UNIVERSITY OF CALIFORNIA,
IRVINE

AND/OR Search Strategies for Combinatorial OptimizatioGimphical Models

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OFPHILOSOPHY

in Information and Computer Science

by

Radu Marinescu

Dissertation Committee:
Professor Rina Dechter, Chair
Professor Padhraic Smyth

Professor Alex Ihler

2008

(© 2008 Radu Marinescu

The dissertation of Radu Marinescu
is approved and is acceptable in quality and form for
publication on microfilm and in digital formats:

Committee Chair

University of California, Irvine
2008

DEDICATION

To my wife, Beti.

TABLE OF CONTENTS

ILIST OF FIGURES| viii
ILIST OF TABLES| xi
IACKNOWI EDGMENTS | xiii
ICURRICUL UM VITAE | Xiv

/ atic Mini-Bucket Heu S 82

rks. ... 167
453 The Anytime Behavior of AND/OR Branch-and- arch8g 1
454 The Impact of Determinism in Bayesian Netwbrks 197

5.6 Dvnamlc Variable Orderings 362

6 Review of Binary Decision Diagrams 626

Vi

307

Vii

LIST OF FIGURES

1.5 Search space far (a.e.d) o o o 29
[1.6 Fourequivalent WCSPS (far =4) v v v 37

- imination 43

/ Random Noisy-OR networks. Accura me. 53
Random Bayesian network olution quality. 55

6 Random Bayesian network olutionquality. 56

AND/OR search spaces for graphical models. 67
Arc weights for a cost network with 5 variables and 4 costfions. . . 70
3.3 A partial solution tree and possible extensions to gnlutees. 72

at dynamic mini-buckets. Random coding netwark 107
a dynamic mini-bucke d netwarks. 109
3.14 _Min-fill vs. hypergraph pseudo trees. Grid networks. 109

4.1 AND/OR search graph for graphical models

4.2 NAVeCAChING o o o oo e
|4 Adaptive caching e
4.4 ati dynamic mini-bucke oding networks. C
/ 3 dynamic mini-bucke idnetwarks.
4.6 Naive adaptive caching id netwarks.

4.7 Min-fill vs. hypergraph pseudo tree id networks.
4.8 Memory usage. Grid networks.,
4.9 mpact ofi-bound on static mini-bucke inkage netwarks.
4,10 _Min-fi hypergraph pseudo tree inkage networks.
/ Naive adaptive caching. Genetic linkage analysis.
/ Min-fi hypergraph pseudo tree AI'06 netwarks.
/ Anytime AOBB search. Linkage networks.
[4.14 _Anytime AOBB search. Grid networks.
4 Anytime AOBB search. UAI'O6 networks.
4.16 a dynamic mini-bucke POTS5 networks. C e
/ Min-fi hypergraph pseudo tree POT5 networks..
4.18 ati dynamic mini-bucke AS’89) NGSP.
4.19 Naive vs. adaptive caching. ISCAS’'89 circuits (WCTSP)
4,20 __Min-fi hypergraph pseudo tree AS’'89 netwdiN§E SP

/ Naive adaptive caching. Mastermind netwborks.

/ Min-fi hypergraph pseudo trees. Mastermind netgio
4 Memo age. Mastermind netwarks

AND/OR sea A
[llustration of the pruning me

[D
[\
R
3 R arbitrary-upvcombinatorial auction X) ...
$ Re omegions-npwombinatorial auctions
0__Re o@rbitrary-npvcombinatorial auctions
»
A K WA MJAILICALAIL ICAL CAVAN RINIL D ANl L LV/\N) v o v o & & &
Re oRrbitrary-npvcombinatorial auction PLEX)
R

0 OP
netwao

0 AOMDD PO K

I7Z.2___REES Graphical Interface. (a) Model. (b) Experiment 287

[2.3___REES Results Display Window.o 289

LIST OF TABLES

/]

/1

|4 R 0 11INQ

4.4 Resu or grid network atic mini-buckets. 172
/ Resu or grid networks. Dynamic mini-buckets. 173
4.6 Re or genetic linkage analysis (1) 179
4 Re or genetic linkage analysis(2) 180

Xi

Results fa -lon‘u‘) 186

Xii

ACKNOWLEDGMENTS

| am indebted to all those who have helped me finish this dessen. Many thanks
to my committee members, Professor Padhraic Smyth and€@mfélex lhler, for their
comments on earlier drafts of the dissertation.

Thanks also to my research group members, Kalev Kask, BozZBelyak, Robert
Mateescu, Vibhav Gogate and Lars Otten for many insighiBdubsions.

Last but not least, | am much obliged to my advisor, Rina Dechtiank her for her
wise advice, for her constructive criticism, and for chegnne up every time | felt despair.
It has been a treat working with her.

During my graduate school years | was supported by the NSktgi#S-0086529
and 11S-0412854, by the MURI ONR award N00014-00-1-0617,HsyNIH grant RO1-
HG004175-02, and by the Donald Bren School of Information @ochputer Science at

University of California, Irvine.

Xiii

CURRICULUM VITAE

Radu Marinescu

EDUCATION

Ph.D.

M.S.

M.S.

B.S.

PUBL
[1]

[2]

[3]

[4]

Information and Computer Science, 2008

Donald Bren School of Information and Computer Science

University of California, Irvine

Dissertation: AND/OR Search Strategies for Combinatoriati@ization
in Graphical Models

Advisor: Rina Dechter

Information and Computer Science, 2004
Donald Bren School of Information and Computer Science

University of California, Irvine

Computer Science, 2000
University "Politehnica” of Bucharest, Romania

Computer Science, 1999
University "Politehnica” of Bucharest, Romania

ICATIONS

Robert Mateescu, Radu Marinescu and Rina Dechter. AND/ORiMalued
Decision Diagrams for Constraint Optimization.Rroceedings of the Fourteenth
International Conference on Principles and Practice of Coaist Programming

(CP), 2007.

Radu Marinescu and Rina Dechter. Best-First AND/OR SeaochGraphical
Models. InProceedings of the Twenty-Second National Conference onchattifi

Intelligence (AAAI)2007.

Radu Marinescu and Rina Dechter. Best-First AND/OR SearchMbst Probable
Explanations. InProceedings of the Twenty-Third International Conference on
Uncertainty in Artificial Intelligence (UAL)2007.

Radu Marinescu and Rina Dechter. Best-First AND/OR SeaoclOfl Integer
Programming. IrProceedings of the Fourth International Conference on the In
tegration of Al and OR Techniques for Combinatorial Optirtiza (CPAIOR)

2007.

Xiv

[5]

[6]

[7]

[8]

[9]

[10]

Radu Marinescu and Rina Dechter. AND/OR Branch-and-Bounarc®efor
0/1 Integer Programming. IRroceedings of the Third International Confer-
ence on the Integration of Al and OR Techniques for Combirat@ptimization
(CPAIOR) 2006.

Radu Marinescu and Rina Dechter. Dynamic Orderings for ADI® Branch-and-
Bound Search in Graphical Models. Rroceedings of the Eighteenth European
Conference on Atrtificial Intelligence (ECABOOQG.

Radu Marinescu and Rina Dechter. Memory Intensive BramazhBound Search
in Graphical Models. IrProceedings of the Twenty-First National Conference on
Artificial Intelligence (AAAI) 2006.

Radu Marinescu and Rina Dechter. AND/OR Search for Gemhaticage Analy-
sis. InWorkshop on Heuristic Search, Memory Based Heuristics hed Appli-
cations of the 21st National Conference on Artificial Intedhge (AAAI)2006.

Radu Marinescu and Rina Dechter. AND/OR Branch-and-Bounarchein
Graphical Models. IrProceedings of the Twenty-First International Joint Con-
ference on Atrtificial Intelligence (IJCAIR005.

Radu Marinescu, Kalev Kask and Rina Dechter. Systematisus Non-
systematic Search Algorithms for Most Probable ExplamationProceedings of
the Nineteenth International Conference on Uncertainty itifigral Intelligence
(UAI), 2003.

XV

Abstract of the Dissertation

AND/OR Search Strategies for Combinatorial OptimizatioGi@phical Models
By
Radu Marinescu
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 2008

Professor Rina Dechter, Chair

This thesis presents a new generation of search algoritbmsofving combinatorial
optimization problems over graphical models. The new atlgars exploit the principles
of problem decomposition using the AND/OR search spacesdaedundant solution of
subproblems using memory, focus on relevant promisingg@tof the solution space us-
ing the power of the mini-bucket heuristics and prune ikr&te spaces using constraint
propagation. As we show throughout the chapters of thisghpstting all these principles
together yields powerful algorithms whose performancerawgs upon earlier schemes
significantly, sometimes by several orders of magnitude dé&faonstrate the applicability
and the generality of our algorithms on optimization taskasrdooth probabilistic and de-
terministic graphical models, often showing superior parfance on real application such
as linkage analysis and circuit design and diagnosis. Tllenmng paragraphs elaborate.

Our algorithms explore the AND/OR search spaces of the yidgrgraphical model.
The AND/OR search space is a unifying paradigm for advaneatth schemes for graph-

ical models exploiting problem decomposability, which ti@mslate into exponential time

XVi

savings for search algorithms. In conjunction with the ARB/ search space we also
investigate a class of partition-based heuristic fun&jdased on the Mini-Bucket approx-
imation.

We start by introducing depth-first Branch-and-Bound sealgbrithms that explore
the AND/OR tree, use a variety of sources for heuristic guigaand incorporate some
dynamic variable ordering heuristics. We then extend tipthdérst AND/OR Branch-and-
Bound and best-first search algorithms with the ability tagesze identical subproblems
and avoid redundant solutions by caching (similar to goadi rmgood recording), thus
traversing the AND/OR search graph. We also extend all tirciptes acquired within
the general framework of depth-first and best-first schemése well known 0-1 Integer
Linear Programs.

Our empirical evaluation shows conclusively that the newDAQR search algorithms
improve dramatically over current state-of-the-art apptees exploring the traditional OR
search space, in many cases by several orders of magnitugldlustrate one by one the
gain obtained by exploiting problem’s decomposition (gshkiND modes), equivalence
(by caching), branching strategy (via dynamic variablesordy heuristics), control strat-
egy (depth-first or best-first) as well as the impact of theglolaound heuristic strength.
As well, we investigate the impact of exploiting hard coastt (i.c., determinism) in the
problem, the initial upper bound provided to the algorittand the quality of the guiding
variable orderings.

In the last part of the thesis we also show how our AND/OR dealgorithms can be
used as compilation algorithms for AND/OR decision diagsam/e present a new algo-
rithm for compiling AND/OR Multi-Valued Decision Diagran{f&OMDDs) that represent
the set of optimal solutions. We extend earlier work on ANB/@ecision diagrams by con-
sidering general weighted graphical models based on costifuns rather than constraints.
On various domains we show that we sometimes get a substesdiaction beyond the

initial trace of state-of-the-art search algorithms.

XVii

Finally, the starting chapter of this thesis (Chapier 2) $wtstage for this whole work
by comparing the power of static and dynamic mini-bucketriséias over regular search
spaces and compares against a number of popular stochasticskarch algorithms, as

well as against the class of iterative belief propagatigodihms.

XViii

Chapter 1

Introduction

Graphical models such as belief networks, constraint nédsydlarkov networks or influ-
ence diagrams are a widely used knowledge representafioreWwork for reasoning with
probabilistic and deterministic information. These maedesegraphs(directed or undi-
rected) that provide an intuitively appealing mechanismwych one can model highly
interacting sets of variables. This allows for a conciseasgentation of the knowledge that
lends itself naturally to the design of efficient graph-libgeery processing algorithms.

Optimization queries such as finding the most likely stata belief network, finding
a solution that violates the least number of constraintsaarestraint network or finding a
set of actions that maximizes the expected utility in an erilte diagram can be defined
within the framework of graphical models. These tasks arehliel and they are typically
solved by eithemferenceor searchalgorithms.

Inference-based algorithms were always known to be goodmbiéing the indepen-
dencies captured by the underlying graphical model yiglduorst case time and space
guarantees exponential in the treewidth of the graph. Ticedil search-based algorithms
traverse the model’'s search space where each path regragamttial or full solution. The
linear structure of the search space does not retain thatmora independencies repre-
sented in the model and, therefore, search algorithms mapenoearly as effective as
inference algorithms in using this information. They amediexponential in the number of
variables. However, since they may operate in linear spagch algorithms are often the

preferred choice for problems with large treewidth.

The focus of this dissertation is on search algorithms fdingipation that do exploit
the structure of the problem. We present depth-first andfivessearch regimes that are
sensitive to the conditional independencies encoded imibdel's graph and decompose
the problem into independent components using the AND/Q&steucture, often resulting

in exponential time savings.

1.1 Dissertation Outline and Contributions

We next provide a brief description of the structure of thesdrtation, while the subsequent

subsections will provide more details.

e Chaptel2 explores the power of two systematic Branch-and-@search algorithms
that traverse the traditional OR search space and expleintimi-bucket heuris-
tics, BBBT(;) - Branch-and-Bound with Mini-Bucket-Tree heuristics (foriafinthe
heuristic information is constructed during search anovadldynamic variable and
value ordering) and its predecessor BBMB(Branch-and-Bound with Mini-Bucket
heuristics (for which the heuristic information is pre-quiad). We compare them
against a number of popular stochastic local search (Slg®yritims, as well as
against the recently popular iterative belief propagagigorithms. We show empiri-
cally that the new Branch-and-Bound algorithm, BBBT{emonstrates tremendous
pruning of the search space far beyond its predecessor, BBMBich translates
into impressive time saving for some classes of problemsoi@& when viewed as
approximation anytime schemes, BBB)lfénd BBMB() together are highly com-
petitive with the best known SLS algorithms and are supeespecially when the
domain sizes increase beyond 2. The results also show thatabs of belief prop-
agation algorithms can in general outperform SLS, but theycaite inferior to

BBMB(:) and BBBT().

e Chapter B is the first (in 3 chapters) to present and evaluatgdwer of a new

2

framework for optimization in graphical models, based onDX8R search spaces.
It focuses on linear space search which explores the AND&2IRCktreerather than
the searclgraph and makes no attempt to cache information. Specifically,rwe i
troduce a depth-first Branch-and-Bound algorithms that egplee AND/OR search
tree using static and dynamic variable orderings. We algsiigate the power of the
mini-bucket heuristics in both static and dynamic setughiwithis AND/OR search
framework. We focus on two popular optimization problemgraphical models:
finding the Most Probable Explanation in belief networks aotving Weighted
CSPs. In extensive empirical evaluations using a varietyeothmarks we demon-
strate conclusively that this new depth-first AND/OR Brameid-Bound approach

improves dramatically over the traditional OR search.

Chaptei 4 extends the depth-first AND/OR Branch-and-Boundriéihgo to explore

an AND/OR searclyraph, rather than a tree, by equipping it with a context-based
adaptive caching scheme similar to good and no-good rawprdSincebest-first
strategies are known to be superior to depth-first when mgmattilized, exploring
the best-first control strategy is called for. Therefore,alg® introduce a new class
of best-first AND/OR search algorithms that explore the exnininimal AND/OR
search graph. Our empirical results demonstrate con€liysikie superiority of the
new memory intensive AND/OR search approach over traditi@R search with
caching as well as over AND/OR Branch-and-Bound without cagldiscussed in

ChaptefB.

Chaptetb extends both depth-first and best-first AND/OR besgorithms to solv-

ing 0-1 Integer Linear Programs (0-1 ILPs). We also extenthdyic variable order-
ing heuristics while exploring an AND/OR search tree for R-Bs. We demonstrate
the effectiveness of the new search algorithms on a varfdigrmchmarks, including

real-world combinatorial auctions, random uncapacitatacechouse location prob-

lems and MAX-SAT instances.

e Chaptef b presents a new top down search-based algorithrorfguiling AND/OR
Multi-Valued Decision Diagrams (AOMDDSs), as represemtiasi of the optimal set of
solutions for constraint optimization problems. The ajgfois based on AND/OR
search spaces for graphical models, on AND/OR Branch-anav@Buauth caching,
and on decision diagram reduction techniques. We extetiéreaork on AOMDDs
by considering general weighted graphs based on cost @unsctiather than con-
straints. An extensive experimental evaluation on a wagébenchmarks proves the

efficiency of the weighted AOMDD data structure.

e Chaptel ¥V presents the software implementation of the dfgosi described in the

dissertation. Chaptér 8 concludes the thesis.

The following subsections provide more details of the conite each chapter.

1.1.1 Systematic versus Non-systematic Search for Bayesian MPE

The chapter explores the power of two systematic BranchBamdid search algorithms
that exploit partition-based heuristics for solving the si@robable Explanation (MPE)
task in Bayesian networks. While it is known that the MPE taskishard [22], it is
nonetheless a common task in applications such as diagabsisction, and explanation.
For example, given data on clinical findings, MPE can pogtudgoatient’s probable afflic-
tion. In decoding, the task is to identify the most likely inpnessage transmitted over a
noisy channel given the observed output. Researchers irah&taoguage consider the un-
derstanding of text to consist of finding the most likely agh an internal representation)
that explain the existence of the given text. In computeiowisind image understanding,
researchers formulate the problem in terms of finding thetrikey set of objects that

explain the image.

Contribution

We introduce a new algorithm, called BBBY,(for solving the MPE task in Bayesian
networks. It takes the idea of mini-bucket partition-babkedristics one step further and
explores the feasibility of generating such heuristicsing search rather than in gre-
processing mannerThis, in particular, allows dynamic variable orderings feature that
can have a tremendous effect on search. The dynamic gemeddtihese heuristics is
facilitated by a recent extension of Mini-Bucket EliminatigMBE) [30] to Mini-Bucket
Tree Elimination (MBTE)a partition-based approximation defined over clustersteeel
described inl[36]. This yields algorithm BBBi))(that computes the MBTE) heuristic at
each node of the search tree. We compare BBBadgainst BBMB() [65], a Branch-and-
Bound algorithm for which the heuristic information is preagpiled. We also compare the
two Branch-and-Bound algorithms against several best-krgivalgorithms as well as a
class of generalized belief propagation algorithms adbfatethe MPE task.

We provide an extensive empirical evaluation on variousleamand real-world bench-
marks showing that BBMBJ and BBBT() do not dominate one another. While BBB) (
can sometimes significantly improve over BBMB({n many other instances its (quite sig-
nificant) pruning power does not outweigh its time overhdsath algorithms are powerful
in different cases. In general, for largdounds, which are more effective, BBMBB(s
more powerful, however when space is at issue BBBW(th smalli-bounds is often more
powerful. More significantly, we show that the SLS algorithme used are overall infe-
rior to BBBT(i) and BBMB(), except when the domain size is small. The superiority of
BBBT(i) and BBMBY;) is especially significant because unlike local search tagyprove
optimality if given enough time. We also demonstrate thategalized belief propagation

algorithms are often superior to the SLS class we used as well

1.1.2 AND/OR Branch-and-Bound Search for Graphical Models

Search-based algorithms (., depth-first Branch-and-Bound, best-first search) travéese t
search space of the problem, where each path representsgaqueull solution. The linear
structure of search spaces does not retain the indepeedaregresented in the underly-
ing graphical models and, therefore, search-based digmiimay not be as effective as
inference-based algorithms in using this information. R:dther hand, the space require-
ments of search algorithms may be much less severe than dhaskerence algorithms
as they can operate in linear space. In addition, searchosi€tten accommodate an-
plicit specification of the functional relationships:(, procedural or functional form) while
inference schemes often rely on an explicit tabular repitasien over the (discrete) vari-
ables. For these reasons, search algorithms are the oriteciailable for models with
large treewidth and with implicit representation. In earlivork, AND/OR search spaces
were introduced as data structures that can be used to epgplbiem decomposition dur-
ing search.

The AND/OR search space for graphical models [38] is a kedBtinew framework for
search that is sensitive to the conditional independenciése model, often resulting in
significantly reduced complexities. It is guided byseudo tred48&, 106] that captures
independencies in the graphical model, resulting in a besgyace exponential in the depth

of the pseudo tree, rather than in the number of variables.

Contribution

In this chapter we develop a new generation of AND/OR Brana#HBound algorithms
(AOBB) that explore the AND/OR search tree in a depth-first nearfor solving opti-
mization problems in graphical models. As in traditional mria-and-Bound search, the
efficiency of these algorithms depends heavily also on thatting heuristic function. We
extend thamini-bucket heuristigavhich were shown to be powerful for optimization prob-

lems in the context of OR search spaces [65], to the AND/ORckefiamework. The

Mini-Bucket algorithm [42] provides a general scheme forasting the heuristic infor-
mation automatically, from the functional specificationtloé graphical model. Since the
accuracy of this algorithm is controlled by a bounding paetam called-bound, it allows
heuristics having varying degrees of accuracy and results spectrum of search algo-
rithms that can trade off heuristic computation and seaBéf. [In this chapter we show
how the pre-computed mini-bucket heuristic as well as ahgrmteuristic information can
be incorporated into AND/OR search and we subsequentlgdatredynamic mini-bucket
heuristics which are computed dynamically at each node of the seageh tr

Since variable selection can influence dramatically theckeperformance, we also
introduce a collection oflynamicvariable ordering heuristics that can be accommodated
by the AND/OR decomposition principle.

We apply our depth-first AND/OR Branch-and-Bound approactoth the MPE task in
belief networks|[104] and to Weighted CSPs [9]. Our empirrealults show conclusively
that the new depth-first AND/OR Branch-and-Bound algorithmgrove dramatically over

traditional OR search space, especially when the heudstimates are inaccurate.

1.1.3 Memory Intensive AND/OR Search for Graphical Models

It is often the case that a search space that is a tree can becgmaph if we merge nodes
that root identical subproblems. Some of these nodes catengified based onontexts

[38]. The context of a node is a subset of the currently assigrariables that completely
determines the remaining subproblem using graph infoomainly. The AND/OR search
tree can be transformed into a graph by merging identicarese®s. Consequently, algo-
rithms that explore the search graph involve controlled mgnmanagement that allows

improving their time performance by increasing their useneimory.

Contribution

In this chapter we extend the AND/OR Branch-and-Bound algorito explore the context
minimal AND/OR searchgraph rather than the AND/OR search tree, using a flexible
caching mechanism that can adapt to memory limitations. cBohing scheme is based
on contexts and is similar to good and no-good recording aceint schemes appearing in
Recursive Conditioning [24], Valued Backtracking [4] as weallBacktracking with Tree
Decomposition [59].

Since best-first search is known to be superior among membensive search algo-
rithms [40], we present a new best-first AND/OR search algorithat explores the con-
text minimal AND/OR search graph. Under conditions of adibidity and monotonicity
of the guiding heuristic function, best-first search is knae expand the minimal number
of nodes, at the expense of using additional memory [40].

The efficiency of the proposed memory intensive depth-fingt best-first AND/OR
search methods also depends on the accuracy of the guidimgtiefunction, which is
based on the Mini-Bucket approximation. Here, we exploreigoghly the efficiency of
the mini-bucket heuristics in both static and dynamic sgj as well as the interaction
between the heuristic strength within the cache-basedlssaaces.

Our empirical results (on both MPE and Weighted CSP) dematestonclusively that
the new memory intensive AND/OR search algorithms impraeartically (up to several
orders of magnitude) over competitive approaches, edpeaiaen the heuristic estimates
are less accurate. We illustrate the impressive gains iioqmeance caused by exploiting
equivalence (caching), control strategy (depth-first atibest) as well as strength of the
guiding lower bound function. We also investigate key festbat impact the performance
of any search algorithm such as: the availability of hardst@ints {.e., determinism) in
the problem, the availability of good initial upper bounds\pded to the algorithm, and

the availability of good quality guiding pseudo trees.

1.1.4 AND/OR Search for 0-1 Integer Linear Programming

One of the most important optimization problems in operaticesearch and computer sci-
ence isinteger programming95]. Applications of integer programming include schedul
ing, routing, VLSI circuit design, combinatorial auctioasd facility locations/[95]. A 0-1
Integer Linear Program (0-1 ILP) is to optimizee(, minimize or maximize) a linear ob-
jective function of binary integer decision variables, jsgbto a set of linear equality or
inequality constraints defined on subsets of variables. classical approach to solving
0-1 ILPs is theBranch-and-Boundanethod [74]. The algorithm keeps in memory the best
solution found so far (thencumbent. Once a node in the search tree is generated, a lower
bound {.e., heuristic evaluation function) on the solution value isnputed by solving the
linear relaxationde., relaxing the integrality constraints for all undecidediables) of the
current subproblene(g., using thesimplexmethod|[23]), while honoring the commitments
made on the search path so far. A path terminates when the bmwed is at least the value
of the incumbent, or the subproblem is infeasible or yieldsraeger solution. Once all

paths have terminated, the incumbent is a provably optioiatien.

Contribution

In this chapter we extend the general principles of solvimgstraint optimization problems
using AND/OR search with context-based caching to the d&@sl ILPs. We explore both
depth-first and best-first control strategies. We also imax@ate our dynamic variable order-
ing heuristics for AND/OR search and explore their impacDeh ILPs. We demonstrate
empirically the benefit of the AND/OR algorithms on benchksaincluding combinato-
rial auctions, random uncapacitated warehouse locatioblgms and MAX-SAT problem
instances. Our results show conclusively that the new Beslgorithms improve dramat-
ically over the traditional OR search on this domain, in sarases with several orders
of magnitude of improved performance. We illustrate thenteadous gain obtained by ex-

ploiting problem’s decomposition (using AND nodes), e@lgnce (by caching), branching

strategy (via dynamic variable ordering heuristics) anotics strategy. We also show that
the AND/OR algorithms are sometimes able (though not fratiyeto outperform signifi-

cantly commercial solvers such as CPLEX.

1.1.5 AND/OR Multi-Valued Decision Diagrams for Optimization

The compilation of graphical models, including constrantl probabilistic networks, has
recently been under intense investigation. Compilatiohriepies are useful when an ex-
tended off-line computation can be traded for fast reaktanswers. Typically, a tractable
compiled representation of the problem is desired. Sine¢abks of interest are in general
NP-hard, this is not always possible in the worst case. Intjwe, however, it is often the
case that the compiled representation is much smaller titworst case bound, as was
observed for Ordered Binary Decision Diagrams (OBDDs) [13Wiare extensively used
in hardware and software verification.

In the context of constraint networks, compilation schemesvery useful for inter-
active solving or product configuration type problems [42]. 5These are combinatorial
problems where a compact representation of the feasibtef setutions is necessary. The
system has to beompletg(to represent all sets of solutiongacktrack-fregto never en-

counter dead-ends) ameial-time(to provide fast answers).

Contribution

In this chapter we present a compilation scheme for comstotimization. Our goal is to
obtain a compact representation of the set of optimal swistiby employing techniques
from search, optimization and decision diagrams. Our aggras based on three main
ideas: (1) AND/OR search spaces for graphical models [23B(anch-and-Bound search
for optimization, applied to AND/OR search spaces [79, 88] é3) reduction rules simi-
lar to OBDDs, that lead to the compilation of the search atboritrace into an AND/OR

Multi-Valued Decision Diagram (AOMDD).[89]. The novelty ew previous results con-

10

sists in: (1) the treatment of general weighted graphs basexbst functions, rather than
constraints; (2) a top down search based approach for gengethe AOMDD, rather than

Variable Elimination based as in [89]; (3) extensive expemtal evaluation that proves
the compilation potential of the weighted AOMDD. We showtttiee compilation scheme
can often be accomplished relatively efficiently and thatsemetimes get a substantial

reduction beyond the initial trace of state-of-the-artrskealgorithms.

1.2 Preliminaries

The remainder of this chapter contains preliminary notedind definitions, gives examples
of graphical models and reviews previous work on inferemmksearch based algorithms

for optimization tasks over graphical models.

1.2.1 Notations

A reasoning problem is defined in terms of a set of variabldagavalues on finite domains
and a set of functions defined over these variables. We dean&bles by uppercase letters
(e.g., X,Y, Z, ..) and values of variables by lower case letterg.(x, v, z,...). Sets are
usually denoted by bold letters, for exame= {Xi,..., X,,} is a set of variables. An
assignmentX; = xy,...,X,, = z,) can be abbreviated as= ((X1, 1), ..., (X,, zp))
orx = (z,...,x,). For a subset of variablég, Dy denotes the Cartesian product of the
domains of variables ifY. The projection of an assignment= (zy, ..., x,,) over a subset
Y is denoted byry or z[Y]. We will denote byY = y (or y for short) the assignment
of values to variables ity from their respective domains. We denote functions by rette

f, h, g etc., and the scope (set of arguments) of a funcfitay scope(f).

11

1.2.2 Graph Concepts

A directed graphis a pairG = {V,E}, whereV = {X;,..., X, } is a set of vertices
(nodes), and = {(X;, X;)|X;, X; € V} is a set of edges (arcs). (X;, X;) € E, we say
that X, points toX;. The degree of a vertex is the number of incident arcs to it.elach
vertex X;, pa(X;) or pa;, is the set of vertices pointing t&; in GG, while the set of child
vertices ofX;, denotedch(X;), comprises the variables that, points to. The family of
X;, denotedF;, includesX; and its parent vertices. A directed graph is acyclic if it has
directed cycles. Amundirectedgraph is defined similarly to a directed graph, but there is

no directionality associated with the edges.

DEFINITION 1 (induced width) An ordered graphs a pair (G, d) whereG is an undi-
rected graph, and = (X1, ..., X,,) is an ordering of the nodes. Thédth of a nodds the
number of the node’s neighbors that precede it in the orderirhewidth of an orderingl

is the maximum width over all nodes. Tihduced width of an ordered graptienoted by
w*(d), is the width of the induced ordered graph obtained as follawgles are processed
from last to first; when nod€; is processed, all its preceding neighbors are connected.
Theinduced widthof a graph, denoted by*, is the minimal induced width over all its

orderings.

DEeFINITION 2 (hypergraph) A hypergraphs a pair H = (X, S), whereS = {5}, ..., S;}

is a set of subsets & called hyperedges.

DEFINITION 3 (tree decomposition) A tree decompositionf a hypergraph = (X, S),
isatreeT = (V,E), whereV is a set of nodes, also called "clusters”, arilis a set
of edges, together with a labeling functigrthat associates with each vertexc V a set

x(v) C X satisfying:

(1) For eachS; € S there exists a vertex € V such thatS; C x(v);

12

(2) (running intersection property) For eacR; € X, the set{v € V|X; € x(v)}

induces a connected subtreelaf

DEFINITION 4 (treewidth, pathwidth) Thewidth of a tree decomposition of a hypergraph
is the size of the largest cluster minus 1 (ireqx,|x(v) — 1]). Thetreewidthof a hyper-
graph is the minimum width along all possible tree decompwsst Thepathwidthis the

treewidth over the restricted class of chain decompositions

It is easy to see that given an induced graph, the set of mé&xiaes (also called
clusters) provide a tree decomposition of the graph, nathellusters can be connected
in a tree structure that satisfies the running intersectiopeaty. It is well known that the
induced width of a graph is identical to its treewidth [41¢rarious relationships between

these and other graph parameters see [3, 11, 10].

1.2.3 Propositional Theories

Propositional variables which can take only two val{igs.e, false} or {1,0} are denoted
by uppercase letterB,), R, Propositional literalsi(e., P, —=P) stand forP = true or
P = false, and disjunctions of literals, arlauses are denoted bw, (3, For instance,
a =PV -QV Ris aclause. Aunit clauses a clause of size 1. Thesolutionoperation
over two clausega vV Q) and (5 V —Q) results in a clauséx Vv 3), thus eliminating®).
A formula ¢ in conjunctive normal fornfCNF) is a set of clausegs = {ay, ..., o} that
denotes their conjunction. The setrobdelsor solutionsof a formulay, denotedn(y), is

the set of all truth assignments to all its symbols (varigbieat do not violate any clause.

1.2.4 AND/OR Search Spaces

An AND/OR state space representation of a problem is defigeal4tuple(S, O, Sy, so)
[9€]. S is a set of states which can be either OR or AND states (the @sstepresent

alternative ways for solving the problem while the AND ssatdten represent problem

13

decomposition into subproblems, all of which need to bees®)lvO is a set of operators.
An OR operator transforms an OR state into another statea@AdD operator transforms
an AND state into a set of states. There is also a set of gdaksiaC S and a start node
Sg € 5.

The AND/OR state space model induces an explicit AND/OR cdegraph Each
state is a node and child nodes are obtained by applicable AINOR operators. The
search graph includesstiart node. The terminal nodes (having no children) are labeled as
SOLVED or UNSOLVED.

A solution treeof an AND/OR search grapfi is a treeS. which: (1) contains the start
nodesy; (2) if n € Sg is an OR node then it contains one of its child nodeg-imand
if n € Sg is an AND node it contains all its children @; (3) all its terminal nodes are
labeled ®LVED. AND/OR graphs can have a cost associated with each archarzbst
of a solution tree is a functiore (g., sum-cost) of the arcs included in the tree. In this case

we may seek a solution tree with optimal (maximum or minimaogt [96].

1.2.5 Graphical Models

Graphical models include constraint networks [34] defingddbations of allowed tuples,
(directed or undirected) probabilistic networks [104]fided by conditional probability
tables over subsets of variables, cost networks defined styfwoctions, and influence di-
agrams|[55] which include both probabilistic functions anus$t functions 4 e., utilities)
[33]. Each graphical model comes with its typical queriegshsas finding a solution (over
constraint networks), finding the most probable assignmeunpdating the posterior prob-
abilities given evidence (posed over probabilistic neksdror finding optimal solutions
for cost networks. The task for influence diagrams is to ca@sequence of actions that
maximizes the expected utility. Markov random fields areuhdirected counterparts of
probabilistic networks. They are defined by a collection aflgabilistic functions called

potentials, over arbitrary subsets of variables.

14

In general, a graphical model is defined by a collection otfiamsF, over a set of vari-
ablesX, conveying probabilistic, deterministic or preferentrdbrmation, whose structure

is captured by a graph.

DEFINITION 5 (graphical model) A graphical modeRR is a 4-tupleR = (X,D,F, ®),

where:
1. X ={X,.., X, } is aset of variables;
2. D ={D,...,D,} is the set of their respective finite domains of values;

3. F = {fi,....f-} is a set of real-valued functions, each defined over a sulfset o

variablesS; C X (i.e., the scope);
4. ®;fi € {11, fi,>_, [} is a combination operator.

The graphical model represents the combination of all itefions: ®;_, f;.

DEFINITION 6 (cost of a full and partial assignment) Given a graphical modeR, the
cost of a full assignment = (z1, ..., z,,) is defined by:(z) = @ rer f (x[scope(f)]). Given

a subset of variableX C X, the cost of a partial assignmenis the combination of all the
functions whose scopes are includedvinFy) evaluated at the assigned values. Namely,
c(y) = sery f(y[scope(f)]). We will often abuse notation writing(y) = Q¢cry, f(v)

instead.

DEFINITION 7 (primal graph) Theprimal graphof a graphical model has the variables
as its nodes and an edge connects any two variables that ajppéae scope of the same

function.

There are various queries (tasks) that can be posed ovdrigahmodels. We refer to all
asautomated reasoning problems general, an optimization task is a reasoning problem
defined as a function from a graphical model to a set of elesnemist commonly, the real

numbers.

15

DEFINITION 8 (constraint optimization problem) A constraint optimization problem (or
COP for short)s a pair? = (R, ||x), whereR = (X, D, F,®) is a graphical model. If
S is the scope of functiofi € F and|ls f € {mazgsf, mingf}, the optimization problem

is to computelx ®._, fi.

The min/max {) operator is sometimes called afimination operator because it re-
moves the arguments from the input functions’ scopes.
We next elaborate on the three popular graphical models métcaint networks, cost

networks and belief networks which will be the primary foafishis dissertation.

1.2.6 Constraint Networks

Constraint networks provide a framework for formulatingl rearld problems, such as
scheduling and design, planning and diagnosis, and mang e set of constraints
between variables. Thmnstraint satisfactioQCSP) task is to find an assignment of values
to all the variables that does not violate any constraimts|se to conclude that the problem

is inconsistent. Other tasks are finding all solutions andhting the solutions.

DEFINITION 9 (constraint network) A constraint network (CNs a graphical modeR =
(X,D,C,), whereX = {Xj,..., X, } is a set of variables, associated with discrete-
valued domaind = {D,...,D,}, and a set of constraint&€ = {C},...,C.}. Each
constraintC; is a pair (S;, R;), whereR; is a relation R, C Dg, defined on a subset
of variablesS; C X. The relation denotes all compatible tuplesof, allowed by the
constraint. The combination operatar is join, <. The primal graph of a constraint net-
work is called aconstraint graph A solution is an assignment of values to all variables
x = (x1,...,2,), x; € D;, suchthatVC; € C, s, € R;. The constraint network represents

its set of solutionsyx; C;. The elimination operator in this casepsgojection

Example 1 Figure[1.1(a) shows a graph coloring problem that can be mediély a con-

straint network. Given a map of regions, the problem is to icech region by one of the

16

(a) Graph coloring problem (b) Constraint graph

Figure 1.1: Constraint network.

given colors{red, green, blug, such that neighboring regions have different colors. The
variables of the problem are the regions, and each one hasldheain{red,green,blué.
The constraints are the relation "different” between neighing regions. Figurd 1.1(b)
shows the constraint graph, and a solutipA = red, B = blue,C = green,D =

green, E = blue, F' = blue, G = red) is given in Figurd 1.1(3).

Propositional Satisfiability. A special case of a CSPpsopositional satisfiabilitf{ SAT).

A formula ¢ in conjunctive normal fornfCNF) is a conjunction of clauses, ..., a;, where
aclause is a disjunction dferals (propositions or their negations). For examples (PV
-@Q) V —R) is a clause, wher®, () andR are propositions, anft, -) and—R are literals.
The SAT problem is to decide whether a given CNF theory has aemeod., a truth-
assignment to its propositions that does not violate anyselaPropositional satisfiability
can be defined as a CSP, where propositions correspond tblestilomains ar¢0, 1},
and constraints are represented by clauses. For exampttatise(—A Vv B) is a relation

over its propositional variables that allows all tuplesroi, B) except(A = 1, B = 0).

