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Abstract

In the context of distributed Branch and Bound Search forpBical Models,
effective load balancing is crucial yet hard to achieve dueadrly pruning of
search branches. This paper proposes learning a regressiel over structural
as well as cost function-based features to more accuratelyigh subproblem
complexity ahead of time, thereby enabling more balancedllphworkloads.
Early results show the promise of this approach.

1 Introduction

This paper explores the application of learning for impl@ad balancing in the context of dis-
tributed search for discrete combinatorial optimizatimerographical models (e.g., Bayesian net-
works, weighted CSPs). Specifically, we consider one of &t bxact search algorithms for solv-
ing the MPE/MAP task over graphical models, AND/OR Brancld &ound (AOBB) [9], ranked
first or second in the UAI'06 and '08 evaluations. We adaptasiblished concept of parallel tree
search [5], where a search tree is explored centrally up ®rtain depth and the remaining sub-
trees are solved in parallel. In the graphical model contexexplore the search space of partial
instantiations up to a certain point and solve the resultmditioned subproblems in parallel.

The distributed framework is built with a grid computing @owment in mind, i.e., a set of au-
tonomous, loosely connected systems — notably, we cansatresany kind of shared memory
which many parallel algorithms build upon [4, 5, 1]. The paim challenge — and focus of this
paper — is therefore to find a set of subproblems with balanoetplexity, so that the overall par-
allel runtime will not be dominated by just a few of them. Iretbptimization context, however,

the use of cost and heuristic functions for pruning makesriy vard to reliably predict and balance
subproblem complexity ahead of time, even if structurabpeaters like induced width are known.

Our suggested approach and the main contribution of thiemiapto estimate subproblem com-
plexity by learning a regression model over the subprobl@asmeters, structural as well as with
respect to the cost function. This model is trained durirgppscessing on a small number of sub-
problem samples and then used to predict the size of eachichibm’s search space in advance,
merging/splitting accordingly.

Prior work on estimating search complexity goes back tofi@] more recently [6], which predict the

size of general backtrack trees through random probingil&ischemes were devised for Branch
and Bound algorithms [2], where search is run for a limitedetiand the partially explored tree is
extrapolated. Our approach differs by sampling and legraitirely during preprocessing, allowing
very fast repeated estimates when the parallelizatiortigois iteratively computed.

We present some early results of this ongoing work, runniitly &wvarying degree of parallelism on
haplotyping problems from the domain of genetic linkagelysis. While limited in scope at this
point, results are promising, with good parallel speedogsarticular.
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Figure 1: (a) Example primal graph with six variables, (I8)iitduced graph along ordering=
A, B,C,D, E,F, (c) acorresponding pseudo tree, and (d) the resultingegtminimal AND/OR
search graph.

2 Background

We assume the usual definitions ofi@phical modebs a set of function’ = {f1,..., f.,} over
discrete variableX = {X;,..., X, }, its primal graph induces graphandinduced width Figure
1(a) depicts the primal graph of an example problem with sixables. The induced graph for the
example problem along ordering= A, B, C, D, E, F'is depicted in Figure 1(b), its induced width
is 2. Note that different orderings will vary in their imptienduced width; finding an ordering of
minimal induced width is known to be NP-hard, in practice figics like minfill [7] are used to
obtain approximations.

2.1 AND/OR Search Spaces

The concept of AND/OR search spaces has been introducedrafyimg framework for advanced
algorithmic schemes for graphical models to better caghestructure of the underlying graph [3].
Its main virtue consists in exploiting conditional indepencies between variables, which can lead
to exponential speedups. The search space is defined upsepueo tregwhich captures problem
decomposition:

DEFINITION 1 (pseudo tree) Given an undirected graplty = (X, F), a pseudo treef G is a
directed, rooted tre§ = (X, E’) with the same set of nodés, such that every arc af that is not
included inE’ is a back-arc in7 , namely it connects a node fhto an ancestor irV . The arcs in
E’ may not all be included i .

AND/OR Search Trees : Given a graphical model instance with variablésand functiong”, its
primal graph(X, F), and a pseudo treg, the associatedND/OR search treeonsists of alternat-
ing levels of OR and AND nodes. OR nodes are labetednd correspond to the variablesin.
AND nodes are labeleX;, x;) , or justz; and correspond to the values of the OR parent’s variable.
The structure of the AND/OR search tree is based on the undenbseudo tre§ : the root of the
AND/OR search tree is an OR node labeled with the rogt ofThe children of an OR nod¥; are
AND nodes labeled with assignmeriX;, x;) ; the children of an AND nodéX;, z,;) are OR nodes
labeled with the children oX; in 7, representing conditionally independent subproblemezak
shown that, given a pseudo tréeof heighth , the size of the AND/OR search tree basedjors
O(n - k™), wherek bounds the domain size of variables [3].

