
Semiring-Based Mini-Bucket Partitioning Schemes

Emma Rollon and Javier Larrosa
{erollon, larrosa}@lsi.upc.edu

Universitat Polit̀ecnica de Catalunya, Barcelona, Spain

Rina Dechter
dechter@ics.uci.edu

University of California, Irvine, USA

Abstract

Graphical modelsare one of the most prominent
frameworks to model complex systems and effi-
ciently query them. Their underlying algebraic
properties are captured by a valuation structure that,
most usually, is asemiring. Depending on the
semiring of choice, we can captureprobabilistic
models, constraint networks, cost networks, etc.
In this paper we address thepartitioning prob-
lem which occurs in many approximation tech-
niques such asmini-bucket eliminationand join-
graph propagationalgorithms. Roghly speaking,
subject to complexity bounds, the algorithm needs
to find a partition of a set of factors such that best
approximates the whole set. While this problem
has been addressed in the past in a particular case,
we present here a general description. Furthermore,
we also propose a general partitioning scheme. Our
proposal is general in the sense that it is presented
in terms of a generic semiring with the only addi-
tional requirements of adivision operation and a
refinementof its order. The proposed algorithm in-
stantiates to the particular task of computing the
probability of evidence, but also applies directly
to other important reasoning tasks. We demon-
strate its good empirical behaviour on the problem
of computing the most probable explanation.

1 Introduction

Thegraphical modelframework provides a common formal-
ism to model complex systems such as probabilistic mod-
els, which includesMarkov and Bayesian networks[Pearl,
1988], and deterministic models, which includescon-
straint networks[Bistarelli et al., 1999] and decision dia-
grams[Dechter, 2003]. In general, a graphical model is de-
fined by a collection of functions orfactorsF over a set of
variablesX . Factors return values from a valuation setA. De-
pending on each particular case, functions may express prob-
abilistic, deterministic or preferential information. Given a
graphical model, one can compute differentreasoning tasks.
A reasoning task is defined by two operators⊕ and⊗, where
the triplet(A,⊕,⊗) constitutes a semiring.

Since the exact computation of reasoning tasks is in general
intractable, several approximation methods exist. Some of
them need to solve internally an optimization problem over
the set of partitions of a set of factors. Although it is known
that the quality of the approximation depends greatly on the
quality of the partitions, little research has been done on it.

This paper builds on top of the recent work of[Rollon and
Dechter, 2010], where a greedy scheme is proposed for solv-
ing the partitioning problem of the very specific task of com-
puting the probability of certain evidence. Our paper gen-
eralizes the partitioning problem and the greedy scheme to
general tasks on graphical models. We show that the gen-
eralization applies as long as the semiring admits adivision
operator and arefinementof its order, which is the most usual
case. Furthermore, we show the potential of this general par-
titioning scheme on the task of finding the most probable ex-
planation of probabilistic networks.

2 Preliminaries

2.1 Semirings
A commutative semiring[Kohlas and Wilson, 2008] is a
triplet (A,⊕,⊗), whereA is a set, and⊕,⊗ are binary oper-
ations. Both operatios are associative and commutative. Ad-
ditionally, ⊗ distributes over⊕ (i.e, (a ⊗ b) ⊕ (a ⊗ c) =
a⊗ (b⊕c)). Commutative semirings have a unique0 element
such that0 ⊗ a = 0. Additionally, they implicitely define
a pre-order relation≤ asa ≤ b (i.e., b is better thana) iff
a = b or there existsc ∈ A such thata⊕ c = b. In this paper
we will restrict ourselves to semirings whose pre-order is a
partial order.

Proposition 1 For any semiring(A,⊕,⊗), its associated re-
lation≤ satisfies:

1. a ≤ b andc ≤ d impliesa⊗ c ≤ b ⊗ d.

2. a⊗ b ≤ c⊗ b impliesa ≤ c.

In this paper we will considerinvertiblesemirings[Kohlas
and Wilson, 2008; Bistarelli and Gadducci, 2006; Cooper and
Schiex, 2004; Lauritzen and Jensen, 1997], for which a di-
vision operationa b exists. Division satisfies that for all
a, b ∈ A such thata ≤ b anda 6= 0, (a b)⊗ b = a. When
a ≤ b anda = 0, we follow the approach in[Cooper and
Schiex, 2004] and define0 b = 0.

2.2 Factors

Let X = (x1, . . . , xn) be an ordered set of variables and
D = (D1, . . . , Dn) an ordered set of domains, whereDi is
the finite set of potential values forxi. DX is the set of pos-
sible assignments ofX . Tuples are assignments of domain
values to some or all the variables. The join of two tuplest
ands is notedt · s.

A factor [Darwiche, 2009; Kasket al., 2005] f with scope
Y ⊆ X is a functionf : DY → A, whereA is a semiring.
The evaluation of factorf on tuplet will be notedf(t). If t
assigns more variables than needed, they will be ignored. The
scope of factorf will be denotedvar(f).

The semiring order can also be extended to factors:f ≤ h
iff ∀t ∈ Dvar(f)∪var(h), f(t) ≤ h(t). Note that this is a very
coarse partial ordering. It requires the outcome ofevery tuple
to be ordered. It may be the case of a function beingalmost
alwayssmaller than another and yet the partial order will not
be able to discriminate between them.

