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1 Introduction

The report provides a constraint processing view of Identity by decent (IBD) graphs and reformulate
some aspects of the work in [4] from a constraint perspective.

A Bayesian network model of a linkage task can be decomposed into a mixed network that has
a constraint network portion and a Bayesian network portion [3]. It includes selector variables (or
inheritance variables) that determine the flow of genes from parents to children along the chromo-
some which are described by probabilistic dependencies. We also have the prior probabilities over
the founders. These two sets of probabilistic functions can be regarded as a Bayesian subnetwork.
The rest of the dependencies in the model are deterministic and can be viewed as constraints. In
a multimarker model, whenever the selector variables are conditioned on, we have a collection of
independent small mixed networks, one for each locus. The constraint portion of each locus-based
mixed network, can be processed by a constraint propagation algorithms. In particular, it can be
processed by arc and path-consistency [1]. We recently observed that if we apply path-consistency
symbolically, (i.e., when the values of the variables (the alleles) are propagated symbolically), then
we get a tighter constraint network restricted to the founder variables which is equivalent (identical)
to the identity by decent (IBD) graph [4].

This equivalent constraint subnetwork together with the probabilistic subnetwork is an equivalent
model at each locus, conditioned on the selector values. These networks can be far smaller than
the original ones , and when provided with the actual evidence (the alleles assigned to the typed
individuals), they can often (always?) be solved efficiently. In particular, enumerating the set of all
consistent alleles associated with the founder variables can be done in output linear time. Clearly



if the number of consistent founder assignments for a locus-based IBD constraint network is small,
computing the probability of evidence conditioned on the selectors s and over all markers can be
accomplished more effectively using the tighter mixed IBD networks than when processing the
original one.

The main virtue of the IBD graph seems to be that it changes only locally from one locus to the
next, and only for selectors that represent recombinations [4]. In other words, the IBD constraint
network along the chromosome will mimic recombination and will be more a function of the total
number of recombinations rather than the number of markers. In this report we propose to use the
mixed network view of the IBD graph to facilitate constraint-based techniques to advance ideas and
goals in linkage analysis and haplotype computations.

Section 2 provides general background on on mixed probabilistic and deterministic networks
and on its use for formulating the linkage analysis task. Section 3 provides the formulation of IBD
graphs.

2 Background: the Mixed network of Linkage analysis

2.1 Definitions

DEFINITION 1 (constraint network) A constraint network CN is a triple CN. = (X,D,C), where
X ={X1,...,X,} is a set of variables associated with a set of discrete-valued domains D =
{D,...,D,} and a set of constraints C = {C},...,C,}. Each constraint C; is a pair (S;,R;) where
R; is a relation R; C Ds, defined on a subset of variables S; C X and Dy, is the Cartesian product
of the domains of variables S;. The relation R; denotes all tuples of Ds, allowed by the constraint.
The projection operator T creates a new relation, Ts;(R;) = {x | x € Ds; and Jy,y € Ds,s, and
xUy € R;}, where S; C S;. Constraints can be combined with the join operator X, resulting in a new
relation, R; X R; = {x | x € Dg,us; and mts;(x) € R; and Tts,(x) € R;}.

DEFINITION 2 (constraint satisfaction problem, satisfiability) The constraint satisfaction prob-
lem (CSP) defined over a constraint network C = (X, D, C), is the task of finding a solution, that is,
an assignment of values to all the variables x = (x1, ...,x,),X; € Dj, such thatVC; € C,s,(x) € R;.
The set of all solutions of the constraint network C is sol(C) =X 9@ When the variables are propo-
sitional, having values "0” and ”1” and the constraints are boolean clauses we have the special case
of a cnf formula and the satisfiability task.



Graphical models can accommodate both probabilistic and deterministic information. Proba-
bilistic information typically associates a strictly positive number with an assignment of variables,
quantifying our expectation that the assignment may be realized. The deterministic information has
a different semantics, annotating assignments with binary values, either valid or invalid. The mixed
network allows probabilistic information expressed as a belief network and a set of constraints to
co-exist side by side and interact by giving them a coherent umbrella meaning.