1.2.7 Cost Networks

An immediate extension of constraint networks @wet networksvhere the set of functions
are real-valued cost functions, the combination and eltiom operators arsummation

and minimization respectively, and the primary constraint optimizatiosktés to find a

17

AlB|cC| f(ABC) A|[B|D| f,(ABD) B |D|E| f,(BDE) @
000 ® 0]0]0 1 0]0]0 ©
0]0|1 © 0]0]1 © 0]0]1 3 fl(ABC)
0|1(0 ® 0]l1]0 0 0]l1]0 ©
0[1]1 2 o[1]1 2 0[1]1 4 f2(ABD) @' Q
1]0]fo © 1]0]o0 6 1]0]o0 © f3(BDE)
1101 2 110]1 5 1]10]1 3
1{1]0 ® 1{1]0 6 1{1]0 ©
1{1]1 2 1{1]1 5 1{1]1 4 e e
(a) Cost functions (b) Constraint graph

Figure 1.2: A cost network.

solution with minimum cost, namely findinginx >"._, f;.
A special class of cost networks which has gained a lot oféstein recent years is
the Weighted CSP (WCSP)![9]. WCSP extends the classical CSP fermalith soft

constraintswhich are represented as positive integer-valued costitursc Formally,

DEFINITION 10 (WCSP) A Weighted CSP (WCSH} a graphical modelX, D, F, ")
where each of the functiong € F assigns "0” (no penalty) to allowed tuples and a
positive integer penalty cost to the forbidden tuples. Ngnyel: Ds, x ... x Ds, — N,
whereS; = {S;,, ..., S;, } is the scope of the function. The optimization problem igb di

value assignment to the variables with minimum penalty c@shely findingninx >, f:.

DEFINITION 11 (MAX-CSP) A MAX-CSP is a WCSP with all penalty costs equal o
NamelyVvf; € F, f; : Ds, X ...x Dg, — {0,1}, wherescope(f;) = S; = {Si;, ..., S;, }-

Solving a MAX-CSP task can also be interpreted as finding ag@s®nt that violates
the minimum number of constraints (or maximizes the numlbesatisfied constraints).
Many real-world problems can be formulated as MAX-CSP/WCSRduding resource
allocation problems [15], scheduling [7], bioinformat{25/,1120], combinatorial auctions

[111,/34] or maximum satisfiability problems [26].

Example 2 Figure[1.2 shows an example of a WCSP instance with binary Magafi he

cost functions are given in Figufe 1.2(a). The vatueindicates a hard constraint. Figure

18

[1.2(b) depicts the constraint graph. The minimal cost sofubf the problem is 5 and

corresponds to the optimal assignméAt=0,B=1,C=1,D =0,F = 1).

Maximum Satisfiability. Given a set of Boolean variables and a collection of clauses
defined over subsets of variables, the goataiximum satisfiability (MAX-SAT) is to

find a truth assignment that violates the least number oSelauf each clause is associated
with a positive weight, thaveighted maximum satisfiability (Weighted MAX-SAT) is to

find a truth assignment such that the combined weight of thlatad clauses is minimized.

Related Work on MAX-CSP/WCSP. MAX-CSP and WCSP can also be formulated
using the semiring framework introduced by [9]. As an optation version of constraint
satisfaction, MAX-CSP/WCSP is NP-hard. A number of completd smxomplete al-
gorithms have been developed for MAX-CSP/WCSP. StochastialL®earch (SLS) al-
gorithms, such as GSAT [110, 114], developed for Boolearsgalility and Constraint
Satisfaction can be directly applied to MAX-CSP [123]. Siticey are incomplete, SLS
algorithms cannot guarantee an optimal solution, but tleye lbeen successful in practice
on many classes of SAT and CSP problems. A number of seareutlwasnplete algo-
rithms, using partial forward checking [49] for heuristmneputation, have been developed
[51,158]. The Branch-and-Bound algorithms proposed by [65u36 bounded inference
to compute the guiding heuristic function. More recentii.,[25] introduced a family of
depth-first Branch-and-Bound algorithms that maintain vweritevels of directional soft
arc-consistency for solving WCSPs. The optimization metlvadled Backtracking with
Tree DecompositiofBTD), developed by [59] uses a tree decomposition of thehicap

model to capture the problem structure and guide the seanch effectively.

19

IA
"

(a) Directed acyclic graph (b) Moral graph

Sprinkler

Watering e Wetness

Slippery

Figure 1.3: Belief network.

1.2.8 Belief Networks

Belief network$104], also known as Bayesian networks, provide a formalmmndasoning
about partial beliefs under conditions of uncertainty. yraee defined by a directed acyclic
graph over vertices representing random variables ofastef.g., the temperature of a
device, the gender of a patient, a feature of an object, tberocence of an event). The arcs
can signify the existence of direct causal influences betiiaked variables quantified by
conditional probabilities that are attached to each ctustearents-child vertices in the

network.

DEFINITION 12 (belief networks) A belief networkis a graphical mode(X, D, Ps, []),
whereX = { X1, ..., X, } is a set of variables over multi-valued domalds= { D, ..., D,,}.
Given a directed acyclic grapfi overX as nodesP. = { P}, whereP;, = { P(X;|pa(X;))}
are conditional probability tables (CPTs) associated witkclegariableX;, andpa(X;) are
the parents ofX; in the acyclic graphG. A belief network represents a joint probability dis-
tribution overX, P(zy,...,z,) = [[\—, P(z|zpacx,)). An evidence setis an instantiated

subset of variables. The primal graph of a belief network iedea moral graph

Example 3 Figure[1.3(a) gives an example of a belief network over 6 \deis and Fig-

ure[1.3(b) shows its moral graph. The example expresses theakeelationship between

20

variables "Season” (A), "The configuration of an automatigrskler system” (B), "The
amount of rain expected” (C), "The amount of manual wateringessary” (D), "The wet-
ness of the pavement” (E) and "Whether or not the pavemerippesy” (F). The belief
network expresses the probability distributiéi{A, B,C, D, E, F) = P(A) - P(B|A) -
P(C|A)- P(E|B,C)- P(F|E).

The most popular optimization tasks for belief networksdegned below:

DEFINITION 13 (most probable explanation, maximum a posteriori hypotlesis) Given
a belief network(X, D, P4, []), the most probable explanation (MPEsk is to find a
complete assignment which agrees with the evidence, and wasctiné highest probabil-

ity among all such assignments. Namely to find an assignajent, 22 such that:

The more general query, calledaximum a posteriori hypothesis (MAR®equires finding

a maximum probability assignment to a subset of hypothesighles, given the evidence.

Both tasks arise in a wide variety of applications, such abadsdistic error correcting
coding, speech recognition, medical diagnosis, airplaamt®nance, monitoring and di-
agnosis in complex distributed computer systems, and sd&E queries are often used
as ways oftompletingunknown information. For example, in probabilistic decagithe
task is to reconstruct a messagey(, a vector of bits) sent through a noisy channel, given
the channel output. In speech recognition and image uradetsig, the objective is to find
a sequence of objects.§., letters, images) that is most likely to produce the obskrve
sequence such as phonemes or pixel intensities. Yet anstherple is diagnosis, where
the task is to reconstruct the hidden state of nature,(a set of possible diseases and
unobserved symptoms the patient may have, or a set of fadddsnin a computer net-
work) given observations of the test outcomeg .(symptoms, medical tests, or network

transactions results).

21

The general MAP queries are more applicable, used in casisasumedical diagno-
sis, when we observe part of the symptoms, and can accomensadiate of the tests, and
still wish to find the most likely assignments to the diseasdy, rather than to both dis-
eases and all unobserved variables. Although the MAP gsamore general, MPE is an
important special case because it is computationally €mghd thus should be applied
when appropriate. It often serves asiarogatetask for MAP due to computational rea-
sons. Since all the above problems can be posed as MPE or Mé&iegufinding efficient

algorithms clearly has a great practical value.

Related Work on MPE. It is known that solving the MPE task is NP-hard!|[22]. Com-
plete algorithms use either the cycle cutset technique @#ed conditioning) [104], the
join-tree-clustering technique [115,/60], or the buckerimation scheme_[31]. However,
these methods work well only if the network is sparse enoagliow small cutsets or small
clusters. The complexity of algorithms based on the cycteatudea is time exponential
in the cutset size but require only linear space. The contglexjoin-tree-clustering and
bucket-elimination algorithms are both time and space e&ptal in the cluster size that
equals the induced-width of the network’s moral graph. dwilhg Pearl’s stochastic sim-
ulation algorithms|[104], the suitability of Stochasticdad Search (SLS) algorithms for
MPE was studied in the context of medical diagnosis apptinat;105] and more recently
in [64,1102, 57]. Best-First search algorithms were propd&&é] as well as algorithms
based on linear programming [113]. Some extensions arauadstable for the task of find-
ing thek most-likely explanations [77, 118]. More recently,|[65] Broduced a collection
of Branch-and-Bound algorithms that use bounded inferengegriticular the Mini-Bucket

approximation|[42], for computing a heuristic functiontigaides the search.

22

1.3 Search and Inference for Optimization in Graphical

Models

It is convenient to classify algorithms that solve optintiza problems in graphical models
as eithersearch(e.g., depth-first Branch-and-Bound, best-first searchinéerence(e.gq.,
variable elimination, join-tree clustering). Search mdtexponential in the number of
variables, yet it can be accomplished in linear memory.rérfee exploits the graph struc-
ture of the model and can be accomplished in time and spaanerpal in the treewidth
of the problem. When the treewidth is big, inference must bgreanted with search to

reduce the memory requirements. We next overview theselagses of algorithms.

1.3.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying algorithmic framework for dynamic programmg
algorithms applicable to probabilistic and determiniséasoning/[31]. Many algorithms
for probabilistic inference, such as belief updating, fingdihe most probable explanation,
finding the maximum a posteriori hypothesis, as well as @lgms for constraint optimiza-
tion, such as MAX-CSP or WCSP, can be expressed as bucket diiomrmdgorithms.

The input to the Bucket Elimination algorithm, describedehegy Algorithm(1, is an op-
timization problem, namely a collection of functions orat@ns ¢.g., clauses in proposi-
tional satisfiability, constraints or cost functions, onddgional probability tables for belief
networks). For simplicity and without loss of generality e@nsider an optimization prob-
lem for which the elimination and combination operatorsram@mization and summation,
respectively. Given a variable ordering, the algorithntipans the functions into buckets,
each associated with a single variable. A function is plangtie bucket of its argument
that appears latest in the ordering. The algorithm has tvasgdh During the first, top-
down phase, it processes each bucket, from last to first byiabl@ elimination procedure

that computes a new function which is placed in a lower buckbe variable elimination

23

Algorithm 1: BE: Bucket Elimination

Input: An optimization problen? = (X, D, F, ", min), ordering of the variables.
Output: Minimal cost solution td” and the optimal assignment.
/1 Initialize
1 Partition the functions it into bucket1, ..., bucket,,, wherebucket; contains all functions whose highest variabl&is Let
S1, ..., S; be the scopes of the functions (original and intermediat#)érprocessed bucket.
/1 Backward
for p < n down-tol do
Lethi, ha, ..., hj be the functions ihucket),
if X, is instantiated X}, = x,) then
L AssignX, = z, to eachh; and put each resulting each into its appropriate bucket.

else
L Generate the functioh? : h? = minx, Y7_, hi.

Add RP to the bucket of the largest-index variablesitope(hP), wherescope(hP) = JY_; S; — {Xp}.

O~NO ObWN

/1 Forward
9 Assign a value to each variable in the orderihgit. the combination of functions in each bucket is minimized.
10 return the function computed in the bucket of the first variable &@ddptimizing assignment.

procedure computes the sum of all cost functions and migsn@er the bucket’s vari-
able. During the second, bottom-up phase, the algorithratoacts a solution by assigning
a value to each variable along the ordering, consulting timetions created during the
top-down phase.

Bucket Elimination can be viewed as message passing froraggavoot along a bucket
tree [66]. Let{ B(X,), ..., B(X,)} denote a set of buckets, one for each variable, along an
orderingd = (X1, ..., X,,). A bucket treeof a graphical modeR has buckets as its nodes.
Bucket B(X) is connected to buckdB(Y) if the function generated in buckét(X) by
BE is placed inB(Y"). The variables of3(.X), are those appearing in the scopes of any of
its new and old functions. Therefore, in a bucket tree, everyex B(X) other than the
root, has one parent vertéX(Y") and possibly several child verticéx 7,), ..., B(Z;).

The structure of the bucket tree can also be extracted frermttuced-ordered graph of

‘R alongd using the following definition.

DEFINITION 14 (bucket tree [31]) Let G}, be the induced graph along of a graphical
modelR whose primal graph ig:. The vertices of the bucket tree are théuckets each
associated with a variable. Each verté& X) points toB(Y) (or, B(Y) is the parent of
B(X)) if Y is the latest neighbor ok that appear beforeX in G. Each variableX and
its earlier neighbors in the induced graph are the variatébucketB(X). If B(Y) is the

24

Algorithm 2 : MBE(7) : Mini-Bucket Elimination

Input: An optimization problen? = (X, D, F, >, min), ordering of the variableg, paramete.
Output: Lower-bound on the minimal cost solution® an assignment to all the variables, and the ordered augmented
buckets.
/1 Initialize
1 Partition the functions i into buckety, ..., bucket,,, wherebucket; contains all functions whose highest variable&is Let
S1, ..., S; be the scopes of the functions (original and intermediat#)érprocessed bucket.
/1 Backward

2 for p < n down-tol do

3 Lethy, ha, ..., h; be the functions ibucket,

4 if X, is instantiated X, = z,) then

5 L Assign X, = z, to eachh; and put each resulting each into its appropriate bucket.
6 else

7 Generate ag-partitioning@’ = {Q1, ..., Q¢ }.

8 foreach@; € Q' do

9 Leth;,, ..., h;, be the functions irQ;.
10 Generate the functioh! : h! = minx, > 1_; hy,.
11 Add h! to the bucket of the largest-index variablesitope(h!), where

scope(ht) = U!_, scope(h,) — {Xp}.
/1 Forward

12 Assign a value to each variable in the orderihgt. the combination of functions in each bucket is minimized.
13 return the function computed in the bucket of the first variable deddptimizing assignment.

parent of B(X) in the bucket tree, then the separatorX¥fandY is the set of variables

appearing inB(X) B(Y) , denotedsep(X,Y).

THEOREM 1 (complexity [31]) The time and space complexity of bucket elimination ap-
plied along orderd is O(r - k™) andO(n - k*") respectively, where* is the induced
width of the primal graph along the ordering r is the number of functions; is the

number of variables ané bounds the domain size.

The main drawback of bucket elimination algorithms is thaytrequire too much space
for storing intermediate functiondMini-Bucket Elimination(MBE) is an approximation
designed to avoid the space and time problem of full bucketiehtion [42] by partition-
ing large buckets into smaller subsets, calhithi-bucketsvhich are processed indepen-
dently. Here is the rationale. Lét, ..., h; be the functions irbucket,. WhenBucket
Elimination processesucket,, it computes the functioh?: h? = miny, Zg’:1 h;, where
scope(h?) = U_,S; — {X,}. The Mini-Bucketalgorithm, on the other hand, creates a
partition Q' = {Q1, ..., @;} where the mini-buckef); contains the functions,, , ..., h,.

The approximation processes each mini-bucket (by usingdgh#ination and elimination

25

operators) separately, therefore computifig= Z'lf:l miny, Zle hi,. Clearly, g” is a
lower bound om?, namelyg? < h? (for maximization,g” is an upper bound). Therefore,
the bound computed in each bucket yields an overall bountd@ndst of the solution.

The quality of the bound depends on the degree of partitgomito mini-buckets. Given
a bounding parameteéfcalled herg-bound), the algorithm creates apartitioning, where
each mini-bucket includes no more thavariables. Algorithm MBE{), described by Al-
gorithm[2, is parameterized by thidhound. It outputs not only a lower bound on the cost
of the optimal solution and an assignment, but also the ciotle of the augmented buck-
ets. By comparing the bound computed by MBE(the cost of the assignment output
by MBE(:), we can always have an interval bound on the error for thesiginstance. For
example, if MBE() provides a lower bound on the optimal assignment in its fivsket,
while the cost of the assignment generated yields an uppardo

The complexity of the algorithm is time and spaeéxp(i)) wherei < n. When thei-
bound is large enoughi.é., : > w*), the Mini-Bucket algorithm coincides with full bucket

elimination. In summary,

THEOREM 2 (complexity [42]) Algorithm MBE() generates an interval bound of the op-
timal solution, and its time and space complexity @t - k') andO(r - k') respectively,

wherer is the number of functions aridbounds the domain size.

Example 4 Figures/1.4(0) and 1.4(k) illustrate how algorithms BE an8B4;) for i = 3

process the cost network in FigUre 1.4(a) along the ordefiAgE, D, C, B). We assume
a minimization task.

Algorithm BE records the new function§ (A, C, D, E), h°(A, D, E), hP(A, E), and
hE(A). Then, in the bucket ofl, it computes the cost of the optimal solutiept =
mina(f(A) + hP(A)). Subsequently, an optimal assignmént = ay; B = by; C =
co; D = do; E = ep) is computed for each variable frorh to B by selecting a value that

minimizes the sum of functions in the corresponding buckeilitioned on the previously

26

mini-buckets max variables
e TS~ in a mini-bucket

-

B: f(B,C,E) f(A,B,D) f(A,B) B: 'f(B,C,E)‘ 'f(A,B,D) f(A,B)‘ 3
\ \
° C: f(AC) h®(ACD,E) C: f(A,C) hB(C,E) 3

m

2

Ny - me |
A: f(A) hE(A) . f(A) hE(A) h°(A) 1
O © |

D: h¢ (A,D,E) D: he (A,D) 2
EADE
e E: h° (AE) h¢ (A,E)

>

b

Optimum Lower Bound

(a) Cost network (b) Bucket elimination (BE) (c) Mini-Bucket Elimination (MBE(3))

Figure 1.4: Execution of BE and MBE(

assigned values. Namely, = argmina(f(A) + hP(A)), eg = argmingh?(ay, E),
dy = argminp f(ag, D, ep), and so on.

The approximation MBB] splits bucketB into two mini-buckets, each containing no
more than 3 variables, and generate8(C, £) and h®(A, D). A lower bound on the
optimal value is computed by = mina(f(A) + h?(A) + h”(A)). A suboptimal tuple is
computed by MBB] similarly to the optimal tuple computed by BE, by assigranglue
to each variable that minimizes the sum of cost functionsarcorresponding bucket, given
the assignments to the previous variables. The value oa#fsgnment is an upper bound

on the optimal value.

1.3.2 Systematic Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization peots in graphical models fol-
low a Branch-and-Boundgchema. These algorithms perform a depth-first traverstien
search tree defined by the problem, where internal nodessept partial assignments and
leaf nodes stand for complete ones. Throughout the searah¢cBtand-Bound maintains a
global bound on the cost of the optimal solution, which cgprnds to the cost of the best

full variable instantiation found thus far. At each nodes #igorithm computes a heuristic

27

estimate of the best solution extending the current paagalgnment and prunes the re-
spective subtree if the heuristic estimate is not better tha current global bound (that is
- not greater for maximization problems, not smaller for mization problems).

The algorithm requires only a limited amount of memory amdlosaused as an anytime
scheme, namely whenever interrupted, it outputs the basgi@ofound so far.

The effectiveness of the Branch-and-Bound search methochdspmn the quality of
the heuristic function. Therefore, one of the most impdrtasues in heuristic search is
obtaining a good heuristic function. Often there is a tratfédsetween the quality of the
heuristic and the complexity of its computation. In thedaling section we will provide
an overview of a general scheme for generating heuristimasts automatically from the

functional specification of the problem, based on the MincliBat approximation.

Mini-Bucket Heuristics

The idea was first introduced in_[65] and showed that the nméeliate functions recorded
by the Mini-Bucket algorithm can be used to assemble a haufigiction that estimates
the cost of the completion of any partial assignment to adalution, and therefore can
serve as an evaluation function that can guide search. Tloeviiog definition summarizes

an automatic procedure that can generate heuristic furectar any partial assignment.

DEFINITION 15 (mini-bucket heuristic [65]) Given an ordered set of augmented buckets
generated by the Mini-Bucket algorithm MBJglong the orderingl = (X7, ..., X, ..., X,)
and given a partial assignment = (z4, ..., z,), the heuristic functiork(z?) is defined as

the combination of all the intermediamé function that satisfy the following two properties:
1. They are generated in buckets- 1 throughn,
2. They reside in bucketsthroughp.

Following [65], consider for illustration the cost netwaskown in Figuré 1.4(a), and

consider a given variable ordering= (A, E, D, C, B) and the bucket and mini-buckets

28

Figure 1.5: Search space fff(a, e, d) [65].

configuration in the output, as displayed in Figures 1|4¢m)[&.4(D), respectively. Let

us assume, without loss of generality, that variables® and D have been instantiated
during search (see Figure Lb= 0, e = 1, d = 1). Let f*(a, e, d) be the cost of the best

completion of the partial assignmeit = a, E' = e, D = d). By definition,

Flae,d) = ming(f(a) + f(a,¢) + f(a,b) + f(b.c,e) + f(a.b,d))
= fa) + minyo(f(a,¢) + f(a.) + f(b,c.e) + fa,b,d))
= g(a,e,d)+ h*(a,e,d)

where
glac,d) = fla)

h*(a,e,d) = miny.(f(a,c)+ f(a,b)+ f(b,c,e)+ f(a,b,d))

29

We can derive:

h'(a,e,d) = miny(f(a,c)+ f(a,b) + f(b,c,e) + f(a,b,d))
= minc(f(a,c) +miny(f(a,b) + f(b,c,e) + f(a,b,d))
= minc(f(c,e) +hP(a,d, c,e))
= h%a,d,e)
where
hB(a,c,d,e) = miny(f(b,c,e) + f(a,b,d)+ f(a,b))

ha,d,e) = min.(f(a,c)+ hP(a,c d,e))

Interestingly, the function&?(a, ¢, d,e) and h®(a,d, e) are already produced by the
bucket elimination algorithm BE (see Figlire 1.4(b)). Spealfy, the functiom?(a, ¢, d, e),
generated ihucket g, is the result of a minimization operation over variableln practice,
however, this function may be too hard to compute as it regyarocessing a function on
four variables and recording a function on three varialffes.it can be replaced by an ap-
proximation, where the minimization is split into two parihis yields a function, which

we denotée.(a, e, d), that is alower boundon ~*(a, e, d), namely,

h(a,e,d) = ming(f(a,c) +miny(f(b,c,e) + f(a,b) + fla,b,d)))
> ming(f(a,c) + miny f(b, ¢, e) + miny(f(a,b) + f(a,b,d)))
= min.(f(a,c) + hP(c,e) + hP(a,d))
= hP(a,d) + min.(f(a,c) + hP(c,e))
= h®(a,d) + ha,e)

2 h(a,e d)

30

where

hB(c,e) = minyf(b,c,e)
hB(a,d) = miny(f(a,b)+ f(a,b,d))

h(a,e) = min.(f(a,c)+ hB(c,e))

Notice now that the functions?®(c,), h¥(a,d) andh®(a,e) were already computed
by the mini-bucket algorithm MBE] (see Figuré 1.4(t)). Using the lower bound function
h(a,e,d), we can now define the functiof(«, e, d) that provides a lower bound on the

exact valuef*(a, e, d). Namely, replacing*(a, e, d) by h(a, e, d) in f*(a,e,d), we get:

fla,e,d) = g(a,e,d) + h(a,e,d) < f*(a,e,d)
It was shown that:

THEOREM 3 (monotonicity and admissibility [65]) For every partial assignment, =

(x4, ..., z,) Of the firstp variables, the heuristic functiol(z,,) is admissible and monotonic.

We next elaborate on how to use the mini-bucket heuristiazitdegdepth-first Branch-
and-Bound and best-first search algorithms. These algasithene first presented in [65].

The tightness of the bound generated by the Mini-Bucket aqimiation depends on its
i-bound. Larger values afgenerally yield better bounds, but require more computatio
Since the Mini-Bucket algorithm is parameterized:byhen using the heuristics in each
of the search methods, we get an entire class of Branch-andeBsrarch and Best-First
search algorithms that are parameterized; land which allow a controllable trade-off
between preprocessing and search, or between heuristnggtrand its overhead.

Algorithms[3 and ¥ show Branch-and-Bound with Mini-Bucket hstios (BBMB(7))
and Best-First search with Mini-Bucket heuristics (BFMJB(developed inl[65]. Both

algorithms have a preprocessing step of running the MinikBualgorithm that produces

31

Algorithm 3: BBMB(:): Branch-and-Bound search with Mini-Bucket heuristics

Input: An optimization problen? = (X, D, F, >, min), variable ordering
d=(X1,...., X, ..., X,), time limit.
Output: Minimal cost solution taP.

1 INITIALIZE : Run MBE() algorithm generating a set of ordered augmented buckets
and a lower bound on the minimal cost. Initialize global upgpeundU B to co. Set
ptoO.

2 SEARCH: Execute the following procedure until variablg@ has no legal values left
or until out of time, in which case output the current bestisoh

3 EXPAND: Given a partial instantiation”, compute all partial assignments
P+t = (7P, v) for each value of X, . For each node?*! compute its heuristic
value f (zP*1) = g(zP*') + h(zP*'). Discard those assignments for which
f(zP™1) > U B. Add the remaining assignments to the search tree as ahitdre
TP,

4 FORWARD: If X, has no legal values left, gotoABKTRACK. Otherwise, let
TPt = (2P, v) be the best extension ¥ according tof. If p + 1 = n, then set
UB = f(z") and goto B.CKTRACK. Otherwise remove from the list of legal
values. Sep = p + 1 and goto XPAND.

5 BACKTRACK: If p = 1, Exit. Otherwise sep = p — 1 and repeat from the
FORWARD step.

a set of ordered augmented buckets.

Branch-and-Bound Search with Mini-Bucket Heuristics

BBMB(:) traverses the search space in a depth-first manner, iisdagtvariables from
first to last. Throughout the search, the algorithm maistaiiglobal bound on the cost of
the optimal solution, which corresponds to the cost of th&t bl variable instantiation
found thus far. When the algorithm processes variag)eall the variables preceding,

in the ordering are already instantiated, so it can comp(te!, X, = v) = g(zF~* v) +
h(zP~!, v) for each extensioX, = v. The algorithm prunes all valueswhose heuristic
evaluation functionf(z?~', X, = v) is greater or equal than the current upper bound,
because such a partial assignment ..., 2,1, v) cannot be extended to an improved full
assignment. The algorithm assigns the best valioevariableX, and proceeds to variable
X,+1, and when variableX, has no values left, it backtracks to variabg_,. Search

terminates when it reaches a time bound or when the firsthlarims no values left. In the

32

Algorithm 4 : BFMB(:): Best-First search with Mini-Bucket heuristics

Input: An optimization problen? = (X, D, F, >, min), variable ordering
d=(X1,...., X, ..., X,), time limit.
Output: Minimal cost solution taP.

1 INITIALIZE : Run MBE() algorithm generating a set of ordered augmented buckets
and a lower bound on the minimal cost. Insert a dummy ngda the setl. of open
nodes.

2 SEARCH:

3 If out of time, output Mini-Bucket assignment

4 Select and remove a node with the best heuristic valug(z?) from the set of

open nodeg..

5 If p = nthenz? is an optimal solution. Exit.

6 Expandz? by computing all child nodeg&z?, v) for each value in the domain of

X,+1. For each node?** compute its heuristic value
f@@*h) = g(aP*h) + h(2PH).
7 Add all nodeqz”, v) to L and goto $ARCH.

latter case, the algorithm has found an optimal solution.

Best-First Search with Mini-Bucket Heuristics

Algorithm BFMB(:) maintains a list of open nodes. Each node corresponds totialpa
assignment? and has an associated heuristic vafge®). The basic step of the algorithm
consists of selecting an assignmehtfrom the list of open nodes having the best heuristic
value (that is - the highest value for maximization problgthe smallest value for mini-
mization problemsy (z?), expanding it by computing all partial assignmefat’, v) for all
valuesv of X, 14, and adding them to the list of open nodes.

Since the generated mini-bucket heuristics are admissibte monotonic, their use
within Best-First search yieldd* type algorithms whose properties are well understood.
The algorithm is guaranteed to terminate with an optimaltswmh. When provided with
more powerful heuristics, it explores a smaller searchespauat otherwise it requires sub-
stantial space. It is known that Best-First search algostlane optimal. Namely, when
given the same heuristic information, Best-First searclhesmost efficient algorithm in

terms of the size of the search space it explares [40]. Inquéat, Branch-and-Bound will

33

expand any node that is expanded by Best-First search (upi® ts® breaking conditions),
and in many cases it explores a larger space. Still, Best-gaech may occasionally fail
because of its memory requirements, or because it has tdaimaalarge subset of open
nodes during search, or because of tie breaking rules aahdrontier of nodes having

evaluation function value that equals the optimal solution

Impact of the Mini-Bucket i-bound

For any accuracy parametérwe can determine the space complexity of Mini-Bucket
preprocessing in advance. This can be done by computingtsiggs {.e., arguments) of
all intermediate functions, without computing the actusidtions. Based on the signatures
of original and intermediate functions, we can compute thel space needed. Knowing
the space complexity, we can estimate the time complexitysTgiven the time and space
at our disposal, we can select the paramgtteat would fit. However, the cost-effectiveness
of the heuristic produced by Mini-Bucket preprocessing matyle predicted a priori. It
was observed [65] that in general, as the problem graph i€ mense, higher levels of

Mini-Bucket heuristic become more cost-effective.

1.3.3 Branch-and-Bound Search for Weighted CSP

The area of Weighted CSP has seen substantial advances msthgelrs by exploiting
and extending local consistency to cost functions, cadleftl local consistencySeveral
increasingly stronger local consistency algorithms weteduced (soft node and arc con-
sistency|[72], full directional arc consistency (DAC/FDAQN], existential directional arc
consistency (EDAC) [25]), leading to increasingly effici@manch-and-Bound algorithms.
As in the classical case of constraint propagation, enigreoft local consistency on
the initial problem provides, in polynomial time, aquivalentproblem defining the same
cost distribution on complete assignments, with possilaller domains. It also produces

a lower bounding heuristic evaluation function that can x@ated during search. Con-

34

sequently, the OR Branch-and-Bound algorithm maintaining®EDAC during search
introduced recently in_[71, 72, 25] was demonstrated to be ainthe best performing

algorithms for solving binary WCSPs.

Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistencyheninitial problem provides
in polynomial time arequivalentproblem defining the same cost distribution on complete
assignments, with possible smaller domains [71| 72, 25].

Assume a binary Weighted CSR = (X, D, C), whereX = {X},...,, X,,} andD =
{Dz, ..., D, } are the variables and their corresponding domdihs the set of binary and
unary cost functions (or soft constraints). A binary softstaintC;;(X;, X;) € C (or Cj;
in short) isC;;(X;, X;) : D; x D; — N. A unary soft constrain€’;(X;) € C (or C; in
short) isC;(X;) : D; — N. We assume the existence of a unary constrgifx’;) for every
variable, and a zero-arity constraint, denoted’lgy If no such constraints are defined, we
can always define dummy ones,@sz;) = 0, Vz; € D; or Cy = 0. We denote byr, the
maximum allowed coste(g., T = oo). The cost of a tuple = (x4, ..., z,), denoted by

cost(z), is defined by:

cost(t) = Y Cy(li, j]) + > Cx,(z[i]) + Cy

C;;€C C;eC
For completeness, we define next some local consistencWE€BP, in particulanode
arc anddirectional arc consistengyas in [71, 72]. We assume that the set of variables
X is totally ordered. We note that there are several stromgmal Iconsistencies which
were defined in recent years, suchfals directional arc consistenc{+DAC) [71,.72] or

existential directional arc consisten¢i DAC) [25].

DEFINITION 16 (soft node consistency [71, 72]het R = (X, D, C) be a binary WCSP.
(X;, x;) is star node consistentNC*) if Cy + C;(x;) < T. Variable X; is NC* if: i) all

35

its values areNC* and ii) there exists a value; € D; such thatC;(z;) = 0. Valuez; is a

supportfor variable X;. R is NC* if every variable isNC*.

DEFINITION 17 (soft arc consistency/ [71, 72]) et R = (X,D, C) be a binary WCSP.
(X;, ;) is arc consistent (AC) with respect to constraing if there exists a value; € D;
such thatC;;(z;, z;) = 0. Valuez; is called asupportfor the valuer;. Variable X; is AC if
all its values are AC wrt. every binary constraint affectig R is AC* if every variable

is AC andNC™.

DEFINITION 18 (soft directional arc consistency [71, 72] et R = (X, D, C) be a bi-
nary WCSP(X;, z;) is directional arc consistent (DAC) with respect to consttain;,
i < j, if there exists a valug,; € D, such thatC;;(z;, z;) + C;(x;) = 0. Valuez; is called
afull supportof z;. Variable X; is DAC is all its values are DAC wrt. evety;;, i < j. R

is DAC™ if every variable is DAC anav C*.

For our purpose, we point out that enforcing such local stescies is done by the re-
peated application of atomic operations caked equivalence preserving transformations
[20]. This process may increase the valu€@fand the unary costs;(z;) associated with
domain values. The zero-arity cost functiop defines atrong lower boundvhich can be
exploited by Branch-and-Bound algorithms while the upddigd:;) can inform variable
and value orderings [71, [72,125].

If we consider two cost functions;;(X;, X,), defined over variableX; and X, and
C;(X;), defined over variabl&;, a valuer; € D, and a costy, we can addv to C;(z;) and
subtracty from everyC;;(x;, z;) for all z; € D;. Simple arithmetic shows that the global
cost distribution is unchanged while costs may have moweu fihe binary to the unary
level (if « > 0, this is called grojection) or from the unary to the binary level (if < 0,
this is called arextensioh In these operations, any cost abovethe maximum allowed
cost, can be considered as infinite and is thus unaffectediiyegtion. If no negative cost

appears and if all costs aboveare set toT, the remaining problem is always a valid and

36

(a) WCSP (b) NC* (c) DAC™ (d) AC*

Figure 1.6: Four equivalent WCSPs (for= 4) [71].

equivalent WCSP. The same mechanism, at the unary level, azsedd¢o move costs from
the C;(X;) to Cy. Finally, any value such that;(x;) + Cy is equal toT can be deleted. For

a detailed description of these operations, we refer thaerda [71, 72, 25].

Example 5 Figure[1.6(a) shows a WCSP with a sets of cdéts., 4] and with T = 4.
The network has three variablés = { X, Y, Z}, each with valuega,b}. There are 2 bi-
nary constraints” (X, 7), C(Y, Z) and two non-trivial unary constraintS(.X') andC'(Z).
Unary costs are depicted inside their domain value. Binarsts are depicted as labeled
edges connecting the corresponding pair of values. Zerts@s not shown. Initially

is set to 0. One optimal solution {X = b,Y = b, Z = b), with cost 2.

The problem in Figuré 1.6(p) is na¥C* since Z has no support. To enforc& C*
we must force a support faf by projectingCz(Z) onto Cyy. The resulting problem in
Figure[1.6(b) isNC* but not AC*. To enforceAC*, it suffices to enforce a support for
(Y,a) and(Z, a), as follows: we projecty z(Y, Z) over (Y, a) by adding 1 taCy (a) and
subtracting 1 fronCy z(a, a) andCy z(a, b), and similarly projecCx (X, Z) over(Z, a).
Consequently, we get problém 1.6(d) whictiis*. Observe also that problem 1.6(b) is
not DAC™* for order (X, Y, Z) since(Y, a) has no full support or¥. Probleni 1.6(g) is an

equivalentD AC* problem.

There is a strong relation between directional arc consigtand mini-buckets. It was

shown in[71] that given a WCSP with = oo, and a variable ordering, the lower bound in-

37

duced by mini-buckets involving at most 2 variables is thasas the lower bound induced
by Cj after the problem is made directional arc consistent. Hewekie mini-bucket com-
putation provides only a lower bound while DAC enforcing\des both a lower bound
and a directional arc consistent equivalent problem. Adl work done to compute the
lower bound is captured in this problem which offers the oppaty to perform incremen-

tal updates of the lower bound.

38

Chapter 2

Systematic versus Non-systematic

Search for Most Probable Explanations

2.1 Introduction

As noted in Chaptér]1, the Most Probable Explanation (MPE) ima8ayesian networks
arises in a wide variety of applications, such as probaigiksror correcting coding, speech
recognition, genetic linkage analysis, medical diagn@siplane maintenance, monitoring
and diagnosis in complex distributed computer systems.ekample, in probabilistic de-
coding, the task is to reconstruct a message.,(a vector of bits) sent through a noisy
channel, given the channel output. In speech recognitidnraage understanding, the ob-
jective is to find a sequence of objectsy(, letters, images) that is most likely to produce
the observed sequence such as phonemes or pixel intensities

A Branch-and-Bound with mini-bucket heuristics (BBMB(was introduced in_[65]
(see also Chaptér 1). The algorithm uses the functions gexdog Mini-Bucket Elimina-
tion MBE() in a pre-processing step to create a heuristic functioinghiales the search.

In this chapter we introduce algorithm BBBY (36] which explores the feasibility of
generating the mini-bucket heuristidaring search rather than in gre-processing man-
ner. This can yield more accurate heuristics and allow dynaii@ble ordering - a feature
that can have tremendous effect on search. The dynamicajemeof these heuristics is

facilitated by an extension of Mini-Bucket Elimination to MiBucket Tree Elimination

39

(MBTE(7)), a partition-based approximation defined over clusteseg described in _[36].
MBTE(7) outputs multiple (lower or upper) bounds for each possualeable and value
extension at once, which is much faster than running MBE(times, one for each vari-
able, to generate the same result. BBBTHpplies the MBTEA) heuristic computation
at each node of the search tree. Clearly, the algorithm hasch mmgher time overhead
compared with BBMB{) for the same-bound, but it can prune the search space much
more effectively, hopefully yielding overall superior fmmance for some classes of hard
problems. Preliminary tests of the algorithms for the MAXR&sk in constraint satisfac-
tion showed that, on a class of hard enough problems, BBBiith the smallesi-bound
(1=2) is cost-effectivel [36]. In this chapter we extend theoalfpm to solving the MPE
task over Bayesian networks. We will compare the performah8BBT (i) and BBMB()
against two incomplete schemes of stochastic local seativalief propagation adapted
to optimization tasks.

Stochastic Local Search (SLS) is a class of incomplete appadion algorithms which,
unlike complete algorithms, are not guaranteed to find amgptsolution, but as shown
during the last decade, are often far superior to completesyatic algorithms on CSP
and SAT problems. Some of these SLS algorithms are appliedttyi on the Bayesian
network and some translate the problem into a weighted Sablem first and then apply
a weighted MAX-SAT algorithm.

The Iterative Join-Graph Propagation (1J@PMmethods apply Pearl’s belief propaga-

tion algorithm to loopy join-graphs of the belief networl€|3

Contribution

The contribution of this chapter is an extensive empiritatlg of highly competitive ap-
proaches for solving the MPE task in Bayesian networks intted in recent years. We
compare two depth-first Branch-and-Bound algorithms, BBBa@Hd BBMB(), that ex-

ploit bounded inference for heuristic guidance on the omalhagainst some of the best-

40

known incomplete approximation algorithms, such as SLSgemeralized iterative belief
propagation adapted for the MPE task, on the other.