AND/OR Search Graphs : Different nodes may root identical subproblems and can beyede
throughcaching yielding anAND/OR search graplof smaller size, at the expense of using ad-
ditional memory during search. A mergeable nodgecan be identified by itsontext the partial
assignment of the ancestors &f which separates the subproblem bel&w from the rest of the
network. Merging all context-mergeable nodes yieldsdbetext minimaAND/OR search graph.
Given a graphical model, its primal gragh, and a pseudo treg, the size of the context-minimal
AND/OR search graph i©(n- k") , wherew* is the induced width of G over a depth-first traversal
of 7 andk bounds the domain size [3].

Figure 1(c) depicts a pseudo tree extracted from the indgcagh in Figure 1(b) and Figure 1(d)
shows the corresponding context-minimal AND/OR searciplyraNote that the AND nodes for



B have two children each, representing independent sulgrsband thus demonstrating problem
decomposition. Furthermore, the OR nodesAbfwith context{ B, C'}) and F' (context{B, E})
have two edges converging from the AND level above themifsigiy caching.

Weighted AND/OR Search Graphs : Given an AND/OR search graph, each edge from an OR
node X; to an AND noder; can be annotated hyeightsderived from the set of cost functiors

in the graphical model: the weightX;, =;) is the sum of all cost functions whose scope includes
X, and is fully assigned along the path from the root{¢ evaluated at the values along this path.
Furthermore, each node in the AND/OR search graph can beias=sbwith avalue the valuev(n)

of a noden is the minimal solution cost to the subproblem rooted agubject to the current variable
instantiation along the path from the root/io v(n) can be computed recursively using the values
of n’s successors [3].

AND/OR Branch and Bound : AND/OR Branch and Bound is a state-of-the-art algorithm for
solving optimization problems over graphical models. Asigg a maximization task, it traverses
the context-minimal AND/OR graph in a depth-first mannerle/keeping track of a current lower
bound on the optimal solution cost. During expansion of aenadhis lower bound is compared
with a heuristic upper bound(n) on the optimal solution below — if u(n) < I the algorithm can
prune the subproblem below[3].

Distributed AND/OR Branch and Bound :
Our distributed implementation of AND/OR
Branch and Bound is based on the notion of
parallel tree search [5], where a search tree is
explored centrally up to a certain depth and the
remaining subtrees are solved in parallel. In
the context of graphical models we explore the g gi|sis:
search space of partial instantiations up to a cer-

tain point and solve the resulting conditionegtigure 2: Parallelization applied to the example
subproblems in parallel. Applied to the searchroplem from Figure 1, resulting in eight indepen-

graph from Figure 1(d), for instance, we coul@ent subproblems, with conditioning search space
obtain eightindependent subproblems as shoyygray.

in Figure 2, with a conditioning search space (in
gray) spanning the first two levels (variablésind B). In the following we will outline our approach
to finding a balanced set of subproblems.

(o][1]

3 Load Balancing through Complexity Prediction

Our general scheme to find a balanced set of subproblemsliisenLiin Algorithm 1: starting with
just the search space root node (corresponding to a siragte subproblem), we iteratively pick
the subproblem with largest estimated complexity and dawdit further, until the desired level of
parallelism (measured by the number of subproblems, tifpiclaosen to be ten times the number of
available CPUs) is obtained. Note that each node generatgitiio have its subproblem complexity
estimated, resulting in many such queries; it is therefosgsable to keep most of the estimation
complexity to an offline preprocessing phase in order to lenfsist prediction queries.

The following section derives our principled approach tbmoeblem complexity prediction, which
we formulate as a regression learning problem. We noteille the goal in the present context is

Algorithm 1 Pseudo code for subproblem generation

Input: Pseudo tre§ with root X, minimum subproblem count, complexity estimatofy .
Output: SetF of subproblem root nodes witt’| > p.
1. F«+ {(Xo)}
2: while |F| < p:
n' < arg maxper N(n)
F« F\{n'}
F < F Uchildren(n’)

arw




to ensure balanced subproblem complexity in the distribsédeme, accurate complexity prediction
is a worthwhile issue in itself and a possible subject of feitesearch.

3.1 Subproblem Complexity Prediction

Given a search node, we propose to model the complexity of the subproblem betdgméasured
by the number of node expansions required for its solutismraexponential function of various
subproblem features;(n) , capturing the exponential nature of the search space sifodlaws:

N(n) = py Aizi(n) (1)
The subproblem features (n) we consider can be divided into two groups:

e Structural:d(n), depth ofn in the conditioning search spade(n), height of the subprob-
lem pseudo tree below; w(n), induced width of the conditioned subproblem below
¢(n), the number of problem variables in the subproblem below

e Cost-function relatedt/(n), heuristic upper bound on the subproblem solution costbelo
n, as used by the Branch and Bound algorithm for prunib;), lower bound on the
subproblem solution cost as derived from the current bestrédl) solution.