DEFINITION 3 (mixed networks) Given a belief network B = (X,D, G, P) that expresses the joint
probability Pg and given a constraint network R = (X, D, C) that expresses a set of solutions p(R.)
(or simply p), a mixed network based on B and R denoted M3 ) = (X,D,G,P,C) is created
from the respective components of the constraint network and the belief network as follows. The
variables X and their domains are shared, (we could allow non-common variables and take the
union), and the relationships include the CPTs in P and the constraints in C. The mixed network
expresses the conditional probability Py (X):

PM()Z)—{ Py(x|x€p), if X€p

] o, otherwise.

Clearly, Py (¥ | % € p) = 7 A5Ls. By definition, Pag (%) =TT, P(xi | %pa;) when % € p, and Py (%) =
0 when x ¢ p. When clarity is not compromised, we will abbreviate (X,D,G,P,C) by (X,D,P,C)

or (X,P,C).

Queries over Mixed Networks: Belief updating, MPE and MAP queries can be extended to mixed
networks straight-forwardly. They are well defined relative to the mixed probability distribution Pq,.
Since P, is not well defined for inconsistent constraint networks, we always assume that the con-
straint network portion is consistent, namely it expresses a non-empty set of solutions. An addi-
tional relevant query over a mixed network is to find the probability of a consistent tuple relative to
B, namely determining Pg(x € p(R.)). It is called CNF or Constraint Probability Evaluation (CPE).
Note that the notion of evidence is a special type of constraint. For linkage analysis the primary
query of interest is to compute the probability of evidence.

2.2 Modeling linkage analysis by mixed network

We describe next the problem of genetic linkage analysis [?], which is usually formulated as a
belief network, but can be represented as a mixed network to leverage the deterministic information
abundantly present.



(c) Mixed network

Figure 1: Genetic linkage analysis

Genetic linkage analysis is a statistical method for mapping genes onto a chromosome, and
determining the distance between them. This is very useful in practice for identifying disease genes.
Without going into the biology details, we briefly describe how this problem can be modeled as a
reasoning task in a mixed network.

Figure 1(a) shows the simplest pedigree, with two parents (denoted by 1 and 2) and an offspring
(denoted by 3). Square nodes indicate males and circles indicate females. Figure 1(c) shows
the usual belief network that models this small pedigree for two particular loci (locations on the
chromosome). There are three types of variables, as follows. The G variables are the genotypes
(the values are the specific alleles, namely the forms in which the gene may occur on the specific
locus), the P variables are the phenotypes (the observable characteristics). Typically these are



evidence variables, and for the purpose of the graphical model they take as value the specific
unordered pair of alleles measured for the individual. The § variables are selectors (taking values
0 or 1). The upper script p stands for paternal, and the m for maternal. The first subscript number
indicates the individual (the number from the pedigree in 1(a)), and the second subscript number
indicates the locus. The interactions between all these variables are indicated by the arcs in Figure
1(c).

Due to the genetic inheritance laws, many of these relationships are actually deterministic. For
example, the value of a selector variable determines the genotype variable. Formally, if a is the
father and b is the mother of x, then:

Gﬁ,”j, if ng:o
Gyj if S ;=1

and,

o Gp. if Sm=0
Gy, if Sti=1

The CPTs defined above are in fact deterministic, and can be captured by a constraint, whose
constraint graph is depicted graphically in Figure 1(b). The only real probabilistic information is
defined by the CPTs between selector variables and the prior probabilities of the founders, namely
the individuals having no parents in the pedigree. Figure 2 provides the mixed network formulation
of a founder variable (top of Figure), on the bottom left we have the Bayes subnetwork that consists
of three independent variables and on the right there is a constraint subnetwork. Figure 3 describes
the 3 member family formulation as a mixed network.

Genetic linkage analysis is an example of a belief network that contains many deterministic or
functional relations that can be exploited as constraints. The typical reasoning task is equivalent to
computing the probability of the evidence, or to maximum probable explanation.