Our empirical results on various random and real-world hemarks show that BBMBJ
and BBBT(¢) do not dominate one another. While BBB) ¢an sometimes significantly
improve over BBMBY(), in many other instances its (quite significant) pruning/eodoes
not outweigh its time overhead. Both algorithms are powarfudifferent cases. In gen-
eral when large-bounds are effective BBMBY is more powerful, however when space
is at issue BBBT{) with smalli-bound is often more powerful. We also show that SLS
algorithms are overall inferior to BBBT{and BBMB(), except when the domain size is
small. The superiority of BBBT} and BBMB() is especially significant because unlike
local search they can prove optimality if given enough tiramally, we demonstrate that
generalized belief propagation algorithms are often sapto the SLS class as well.

The research presented in this chapter is based in part ¢n [86

Chapter Outline

The chapter is organized as follows. Secfiod 2.2 preselegart recent work on cluster-
tree and mini-cluster elimination underlying the Branclg-&ound algorithms. Section
[2.3 illustrates the process of using bounded inference itbegBranch-and-Bound search.
Section 2.4 overviews current state-of-the-art non-syate search approaches for solv-
ing the MPE task. In Sectidn 2.5 we provide our experimergsilts, while Section 2.6

provides concluding remarks.

2.2 Background

DEFINITION 19 (cluster-tree decomposition/ [50])Let 5 = (X, D, G, P) be a belief net-
work. Acluster-tree decompositidior B is a triple (T, x,v), whereT = (V,E) is a

tree, andy and are labeling functions which associate with each vettex 'V two sets,

41

Y(v) € X andy(v) C P.

1. For each function?; € P, there isexactlyone vertexo € V such thatp; € ¥ (v),

and scope(p;) € x(v).

2. For each variableX; € X, the sef{v € V|X; € x(v)} induces a connected subtree

of T' (the running intersection property).

Let(u,v) be an edge of a cluster-tree decomposition,dbparatoof « andv is defined
assep(u,v) = x(u) N x(v); the eliminatorof v andv is defined aglim(u,v) = x(u) —

sep(u, v). Thehyperwidthis hw = max,cy |[¢(v)].

In addition to finding the global optimumi.¢., MPE), of particular interest to us is
the special case of finding, for each assignm&nt= z;, the highest probability of the

complete assignment that agrees with= x;. Formally,

DEFINITION 20 (singleton optimization) Given a belief networkX, D, P, IT), singleton
optimizationis the task of finding the best cost extension to every sowteple(X;, z;),

namely finding:(X;) = maxx_(x,}([[,—, Px) for each variableX; € X.

The common exact algorithms for Bayesian inference aretjei-clustering defined
over tree decompositions [73] and variable eliminatiormatyms [32]. The variant we use

was presented for constraint networks [36] and we overviewt.

2.2.1 Cluster-Tree Elimination

Algorithm Cluster-Tree Elimination (CTE) [36] provides a tyiing space conscious de-
scription of join-tree clustering algorithms. It is a megsgassing scheme that runs on the

cluster-tree decomposition, well-known for solving a widage of automated reasoning

42

Procedure CTE
Input: A Bayesian networl3 N, a cluster-tree decompositid’, x, v).
Output: A set of functions:; as a solution to the singleton-optimality task.
Repeat

1. Select an edgéu, v) such thatn, ., has not been computed andhas received
messages

from all adjacent vertices other than

2. Meuw) < MaXelim(u,0) ngcluster(u),g#m@,u) g (where cluster(u) = 1(u) U
{mw,w|(w,u) € T}).
Until all messages have been computed.
Return for eachi, 2(.X;) = max,w)-x; [[e uster(u)gr SUCh thatX; € cluster(u).

Figure 2.1: Algorithm cluster-tree elimination (CTE) fongleton-optimality task.

problems. We will briefly describe its partition-based rrthistering approximation that
forms the basis for our heuristic generation scheme.

CTE provided in Figuré_2]1 computes a solution to the singldtmctionsz(X;) in
a Bayesian network. It works by computimgessageshat are sent along edges in the
tree. Messagen,,) sent from vertexu to vertexv, can be computed as soon as all
incoming messages to other thanm,, ., have been received. As leaves compute their
messages, their adjacent vertices also qualify and coriquigoes on until all messages
have been computed. The set of functions associated withtexve augmented with
the set of incoming messages is calledlaster, cluster(u) = ¥(u) Uwuer Mwu)-
A messagen,,,,) is computed as the product of all functions dhuster(u) excluding
m(,,») and the subsequent elimination of variables in the elinsinat © andv. Formally,
Muw) = maXelim(u,v)(ngczusm(u),g#mw) g). The computation is done by enumeration,
recording only the output message. The algorithm terméateen all messages are com-
puted. The functions(X;) can be computed in any cluster that contaijdy eliminating
all variables other tharx.

It was shown!|[36] that the complexity of CTE is timigr - (hw + dg) - d***) and space
O(r - d*), wherer is the number of vertices in the cluster-tree decompositianis the

hyperwidth,dg is the maximum degree.¢., number of adjacent vertices) in the tree,

43

is the treewidth/ is the largest domain size ands the maximum separator size. This
assumes that step 2 is computed by enumeration.

There is a variety of ways in which a cluster-tree decommositan be obtained. We
will choose a particular one calleoucket-tree decompositipimspired by viewing the
Bucket Elimination algorithm as message passing along a3@e Since a bucket-tree
is a special case of a cluster-tree, we define the CTE algoathphed to a bucket-tree to

be called Bucket-Tree Elimination (BTE). BTE has time and sgaceplexityO(r-d™).

2.2.2 Mini-Cluster-Tree Elimination

The main drawback of CTE and any variant of join-tree algonghs that they are time and
space exponential in the treewidthu] and separatorsf size, respectively [36, 90], which
are often very large. In order to overcome this problem,ifi@mtbased algorithms were
introduced. Instead of combining all the functions in a tduswhen computing a mes-
sage, we first partition the functions in the cluster intotao$enini-clusters such that each
mini-cluster is bounded by a fixed number of variablebdqund), and then process them
separately. The algorithm, called Mini-Cluster-Tree Ehation (MCTE()) approximates
CTE and it computes upper bounds on values computed by CTE.

In the Mini-Cluster-Tree Elimination the messab, ., that node: sends to nodeis a
set of functions computed as follows. The functionslimster(u) — M, ., are partitioned
into P = Py,---, Py, where|scope(P;)| < i, for a giveni. The messagé/(,., is
defined asM(,) = {maxcimuw) [] 4€P; g|/P; € P}. Algorithm MCTE() applied to the
bucket-tree is called Mini-Bucket-Tree Elimination (MBTB([3€].

Since the scope size of each mini-cluster is bounded the time and space complex-
ity of MCTE(:)/MBTE(?) is exponential ini. However, because of the partitioning, the
functionsz(X;) cannot be computed exactly any more. Instead, the outpetiturs of
MCTE(@)/MBTE(:), calledmz(X,), are upper bounds on the exact functiefX’;) [3€].

Clearly, increasing is likely to provide better upper bounds at a higher cost.rétoee,

44

Procedure BBBT(7 ,i,s,L)
Input: Bucket-treeZ, parametet,set of instantiated variablés= s, lower boundL.
Output: MPE probability conditioned os.
1. If S = X, return the probability of the current complete assignment
2. Run MBTE(:); Let {mz;} be the set of heuristic values computed by MBilJE¢r
eachX; ¢ X - S.
3. Prune domains of uninstantiated variables, by removing values Dy, for which
mz/(x) < L.
4. Backtrack: If Dy, = () for some variableX;, return 0.
5. Otherwise let X; be the uninstantiated variable with the smallest domain: =
argminx, ex—s|Dx,|-
6. Repeatwhile Dy, # 0

i. Let z; be the value ofX; with the largest heuristic estimater, =
argmazy,epy mz;(T;).

1. Set X; = DX]. — Tk

iti. Computempe = BBBT (7T ,i,s U{X; = x4}, L).

iv. SetL = max (L, mpe).

v. PruneDy; by L.
/. Return L.

Figure 2.2: BBBTY{): Branch-and-Bound with MBTE) based heuristics.

MCTE(@)/MBTE(:) allows trading upper bound accuracy for time and space ity

2.3 Partition-based Branch-and-Bound Search

This section focuses on the two systematic algorithms wd.uBeth use partition-based

mini-bucket heuristics.

2.3.1 BBBT: Branch-and-Bound with Dynamic Heuristics

Since MBTE() computes upper bounds for each singleton-variable assighsimultane-
ously, when incorporated within a depth-first Branch-and+ibalgorithm, MBTE() can
facilitate domain pruning and dynamic variable ordering.

Such a Branch-and-Bound algorithm, called BBBT{or solving the MPE problem
is given in Figurd 22. Initially it is called with BBBTT, x, ¢),4,(,0). At all times it

45

maintains a lower bound which corresponds to the probability of the best assignment
found so far. At each step, it executes MBTBfhich computes the singleton assignment
costsmz; for each uninstantiated variablg; (step 2), and then uses these costs to prune
the domains of uninstantiated variables by comparinggainst the heuristic estimate of
each value (step 3). If the cost of the value is not more thai can be pruned because
it is an upper bound. If as a result a domain of a variable besoempty, then the current
partial assignment is guaranteed not to lead to a bettegramsint and the algorithm can
backtrack (step 4). Otherwise, BBBJ €xpands the current assignment picking a variable
X, with the smallest domain (variable ordering in step 5) armirsively solves a set of
subproblems, one for each value &f, in decreasing order of heuristic estimates of its
values (value ordering in step 6). If during the solution led subproblem a better new
assignment is found, the lower bouhdcan be updated (step:§.

Thus, at each node in the search space, BBBfirst executes MBTE], then prunes
domains of all un-instantiated variables, and then reeelgisolves a set of subprob-
lems. BBBT() performs a look-ahead computation that is similar (butidentical) to

i-consistency at each search node.

2.3.2 BBMB: Branch-and-Bound with Static Heuristics

The strength of the BBMBJ algorithm described in Chaptetr 1 was established in sev-
eral empirical studies [65]. We highlight next the main elifnces between BBBilj(and

BBMB(:):

e BBMB(i) uses as a pre-processing step the Mini-Bucket-Eliminatidrich com-
piles a set of functions that can be used to assemble efficlegiristic estimates dur-
ing search. The main overhead is therefore the pre-prowestsp which is exponen-
tial in thei-bound but does not depend on the number of search nodes. BBBIT (

the other hand computes the heuristic estimates solelpglsgarch using MBTE).

46

Consequently its overhead is exponential in#iund multiplied by the number of

nodes visited.

e Because of the pre-computation of heuristics, BBMBg limited to static variable

ordering, while BBBT{) uses a dynamic variable ordering.

e Finally, since at each step, BBB/) €omputes heuristic estimates for all un-instantiated
variables, it can prune their domains, which provides a foftaok-ahead. BBMB)
on the other hand generates a heuristic estimate only forgkievariable in the static

ordering and prunes only its domain.

2.4 Non-Systematic Algorithms

This section focuses on two different types of incompletgoathms: stochastic local

search and iterative belief propagation for solving the M&%k in belief networks.

2.4.1 Local Search

Local search is a general optimization technique which eauaded alone or as method for
improving solutions found by other approximation schenusdike the Branch-and-Bound

algorithms, these methods do not guarantee an optimal@®lut

Discrete Lagrangian Multipliers

The method oDiscrete Lagrangian Multipliers (DLM) [L22] is based on an extension
of constraint optimization using Lagrange multipliers fmntinuous variables. In the
weighted MAX-SAT domain, the clauses are the constraims, the sum of the unsat-
isfied clauses is the cost function. In addition to the weighta Lagrangian multiplieAo
is associated with each clause. The cost function for DLM ik®@form:)" we+> - Ac,

where(C' ranges over the unsatisfied clauses. Every time a local naaisiencountered, the

47

As corresponding to the unsatisfied clauses are incremeytatting a constant. DLM can
be applied over the equivalent weighted MAX-SAT encodinghef given belief network,

as shown inl[102].

Guided Local Search

Guided Local Search(GLS) [93,1102] is a heuristically developed method for sojv
combinatorial optimization problems. It has been showretexiremely efficient at solving
general weighted MAX-SAT problems. Like DLM, GLS assocga#n additional weight
with each clause C)\¢). The cost function in this case is essentigily, A\, whereC
ranges over the unsatisfied clauses. Every time a local nsalsmeached, thas of the
unsatisfied clauses with maximum utility are increased lajyragiconstant, where the utility
of a clause C is given by¢/(1 + A¢). Unlike DLM, which increments all the weights of

the unsatisfied clauses, GLS modifies only a few of them.

Stochastic Local Search

Stochastic Local Search(SLS) [64] is a local search algorithm that at each step pergo
either a hill climbing or a stochastic variable change. &cally, the search is restarted in
order to escape local maxima. It was shown to be superiontolated annealing and some

pure greedy search algorithms. SLS can be applied direotth@given belief network.

2.4.2 Iterative Join-Graph Propagation

Thelterative Join Graph Propagation (IJGP) [39] algorithm belongs to the class of gen-
eralized belief propagation methods, recently proposagktweralize Pearl’s belief prop-
agation algorithm|[104] using analogy with algorithms iatgtical physics. This class
of algorithms, developed initially for belief updating,as iterative approximation method
that applies the message passing algorithm of join-trestealing to join-graphs, iteratively.

It uses a parameteéithat bounds the complexity and makes the algorithm anytime.

48

2.5 Experiments

We tested the performance of our scheme for solving the MBE @a several types of
belief networks - random uniform Bayesian networks, NxN gyricbding networks, CPCS
networks and 9 real world networks obtained from the BayeNetwork Repository. On
each problem instance we ran BBB)land BBMB() with variousi-bounds, as heuristics
generators, as well as the local search algorithms disd@sster. We also ran the Iterative
Join Graph Propagation algorithm (IJGPon some of these problems.

We used thanin-degreeheuristic for computing the ordering of variables. It plaee
variable with the smallest degree at the end of the ordedagnects all of its neighbors,
removes the variable from the graph and repeats the whoteguoe.

We treat all algorithms as approximation anytime schemdgorithms BBBT() and
BBMB(7) have any-time behavior and, if allowed to run until comiglet will solve the
problem exactly. However, in practice, both algorithms rhbayerminated at a time bound
and may return sub-optimal solutions. On the other handheethe local search tech-
niques, nor the belief propagation algorithms guarantegpéimal solution, even if given
enough time.

To measure performance we used the accuracy ogtic= F,;, / Py pp between the
value of the solution found by the test algorithi,{) and the value of the optimal solu-
tion (Pypr), WheneverP,,;pr was available. We only report results for the rarogs >
0.95. We also recorded the average running time for all @hlguos, as well as the average
number of search tree nodes visited by the Branch-and-Bogudi@lms. When the size
and difficulty of the problem did not allow an exact compuiatiwe compared the quality
of the solutions produced by the respective algorithms engiven time bound. For each

problem class we chose a number of evidence variables rdp@omu fixed their values.

www.cs.huiji.ac.il/labs/compbio/Repository

49

BBBT BBBT BBBT BBBT BBBT

BBMB BBMB BBMB BBMB BBMB GLS DLM SLS
1JGP 1IGP 1IGP 1IGP 1JGP

i=2 i=4 i=6 i=8 i=10
%[time]{nodeg %][time]{nodeg %[time]{nodeg %[time]{nodeg %][time]{nodeg %[time] Y%[time] %[time]
90[6.30 3.9K} 100[1.19} 781} 100[0.65) 366} 100[0.44} 212} 100[0.43} 161}
71[2.19 1.6M} 92[0.17K0.1M} 92[0.02}{ 10K} 86[0.01 3K} 91[0.01K 1.2K} 100[1.05] 0[30.01] 0[30.01]
62[0.04] 66[0.06] 66[0.13] 71[0.32] 67[0.87]
28[46.6]{ 19K} 65[27.5K5.5K} 86[15.4 1.1K} 86[19.3[{453} 80[27.5[{213}
5[43.1}{16M} 78[24.4){8.2M} 90[3.20{0.8M} | 89[1.23K0.3M} | 83[0.5852.5K} | 39[44.02] | 0[60.01] 0[60.01]
34[0.07] 37[0.18] 36[0.94] 43[5.38] 44[32.5]
24[95.5}{63K} 46[74.7](13.4K} | 65[54.1{1.6K} 67[65.7]{ 443} 37[151.2 74}
3[89.4]{47TM} 42[85.5(37M} 89[25.4{8M} 90[5.44}{1.5M} 99[4.82){0.3M} 5[114.9] | 0[120.01] | 0[120.01]
17[0.14] 14[0.47] 14[4.33] 17[43.3] 20[468.5]

Table 2.1: Average accuracy and timRandom Bayesian networkg(n = 100, ¢ = 90,
p = 2). w* =17, 10 evidence, 100 samples.

BBBT BBBT BBBT BBBT BBBT
BBMB BBMB BBMB BBMB BBMB GLS DLM SLS
k 1JGP 1JGP 1JGP 1JGP 1JGP
i=2 i=4 i=6 i=8 i=10
%][time] | %[time] %][time] %[time] %[time] %[time] %][time] %][time]
84[7.34] | 98[2.48] | 100[0.88] | 100[0.66] | 100[0.59]
2 | 61[3.49] | 91[0.30] | 89[0.05] 88[0.02] 88[0.02] | 100[1.25] | 0[30.02] 0[30.02]
62[0.04] | 66[0.06] | 66[0.13] 71[0.31] 67[0.86]
36[42.2] | 78[19.1] | 95[9.64] 94[10.7] 93[16.8]
3 | 8[47.5] | 77[18.4] | 95[1.81] 86[0.71] 84[0.33] 49[38.7] 0[60.02] 0[60.01]
34[0.04] | 37[0.10] | 36[0.49] 43[2.86] 44[17.0]
24[97.7] | 40[80.3] | 61[62.4] 58[82.0] 30[269]
4 | 2[114.4] | 39[92.3] | 84[33.2] 90[7.39] 99[7.95] | 5[115.03] | 0[120.01] | 0[120.01]
17[0.06] | 14[0.23] | 14[2.12] 17[21.9] | 20[226.8]

Table 2.2: Average accuracy and tinftandom Noisy-OR networks(n = 100, ¢ = 90,
P =2). Proise = 0.2, Poor, = 0.01. w*=17, 10 evidence, 100 samples.

2.5.1 Random Bayesian Networks and Noisy-OR Networks

The random Bayesian networks were generated using paranfetéf, c, p), wheren is
the number of variableg; is their domain size; is the number of conditional probability
tables (CPTs) and is the number of parents in each CPT. The structure of the met&o
created by randomly pickingvariables out ofi and, for each, randomly selectipgarents
from their preceding variables, relative to some orderiRgr random uniform Bayesian
networks, each probability table is generated uniformhdamly. For Noisy-OR networks,
each probability table represents an OR-function with argiveise and leak probabilities:
P(X = 0|Yi,...,Yy) = Peat % ITy,_; Proise

Table[2.1 presents experiments with random uniform Bayewmanorks. In each table,

parameters:, ¢ and p are fixed, whilek, controlling the domain size of the network’s

50

variables, is changing. For each valuekgfwe generate 100 instances. We gave each
algorithm a time limit of 30, 60 and 120 seconds, dependinghervalue of the domain
size. Each test case had 10 randomly selected evidencélesri&Ve have highlighted the
best performance point in each row.

For example, Tableé_2.1 reports the results with random problhavingn = 100,
¢ =90, p = 2. Each horizontal block corresponds to a different valué.of he columns
show results for BBBTi), BBMB(7) and IJGPY) at various levels of, as well as for GLS,
DLM and SLS. Looking at the first line in Table_2.1 we see thatha accuracy range
opt > 0.95 and for the smallest domain size £ 2) BBBT(7) with i=2 solved 90% of
the instances using 6.30 seconds on average and exploBKgn®des, while BBMBY)
with =2 only solved 71% of the instances using 2.19 seconds omag®end exploring
a much larger search space (1.6M nodes). GLS significantpeoiormed the other local
search methods, as also observed in|[102], and solved &hicess using 1.05 seconds on
average. However, as BBBiJ'§ bound increases, it is better than GLS. As the domain size
increases, the problem instances become harder. The Igver@mrmance of local search
algorithms, especially GLS’s performance, deteriorateteqapidly.

When comparing BBBT] to BBMB(:) we notice that at larger domain sizes €
{3,4}) the superiority of BBBT{) is more pronounced for smatbounds { € {2,4}), both
in terms of the quality of the solution and search space eggloThis may be significant,
because smallbounds require restricted space.

Figures[2.B and 214 provide an alternative view of the perforce of BBBT() and
BBMB(:) against GLS as anytime algorithms. LEf,(t) be the fraction of problems
solved completely by the algorithadg by timet. Each graph in Figuiie 2.3 plot$; pri) (1),
Fppup()(t) for some selected values gfas well asf;1¢(t). Different values of the do-
main size are discussed, namély= 2 andk = 3, respectively. Figuré 2.3 shows the
distributions ofFzppr)(t), Feempe)(t) andFgrs(t) for the random Bayesian networks

whenN = 100, C' = 90, P = 2 (corresponding to the first two rows in Talble]2.1), while

51

90 -
80
70 4 3 XX X X 3 e s XX TET
- e KR X X X X
> - %
S 60| :
IS 1 .
e X
L X'(
o i .
o 50 .
=
S
0 40
X
301 —a&—BBBT-2
—e—BBBT4
20 - - GLS
-+ X - - BBMB-2
! --O--BBMB-4
10 !
OR T T T T T
0 5 10 15 20 25 30
£\ Tirman TaAAl
100
folclelzlslslalololotololclelclsls]alololooto clelelels]3lololotot0 el el ela
90 O_ooooooeooooooo-ooo 9
[0
80 4
704 !
> .
3}
g 607:
X
1] :
ho] .
S 504!
=
3 :
U)o 404; Zi=T=I=Eoioy)
> .
3075 o o B EEEEEaEE
: o B EEeaaE A
20
10 4
3 53¢ 5¢ X XXX KX XX XXX K S 3 3 3 XXX KRR AKAHH AR H AKX
'R = HIERRRR KKK T T T T T T T T T
0 10 20 .30 40 50 60
(b) Time [sec]

Figure 2.3: Accuracy versus timRandom Bayesian networkgn = 100, ¢ = 90, p = 2).
(@) k =2, (b) k = 3. 10 evidence, 100 samples.

52

Z b
< oo KX
@ 60 AV VPRVET S EE G
S ‘x‘_x_.x--x--x-'x“'x"x XX
§ 50 - x__x_,x--x
.- X
2 XX
N 404 Ral
S x —+—BBBT-2
301 —e—BBBT-5
20 -o- GLS
X --%-- BBMB-2
0/ o--BBMB-5
0 T T T T T
0 5 10 15 20 25 30
7N Tirma leAnl
100
J
90 1
OO0 0O0O00OC00060 00000V 0C00O000RR000O0000C000O6000C000000-00C
[0]
807 ——BBBT-2
; —e—BBBT-9
07 -o--GLS
>
= : --%-- BBMB-2
g 60!
g : o--BBMB-9
w .
S el
o 50 : peclcleletclolclelelclatclc ity
35 : gEEaa8
N 40! pEREaaaesd
o\o . E»E-EE-BE’E' L
; BEVBE,
30 4: 'E,Eraa‘
. =32
N =
20 : =
: o
w04
| o ‘
. E R 3¢ 3¢ 3¢ KIXAAHIIORIIRHONEXNAK
0 10 20 .30 40 50 60
(b) Time [sec]
Figure 2.4: Accuracy versus timeRandom Noisy-OR networks(n = 100, ¢ =

p=2).@k=2(b)k

= 3. 10 evidence, 100 samples.

53

90,

BBBT/GLS | BBBT/GLS | BBBT/GLS | BBBT/GLS | BBBT/GLS
BBMB/GLS | BBMB/GLS | BBMB/GLS | BBMB/GLS | BBMB/GLS
k i=2 i=3 i=4 i=5 i=6
best # best # best # best # best
0/29 0/25 0/23 0/21 0/20
2 0/24 0/19 0/19 0/5 0/5
4/26 5/25 5/25 9/21 10/20
3 1/29 2/28 2/28 2/28 4/26
28/2 28/2 30/0 30/0 30/0
5 5/25 5/25 7123 12/18 23/7
25/5 22/8 24/6 19/11 21/9
7 18/12 15/15 17/13 20/10 25/5

Table 2.3: # wins given fixed time bounBandom Bayesian networkgn = 100, ¢ = 90,
p = 3). w* = 30, 10 evidence, 30 samples.

Figure[2.4 corresponds to the random Noisy-OR networks frabie[2.2.

Clearly, if [, (t) > Fu,(t), thenF,,,:(t) completely dominates,, ; (t). For example,

lgJ lgJ

in Figure[2,8(a), GLS is highly competitive with BBBT(4) and batignificantly outper-
form BBBT(i) and BBMB(;) for smalleri-bounds. In contrast, Figufe 2.3(b) shows how
the best local search method deteriorates as the domaimsisases. The same pattern
appears for the case of Noisy-OR networks shown in Figurle @4 dominates slightly
BBBT(5) for £ = 2 and is clearly outperformed by BBBT(9) fér= 3.

We also experimented with a much harder set of random Bayestarorks. The dataset
consisted of random networks with parameters 100, ¢ = 90, p = 3. In this case, the
induced width of the problem instances was around 30, thuastnot possible to compute
exact solutions. We studied four domain sizes {2,3,5,7}. For each value ok, we
generated 30 problem instances. Each algorithm was allewade limit of 30, 60, 120
and 180 seconds, depending on the domain size. We founchthabsts of the solutions
generated by DLM and SLS were several orders of magnitudéesrttzan those found by
GLS, BBBT() and BBMB(). Hence, we only report the latter three algorithms.

Table[2.8 compares the frequency that the solution was thtefdreeach of the three al-
gorithms (ties are removed). We notice again that GLS exdelt finding the best solution

for smaller domain sizes, in particular for= 2 andk = 3. On the other hand, for larger

54

Solution Quality - K =2
50
©
us]
S 45
el
m
P
B
5]
o)
o 40
[
o Ld
o
[} [
=
< .
D 35 1
c
30 : : :
30 35 40 45 50
negative log probability GLS
Solution Quality - K =3
75
©
= 70 J
B 70
m
m
> L]
= oe®
2 L0
Ke] . . ')
O 65 * o
o
L]
8 e
. .
)] .
2 . o
©
2 60 - *
c
55 : : :
55 60 65 70 75
negative log probability GLS

Figure 2.5: Solution quality at fixed time boundandom Bayesian networkgn = 100,
¢ =90, k, p=3). w* = 30, 10 evidence, 100 samplgs< {2,3}

55

Solution Quality - K=5
120

= =
[=
o 3}

negative log probability BBBT-6
=
o
(53]

100

100 105 110 115 120
negative log probability GLS

Solution Quality - K=7
155

[
o
o

negative log probability BBMB-6

145
.
. .
. . °
.
L]
.
L]
140 O,
. .
. ° . °
. . L4
. ® . °
135 T T T
135 140 145 150 155

negative log probability GLS

Figure 2.6: Solution quality at fixed time boundandom Bayesian networkgn = 100,
¢ =90, k, p=3). w* = 30, 10 evidence, 100 samplgs< {5,7}

56

BBBT/BBMB | BBBT/BBMB | BBBT/BBMB | BBBT / BBMB
i=2 i=3 i=4 i=5
k # wins # wins # wins # wins
nodes # nodes # nodes # nodes
20/10 12/18 18/12 18/12
2 | 15.3K/13.8M 14.5K/16.2M 12.3K/15.9M 9.4K/11.8M
2713 26/4 29/1 28/2
3| 19.9K/16.3M 13.8K/16.8M 12.3K/15.9M 4.8K/14.2
29/1 30/0 30/0 27/3
5| 18.3K/10.5M 9.1K/13.8M 3.5K/13.2M 0.9K/12.6M
24/6 26/4 14/16 10/20
7 7.7K/8.3M 3.4K/10.6M 114/10.9M 8/9.6M

Table 2.4: BBBT{) vs. BBMB(:). Random Bayesian networkgn = 100, ¢ = 90, p = 3).
10 evidence, 30 samples, 30 seconds.

domain sizesK € {5, 7}), the power of BBBT{) is more pronounced at smallebounds,
whereas BBMBY) is more efficient at largei-bounds. Figurels 2.5 and 2.6 show, pictori-
ally, the quality of the solutions produced by GLS againstdhes produced by BBB1)(
and BBMB(). For each plot, corresponding to a different value of thendim sizek, the
X axis represents the negative log probability of the sohgifound by GLS and the Y axis
represents the negative log probability of the solutionsitbby BBBT(¢) and BBMB().
The superiority of Branch-and-Bound based methods for latgerain sizes is significant
since these are algorithms that can prove optimality wheengenough time, unlike local
search methods.

Table[2.4 shows comparatively the performance of BBBa$ compared to BBMB].
Each entry in the table shows the number of times BBBp(oduced a better solution
than BBMB() (# wins) as well as the average number of search tree nosliésd/by both

algorithms. We notice again the superiority of BBB)T4t relatively small-bounds.

2.5.2 Random Grid Networks

In grid networks;n is a square number and each CPT is generated uniformly ragdom|
as a Noisy-OR function. We experimented with a synthetio&0-by-10 grid networks.

We report results on three different domain sizes. For eatlrevofk, we generate 100

57

BBBT/ | BBBT/ BBBT / BBBT / BBBT /

BBMB BBMB BBMB BBMB BBMB GLS DLM SLS
k i=2 i=4 i=6 i=8 i=10

%[time] | %][time] %][time] %[time] %[time] %[time] | %][time] | %[time]
2 | 51[17.7] | 99[2.62] | 100[0.66] | 100[0.48]| 100[0.42]

1[29.9] | 13[23.7] | 93[2.16] | 92[0.08] | 95[0.02] | 100[1.54] | 0[30.01] | 0[30.01]
3| 3[58.7] | 28[47.4] | 80[19.5] | 93[14.8] | 94[23.2]

0[60.01] | 1[58.9] 25[50.9] | 89[8.63] | 92[0.73] 4[58.7] | 0[60.01] | 0[60.01]
4 | 1[118.8] | 12[108.3]| 46[78.4] | 61[88.5] | 33[136]

0[120] 0[120] 6[113.4] | 72[46.4] | 85[9.91] 0[120] 0[120] 0[120]

Table 2.5: Average accuracy and tinftandom grid networks (n = 100). w* = 15, 10

evidence, 100 samples.

BBBT
BBMB
1JGP

BBBT
BBMB
JGP

BBBT
BBMB
JGP

BBBT
BBMB
1JGP

BBBT
BBMB
1JGP

IBP
GLS
SLS

i=2
BER[time]

i=4
BER[time]

i=6
BER[time]

i=8
BER[time]

i=10
BER[time]

BER[time]

0.32

0.0056[3.18]
0.0034[0.07]
0.0034[0.16]

0.0104[2.87]
0.0034[0.08]
0.0034[0.18]

0.0072[1.75]
0.0034[0.03]
0.0034[0.33]

0.0034[0.72]
0.0034[0.01]
0.0034[0.92]

0.0034[0.59]
0.0034[0.02]
0.0034[3.02]

0.0034[0.01]
0.2344[60.01]
0.4980[60.01]

0.40

0.0642[19.4]
0.0114[0.63]
0.0114[0.16]

0.0400[12.8]
0.0114[0.53]
0.0138[0.18]

0.0262[6.96]
0.0114[0.12]
0.0118[0.33]

0.0148[4.52]
0.0114[0.05]
0.0116[0.91]

0.0190[4.34]
0.0114[0.04]
0.0120[3.02]

0.0108[0.01]
0.2084[60.01]
0.5128[60.01]

0.52

0.1920[48.1]
0.0948[1.35]
0.1224[0.08]

0.1790[42.0]
0.0948[1.47]
0.1242[0.09]

0.1384[31.3]
0.0948[0.36]
0.1256[0.16]

0.1144[21.4]
0.0948[0.11]
0.1236[0.47]

0.1144[19.7]
0.0948[0.05]
0.1132[1.54]

0.0894[0.01]
0.2462[60.02]
0.5128[60.01]

Table 2.6: Average BER and timBRandom coding networks(n = 200, p = 4). w* = 22,
60 seconds, 100 samples.

problem instances. Each algorithm was allowed a time lihB@ 60 and 120 seconds,
depending on the domain size.

Table[2.5 shows the average accuracy and running time foratgorithm. Once again,
in terms of accuracy, GLS is highly competitive with the gysatic search algorithms
at the lowest domain size: (= 2). Even though the difficulty of the problem instances
was relatively smallie., the induced width was around 15), the degradation in GLS’s
performance is more pronounced as the domain size incre&mwsparing BBBT{) to

BBMB(7), we notice again that BBBT) was superior to BBMBi) for smalleri-bounds.

58

BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/

Network BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ GLS DLM SLS
(n, w¥) 1IGP 1IGP 1IGP 1IGP 1IGP 1IGP 1IGP 1IGP

(avg, max) i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=10 % % %

Y%[time] %[time] %l[time] %[time] %l[time] %[time] %l[time] %[time] [time] [time] [time]
Barley - - 90[6.33] 100[4.28] 100[3.29] 100[2.81] 100[2.91] - 0 0 0
(48, 8) - - 25[12.8] 40[2.32] 65[0.43] 90[0.85] 100[2.41] - [30.01] [30.01] [30.01]
(8, 67) 67[0.99] 67[1.11] 63[1.49] 70[5.32] 80[17.9] - - -

Diabetes* 0[120] 0[123] 0[127] 90[21.1] B 0 0 0
(413, 5) 0[120] 0[120] 5[114] 100[2.01] - [120.01] | [120.01] | [120.01]
(11, 21) 3[8.60] 3[11.2] 43[86.0] | 97[311.1] | 100[384.6]

Mildew 100[0.28] | 100[0.17] | 100[0.56] B E 15 0 90
(35, 4) 30[10.5] 65[7.5] 95[0.18] [30.02] [30.02] [30.02]

(17,100) | 90[3.59] | 87[3.68] | 97[33.3] 100[_53.2]

40[&3.8] - 75[i3.4] 80[4-13. 1 0

Muning 90[6.13] 100[6.48] 0 0
(189, 11) 0[30] - 5[27.2] - 20[24.1] - 70[6.77] | 100[9.03] | [30.02] | [30.02] | [30.02]
(5, 21) 90[0.45] | 90[0.49] | 97[1.10] | 93[4.28] 93[14.5] 97[70.2] | 100[191.9] -
Muninz O5[1.65] | O5[1.73] | 95[1.65] | 95[1.99] 95[2.32] 95[2.48] | 100[1.97] - 0 0 0
(1003,7) | 95[30.3] | 95[31.7] | 95[30.5] | 95[31.8] 95[31.3] | 100[30.5] | 100[1.84] - [30.01] | [30.01] | [30.01]
(5, 21) 95[2.44] | 95[2.94] | 95[5.17] | 100[20.3] | 95[64.9] - - -
Muning 0[30.8] 0[30.9] O[31.3] 5[31.7] 0[40.9] 90[4.72] 100[2.2] - 0 0 0
(1044, 7) 0[30.2] 0[31] 0[32.3] 5[29.9] 0[32.7] 95[2.14] | 100[1.01] - [30.02] | [30.02] | [30.02]
(5, 21) 80[1.47] | 95[1.72] | 85[3.10] | 85[10.8] 90[38.9] - - -
Munind 0[31] 03] O[31.9] OE7.7] 0[44 5] 0[58.8] 0[170.4] - 0 0 0
(1041, 8) 0[30.2] 0[31.4] 0[31.6] 0[32] 0[30.3] 30[22.1] 85[3.4] - [30.02] | [30.02] | [30.02]
(5, 21) 85[1.52] | 75[1.66] | 90[4.15] | 95[15.6] 95[43.6] - - -
Pigs 90[15.2] - 100[3.73] - 100[2.36] - 100[0.58] | 100[0.56] 10 0 0
(441,12) | 0[30.01] - 60[4.85] - 80[0.02] - 95[0.04] 95[0.12] | [30.02] | [30.02] | [30.02]
(3,3) 80[0.31] | 73[0.37] | 77[0.53] | 83[0.86] 80[1.43] 80[2.49] 83[6.27] 93[27.3]
Water 100[0.01] - 100[0.02] - 100[0.03] - 100[0.04] | 100{0.09] 100 75 100
(32,11) 55[4.51] - 60[4.5] - 75[0.01] - 100[0.02] | 100[0.06] | [30.02] | [30.02] | [30.02]
(3,4) 97[0.09] | 97[0.09] | 97[0.10] | 97[0.14] | 100[0.26] | 100[0.45] | 100[1.12] | 100[5.94]
CPCS54 | 100[0.35] - 100[0.18] : 100[0.11] - 100[0.09] | 100[0.06] 100 0 100
(54, 15) 35[0.02] - 60[0.01] - 50[0.01] - 55[0.004] | 60[0.003] | [30.02] | [30.02] | [30.02]
2.2 67[0.06] | 77[0.06] | 67[0.06] | 70[0.07] 63[0.09] 70[0.11] 63[0.16] 73[0.38]
CPCS179 | 100[1.69] - T00[1.01] : 100[0.05] - 100[0.11] - 100 30 30
(179, 8) 80[0.02] 80[0.02] 100[0.02] 100[0.07] - [30.02] | [30.02] | [30.02]

(2, 4) 100[2.50] | 100[2.52] | 100[2.99] | 100[3.37] | 100[6.49] | 100[8.63] | 100[36.9] -
- - - 100[0.19] | 100[0.32] 100 100 100

CPCS360b | 100[0.17] 100[0.27] 100[0.21]

(360,20) | 100[0.04] - 100[0.03] - 100[0.03] - 100[0.03] | 100[0.04] | [30.02] | [30.02] | [30.02]
2.2) 100[10.6] | 100[10.4] | 100[10.5] | 100[10.1] | 100[9.82] | 100[8.19] | 100[8.59] | 100[12.5]

CPCS422b | 65(52.6] - 70[48.7] - 70[47.2] - 90[21.5] 95[12.9] 100 65 65
(422,23) | 100[0.5] - 100[0.49] - 100[0.49] - 100[0.47] | 100[0.47] | [120.01] | [120.01] | [120.01]
2.2 83[88.0] | 83[86.8] | 87[86.4] | 90[84.3] 83[85.3] | 87[77.7] | 87[77.1] 90[70.9]

Table 2.7: Results for experiments on &l world networks. Average accuracy and
time.