Operations over valuations can be extended to functions:

• Thecombinationof two functionsf andg, notedf
⊗

g,
is a new function with scopevar(f)∪ var(g) such that,
∀t ∈ Dvar(f)∪var(g), (f

⊗
g)(t) = f(t)⊗ g(t).

• The division of two functionsf andg such that∀t ∈
Dvar(f)∪var(g), f(t) ≤ g(t), notedf

�

g, is a new
function with scopevar(f) ∪ var(g) such that,∀t ∈
Dvar(f)∪var(g), (f

�

g)(t) = f(t) g(t).

• Themarginalizationof f overx ∈ var(f), notedf ⇓x,
is a function whose scope isvar(f) − {x} such that,
∀t ∈ Dvar(f)−{x}, (f ⇓x)(t) = ⊕v∈Dx

(t · v).

2.3 Graphical Models and Reasoning Tasks

A graphical modelis a set of factorsF over a set of variables
X with domainsD. A reasoning taskis defined byP =
(X ,D, A,F ,

⊕
,
⊗

) where(X ,D,F) is a graphical model
and(A,

⊕
,
⊗

) is a semiring. Computing the reasoning task
means computing(

⊗
f∈F f) ⇓x1,x2,...,xn

.

Example 1 In probabilistic graphicalmodels valuations are
probabilities (i.e,A = [0, 1]), the⊗ operation is the prod-
uct and the operation is the division. For the reasoning
task of finding the probability of evidence, the⊕ operation is
the sum. For the reasoning task of finding the most probable
explanation, the⊕ operation is the maximum.

In standardconstraint networkswe have boolean valua-
tions (i.e,A = {true, false}), the⊗ operation is the con-
junction∧ and the operation is also the conjunction∧. For
the reasoning task of finding solutions, the⊕ operation is the
disjunction∨. For the reasoning task of counting solutions,
the⊕ operation is the sum.

In weighted constraint networksvaluations are natural
numbers with infinity (i.e.,A = N∪ {∞}), the⊗ operation is
the sum and the is the substraction. For the reasoning task
of finding optimal solutions, the⊕ operation is the minimum.
For the reasoning task of counting weighted solutions, the⊕
operation is the sum.

1 / 2 / 3 / 4

1 / 2 3 / 4 1 / 2 4 / 3 1 3 / 2 / 4 1 2 / 3 / 4 1 / 2 / 3 4

1 4 / 2 3 1 / 2 3 4 1 2 4 / 3 1 3 / 2 4 1 2 3 / 4 1 3 4 / 2 1 2 / 3 4

1 2 3 4

1 4 / 2 / 3

Figure 1: Partitioning lattice of bucketB = {f1, f2, f3, f4}.
We specify each function by its subindex.

3 The Partitioning Problem
Computing reasoning tasks is in general intractable. Thus,
several approximation methods have been proposed. Some
of them (such as mini-bucket elimination[Dechter and Rish,
2003] or join-graph propagation algorithms[Mateescuet al.,
2010]) require the computation of agoodpartition out of a set
of factors, as described in the following.

A bucketB is a set of factors, all of which have a certain
variablex in their scope. Thescope of the bucketis the set of
all variables in the scopes of its factors. Thebucket function
is,

µ = (
⊗

f∈B

f) ⇓x

Let Q = {Q1, Q2, . . . , Qk} be a partition of bucketB. Each
partition element is called amini-bucket. We say thatQ is a
z-partition if the scope size of all its mini-buckets is smaller
than or equal toz. Thefunction of partitionQ is,

µQ =
k⊗

j=1

((
⊗

f∈Qj

f) ⇓x)

The rationale of the approximation is thatµQ is likely to
resembleµ, while being computationally simpler. More pre-
cisely, if Q is a z-partition, the cost of computingµQ is, at
most, exponential inz. Approximation algorithms replace
the bucket function by a function of one partition, for a fixed
parameterz. Thus, it is of utmost importance finding thez-
partition whose function resemblesµ as much as possible.

3.1 The Partitions Lattice
Given a bucketB, the set of all its partitions can be arranged
as a lattice[Rollon and Dechter, 2010]. There is an upward
edge fromQ to Q′ if Q′ results from merging two mini-
buckets ofQ in which caseQ′ is a child of Q. The set of
all children ofQ is denoted bych(Q). Thebottompartition
in the lattice, notedQ⊥, is the partition where every mini-
bucket consists of a single function, while thetop partition,
notedQ⊤, is the partition with one mini-bucket containing
all functions. Note thatQ⊤ is equivalent to the whole bucket.

Example 2 Figure 1 depicts the partitioning lattice of
bucket B = {f1, f2, f3, f4}. Its bottom partitionQ⊥

is {{f1}, {f2}, {f3}, {f4}}, while its top partitionQ⊤ is
{{f1, f2, f3, f4}}. Partition Q = {{f1, f2}, {f3, f4}} is a

child of partition Q′ = {{f1}, {f2}, {f3, f4}} becauseQ
merges mini-buckets{f1} and {f2} in Q′. However,Q is
not a child of partition{{f1}, {f3}, {f2, f4}}.

Clearly, the set ofz-partitions, for a givenz, divides the
lattice in two regions: the bottom region contains thez-
partitions whose implicit function can be efficiently com-
puted and the top bottom contains the rest of partitions whose
implicit function is expensive.