If we instead consider the log complexity, Equation 1 becwthe following:

log N(n Z Ajzj(n (2)

Finding suitable parameter valuas can thus be formulated as a well-knownear regression
problem. In other words, given a setiafsample subproblems, and their respective complexities
N(ng), 1<k<m, we aim to find parameters; that minimize the mean squared error:

MSE——Z(Z)\ xj(ng) 1ogN(nk))2 3)

The optimal selection of;’s can be computed using tledinary least squaremethod: We take
each sample subproblem’s features as a row of the desigixmfi.e., X; ; = x;(n;)) and letY”
with Y; = log(N (n;)) denote the column vector of log subproblem sizes. Withas the Euclidean
norm, we then minimizé| XA — Y||? through the closed-form expressidn= (X7 X)~1xTY.
Optionally applyingiidge regressiorfor regularization we get:

A=XTX +al) 'XxTy (4)
where is the identity matrix andv € R a small constant (e.goe = 0.01). Given the learned
parameters,; we can then predict the (Iog) complexity of a new subprobiémas:

log N Z Ajzi(n (5)

In the following we briefly describe how we can obtain the sknget of subproblems required to
learn the parameter valugs of the regression model.

3.2 Subproblem Sampling

Recall first that AND/OR Branch and Bound is a depth-first deacheme. Second, we realize that
any leaf node that is generated is a subproblem in itselfifef k) and as the algorithm backtracks
from the leaf the solved subproblem expands in size. Hentarobhg a single sample subproblem
is straightforward: we run the search for a limited numbeopérations and take the largest solved
subproblem as the sample. To obtain multiple different sagypve introduce randomness in the
value choices of the search up to a certain depth, below wheetalgorithm continues to use the
heuristic upper bound as a value selection heuristic agédefo

For the parallel results in the following section, for a giyeroblem instance we sampled 10 sub-
problems each of size approx. 10,000, 40,000, 80,000, @20 160,000, and 200,000 nodes, for
a total of 60 samples. This sampling process takes aroundr@tes per problem instance and is
performed offline at this stage — eventually it will be fuliytégrated into the parallel scheme.



(a) Pedigree41, 10 CPUs / 100 subproblems (b) Pedigree13, 20 CPUs / 200 subproblems
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Figure 3:(a)—(e): Subproblem statistics for select runs. Shown are each shlgon’s complexity
as well as the depth of its root in the central search spaotédl against second y-axiqf)—(h):
Scatter plots of subproblem complexities against regrassstimates.

4 Empirical Results

This line of work is an ongoing effort, with a more compreheasstudy to be carried out in the
future; here we present some early results. We note thahfirgliitable benchmark problems is not
an easy feat: if problems are too simple, parallelizatiomdst likely detrimental overall, due to
preprocessing and overhead from the distributed schemay Mery hard problems, on the other
hand, will still remain infeasible for practical purposasparticular since every experiment binds a
potentially large number of shared parallel resourcestiadended period of time.

We report on five haplotyping problems from the domain of gierlimkage analysis, which corre-
spond to MPE queries over Bayesian networks. With sequentitimes from under one hour to
over six days, we varied the number of CPUs depending on titdgm complexity, since massive
parallelism is futile for relatively simple problems. Faaah instance below; is the number of

problem variables); its maximum domain sizey the induced width, anél the pseudo tree height.

Table 1 contains results in terms of parallel runtime withyireg levels of parallelism, depending
on overall problem complexity. Also included are sequérgtdution times (using plain AOBB)



sequentiall CPUs  time spd CPUs time spd
pedigree4l1 2,247 5 556 4 10 326 7
pedigreel3 12,662 10 1,243 10 20 748 17
pedigree31 92,078 50 2,078 44 100 1,134 81
pedigree51) 570,411| 100 6,382 89 324 2,275 251
pedigreel9| 1,659,324 324 8,396 198

Table 1: Sequential and parallel runtime results for défémumber of CPUs (number of subprob-
lems is always ten times number of CPUs). “spd” is speedupacpuential. All times in seconds.

and relative speedup. Figure 3 shows detailed subproblatisties: (a) through (e) depict the
complexity of the individual subproblems for select rund atow us to assess load balancing; (f)
through (h) directly contrast the complexity estimatesrfrine learned regression model with the
actual subproblem complexities, enabling evaluation efidfediction quality.