3 A constraint network view of IBD graphs

To describe a constraint formulation of IBD graphs | will use the description of ibd graphs in sec-
tion 2.3 of [4]). Paper [4] provides a description of earlier work (by Sobel and Lang (1996) and by
Kruglyak et. al. (1996)) of what is called distinct-genome-lable (DGL) graph that allow the compu-
tation of P(Y, j|S. ;). Given an assignment to the inheritance variables S, ; in a particular marker
locus j, and a set of distinct labels for each of the two genomes of each founder, the DGL that can
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The ibd/founder graph in our example

Mixed network formulation:
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Figure 2: A non-founder mixed network
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Figure 3: A mixed network for recombination



be assigned to each individual in the pedigree are known and unique. Therefore when we are given
a set of observed non-founders and an assignment to the selectors we can deduce the founders
that contributed the genomes to each observed type and therefore can infer the founders actual
(DGLs) labels.

DEFINITION 4 (ibd graphs [4]) Given a Bayesian network ‘B, modeling a linkage instance and
given an assignment to the inheritance variables S, ; in a particular marker locus j and given a
set of observed types, the ibd graph of B is defined by a set of nodes which correspond to the
founders’ maternal and paternal genoms. Two nodes having opposing gender are connected if
there exists an observed type whose labels are ibd with the maternal and paternal labels of its
neighbor founder nodes according to the model ‘B. The arc will be labeled by all the observed
types that satisfy this condition. The graph captures the ibd that is implied by the selectors and the
observed non-founders in the given network ‘B.

Formally: Given ‘B, and its implied mixed network defined over a set of founders variables
F ={F",F,..F",F' .. F",F'}, a set of individual non-founders I = {I,,...I,} and a subset of
non-founders that are typed O = {OY', 0’17 ,..., O™ O}, the IBD graph G, for locus j and selector
Se.j = Se,; s defined by G = (F,E,O) where F is a subset of F)".F)', E C F" x Fl' and O is
the set of labels. We say that an IBD graph is consistent with a model ‘B iff for any two nodes that
are connected and labeled by O, € O, the labels observed in O; can be provably inherited from the
neighboring founders labels ( given the selectors’ assignments), according to model ‘B.

Consider for example Figure 4. In this graph nodes 2 and 9 are connected and labeled by A.
This means that the two labels observed at A are inherited from the maternal locus of one founder
(labeled 9) and the paternal label of the founder denoted by 2. The example does not indicate what
are the selector values but we can figure it out from the description. In principle we can have 2N
nodes if there are N founders. However only a subset of those founder variables that are relevant
to the observed non-founders in the pedigree, are included in the ibd graph. We next define the
ibd-graph with a constraint network that represents the same information.

DEFINITION 5 (ibd constraint network) Given a Bayesian network model ‘B having a set of
founders F = {F\",F},..F/",F'...F",F''} a set of individual non-founders I = {Iy,...I,} and a
subset of non-founders that are typed O = {O', 0’17 s, O o? }, and given a consistent IBD graph
G, G = (¥ ,E,O), the IBD constraint network of the IBD G, denoted CONS(G) = (X, D, C) has a
set of variables X = F U O (namely, X = {F[",F],...F",El',0",01,...,0",07}). The domains of
all non-observed variables (founders and non-founders) are all the possible alleles at locus j. Each
arc in the IBD graph implies a set of constraints on the ibd-constraint as follows: If arc (F!", ka )EE
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and is labeled Oy, then there is a constraint over F/", F,f , O, 05’ that forces that the maternal and
paternal labels in Oy are identical to one of the values of F/" and F'. Using Boolean constraints of
disjunction and inequality, these constraints can be expressed as:

F' =0y ol Bl =0pv o), F' £ (1)

The actual alleles for the typed individuals are modeled separately by na evidence domain
constraints. By definition, consistent founder assignments of the IBD graph correspond to solutions
of the IBD-constraint network in conjunction with its evidence domain constraints.