There is a clear relation between lattice edges and the par-
tial order of the partition’s implicit functions.

Theorem 1 [Dechter and Rish, 2003; Bistarelliet al., 1997]
Given two partitionsQ andQ′ of bucketB, if Q′ is a descen-
dent ofQ thenµQ′

≤ µQ.

The previous theorem indicates that following any bottom-
up path the implicit functions decrease monotonically. Thus,
as we follow the path, we obtain better approximations of the
bucket functionµ. Thus, givenz, the low region of the lat-
tice corresponds to more dissimilar functions, while the high
region corresponds to more similar functions.

It is worth to mention that the lattice edges does not ex-
plicit all the orders among implicit functions. Some functions
from different paths may also be ordered by the partial order
although their partitions are not upward connected in the lat-
tice.

3.2 Similarity Functions

The division allows us to capture how similar two functions
are. Given two partitionsQ,Q′ such thatµQ′

≤ µQ, we
definethe similarity function ofQ andQ′, notedδQ→Q′

, as

δQ→Q′

= µQ′ã

µQ

Moreover, it can be shown that it is more efficiently computed
as,

δQ→Q′

= µQ′\I
ã

µQ\I

whereI = Q ∩Q′ is the set of common subsets.
There is a relation between the order among functions of

partitions and their similarity delta functions.

Theorem 2 LetQ,Q′, Q′′ be three partitions. Then,

µQ ≤ µQ′

≤ µQ′′

⇔ δQ
′→Q ≥ δQ

′′→Q

and

µQ ≤ µQ′

≤ µQ′′

⇔ δQ
′′→Q′

≥ δQ
′′→Q

As a consequence, there is a relation among any partition
and the top and bottom partitions.

Corollary 1 LetQ′, Q′′ be two partitions. Then,

µQ′

≤ µQ′′

⇔ δQ
′→Q⊤

≥ δQ
′′→Q⊤

and

µQ′

≤ µQ′′

⇔ δQ
⊥→Q′′

≥ δQ
⊥→Q′

3.3 Formal Definition
We are now in the position of defining and discussing the
partitioning problem. Given a bucketB and a complexity
parameterz, find az-partitionQ∗ that maximally resembles
Q⊤. That is,

Q∗ = argmax
Q
{δQ→Q⊤}

wheremax uses the order among functions, andQ is a z-
partition.

A close look at the problem definition shows that the ob-
jective function may not be sufficiently discriminative. The
reason is that the objective function is partially ordered with
very strong requirements for one partition being better than
another. As an example, consider two partitionsQ andQ′

such thatδQ→Q⊤

(t) ≤ δQ
′→Q⊤

(t) for every tuplet except
one. Both partitions would be consider as equally good in
the problem formulation, while commonsense clearly dictates
thatQ′ should be preferred.

One way to overcome this limitation is to refine the partial
order≤ among functions. Arefinementis a partial order≤d

such that iff ≤ g thenf ≤d g. To be useful in practice, the
refinement should also order pairs of functions where one of
themmainly dominatesthe other. We introduce this idea in a
refinedversion of thepartitioning problem.

Given a bucketB, a complexity parameterz and a refine-
ment of the partial order over the functions≤d, the goal is to
find az-partitionQ∗ that maximally resemblesQ⊤ according
to≤d. Formally,

Q∗ = arg
d

max
Q
{δQ→Q⊤

}

wheremaxd uses the≤d refinement, andQ is az-partition.
Note that any optimal solution of the refined partitioning

problem is also an optimal solution of the original partitioning
problem, while the opposite does not hold.

4 A Greedy Algorithm for the Partitioning
Problem

There are two difficulties associated with solving the (refined)
partitioning problem. On the one hand, the size of the search
space may be too large to be traversed (larger than exponen-
tial in the number of factors in the bucket). On the other hand,
evaluatingδQ→Q⊤

may be too expensive (exponential in the
scope of the full bucket).

In the following, we propose solutions to overcome these
difficulties. There are several well-known ways to deal with
the first issue. Following[Rollon and Dechter, 2010], we take
a simple approach and use a greedy procedure that only ex-
pands the most promising path. For the second issue we pro-
pose an incremental way to compute the objective function of
a partition from its parent.

4.1 The Greedy Algorithm
Algorithm 1 shows the pseudo-code of the greedy scheme.
Starting at the bottom partitionQ⊥ of bucketB, the algorithm
iteratively selects and moves to the best child until a maximal
z-partition is found. At each step, the algorithm selects the
maximal childQ′ of Q according to≤d and the similarity
function betweenQ′ and the top partitionQ⊤ (i.e.,δQ

′→Q⊤

).

Algorithm 1: Greedy Partitioning Scheme
Input : A bucketB; A natural numberz; A refinement

≤d.
Output : A partitionQ of bucketB based on a greedy

traversal of the partitioning lattice according to
≤d.

1 Q← bottom partition ofB;
2 while ∃Q′ ∈ ch(Q) which is az-partition do
3 Q← argmaxdQ′{δQ

′→Q⊤

};
4 end
5 return Q;

4.2 Incremental computation of the objective
function

An additional problem of the greedy algorithm is that com-
putingδQ→Q⊤

is too expensive in practice. Note that it may
be exponential in the scope of the bucket. This is not accept-
able in the context of mini-buckets or other bounded com-
plexity algorithms, because every computation should be less
than exponential on bounding parameterz.