Pedigree4l ¢ = 1062,k = 5,w = 33,h = 100) : Solved sequentially in under one hour, this
problem doesn'’t leave room for much parallelism and usingentban 10 CPUs would add little
benefit. The subproblem complexities, however, seem faalgnced (Fig. 3(a)).

Pedigreel3 = 1077,k = 3,w = 32, h = 102) : Sequential AOBB takes about 3 1/2 hours on this
problem, using 10 CPUs yields almost perfect linear speedtie effect doesn’t hold as strongly
for 20 CPUs, but the time improvement is still pronouncede Tdad balancing is acceptable as well
(Fig. 3(b)), however we found that the underlying model preoins (not pictured) are many orders
of magnitude different from the actual complexities, whiah need further investigation.

Pedigree31 & = 1183,k = 5,w = 30,h = 85) : We obtain favorable speedups with up to 100
processors. Similarly, the distribution of subproblem ptexities seems relatively balanced (Fig.
3(c)). The underlying estimates, however, are again ngtaecurate (Fig. 3(g)).

Pedigree51( = 1152,k = 5,w = 39, h = 98) : One of the two problems where using all available
324 CPUs makes sense, yielding a substantial speedup. bpeblem complexities are not quite
as balanced (Fig. 3(d)) and the underlying predictionsequiaide (Fig. 3(h)), but it does not appear
to impact the overall solution time negatively.

Pedigreel9 @ = 693,k = 25,w = 25,h = 98) : The hardest problem in this set, its parallel
speedup is a bit less distinct. We think this is due to theidanable imbalance across subproblems
(Fig. 3(e)); in fact the overall time is dominated by a fewdemunning subproblems.

Overall, however, we observe very reasonable paralleldsgeeacross instances; load balancing
seems fairly effective, with the exception of pedigreelBiclr we need to investigate more closely.

However, while our framework appears to generally enaliézt¥e load balancing, the accuracy of

the underluing estimates is mediocre at best; further resésineeded here as well.

5 Conclusion & Future Work

We have developed a distributed Branch and Bound framevinaitkuses learning to achieve better
load balancing on a computational grid. In particular, wepmsed to train a linear regression model
on structural and cost-function based features of samjipreblems. The resulting model is then
used to determine a suitable parallelization of the entioblem search space.

Early results shown in Section 4 have shown promise, butlstgaighted areas for future work.
We were able to obtain very good parallel speedups for vemyptex as well as (using fewer CPUs)
relatively simple problems and generally observed effedbad balancing. However, we also found
that in most cases the learned regression model didn'tgredmplexities very accurately, some-
times leading to imbalanced subproblem complexities. Thstmotable example in this regard was
pedigreel9, which will require more in-depth analysis.

Future work will involve identifying additional features fadd to the model, experimenting with
varying sample sizes, and, most importantly, a more extereinpirical evaluation of the various
aspects of our scheme on more problem instances. Anothewpath investigating might be using
non-linear models and to compare their performance to thewrulinear regression.



References

[1] Geoffrey Chu, Christian Schulte, and Peter J. Stuckeynfidence-based work stealing in paral-
lel constraint programming. In lan Gent, editGR, volume 5732 of ecture Notes in Computer
Sciencepages 226-241, Lisbon, Portugal, September 2009. Spiifggkag.

[2] Geérard Cornegjols, Miroslav Karamanov, and Yanjun Li. Early estimatéthe size of branch-
and-bound treedNFORMS Journal on Computind8(1):86—96, 2006.

[3] Rina Dechter and Robert Mateescu. AND/OR search spacegdiphical modelsArtif. Intell.,
171(2-3):73-106, 2007.

[4] Bernard Gendron and Teodor Gabriel Crainic. Parallahbh-and-bound algorithms: Survey
and synthesisOperations Resear¢id2(6):1042—-1066, 1994.

[5] Ananth Grama and Vipin Kumar. State of the art in paraflearch techniques for discrete
optimization problemslEEE Trans. Knowl. Data Eng11(1):28-35, 1999.

[6] Philip Kilby, John Slaney, Sylvie Tigbaux, and Toby Walsh. Estimating search tree size. In
AAAI, pages 1014-1019. AAAI Press, 2006.

[7] Uffe Kjaerulff. Triangulation of graphs — algorithmswviig small total state space. Technical
report, Aalborg University, 1990.

[8] Donald E. Knuth. Estimating the efficiency of backtraglograms.Mathematics of Computa-
tion, 29(129):121-136, 1975.

[9] Radu Marinescu and Rina Dechter. AND/OR Branch-and+bsearch for combinatorial op-
timization in graphical modeldArtif. Intell., 173(16-17):1457-1491, 2009.