Example 1 Consider the example in Figure 5 of [4]. In defining next the IBD constraint network of
the ibd graph in Figure 4 we will stay with variable names of founders being numbers and variable
names of observed types being alphabetical. The domains constraints associated with evidence
will be be lower alphabetical. The variables of the constraint network are

X =1{1,2,3,4,5,6...18,A,B,C,D,E,F,G,H,J,K,L,V,U,W}

The domains of the numerical variables are the possible alleles at that locus. The constraints
associated with each arc in the ibd graph are:

2=A"VAP, 9=A"VAP, 249 )

2=B"VBP, 13=B"VBP, 2413, 2=J"VJP, 13=J"V ], (3)
2=G"VG’, 4=G"VG’, 2+4 4)

13=D"VDP, 4=D"VDPF, 1344 (5)
13=E"VEP, 6=E"VEP, 1346 (6)

6=C"VCP (7)

6=H"VH, 15=H"VH", 6+15 (8)



15=01"VIP, 17=L"VL", 15#17 (9)

15=F"VFP, 4=F"VFP, 15+44 (10)

In this example we assume the following observations. Non-founders A, B, J are all observed to
have ajaq, type G has ayag, type D has asag, type E has asas, C has ayas, F has azae, H has azas,
and L has ayasz. This will be modeled as evidence constraints in the evidence constraint network
in the form of unary constraints that restricts the variable domains. The evidence constraints are:
(D4e stands for the pair of constraints: Dam and Dap )

Dys = Dpe = Dy = {ay,a4},

Dge = {ay,a6}
Dpe = {a4, a6},
Dge = {as,a2}
Dce = {az,as}
Dpe = {a3,a6}
Dpe = {az,a3}
Die = {ay,a3}

For example Dpe = {aa,as} stands for the constraints: D™ = a4V ag, DP = a4V ag and D™ #
DP. (OI’Dm=a4—>D17 = dg anle’:a4—>Dm=a6)

In this example there is a single solution which can be obtained by applying arc-consistency
once the IBD constraint subproblems is assigned the actual values (the specific alleles observed
for the typed individuals. ) From this information we can infer that the label of 2 is a1, labels 9, and
13areay;4isag; 6isay; 15isaz, and 17 is ay. The probability of this set of labels is q%q2q3qﬁq6.

3.1 Deriving the IBD constraint networks from the input mixed network

We next show that the locus-based IBD constraint subnetwork can be inferred through path and
arc-consistency followed by a removal of irrelevant variables.

A mixed network of a linkage analysis task (decomposed from its Bayes network as described
earlier) yields a collection of locus-based mixed networks, one per locus, defined by all its locus vari-
ables. This locus-based networks (which ignores the transition dependencies between the selectors
of successive loci, expresses a probability distribution at each locus. By definition, the probability of



S defines the Identity-by-descent (ibd) graph

eNodes are distinct genome
labels.
eEdges are observed individuals.

13,14 9,15 1,2 3.4

eOnly ibd matters, not founder origins:
the ibd graph is an equivalence class of S w.r.t data probabilities at
a locus.

13

Figure 4: An example of pedigree with its associated IBD graph

any consistent tuple, conditioned on the selectors, is proportional over the F and O variables to the
product of the marginal probabilities in the Bayesian network since the Bayesian network portion is
a set of independent variables. In our example instance there is only one tuple of founder variable
which is consistent with the observations namely: (2=a;;9 =a4, 13 =a4;4 =ae; 6 = ay; 15 = as,
17 = a1), its probability is indeed ¢3¢2¢3934s.-

The constraint subnetwork within any locus mixed network, conditioned on its selectors can be
processed by arc and path-consistency in a symbolic manner without using the specific evidence
yielding an equivalent constraint network. When its variables are restricted to the founder variables
only it becomes far smaller. We will show that this path-consistent network restricted to the rel-
evant founder variables is identical to the IBD constraint network defined earlier. In other words,
the IBD constraint networks can be obtained by applying path-consistency over the original set of
constraints. For a definition of the application of path-consistency and arc-consistency see [1].

DEFINITION 6 (Path-consistency) Given a network of constraints ® = (X,D,C) and given a set
of evidence nodes Y =y forY C X, we define R" = PC(R,y) as the network obtained by applying
path-consistency and arc-consistency to R, \Y =y. The network R’ is defined on the same set of
variables as R. The restriction of a network R_ to a subset of variables Z, is denoted Ryz.