2.5.3 Random Coding Networks

Our coding networks fall within the class bhear block code$65]. They can be repre-
sented as four-layer belief networks having K nodes in eagér] The decoding algorithm
takes the coding network as input and the observed chantmltaand computes the MPE
assignment. The performance of the decoding algorithmusllysmeasured by the Bit
Error Rate (BER), which is simply the observed fraction of infation bit errors.

We tested random coding networks with K=50 input bits andouerlevels of channel
noises. For each value of we generate 100 problem instances. Each algorithm was al-
lowed a time limit of 60 seconds. Talble P.6 reports the aveRBigError Rate, as well as the
average running time of the algorithms. We see that BBBaitd BBMB() outperformed
considerably GLS. On the other hand, only BBMBiE competitive to IBP, which is the

59

best performing algorithm for coding networks.

2.5.4 Real-World Networks

Our realistic domain contained 9 Bayesian networks from thgeBian Network Reposi-
tory, as well as 4 CPCS networks derived from the Computer-Basezl &ianulation sys-
tem. For each network, we ran 20 test cases. Each test caseOhatdomly selected
evidence variables, ensuring that the probability of evegewas positive. Each algorithm
was allowed a 30 second time limit.

Table[2.¥ summarizes the results. For each network, wénbstimber of variables, the
average and maximum domain size for its variables, as wélemduced width. We also
provide the percentage of exactly solved problem instannéesthe average running time
for each algorithm.

In terms of accuracy, we notice a significant dominance ofsgrsematic algorithms
over the local search methods, especially for networks laitipe domainsd g., Barley,
Mildew, Diabetes, Munin). For networks with relatively sindomain sizes {.g., Pigs,
Water, CPCS networks) the non-systematic algorithms, inqudait GLS, solved almost as
many problem instances as the Branch-and-Bound algorithregertheless, the running
time of BBBT(;)) and BBMB() was much better in this case, because GLS had to run until
exceeding the time limit, even though it might have founddpémal solution within the
first few iterations. BBBT{) and BBMB() on the other hand terminated, hence proving
optimality.

We also used for comparison the IJ@R{lgorithm, set up for 30 iterations. In terms of
average accuracy, we notice the stable performance ofdgbethim in almost all test cases.
For networks with large domain sizes, 1J@Pgignificantly dominated the local search
algorithms and in some cases it even outperformed the BBBih¢g BBMB() algorithms

(e.g., Barley, Mildew, Munin).

60

2.6 Conclusion to Chaptel 2

We investigated the performance of two Branch-and-Boundchealgorithms, BBBTY)
and BBMB(), against a number of state-of-the-art stochastic locatckeand general-
ized belief propagation algorithms for the problem of sofvihe MPE task in Bayesian
networks. Both BBBT{) and BBMB() use the idea of partion-based approximation of
inference for heuristic computation, but in different wayshile BBMB(:) uses a static
pre-computed heuristic function, BBBJ (computes it dynamically at each step. We ob-
served over a wide range of problem classes, both randomeatavorld benchmarks,
that BBBT() and BBMB() do not dominate each other. While BBBY tan sometimes
improve significantly over BBMB]), in many other instances its (quite significant) prun-
ing power does not outweigh its time overhead. Both algortiane powerful in different
cases. In general, when largdounds are effective, BBMBY is more powerful, how-
ever, when space is restricted, BBB)I\yith smalli-bounds is often more powerful. More
significantly, we also showed that the SLS algorithms areadvimferior to BBBT(i) and
BBMB(7), except when the domain size is small, in which case theg@mgetitive. This

is in stark contrast with the performance of systematicueron-systematic on CSP/SAT
problems, where SLS algorithms often significantly outperf complete methods. An ad-
ditional advantage of BBBT) and BBMBY() is that as complete algorithms they can prove
optimality if given enough time, unlike SLS.

When designing algorithms to solve an NP-hard task, one ¢dmme to develop a
single algorithm that would be superior across all problégsses. Our experiments show
that BBBT() and BBMB(), when viewed as a collection of algorithms parameterizaed b
1, show robust performance over a wide range of MPE problessels because for each
problem instance there is a value@fsuch that the performance of BBBY @s well as

BBMB(7) dominates that of SLS.

61

Chapter 3

AND/OR Branch-and-Bound Search for

Graphical Models

3.1 Introduction

Graphical models such as belief networks, constraint nétsydlarkov networks or influ-
ence diagrams are a widely used representation framewor&dsoning with probabilistic
and deterministic information. These models use graphsyptuce conditional indepen-
dencies between variables, allowing a concise represemtat the knowledge as well as
efficient graph-based query processing algorithms. Opétian problems such as finding
the most likely state of a belief network or finding a soluttbat violates the least number
of constraints in a constraint network can be defined withia framework and they are
typically tackled with eithemferenceor searchalgorithms.

Inference-based algorithms.(, Variable Elimination, Tree Clustering) were always
known to be good at exploiting the independencies captuyetthd underlying graphical
model. They provide worst case time guarantees exponentibke treewidth of the un-
derlying graph. Unfortunately, any method that is timeangntial in the treewidth is also
space exponential in the treewidth or separator width efioee not practical for models
with large treewidth.

Search-based algorithms.g, Branch-and-Bound search) traverse the model’s search

space where each path represents a partial or full solufitve linear structure of such

62

traditional search spaces does not retain the indeperegerepresented in the underlying
graphical models and, therefore, search-based algorithaysnot be nearly as effective
as inference-based algorithms in using this informatiahtherefore do not accommodate
informative performance guarantees. This situation hasgéd in the past few years with
the introduction of AND/OR search spaces for graphical n®f&8§]. In addition, search
methods can accommodateplicit specifications of the functional relationships:(, pro-
cedural or functional form) while inference schemes oftey on anexplicittabular repre-
sentation over the (discrete) variables. For these reaseasch-based algorithms are the
only choice available for models with large treewidth anthviimplicit representation.

The AND/OR search space for graphical models [38] is a neméxaork that is sensi-
tive to the independencies in the model, often resultingulstantially reduced complex-
ities. It is guided by gseudo treg¢48,/106] that captures independencies in the graphical
model, resulting in a search space exponential in the ddptiegseudo tree, rather than

in the number of variables.

Contribution

In this chapter we present a new generation of AND/OR BramzhBound algorithms
(AOBB) that explore the AND/OR search tree in a depth-first manoeisblving opti-
mization problems in graphical models. As in traditional Bra-and-Bound search, the
efficiency of these algorithms depends heavily also on tp@ding heuristic function. A
class of partitioning-based heuristic functions, basedhenMini-Bucket approximation
[42] and known astatic mini-bucket heuristiosas shown to be powerful for optimization
problems in the context of OR search spaces [65]. The MinikBualgorithm provides a
scheme for extracting heuristic information automaticatbm the functional specification
of the graphical model, which is applicable to any graphimadel. The accuracy of the
Mini-Bucket algorithm is controlled by a bounding parametalledi-bound, which al-

lows varying degrees of heuristics accuracy and resultspeatrum of search algorithms

63

that can trade off heuristic strength and search [65]. Wevstere how the pre-computed
mini-bucket heuristic as well as any other heuristic infatimn can be incorporated in
AND/OR search, then we introduckynamic mini-bucket heuristica/hich are computed
dynamically at each node of the search tree.

Since variable orderings can influence dramatically theckeperformance, we also
introduce a collection oflynamicAND/OR Branch-and-Bound algorithms that extend
AOBB by combining the AND/OR decomposition principle with dyriawvariable ordering
heuristics. There are three approaches to incorporatingrdic orderings intéd\OBB. The
first one improvesAOBB by applying an independent semantic variable orderingisieur
tic whenever the partial order dictated by the static deamsitipn principle allows. The
second, is an orthogonal approach that gives priority tos#maantic variable ordering
heuristic and applies problem decomposition as a seconuiemyiple. Since the structure
of the problem may change dramatically during search wedinite a third approach that
uses a dynamic decomposition method coupled with semaanti@ble ordering heuristics.

We apply the depth-first AND/OR Branch-and-Bound approachwm ¢common op-
timization problems in graphical models: finding the Mosblsable Explanation (MPE)
in Bayesian networks [104] and solving Weighted CSPs [9]. Waearent with both
random models and real-world benchmarks. Our results slowlasively that the new
depth-first AND/OR Branch-and-Bound algorithms improve datically over traditional
ones exploring the OR search space, especially when thestieestimates are inaccurate
and the algorithms rely primarily on search and cannot pthaeearch space efficiently.

The research presented in this chapter is based in part 0819

Chapter Outline

The chapter is organized as follows. Secfion 3.2 descrtiE#AND/OR representation of
the search space. In Section]3.3 we introduce the new depttAfND/OR Branch-and-
Bound algorithm AOBB) for searching AND/OR trees. Section3.4 presents severaml

64

purpose heuristic functions that can guide the search iogas the mini-bucket heuristics.
In Section’ 3.6 we describ&OBB's extension with dynamic variable ordering heuristics.
Sectiori 3.6 is dedicated to an extensive empirical evalnaBection 3.7 overviews related

work, and Sectioh 318 provides concluding remarks.

3.2 AND/OR Search Trees For Graphical Models

In this section we overview the AND/OR search space for gegbimodels, which forms
the core of our work in this chapter.

The usual way to do search in graphical models is to insti@nteriables in turn, follow-
ing a static/dynamic variable ordering. In the simplesecaisis process defines a search
tree (called here OR search tree), whose state nodes reppasial variable assignments.
Since this search space does not capture the structure whdleelying graphical model an
AND/OR search space recently introduced for general gcapimodels|[38] can be used
instead. The AND/OR search space is defined using a backizenglo tre¢48,106].

DEFINITION 21 (pseudo tree, extended graph)jGiven an undirected grapy = (V, E),

a directed rooted tre€ = (V, E’) defined on all its nodes is callggseudo tred any arc

of G which is not included inF’ is a back-arc, namely it connects a node to an ancestor
in 7. Given a pseudo tre& of GG, the extended graplof GG relative to7 is defined as

GT = (V,EUE') (see Examplel6 ahead).
We next define the notion of AND/OR search tree for a graphieadel.

DEFINITION 22 (AND/OR search tree [38]) Given a graphical modeR = (X, D.F),

its primal graphG and a backbone pseudo tr@e of G, the associated AND/OR search
tree, denotedS7(R), has alternating levels of AND and OR nodes. The OR nodes are
labeledX; and correspond to the variables. The AND nodes are labetedz;) (or simply

x;) and correspond to value assignments in the domains of thables. The structure of

65

the AND/OR search tree is based on the underlying backbonelpgece7. The root of
the AND/OR search tree is an OR node labeled with the ro@t.oA path from the root of
the search tre&(R) to a noden is denoted byr,,. If n is labeledX; or z; the path will be
denotedr, (X;) or 7, (z;), respectively. The assignment sequence along pattenoted

asgn(m,), is the set of value assignments associated with the AND néaleg 3, :

asgn(m, (X)) = {(X1, 21), (X2, 2a), ..., (X;_1,2-1) }
asgn(m,(z;)) = {(X1, z1), (Xo, xa), ..., (X, ;) }

The set of variables associated with OR nodes along themgaithdenoted byar (7,):
var(m, (X)) = {Xq, ..., Xi 1}, var(m,(z;)) = { Xy, ..., X;}. The parent-child relationship

between nodes in the search space are defined as follows:

1. An OR nodey, labeled byX; has a child AND node labeledX;, z;) iff (X, z;) is

consistent wittusgn(r,,), relative to the hard constraints.

2. An AND nodep, labeled by(.X;, ;) has a child OR node labeled iff Y is a child
of X; in the backbone pseudo trée. Each OR arc, emanating from an OR to an

AND node is associated with a weight to be defined shortly.

Clearly, if a noden is labeledX; (OR node) orr; (AND node)var(m,) is the set of
variables mentioned on the path from the rootXpin the backbone pseudo tree, denoted

by pathr(X;).

Semantically, the OR states in the AND/OR search tree reptesdternative ways of
solving a problem, whereas the AND states represent probdlEctomposition into inde-
pendent subproblems, conditioned on the assignment abewe &ll of which need to be
solved.

Following the general definition of a solution tree for ANODRGearch graphs [97] we

have here that:

66

AND 0]
or () (®)
g g

x © ©® ©@ ©® o 6 o 6

Vv «EOOODOOPOOOD® OO
D)) ano (o] [1][o][1][o] 2] o] [1] [o]| {0l [1][o} 2] o] [2] [o][a] (o] [1] o] [][o] [1] o] [2] o] 2] o] [x] [o] [2]

(©)
Figure 3.1: AND/OR search spaces for graphical models.

DEFINITION 23 (solution tree) A solution treeof an AND/OR search tre§7(R) is an

AND/OR subtred’ such that:
1. It contains the root ob7(R), s;
2. Ifanon-terminal AND node € Sr(R) isinT then all of its children are ir{’;
3. If a non-terminal OR node € S7(R) is in T then exactly one of its children is in
T

4. Allits leaf (terminal) nodes are consistent.

Example 6 Figure[3.1(a) shows the primal graph of cost network with 6 Bisgd vari-
ablesA, B, C, D, E and F, and 9 binary cost functions. Figure 3.1(b) displays a pseud
tree together with the back-arcs (dotted lines). Figure 8 Ehows the AND/OR search
tree based on the pseudo tree. A solution tree is highlightkedice that once variabled
and B are instantiated, the search space below the AND ndgl®)) decomposes into two

independent subproblems, one that is rooted @nd one that is rooted af, respectively.

The virtue of an AND/OR search tree representation is tkagite may be far smaller

than the traditional OR search tree. It was shown that:

THEOREM4 (size of AND/OR search trees [38])Given a graphical modéR and a back-

bone pseudo tre#, its AND/OR search tre§7(R) is sound and complete, and its size is

67

O(l - k™) wherem is the depth of the pseudo trdebounds its number of leaves, akd

bounds the domain size.

Given atree decompositioof the primal graphz havingn nodes, whose treewidth is
w*, it is known that there exists a pseudo tfEeof G whose depthm, satisfies:m <

w* - logn [11,/5]. Therefore,

THEOREMS ([38]) A graphical model that has a treewidth* has an AND/OR search
tree whose size i©(n - k¥ °9"), wherek bounds the domain size amds the number of

variables.

Weights of OR-AND Arcs

The arcs in the AND/OR trees are associated with weightsatetefined based on the
graphical model’s functions and the combination operai¢e.next define arc weights for

any graphical model using the notionlmickets of functionf38].

DEFINITION 24 (buckets relative to a pseudo tree)Given a graphical mode{X, D, F)
and a backbone pseudo tr&e the bucket ofX; relative to7, denotedBr(X;), is the set
of functions whose scopes contaiiy and are included irpathr(X;), which is the set of

variables from the root to\; in 7. Namely,

Br(X;) = {f € F|X; € scope([), scope(f) C pathr(X;)}

For simplicity and without loss of generality we considethe remainder of the chapter
a graphical modeR = (X, D, F) for which the combination and elimination operators are

summatiorandminimization respectively.

DEFINITION 25 (weights) Given an AND/OR search treée-(R), of a graphical modeR,

the weightw,, ,,,) (X, x;) (or simplyw(X;, z;)) of arc (n,m), whereX; labelsn and x;

68

labelsm, is thecombinationof all the functions inBr(X;) assigned by values along,.

Formally,

0 if Br(X;) =
w(X;, z;) = " Br(%) =0

> renr(xy /(asgn(mn)) , otherwise
DEFINITION 26 (cost of a solution tree)Given a weighted AND/OR search trée(R),
of a graphical modeR, and given a solution tre€ having OR-to-AND set of ares-cs(T'),
the cost off" is defined by/ (T') = 3_ ¢ ., cs(r) w(e)-

Let f(T,,) the cost of a solution tree rooted at node Thenf(T,,) can be computed

recursively, as follows:

1. If T,, consists only of a terminal AND node thenf(7,,) = 0.

2. If n is an OR node having an AND child in 7,,, thenf(T,,) = w(n,m) + f(1,,),

whereT,, is the solution subtree df, that is rooted atn.

3. Ifnisan AND node having OR children,, ..., m; in T,,, thenf (T,,) = 3¢, f(T,),

whereT,,. is the solution subtree df, rooted atm,;.

Example 7 Figure[3.2 shows the primal graph of a cost network with funatipf(A, B),
f(A,C), f(A, B, E), f(B,C,D)}, a pseudo tree that drives its weighted AND/OR search
tree, and a portion of the AND/OR search tree with appropriatégims on the arcs ex-
pressed symbolically. In this case the buckefiofontains the functiorf(A, B,), the
bucket ofC' contains two functiong (A, C') and f(B, C, D) and the bucket oB contains
the functionf (A, B). We see indeed that the weights on the arcs from the ORKddany

of its AND value assignments include only the instantiatedtfan f (A, B, F), while the
weights on the arcs connectirdgto its AND child nodes are the sum of the two functions
in its bucket instantiated appropriately. Notice that thekets ofA and D are empty and

therefore the weights associated with the respective arc8.are

69

(") f(A,B)

f(A,C)
f(A,B,E)
f(B,C,D)

f(A=0,B=0)

f(A=0,C=0)+
f(B=0,C=0,D=0)

f(A=0,C=1)+ f(A=0,C=0)+
f(B=0,C=1,D=0) f(B=0,C=0,D=1)

f(A=0,C=1)+
f(B=0,C=1,D=1)

Figure 3.2: Arc weights for a cost network with 5 variables drcost functions.

Node Value

With each node: of the search tree we can associate a valug which stands for the

answer to the particular query restricted to the subprolilelown [38].

DEFINITION 27 (node value) Given an optimization problef® = (R, min) over a graph-
ical modelR = (X, D, F, "), thevalueof a noden in the AND/OR search tre€r(R) is
the optimal cost to the subproblem belew

The value of a node can be computed recursively, as follows:ifor terminal AND
nodes ancx for terminal OR nodes, respectively. The value of an inte@R node is
obtained bycombining (summingjhe value of each AND child node with the weight on
its incoming arc and thewptimize (minimize)over all AND children. The value of an
internal AND node is theombination (summatiorgf values of its OR children. Formally,

if succ(n) denotes the children of the noden the AND/OR search tree, then:

70

;

0 ,if n = (X, x)is aterminal AND node
00 ,if n = X is aterminal OR node

ZmEsucc(n) v(m) Jif n= <X7 l’> is an AND node

\ MiNy, e sucem) (W(n, m) +v(m)) ,if n =X isan OR node
(3.1)

If n is the root ofS7(R), thenv(n) is the minimal cost solution to the initial problem.
Alternatively, the values(n) can also be interpreted as the minimum of the costs of the
solution trees rooted at. Therefore, search algorithms that traverse the AND/ORchea
space can compute the value of the root node yielding thearswhe problem. It can be

immediately inferred from Theorerh$ 4 dad 5 that:

THEOREM 6 (complexity [38]) A depth-first search algorithm traversing an AND/OR tree
for finding the minimal cost solution is tindn - £), wheren is the number of variables,

k bounds the domain size andis the depth of the pseudo tree, and may use linear space.
If the primal graph has a tree decomposition with treewidth there there exists a pseudo

tree 7 for which the time complexity 8 (n - k¥ o),

3.3 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the chiaywtach is an AND/OR Branch-
and-Bound algorithm for AND/OR search spaces for graphicalets. Traversing AND/OR
search spaces by best-first algorithms or depth-first BramckhBound was described as
early asl|[97, 103, 62]. Here we adapt these algorithms tdhigalbmodels. We will revisit
next the notion of partial solution trees [97] to represets ®f solution trees which will be

used in our description.

71

® ©
O,

(a) Pseudo tree

(A=0, B=0, C=0, D=0) (A=0, B=0, C=0, D=1) (A=0, B=1, C=0, D=0) (A=0, B=1, C=0, D=1)

(d) Solution trees represented BY. extension(T")

Figure 3.3: A partial solution tree and possible extenstorsolution trees.

DEFINITION 28 (partial solution tree) A partial solution treel” of an AND/OR search
tree St is a subtree which: (1) contains the root nadef Sz; (2) if nin 77 is an OR node
then it contains at most one of its AND child node$'in and ifn is an AND node then it
contains all its OR children it¥7 or it has no child nodes. A node i1 is called atip node
if it has no children in7”. A tip node is either aerminalnode (if it has no children itv7),

or a non-terminaiode (if it has children irb 7).

A partial solution tree can be extended (possibly in sewgegis) to a full solution tree.
It representsxtension(T”), the set of all full solution trees which can extend it. Clgzaal

partial solution tree all of whose tip nodes are termina#nis a solution tree.

Example 8 Figure[3.3(c) shows a partial solution tré€ of the AND/OR search tree of

72

Algorithm 5: AQ. Depth-first AND/OR tree search

Input: An optimization problen? = (X, D, F, Y, min), pseudo-tre€ rooted atX;.
Output: Minimal cost solution td” and an optimal solution tree.

1 v(s) « o00; ST(s) «— 0; OPEN — {s} /'l Initialize the root node
2 while OPEN # () do
3 n <« top(OPEN); removen from OPEN /1 EXPAND
4 suce(n) — 0
5 if nis an OR node, labeled; then
6 foreachz; € D; do
7 create an AND node’ labeled by(X;, z;)
8 v(n') «— 0; ST(n') «— 0
9 w(n,n') — 3 repy(x,) flasgn(mn)) /1 Conpute the OR-to-AND arc wei ght
10 suce(n) «— succ(n) U {n'}
11 else ifn is an AND node, labeledX;, z;) then
12 foreach X; € childrens(X;) do
13 create an OR node’ labeled byX;
14 v(n') « oo0; ST(n') — 0
15 succ(n) «— succ(n) U {n'}
16 Add suce(n) on top of OPEN
/1 PROPAGATE
17 while succ(n) == 0 do
18 let p be the parent of
19 if nis an OR node, labeled’; then
20 if X; == X1 then
21 | return (v(n), ST(n)) /'l Search term nates
22 v(p) — v(p) + v(n) /1 Update AND val ue
23 ST (p) < ST(p) U ST(n) /1 Update solution tree bel ow AND node
24 else ifn is an AND node, labele¢X;, z;) then
25 if v(p) > (w(p,n) + v(n)) then
26 v(p) — w(p,n) + v(n) /1 Update OR val ue
27 ST(p) — ST(n) U {(Xi,z;)} /1 Update solution tree bel ow OR node
28 removen from succ(p)
29 n<«p

Figure[3.3(b) relative to the pseudo tree displayed in FejBr3(a). The set of solution trees
represented b¥” is given in Figurd 3.3(d) and corresponds to the followingigssients:
(A=0,B=0,C=0,D=0),(A=0,B=0,C=0,D=1),(A=0,B=1,C =
0,D=0)and(A=0,B=1,C=0,D =1).

Brute-force Depth-First AND/OR Tree Search

A simple depth-first search algorithm, calla@, that traverses the AND/OR search tree is
described in Algorithnil5. The algorithm maintains the cotngartial solution being ex-
plored and will compute the value of each node (see Defirii)rin a depth-first manner.

The value of the root node is the optimal cost. The algorithsn eeturns the optimal solu-

73

tion tree. It interleaves a forward expansion of the curpantial solution tree EXPAND)

with a cost revision stedPROPAGATE) that updates the node values. The search stack is
maintained by th€PEN list, n denotes the current node ands parent in the search tree.
Each node: in the search tree maintains its current vad@e), which is updated based on
the values of its children. For OR nodes, the currgnt) is an upper bound on the optimal
solution cost below. Initially, v(n) is set toco if nis OR, and) if n is AND, respectively.

A data structureST'(n) maintains the actual best solution found in the subtree @fs a

list of value assignments to the variables in the respestiree).

EXPAND selects a tip node of the current partial solution tree and expands it by gen-
erating its successors. 7ifis an OR node, labeled;, then its successors are AND nodes
represented by the valuesin variable X;’s domain (lines 5-10). Each OR-to-AND arc is
associated with the appropriate weight (see Defintidn 38ilarly, if n is an AND node,
labeled(X}, z;), then its successors are OR nodes labeled by the child \esiahX; in 7
(lines 11-15). There are no weights associated with ANDBarcs.

PROPAGATE propagates node values bottom up in the search tree. Iggetad when
a node has an empty set of descendants (note that as eackssudseevaluated, it is
removed from the set of successors in line 28). This meansthiés children have been
evaluated, and their final values are already determinethelicurrent node is the root,
then the search terminates with its value and an optimaltiealtree (line 21). Ifn is
an OR node, then its pareptis an AND node, ang updates its current valug(p) by
summation with the value of (line 22). An AND noden propagates its value to its
parentp in a similar way, by minimization (lines 25-27). Finally,etlturrent node: is
set to its parenp (line 29), because was completely evaluated. Each node in the search
tree also records the current best assignment to the vesialflthe subproblem below
it and when the algorithm terminates it contains an optinodliton tree. Specifically,
if n is an AND node, thertT'(n) is the union of the optimal solution trees propagated

from n’s OR children (line 23). Ifn is an OR node and’ is its AND child such that

74

n = argminmesucem)(w(n, m) + v(m)), thenST(n) is obtained from the label of’
combined with the optimal solution tree bela(line 27). Search continues either with a

propagationstep (if conditions are met) or with axpansiorstep.

Heuristic Lower Bounds on Partial Solution Trees

A regular OR Branch-and-Bound algorithm traverses the sphpartial assignments in a
depth-first manner and discards any partial assignmenté#matot lead to a superior solu-
tion than the current best one found so far. This is normalhyeved by using an evaluation
function that underestimates (for minimization tasks)iast possible extension of the cur-
rent partial path. Thus, when the estimated lower boundea@lso heuristic evaluation
function, is higher than the best current solution (upparmiual), search terminates below
this path.

We will now extend the brute-forcAO algorithm into a Branch-and-Bound scheme,
guided by a lower bound heuristic evaluation function. Fattwe first define the exact
evaluation function of a partial solution tree, and will theerive the notion of a lower
bound for it. Like in OR search, we assume a given heuristaduation functioni(n)
associated with each nodein the AND/OR search tree such thatn) < h*(n), where
h*(n) is the best cost extension of the subproblem betofmamely,n*(n) = v(n)). We

call h(n) anode-based heuristic function

DEFINITION 29 (exact evaluation function of a partial solution tree) The exact evalua-
tion function f*(7”) of a partial solution tre€l” is the minimum of the costs of all solution

trees represented By, namely:

(1) =min{f(T) | T € extension(T")}

We definef* (7)) the exact evaluation function of a partial solution tree tes at node

n. Thenf*(T!) can be computed recursively, as follows:

75

1. If T} consists of a single node thenf*(7)) = v(n).

2. Ifnis an OR node having the AND chitdin T}, thenf*(T) = w(n,m) + f*(T},),

whereT” is the partial solution subtree @f that is rooted atn.

3. Ifnisan AND node with OR childreny, ..., my, in T, thenf*(T7) = S2F | [(T7,.),

whereT; is the partial solution subtree &f; rooted atm;.

Clearly, we are interested to find thfé(7") of a partial solution tred” rooted at the
root s. If each non-terminal tip node of 7" is assigned a heuristic lower bound estimate

h(n) of v(n), then it induces a heuristic evaluation function on the madicost extension

of 7", as follows.

DEFINITION 30 (heuristic evaluation function of a partial solution tree) Given a node-
based heuristic functioh(m) which is a lower bound on the optimal cost below any node
m, namelyh(m) < v(m), and given a partial solution tre&’ rooted at noden in the

AND/OR search tre§7, thetree-based heuristic evaluation functitfY’,) of 7, is defined

recursively by:

1. If T/ consists of a single nodethen (7)) = h(n).

2. If nis an OR node having the AND chitd in T}, thenf (7)) = w(n,m) + f(T,),

whereT is the partial solution subtree @f’ that is rooted atn.

3. Ifnisan AND node having OR children, ..., m; in T2, thenf(T") = Y%, f(1,),

whereT is the partial solution subtree &f; rooted atm;.

Clearly, by definition:

PROPOSITION1 For any noden, f(7) < f*(77). If nis the root of the AND/OR search

tree, thenf(7") < f*(1").

76

f,(ABC)
2

f,(ABF) f4(BDE)

N ==l =l=] P
R |o|o|r|—|o|lo] ®
Rlofr|lolr|olk|o] O
N =]=][=]l=] P
Rk |o|o|r|~|o|lo] ®
= =1 (=1 (=] =) (=]
N ==l =l=] ke
r|r|o|o|r|r|o|lo] O
Il (=] Il (= Ll £= [t K=]

N|N|w|o|o|w]|o
[$20 (<21 (21 [e28 B> Ll ($2] [OV)
E- V] [98] (o] [32] [oc] F-N (o))

(a) Cost network and pseudo tree (b) Cost functions
current best solution

OR
AND
OR
AND

OR

7/
AND (9]

1

1

A
L
1
1
h(D,0) = 4 .
OR 4(;) 5(;) tip nodes
6,74 8,75
AND o
(c) Partial solution tree

Figure 3.4: Cost of a partial solution tree.

Example 9 Consider the cost network with bi-valued variablésB, C, D, E and F' in
Figure[3.4(a). The cost functions(A, B, (), f2(A, B, F') and f3(B, D, E) are given in
Figure[3.4(b). A partially explored AND/OR search tree relatto the pseudo tree from
Figure[3.4(a) is displayed in Figute 3.4{c). The current farsolution tree7” is high-
lighted. It contains the nodesy, (A,0), B, (B, 1), C, (C,0), D, (D,0) and F'. The nodes
labeled by(D, 0) and by F' are non-terminal tip nodes and their corresponding heirist
estimates aré.((D,0)) = 4 andh(F') = 5, respectively. The node labeled ¥, 0) is a
terminal tip node off”. The subtree rooted g3, 0) along the path(4, (A, 0), B, (B, 0))

is fully explored, yielding the current best solution casirid so far equal t6. We assume

that the search is currently at the tip node labeled by 0) of 7". The heuristic evaluation

77

function ofT” is computed recursively as follows:

FT) = w(A,0)+ f(T{ag)
= w(A,0)+ f(Tp)
= w(A,0) +w(B, 1)+ f(T{py))
= w(4,0)+w(B,1)+ f(1¢) + f(Tp) + f(TF)
= w(A,0) +w(B,1) +w(C,0) + f(Ticg) +w(D,0) + f(T(pg) + h(F)
= w(A4,0) +w(B,1)+w(C,0)+0+w(D,0)+ h((D,0)) + h(F)
= 04+04+34+04+0+4+5

= 12

Notice that if the pseudo tre€ is a chain, then a partial tré€ is also a chain and
corresponds to the partial assignmeht= (x4, ..., z,). In this casef(7") is equivalent to
the classical definition of the heuristic evaluation fuantof z#. Namely,f(7") is the sum
of the cost of the partial solutio®?, g(z?), and the heuristic estimate of the optimal cost
extension oft? to a complete solution.

During search we maintain an upper bourdds) on the optimal solution(s) as well as
the heuristic evaluation function of the current partidgon treef(7”), and we can prune
the search space by comparing these two measures, as is comioanch-and-Bound
search. Namely, iff (T") > ub(s), then searching below the current tip nadef 7" is

guaranteed not to redua®(s) and therefore, the search space bel@an be pruned.

Example 10 For illustration, consider again the partially explored ANDR search tree
from Exampld 9 (see Figufe 3.4(c)). In this case, the curledt solution found after
exploring the subtree beloyB, 0), which ends the patbA, (4, 0), B, (B,0)), is9. Since
we computed(7”) = 12 for the current partial solution tree highlighted in FiguBe4(c),

then exploring the subtree rooted @b, 0), which is the current tip node, cannot yield a

78

OR 5 12 Heuristic evaluation functions:

AND 7@ f(T,)=13
:
OR n
I
Iy
\
AND Y
1 1
1 1
1 1
OR] 1
1 \
1 \
AND 3
1 1
I} \
o ___2]
OR ="===-= ee-e-2 @
3,74 tip nodes
AND [

Figure 3.5: Illustration of the pruning mechanism.

better solution and search can be pruned.

Up until now we considered the case when the best solutiomdfso far is maintained
at the root node of the search tree. It is also possible totaiaithe current best solutions
for all the OR nodes along the active path between the tip naxfel” ands. Then, if
f(T!) > ub(m), wherem is an OR ancestor afin 7" andT’, is the subtree of” rooted
atm, it is also safe to prune the search tree betfowhis provides an efficient mechanism

to discover that the search space below a node can be prumedyjoiokly.

Example 11 Consider the partially explored weighted AND/OR search treéiguire[3.5,
relative to the pseudo tree from Figyre 3.4(a). The curranrtipl solution tree7” is high-
lighted. It contains the following nodest, (A, 1), B, (B, 1), C, (C,0), D, (D, 1) and F..
The nodes labeled biyD, 1) and byF" are non-terminal tip nodes and their corresponding
heuristic estimates argé((D, 1)) = 4 and h(F) = 5, respectively. The subtrees rooted
at the AND nodes labele4, 0), (B, 0) and (D, 0) are fully evaluated, and therefore the
current upper bounds of the OR nodes labeledB and D, along the active path, are
ub(A) = 12, ub(B) = 10 andub(D) = 5, respectively. Moreover, the heuristic evaluation
functions of the partial solution subtrees rooted at the Qides along the current path

can be computed recursively based on Definitioh 30, namigly;) = 13, f(T%) = 12

79

and f(T},) = 4, respectively. Notice that while we could prune belgw; 1) because

f(T) > ub(A), we could discover this pruning earlier by looking at nddenly, because

f(Ty) > ub(B). Therefore, the partial solution

tréE, need not be consulted in this case.

Algorithm 6 : AOBB: Depth-first AND/OR Branch-and-Bound search

Input: An optimization problen? = (X, D, F,), min), pseudo-tre€ rooted atX, heuristic functiom(n).

Output: Minimal cost solution tg? and an optimal solution tree.
1 v(s) « 00; ST(s) « 0; OPEN « {s}
2 while OPEN # () do

3 n «— top(OPEN); removen from OPEN
4 suce(n) «— 0
5 if nis an OR node, labeled’; then
6 foreachz; € D; do
7 create an AND node’ labeled by(X;, z;)
8 v(n') «— 0; ST(n') — 0
9 w(n,n') — 3 rep(x,;) flasgn(mn))
10 suce(n) «— succ(n) U {n'}
11 else ifn is an AND node, labeledX;, z;) then
12 deadend «— false
13 foreach OR ancestorn of n do
14 f(T!.) < eval Parti al Sol uti onTree(T},)
15 if £(T7,) > v(m)then
16 deadend «— true /1 Pruning
17 break
18 if deadend == false then
19 foreach X; € childrens(X;) do
20 create an OR node’ labeled byX;
21 v(n') «— oo0; ST(n') — 0
22 | succ(n) « suce(n) U {n'}
23 else
24 p < parent (n)
25 | succ(p) < succ(p) — {n}
26 Add succ(n) on top of OPEN
27 while succ(n) == 0 do
28 let p be the parent of
29 if nis an OR node, labeled’; then
30 if X, == X3 then
31 | return (v(n), ST(n))
32 v(p) < v(p) +v(n)
33 ST(p) « ST (p) U ST (n)
34 if n is an AND node, labeledX;, z;) then
35 if v(p) > (w(p,n) + v(n)) then
36 v(p) — w(p,n) +v(n)
37 ST(p) < ST(n) U{(Xi, =)}
38 removen from succ(p)
39 | n<p

// Initialize the root node

/1 EXPAND

/] Compute the OR-to-AND arc wei ght

the subtree bel ow the current tip node

/1 PROPAGATE

/1 Search term nates

/1 Update AND val ue
/1 Update solution tree bel ow AND node

/'l Update OR val ue
/1 Update solution tree bel ow OR node

80

Algorithm 7 : Recursive computation of the heuristic evaluation functio

function: eval Parti al Sol uti onTree(T})
Input: Partial solution tred’, rooted at nodex.
Output: Return heuristic evaluation functigf(7},).
1 if suce(n) == D then
| retun h(n)
else
if n is an AND nodehen
L letmz, ..., my be the OR children of

return > le eval PartialSolutionTree(T},,)

else ifn is an OR nodé¢hen
let m be the AND child ofm
return w(n, m) + eval Partial SolutionTree(T},)

©Coo~N O ObwWN

Depth-First AND/OR Branch-and-Bound Tree Search

TheAND/OR Branch-and-Bounalgorithm,AOBB, for searching AND/OR trees for graph-
ical models, is described by Algorithim 6. Lik&D, it interleaves a forward expansion of
the current partial solution tree with a backward propagasitep that updates the nodes
values. The fringe of the search is maintained by a stack@@&PEN, the current node
is n, its parentp, and the current path,. As before,ST'(n) accumulates the current best
solution tree below:. The node-based heuristic functidiin) of v(n) is assumed to be
available to the algorithm, either retrieved from a cacheasnputed during search.

Before expanding the current AND nogdelabeled(X;, x;), the algorithm computes the
heuristic evaluation function for every partial solutiarbtree rooted at the OR ancestors of
n along the path from the root (lines 11-17). The search belesxterminated if, for some
OR ancestom, f(T),) > v(m), wherev(m) is the current best upper bound on the optimal
cost belowm. The recursive computation ¢f{ 7") based on Definition 30 is described in
Algorithm[4. Notice also that for any OR node labeledX; in the search treey(n) is
trivially initialized to oo and is updated in line 36.

The node values are updated by the propagation step, in ta way (lines 24-40):
OR nodes by minimization, while AND nodes by summation. Téarsh terminates when

the root node is evaluated in line 32.

THEOREM7 (complexity) The time complexity of the depth-first AND/OR Branch-and-

81

Bound algorithm AOBB) is O(n - k™), wherem is the depth of the pseudo trédebounds

the domain size and is the number of variables, and it can use linear space.

Proof. The time complexity follows immediately from the size of tABID/OR search
tree explored (see Theordm 4). Since only the current padiation tree needs to be

stored in memory, the algorithm can operate in linear space.

3.4 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search strategylgdepends on the quality
of the heuristic evaluation function. Naturally, more a@ta heuristic estimates may yield
a smaller search space, possibly at a much higher commahtost for computing the
lower bound heuristic function. The right tradeoff betwdba computational overhead
and the pruning power exhibited during search may be hardeigt. One of the primary
heuristics we used is the Mini-Bucket heuristic introduced65] for OR search spaces.
In the following subsections we discuss its extension to ADIR search spaces. We also
extend the local consistency based lower bound developgdlin72, 25] to AND/OR

search spaces. Both of these heuristic functions were usad Experiments.