However, we can take advange of the similarity between a
partition and its children, since they only differ on two parti-
tion elements. LetQjk be a child ofQ in which mini-buckets
Qj andQk have been merged. The only difference between

µQ andµQjk

is thatµQj
⊗

µQk is replaced byµ{Qj∪Qk}.
Therefore, the similarity function is

δQ→Qjk

= µ{Qj∪Qk}
ã

(µQj

⊗
µQk)

Note that this function captures somehow thedecrement ratio
caused by the transition.

When the greedy algorithm visits partitionQ and considers
which child to move to, it would be good to evaluate the dif-
ferent alternatives by comparing the differentdecrementsthat
the movements would cause. From Theorem 2, we know that
given three partitionsQ,Q′, Q′′ such thatQ′, Q′′ ∈ ch(Q),
then

δQ
′→Q⊤

≥ δQ
′′→Q⊤

⇐⇒ δQ→Q′

≤ δQ→Q′′

However, the previous property does not hold in general
when≤ is replaced by≤d. When a refinementd preserves
this property, we say that it isgreedily optimal. In that case
line 3 of Algorithm 1 can be replaced by,

Q← arg
d

min
Q′

{δQ→Q′

}

without affecting its behaviour.
The obvious advantage of this new formulation is that the

optimization criterion is much cheaper to compute. In partic-
ular, it is at most exponential inz, because, by definition, the
algorithm only considers successors which arez-partitions.
Therefore, it is consistent with the mini-buckets time com-
plexity bounds.

5 Empirical Evaluation
We evaluate the performance of the semiring-based parti-
tioning scheme on the task of computing the Most Proba-

ble Explanation (MPE). We apply the well-known logarith-
mic transformation with which the problem becomes an ad-
ditive minimization problem over the naturals (equivalentto
a weighted constraint satisfaction problem[Park, 2002]).

5.1 Refinementsd for the MPE task
We consider two refinements for the partial order among
functions that already showed good behaviour in the prob-
lem of computing the probability of evidence[Rollon and
Dechter, 2010]:

1. ≤avg-L1 , calledaverage1-normorder, defined as:

f ≤avg-L1 g ⇐⇒
1

|Df |

∑

t

f(t) ≥
1

|Dg|

∑

t

g(t)

2. ≤L∞ , called∞-normorder, defined as:

f ≤L∞ g ⇐⇒ max
t
{f(t)} ≥ max

t
{g(t)}

It is easy to see that both≤avg-L1 and≤L∞ are refinements
of the order among functions. Moreover, both are computed
in time proportional to the size off andg. It is also worth
mentioning that≤avg-L1 is greedily optimal, while≤L∞ is
not.

Finally, it is important to observe that when the problem
has∞ valuations (i.e, zero probabilities in the original prob-
abilistic model), there may exist some tuples for which their
evaluation in a delta function is∞. Both average1-norm and
∞-norm return∞ for those functions. If more than one child
of Q is ranked as∞, the selection among them would be
uninformed. When using the average1-norm we replace the
infinities by very high numbers. When using∞-norm we dis-
criminate by counting the number of occurrences of infinities.
In both cases, the goal is to let the infinity be very influential,
but not absorving.

5.2 Algorithms and Benchmarks
We compare three partitioning schemes: (i) the scope-based
scheme (SCP) described in[Rollon and Dechter, 2010;
Dechter and Rish, 1997]; (ii) our∞-norm refinement (L∞);
and, (iii) our average1-norm refinement (avg-L1). Roughly,
SCP aims at minimizing the number of mini-buckets in the
partition by including in each mini-bucket as many functions
as possible as long as thez bound is satisfied.

We report the results for mini-bucket elimination
(MBE) [Dechter and Rish, 2003] and for the recently pro-
posed mini-bucket elimination with max-marginal matching
(MBE-MM) [Ihler et al., 2012]. Briefly, MBE-MM intro-
duces a cost propagation phase once the partition is built,
and it was shown to obtain accurate bounds for a number of
benchmarks. Both algorithms use the variable elimination or-
dering established by themin-fill heuristic after instantiating
evidence variables (if any).

We conduct our empirical evaluation on three benchmarks:
coding networks, two sets oflinkage analysis(denotedpedi-
greeand Type4), andnoisy-or bayesian networks. All in-
stances are included in the UAI08 evaluation1. Table 1 reports

1http://graphmod.ics.uci.edu/uai08/Software

− log(upper bound) (i.e., a lower bound on the log scale) and
runtime (in seconds) for the different algorithms and parti-
tioning schemes as a function of the value of the control pa-
rameterz.

5.3 Experimental Results

Coding Networks. For MBE,L∞ andavg-L1 outperforms
SCP on five instances each whenz = 20, and on six and four
instances, respectively, whenz = 22. When they are better,
the increment of the bound is usually of more than one order
of magnitude. For MBE-MM,L∞ outperforms SCP on four
and seven instances whenz = 20 andz = 22, respectively,
while avg-L1 does so on three and four instances. The im-
provement is not as dramatic as with standard MBE, but for
some instances it is still of orders of magnitude.

As observed in[Ihler et al., 2012], MBE-MM using SCP
is always superior to MBE using SCP. In this benchmark, we
also see that: (i) for any fixed partitioning scheme MBE-MM
is superior to MBE; (ii) MBE-MM using SCP is always su-
perior to MBE using any partitioning scheme; and (iii) MBE-
MM benefits from the semiring-based partitioning scheme (in
particular, fromL∞).

