the cycle C. Therefore, if we flip yNEW
e′ from 0→ 1, we can still maintain the

structure of disjoint even paths in yNEW and ψ will be satisfied by FLIPe′(y
NEW). The proof

for the case when ψ is satisfied by FLIPe′(FLIPe(y
?)) is similar. This completes the proof of

Lemma B.2.

By construction yNEW is a valid configuration that satisfies all the factor functions in Te(t).

Hence, it suffices to prove that w′(yNEW) > w′(yTMAP), which would contradict the assump-

tion that yMAP is a MAP configuration on Te(t). To this end, for edge (i, j) ∈ E ′, let n0→1
ij

(n1→0
ij ) denote the number of Flip operations 0 → 1 (1 → 0) for all copies of edge variable
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(i, j) in the computation tree Te(t). Then, one derives

w′(yNEW) = w′(yTMAP) +w′ · n0→1 −w′ · n1→0,

where n0→1 = {n0→1
ij } and n1→0 = {n1→0

ij } are vectors containing counts of the variables

flipped from 0→ 1 and 1→ 0, respectively.

Once gain, we note that the Flipping Procedure induces changes along a path P . We

therefore consider two cases: (i) the path P does not arrive at a leave variable of Te(t), and

(ii) otherwise. Note that case (i) is possible only when the condition in Step 3 (a) holds

during the construction of yNEW.

Case (i). In this case, we define y†ij := y?ij + ε(n1→0
ij − n0→1

ij ), and establish the following

lemma:

Lemma B.3. The vector y† = (y†ij) is feasible for match-aux-LP for small enough ε > 0.

Proof. We have to show that y† satisfies (B.1) and (B.2). Here, we prove that y† satisfies

(B.2) for small enough ε > 0. The proof that (B.1) is satisfied can be argued in a similar

manner. For a given C ∈ C, consider the following polytope PC :

∑
j∈V (C)

yiC ,j ≤ |C| − 1, yiC ,j ∈ [0, 1], ∀j ∈ C,
∑

j∈V (C)

(−1)dC(j,e)yiC ,j ∈ [0, 2], ∀e ∈ E(C).

We have to show that y†C = (ye : e ∈ δ(iC)) is within the polytope. For the i-th copy of ψC

in P ∩ Te(t), we set y?C(i) = FLIPe′(FLIPe(y
?
C)) in Step (b), where y∗C(i) ∈ PC as the new

configuration is valid for ψC . Since the path P does not hit a leaf variable of Te(t), we have

1

N

∑N

i=1
y?C(i) = y?C +

1

N

(
n1→0
C − n0→1

C

)
,
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where N is the number of copies of ψC in P ∩ Te(t). Furthermore, 1
N

∑N
i=1 y

?
C(i) ∈ PC

because y?C(i) ∈ PC . Therefore, y†C ∈ PC if ε ≤ 1/N . This completes the proof of Lemma

B.3.

The above lemma with w′(y?) > w′(y†) (due to the uniqueness of y?) implies that w′ ·n0→1 >

w′ · n1→0 and that w′(yNEW) > w′(yTMAP).

Case (ii). We consider the case when only one end of P hits a leave variable Ye of Te(t),

where the proof of the other case follows in a similar manner. In this case, we define

y‡ij := y?ij + ε(m1→0
ij − m0→1

ij ), where the vectors m1→0 = (m1→0
ij ) and m0→1 = (m0→1

ij ) are

constructed as follows:

1. Initially, set m1→0 ← n1→0 and m0→1 ← n0→1.

2. If yNEW
e is flipped from 1 → 0 and the parent of e is a cycle factor ψC for some C ∈ C, then

decrease m1→0
e by 1 and

2-1 If the parent yNEW
e′ was flipped from 1→ 0, decrease m1→0

e′ by 1.

2-2 Else if there exists a ‘brother’ edge e′′ ∈ δ(iC) of e such that y?e′′ = 1 and ψC is satisfied by

FLIPe′′(FLIPe′(y
?)), then increase m0→1

e′′ by 1.

2-3 Otherwise, report ERROR.

3. If yNEW
e is flipped from 1 → 0 and the parent of e is a vertex factor ψi for some i ∈ V , then

decrease m1→0
e by 1.