3.4.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figurés)jaed 3.6(D), respectively,
and consider also the variable orderihg: (A, B,C, D, E, F, G) and the bucket and mini-

buckets configuration in the output as displayed in Figuré&3and 3.6(d), respectively

(see also Chaptét 1, Sectidns 11.3.1 and 11.3.2 for a moregjetkibr clarity, we display
the execution of the Bucket and Mini-Bucket Elimination aifons along the bucket tree

corresponding to the given elimination ordering. The buitle is also a pseudo tree [38].

82

hf (A,B)

hG (A,F)
G| f(AG)
f(F.G)

(c) Bucket Elimination

h® (AF)

E| f(B,E) G| f(AG)
f(C,E) f(F,G)

1

mini-buckets

(d) Mini-Bucket Elimination MBER)

Figure 3.6: Static mini-bucket heuristics fo# 3.

83

The functions denoted on the arcs are those messages sara backet node to its parent
in the tree.

Let us assume, without loss of generality, that variabllesd B have been instantiated
during search. Let*(a, b, ¢) be the minimal cost solution of the subproblem rooted at node
C'in the pseudo tree, conditioned 6A = a, B = b,C' = ¢). In the AND/OR search tree,
this is represented by the subproblem rooted at the AND naloieléd(C, c), ending the
path{A4, (4,a), B, (B,b),C, (C,c)}. By definition,

h*(a,b,c) = ming.(f(c,e) + f(b,e) + f(a,d) + f(c,d) + f(b,d)) (3.2)

Notice that we restrict ourselves to the subproblem ovealibesD and E only. There-

fore, we obtain:

h*(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d) + min.(f(c,e) + f(b,e)))
= ming(f(a,d) + f(c,d) + f(b,d)) + min.(f(c,e) + f(b,e))

= hP(a,b,c) + hE (b, c)

where,

hP(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d))

RE (b, c) = min.(f(c,e) + f(b,e))

Notice that the functions”(a, b, ¢) andh¥ (b, ¢) are produced by the bucket elimination
algorithm shown in Figurie 3.6(c). Specifically, the funatic’ (a, b,), generated in bucket
of D by bucket elimination, is the result of a minimization ogema over variableD. In

practice, however, this function may be too hard to compsté eequires processing a

84

function on four variables. It can be replaced by a partib@sed approximatiore(g., the
minimization is split into two parts). This yields a lowerual approximation, denoted by

h(a,b,c), namely:

h*(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d)) + h"(b, c)
> mingf(a,d) +ming(f(c,d) + f(b,d)) + h¥ (b, c)
= hP(a) + hP(b,c) + h¥ (b,)

2 h(a,b,c)

where,

hP(a) = mingf(a, d)

RP(c,b) = ming(f(c,d) + f(b,d))

The functionsh” (a) andh? (b, ¢) are the ones computed by the Mini-Bucket algorithm
MBE(3), shown in Figurg 3.6(¢). Therefore, the functibfu, b, c) can be constructed
during search from the pre-compiled mini-buckets, yiagydnower bound on the minimal
cost of the respective subproblem.

For OR nodes, such as labeled byC, ending the patf A, (4, a), B, (B, b),C}, h(n)
can be obtained by minimizing over the values D, the sum between the weightn, m)
and the heuristic estimatem) below the AND childm of n, labeled(C,c). Namely,
h(n) = min,(w(n,m) + h(m)).

In summary, similarly to/[65], we can show that the mini-betkeuristic associated
with any node in the AND/OR search tree can be obtained franttté pre-compiled mini-

bucket functions.
DEFINITION 31 (static mini-bucket heuristic) Given an ordered set of augmented buck-

85

ets{B(X,), ..., B(X,)} generated by the Mini-Bucket algorithm MBJEélong the bucket
tree 7, and given a node in the AND/OR search tree, tretatic mini-bucket heuristic

functionh(n) is computed as follows:

1. Ifnis an AND node, labeled byX,, z,), then:

JCEND DR
hhe{B(X,)UB(X}..X7)}
Namely, it is the sum of the intermediate functi@@sthat satisfy the following two

properties:

e They are generated in buckd® X}), whereX;, is any descendant of,, in the
bucket tree7,

e They reside in buckd®(X),) or the buckets3(X,..X?) = {B(X,), ..., B(X?)}
that correspond to the ancestof(}, ..., X7} of X, in 7.

2. Ifnis an OR node, labeled by,, then:
h(n) = min,,(w(n,m) + h(m))

wherem is the AND child of: labeled with valuer, of X,,.

Example 12 Figure [3.6(d) shows the bucket tree for the cost network in rEifi6(a)
together with the intermediate functions generated by MBB&(Bng the orderingd =
(A, B,C, D, E, F,G). The static mini-bucket functiond’, v, ¢) associated with the AND
node labeledC, ¢’) ending the patiA = o', B = ¥/, C = ¢’) in the AND/OR search tree
is by definitionh(a’, ',) = hP(a’) + hP (V') + hE(V,). The intermediate functions
hP () andh® (1, ') are generated in buckefs and E, respectively, and reside in bucket
C. The functiom?”(a’) is also generated in bucké?, but it resides in bucke#l, which is

an ancestor of bucket in the bucket tree.

86

/ G f(GF) f(G,A) \
F: hS(FA) f(F,B)
E: f(E,C) f(E,B)
D: f(DA) f(D,C) f(D,B)
___________________________ ‘ he(AF) C hE(C,B) h° (C,B) (C,B) /
ip[f(ap) | D { (8,D)] D E { f(B,E)] G {f(A,G)} 7
: f(C,D) J f(CE) f(FG) B: hF (B,A) h¢(B) f(B,A)
mini-buckets A: hP (A) h® (A)
(a) AND/OR static mini-buckets (b) OR static mini-buckets

Figure 3.7: AND/OR versus OR static mini-bucket heuristas = 3.

We see that the computation of the static mini-bucket hearaf a noden in the
AND/OR search tree is identical to the OR case (see Defini®im Chaptef11), except
that it only considers the intermediate functions generhtethe buckets corresponding to

the current conditioned subproblem rooted at

Example 13 For example, consider again the cost network in Figure 3|6f&@ured 3.7(Q)
(which repeats Figuré 3.6(d)) and 3.7(b) show the compileckbustructure obtained by

MBE(3) along the given elimination ordef = (A, B,C, D, E, F,G), for the AND/OR
and OR spaces, respectively. The static mini-bucket Heufisiction underestimating the
minimal cost extension of the partial assignmett= o', B = v/, C =) in the OR search
space ish(a', V', c) = hP(a') + RP (V) + hE(V,) + hT' (¥, a’). Namely, it involves the
extra functionh” (¥, a’) which was generated in buckét and resides in buckeB, as
shown in Figurg 3.7(b). This is because, in the OR space, biwsd” and G are part of

the subproblem rooted &t, unlike the AND/OR search space.

3.4.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristiormation dynamically during
search, as we show next. The idea is to compute MBf6(nditioned on the current partial

assignment.

87

DEFINITION 32 (dynamic mini-bucket heuristics) Given a bucket tre¢ with buckets
{B(X1),..., B(X,)}, a noden in the AND/OR search tree and given the current partial
assignment.sgn(m,) along the path to:, thedynamic mini-bucket heuristitinctioni(n)

is computed as follows:

1. If nis an AND node labeled byX,, z,), then:

hin)= > B
hkeB(Xp)
Namely, it is the sum of the intermediate functidfisthat reside in buckeB(X,)

and were generated by MBE(conditioned orusgn(,), in bucketsB(X,) through
B(X[), where{X, ..., X} are the descendants &f, in 7.

2. Ifnis an OR node labeled hy,, then:
h(n) = min,,(w(n,m) + h(m))

wherem is the AND child of: labeled with valuer, of X,.

Given ani-bound, the dynamic mini-bucket heuristic implies a muayhler computa-
tional effort compared with the static version. Howevee tlounds generated dynamically
may be far more accurate since some of the variables arenagsamd will therefore yield
smaller functions and less partitioning. More importaithe dynamic mini-bucket heuris-
tic can be used with dynamic variable ordering heuristicdika the pre-compiled one,
which restricts search to be conducted in an order that cespestatic pseudo tree struc-

ture.

Example 14 Figure[3.8 shows the bucket tree structure correspondingpédbinary cost
network displayed in Figure 3.6(a), along the eliminatiodering (A, B,C, D, E, F, G).

The dynamic mini-bucket heuristic estimat@’, ', ¢’) of the AND node labeledC' ¢)

88

f(b’,F)

[

hEt (C) [hG (F)
G | f(a’,G)
f(F,G)

Figure 3.8: Dynamic mini-bucket heuristics foe 3.

f(b’,E)
f(C,E)

ending the pat A4, (A,d’), B, (B, V), C, (C,)} is computed by MBB] on the subprob-
lem represented by the buckdbsand F, conditioned on the partial assignmeft =
a,B =1V,C =). Namely, MBE}) processes buckefd and £ by eliminating the re-
spective variables, and generates two new functidri§c’) and h¥(¢’), as illustrated in
Figure[3.8. These new functions are in fact constants simcabes A, B and C' are
assigned in the scopes of the input functions that constthé conditioned subproblem:
f(a',D), f(V/',D), f(¢,D), f(V/,E) and f(c, E), respectively. Therefore(a’,V/,c') =

hP(d) + hE () and it equals the exadt*(a’, ', ¢') in this case.

3.4.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for gngd8ranch-and-Bound search
for solving binary Weighted CSPs is based on exploiting lecalsistency algorithms for

cost functions. We discuss next its extension to AND/ORstree

Extension of Local Consistency to AND/OR Search Spaces

As mentioned in Chaptét 1, the zero-arity constraiptvhich is obtained by enforcing lo-
cal consistency, can be used as a heuristic function to daraiech-and-Bound search. The

extension of this heuristic to AND/OR search spaces isyfatriaightforward and is similar

89

to the extension of the mini-bucket heuristics from OR to ANB spaces. Considét,,
the subproblem rooted at the AND nodelabeled(X;, z;), in the AND/OR search tree
defined by a pseudo trée. The heuristic functiork(n) underestimating(n) is the zero-
arity cost functionCy resulted from enforcing soft arc consistency oi&gmonly, subject to
the current partial instantiation of the variables along plath from the root of the search
tree. Note that’, is defined by the variables and cost functions corresportditige sub-
tree rooted afX; in 7. If n is an OR node labeled; thenh(n) is computed in the usual
way, namelyh(n) = min,,(w(n,m) + h(m)), wherem is the AND child ofn, labeled
with valuez; of X;. Notice that in this case the weights associated with the @ RND
arcs are computed now relative to the equivalent subprobésiited from enforcing arc

consistency.

3.5 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introdiigeSectiori 3.8 assumed
a static variable ordering determined by the underlyingudeetree of the primal graph.
In classical CSPs, dynamic variable ordering is known to lzasmgnificant impact on the
size of the search space explored [34]. Well known variabdiering heuristics, such as
min-domain[54], min-dom/dded8], brelaz[12] andmin-dom/wded44,14] were shown

to improve dramatically the performance of systematicdeafgorithms. In this section
we discuss some strategies that allow dynamic variableiogikin AND/OR search.

We distinguish two classes of variable ordering heuristics

1. Graphbased heuristics:(g., pseudo tree) that try to maximize problem decomposi-

tion, and

2. Semantiebased heuristics:(g., min-domain) that aim at shrinking the search space,

based on context and current value assignment.

90

These two approaches are orthogonal, namely we can use tme@snary guide and
break ties based on the other. We present three schemes bfntognthese heuristics.
For simplicity and without loss of generality we consideg thin-domainas our semantic
variable ordering heuristic. It selects the next variablestantiate as the one having the
smallest current domain among the uninstantiated (futumeipbles. Clearly, it can be

replaced by any other heuristic.

3.5.1 Partial Variable Ordering (PVO)

The first approach, callelND/OR Branch-and-Bound with Partial Variable Orderiagd
denoted byAOBB+PVO uses the static graph-based decomposition given by a pseaelo
with a dynamic semantic ordering heuristic applied ovetircpartions of the pseudo tree.
It is an adaptation of the ordering heuristics developedb#h [/6] which were used for
solving large-scale SAT problem instances.

Consider the pseudo tree from Figlre 3.[1(a) inducing thewatlg variable groups (or
chains): {A, B}, {C, D} and{E, F'}, respectively. This implies that variablgs!, B}
should be considered befofe¢”, D} and{E, F'}. The variables in each group can be
dynamically ordered based on a second, independent heuhkttice that once variables
{A, B} are instantiated, the problem decomposes into indeperderionents that can be
solved separately.

AOBB+PVOcan be derived from Algorithid 6 with some simple modificatioAs usual,
the algorithm traverses an AND/OR search tree in a depthrfiesmner, guided by a pre-
computed pseudo trée. When the current AND node, labeled(X;, z;) is expanded in
the forward step (line 9), the algorithm generates its OResgor, labeled hy;, based on
the semantic variable ordering heuristic (line 12). Speaily, the OR noden, labeledX
corresponds to the uninstantiated variable with the sistatigrrent domain in the current
pseudo tree chain. If there are no uninstantiated variddles the current chain, namely

variable X; was instantiated last, then the OR successorsark labeled by the variables

91

cost functions 5%@
domains f(AB) f(AE) 0

A|B Al(E

0|0 3 0|0 0
D,={0,1} o= [o[i] s P(ean) P(cor)

ol2] o |[of2] 1 e
Dg={0,1,2} 1/o] 4 o[3] 4 e
0,-(01,2,3) o el @®© : '5

_____ 1|2 0
D¢=Dp=D¢=Dg=Dy=D¢ 13 s P(ra) P(cor
(a) Cost network (b) AND/OR search tree

Figure 3.9: Full dynamic variable ordering for AND/OR Brarahd-Bound search.

with the smallest domain from the variable groups rootedkbyn 7.

3.5.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable ordetinglledAND/OR Branch-and-
Bound with Full Dynamic Variable Orderingnd denoted bypVO+AOBB, gives priority
to the dynamic semantic variable ordering heuristic andiepptatic problem decomposi-
tion as a secondary principle during search. This idea wase{plored inl[6] for model
counting, and more recently in [119] for weighted model coum

For illustration, consider the cost network with 8 variab{ed, B,C, D, E, F, G, H},
13 binary cost functions, and the domains given in Figuréa}, @&s follows:D4 = {0, 1},
Dp = {0,1,2}, andDs = Dp = Dgp = Dr = Dg = Dy = {0,1,2,3}, respec-
tively. Each of the cost functions(A, B) and f(A, E) assigns amc cost to two of their
corresponding tuples, whereas the remaining 11 functiormsoticontain such tuples.

During search, variables are instantiated in min-domaieioHowever, after each vari-
able assignment we test for problem decomposition and $slé/eemaining subproblems

independently. Figure 3.9(b) shows the partial AND/OR cleairee obtained after several

92

variable instantiations based on the min-degree orderaugistic. Notice that, depend-
ing on the order in which the variables are instantiated ptim@al graph may decompose
into independent componentggher or deeperin the search tree. For instance, after in-
stantiatingA to 0, the values{1, 2} can be removed from the domain B8f because the
corresponding tuples have castin the cost functiory (A, B) (see Figuré 3.9(h)). There-
fore, B is the next variable to be instantiated, at which point thabf@m decomposes into
independent components, as shown in Figure 3.9(b). Sigilahen A is instantiated to

1, values{0,1} can also be removed from the domain i6f because of the cost func-
tion f(A, E). Then, variable®, having 2 values left in its domain, is selected next in the
min-domain order, followed by with domain size 3.

DVO+AOBB can be expressed by modifying Algorithih 6 as follows. It amitates the
variables dynamically using the min-domain ordering h&igiwhile maintaining the cur-
rent graph structure. Specifically, after the current ANRI@, labeled(X;, z;), is ex-
panded DVO+AOBB tentatively removes from the primal graph all nodes comesing to
the instantiated variables together with their incomingsarlf disconnected components
are detected, their corresponding subproblems are thgadsskparately and the results
combined in an AND/OR manner. In this case a variable selectiay yield a significant
impact on tightening the search space, yet, it may not yigjdad decomposition for the

remaining problem.

3.5.3 Dynamic Separator Ordering (DSO)

The third approach, calleiND/OR Branch-and-Bound with Dynamic Separator Ordering
and denoted bpOBB+DSO, exploits constraint propagation which can be used for dyoa
graph-based decomposition with a dynamic semantic variatalering, giving priority to
the first. At each AND node we apply a lookahead procedurengpfu detect singleton
variables {.ec., with only one feasible value left in their domains). When tladue of

a variable is known, it can be removed from the correspondirgproblem, yielding a

93

stronger decomposition of the simplified primal graph.

AOBB+DSO defined on top of Algorithml6 creates and maintains a sepafatd the
current primal graph. A graph separator can be computed tisesnhypergraph partitioning
method presented in_[76]. The next variable is chosen dyeeipifrom S by the min-
domain ordering heuristic until is fully instantiated and the current problem decomposes
into several independent subproblems, which are then dsleparately. The separator of
each component is created from a simplified subgraph restriden previous constraint
propagation steps and it may differ for different value gisients. Clearly, if no singleton
variables are discovered by the lookahead steps this agpreaomputationally identical
to AOBB+PVQ, although it may have a higher overhead due to the dynamierggan of

the separators.

3.6 Experimental Results

We have conducted a number of experiments on two common ization problem classes
in graphical models: finding the Most Probable ExplanatiorBayesian networks and
solving Weighted CSPs. We implemented our algorithms in C-dtcamnried out all exper-
iments on a 1.8GHz dual-core Athlon64 with 2GB of RAM runninigudtu Linux 7.04.

3.6.1 Overview and Methodology

Bayesian Networks. For the MPE task, we tested the performance of the AND/OR
Branch-and-Bound algorithms on the following types of praide random Bayesian net-
works, random coding networks, grid networks, Bayesian agksvderived from the IS-
CAS’89 digital circuit benchmark, genetic linkage analysetworks, networks from the
Bayesian Network Repository, and Bayesian networks from thE08Anference Evalua-
tion Dataset.

The detailed outline of the experimental evaluation for Bage networks is given

94

static mini-buckets| dynamic mini-buckets| min-fill vs.
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph | constraint | Samlam | Superlink
AOBB+SMB(i) AOBB+DMB(i) pseudo treeg propagation

Random BN VA v Vi - -

Coding v v Vv v

Grids v v v Vi v

Linkage v v v v v
ISCAS’89 4 Vv Vv VA Vv

UAI'06 Dataset v Vv Vv

BN Repository 4 Vv - Vv

Table 3.1: Detailed outline of the experimental evaluatmrBayesian networks.

in Table[3.1. We evaluated the two classes of depth-first ADlBranch-and-Bound
search algorithms, guided by the static and dynamic minkétiheuristics, denoted by
AOBB+SMB(i) and AOBB+DIVB(i) , respectively. We compare these algorithms against
traditional depth-first OR Branch-and-Bound algorithms wathtic and dynamic mini-
bucket heuristics introduced in [65, 86], denotedBB+ SVB(;) andBB+DIVB() , respec-
tively, which were among the best-performing complete deatgorithms for this domain
at the time. The parametérepresents the mini-buckébound and controls the accuracy
of the heuristic. The pseudo trees that guide AND/OR sedgdrithms were generated
using the min-fill and hypergraph partitioning heuristidescribed later in this section. We
also consider an extension of the AND/OR Branch-and-Bounidetkialoits the determin-
ism present in the Bayesian network by constraint propagatio

Since the pre-compiled mini-bucket heuristics requireatisvariable ordering, the cor-
responding OR and AND/OR search algorithms used the varialering as well derived
from a depth-first traversal of the guiding pseudo tree. Whempplied dynamic variable
orderings with dynamic mini-bucket heuristics we obsertret the computational over-
head was prohibitively large compared with the static \dei@rdering setup. We therefore
do not report these results. We note however thatbBB+SVB(;) and AOBB+DIVB(1)
algorithms support a restricted form of dynamic variable @eamue ordering. Namely, there
is a dynamic internal ordering of the successors of the nasteexpanded, before placing
them onto the search stack. Specifically, in line 26 of Algponi[@, if the current node

is AND, then the independent subproblems rooted by its ORIEi can be solved in de-

95

static mini-buckets| dynamic mini-buckets| min-fill vs. EDAC heuristics
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph BBEDAC toolbar
AOBB+SMB(i) AOBB+DMB(i) pseudo tree§ AOEDAC, PVO, DVO, DSO
SPOT5 v v v v v
ISCAS'89 Vi Vi v Vi Vv
Mastermind Vv - V4 v v
CELAR . . Vv Vv

Table 3.2: Detailed outline of the experimental evaluatmm/\eighted CSPs.

creasing order of their corresponding heuristic estim@i@sable ordering). Alternatively,
if n is OR, then its AND children corresponding to domain values algo be sorted in
decreasing order of their heuristic estimates (value arggr
We compared our algorithms with thex@1Am 2.3.2 software packa@.eSAM IAM is

a public implementation of Recursive Conditioning/[24] whizdm also be viewed as an
AND/OR search algorithm. The algorithm uses a contexttbasehing mechanism that
records the optimal solution of the subproblems and redgdtie saved values when the
same subproblems are encountered again during searchverrBien of recursive condi-
tioning traverses a context minimal AND/OR search grapli,[8&her than a tree, and
its space complexity is exponential in the treewidth. Nof tvhen we use mini-bucket
heuristics with high values af we use space exponentialiifor the heuristic calculation

and storing. Our search regime however does not consumeddityoaal space.

Weighted CSPs. For WCSPs we evaluated the performance of the depth-first ARD/O
Branch-and-Bound algorithms on: random binary WCSPs, schrggdptioblems from the
SPOT5 benchmark, networks derived from the ISCAS’89 digitaduits, radio link fre-
guency assignment problems and instances of the Mastegame.

The outline of the experimental evaluation for Weighted CBRtetailed in Tablé 312.
In addition to the mini-bucket heuristics, we also consideneuristic evaluation func-
tion that is computed by maintaining Existential Direcabmirc-Consistency (EDAC)

[25]. AOBB with this heuristic is calledAOEDAC. We also consider the extension of

LAvailable at http://reasoning.cs.ucla.edu/samiam. Wadubebat cht ool 1.5 provided with the
package.

96

ACEDAC that incorporates dynamic variable orderings heuristeskdbed earlier yielding:
ACEDAC+PVO (partial variable orderingDVO+ACEDAC (full dynamic variable ordering)
and ACEDAC+DSO (dynamic separator ordering). For comparison, we repaulte ob-
tained with our implementation of the classic OR Branch-Bodnd with EDAC, denoted
here byBBEDAC.

For reference, we also ran the state-of-the-art solveedtbol bar Q which is the im-
plementation of the OR Branch-and-Bound maintaining EDA@uhiiced in|[25]. toolbar
is currently one of the best performing solver for binary g¥eed CSPs.

The semantic-based dynamic variable ordering heuriséd by the OR and AND/OR
Branch-and-Bound algorithms with EDAC based heuristics Wwasnin-dom/ddedpeuris-
tic, which selects the variable with the smallest ratio @f thurrent domain size divided by

the future degree. Ties were broken lexicographically.

Measures of Performance. In all our experiments we report the average CPU time in
seconds and the number of nodes visited, required for pgamntimality. We also report
problem’s parameters as the number of variabigs fumber of evidence variables)(
maximum domain sizek{), the depth of the pseudo trek) (@nd the induced width of the
graph (v*). When evidence is asserted in the netwark,and i are computed after the
evidence nodes are removed from the graph. We also repditrieeequired by the Mini-
Bucket algorithm MBE{) to pre-compile the heuristic information. The best parfance
points are highlighted. In each table, ”-” denotes that #spective algorithm exceeded the

time limit. Similarly, "out” stands for exceeding the 2GB mery limit.

3.6.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search dhgos is influenced by
the quality of the guiding pseudo tree. Finding the minimapith/induced width pseudo

2Available at: http://carlit.toulouse.inra.fr/cgi-bawki.cgi/Soft CSP

97

Network | hypergraph min-fill Network | hypergraph min-fill
width depth| width depth width depth| width depth
barley 7 13 7 23 || spotb 47 152 | 39 204
diabetes| 7 16 4 77 | spot28 108 138 | 79 199
link 21 40 15 53 || spot29 16 23 14 42
mildew 5 9 4 13 | spot42 36 48 33 87
muninl 12 17 12 29 || spot54 12 16 11 33
munin2 9 16 9 32 || spot404| 19 26 19 42
munin3 9 15 9 30 | spot408| 47 52 35 97
munin4 9 18 9 30 || spot503| 11 20 9 39
water 11 16 10 15 || spot505| 29 42 23 74
pigs 11 20 11 26 || spot507| 70 122 | 59 160

Table 3.3: Bayesian Networks Repository (left); SPOT5 berasken(right).

tree is a hard problem [48, /11, 106]. We describe next twoikkes for generating pseudo

trees with relatively small depths/induced-widths whiohuged in our experiments.

Min-Fill Heuristic

Min-Fill [67] is one of the best and most widely used heuristics foatang small induced
width elimination orders. An ordering is generated by pigdhe variable with the smallest
fill set (i.e., number of induced edges that need be added to fully conmectdighbors of
a node) at the end of the ordering, connecting all of its nmigh and then removing the
variable from the graph. The process continues until albides have been eliminated.

Once an elimination order is given, the pseudo tree can baagt as a depth-first
traversal of the min-fill induced graph, starting with theiahle that initiated the ordering,
always preferring as successor of a node the earliest adjaoéee in the induced graph.
An ordering uniquely determines a pseudo tree. This appraas first used by [106].

To improve orderings, we can run the min-fill ordering sel/éraes by randomizing
the tie breaking. In our experiments, we ran the min-fill &ia just once and broke the

ties lexicographically.

98

Hypergraph Decomposition Heuristic

An alternative heuristic for generating a low height batthpseudo tree is based on the

recursive decomposition of the dual hypergraph assocwitithe graphical model.

DEeFINITION 33 (dual hypergraph) Thedual hypergraplbf a graphical mode{X, D, F),
isapairH = (V,E), where each function iR is a vertexv; € V and each variable irK

is an edgee; € E connecting all the functions (vertices) in which it appears.

DEFINITION 34 (hypergraph separators) Given a dual hypergraptH{ = (V,E) of a

graphical model, &nypergraph separator decompositism triple (*, S, «) where:

1. S C E, and the removal of separates+ into £ disconnected components;

2. acis arelation over the size of the disjoint subgraphs (i.alahce factor).

It is well known that the problem of finding the minimal sizepeygraph separator is
hard. However heuristic approaches were developed oveyeihies. A good approach is
packaged ilhMeTi S3.

We will use this software as a basis for our pseudo tree ggoeraFollowing [24],
generating a pseudo tr@efor R usinghMeTi Sis fairly straightforward. The vertices of
the hypergraph are partitioned into two balanced (roughblyaésized) parts, denoted by
Hiepe andH, ;45 respectively, while minimizing the number of hyperedge®sas. A small
number of crossing edges translates into a small numberriatblas shared between the
two sets of functions’H;.;» andH,,,,. are then each recursively partitioned in the same
fashion, until they contain a single vertex. The result & grocess is a tree of hypergraph
separators which can be shown to also be a pseudo tree ofigireabmodel where each
separator corresponds to a subset of variables chainetthéwge

Since the hypergraph partitioning heuristic uses a noardehistic algorithm f.e.,

hMeTi S), the depth and induced width of the resulting pseudo tregvagy significantly

SAvailable at: http://www-users.cs.umn.edu/karypisisiametis

99

from one run to the next. In our experiments we picked the gseéree with the smallest
depth out of 10 independent runs.

In Tablé3.8 we illustrate the induced width and depth of theyglo tree obtained with
the hypergraph and min-fill heuristics for 10 belief netwsffom the Bayesian Networks
Repositor@ and 10 constraint networks derived from the SPOT5 benchijfdrkFrom
this and the experiments presented in the remaining of #uim), we observe that the
min-fill heuristic generates lower induced width pseudedtevhile the hypergraph heuris-
tic produces much smaller depth pseudo trees. Thereforeape the hypergraph based
pseudo trees appear to be favorable for tree search algerghided by heuristics that are
not sensitive to the treewidtlz.¢., local consistency based heuristics), while the min-fill
pseudo trees, which minimize the treewidth, are more apjat@pfor search algorithms

whose guiding heuristic is sensitive to the treewidtly.(mini-bucket heuristics).

3.6.3 Results for Empirical Evaluation on Bayesian Networks

In this section we focus on mini-bucket heuristics and stadriable orderings.

Random Bayesian Networks

The random Bayesian networks were generated using paraneteér c, p), wheren is
the number of variableg; is the domain size; is the number of conditional probability
tables (CPTs) and is the number of parents in each CPT. The structure of the met&o
created by randomly pickingvariables out of, and, for each, randomly pickingparents
from their preceding variables, relative to some orderihbe remaining: — ¢ variables
are calledoot nodes. The entries of each probability table are generatetbmly using a
uniform distribution, and the table is then normalized.

Table[3.4 shows detailed results for solving a class of ranbelief networks using

min-fill and hypergraph partitioning based pseudo treese ddlumns are indexed by the

4Available at: http://www.cs.huji.ac.il/labs/compbi@pository

100

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE() MBE()
BB+SMB(i) BB+SMB(j) BB+SMB(j) BB+SMB(i) BB+SMB(i) BB+SMB(j)
AOBB+SMB(i) AOBB+SMBJ(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMBJ(i)
k| (wsh) BB+DMB() BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB() BB+DMB(i)
AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB()) AOBB+DMB()) AOBB+DMB(i)
i=2 i=4 i=6 i=8 i=10 i=12
time nodes time nodes time nodes time nodes time nodes time nodes
0.43 0.43 0.44 0.43 0.44 0.45
174.86 2,109,890| 89.33 1,088,420 38.19 488,197 3.28 41,539 0.90 12,918 106 15021
2 | (14,25 | 1223 308,536 | 1.01 25,706 | 0.70 17,124 | 017 4,273 0.07 1,666 1,103
25.86 62,466 | 3.13 10,737 | 275 10,280 | 271 10,653 2.91 11,570 | 259 10,153
3.07 11,023 | 050 1,365 0.24 635 0.15 489 0.17 450 0.18 347
0.43 0.43 0.44 0.47 0.69 212
- - - | 12200 1,061,530 37.44 344,128 7.23 67,299 | 355 21,341
3 | (14,25) - - | 10047 1,950,280 40.54 722,818 19.78 384,609 2.37 39,318 13,957
163.72 208,945| 31.09 24,603 | 23.00 19,753 | 2350 19,293 28.24 17,787 | 4443 18,994
137.61 357,485| 24.93 34,127 | 1617 6,283 | 16.40 1,613 20.85 702 | 34.96 478
0.50 0.50 0.52 0.80 3.93 39.22
- - - | 251.01 1,724,330 107.49 742,803 137,357 | 43.14 42,869
4 | (14,25) 28361 4,585,420 188.38 2922,760| 8519 1,326,610| 23.38 303,695| 41.27 51,276
162.86 48,281 | 157.93 31,620 | 170.88 28,508 218.89 27,731| 323.48 13,235
- 155.49 85,964 | 146.72 7,801 | 161.38 1,367 | 21184 697 | 317.11 218
0.49 0.49 0.58 2.20 33.18
- - 298.49 1,645,150| 174.05 998,579 572,171
5 | (14,25) - - | 267.68 3,804,650| 185.49 2,540,320 127.26 1,218,160
277.68 51,702 | 288.91 42,167| 293.88 38,522 - -
270.10 69,453 | 282.30 5,623 | 291.07 1,054
[hypergraph pseudo tree |
0.43 0.43 0.44 0.43 0.44 0.45
178.94 2,076,390 143.48 1,739,470| 121.20 1,495580| 67.72 858,601 24.85 319,742| 763 99,539
2 | (14,20) | 1887 453372 237 44,796 | 083 9,181 | 073 7,135 0.54 2,415 1,242
120.80 203,392| 883 15,798 | 3.65 9,299 3.47 9,134 3.41 9,013 | 347 9,163
3.64 11,524 | 0.85 899 0.63 480 0.58 363 0.60 336 0.66 294
0.43 0.43 0.44 0.47 0.69 212
- - - - - - | 17216 1,508,000| 119.81 1,066,200 81.45 717,941
3 | (14,20) | 17835 3,965,780| 137.11 2558520 67.95 1078460| 14.27 198,026 5.10 68,847 13,396
- - | 6756 53,725 | 29.66 24,415 21.68 20,004 29.79 19,347 | 4922 17,425
129.58 490,813| 16.66 9,164 | 10.57 1,409 | 8.39 640 16.64 469 | 3547 349
0.50 0.50 052 0.80 393 39.22
- - - - - - - 243.82 1,685,500| 157.19 848,755
4 | (14,20) 28429 4,679,600| 176.11 2,478,050 89.32 1,196,610 409,701 | 4173 30,918
- - | 167.98 52,789 | 141.18 32,760 | 164.00 30,774| 21391 31,316 | 300.53 13,787
287.64 666,192 | 142.71 18,706 | 125.39 2,834 | 139.73 785 | 196.69 502 | 303.70 195
0.49 0.49 0.58 2.20 33.18
- - - - - - 295.99 1,524,180
5 | (14,20) - - | 25771 2,955,420 152.83 1,365,200 586,760
287.11 59,292 | 289.47 40,179 - - - -
254.74 30,200| 253.84 1,933 | 279.00 645 -

Table 3.4: CPU time in seconds and number of nodes exploresbfaing random belief
networks with n = 100 nodes,p = 2 parents per CPT; = 90 CPTs and domain sizes
k € {2,3,4,5}. Each test case had= 10 variables chosen randomly as evidence. The
time limits are 180 seconds far € {2,3} and 300 seconds fdr € {4,5}, respectively.
Pseudo trees generated by min-fill and hypergraph hewistic

mini-bucketi-bound. For each domain size we generated 20 random instanddan each
test case = 10 variables were chosen randomly as evidence.

We observe thadOBB+SMB() is better tharBB+SMB(i) at relatively smali-bounds
(i.e., i € {2,4,6}) when the heuristic is weak. This demonstrates the benefifN@/OR
over classical OR search when the heuristic estimateslatevety weak and the algorithms
rely primarily on search rather than on pruning via the higrevaluation function. As the

1-bound increaseg (y., © > 8) and the heuristic estimates become strong enough to cut the

101

random belief networks random belief networks
(n=100, k=3, p=2, ¢c=90) [minfill: w*=14, h=25] , (n=100, k=3, p=2, ¢=90) [minfill: w*=14, h=25]

—@— BB+SMB(i) —e— BB+SMB(i)
—-O— AOBB+SMB(i) ~< —-O— AOBB+SMB(j)
—v— BB+DMB() —v— BB+DMB(i)
—-4A— AOBB+DMB(i) 10° 5 —-4A— AOBB+DMB(i)

time (sec)
nodes

i-bound i-bound

Figure 3.10: Comparison of the impact of static and dynamicidmiicket heuristics on
random belief networks with parametergén = 100,k = 3,p = 2, ¢ = 90) from Table 3.4.
search space substantially, the difference between the/@RRnd OR Branch-and-Bound
decreases.

When focusing on dynamic mini-bucket heuristics, we obsémaeAOBB+DIVB(i) is
better tharBB+DMB(7) at relatively smalk-bounds, but the difference is not that promi-
nent as in the static case. This is probably because thesisticsuare far more accurate
compared with the pre-compiled version and the savings mbau of nodes caused by
traversing the AND/OR search tree do not translate intotewtdil time savings. When
comparing the static and dynamic mini-bucket heuristics,sse that the latter is com-
petitive only for relatively smalt-bounds, because of the high overhead of the dynamic
mini-bucket. This may be significant because sniddbunds usually require restricted
space. At higher levels of thebound the accuracy of the dynamic mini-bucket heuristic
does not outweigh its overhead.

In some exceptional cases the OR Branch-and-Bound explovest feodes than the
AND/OR counterpart. For example, on problem class displapethe third horizontal
block of Table[3.4, the search space exploredAdBB+DVB(4) was almost two times
larger that that explored bBB+DVB(4) . Similarly, AOBB+SMB(8) expanded almost
two times more nodes tha@B+SMB(8) on this problem class. This can be explained by

the internal dynamic ordering used by AND/OR Branch-and-Botansolve independent

102

subproblems rooted at the AND nodes in the search tree, whetimot pay off in this
case. We also see that even tholB+SVB(;) (resp. BB+DVB(i)) traversed a smaller
search space thathOBB+SMB(i) (resp. AOBB+DMB(7)), the runtime of the AND/OR
algorithms was actually better. This is because the cortipnt overhead of the mini-
bucket heuristics was much smaller for AND/OR search tha@f® search, and, therefore,
the AND/OR algorithms were able to overcome the increaseend the search space.

Figure[3.10 plots the running time and number of nodes dsiieACBB+SMB(i) and
AOBB+DMVB(i) (resp. BB+SMB(i) and BB+DMB(7)) as a function of the mini-bucket
i-bound for solving the random belief networks with paramete = 100,k = 3,p =
2,¢ = 90) (i.e., corresponding to the second horizontal block from Tab#. 3t shows ex-
plicitly how the performance of Branch-and-Bound changeh e mini-bucket strength
for both types of heuristics. We see thidbound of 6 is most cost effective for dynamic
mini-buckets, whilei-bound of 12 yields best performance for static mini-buskeive
see clearly that the dynamic mini-bucket heuristic is ma@aueate yielding smaller search
spaces. It also demonstrates that the dynamic mini-buekaidtics are cost effective at
small i-bounds, whereas the pre-compiled version is more powésfulargeri-bounds.
This behavior is typical for all instances presented in thiesequent sections.

When comparing the min-fill versus hypergraph heuristicginerating pseudo trees,
we observe that the hypergraph based pseudo trees haversdegths. However, min-fill
trees appear to be favorable AABB+SMB() . This may be explained by the fact that
pre-compiling the mini-bucket heuristic using a min-filldea elimination ordering tends
to generate more accurate estimates.AtBB+DMVB(i) the picture is sometimes reversed,

but not in a significant way.

Random Coding Networks

The purpose othannel codings to provide reliable communication through a noisy chan-

nel. A systematic error-correcting encoding![91] maps aoreof K information bits

103

Figure 3.11: Belief network for structured (10,5) block cedth parent sizep = 3.

u = (uy,...,ux), u; € {0,1} into an N-bit codewordc = (u, x), whereN — K additional
bitsz = (z1,...,xny_k), z; € {0,1} add redundancy to the information source in order to
decrease the decoding error. The codeword, called the ehiauit, is transmitted through
a noisy channel. A commonly used Additive White Noise (AWGNamhel model implies
that independent Gaussian noise with variamtes added to each transmitted bit, produc-
ing the channel output. Given a real-valued vectay, the decoding task is to restore the
input information vector, [91,/68,73]. An alternative approach, not considered hstte,
roundy to a 0/1 vector before decoding.