As expected, all semiring-based partitioning schemes are
slower than SCP. The reason is that during the traversal
of the partitioning lattice semiring-based heristics haveto
compute intermediate functions that the greedy algorithm
will eventually discard.

Linkage Analysis. For MBE, we see that semiring-based
schemes generally outperform SCP. For pedigree instances
andz = 17, the increasement is very often of orders of mag-
nitude. Whenz = 19 we observe the same improvement
very often. For Type4 instances, the increment is in general
of more than one order of magnitude for both values of the
control parameterz.

For MBE-MM, each of the semiring-based schemes also
outperforms in general SCP. Again, the improvement margin
is reduced with respect to standard MBE. For pedigree in-
stances, the improvement is in some cases of orders of mag-
nitude, while for Type4 instances, the increase is still in gen-
eral of orders of magnitude for both values ofz. It is also
important to note that, in some cases, the effect of the cost
propagation leads all partitioning schemes to obtain the same
bound on pedigree instances (i.e., pedigree-18 and pedigree-
25).

As for the previous benchmark, MBE-MM using SCP is
always superior to MBE using any partitioning scheme. The
only exceptions are instances pedigree-20 and pedigree-33
and z = 17. Again, running MBE-MM with one of the
semiring-based schemes seems a better choice than running
MBE.

The cpu time of all partitioning schemes is relatively close.
The only exceptions are four instances on pedigree instances
(i.e., pedigree-31, pedigree-34, pedigree-37 and pedigree-41)
and two on Type4 instances (i.e., Type4-140-19 and
Type 4-140-19), where semiring-based partitioning schemes
are2 to 3 times slower than SCP.

Noisy-or Bayesian Networks. For space reasons, we only
report results onbn2o-30-20-200instances. Results forbn2o-
30-15-150andbn2o-30-25-250instances are similar.

For MBE, each semiring-based partitioning scheme is al-
ways superior to SCP for both values ofz. The only excep-
tion is instance bn2o-30-20-200-3b, for whichL∞ is inferior
to SCP whenz = 17. For MBE-MM, each semiring-based
scheme outperforms SCP in general, although the improve-
ment margin is less notable. In some cases, the effect of cost
propagation yields all heuristics to obtain the same bound.
Yet, running MBE-MM using one semiring-based partition-
ing scheme seems the best choice for this benchmark.

6 Conclusions and Future Work
This paper generalizes the partitioning problem proposed
in [Rollon and Dechter, 2010] to any task defined as a graph-
ical model. The generalization is possible under a semiring
with an additional division operation and a refinement of its
order. These requirements can be considered asmild because
they are satisfied by the usual tasks such as counting and op-
timization. We propose a general greedy scheme to solve this
problem efficiently. Finally, we propose two particular or-
der refinements for optimization tasks. These refinements are
based on two well-known metrics as1-norm and∞-norm.

Our experimental results show that the semiring-based par-
titioning schemes improve significantly in many cases the ac-
curacy of the standard MBE. When this algorithm is enhanced
with a cost propagation phase (i.e., MBE-MM), the impact of
the partitioning schemes is reduced, but still quite remark-
able. Overall, the empirical evaluation suggests that the best
bounds are obtained with MBE-MM using a semiring-based
partitioning scheme at the only cost of a constant increase in
time.

In our future work we want to investigate the impact of the
semiring-based partitioning schemes on other partition-based
algorithms as join-graph propagation algorithms[Mateescuet
al., 2010], and as heuristic generator. We also want to explore
the impact of alternative refinements and if the accuracy of
the refinements depends on the task at hand. Finally, we want
to study the effectiveness of more sophisticated algorithms
beyond our greedy approach.

Acknowledgments
This work was supported by project TIN2009-13591-C02-01
and NSF grant IIS-1065618.

References
[Bistarelli and Gadducci, 2006] S. Bistarelli and F. Gad-

ducci. Enhancing constraints manipulation in semiring-
based formalisms. InECAI, pages 63–67, 2006.

[Bistarelli et al., 1997] S. Bistarelli, U. Montanari, and
F. Rossi. Semiring-based constraint satisfaction and op-
timization. Journal of the ACM, 44(2):201–236, March
1997.

[Bistarelli et al., 1999] S. Bistarelli, H. Fargier, U. Monta-
nari, F. Rossi, T. Schiex, and G. Verfaillie. Semiring-based

Id. z SCP L
∞ avg-L1

z SCP L
∞ avg-L1

Time LB Time LB Time LB Time LB Time LB Time LB

CODING NETWORKS
MBE

126 20 2.71 44.1649 15.16 47.9546 14.78 44.2676 22 8.07 44.5750 69.13 47.6332 61.9 45.3310
127 20 2.64 49.5839 16.77 48.5490 15.37 45.2983 22 10.75 48.1252 59.2 48.7722 52.79 47.5072
128 20 2.81 41.4837 17.92 41.0880 17.33 43.2502 22 10.74 44.6335 67.46 41.6413 57.95 41.6335
129 20 2.31 47.3691 13.63 47.3930 13.31 44.4312 22 7.59 46.4928 45.8 44.5064 46.29 45.1959
130 20 2.61 46.9032 14.11 47.3609 14.01 47.8376 22 8.57 47.8710 44.36 49.0464 46.27 46.4622
131 20 2.59 47.0599 16.05 46.6705 12.66 46.8777 22 7.58 47.8448 49.64 48.2524 41.05 47.0263
132 20 2.67 46.0854 14.48 49.3534 14.76 49.6561 22 10.26 50.5320 42.88 50.8409 49.75 51.3809
133 20 2.69 46.6227 12.52 43.5029 14.21 44.4477 22 10.95 43.9615 57.92 44.0481 49.96 46.3188
134 20 2.53 43.4042 15.43 44.1869 15.42 46.8288 22 10.81 46.9455 52.58 43.9870 57.24 50.0214