4. If yNEW
e is flipped from 0 → 1 and the parent of e is a vertex factor ψi for some i ∈ V , then

decrease m0→1
e ,m1→0

e′ by 1, where e′ ∈ δ(i) is the ‘parent’ edge of e, and

4-1 If the parent yNEW
e′ is associated to a cycle parent factor ψC ,
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4-1-1 If the grand-parent yNEW
e′′ is flipped from 1→ 0, then decrease m1→0

e′′ by 1.

4-1-2 Else if there exists a ‘brother’ edge e′′′ ∈ δ(iC) of e′ such that y∗e′′′ = 1 and ψC is satisfied

by FLIPe′′′(FLIPe′′(y
∗)), then increase m0→1

e′′′ by 1.

4-1-3 Otherwise, report ERROR.

4-2 Otherwise, do nothing.

We establish the following lemmas.

Lemma B.4. ERROR is never reported in the above construction.

Lemma B.5. y‡ is feasible to match-aux-LP for small enough ε > 0.

Proofs of Lemma B.4 and Lemma B.5 are analogous to those of Lemma B.2 and Lemma

B.3, respectively. From Lemma B.5, we have

c ≤ w′ · (y? − y‡)
|y? − y‡|

≤
ε
(
w′(m0→1 −m1→0)

)
ε(t− 3)

≤
ε
(
w′(n0→1 − n1→0) + 3w′max

)
ε(t− 3)

,

where |y? − y‡| ≥ ε(t − 3) follows from the fact that the path P hits a leaf variable of

Te(t) and there are at most three increases or decreases in m0→1 and m1→0 in the above

construction. Hence,

w′(n0→1 − n1→0) ≥ c(t− 3)− 3w′max > 0 if t >
3w′max

c
+ 3,

which implies w′(yNEW) > w′(yTMAP). If both ends of the path P hit leaf variables of Te(t),

then we need t > 6w′max

c
+ 6. This completes the proof of Lemma B.1.
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Appendix C

Proofs Involving Region Selection

Criteria and Cycle Bases

The following properties of Loop-SRGs are proven in [92]:

Theorem C.1. A Loop-SRG has
∑

γ∈R cγ = |L|− |E|+ |V |, where |L| is the number of loop

regions, |E| the number of edge regions and |V | the number of node regions.

Theorem C.2. A Loop-SRG is singular if
∑

γ∈R cγ > 1.

Theorem C.3. A Loop-SRG is singular iff there is a subset of loop regions and constituent

edge regions such that all of the edge regions have 2 or more parents.

The following proofs make use of these theorems as well as the reduction operators presented

in [92].

Theorem 3.1: A Loop-SRG is Non-Singular and satisfies Counting Number Unity if its loop

outer regions are a Fundamental Cycle Basis (FCB) of G.

Proof. (FCB ⇒
∑

γ∈R cγ = 1) From Theorem C.1, we see that ρ = E − V + 1 is exactly
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the number of loops needed to ensure that
∑

γ∈R cγ = 1. From this it follows that a loop

SRG will satisfy counting number unity if the set of loop outer regions form a cycle basis of

G.

(FCB ⇒ non-singularity) Assume that every state of p(y) is equi-probable. Since all of the

factors are uniform, we can remove them from all of the outer regions. Let B be a FCB of

G and map each outer region R to one of the cycles in this basis. Since B is fundamental,

there exists some ordering π such that cycle Cπ(i) has some edge that does not appear in

any cycle preceding it. Let Rπ(i) be the loop outer region corresponding to cycle Cπ(i) and

let Eπ(i) be the edge(s) unique to cycle Cπ(i). Let REπ(i)
be the edge region corresponding

to edge Eπ(i). Since Eπ(i) is unique to Cπ(i), edge region REπ(i)
’s only parent is Rπ(i). Thus,

edge region REπ(i)
can be Dropped.

Let C(Rπ(i)) be the set of cliques of outer region Rπ(i). The clique corresponding to edge

Eπ(i) can be Shrunk since child region REπ(i)
was dropped. Let Ēπ(i) = Cπ(i) \ Eπ(i) be the

set of edges not unique to Cπ(i). The Shrink operation leaves the structure G(Rπ(i)) of region

Rπ(i) as a chain over the edges Ēπ(i). This chain can be Split into its constituent edges

by choosing the variables not in edge Eπ(i) as separators. The Split operation produces a

set of edge outer regions RĒπ(i)
and node regions RV̄π(i)

. These edge and node regions are

duplicates of regions already in the SRG. And since all factors were initially removed, the

regions in RĒπ(i)
and RV̄π(i)

can then be merged with the regions that they duplicate.