Proposition 1 Given a mixed network model M; s = (B, R, ) at a locus j,and an assignment
to the selector variables S = s of a linkage problem. Let G, denotes its IBD graph conditioned
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IBD/Founder graphs
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P(data|theta)= sum(over all consistent tuples over founders
Variables only)

L11m,L11f,L12m,L12f, L22m,L22f, L21m,L21f

of the product of all probabilistic functions.

Figure 5: A mixed network represented by the IBD graph

on S = s, then the IBD constraint network CONS(G ), is identical to the path and arc-consistent
network derived from M; ;. Namely CONS(Gjs) = Ry where R' = PC(R; ;).

Proof | think it is correct but need to prove.
Hypothesis:
1. The IBD constraint graphs are always tractable and yield all solutions in output polynomial time.
2. Does applying path and arc-consistency on the IBD-restricted constraint network yield the mini-
mal domains and constraints.

Figure 5 shows the original constraint network at a locus (on the left) and the derived IBD
constraint network (on the right).
Computing the probability of evidence. Paper [4] demonstrates how to compute the probability
of trait data Z. The paper notes the difference when computing the probability of marker data (Y)
and the probability of computing trait data Z. The trait data, given assignments to the inheritance
variables, depends only on the marker data to the left and right and on the trait model (phenotype
given genotype). Likewise computing the probability of the trait given the selectors can be accom-
plished over the derived mixed networks of the trait locus (including the trait model itself) which
consists of the derived ibd constraint network and the Bayesian networks (that has a collection of
disconnected probabilistic tables).

Rephrasing within the mixed network formulation, the probability of the evidence conditioned
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on the selectors at locus j is the product of probabilities over all assignments of founder variables
that are consistent with the evidence in the corresponding IBD graph. If the number of consistent
founder assignments is small, computing the probability of evidence conditioned on the selectors
and computing the probability of evidence over all markers can be accomplished along the mixed
networks more effectively. However if we have many markers, as is the case in snps data, or if we
have complex diseases computation may still be difficult.

The main virtue of the IBD graph seems to be that it changes only locally from one locus to
the next, and only for selectors that represent recombinations. In other words, the IBD constraint
problem along the chromosome will mimic recombination and will be more a function of the total
number of recombinations rather than the number of markers.

3.2 Moving from one locus to the next capturing recombination: sporadic
thoughts

Assume now that in addition to the selector variables we add persistence variables Q, ; where
Q. ; = 0 if there is no change moving from S, j to S, (j;1). In other words Q. j = [Se j — Se j+1]-
The number of changes due to recombination moving from one locus to the next is the number of
I's in this Q delta function. We can now add another auxiliary variable that counts the number of
recombinations moving from one locus to the next called M, ; =}, Q. ; ;. We can identify markers
of interest as those where some recombination could occur, namely those for whom M is greater
than 0.

The number of different IBD graphs can be significantly smaller than the number of different
selector combinations along the chromosome. We can also assume that since snps are so close,
there could be only a single recombination for a single individual moving in from one snp to the next
and that for some small interval no recombination occurs. This seems to be what is argued in [4]
in section 2.4. This is also consistent with assumptions made in Geiger et. al.’s work on handling
SNP data http://cbl-hap.cs.technion.ac.il/superlink-snp/. Section 2.4 also demonstrate how the IBD
graph can change along the chromosome due to recombination.

Compiling IBD constraint graphs. The collection of IBD constraint graphs along the chromosome
can be compiled and allows a far more manageable computation. One option we may consider is
to use AND/OR multi-valued decision diagrams [2]. Another option is proposed and carried out in a
recent paper [?].

Extension of the mixed network view to inference of identity by descent on two chromosome of
the same individual as discussed in Section 3 of [4] could also illuminate the computational aspect

12



and can bring in additional constraint processing and general graphical models ideas. In particu-
lar, modeling LD along the chromosome can be captured through additional (HMM like) transition
probabilities between founder variables. Finally extension analyzing chromosome of population,
where each individual is captured by its IBD graph along the chromosome are likely to yield far
more informative answers. The mixed probabilistic and constraint-based view of this data can bring
to bear both advanced computation developed in the constraint community and graphical model
communities.
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