MBE-MM
126 20 6.16 50.9868 19.08 51.4298 16.95 51.7849 22 28.83 52.1866 70.77 51.9130 69.1 52.0769
127 20 8.17 54.2311 21.15 53.8390 18.54 54.1132 22 30.35 54.9843 73.46 54.9352 60.39 53.8129
128 20 8.1 46.6324 24.22 46.0965 19.71 46.0335 22 29.67 46.3810 72 46.6970 68.01 46.2075
129 20 6.89 52.8272 16.13 52.9273 17.8 52.2187 22 26.94 54.1139 68.46 54.8979 62.74 55.2956
130 20 7.25 53.9811 16.69 55.3593 16.83 55.2183 22 26.74 54.3547 62.86 55.1318 49.67 54.4864
131 20 7.29 53.2935 18.86 52.8953 15.16 52.5563 22 25.85 53.1382 60.72 53.4991 48.9 52.7956
132 20 7.61 56.6294 19.6 56.6458 17.54 56.5919 22 22.89 57.4683 55.91 57.7120 58.96 57.3692
133 20 7.29 50.8308 19.5 50.1530 17.79 51.1713 22 24.93 50.1155 56.97 50.1969 61.15 50.4601
134 20 7.84 52.0498 18.76 51.0830 19.71 51.7879 22 29.1 52.1059 67.52 53.8257 66.12 52.9524

PEDIGREE NETWORKS
MBE

7 17 2.72 108.8927 3.76 109.4564 4.84 109.2850 19 18.11 109.1999 21.84 109.4359 21.17 109.4937
9 17 1.31 116.0396 1.85 115.7635 1.86 116.2614 19 4.61 116.9488 6.94 118.9390 6.86 118.9390
13 17 1.38 69.6829 1.95 70.9686 1.86 71.3244 19 4.87 70.3736 7.47 70.6534 7.03 70.8203
18 17 0.64 121.3239 0.67 121.3239 0.67 121.3239 19 2.04 123.2094 2.05 123.2094 2.05 123.2841
20 17 9.99 51.1976 9.16 52.7681 9.34 51.1475 19 36.18 51.7526 37.44 51.3947 37.41 51.3947
25 17 0.54 156.7323 0.45 155.7781 0.48 155.7781 19 1.02 159.2994 1.07 159.2994 1.07 159.2994
30 17 1.49 132.7058 1.21 133.2865 1.21 133.2865 19 4.4 135.9630 4.66 135.9630 4.63 135.9630
31 17 7.52 125.9962 8.26 126.7028 7.77 126.3257 19 26.96 126.3103 57.86 126.7808 57.62 126.7808
33 17 3.36 67.4128 5.62 70.0187 5.1 70.9729 19 10.3 65.5044 10.97 68.1102 13.52 68.0679
34 17 22 105.5951 34.62 107.8021 33.21 107.8021 19 117.25 106.1329 233.77 107.8579 219 107.5615
37 17 62.42 138.8355 166.75 140.7067 228.84 139.8428 19 163.43 142.6193 1356.08 142.6193 350.84 142.6193
41 17 44.15 114.1528 72.19 113.8273 69.82 115.0162 19 128.53 114.9441 261.63 114.2727 246.4 114.0889
44 17 1.45 89.5737 2.37 91.2718 1.97 90.0481 19 5.1 90.3476 9.45 90.2808 9.1 90.7143
51 17 2.12 100.9149 3.52 102.4860 2.45 101.6225 19 8.65 101.0238 10.15 101.0238 8.79 101.3729