The loop outer regions can be reduced in this way along the ordering π - i.e. beginning with

cycle Cπ(µ) and ending with cycle Cπ(i). Reducing all loop regions yields an acyclic SRG

(comprised of edge and node regions) which is non-singular from Theorem 5 in [92].

Theorem 3.2: A Loop-SRG is Tree Robust if its loop outer regions are a Tree Robust cycle
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basis of G.

Proof. In proving Theorem 3.1 the idea was to show that a loop outer region can be reduced

if it contains a unique edge; the fact that the loops form a FCB means that the loops can

be reduced in an order such that each loop has a unique edge. However, reducing a loop

region to its constituent edges requires Merge operations that can only be performed if the

outer regions have no factors. This condition was guaranteed in the proof of Theorem 3.1

by initially removing all of the uniform factors from the SRG. In a Tree Robust SRG, only a

subset of the factors are uniform and can be removed. Thus, we need a stronger tool. Using

the Factor Move operator it is easy to show that:

Lemma C.4. A loop outer region can be reduced if it contains at least one unique edge not

covered by a factor.

The desired result follows by incorporating this Lemma into the same sequence of reduction

operators used in the proof of Theorem 3.1.

To simplify notation, in the following proofs let Gπ(i) = {Cπ(1), ..., Cπ(i)}.

Lemma C.5. A TR basis B is fundamental.

Proof. (Proof by contrapositive): Assume that B is not fundamental. Then there exists no

ordering π of the cycles in B such that Cπ(i) \ Gπ(i−1) 6= ∅ for 2 ≤ i ≤ ρ. This implies that

there is no ordering π for which
{
Cπ(i) \Gπ(i−1)

}
\T 6= ∅ for any spanning tree T . Thus, the

basis is not TR.

Theorem 3.3: Let B|k| denote all size k subsets of cycles in B. A FCB B is Tree Robust iff

I(Bk) is cyclic and not-empty for all Bk ∈ B|k| for 1 ≤ k ≤ ρ.
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Proof. (I(Bk) is cyclic for all subsets of B ⇒ TR) First, we note that since the unique edge

graph is cyclic for all subsets of cycles, the unique edge graph is cyclic for all partial orderings

of the cycles as well.

Let Bπ(i) = B \ {Cπ(i+1), ..., Cπ(ρ)} denote the set of cycles not appearing in the partial order

π(i+ 1), ..., π(µ).

A basis is not TR if ∃ some j (2 ≤ j ≤ µ) such that {C \Gπ(j−1)} \T = ∅ for all C ∈ Bπ(j−1)

for all orders π ∈ Π. We show that this cannot occur given that I(Bπ(j)) is cyclic for all

π ∈ Π.

For {C \ Gπ(j−1)} \ T = ∅ for all C ∈ Bπ(j−1) and all orders, we require that either: 1)

C \ Gπ(j−1) = ∅; or 2) C \ Gπ(j−1) be acyclic. Since I(Bπ(j)) is not empty for all orderings,

there must exist some C ∈ Bπ(j) such that C \ Gπ(j−1) 6= ∅. And since I(Bπ(j)) is cyclic for

all orderings, there cannot exist some tree T that covers all edges in I(Bπ(j)).

(TR ⇒ I(Bk) is cyclic for all subsets of B). Assume that I(Bk) is acyclic and consider some

spanning tree T that ’covers’ all of the edges in I(Bk) (i.e. I(Bk) \ T = ∅). Clearly the basis

B would not be tree exact w.r.t. to T and therefore not TR. We now must show that there

exists some ordering such that Bπ(k) = Bk. Assume that such an ordering does not exist.

Then there must exist some j > k for which C \ Gπ(j) = ∅ for all C ∈ Bπ(j). This would

mean that the basis is not fundamental. However, from the previous Lemma we know that

if B is not fundamental, it is not TR.

Corollary 3.4: An FCB is TR iff Bk is TR for all Bk ∈ B|k| for 1 ≤ k ≤ ρ.

Proof. (B is TR ⇒ Bk is TR for all k) Assume there is some Bk ⊆ B that is not TR. Then

there exists some I(Bk) that acyclic. We know that B is TR iff I(Bk) is cyclic for all subsets

of B. Therefore, B is not TR.
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(Bk is TR for all k ⇒ B is TR) Follows immediately from proof of Theorem 3.3.
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