Our random coding networks fall within the class of lineavdd codes. They can be
represented as four-layer belief networks (Fidurel3.1hg Jecond and third layers (from
top) correspond to input information bits and parity cheik bespectively. Each parity
check bit represents an XOR function of input hits The first and last layers correspond
to transmitted information and parity check bits respetyivinput information and parity
check nodes are binary, while the output nodes are reakglalln our experiments, each
layer has the same number of nodes because we use code fate @‘ = % whereK is
the number of input bits and¥ is the number of transmitted bits.

Given a number of input bit&’, number of parent# for each XOR bit, and channel
noise variancer?, a coding network structure is generated by randomly pickiarents

for each XOR node. Then we simulate an input signal by assgmianiform random

104

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
BB+SMB(i) BB+SMB(j) BB+SMB(i) BB+SMB(j) BB+SMB(i)
Samlam AOBB+SMB()) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB()) AOBB+SMB())
(K, N) (w*, h) BB+DMB(i) BB+DMB(j) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33
- - 19.71 203,028 0.09 184 0.71 153 8.51 153
(64, 128) (27, 40) - | 28710 5052010 6.58 119,289 152 0.68 129 8.34 129
o2 =0.22 23.42 9,932 0.43 232 1.43 153 12.76 153 121.90 153
23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129
0.02 0.02 0.07 0.68 8.32
- - 82.60 850,665 1.16 12,190 1,463 8.35 227
(64, 128) (27, 40) - 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160
o2 =0.36 48.81 19,489 5.38 1,504 5.71 618 15.70 240 123.76 192
48.71 44,734 5.17 1,864 5.53 512 15.53 164 | 122.90 144
[hypergraph pseudo tree |
0.32 0.33 0.38 1.02 8.91
- - 24.29 287,699 0.59 2,259 1.06 156 8.97 156
(64, 128) (27, 34) - - - 4.76 61,426 381 1.03 142 8.92 129
o2 =0.22 35.71 20,678 0.77 263 1.71 163 12.02 163 | 107.08 163
31.46 17,224 0.59 160 1.60 129 11.69 129 | 102.38 129
0.32 0.33 0.38 1.05 9.39
- - 113.04 1,391,480| 22.26 275,844 1.74 9,039 9.40 295
(64, 128) (27, 34) - - - 34.73 489,614| 1.82 19,040 9,494 9.40 295
o2 =0.36 92.76 50,006 3.34 1,134 3.67 408 14.80 307 | 105.92 185
54.25 26,031 5.55 1,312 7.91 472 12.52 143 105.76 142

Table 3.5: CPU time and nodes visited for solviapdom coding networkswith 64 bits
and 4 parents per XOR bit. Time limit 300 seconds. Pseuds geeerated by min-fill and
hypergraph heuristics.A™|AM was not able to solve any of the test instances.
distribution of information bits, compute the correspomgivalues of the parity check bits,
and generate an assignment to the output nodes by addingi@auasise to each informa-
tion and parity check bit. The decoding algorithm takes asiirthe coding network and
the observed real-valued output assignment and recoversriinal input bit-vector by
computing or approximating an MPE assignment.

Tabled 3.6 and 3|6 display the results using min-fill and hyygh based pseudo trees
for solving two classes of random coding networks with= 64 and X' = 128 input bits,
respectively. The number of parents for each XOR bit Was 4 and we chose the chan-
nel noise variance? € {0.22,0.36}. We see thafOBB+SMB(i) andAOBB+DMB(i) are
slightly faster tharBB+SMB(i) and BB+DMB(i) , respectively, only for relatively small
i-bounds. In several test cases, however, the search spplogeeikby the AND/OR al-
gorithms was larger than the corresponding OR space. Ftanios, on the problem
class withK = 128 ands? = 0.36 shown in the second horizontal block of Tablel 3.6,
AOBB+SMB(12) expanded almost 2 times more nodes tiB#+SMB(12) . This was

caused again by the internal dynamic variable ordering bgatie AND/OR algorithms.

105

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB()) AOBB+SMB(j)
(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(j) BB+DMB(j)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.05 0.06 0.18 1.80 25.65
257.42 1,581,950 52.69 345,028 3.53 12,513 25.75 2,065
(128, 256) (53, 71) - - | 229.02 3,227,110| 16.67 206,004 22,644 25.87 3,081
o2 =0.22 196.64 41,359 | 48.80 4,178 | 17.86 726 | 130.95 588 - -
195.82 121,822| 48.17 9,391 | 17.15 500 | 129.38 388 -
0.05 0.06 0.18 1.80 25.39
- - - | 27229 1,717,770| 211.88 1,452,980 598,738
(128, 256) (53, 71) - - | 29161 4,309,160| 240.74 3,409,580| 188.44 2,617,880 110.89 1,137,120
o2 =0.36 289.06 65,591 | 230.23 22,617| 234.33 6,857 | 276.40 1,957 - -
289.09 223,938| 229.91 46,768 | 233.96 7,947 | 276.31 953
[hypergraph pseudo tree |
0.73 0.74 0.86 2.49 27.13
- 285.82 1,765300| 184.90 1,264,890 94.43 677,488 31.72 36,604
(128, 256) (53, 63) - - | 23891 3,070,670| 125.01 1,252,930 38.12 404,160 1,658
o2 =0.22 277.94 133,702| 152.10 21,264| 27.63 942 | 90.89 376 - -
28215 126,614| 84.82 6,358 | 73.46 1,307 | 166.75 409 -
0.73 0.74 0.86 251 25.95
- - 296.69 1,948,930 28570 2,009,240 210.16 1,360,710
(128, 256) (53, 63) - - | 296.02 3,583,930 251.96 2,969,470 1,340,740
o2 =0.36 287.30 32,456 | 269.73 5,269 | 292.08 2,308 - -
261.00 58,212 | 269.14 4,614 | 282.24 823 - -

Table 3.6: CPU time and nodes visited for solviagdom coding networkswith 128 bits
and 4 parents per XOR bit. Time limit 300 seconds. Pseuds gererated by min-fill and
hypergraph heuristics.A™ |AM was not able to solve any of the test instances.

We also see that the overhead of the mini-bucket heuristcsivaller in the AND/OR than
the OR case, which paid off in some test cases.

When looking at the impact of the min-fill versus the hyper@iréyased pseudo trees
we see that, even though the hypergraph trees were shaltbereithe min-fill ones, the
mini-bucket heuristics generated relative to min-fill aidgs were more accurate than
those corresponding to hypergraph partitioning basedrioigie In some cases this trans-
lated into significant time savings. For example, on the jgmolclass withX' = 128 and
% = 0.22, the min-fill pseudo tree causes an 8-fold speedup over therfyaph tree, for
AOBB+SMB(12) . A similar behavior can be observed for dynamic mini-budieairistics.

Figure[3.12 plots the running time and number of nodes dsiieACBB+SMB(i) and
AOBB+DMB(i) (resp. BB+SMB(i) andBB+DIVB(i)), for solving the coding networks
with parameter§ K = 128,02 = 0.22) (i.e., corresponding to the first horizontal block
from Table[3.6). We see that as thbound increases, the mini-bucket heuristics become
more accurate and the performance of Branch-and-Bound irapréor example;bound

of 14 yields the best performance fAOBB+SMB(i) , whereasAOBB+DMB(i) achieves

106

random coding networks random coding networks

1000 (K=128, 6°=0.22) [minfill: w*=53, h=71] . (K=128, 5°=0.22) [minfill: w*=53, h=71]

100 4

time (sec)
nodes

—@&—— BB+SMB(i) —@&—— BB+SMB(i) \ \
o AOBB+SMB(i) 10 o AOBB+SMB(i)

——-v-—— BB+DMB() ——-¥-—— BB+DMB() X
—.—A-—- AOBB+DMB() S —.—A-—- AOBB+DMB(i)

1 . ; ; ; ; ; ; ; ; 100 ; ; ; ; ; ; ; ; ;
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22

i-bound i-bound

Figure 3.12: Comparison of the impact of static and dynamicidmiicket heuristics on
random coding networkswith parameter$ K = 128, 0% = 0.22) from Table3.6.

the best performance at= 12. For even largei-bounds however, the overhead of both the
pre-compiled and dynamic heuristics deteriorates theopadnce of the algorithms. The
dynamic mini-bucket heuristics are better for relativatyadl i-bounds, whereas relatively

largeri-bounds are cost effective for the pre-compiled heuristics

Grid Networks

In random grid networks, the nodes are arranged ifVar N square and each CPT is
generated uniformly at random. We experimented with probtestances having bi-valued
variables that were initially developed in [112] for theka$ weighted model counting. For
these problem$/ ranges between 10 and 38, and, for each insta¥i¢é of the CPTs are
deterministic (having only 0 and 1 probability entries).

Table[3.7 displays the results for experiments with 8 gridaareasing difficulty, using
mini-fill based pseudo trees. For each test instance we ramgée SMPE query withe
evidence variables picked randomly. We see again the sujteof AOBB+SMB(i) over
the OR counterpart, especially on the harder instancesxamnple, on th80- 30- 1 grid,
AOBB+SMB(20) finds the MPE in about 87 seconds, wherBBs$SVB(20) exceeds the
1 hour time limit. The AND/OR Branch-and-Bound algorithmswitynamic mini-bucket

heuristics as well aSanl amare able to solve relatively efficiently only the first 3 test

107

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
(n, e) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(j)
i=8 i=10 i=12 i=14 i=16
time time nodes time nodes time nodes time nodes time nodes
0.01 0.02 0.04 0.07 0.07
90-10-1 0.12 3,348 424 0.05 153 0.07 153 0.08 153
(13,39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101
(100, 0) 0.87 543 0.57 250 0.48 153 0.54 153 0.54 153
0.34 344 0.33 241 0.32 101 0.39 101 0.39 101
0.02 0.04 0.11 0.22 0.72
90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 0.54 5,035 0.90 2,826
(22, 66) 11.97 4.27 130,619 3.44 100,696 0.61 17,479 3,321 0.81 2,938
(196, 0) 149.44 16,415 52.34 2,894 12.46 537 1371 211 19.22 199
65.74 31,476 33.57 4,137 7.50 397 12.00 211 17.65 199
0.03 0.05 0.14 0.46 1.01
90-16-1 - - - - 23.74 347,479 1.85 18,855 6,098
(24, 82) 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 1.78 23,421
(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 65.15 414
1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 40.68 260
=12 =14 i=16 =18 =20
time nodes time nodes time nodes time nodes time nodes
0.33 0.89 2.69 7.61 31.26
90-24-1 - - - - - - - - -
(33,111) 1500.66 24,117,151 921.96 18,238,983 1,413,764 | 11146 1,308,009
(576, 20) - - - - - - - -
- - 1367.38 2,739 | 1979.42 1,228 | 2637.71 598
0.37 1.02 3.39 11.74 36.16
90-26-1 - - - - 324.30 2,234,558 - - 70.53 327,859
(36, 113) 206.93 2,903,489| 242.37 3,205,257 59,055 21.48 165,182 36.49 5,777
(676, 40) - - - - - - - - - -
- - 1514.18 2,545 | 2889.49 1,191 -
0.53 1.35 4.36 13.34 50.53
90-30-1 - - - - - - - - - -
(43, 150) 74251 9,445224| 239.08 3,324,942| 21556 3,039,966| 101.10 1,358,569 485,300
(900, 60) - - - - - - - - - -
0.66 1.60 5.35 18.42 62.17
90-34-1 - - - - - -
(45, 153) 1,549,829
(1154, 80) - -
0.82 2.16 6.43 20.46 72.10
90-38-1 - - - - - - - - - -
(47, 163) 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146 1,038,065
(1444, 120) - - - - - - - - - -

Table 3.7: CPU time in seconds and nodes visited for solgimaynetworks. Time limit 1
hour.

instances.

Figure[3.18 plots the running time and number of nodes wslitg AOBB+SMVB(7)
andAOBB+DMVB() (resp.BB+SMB(i) andBB+DVB(i)), for solving the90- 14- 1 grid
network ¢.e., corresponding to the second horizontal block from Tab®. Focusing on
AOBB+SMB(7) (resp.BB+SMB(i)) we see that its running time, as a function oforms
a U-shaped curve. At first (= 4) it is high, then as thé-bound increases the total time
decreases (when= 10 the time is 3.44 foAOBB+SMB(10) and 71.98 foBB+SMB(10) ,
respectively), but then asincreases further the time starts to increase again. The sam

behavior can be observed in the casé&0BB+DVB(i) (resp.BB+DIVB(7)) as well.

108

10000

grid network 90-14-1
[minfill: w*=22, h=66]

grid network 90-14-1
[minfill: w*=22, h=66]

108
——@—— BB+SMB(i) ——@—— BB+SMB(i)
o AOBB+SMB(i) ° o AOBB+SMB(i)
——-¥-—- BB+DMB() 107 4 ——-v-—— BB+DMB()
1000 5 N — b= AOBB+DMB(i) — = AOBB+DMB(i)
106 4
~ 1004
o
o) w
Z @
e T 10° g
o o
£ <
= 10 4
104 4
14
10° 4
0.1 T T T T T T T 10? T T T T T T T T
2 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20
i-bound i-bound

Figure 3.13: Comparison of the impact of static and dynamig-miicket heuristics on the

90- 14- 1 grid network from Table3.7.

90-14-1 - AOBB+SMB(i)
[hypergraph: w*=23, h=37] [minfill: w*=22, h=66]

90-16-1 - AOBB+SMB(i)

1000 10000 [hypergraph: w*=26, h=43] [minfill: w*=24, h=82]
T —®— hypergraph —8— hypergraph
—-O— minfil —O0— minfill
100 4 1000
o o
@ @
))
= 104 = 1004
o o
E £
14 10 4
0.1 T T T T T 1 T T T T T
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
90-24-1 - AOBB+SMB(i) 90-26-1 - AOBB+SMB(i)
10000 [hypergraph: w*=36, h=59] [minfill: w*=33, h=111] 10000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113]
—8— hypergraph —@— hypergraph
—0O— minfill —O— minfill
1000
1000
<)
@ ®
&))
= = 100 4
° o
£ £
100 §
10 4
10 T T T T T 1 T T T T T
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound

Figure 3.14: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvirggid networks with AOBB+SMB(i) .

109

Figure 3.15: A fragment of a belief network used in genetikdige analysis.

Figurel3.14 displays the runtime distributionA@BB+SMB() using hypergraph based
pseudo trees for 4 grid networks. For each repoitedund, the corresponding data point
and error bar reports the average as well as the minimum axohmn runtime obtained
over 20 independent runs of the algorithm with a 30 minute timit. We also record the
average induced width and depth obtained for the hypergraphdo trees (see the header
of each plot in Figur@ 3.14). As observed earlier, the hyfagry based pseudo trees are
significantly shallower compared with the min-fill ones, amgome cases they are able to
improve performance dramatically, especially at reldgignall i-bounds. For example,
on the grid90- 24- 1, AOBB+SMB(14) guided by a hypergraph pseudo tree is about 2
orders of magnitude faster th&©BB+SMB(14) using a min-fill pseudo tree. At larger
i-bounds, the pre-compiled mini-bucket heuristic benefidsnfthe small induced width
which normally is obtained with the min-fill ordering. Thésee AOBB+SMB(i) using
min-fill based trees is generally faster tha@BB+SMB(i) guided by hypergraph based
trees €.g., 90- 26- 1).

Genetic Linkage Analysis

In human genetic linkage analysis [98], thaplotypes the sequence of alleles at different

loci inherited by an individual from one parent, and the taplotypes (maternal and pater-

110

min-fill pseudo tree
MBE() MBE() MBE() MBE() MBE()
pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(n, K Samlam AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=6 i=8 i=10 =12 i=14
time nodes time nodes time nodes time nodes time nodes
pedl 0.05 0.05 0.11 0.31 0.97
(299, 5) 54.73 - - - - 6.34 37,657 7.33 42,447 8.30 41,134
(15, 61) 5.44 24.30 416,326 13.17 206,439 24,361 1.84 25,674 1.89 15,156
ped38 0.12 0.45 2.20 60.97 out
(582, 5) - - - - - - - -
(17, 59) out - - 8120.58 85,367,022 - - 3040.60 35,394,461
ped50 0.11 0.74 5.38 37.19 out
(479, 5) - - - - - - - - -
(18, 58) out - - - - 476.77 5,566,578 104.0@ 748,792
i=10 i=12 i=14 i=16 i=18
’ ‘ ! time nodes ‘ time nodes time nodes time nodes time nodes
ped23 0.42 2.33 11.33 274.75 out
(310, 5) 9146.19 - - - - 3176.72 14,044,797 343.52 358,604
(27,71) out 498.05 6,623,197 154,676 16.28 67,456 286.11 117,308
ped37 0.67 5.16 21.53 58.59 out
(1032, 5) - - - - - - - -
(21, 61) out 273.39 3,191,218| 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
i=12 i=14 i=16 i=18 i=20
’ ‘ ! time nodes ‘ time nodes time nodes time nodes ‘ time nodes
ped18 0.51 1.42 4.59 12.87 19.30
(1184, 5) 139.06 - - - - - - - - - -
(21, 119) 157.05 - - | 2177.81 28,651,103] 270.96 2,555,078| 100.61 682,175 7,689
ped20 1.42 5.11 37.53 410.96 out
(388, 5) - - - - - - - -
(24, 66) out | 3793.31 54,941,659| 1293.76 18,449,393 1259.05 17,810,674/ 1080.05 9,151,195
ped25 0.34 0.72 2.27 6.56 29.30
(994, 5) - - - - - - - - - - -
(34, 89) out - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.6d 28,326,541
ped30 0.42 0.83 1.78 5.75 21.30
(1016,5) | 13095.83 - - - - - - - - - -
(23, 118) out - - - - - - 21410 1,379,131 685,661
ped33 0.58 231 7.84 33.44 112.83
(581, 4) - - - - - - - - - - -
(37, 165) out 2804.61 34,229,495| 737.96 9,114,411| 3896.98 50,072,988 159.5@ 1,647,488 2956.47 35,903,215
ped39 0.52 2.32 8.41 33.15 81.27
(1272, 5) 322.14 - - - - - - - - -
(23, 94) out - - - - 4041.56 52,804,044 386.13 2,171,470 1412@ 407,280
ped42 4.20 31.33 206.40 out out
(448, 5) - - -
(25, 76) out

Table 3.8: CPU time and nodes visited for solvipenetic linkage networks Time limit
3 hours.
nal) of an individual constitute this individualgenotype When genotypes are measured
by standard procedures, the result is a list of unordered péialleles, one pair for each
locus. Themaximum likelihood haplotypgroblem consists of finding a joint haplotype
configuration for all members of the pedigree which maximmittee probability of data.
The pedigree data can be represented as a belief networkhwétl types of random
variables: genetic locivariables which represent the genotypes of the individirathe
pedigree (two genetic loci variables per individual peulsone for the paternal allele and
one for the maternal allelephenotypevariables, andelectorvariables which are auxiliary
variables used to represent the gene flow in the pedigrearrdf§)15 shows a fragment

of a network that describes parents-child interactionssimgle 2-loci analysis. The ge-

111

netic loci variables of individual at locus; are denoted by, ;, andL; j,,. VariablesX; ,
Sij» and.S; ;,, denote the phenotype variable, the paternal selectorblarand the ma-
ternal selector variable of individualat locusj, respectively. The conditional probability
tables that correspond to the selector variables are pseamesl by theecombination ra-
tio ¢ [47]. The remaining tables contain only deterministic mf@tion. It can be shown
that given the pedigree data, the haplotyping problem isvatgnt to computing the Most
Probable Explanation (MPE) of the corresponding beliefvoek [47,/46)].

Table[3.8 shows results with 12 genetic linkage netv@)rl@or comparison, we in-
clude results obtained withUPERLINK 1.6. SUPERLINK [47,146] which is currently one
of the most efficient solvers for genetic linkage analyssesua combination of variable
elimination and conditioning, and takes advantage of tlierdenism in the network. We
did not runAOBB+DIVB(i) on this domain because of its prohibitively high computadio
overhead associated with relatively largeounds.

We observe again th&0OBB+SMB(i) is the best performing algorithm, outperforming
its competitors on 8 out of the 12 test networks. For exampmhetheped23 instance,
AOBB+SMB(16) is 3 orders of magnitude faster thawrBERLINK, whereas 8MIAM
andBB+SMB(i) exceed the 2GB memory bound and the 3 hour time limit, res@dget
Similarly, on theped30 instance AOBB+SMB(20) outperforms SPERLINK with about
2 orders of magnitude, while neithem®@I1AmM nor BB+SMB(16) are able to solve the
problem instance. Notice also that fhed42 instance is solved only by($®ERLINK.

Figure[3.16 displays the runtime distributionA®BB+SMB(i) with hypergraph based
pseudo trees over 20 independent runs, for 4 linkage inssanAgain, we see that the
hypergraph partitioning heuristic generates pseudo the®ihg average depths almost
two times smaller than those of the min-fill based ones. Tbesge using hypergraph
based pseudo trees improves sometimes significantly tfierpeamce for relatively small

i-bounds ¢.¢g., ped23, ped33).

SAvailable at http://bioinfo.cs.technion.ac.il/supeki. The corresponding belief network of the pedigree
data was extracted using the export feature of theeRLINK 1.6 program.

112

ped1 - AOBB+SMB(i)

ped23 - AOBB+SMB(i)
10000 [hypergraph: w*=19, h=31] [minfill: w*=15, h=61]

10000 [hypergraph: w*=24, h=38] [minfill: w*=27, h=71]

—e— hypergraph

—e— hypergraph
—-O— minfill

—O— minfill

1000 4 1000 4

100 4 100 4

time (sec)
time (sec)

N\
Yo O= 5
‘

T T T T T T
4 6 8 10 12 14 16 8 10 12 14 16

i-bound i-bound

ped33 - AOBB+SMB(i)
10000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165]

ped30 - AOBB+SMB(i)
10000 [hypergraph: w*=26, h=51] [minfill: w*=23, h=118]

—e— hypergraph

—e— hypergraph
—O— minfil

—O— minfill

1000 4 1000 4

time (sec)
time (sec)

i-bound i-bound

Figure 3.16: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvinmkage networks with AOBB+SMB(i) .

ISCAS’89 Circuits (BN)

ISCAS’89 circuit are a common benchmark used in formal verification and disigno
For our purpose, we converted each of these circuits intdiafbetwork by removing
flip-flops and buffers in a standard way, creating a detesticxconditional probabilistic
tables for each gate and putting uniform distributions anitiput signals.

Table 3.9 shows the results for experiments with 10 circugsg min-fill based pseudo
trees. As usual, for each test instance we generated a $itRffequery without any ev-
idence. When comparing the algorithms using static minkbtubeuristics we observe
again the superiority of the AND/OR over OR Branch-and-Bowatsh in almost all test
cases, acrogsbounds. For instance, on th&80 circuit, ACBB+SMB(4) proves optimal-

ity in less than a second, whigB+SMB(4) exceeds the 30 minute time limit. Similarly,

SAvailable at http://www.fm.vslib.cz/kes/asic/iscas/

113

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas89 Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(j)
(w*, h) AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.04 0.05 0.08 0.12 0.26
c432 - - - - - - 0.29 432 0.42 432
(27, 45) out - - - - 605.79 20,751,699 432 0.28 432
(432, 2) - - 132.19 21,215 2.23 432 3.44 432 5.85 432
1422.98 4,438,597 24.03 39,711 1.15 432 2.23 432 4.52 432
0.02 0.03 0.05 0.14 0.37
c499 0.16 499 0.17 499 0.19 499 0.28 499 0.50 499
(23, 55) 139.89 499 0.05 499 0.06 499 0.15 499 0.38 499
(499, 2) 1.09 499 1.32 499 2.00 499 4.01 499 8.92 499
0.39 499 0.63 499 1.31 499 3.32 499 8.21 499
0.09 0.09 0.11 0.18 0.51
c880 - - 881 0.60 881 0.66 881 0.99 881
(27,67) out 884 881 0.15 881 0.21 881 0.55 881
(880, 2) 881 881 8.07 881 12.78 881 20.99 881
881 1.14 881 2.16 881 4.98 881 13.19 881
. 0.02 0.03 0.08 0.20
s386 0.10 1,358 0.06 677 0.05 172 0.10 172 0.22 172
(19, 44) 3.66 257 257 0.03 172 0.08 172 0.21 172
(172, 2) 0.15 172 0.21 172 0.42 172 0.78 172 1.56 172
0.09 172 0.16 172 0.36 172 0.72 172 1.50 172
0.06 0.07 0.12 0.31 1.01
s953 - - - - - - - - 601.69 4,031,967
(66, 101) out 715.60 9,919,295 15.25 238,780 | 37.11 549,181 | 22.83 434,481 21,499
(440, 2) 27.12 2,737 18.84 912 64.12 1,009 25.28 467 577
26.48 2,738 18.30 913 63.44 1,010 24.75 468 578
0.07 0.10 0.16 0.39
$1196 - - - - - - - - - -
(54, 97) out 21.75 316,875 | 215.81 3,682,077 457 77,205 19.81 320,205 | 16.64 289,873
(560, 2) 580 434 568 49.30 924 | 126.85 863 | 582.66 1,008
660 2.59 568 45.90 924 | 118.16 863 | 571.79 1,008
0.09 0.17 0.42 1.26
s1238 - - - - 272.63 2,078,885| 144.85 1,094,713| 585.48 4,305,175
(59, 94) out 2.63 57,355 8.32 187,499 2.14 47,340 25,538 2.12 20,689
(540, 2) 32.17 5,841 6.59 601 | 370.26 17,278 52.28 651 | 120.20 558
2.04 1,089 4.02 795 17.44 1,824 40.35 849 95.84 744
0.06 0.06 0.09 0.13 0.35
s1423 - - - - - - 0.46 762 0.67 749
(24, 54) 107.48 1,986 0.30 5,171 0.32 5,078 0.17 866 0.37 749
(748, 2) 751 3.37 749 4.05 749 5.50 749 9.62 749
751 0.76 749 1.35 749 2.81 749 6.93 749
. 0.10 0.18 0.46 1.50
51488 11.91 92,764 1.65 12,080 2.19 17,410 1.26 6,480 2.17 5,327
(47, 67) out 11.83 135,563 1.48 17,170 2.29 28,420 1.25 12,285 2.26 12,370
(667, 2) 670 3.14 670 5.43 668 13.11 667 41.43 667
670 1.64 670 3.92 668 11.67 667 | 40.17 667
. 0.09 0.17 0.49 1.57
51494 8.64 64,629 | 524.05 3,410,547| 130.92 815,326 33,373 43.54 268,421
(48, 69) out 9.63 158,070 | 28.14 476,874 7.09 118,372 198,912 2.75 21,137
(661, 2) 6.29 873 6.23 711 9.81 681 680 93.29 686
4.88 873 4.77 711 8.36 681 680 91.70 686

Table 3.9: CPU time and nodes visited for solving belief nekwalerived fromlSCAS’'89

circuits. Time limit 30 minutes.

on thes953 circuit, AOBB+SMB(14) is 300 times faster thaBB+SMVB(14) and explores
a search space 180 times smaller. Using the dynamic mirkebineuristics does pay off
in some test cases. For example, onghd 96 circuit, AOBB+DVB(4) causes a speedup
of 2 overBB+DVB(4) and 45 oveAOBB+SMVB(4) , while BB+SMB(4) exceeds the time
limit. The overall impact of the AND/OR algorithms versugtBR ones can be explained
by the relatively shallow pseudo-trees. In summary, theadyio mini-bucket heuristics

were inferior to the corresponding static ones for larpeunds, however, smallétbound

114

$1196 - AOBB+SMB(i) $1238 - AOBB+SMB(i)

[hypergraph: w*=55, h=73] [minfill: w*=54, h=97] 10000 [hypergraph: w*=58, h=75] [minfill: w*=59, h=94]
—@— hypergraph

—-O— minfill

10000
—e— hypergraph
—O— minfill

1000 4 1000 4

time (sec)
3

time (sec)
3

i-bound i-bound

s1488 - AOBB+SMB(i) s1494 - AOBB+SMB(i)
[hypergraph: w*=45, h=57] [minfill: w*=47, h=67] 10000 [hypergraph: w*=46, h=57] [minfill: w*=48, h=69]

—— hypergraph —e— hypergraph
—O— minfill —O— minfill

1000 o

100 §

time (sec)

i-bound i-bound

Figure 3.17: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvin§CAS’89 networks with AOBB+SIVB(7) .
dynamic mini-buckets were overall more cost-effective.tib®that S\MIAM is able to
solve only 2 out of 10 test instances.

Figure[3.1V shows the runtime distributionA®BB+SMB(i) with hypergraph pseudo
trees, over 20 independent runs. We observe again that eradesasese(g., s1196,
s1238) the hypergraph pseudo trees are able to improve perfornaitic up to 3 orders

of magnitude, at relatively smalbounds.

UAI'06 Evaluation Dataset

The UAI 2006 Evaluation Datagemntains a collection of random as well as real-world
belief networks that were used during the first UAI 2006 lafere Evaluation contest.
Table[3.10 shows the results for experiments with 14 netsyouking min-fill based

pseudo trees. InstancBdl_31 throughBN_41 are random grid networks with determin-

"http://ssli.ee.washington.edu/bilmes/uai06Infer&veduation

115

min-fill pseudo tree
MBE() MBE(Q) MBE() MBE() MBE()

bn BB+SMB()) BB+SMB(i) BB+SMB(j) BB+SMB()) BB+SMBJ(j)
(w*, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, d) i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes
BN31 10.31 20.06 3415 7417 1215
(46, 160) out - - - - - - - - - -
(1156, 2) 828.60 4,741,037| 1229.64 7,895304| 504.36 3,988,933| 646.67 4,293,760 [178.87 380,470
BN_33 13.84 26.27 48.61 90.35 159.67
(43, 163) - - - - - - - - - - -
(1444, 2) 865.01 3,540,778| [193.79 685,246 | 39599 1,441,245 308.14 1,018,353 230.53 360,880
BN_35 14.27 24.62 4750 77.66 124.17
(41, 168) - - - - - - - - - - -
(1444, 2) 33543 1755561 390.04 1,954,720 247.73 1,108,708 [191.03 663,784 | 234.97 622,551
BN_37 13.82 26.58 4421 85.17 170.20
(45, 159) - - - - - - - - - - -
(1444, 2) 94.27 428,643 82.15 298,477 183,016 | 100.41 89,948 | 196.06 168,957
BN_39 12.95 26.10 5151 87.16 148.40
(48, 164) - - - - - - - - - - -
(1444, 2) - - - - - - - - | [83758 3,366,427
BN_41 1341 2351 42.01 7177 125.97
(49, 164) - - - - - - - - - - -
(1444, 2) 125.27 486,844| 107.81 364,363 168,340 | 115.18 195,506| 161.10 162,274
BN_126 6.76 1375 24.62 49.11 98.43
(54,70) - | 336.88 2,101,962 87117 6,677,492 628.26 3,717,027| 97.21 350,841| 105.54 71,919
(512, 2) 35191 4,459,174 918.04 10,991,861 126.49 1,333,266 386,490 | 108.20 150,391
BN_127 14.26 30.82 56.12 98.82
(57,74) out - - - - - - - 639,878
(512, 2) - - - - - - - 200.14 1,384,957
BN_128 15.38 28.49 58.08 99.85
(48,73) out 3,476 15.66 2,645 34.14 36,025 58.54 831 | 100.29 4,857
(512, 2) 5,587 15.48 1,712 29.64 18,734 58.12 625 | 100.18 5,823
BN_129 11.83 24.96 55.28 96.60
(52, 68) out 1,605,045 | 142349 11,860,050 343.68 2,049,880
(512, 2) 827.37 11,469,012 - - 19824 1,999,591| 1796.81 22,855,693 297.90 2,542,057
BN_130 6.29 13.24 22.63 53.68 94.78
(54, 67) out 184,439 - - 918.48 7,317,237 - - 105.43 110,193
(512, 2) 29.52 348,660 - - 981.08 10,905,151 - - 108.25 205,010
BN_131 7.16 1372 2336 4494 82.36
(48,72) out 142,487 47.11 328,560 | 1216.80 10,249,055 73.25 235,433 - -
(512, 2) 26.44 296,576 58.78 677,149 | 169544 24,678,072| 87.01 673,358 - -
BN_132 6.16 11.63 2231 52.78 91.20
(49, 71) out - - - - - - 792.42 6,596,296 4,829,396
(512, 2) - - - - - - 886.31 10,251,600| 809.86 10,207,347
BN_133 7.60 2755 56.54 106.24
(54,71) out - - 105,920 46.69 174,274| 157.04 932,745 110.05 32,041
(512, 2) - - 169,574| 4853 272,258| 184.94 1,859,117| 110.87 71,195

Table 3.10: CPU time and nodes visited for solvidgl’'06 instances

minutes.

116

Time limit 30

BN_35 - AOBB+SMB(i) BN_37 - AOBB+SMB(i)
[hypergraph: w*=46, h=78] [minfill: w*=41, h=168] 1000 [hypergraph: w*=43, h=78] [minfill: w*=45, h=159]

—e— hypergraph —@— hypergraph
—-O— minfill T —O— minfill

10000

1000 4

time (sec)
time (sec)
=)
8

100 4

i-bound i-bound

BN_131 - AOBB+SMB(i) BN_133 - AOBB+SMB(i)
[hypergraph: w*=51, h=60] [minfill: w*=48, h=72] [hypergraph: w*=54, h=63] [minfill: w*=54, h=71]

10000 10000

1000 4

1000 o

100

time (sec)
time (sec)

100 4

i-bound i-bound

Figure 3.18: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvintgAlI'06 networks with AOBB+SMVB(i) .
istic CPTs, while instanceBN_126 throughBN_133 represent random coding networks
with 128 input bits, 4 parents per XOR bit and channel nois@maes? = 0.40. We report
only on the Branch-and-Bound algorithms using static mirtikets. The dynamic mini-
buckets were not competitive due to their much higher coatpmrtal overhead at relatively
largei-bounds. We notice again thAOBB+SMVB() clearly outperform®B+SMB() at
all reportedi-bounds, especially on the first set of grid networkg.(BN.31, ...,BN.41).
For instance, on th8N_37, AOBB+SMB(19) finds the MPE solution in about 80 sec-
onds, whereas its OR counterpBB+SMB(19) exceeds the 30 minute time limit. This
is in contrast to what we observe on the second set of coditvgories ¢.g., BNL126, ...,
BN_133), where the best performance is offered by the OR algorBBxSMB(7) .
Figure[3.18 shows the runtime distributionA®BB+SMB(i) with hypergraph pseudo
trees, over 20 independent runs. We observe again that frexrdraph pseudo trees im-

prove slightly the performance compared with min-fill ones.

117

Bayesian Network Repository

min-fill pseudo tree
MBEQ) MBE() MBE() MBEQ) MBEQ)
BB+SMB(j) BB+SMB(j) BB+SMBJ(i) BB+SMB(i) BB+SMB(j)
bn Samlam AOBB+SMB()) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
BB+DMB(i) BB+DMB(i) BB+DMB() BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB()) AOBB+DMB()) AOBB+DMBY(j) AOBB+DMB(j) AOBB+DMB()
(n, d) i=2 i=3 i=4 i=5 i=6
time nodes time nodes time nodes time nodes time nodes
0.01 0.01 0.01 0.01 0.01
cpes54 10.41 141,260| 18.26 252,886 0.54 8,072 2.18 30,912 0.62 9,237
(14, 23) 0.16 0.66 16,030 | 0.34 8621 | 027 6,761 0.39 10,485 3,672
(54,2) 1.99 2,493 1.45 2,214 | 070 1,003 | 053 848 0.34 532
1.48 2,339 1.16 1,889 | 0.86 798 0.42 419 0.29 159
0.09 0.09 0.09 0.09 0.09
cpcs360b 72.21 336,720 66.86 317,249 65.05 316,991 61.38 297,313| 63.82 314,173
(20, 27) 18.91 0.45 10,027 | 0.44 9,827 | 0.44 9,809 8,947 0.43 9,771
(360, 2) 377.73 308,339 373.48 307,084| 373.23 307,083| 373.96 307,083| 373.34 307,078
4.36 9,383 | 4.15 9,309 | 4.06 9313 | 4.20 9,285 4.18 9,181
158 158 158 158 158
cpcs422b 57.43 204,209 | 56.60 203,448 | 55.61 203,410 54.27 203,410 54.34 203,409
(23, 36) 112.78 1.80 3,557 1.78 3,409 3,409 3,409 1.78 3,568
(422,2) - - - - - - - - - -
54.48 3,140 | 54.41 3,142 | 54.98 3,094 | 54.98 3,029 55.03 2,998
0.01 0.01 0.01 0.01 0.01
Insurance 0.14 1,877 0.06 962 | 69.56 1,749,933| 35.70 910,498 0.02 160
(7,14) 0.08 0.04 977 0.02 453 0.02 411 255 62
(27,5) 0.13 364 0.03 89 0.03 87 0.08 87 87
0.11 299 0.02 36 0.03 33 0.08 33 33
0.02 0.02 0.03 0.06 ;
Munin1 - - - - - - - - 10.16 81,982
(12, 28) out 6.32 102,540 | 2.79 44,071 22,934 2.00 42,484 1.79 38,669
(189, 21) - - | 256.48 80,411| 228.91 66,583 | 62.08 15,523 65.29 15,513
45.76 84,788 | 25.46 27,217| 18.15 11,230 9.45 2,557 12.30 2,547
0.14 0.16 0.20 0.32 0.46
Munin2 - - - - - - - - - -
9, 32) 4.30 - - - - | 137.72 712,814| 30.53 174,333 15,978
(1003, 21) - - - - - - - - - -
- - - - - - | 20847 13459 | 167.27 9,360
0.15 0.15 0.18 0.28 0.40
Munin3 - - - - - - - - - -
(9,32) 7.28 - - - - | 1520 152,191 1.02 6,440 1,945
(1044, 21) - - - - - - - - - -
- - | 345.26 146,866 28.54 2573 | 1211 1,319 10.50 1,180
0.16 0.15 0.19 0.32 0.86
Munin4 - - - - - - - - - -
(9, 35) 26.19 - - - - - - - - 3,183,146
(1041, 21) - - - - - - - - - -
0.03 0.04 0.04 0.04 0.05
Pigs - - 050 6,060,855 048 6,446,055| 048 5956,733 0.48 81,982
(11, 26) 1.14 - - 455 455 455 0.07 455
(441, 3) 7.98 1,984 | 858 1,984 | 8.66 1,984 8.79 1,984
0.31 455 0.39 455 0.49 455 0.63 455
0.01 0.01 0.01 0.02 0.03
Water 7853 1,658313| 78.02 1,670,307| 3.47 53784 | 0.34 5,202 0.45 6,769
(10, 15) 3.03 0.67 17,210 1.07 24527 | 0.80 19,193 3,005 2,658
(32,4) 344.89 697,777 4.39 1,932 | 092 535 0.67 235 0.98 468
8.49 11,125 | 3.97 1,622 | 082 193 0.61 153 0.88 113
Table 3.11: CPU time in seconds and number of nodes visitesidlomg Bayesian Net-

work Repository instances. Time limit 10 minutes.