100 16 17 30.81 1145.5791 43.26 1151.3618 42.01 1157.1399 19 97.31 1158.0012 139.7 1161.3181 135.6 1160.654785
100 19 17 11.41 1067.8678 14.3 1074.1741 15.46 1070.5029 19 31.63 1082.7845 43.28 1085.1501 44.49 1080.159302
120 17 17 7.43 1296.9375 8.77 1298.1321 8.85 1297.2715 19 15.43 1306.7068 17.68 1314.4250 17.93 1311.921631
130 21 17 10.27 1300.8636 12.6 1310.1495 12.46 1310.1292 19 22.07 1311.9829 29.25 1322.6984 28.89 1321.91272
140 19 17 19.37 1386.5961 28.46 1398.6418 27.27 1401.7791 19 44.39 1413.8478 79.08 1420.3602 71.52 1422.321899
140 20 17 35.53 1295.2239 44.69 1296.2660 44.22 1292.2687 19 123.87 1315.7791 194.54 1316.6406 487.25 1313.216064
150 14 17 57.01 1497.8391 66.27 1504.8148 113.19 1513.5554 19 107.49 1505.3149 139.74 1509.2795 140.49 1515.777954
150 15 17 77.39 1228.0110 73.2 1229.6445 26.32 1232.9501 19 46.81 1239.6547 54.41 1247.2201 54.62 1246.114502
160 14 17 23.8 1879.8701 34.88 1887.1932 30.36 1889.0613 19 54.66 1899.8004 72.05 1907.7247 77.73 1903.588379
160 15 17 21 1468.4277 26.24 1471.2092 25.31 1457.9683 19 48.96 1485.6819 66.2 1484.6494 62.5 1480.59375
160 23 17 17.87 1881.1091 20.04 1905.0249 20.08 1894.3540 19 27.58 1900.0710 34.63 1915.3242 34.51 1914.324585
170 23 17 8.37 1889.8179 8.97 1892.2351 9.03 1891.9114 19 12.61 1905.4634 13.09 1905.8533 13.27 1902.946899
190 20 17 23.54 2436.5767 28.69 2439.2964 28.71 2441.3315 19 43.92 2440.3169 56.18 2445.7246 57.61 2445.96875

MBE-MM
7 17 4.57 110.1427 5.65 110.3001 9.49 110.3677 19 28.42 110.8623 30.59 110.8220 28.13 110.9526
9 17 2.22 120.3932 2.82 121.0717 2.7 121.3174 19 7.87 121.5204 10.61 121.6989 10.64 121.6989
13 17 2.32 71.0492 3.15 71.1748 3.4 71.5114 19 7.99 71.4750 10.96 71.2046 10.68 71.2046
18 17 0.8 124.1096 0.86 124.1096 0.86 124.1096 19 2.25 124.4249 2.27 124.4249 2.27 124.4249
20 17 11.84 51.4184 10.14 51.4343 10.59 51.4343 19 41.45 52.7168 44.87 52.7168 44.72 52.7168
25 17 0.6 159.6288 0.72 159.6288 0.67 159.6288 19 1.44 159.9930 1.48 159.9930 1.47 159.9930
30 17 1.39 135.8177 1.52 135.8178 1.56 135.8454 19 4.82 136.5649 5.23 136.5649 4.88 136.6445
31 17 10.27 128.5108 11.08 129.0052 11.42 128.8895 19 38.65 128.6116 96.26 128.5891 95.44 128.5891
33 17 6.17 70.0013 9.35 70.7769 9.48 70.8993 19 17.05 69.8644 16.26 71.0661 19.03 71.4836
34 17 38.11 109.0189 46.93 109.2000 45.49 108.7519 19 199.63 109.4744 333.38 109.4890 423.74 109.5095
37 17 135.73 142.8687 293.24 142.8687 294.51 142.8687 19 331.82 144.0392 706.72 144.0657 431.93 144.0657
41 17 74.62 115.4667 89.12 116.1025 97.32 115.4144 19 204.35 116.2645 335.51 116.2781 324.52 116.1317
44 17 2.47 94.1250 4.7 94.5632 2.89 94.6676 19 8.73 94.3481 9.11 94.7630 9.6 94.7034
51 17 3.62 104.9397 5.22 106.1441 3.86 105.4351 19 12.02 106.1931 13.6 106.1323 12.12 106.1849

100 16 17 42.78 1176.6797 55.11 1180.5432 180.65 1178.8740 19 139.21 1181.8257 182 1185.1167 175.57 1185.293701
100 19 17 15.11 1104.0924 18.46 1105.6055 17.8 1107.0393 19 44.15 1109.6017 58.05 1110.4194 52.72 1110.032104
120 17 17 8.7 1320.8333 9.83 1321.9402 9.98 1322.0950 19 17.54 1324.0256 19.34 1323.8835 19.58 1324.308594
130 21 17 12.69 1346.7722 14.29 1349.8878 14.77 1349.2976 19 29.06 1356.0505 32.91 1356.8892 32.68 1355.352783
140 19 17 28.9 1445.3862 36.63 1447.8936 35.65 1446.7283 19 74.12 1459.3081 109.79 1455.9856 92.23 1454.226685
140 20 17 50.99 1345.8759 58.19 1348.2992 62.5 1347.0886 19 185.39 1356.7883 255.03 1357.7189 275.23 1359.001221
150 14 17 22.72 1581.7888 37.63 1583.0146 23.79 1582.6594 19 44.02 1592.5331 50.24 1591.8013 51.45 1592.232178
150 15 17 28.92 1319.2913 32 1318.8572 32.14 1317.1138 19 60.03 1323.8816 74.59 1325.3538 66.15 1325.453491
160 14 17 33.56 1932.0858 44.23 1936.6246 35.39 1936.8888 19 73.35 1942.7789 89.91 1943.5851 90.61 1943.680542
160 15 17 29.38 1568.8596 33.86 1569.1587 33.05 1566.0881 19 70.33 1580.8682 89.27 1583.6843 86.66 1584.233154
160 23 17 20.33 1990.3468 22.37 1991.9583 21.8 1991.4231 19 35.28 2001.8970 41.72 2001.5148 42.86 2001.546631
170 23 17 9.2 1920.2833 9.68 1919.1329 9.78 1920.0374 19 14.16 1924.2651 14.75 1924.2798 14.86 1924.574219
190 20 17 27.96 2512.3047 32.6 2513.1763 32.56 2509.6494 19 57.77 2520.0928 66.88 2521.9863 68.62 2522.884277