The Bayesian Network Reposithyontains a collection of belief networks extracted
from various real-life domains which are often used for lbenarking probabilistic infer-
ence algorithms.

Table[3.11 displays the results for experiments with 15gbe@letworks from the repos-

8http://www.cs.huji.ac.il/lcompbio/Repository/

118

itory. We set the time limit to 10 minutes and for each testanse we generated a sin-
gle MPE query without evidence. We observe again a condittermmprovement of the
new AND/OR Branch-and-Bound algorithms over the correspan@®R ones. For ex-
ample, on thepcs360b network, AOBB+SMB(5) causes a CPU speedup of 153 over
BB+SMB(5) , while exploring a search space 33 times smaller. SimjlabBB+DVB(5)

is 89 times faster thaBB+DVB(5) and expands about 33 times less nodes. Overall,
AOBB+SMB(i) is the best performing algorithm for this domain. In parécufor net-
works with relatively low connectivity and large domainesz(e.g.Muni n networks) the
difference betweeAOBB+SVB(i) andBB+SMB(i) is up to several orders of magnitude

in terms of both running time and size of the search spacereghl

3.6.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model explegh hard constraints and
general cost functions, it is beneficial to exploit the cotagianal power of the constraints
explicitly via constraint propagation [3[7,/169, 1, 35]. ForyBaian networks, the hard con-
straints are represented by the zero probability tupleb®fGPTs. We note that the use
of constraint propagation via directional resolution [[L08 generalized arc consistency
has been explored in [37,69], in the context of variable ielation algorithms where the
constraints are also extracted based on the zero probeihitthe Bayesian network. The
approach we take for handling the determinism in belief netw is based on the known
technique ofinit resolutionfor Boolean Satisfiability (SAT). The idea of using unit rasol
tion during search for Bayesian networks was first explordd]in

The CNF formula encodes the determinism in the network ancested based on the

zero CPT entries, as follows.

119

SAT Variables

Given a belief networkP = (X, D, F), the CNF is defined over the multi-valued variables
{X1,..., X, }. Its propositions ard.x, .., wherez; € D;. The proposition is true i; is

assigned value; € D, and is false otherwise.

SAT Clauses

The CNF is augmented with a collection of 2-CNFs for each vé&iah in the network,
calledat-most-oneclauses, that forbids the assignments of more than one t@laeari-

able. Formally,

DEFINITION 35 (at-most-one clause)GivenX; € X with domainD; = {z;,, ..., x;,}, itS
correspondingat-most-onelauses have the following formiLy, ,, V =Ly, ., forevery

pair (z;,,z;,) € D; x D;, wherel <p < ¢ <d.

In addition, we will add to the CNF a set af-least-oneclauses to ensure that each

variable in the network is assigned at least one value frerdamain:

DEFINITION 36 (at-least-one clauseGiven X; € X with domainD; € {z;,,...,z;,}, itS

correspondingat-least-onelause is of the following formLy, ., V Lx;, 4., V Lx; 4, -
The remaining clauses are generated from the zero protyahitiles in the CPTs.

DEFINITION 37 (no-good clauses)Given a conditional probability tablé(X;|pa(X;)),
each entry in the CPT having(z;|x,,,) = 0, wherepa(X;) = {Y1, ..., Y;} are X;'s parents
andz,,, = (v1, ..., ;) is their corresponding value assignment, can be translétesino-

goodclause of the form=Ly, ,, V... V =Ly, ,, V = Lx, 4,.

Example 15 Consider a belief network over variabldsi, B, C'} with domainsD, =

{1,2}, Dp = {1,2} and Do = {1,2,3}, and probability tables: P(A), P(B) and

120

[A]B[C] PCAB) Clauses]
1 1 1 1
1 1 2 0 (_‘LAJ\/_'LBJ\/_‘LC,Z)
1/]1]3 0 (mLaaV-LpaV-Les)
1 2 1 0 (mLa1V-LpaV-Lcn)
1 2 2 1
1/12]3 0 (mLaa1VLpaV-Lcs)
2 1 1 2
2 1 2 8
2 1 3 0 (ﬂLA,Z V_‘LB,I \/_‘LC,3)
2 2 1 7
2 2 2 3
21213 0 (=LaaV-LpaV-Lcs)

Table 3.12: Deterministic CPP(C|A, B)

P(C|A, B), respectively. The deterministic CHA{C|A, B) is given in Tablé_ 3.12. The
corresponding CNF encoding has the following Boolean varisible, 1, L2, Lp1, L2,
L¢q, Lo and Le 5. Variable L 4 5 is trueif the network variabled takes valud, andfalse
otherwise.

To generate the no-good clauses in the knowledge base, welbedarating through
the parent instantiations of the CPT for variablé Whenever a state € D has a
probability of 0 we will generate a clause. This clause corddire negative literakLc .,
as well as the negative literals-L 4 ,, ~ L, } where(A = a, B = b) is the corresponding
parent instantiation. These clauses are given in the laktron of Tablé 3.12.

The remaining at-least-one and at-most-one clauses asngivthe table below:

at-least-one at-most-one
(LagV Lao) —La1V Lo
(Lpa1V Lppy)

(LcaV LeaV Leg)

)
—Lp1V -Lpy)
)
)

(
(
(=Lca V —Ley
(mLca VLo
(

—LcaV Leg)

We evaluated the AND/OR Branch-and-Bound algorithms witticséand dynamic mini-

bucket heuristics on selected classes of Bayesian networkaining deterministic condi-

tional probability tablesi(e., zero probability tuples). The algorithms exploit the detia-

121

min-fill pseudo tree
AOBB+SMB() AOBB+SMB() AOBB+SMB() AOBB+SMB() AOBB+SMB()
AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
grid AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(n, e) i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.31 8,080 0.11 2,052 101 0.05 101 0.05 101
90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101
(16, 26) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101
(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101
7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938
90-14-1 2.36 45,870 2.52 46,064 0.66 11,914 3,286 0.61 2,922
(23,37) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199
(196, 0) 33.03 10,135 16.08 3,270 4.92 396 7.72 211 10.88 199
646.83 10,104,350| 164.02 2,600,690 13.14 193,440 2.92 39,825 2.08 23,421
90-16-1 121.24 2,209,097 78.97 1,416,247 6.99 121,595 2.25 35,376 22,986
(26, 42) 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260
(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260
i=12 i=14 i=16 i=18 i=20
’ ! time nodes time nodes time nodes time nodes time nodes
- - 2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009
90-24-1 2605.56 30,929,553| 689.47 9,868,626| 738.17 11,100,088 1,282,902 121.67 1,273,738
(36, 61) - - - - 884.41 2,739 | 1223.18 1,228| 1634.57 598
(576, 20) - - - - 843.79 2,739 | 1173.48 1,228 | 1611.74 598
314.88 2,903,489 382.22 3,205,257 8.42 59,055 23.14 165,182 22.22 5777
90-26-1 103.56 1,264,309 167.27 1,805,787 43,798 19.36 150,345 22.11 4,935
(35, 64) - - - - 938.98 2,545 | 1701.64 1,191 | 2638.95 691
(676, 40) 1592.53 108,694| 1034.26 12,819 862.38 2,545 | 1583.37 1,191 | 2478.19 691
1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300
90-30-1 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 387,242
(38, 68) - - - - - - - - - -
(900, 60) - -
462.41 1,549,829
90-34-1 981,831
(43,79) - -
(1154, 80) - - - - - - - - - -
2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065
90-38-1 41094 1,972,430\ 578.54 2,339,244| 27005 1,349,223 27811 1,249,270 702,806
(47, 86) - - - - - - - - - -
(1444, 120) -

Table 3.13: CPU time and nodes visited for solvohgterministic grid networks using
static and dynamic mini-bucket heuristics. Time limit 1 hou
ism present in the networks by applying unit resolution dlierCNF encoding of the zero-
probability tuples, at each node in the search tree. Thegeaareted byAOBB+SAT+SMB()
and ACBB+SAT+DMB(i) , respectively. We used a unit resolution scheme similahéo t
one employed by Chaf f , a state-of-the-art SAT solver introduced by|[94]. These ex
periments were performed on a 2.4GHz Pentium IV with 2GB of RAKning Windows
XP, and therefore the CPU times reported here may be slowerttioge in the previous
sections.

Table[3.1B shows the results for 8 grid networks from Sed@@n3. These networks
have a high degree of determinism encoded in their CPTs. &g 90% of the proba-

bility tables are deterministic, containing only O and 1lability entries.

122

90-16-1 grid network 90-16-1 grid network
[minfill: w*=24, h=82] [minfill: w*=24, h=82]
10000 108
—@—— AOBB+SMB(i) —®—— AOBB+SMB(i)
{0} AOBB+SAT+SMB(i) (o} AOBB+SAT+SMB(i)
——-%¥-—— AOBB+DMB(i) 107 4 ——-w-—— AOBB+DMB(i)
— D= AOBB+SAT+DMB(i) — = AOBB+SAT+DMB(i)

1000 4

= 100 4

Figure 3.19: Comparison of the impact of static and dynamrimicket heuristics on the
90- 16- 1 deterministic grid network from Table 3.1B.

We see thahOBB+SAT+SMB(i) improves significantly oveAOBB+SMB(i) , espe-
cially at relatively smali-bounds. On gri@0- 26- 1, for example ACBB+SAT+SMB(10)
is 9 times faster thaAOBB+SMB(10) . As thei-bound increases and the search space is
pruned more effectively, the difference betwe&€BB+SMB(i) andACBB+SAT+SMB()
decreases because the heuristics are strong enough tcecsgdlch space significantly.
The mini-bucket heuristic already does some level of cangtpropagation.

When comparing the AND/OR search algorithms with dynamicitbucket heuristics,
we see that the difference betweS@BB+DVB(i) andAOBB+SAT+DVB(7) is again more
pronounced at smaidtbounds.

Figure[3.19 displays the CPU time and number of nodes vis#ted function of the
mini-bucketi-bound, on th®0- 16- 1 grid network ¢.e., corresponding to the third hori-
zontal block from Tablé 3.13). We notice again the U-shapedecof the running time for
all algorithms.

Table[3.14 displays the results obtained for the 10 ISCASIBQiits used in Section
[3.6.3. We observe that, on this domain also, constraintggation via unit resolution
does play a dramatic role rendering the search space alraoktrack-free for both static
and dynamic mini-bucket heuristics and at all reportdgbunds. For instance, on the
s953 circuit, AOBB+SAT+SMB(6) is 3 orders of magnitude faster thAQ@BB+SNVB(6)

and the search space explored is about 4 orders of magnitaées Similarly, on the

123

min-fill pseudo tree
ACBB+SMB() AOBB+SMB() AOBB+SMB() AOBB+SMB() AOBB+SMB()
iscas89 AOBB+SAT+SMB()) AOBB+SAT+SMB() AOBB+SAT+SMB() | AOBB+SAT+SMB() | AOBB+SAT+SMB(i)
AOBB+DMB()) AOBB+DMBJ(j) AOBB+DMB()) AOBB+DMB(i) AOBB+DMB())
(w*, h) AOBB+SAT+DMB() AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) | AOBB+SAT+DMB(i) | AOBB+SAT+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
- - - - | 107959 20,751,699 432 0.24 432
€432 1658.62 37,492,131 873.71 19,423,461 452 89,632 | 0.16 432 0.23 432
(27, 45) - - 30.08 39,711 1.03 432 | 175 432 3.20 432
(432, 2) 0.56 434 0.69 433 1.00 432 | 170 432 3.09 432
0.11 499 | [0.09] 499 0.11 499 | 0.7 499 0.30 499
499 0.10 499 | [0.09] 499 0.11 499 | 0.7 499 0.30 499
(23, 55) 0.59 499 0.75 499 1.22 499 | 255 499 5.55 499
(499, 2) 0.59 499 0.77 499 1.19 499 | 256 499 5.59 499
884 0.23 881 0.23 881 | 0.8 881 0.48 881
880 881 0.22 881 0.25 881 | 0.28 881 0.47 881
(27,67) 117 881 1.41 881 2.14 881 | 4.08 881 9.33 881
(880, 2) 1.19 881 1.35 881 2.25 881 | 4.03 881 9.67 881
257 0.05 257 172 0.06 172 0.14 172
386 172 172 172 | 0.08 172 0.14 172
(19, 44) 0.14 172 0.17 172 172 | 053 172 1.03 172
(172,2) 0.11 172 0.16 172 172 | 052 172 1.02 172
1019.87 9,919,295] 22.50 238,780 | 54.77 549,181 | 34.74 434481 261 21,499
$953 0.19 829 667 0.22 685 | 0.33 623 0.74 623
(66, 101) 33.03 2,738 | 16,52 913 48.61 1,010 | 17.23 468 | 146.66 578
(440, 2) 2.64 543 4.31 525 12.53 550 | 14.56 459 | 9831 527
33.00 316,875 | 343.50 3,682,077 7.22 77,205 | 31.25 320,205 26.80 289,873
51196 565 0.20 565 0.23 565 | 0.38 565 0.92 565
(54,97) 1.59 660 2.50 568 35.47 924 | 81.63 863 | 369.30 1,008
(560, 21) 1.17 564 2.00 563 4.61 563 | 13.05 563 | 42.02 563
431 57,355 | 13.73 187,499 355 47340 216 25538 | 241 20,689
51238 771 0.30 2,053 0.34 2,053 | 0.9 2,037 1.00 2,037
(59, 94) 2.66 1,089 3.81 795 13.77 1,824 | 28.03 849 | 6230 744
(540, 2) 1.63 748 2.48 734 7.44 1,655 | 19.41 802 | 52.86 736
0.27 1,986 0.47 5171 0.48 5,078 866 0.34 749
51423 0.24 1,903 0.45 4,918 0.45 4,896 860 0.36 749
(24, 54) 0.83 751 0.97 749 1.36 749 749 4.92 749
(748, 2) 0.81 751 0.97 749 1.37 749 749 4.92 749
15.95 135563 2.09 17,170 324 28,420 | 156 12,285 1.64 12,370
51488 1,115 667 0.27 667 | 0.44 667 1.05 667
(47,67) 114 670 1.67 670 3.25 668 | 8.11 667 | 25.55 667
(667, 2) 0.89 667 1.30 667 2.63 667 | 6.61 667 | 20.641 667
15.13 158,070 | 4358 476,874| 1130 118372 17.48 198912 3.00 21,137
51494 665 0.22 665 0.25 665 | 0.45 665 1.11 665
(48, 69) 7.20 873 2.77 711 11.38 681 | 19.70 680 | 58.78 686
(661, 2) 1.11 665 1.75 665 3.92 665 | 10.41 665 | 31.11 665

Table 3.14: CPU time in seconds and number of nodes visitesblemg belief networks
corresponding tdSCAS’89 circuits, using static and dynamic mini-bucket heuristics.

Time limit 30 minutes.

124

min-fill pseudo tree
MBE() MBE() MBE() MBE() MBE()
Superlink AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i)
pedigree Samlam AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
pedl 0.05 0.05 0.11 0.31 0.97
(299, 5) 54.73 24.30 416,326 13.17 206,439 24,361 1.84 25,674 1.89 15,156
(15, 61) 5.44 24.72 414,239 12.97 205,887 1.59 24,361 1.86 25,674 1.89 15,156
ped38 0.12 0.45 2.20 60.97 out
(582, 5) - - 8120.58 85,367,022 - - 3040.60 35,394,461
(17,59) - - 7663.89 83,808,576 - - 3094.33 35,394,277
ped50 0.11 0.74 5.38 37.19 out
(479,5) - - - - - | 47677 5,566,578 748,792
(18, 58) out - - - - 497.30 5,566,344 107.11 748,792
i=10 i=12 i=14 i=16 i=18
’ ‘ time nodes time nodes time nodes time nodes time nodes
ped23 0.42 2.33 11.33 274.75 out
(310, 5) 9146.19 498.05 6,623,197 154,676 16.28 67,456 286.11 117,308
(27,71) out 514.33 6,618,811 15.89 154,666 17.87 67,456 270.05 117,308
ped37 0.67 5.16 21.53 58.59 out
(1032, 5) 273.39 3,191,218| 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(21, 61) out 282.83 3,189,847| 1674.54 25,280,466 1066.79 15,372,724 131.56 953,061
i=12 i=14 i=16 i=18
’ ‘ time nodes time nodes time nodes time nodes nodes
ped18 0.51 1.42 4.59 12.87
(1184, 5) 139.06 - - 2177.81 28,651,103| 270.96 2,555,078 100.61 682,175 7,689
(21, 119) 157.05 - - 2199.44 28,651,103| 285.03 2,555,078 103.89 682,175 7,689
ped20 1.42 5.11 37.53 410.96
(388, 5) 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195
(24, 66) 3953.23 54,941,659 1349.51 18,449,393 1301.26 17,810,674 1112.49 9,151,195
ped25 0.34 0.72 2.27 6.56 29.30
(994, 5) - - - - - | 9399.28 111,301,168 3607.82 34,306,937 28,326,541
(34, 89) out - - - - 9690.70 111,301,168 3427.79 34,306,937 2987.50 28,326,541
ped30 0.42 0.83 1.78 5.75
(1016, 5) 13095.83 - - - - - - 214.10 1,379,131 685,661
(23,118) out - - - - - - 225.67 1,379,131 685,661
ped33 0.58 231 7.84 33.44
(581, 4) - | 2804.61 34,229,495 737.96 9,114,411| 3896.98 50,072,988 1,647,488 | 2956.47 35,903,215
(37, 165) out 3051.15 34,218,037| 796.58 9,113,615 4290.28 50,071,828 171.31 1,647,488 3216.04 35,884,557
ped39 0.52 2.32 8.41 33.15 81.27
(1272, 5) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 407,280
(23, 94) out - - - - 4242.59 52,804,044 405.08 2,171,470 145.03 407,280
ped42 4.20 31.33 206.40 out out
(448, 5) - - B B _ B
(25, 76) out - - - - - -

Table 3.15: CPU time and nodes visited for solvgenetic linkage networksusing static

mini-bucket heuristics. Time limit 3 hours.

same networkAOBB+SAT+DIVB(6) is 12 times faster thaACBB+DVB(4) and explores

about 5 times fewer nodes. Notice that in the case of dynarmehucket heuristics, the

difference betweeAOBB+SAT+DVB(i) and AOBB+DIVB(i) is not too prominent as in

the static case, because the heuristic estimates prunedhehspace quite effectively.

Table[3.1I5 shows the results obtained for the 12 linkageyaisahetworks from Section

[3.6.3. In this case, we observe that applying unit resatutias not cost effective.

125

minfill pseudo tree

(240, 4, 1721)

MBE() MBE() MBE() MBE()
spot5 BB+SMB(j) BB+SMB(j) BB+SMB(i) BB+SMB(i) AOEDAC
AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(j) toolbar
(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB()) BB+DMB(i)
(n k¢ AOBB-+DMB(i) AOBB-+DMB(i) AOBB+DMB(i) AOBB-+DMB(i)
i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.03 0.34 21.72 147.66
29 - - - - 25.69 5,005 | 148.27 632 | 613.79 8,997,894
(14, 42) 483 45,509 2,738 21.74 246 | 147.69 481 456 218,846
(83, 4, 476) 131.64 9,713 57.22 541 | 678.22 507 | 1758.78 507
65.91 11,850 53.72 364 | 630.09 330 | 1675.74 330
0.11 0.50 28.81 223.14
42b - 2154.64 9,655444| 148.11 712,685 228.17 12,255
(18,62) 1790.76 9,606,846 689,402 | 223.64 4,189
(191, 4, 1341) - - - B _ -
0.02 0.09 125 123
54 2.98 27,383 0.59 4,996 1.28 921 1.52 921 | 31.34 823,326
(11,33) 1.50 17,757 0.34 3,616 1.28 329 1.27 329 21,939
(68, 4, 283) 52.44 2,469 38.63 921 | 46458 921 | 465.35 921
27.27 2,188 21.91 329 | 266.55 329 | 265.89 329
0.02 0.09 1.09 403
404 - . - - | 400957 32,763,223| 1827.05 15,265,025 255.83 3,260,610
(19, 42) 146.05 1,373,846 14.08 144,535 3,273 4.06 367 | 151.11 6,215,135
(100, 4, 710) - - - - - - | 1964.20 2,015
272.46 39,144 215.17 5612 | 565.06 1,327 | 167.90 220
0.08 0.31 8.30 35.22
408b - - - - - -
(24, 59) 682.12 4,784,407 567,407
(201, 4, 1847) - - - -
0.03 0.14 0.39 0.39
503 - - - - 1.22 5,229 1.22 5,229
(9, 39) 41263 5,102,299 397.77 4,990,898 641 641
(144, 4, 639) - - - - 690.44 5229 | 694.86 5,229
- - 64.02 641 64.52 641
0.01 0.12 48.20 372.27
505b - - - -
(16, 98) 143,371

Table 3.16: CPU time and nodes visited for solvBI§OT5 networks Time limit 2 hours.

3.6.5 Results for Empirical Evaluation on Weighted CSPs

In this section we focus on both mini-bucket and EDAC heiosstvhen problems are

solved in a static variable ordering. We also evaluate thgachof dynamic variable order-

ings when using EDAC based heuristics.

SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scheglpiroblems for the daily

management of Earth observing satellites [7]. These pnablzan be described as follows:

e Given a sefP of photographs which can be taken the next day from at leasbbn

the three instruments, w.r.t. the satellite trajectory;

e Given, for each photograph, a weight expressing its impoda

126

e Given a set of imperative constraints: non overlapping amdmal transition time
between two successive photographs on the same instrulineitéfion on the in-

stantaneous data flow through the satellite telemetry;

e The goal is to find an admissible sub%tof P which maximizes the sum of the

weights of the photographs I when all imperative constraints are satisfied.

They can be casted as WCSPs by:
e Associating a variabl&’; with each photograpp; € P;

e Associating withX; a domainD; to express the different ways of achievingand
adding toD; a special value, callegtjectionvalue, to express the possibility of not

selecting the photograph;

e Associating with everyX; an unary constraint forbidding the rejection value, with a

valuation equal to the weight of;

e Translating as imperative constraints (binary or terndrg)constraints of non over-
lapping and minimal transition time between two (or thre@)tographs on the same
instrument, and of limitation on the instantaneous data.fleach imperative con-
straint is defined over a subset of two or three photograpthéareach value combi-
nation of its scope variables it associates a high penatty(¢0°) if the correspond-

ing photographs cannot be taken simultaneously, on the setmament.

The task is to computeminx »_._, f;, wherer is the number of unary, binary and
ternary cost functions in the problem.

Table[3.16 reports the results obtained for experiments WiSPOT5 networks, using
min-fill pseudo trees. We see thaDBB+SMB() is the best performing algorithm on this
dataset. The overhead of the dynamic mini-bucket hewistidweighs search pruning

here. For instance, on th&4 network, the difference betweekOBB+SMB(12) and

127

spot 29 network spot 29 network
[minfill: w*=14, h=42]) [minfill: w=14, h=42]

——@—— BB+SMB() ——e—— BB+SMB()

o AOBB+SMB(i) o AOBB+SMB(i)
——-v-—- BB+DMB() E ——-v-—- BB+DMB()
—--—&-—- AOBB+DMB(i) AOBB+DMB(i)

=B

time (sec)
>
\
\
/
nodes

Figure 3.20: Comparison of the impact of static and dynamig4miicket heuristics on the
29 SPOTS5 instancefrom Table[3.156.

BB+SMB(12) , in terms of runtime and size of the search space exploreg, s 3 orders
of magnitude. The best performances on this domain arersatddy AOBB+SMB(i) at
relatively largei-bounds which generate very accurate heuristic estim&tesexample,
AOBB+SMB(14) is the only algorithm able to solve tH&05b network. AOEDAC and

t ool bar were able to solve relatively efficiently only 3 out of the 8ttenstancese(g.,
29,54 and404).

In Figure[3.20 we plot the running time and number of nodeitedsy AOBB+SMB()
and AOBB+DIVB(i) (resp. BB+SMB(i) andBB+DMB(7)), as a function of the-bound,
on the29 SPOTS5 networki(e., corresponding to the first horizontal block from Table
[3.16). In this cas&OBB+DMVB() (resp.BB+DMVB(7)) is inferior to AOBB+SMB(7) (resp.
BB+DIVB(7)) across all reportedtbounds. We see th&0BB+SMB(i) achieves the best
performance at = 8, whereasAOBB+DIVB(i) performs best only at the smallest reported
i-bound, namely = 4.

Figure[3.21 displays the runtime distribution A®BB+SMB(i) guided by hypergraph
based pseudo trees, over 20 independent runs. Hypergrapd br@es have far smaller
depths than the min-fill ones, and therefore are again ablepoove the runtime over
min-fill based ones only at relatively smatbounds ¢.g., 404). On average, however,

the min-fill pseudo trees generally yield a more robust perémce, especially for larger

128

1000

1000

spot 29 - AOBB+SMB(i)
[hypergraph: w*=15, h=23] [minfill: w*=14, h=42]

—@— hypergraph
—O— minfill

i-bound

spot 404 - AOBB+SMB(i)
[hypergraph: w*=19, h=25] [minfill: w*=19, h=42]

time (sec)

spot 54 - AOBB+SMB(i)
[hypergraph: w*=12, h=16] [minfill: w*=11, h=33]

1000

100 4

—e— hypergraph
_o—

minfill

i-bound

spot 503 - AOBB+SMB(i)
[hypergraph: w*=11, h=21] [minfill: w*=9, h=39]

10000

—— hypergraph
—-O— minfill

Q. 1000 §

—&— hypergraph
—O— minfill

100 4

time (sec)

time (sec)
o

i-bound i-bound

Figure 3.21: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvirBPOT5 networkswith AOBB+SIVB(7) .

1-bounds of the mini-bucket heuristics 4., 503).

ISCAS'89 Circuits (WCSP)

For our purpose, we converted each of the ISCAS’89 circuits annon-binary WCSP
instance by removing flip-flops and buffers in a standard way@eating for each gate a
cost function that assigns a high penalty cost (1000) todh®dden tuples. For each of the
input signals we created, in addition, a unary cost functuith penalty costs distributed
uniformly at random between 1 and 10.

Table[3.1¥ shows the results for experiments with 10 ciscuising min-fill pseudo
trees. The EDAC based algorithms performed very poorly e dhtaset and could not
solve any of the test instances within the 30 minute timetlifihis was due to the relatively
large arity of the constraints, with up to 10 variables inirtBeope.

AOBB+SMB(¢) is superior, especially at relatively largdounds. For example, on the

129

minfill pseudo tree
MBE(i) MBE() MBE() MBE() MBE()
BB+SMB(i) BB+SMB(j) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas89 AOBB+SMB(i) AOBB+SMBJ(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(j)
BB+DMB()) BB+DMB(i) BB+DMB(i) BB+DMB()) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB())
(n, d) i=6 i=8 i=12 =14 i=16
time nodes time nodes time nodes time nodes time nodes
0.06 0.07 0.14 0.27 0.89
c432 - - - - 13.27 103,088 13.29 102,546 6.79 34,671
(27, 45) - - | 1373.07 23,355,897 3.85 76,346 3.89 75,420 1,958
(432, 2) - - 104,57 35,073 | 485.61 70,401 | 125.95 35502 | 122.09 35,609
- - 3.04 1,578 26.26 16,482 9.17 1,070 6.67 692
0.03 0.04 0.14 0.36 0.99
c499 - - - - 11.71 53,171 9.62 63,177 5.80 24,397
(23, 55) 472 117,563 61.48 1,265,425 18,851 24.18 486,656 1.80 22,065
(499, 2) 56.49 29,664 | 141.89 78,830 65.42 40,123 | 132.20 56,002| 203.74 76,832
3.87 10,147 23.31 13,529 5.71 1,002 37.34 3,353 87.99 1,736
0.06 0.07 0.16 0.49 1.48
c880 - - - - - - - - 816.47 4,953,611
(27,67) | 2284.65 39,448,762| 957.25 19,992,512 27551 5835825 607.43 13,568,696 137.31 2,837,010
(880,2) | 2463.80 321,585 - - | 2461.68 270,166| 3532.50 410,360| 2817.47 238,297
40,057 | 809.53 796,699| 101.88 32,748 | 232.97 36,187 | 625.50 20,357
0.01 0.01 0.06 0.19 0.46
$386 3.26 31,903 0.48 5,118 0.51 5,108 0.61 4,543 0.86 4,543
(19, 44) 0.12 3,705 2,073 0.14 2,699 0.22 1,420 0.49 1,420
(172, 2) 2.92 4,543 314 4,543 4.46 4,543 5.92 4,543 8.64 4,543
0.42 1,420 0.65 1,420 1.98 1,420 3.44 1,420 6.13 1,420
0.06 0.07 0.31 1.00 335
s953 - - - - - - - - - -
(66, 101) - - | 173471 21,438,706 - - 28.40 348,699 7.14 51,441
(440, 2) 110.11 100,180| 125.49 103,086| 466.71 106,825| 1412.68 107,063| 1094.88 103,383
6,885 17.49 7,400 | 350.17 9,164 | 1294.39 11,164| 984.06 8,377
0.06 0.08 0.37 127 451
51196 - - - - - - - - - -
(54, 97) - - - - | 3146.04 34,576,509| 1281.38 15,775,180 269.73 3,318,953
(560,21) | 828.59 217,500| 1126.06 216,777 - - - - - -
26,501 62.99 21,849 | 355.39 15,443 | 1443.72 13,687 - -
0.06 0.09 0.41 1.25 472
51238 - - - - - - - - - -
(59,94) | 224560 32,501,292 - - | 1061.12 18,302,873 821.55 14,213,319 360,788
(540,2) | 2744.88 294,977| 1661.09 141,562 - - - - - -
142,51 44,980 | 288.25 39,493 | 844.40 20,945 | 1449.22 13,857 - -
0.04 0.05 0.12 0.33 0.94
51423 - . - - . - : . 167.07 448,044
(24, 54) 25.97 309,520 51.60 648,520 68,102 5.50 70,043 7.62 87,483
(748, 2) - - - - | 1969.46 539,925| 2056.07 565,423| 2156.59 579,511
57.03 52,996 27.67 26,772 38.85 19,719 31.92 3,513 56.80 4,323
0.06 0.09 0.45 150 543
51488 - - - - 20.49 58,330 21.56 58,859 23.59 50,080
(47,67) | 1076.11 13,244,002 4.79 50,613 29,729 4.28 33,827 6.63 17,904
(667, 2) 192.51 48,822 204.68 49,417| 286.90 50,803 | 495.13 50,803 | 1205.42 50,803
11.58 15,025 18.02 15,064 94.05 13,762 | 304.60 13,762 | 1022.09 13,762
0.08 0.10 0.50 157 5.66
51494 3483.40 11,667,673] 94.08 362,002 396.38 1,544,960| 22.78 66,745 26.81 68,848
(48, 69 345.91 3,076,992| 9155 833,720 | 34358 3,207,718 83,318 17.01 124,765
(661, 2) 233.36 55,236 279.75 59,161 | 350.23 53,067 | 391.96 47,139 | 1431.41 48,119
41.40 21,156 64.60 21,743| 162.70 15,699 | 232.34 9,706 | 1260.97 9,913

Table 3.17: CPU time and nodes visited for solvISAS’89 circuits as WCSPs. Time
limit 1 hour. ACEDAC andt ool bar were not able to solve any of the test instances within
the time limit.

130

s1494 ISCAS'89 circuit s1494 ISCAS'89 circuit

[minfill: w*=48, h=69] . [minfill: w*=48, h=69]
10000 100

——e—— BB+SMB()

o AOBB+SMB(i)
——-¥-—— BB+DMB(i)
AOBB+DMB(i)

1000 4

100 4

time (sec)
nodes

——e——— BB+SMB() .] -
o AOBB+SMB(i)

——-v-—— BB+DMB()

——A—- AOBB+DMB(i)

i-bound i-bound

Figure 3.22: Comparison of the impact of static and dynamig4miicket heuristics on the
s1494 ISCAS’89 circuitfrom Table 3.1V.

s$1238 circuit, ACBB+SMB(16) finds the optimal solution in about 26 seconds, whereas
BB+SMVB(16) as well asAOBB+DVB(16) andBB+DVB(16) exceed the time limit. In
this case AOBB+DIVB(i) is competitive at relatively smaltbounds, which cause a rela-
tively small computational overhead. For instand@€BB+DMB(6) is the best performing
algorithm on thes953 network. It is 18 times faster and expands 14 times fewer siode
thanBB+DVB(6) .

In Figure[3.22 we show the running time and size of the segpelces explored by
AOBB+SMB(i) andAOBB+DMVB(i) (resp.BB+SMB(i) andBB+DMB()), as a function
of thei-bound, on thes1494 ISCAS’89 circuit ¢.e., corresponding to the last horizon-
tal block from Tabld_3.17). We see that the power of the dyeamini-bucket heuris-
tics is again more prominent for relatively smabounds. At largei-bounds, the static
mini-bucket heuristics are cost effective, namely theedéhce in running time between
AOBB+SMB(i) and AOBB+DVB(i) (resp. betweerBB+SMB(i) and BB+DVB(1i)) is
about two orders of magnitude in favor of the former.

Figure[3.28 depicts the runtime distribution ADBB+SMB(i) guided by hypergraph
based pseudo trees on the instan@$99, c880, s1238 ands1488, respectively. In
some cases(g., $1238), using hypergraph pseudo trees improves the runtime updo o

order of magnitude, compared with min-fill ones.

131

c499 ISCAS'89 circuit - AOBB+SMB(i) c880 ISCAS'89 circuit - AOBB+SMB(i)
10000 [hypergraph: w*=24, h=35] [minfill: w*=23, h=45] 10000 [hypergraph: w*=27, h=45] [minfill: w*=27, h=67]
—@— hypergraph
—-O— minfill

1000 5 1000 4§

100 § 100 §

time (sec)
time (sec)

—e— hypergraph
—O— minfill

0.1 T T T T T T 0.1

i-bound i-bound
s1238 ISCAS'89 circuit - AOBB+SMB(i) s1488 ISCAS'89 circuit - AOBB+SMB(i)
[hypergraph: w*=58, h=75] [minfill: w*=59, h=94] 10000 [hypergraph: w*=45, h=57] [minfill: w*=47, h=67]

—@— hypergraph —e— hypergraph
—O— minfil —O— minfill

10000

1000 4

1000 4

100 100 4

time (sec)
time (sec)

i-bound i-bound

Figure 3.23: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvin§CAS’89 networks with AOBB+SIVB(7) .

Mastermind Games

Each of these networks is a ground instance of a relationaé8ayg network that mod-
els differing sizes of the popular game of Mastermind. Thestevorks were produced by
the FRRIMULA Systerg and used in experimental results from![17]. For our purpese,
converted these networks into equivalent WCSP instancekimgtthe negative log prob-
ability of each conditional probability table entry and naling it to the nearest integer. The
resulting WCSP instances are quite large with the number @dibied variables ranging
between 1220 and 3692, and containingnary and ternary cost functions.

Table[3.18 shows the results for experiments with 6 gamariess of increasing diffi-
culty, using min-fill based pseudo trees. As befé@BB+SMB(i) offers the overall best

performance. For examplaOBB+SMB(10) solves themm 04- 08- 03 instance in about

http://www.cs.auc.dk/jaeger/Primula

132

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=8 i=10 i=12 i=14 i=16 i=18
(n, r, k) time nodes time nodes time nodes time nodes time nodes time nodes
mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99
(20, 57) - - - - - - 897.87 873,606| 946.84 915,095| 738.13 720,764
(1220, 3, 2) 1.16 10,369 7,075 0.93 6,349 1.23 3,830 3.11 3,420 8.25 3,153
mm-03-08-04 0.48 0.60 0.89 2.08 6.45 25.15
(33,87) - - - - - - - - - - - -
(2288, 3, 2) 72.37 150,642 | 66.69 193,805 36.22 71,622 31,177 25.16 63,669 29.27 13,870
mm-04-08-03 0.21 0.27 0.48 1.06 3.54 12.52
(26,72) - - - - 1609.86 1,315,415| 1603.71 1,175,430 1157.09 901,309| 1924.02 1,451,854
(1418, 3, 2) 8.20 68,929 26,111 4.23 34,445 3.10 17,255 5.29 15,443 13.71 10,570

i=12 i=14 i=16 i=18 i=20 i=22

time nodes ‘ time nodes ‘ time nodes ‘ time nodes ‘ time nodes time nodes
mm-04-08-04 1.19 2.35 6.85 26.47 106.37 395.57
(39, 103) - - - - - - - - - - - -
(2616, 3, 2) 324.06 744,993| 166.67 447,464 310.06 798,507 107,463 192.39 242,865| 414.54 62,964
mm-03-08-05 2.14 4.54 11.82 39.01 134.46 497.45
(41, 111) - - - - - - - - -
(3692, 3, 2) - - - 835.9d 1,122,008 | 1162.22 1,185,327| 1200.65 1,372,324
mm-10-08-03 1.48 3.78 11.39 34.53 127.55 593.25
(51, 132) - - - - - - - - - - - -
(2606, 3, 2) 109.50 290,594 128.29 326,662 151,128 74.14 127,130 169.84 133,112 623.83 79,724

Table 3.18: CPU time and nodes visited for solviMgstermind game instancesusing
static mini-bucket heuristics. Time limit 1 hokOEDAC andt ool bar did not solve any
of the test instances within the time limit.

3 seconds, whered@B+SMB(10) exceeds the 1 hour time limit. We did not report re-

sults with dynamic mini-bucket heuristics because of tlahiiitively large computational

overhead associated with relatively largeounds. We also note that the EDAC based al-

gorithms were not able to solve any of these instances wittaralloted time bound (not

shown in the table).

In Figure[3.24 we display the runtime distributionA®BB+SMB(i) guided by hyper-

graph based pseudo trees over 20 independent runs, foriddtsices. The spectrum of

results is similar to what we observed earlier.

3.6.6 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variabteeongs on AND/OR Branch-

and-Bound search guided by local consistency (EDAC) basettsties. We did not use dy-

namic variable orderings with dynamic mini-bucket helucsbecause of the prohibitively

large computational overhead.