NOISY-OR NETWORKS
MBE

1a 10 0.01 6.3609 0.21 7.8882 0.21 7.9994 15 0.05 7.2272 0.36 8.1921 0.35 8.2927
1b 10 0.01 4.5187 0.21 4.6424 0.21 4.6042 15 0.05 4.5971 0.36 4.6831 0.35 4.7275
2a 10 0.01 6.4033 0.21 8.8711 0.21 8.8120 15 0.05 7.5348 0.36 9.3413 0.38 9.3682
2b 10 0.01 3.8327 0.21 3.9598 0.21 3.9178 15 0.05 3.9277 0.37 4.0311 0.36 4.0199
3a 10 0.01 7.3648 0.21 10.2783 0.22 10.3138 15 0.05 8.5514 0.37 10.5725 0.42 10.6037
3b 10 0.01 3.9869 0.21 3.9815 0.21 4.0029 15 0.05 3.9977 0.35 4.0490 0.36 4.0712

MBE-MM
1a 10 0.01 9.1105 0.22 9.1035 0.22 9.1039 15 0.1 9.2036 0.42 9.2099 0.4 9.2099
1b 10 0.01 4.9684 0.22 4.9684 0.22 4.9687 15 0.1 4.9869 0.41 4.9869 0.39 4.9920
2a 10 0.01 9.5315 0.22 9.5533 0.22 9.5533 15 0.1 9.8632 0.4 9.7863 0.41 9.7515
2b 10 0.01 4.1164 0.22 4.1164 0.22 4.1164 15 0.1 4.1277 0.42 4.1277 0.41 4.1277
3a 10 0.01 10.9827 0.21 10.9827 0.22 10.9827 15 0.1 11.1249 0.47 11.1278 0.42 11.0819
3b 10 0.01 4.1198 0.21 4.1198 0.22 4.1198 15 0.1 4.1247 0.4 4.1247 0.4 4.1247

Table 1: Empirical results on coding, linkage analysis, andnoisy-or Bayesian networks for the task of computing the MPE. The
table reports− log(upper bound) (i.e., a lower bound on the log scale) obtainedby MBE and MBE-MM for different values
of the control parameterz and different partitioning schemes (i.e., scope-based (SCP),∞-norm (L∞) and average1-norm
(avg-L1)). The first column (Id.) shows the name of the instance: for coding networks the name isBN Id; for pedigree
networks the name ispedigree-Id. andTyple4Id. for the first and second set of instances, respectively; and, for noisy-or
Bayesian networks the name isbn2o-30-20-200-Id. We highlight in bold face the best lower bound for each instance and value
of z.

CSPs and valued CSPs: Frameworks, properties and com-
parison.Constraints, 4:199–240, 1999.

[Cooper and Schiex, 2004] M. Cooper and T. Schiex. Arc
consistency for soft constraints.Artificial Intelligence,
154(1-2):199–227, 2004.

[Darwiche, 2009] A. Darwiche. Modeling and Reasoning
with Bayesian Networks. Cambridge University Press, San
Francisco, 2009.

[Dechter and Rish, 1997] R. Dechter and I. Rish. A scheme
for approximating probabilistic inference. InProceedings
of the 13th UAI-97, pages 132–141, 1997.

[Dechter and Rish, 2003] R. Dechter and I. Rish. Mini-
buckets: A general scheme for bounded inference.J. of
the ACM, 50(2):107–153, 2003.

[Dechter, 2003] R. Dechter.Constraint Processing. Morgan
Kaufmann, San Francisco, 2003.

[Ihler et al., 2012] A. T. Ihler, N. Flerova, R. Dechter, and
L. Otten. Join-graph based cost-shifting schemes. InUAI,
pages 397–406, 2012.

[Kasket al., 2005] K. Kask, R. Dechter, J. Larrosa, and
A. Dechter. Unifying tree decompositions for reasoning in
graphical models.Artif. Intell., 166(1-2):165–193, 2005.

[Kohlas and Wilson, 2008] J. Kohlas and N. Wilson. Semir-
ing induced valuation algebras: Exact and approximate lo-
cal computation algorithms.Artif. Intell., 172(11):1360–
1399, 2008.

[Lauritzen and Jensen, 1997] S. L. Lauritzen and F. V.
Jensen. Local computation with valuations from a com-
mutative semigroup.Ann. Math. Artif. Intell., 21(1):51–
69, 1997.

[Mateescuet al., 2010] R. Mateescu, K. Kask, V. Gogate,
and R. Dechter. Join-graph propagation algorithms.J.
Artif. Intell. Res. (JAIR), 37:279–328, 2010.

[Park, 2002] J. D. Park. Using weighted max-sat engines to
solve mpe. InProc. of the 18th AAAI, pages 682–687,
Edmonton, Alberta, Canada, 2002.

[Pearl, 1988] J. Pearl.Probabilistic Reasoning in Intelligent
Systems. Networks of Plausible Inference. Morgan Kauf-
mann, San Mateo, CA, 1988.

[Rollon and Dechter, 2010] E. Rollon and R. Dechter. New
mini-bucket partitioning heuristics for bounding the prob-
ability of evidence. InProc. of the24th AAAI, Atlanta,
Georgia, USA, 2010.