133

mm-03-08-03 - AOBB+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57]

time (sec)

—— hypergraph
—-O— minfill

i-bound

mm-04-08-04 - AOBB+SMB(i)
[hypergraph: w*=30, h=43] [minfill: w*=39, h=103]

10000

1000 o

time (sec)

100

—&— hypergraph
_o—

minfill

i-bound

time (sec)

time (sec)

1000

mm-04-08-03 - AOBB+SMB(i)
[hypergraph: w*=22, h=35] [minfill: w*=26, h=72]

—e— hypergraph
—O— minfill Pl

i-bound

mm-10-08-03 - AOBB+SMB(i)
[hypergraph: w*=41, h=55] [minfill: w*=51, h=132]

10000

1000 o

100 4

—e— hypergraph
—O— minfill

i-bound

Figure 3.24: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvidastermind networks with AOBB+SMVB(i) .

SPOT5 Benchmark

Table[3.19 shows the results for experiments with the 7 SP@8t&vorks described in

Section[3.6,5. We see that variable ordering can have a tdmos impact on perfor-

mance. ACEDAC+DSO is the best performing among the EDAC based algorithms, and

is able to solve 6 out of 7 test instances. The second bestithlgoin this category is

DVO+ACEDAC which solves relatively efficiently 3 test networks. Thigydenstrates the

benefit of using variable ordering heuristics within AND/@Ranch-and-Bound search.

We also observe that the best performance points hightight&able[3.1P are inferior to

those from Table 3.16 correspondingoBB+SMB(i) . For example, on thé2b network,

the difference in runtime and size of the search space eghloetweeMOBB+SNVB(12)

and ACEDAC+DSO is up to one order of magnitude in favor of the former. Siniar

the 505b network could not be solved by any of the EDAC based algosthwhereas

134

minfill pseudo tree

spot5 [n | wF toolbar | BBEDAC | AOEDAC | AOEDAC+PVO | DVO+AOEDAC | AOEDAC+DSO
c h
29 16 7 time 4.56 109.66 613.79 545.43 11.36
57 | 8 | nodes | 218,846 | 710,122 | 8,997,894 7,837,447 8,698 92,970
42b 14 [9 time - - - - - 6825.
75 | 9 | nodes - - - - - 27,698,614
54 14 | 9 time 0.31 0.97 31.34 9.11 0.75
75 | 9 | nodes 21,939 8,270 823,326 90,495 688 6,614
404 16 | 10 time 151.11 2232.89 255.83 152.81 12.09
89 | 12 | nodes | 6,215135| 7,598,995 | 3,260,610 1,984,747 88,079 14,844
4080 | 18 | 10 time - - - - - 747.71
106 13 nodes 2,134,472
503 22 | 11 time 53.72)
131 | 15 | nodes 231,480
505b 16 9 time -
70 10 nodes

Table 3.19: CPU time and nodes visited for solvlBBOT5 benchmarkswith EDAC
heuristics and dynamic variable orderings. Time limit 2 tsou
AOBB+SMB(14) finds the optimal solution in about 6 minutes. Notice thabl bar is
much better thamBBEDAC in all test cases. This can be explained by a more careful and
optimized implementation of EDAC which is availabletinol bar .

In Figure[3.25 we show the runtime distribution ADEDAC+PVO with hypergraph
pseudo trees on 20 independent runs. In this case, theetifferbetween the min-fill and
the hypergraph case is dramatic, resulting in up to threersraf magnitude in favor of the

latter.

CELAR Benchmark

Radio Link Frequency Assignment Problem (RLFAP) is a commatioa problem where
the goal is to assign frequencies to a set of radio links i sugvay that all links may
operate together without noticeable interferences [1%®gh be naturally casted as a binary
WCSP where each forbidden tuple has an associated penalty cost

Table[3.20 shows detailed results for experiments L AR6 and CELAR7 sub-
instances. We considered only the OR and AND/OR using EDA@i$tics. The per-
formance of the mini-bucket based algorithms was quite poothis domain, due to the
very low quality of the heuristic estimates resulted fronpraimating subproblems with
very large domains (up to 44 values).

We observe that ool bar is the overall best performing algorithm on this dataset.

135

time (sec)

time (sec)

10000

1000 o

>
3

spot 29 - AOEDAC+PVO
[hypergraph: w*=15, h=23] [minfill: w*=14, h=42]

—— hypergraph
——= minfill

spot 404 - AOEDAC+PVO
[hypergraph: w*=19, h=25] [minfill: w*=19, h=42]

25

1000

time (sec)

time (sec)

spot 54 - AOEDAC+PVO
[hypergraph: w*=12, h=16] [minfill: w*=11, h=33]

100

>

—— hypergraph
minfill

spot 503 - AOEDAC+PVO
[hypergraph: w*=11, h=21] [minfill: w*=9, h=39]

10000

1000 4

>
3

—— hypergraph
——= minfill

Figure 3.25: Min-Fill versus Hypergraph partitioning histics for pseudo tree construc-
tion. CPU time in seconds for solvirPOT5 networkswith ACEDAC+PVO.

One reason is that is close ton, so the AND/OR search is close to OR search. When
looking at the AND/OR algorithms we notice the¥O+AOEDAC offers the best perfor-
mance. On average, the speedups causdoM®3+AOBB over the other algorithms are as
follows: 1.9x overACEDAC, 1.6x overACEDAC+PVO and 2.5x oveBBEDAC. Further-
more, ACEDAC+DSO performs similarly toACEDAC+PVO indicating that the quality of

the dynamic problem decomposition is comparable to thesiae.

Random Binary WCSPs

A random binary WCSP class [117] is defined{ly d, ¢, t) wheren is the number of vari-
ables,d is the domain size; is the number of binary constraintsd, graphconnectivity,
andt the number of forbidden tuples in each constraint (tightnes$. Pairs of constrained
variables and their forbidden tuples are randomly selegsaty a uniform distribution.

Using this model we first experimented with the following @sdes of random binary

136

minfill pseudo tree
celar n w* toolbar BBEDAC AOEDAC AOEDAC+PVO | DVO+AOEDAC AOEDAC+DSO
c h
celar6-sub0 16 | 7 | tme 0.88 1.20 0.79 0.82 0.67
57 | 8 | nodes 8,952 2,985 2,901 1,565 2,652 1,633
celar6-subl 14 [9 [time 488.5§ 5079.28 6693.33 4972.42 4961.16 4999.17
75 | 9 | nodes | 752149 | 6,381,472 | 5558900 4,376,510 4,420,050 4,326,480
celar6-subl-24 | 14 9 | time 269.88 319.20 251.11 248.55 252.65
75 | 9 | nodes | 1,028814 716,746 512,419 446,808 440,238 440,857
celar6-sub2 16 | 10 | time 1887.4 6579.99 | 23896.83 12026.15 6097.33 11323.30
89 | 12 | nodes | 30,223,624 | 10,941,839 | 21,750,156 8,380,049 6,700,589 5,584,139
celar6-sub3 18 [10 | time 4376.31 14686.60 | 32439.00 28251.70 11131.00 28407.40
106 | 13 | nodes | 61,700,735 | 63,304,285 | 39,352,900 32,467,100 28,803,649 32,451,800
celar6-sub4-20 | 22 | 11 | time 27.76 1671.55 277.51 415.02 268.57 413.48
131 | 15 | nodes 167,960 | 8,970,211 522,981 952,894 893,609 1,256,102
celar7-sub0 16 9 | time 4.56 6.20 5.00 4.64 471
70 | 10 | nodes 9,146 10,248 10,198 9,151 9,761
celar7-subl 14 [9 [tme 188.11 470.36 239.20 189.15 245.41
75 | 9 | nodes 501,145 589,117 329,236 372,790 318,351
celar7-subl-20 | 14 | 9 | time 3.49 14.09 3.56 3.30 3.33
75 | 9 | nodes 10,438 18,959 27,805 15,860 15,637 14,351
celar7-sub2 16 | 10 | time 627.97] 4822.89 7850.10 5424.98 4727.30 5545.80
89 | 11 | nodes | 1,833,808 | 4,026,263 | 7,644,780 3,454,750 3,326,511 2,654,120
celar7-sub3 18 10 time 6944.9§ - - - - -
106 | 13 | nodes | 14,754,723
celar7-sub4-22 | 22 | 11 | time 3604.47 | 23882.20 | 26210.05 7958.44 23166.40 2999.54
129 | 15 | nodes | 6,391,923 | 23,700,235 | 34,941,835 11,533,163 23,674,049 3,429,708

Table 3.20: CPU time and nodes visited for solVBigLAR6 andCELAR7 sub-instances
with EDAC heuristics and dynamic variable orderings. Timatl 10 hours.

min-fill pseudo tree
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) AOEDAC
wcsp AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO toolbar
BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(j) DVO+AOEDAC BBEDAC
(n,d, c,t) AOBB+DMB(j) AOBB+DMB(j) AOBB+DMB(j) AOBB+DMB(j) AOEDAC+DSO
(w*, h) i=2 i=4 i=6 i=8
time nodes time nodes time nodes time nodes time nodes time nodes
161.86 1,043,900 53.00 385,426 12.30 64,612 7.33 28,831
medium - - 159.46 1,085,370 51.98 388,580 12.44 67,733 2.80 11,404 1,910
(20,5,100,0.7) 144.44 69,690 134.17 4,935 | 160.49 506 - - 2.38 9,721 9,736
(12, 17) 144.06 73,587 | 134.01 4,997 | 160.40 484 - - 2.40 9,796
157.21 962,935 26.99 187,522 4.87 15,513 5.70 21,017
low - - 131.08 1,243,260 25.04 249,556 5.01 22,523 2.79 11,121 1,487
(30,5,90,0.7) 128.07 62,836 | 87.10 3,708 | 122.07 877 | 160.84 527 1.08 4,383 4,532
(11, 19) 127.38 103,388 87.17 4,805 | 122.02 587 | 160.61 223 1.25 5,117
- - 94.71 660,928 2.16 15,365 1.36 2,754 0.69 3,801
sparse 102.12 1,240,740 1.93 32,717 0.29 3,767 1.09 470 0.70 3,876 | |0.07 2,256
(50,5,80,0.7) 79.78 106,779 6.49 3,049 8.08 2,722 10.48 2,640 0.31 1,881 0.37 2,233
(8, 16) 19.55 33,801 4.72 810 6.22 299 8.64 237 0.48 2,937
- - - - 27451 772,298 - - 133.49 353,812
medium - - - - 274.62 806,001 - - 41.47 101,627 11,079
(20,10,100,0.5) - - - - - - - - 33.86 83,060 83,074
(12, 17) - - - - - - - - 33.96 85,164
- - 25191 613,804 107.21 265,294 - - 0.60 3,111
low 254.01 536,805| 174.37 520,488 | 96.50 316,600 - - 0.60 3,061 1,502
(30,10,90,0.5) 181.47 18,857 - - - - - - 0.23 1,318 0.23 1,400
(11, 19) 176.83 25,377 - - - - - - 0.28 1,549
255.20 825,232 165.96 491,965 21.20 50,687 | 197.53 5,836 0.02 193
sparse 39.47 146,927 8.35 40,152 5.08 2,977 | 201.83 2,564 0.02 182 1,525
(50,10,80,0.5) 17.78 5,186 38.83 3,743 | 196.72 3,554 - - 0.02 192 362
(8, 16) 0.64 644 13.79 624 | 179.45 570 - - 0.03 274

Table 3.21: CPU time in seconds and number of nodes visitesbfemgrandom binary
WCSPs Time limit 5 minutes.

137

WCSPs:

1(20,5,100,0.7) | 2 (30,5,90,0.7) | 3 (50,5,80,0.7)

4 (20,10,100,0.7) | 5 (30,10,90,0.7) | 6 (50, 10,80, 0.7)

Classed and4 have medium connectivity, classesand5 have low connectivity, and
classe8 and6 represent sparse problems. For each problem class we tledsghtness to
obtain over-constrained instances, and the penalty casedbrbidden tuples was selected
uniformly at random between 1 and 10.

In Table[3.2] we give the detailed results of the experimetit 80 random instances
from each problem class. The columns are indexed byid@und of the mini-bucket
heuristics. We allowed each algorithm a 180 second time fonproblem classe$, 2 and
3, and a 300 second time limit for classes and5, respectively. The guiding pseudo-tree
of the AND/OR Branch-and-Bound algorithms was constructé@auhiemin-fill heuristic.

When comparing the mini-bucket based algorithms, we obgbateAND/OR Branch-
and-Bound with static mini-bucket®&OBB+SMB() , offers the best performance, espe-
cially for relatively sparse problems and largdyounds. For example, on problem cl&ss
AOBB+SMB(6) is 7 times faster thaBB+SMB(7) , and explores 5 times fewer nodes. Al-
ternatively, the AND/OR Branch-and-Bound with dynamic ninicketsAOBB+DIVB(i)
is superior only for the smallest reportédbound. For instance, on problem clags
AOBB+DIVB(2) causes a speed up in CPU time of 27 oB&+DVB(2) , while explor-
ing a search space 9 times smaller.

The overall best performance on this dataset is obtainech&®yEDAC based algo-
rithms, in particular byt ool bar, which outperforms dramatically (with up to several
orders of magnitude) the mini-bucket based algorithms. Witwenparing the AND/OR
Branch-and-Bound with EDAC based heuristics, we observeABEDAC+PVOimproves
over the staticAOEDAC, especially on problems with low and medium graph connectiv
ity. DVO+AOBB is only slightly better tharBBEDAC, which indicates that the semantic

variable selection heuristic is strong enough to shrinkss@ch space significantly, thus

138

leaving not much room for additional problem decomposgidxOEDAC+DSOis the third
better among these algorithms, showing the effectiveniessroputing the separators dy-
namically. The difference betwe@BBEDAC andt ool bar can be explained by a more
efficient implementation of EDAC which is availabletimol bar .

For our second experiment we consider four classes of rartdnary WCSPs with
domain size and maximum penalty cost for forbidden tuple$yfas described in [71].
For fixed values ofi, d andc, and increasing tightnegsmost problems are solved almost
instantly until a cross-over point is reached. Then prolldmacome harder and much
harder to solve. We denotethe lowest tightness where every instance is over-congtali

Based on this different categories of problems can be definéallaws:

e For graph density, we defined two problem typsparse(S) with ¢ = 2.5n, and

dens€(D) with ¢ = ™1,

e For tightness, we define two problem typé&sose(L) with ¢ = ¢°, andtight (T) with
t = d* — 0.25¢°.

Combining the different types, we obtain 4 different classssch being denoted by
a pair of characters (SL, ST, DL and DT). In each class, theaiorsize and maximum
penalty cost are set to 10, and the number of variabisused as a varying parameter.

Figures[3.26 an@l 3.27 display the average CPU time resultedansls. Each data
point represents an average over 20 samples. When compedEIgAC+PVO with static
ACEDAC we notice a considerable improvement in terms of both runtime and size of
search space exploredCEDAC+DSO has a similar performance &EDAC+PVO indi-
cating that both algorithms use decompositions of similality. The best performance
of all 4 problem classes is offered BVO+ACEDAC and BBEDAC with no clear winner
between the two. This implies that the semantic orderingibitiis powerful and it does
not leave much room for additional problem decompositidie overall best performance

is offered on this dataset lyool bar .

139

sparse-loose

25
] —e—— AoEDAC 4
1 O AOEDAC+PVO P
20 1 ——-¥—— DVO+AOEDAC :
{ — —A-—-- AOEDAC+DSO 8
] — = — BBEDAC]
1 — —0O—— toolbar]
15
)
(0]
L
o 101
£
5 -
0 -
T T T T T
20 25 30 35 40 45 50
variables
sparse-tight
80 .
1 —e—— AOEDAC O,,.)é[
: Qe AOEDAC+PVO K
| ———+—— Dvo+AOEDAC
60 | — —A—:- AOEDAC+DSO e /
’ A
— —® — BBEDAC / k
{ ——0—— toolbar
/ !
® 40 -
@ 1
[0]
E
20 A
O -
LN R R S B B B B BN B B L B B B L R R B R B R
18 20 22 24 26 28 30 32 34 36

variables

Figure 3.26: CPU time for solvingparse random binary WCSPs Time limit 300 sec-
onds.

140

dense-loose

80
1] —e—— AOEDAC
I O AOEDAC+PVO
| ——-w—— DVO+AOEDAC
60 4 — A —- AOEDAC+DSO
| — - — BBEDAC
{ —-—0O—-— toolbar
o 40
» J
(0]
E
20
0 -
T 1T T T T T T T T T
18 20 22 24 26 28 30 32 34 36
variables
dense-tight
107 g
] —e—— AOEDAC
4 el O AOEDAC+PVO
1 ———-v—— DVO+AOEDAC e
10° § —-—A-—-- AOEDAC+DSO ﬁ’/-/
i1 — & — BBEDAC 7
1 ——0O—— toolbar /
105 4
%)]
(]
el J
3] .
c . - o
104 4 A
] e
./D
./D/'D/
108 4 o~
1M +———7 77T 7T T
16 18 20 22 24 26 28 30 32
variables

Figure 3.27: CPU time for solvingense random binary WCSPs Time limit 300 sec-
onds.

141

3.7 Related Work

The idea of exploiting structural properties of the probl@norder to enhance the perfor-
mance of search algorithms in constraint satisfaction tswea. Freuder and Quinn [48]

introduced the concept of pseudo tree arrangement of aregrisjraph as a way of cap-
turing independencies between subsets of variables. Gubsty,pseudo tree seard48]

is conducted over a pseudo tree arrangement of the problech &tows the detection of

independent subproblems that are solved separately. Moeatly, [70] extended pseudo
tree search_ [48] to optimization tasks in order to boost theskun Doll search [51] for

solving Weighted CSPs. Our AND/OR Branch-and-Bound algorithaiso related to the

Branch-and-Bound method proposed by [62] for acyclic AND/O@&ofs and game trees.

Dechter’s graph-based back-jumping algorithm [29] usesghdfirst (DFS) spanning
tree to extract knowledge about dependencies in the graphndtion of DFS-based search
was also used by [19] for a distributed constraint satigfacalgorithm. Bayardo and
Miranker [106] reformulated the pseudo tree search algariin terms of back-jumping
and showed that the depth of a pseudo-tree arrangementaysalithin a logarithmic
factor off the induced width of the graph.

Recursive Conditionin¢RC) [24] is based on the divide and conquer paradigm. Rather
than instantiating variables to obtain a tree structurédork like the cycle cutset scheme,
RC instantiates variables with the purpose of breaking thwor& into independent sub-
problems, on which it can recurse using the same techniduecdmputation is driven by
a data-structure calledtree which is a full binary tree, the leaves of which correspomd t
the network CPTs. It can be shown that RC explores an AND/ORes|&#}. A pseudo
tree can be generated from the static ordering of RC dictaté¢laebdtree. This ensures that
whenever RC splits the problem into independent subproblémssame happens in the
AND/OR space.

Value Elimination4] is a recently developed algorithm for Bayesian infereritgvas

already explained in_[4] that, under static variable omigrithere is a strong relation be-

142

tween Value Elimination and Variable Elimination. Giventat& orderingd for Value
Elimination, it can be shown that it actually traverses anDX®R space [38]. The pseudo
tree underlying the AND/OR search space traversal by Valumiiation can be con-
structed as the bucket tree in reversedHowever, the traversal of the AND/OR space
will be controlled byd, advancing the frontier in a hybrid depth or breadth first nean
Value Elimination is not a linear space algorithm.

Backtracking with Tree-DecompositigBTD) [59] is a memory intensive method for
solving constraint satisfaction (or optimization) prabke which combines search tech-
niques with the notion of tree decomposition. This mixedrapph can in fact be viewed
as searching an AND/OR search space whose backbone pseedodefined by and struc-
tured along the tree decomposition. What is defined in [59{rastsiral goods, that is parts
of the search space that would not be visited again as sodreascbnsistency (or opti-
mal value) is known, corresponds precisely to the decortipasif the AND/OR space at
the level of AND nodes, which root independent subproblefise BTD algorithm is not

linear space, it uses substantial caching and may be expalnarthe induced width.

3.8 Conclusion to Chapter 8

The chapter investigates the impact of AND/OR search sgaaspective on solving gen-
eral constraint optimization problems in graphical moddls contrast to the traditional
OR search, the new AND/OR search is sensitive the problaemistare. The linear space
AND/OR tree search algorithms can be exponentially betdad (never worse) than the
linear space OR tree search algorithms. Specifically, #teecdithe AND/OR search tree is
exponential in the depth of the guiding pseudo tree rathaar the number of variables, as
in the OR case.

We introduced a general Branch-and-Bound algorithm thabegpithe AND/OR search

tree in a depth-first manner. It can be guided by any heurfistiction. We investigated

143

extensively the mini-bucket heuristic and showed that iit peune the search space very
effectively. The mini-bucket heuristics can be either poeapiled (static mini-buckets) or
generated dynamically at each node in the search tree (dgmaimi-buckets). They are
parameterized by the Mini-Bucketbound which allows for a controllable trade-off be-
tween heuristic strength and computational overhead. mjuoation with the mini-bucket
heuristics we also explored the effectiveness of anotlassaf heuristic lower bounds that
is based on exploiting local consistency algorithms fort dosctions, in the context of
WCSPs.

Since variable ordering can influence dramatically thecdeperformance, we also in-
troduced several ordering schemes that combine the AND/@f®rdposition principle
with dynamic variable ordering heuristics. There are thapproaches to incorporating
dynamic orderings into AND/OR Branch-and-Bound search. Tisé dne applies an in-
dependent semantic variable ordering heuristic whenéeepartial order dictated by the
static decomposition principle allows. The second, ortimag approach gives priority to
the semantic variable ordering heuristic and applies proldlecomposition as a secondary
principle. Since the structure of the problem may changendtally during search we
presented a third approach that uses a dynamic decompositthod coupled with se-
mantic variable ordering heuristics.

We focused our empirical evaluation on two common optinmzaproblems in graph-
ical models: finding the MPE in Bayesian networks and solving \RESOur results
demonstrated conclusively that in many cases the depthANB/OR Branch-and-Bound
algorithms guided by either mini-bucket or local consistebased heuristics improve dra-
matically over traditional OR Branch-and-Bound search, esgfig for relatively weak
guiding heuristic estimates. We summarize next the mosbrtapt aspects reflecting the
better performance of the AND/OR algorithms, including thii-bucket:-bound, dy-
namic variable orderings, constraint propagation and tnaity of the guiding pseudo

tree.

144

e Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket hewsstith relatively large
i-bounds are cost effective.(., genetic linkage analysis networks from Tablel 3.8,
Mastermind game instances from Table 8.18). However, dsjmrestricted, the dy-
namic mini-bucket heuristics, which exploit the partiatigement along the search
path, appear to be the preferred choice, especially fotivelg smalli-bounds ¢.g.,
ISCAS’89 networks from Tablds 3117 and13.9). This is becalsset heuristics are
far more accurate for the sanmound than the pre-compiled version and the savings

in number of nodes explored translate into important tinvensgs.

e Impact of dynamic variable ordering. Our dynamic AND/OR search approach
was shown to be powerful especially when used in conjunatiith local consis-
tency based heuristics. The AND/OR Branch-and-Bound algostwith EDAC
based heuristics and dynamic variable orderings were so@&able to outperform
the Branch-and-Bound counterpart with static variable angsrby two orders of
magnitude in terms of running time. (., see for example th803 SPOT5 network

from Table[3.1D).

e Impact of determinism. When the graphical model contains both deterministic in-
formation (hard constraints) as well as general cost fonstiwe demonstrated that
is beneficial to exploit the computational power of the craists explicitly, via con-
straint propagation. Our experiments on selected cladsgsterministic Bayesian
networks showed that enforcing a form of constraint propagacalled unit reso-
lution, over the CNF encoding of the determinism present enrtetwork was able
in some cases to render the search space almost backtegck-#t., ISCAS’'89 net-
works from Tablé 3.14). This caused a tremendous redudtionnining time for the
corresponding AND/OR algorithms.(., see for example the953 network from

Table[3.14).

145

e Impact of the static variable ordering via the pseudo tree The performance of the
AND/OR search algorithms is highly influenced by the quatityhe guiding pseudo
tree. We investigated two heuristics for generating smalliced width/depth pseudo
trees. The min-fill based pseudo trees usually have smalced width but signif-
icantly larger depth, whereas the hypergraph partitiofiagristic produces much
smaller depth trees but with larger induced widths. Our arpents demonstrated
that the AND/OR algorithms using mini-bucket heuristicadf, on average, from
the min-fill based pseudo trees because the guiding mirkdiugeuristic is sensi-
tive to the induced width size which is obtained for theseetypf pseudo trees.
In some exceptional cases however, the hypergraph pamigdased pseudo trees
were able to improve significantly the search performanspeeally at relatively
small i-bounds ¢.g., see for example the1238 network from Figuré_3.23), be-
cause in those cases the smaller depth guarantees a smdI¥OR search tree.
The picture is reversed for the AND/OR algorithms that ecddiocal consistency,
which is not sensitive to the problem’s induced width. Hehe, hypergraph based
trees were able to improve performance up to 3 orders of maggover the min-fill

based trees:(g., SPOT5 networks from Figufe 3125).

146

Chapter 4

Memory Intensive AND/OR Search for
Graphical Models

4.1 Introduction

In Chaptei. B we presented the AND/OR search space perspémtioptimization tasks
over graphical models. In contrast with traditional OR sbathe main virtue of AND/OR
search consists in exploiting independencies betweeahlad during search. This can
provide exponential speedups over traditional search adstbblivious to problem struc-
ture. The AND/OR search tree is guided by a pseudo tree tlaaissine primal graph.
Assigning a value to a variable (also known as conditioniegguivalent in graph terms to
removing that variable (and its incident edges) from thenptigraph. A partial assignment
can therefore lead to the decomposition of the residualaryraph into independent com-
ponents, each of which can be searched (or solved) separdtet pseudo tree captures
some of these decompositions given an order of variablantistion.

It is often the case that a search space that is a tree can becgraph if identical nodes
are merged, because identical nodes root identical suesa correspond to identical
subproblems. Some of these unifiable nodes in the AND/ORséege can be identified
based on the graph notion obntexts The context of a node is a subset of the currently
assigned variables that completely determines the rentasubproblem using graph in-

formation only. Consequently, algorithms that explore & sh graph involve controlled

147

memory management that allows improving their time-pentamce by increasing their use

of memory.

Contribution

In this chapter we improve significantly the AND/OR BranctddBound tree search al-
gorithm introduced in Chaptél 3 by usimgchingschemes. Namely, we extend the al-
gorithm to explore the context minimal AND/OR seamgfaph rather than the AND/OR
search tree, using a flexible caching mechanism that carn sagmory limitations. The
caching scheme, which is based on contexts, is similar td gad no-good recording and
recent schemes appearing in Recursive Conditioning [24]jééaBacktracking [4] and
Backtracking with Tree Decompositions [59].

Since best-first search is known to be superior among memegpsive search algo-
rithms [40], the comparison with the best-first approach &xploits similar amounts of
memory is warranted. We therefore present a new AND/OR bedgorithm that explores
a context minimal AND/OR search graph ifest-firstrather than depth-first manner. Un-
der conditions of admissibility and monotonicity of the hetic function, best-first search
is known to expand the minimal number of nodes, at the expenssng additional mem-
ory [40]. These savings in number of nodes may often tramahd time savings as well.

The efficiency of the proposed memory intensive depth-fingt best-first AND/OR
search methods also depends on the accuracy of the guidimgtieefunction, which is
based on the Mini-Bucket approximation [42]. Like in Chaplien@ continue to explore
empirically the efficiency of the mini-bucket heuristicdaath static and dynamic settings,
as well as the interaction between the heuristic strengditzalevel of caching.

We apply the memory intensive depth-first and best-first ADIR&earch algorithms to
two common optimization problems in graphical models: fgdihe Most Probable Ex-
planation (MPE) in belief networks [104] and solving WeigthhtCSPs [9]. We experiment

with both random models and real-world benchmarks. Ourtesbow conclusively that

148

the new memory intensive AND/OR search algorithms impraoaerdtically over compet-
itive approaches, especially when the heuristic estimaefaccurate and the algorithms
rely primarily on search rather than on pruning based on ¢ueistic evaluation function.

The research presented in this chapter is based in part p84885].

Chapter Outline

The chapter is organized as follows. Secfiod 4.2 providekdraund on the AND/OR
search graph for graphical models. Section$ 4.3[and 4.4mréise new depth-first and
best-first AND/OR search algorithms exploring the conteixtimal AND/OR graph. Sec-
tion[4.5 is dedicated to an extensive empirical evaluatidh@proposed memory intensive

search methods, while Sectionl4.6 provides a summary araduzbng remarks.

4.2 AND/OR Search Graphs for Graphical Models

The AND/OR search tree for graphical models presented in €h@pexploits problem
structure during search by utilizing value assignment asoalem simplification mech-
anism. AnAND/OR search treés defined using a backbompseudo treghat spans the
primal graph and captures problem decomposition duringcked@ he search tree contains
alternating levels of OR and AND nodes. The OR nodes correspmthe variables while
the AND nodes represent value assignments. A depth-firstls@#gorithm traversing the
AND/OR search tree is time-exponential in the depth of thidigg pseudo tree and may
operate in linear space.

It is often the case that a search space that is a tree can bex@graph if identical
nodes arenerged because identical nodes root identical search subspadesarespond
to identical subproblems. Some of these nodes can be igehbfised orontexts The
transition from a search tree to a search graph in AND/OResaptations also yields

significant savings compared to the same transition in tiggnad OR space. The notion of

149

AND/OR searchgraphwas presented for general graphical models in [38]. We niegt g
an overview of the main concepts.

First, we present the notion ofduced width of a pseudo tree Gf[3&] which is neces-
sary for bounding the size of the AND/OR search graphs. Wetgdnydrs(7) a linear
DFS ordering of a tre& .

DEFINITION 38 (induced width of a pseudo tree)The induced width of+ relative to a
pseudo tre€, wr(G), is the induced width alongp ~s(7") ordering of the extended graph

of G relative to7, denoted3” .

We now provide definitions which allow identifying nodestthan be merged. The idea
is to find a minimal set of variable assignments from the curpath that will always root
the same conditioned subproblem, regardless of the assigsrthat are not included in
this minimal set. Since the path for an OR nadgand an AND nod€ X, x;) differ by
the assignment ok to z;, the minimal set of assignments that we want to identify &l
different for X; and for(X;, z;). The following definitions distinguish between two types
of context-based caching which may yield into two differechhemes. The difference may
seem a bit subtle. In these definitions, ancestors and d#satsnare with respect to the

pseudo tre€, while connection is with respect to the primal gragh

DEFINITION 39 (parents) Given a primal graphz and a pseudo tre§ of a graphical
modelR, the parentsof an OR nodeX;, denoted bya; or pay,, are the ancestors oX;

that have connections ¥ to .X; or to descendants of;.

DEFINITION 40 (parent-separators) Given a primal graphGG and a pseudo treg of a
graphical modelR, theparent-separatoisf X; (or of (X;, z;)), denoted byas; or pasy;,

are formed byX; and its ancestors that have connections-ito descendants of;.

It follows from these definitions that the parentsXof pa;, separate in the primal graph

G (and also in the extended gra@f and in the induced extended gra@h”) the ancestors

150

OR

AND

OR

AND

OR

AND

OR

AND

(c) OR contexts

Figure 4.1: AND/OR search graph for graphical models.

of X; from its descendants. Similarly, the parent-separatdrefsg;, pas;, separate the
ancestors ofX; from its descendants. It is also easy to see that each vacglbdnd its
parentspa; form a clique in the induced gragh? . The following proposition establishes

the relation betweepa; andpas;.

PROPOSITIONZ ([38]) (1) If Y is the single child ofX in 7, thenpasy = pay. (2) If X

has childrenY, ..., Y}, in 7, thenpasx = UL pay..

THEOREM 8 (context based merge [38])GivenG7 ", let 7, andT,, be any two partial

paths in an AND/OR search graph, ending with two nodesndn..

1. If n; andn, are AND nodes annotated By, x;) and

asgn(ma,)[pasx,] = asgn(ma,)[pasx,

151

then the AND/OR search subtrees rootednhyand n, are identical andn; andn,

can be mergedusgn(m,,)[pasx,] is called theAND context of n;.

2. If n; andn, are OR nodes annotated By; and

asgn(mn,)[pax,| = asgn(m,,)[pax,]

then the AND/OR search subtrees rootedhyand n, are identical andn; andn,

can be mergedusgn(m,,)[pax,] is called theOR contextof n;.

DEFINITION 41 (context minimal AND/OR search graph) The AND/OR search graph of
‘R based on the backbone pseudo tfe¢hat is closed under the context-based merge op-

erator is calledcontext-minimal AND/OR search gragimd is denoted by (R).

We should note that we can in general merge nodes based bé&tNbDBrand OR con-
texts. However, Propositidn 2 shows that doing just one@frthenders the other unneces-
sary (up to some some small constant factor). In this chapgevill be using AND context

based merging.

THEOREM9 (complexity [38]) Given a graphical modeR, its primal graphG, and a
pseudo tre¢” having induced widthv = wz(G), the size of the context minimal AND/OR

search graph based dh, G7(R), isO(n - k), wherek bounds the domain size.

Example 16 Consider the example given in Figlire 4.1(a). The AND contédaach node
in the pseudo tree is given in square brackets. The contextmal AND/OR search graph
(based on AND merging) is given in Figdre 4.1(b). Its size issfaaller than that of the
AND/OR search tree from Figufe 3.Ij(c) (16 vs. 54 AND nodes)il&@ly Figure [4.1(d)

shows the context minimal AND/OR graph based on the OR cogiegtsin Figuré 4.1(q).

Its size is larger than that of graph based on AND contexts €388 nodes) in this case.

152

Finding Good Pseudo Trees

The performance of any AND/OR search algorithm is influenmgthe quality of the un-
derlying pseudo tree. In Chapiér 3 we described two hewsifsitgenerating small induced
width/depth pseudo trees. Tain-fill heuristic extracts the pseudo tree by a depth-first
traversal of the induced graph obtained by a min-fill eliniima ordering [67]. Thehy-
pergraph partitioningheuristic constructs the pseudo tree by recursively deosing the
dual hypergraph associated with the graphical madel [24¢. dbserved that the min-fill
heuristic usually generates lower width trees, whereahyipergraph heuristic produces
much smaller depth trees. Therefore, the hypergraph basmdip trees appear to be fa-
vorable for tree search algorithms, while the min-fill psedcees, which minimize the
context size, are more appropriate for graph search atgosit In the experimental section
we provide an extensive evaluation detailing the impachefgseudo tree quality on the

AND/OR graph search algorithms.

4.3 AND/OR Branch-and-Bound with Caching

The depth-firstAND/OR Branch-and-Boundlgorithm, AOBB- C, for searching context
minimal AND/OR graphs for graphical models, is described\lyorithm[8. It interleaves

a forward expansion step of the current partial solutioe {EEXPAND) with a backward
propagation stedROPAGATE) that updates the node values. This performance is idéntica
to the tree-based variant from Chapter 3 and we describeatfbecompleteness sake.

The context based caching uses table representation. ElrvaaableX;, a table is
reserved in memory for each possible assignment to its pasgrarator setas; (i.e., AND
context). During search, each table entry records the gptwwoiution (both the cost and
an optimal solution tree) to the subproblem below the cpaading AND node. Initially,
each entry has a predefined value, in our ¢ddiel . The fringe of the search is maintained

by a stack calle@®PEN. The current node is denoted hyits parent byp, and the current

153

Algorithm 8 : AOBB- C: AND/OR Branch-and-Bound Graph Search

Input: An optimization problen? = (X, D, F, Y, min), pseudo-tre€ rooted atX;, AND contextspas; for every
variableX;, heuristic functiom(n).
Output: Minimal cost solution and an optimal solution assignment.

1 wv(s) « 00; ST(s) « 0; OPEN « {s} /1 Initialize search stack
2 Initialize cache tables with entries "NULL" /1 Initialize cache tables
3 while OPEN # () do
4 n <« top(OPEN); removen from OPEN /1 EXPAND
5 if n is an OR node, labeled’; then
6 foreachz; € D; do
7 create an AND node’, labeled(X;, ;)
8 v(n') « 0; ST (n') — 0
9 w(n,n') — 3 rep (x;) flasgn(mn)) /1 Conpute the OR-to-AND arc wei ght
10 suce(n) « suce(n) U {n'}
11 else ifn is an AND node, labeledX;, z;) then
12 cached — false; deadend «— false
13 if Cache(asgn(my)[pas;]) # NULL then
14 v(n) «— Cache(asgn(mn)[pas;]).value /] Retrieve val ue
15 ST (n) < Cache(asg(mn)[pas;]).assignment; /1l Retrieve optinmal assignnment
16 cached «— true /1 No need to expand bel ow
17 foreach OR ancestorn of n do
18 b — eval Parti al Sol uti onTree(T},)
19 if 1b > v(m) then
20 deadend «— true
21 break
22 if deadend == false and cached == false then
23 foreach X; € childrens(X;) do
24 create an OR node’ labeledX ;
25 v(n') «— oo0; ST(n') — 0
26 suce(n) «— suce(n) U {n'}
27 else ifdeadend == true then
28 L suce(p) < succ(p) — {n}
29 Add suce(n) on top of OPEN /1 PROPAGATE
30 while succ(n) == 0 do
31 if nis an OR node, labeled’; then
32 if X; == X4 then
33 L return (v(n), ST(n)) /] Search is conplete
34 v(p) — v(p) + v(n) /1 Update AND node val ue (sunmation)
35 ST(p) « ST (p) UST(n) /1 Update solution tree bel ow AND node
36 else ifn is an AND node, labeledX;, z;) then
37 Cache(asgn(my)[pas;]).value «— v(n) /1 Save AND node val ue in cache
38 Cache(asgn(my)[pas;]).assignment — ST (n); /1 Save optimal assignment
39 if v(p) > (w(p,n) +v(n)) then
40 v(p) — w(p,n) + v(n) /1 Update OR node val ue (ninim zation)
41 ST(p) «— ST(n) U {(Xi,z;:)} /] Update solution tree bel ow OR node
42 removen from succ(p)
43 n<«—p

154

path byr,. The children of the current node are denoteditye(n).

Each noden in the search graph maintains its current vai(e), which is updated
based on the values of its children. For OR nodes, the cuofentis an upper bound on
the optimal solution cost below. Initially, v(n) is set toco if n is OR, and) if n is AND,
respectively. A data structurg7'(n) maintains the actual best solution tree found in the
subgraph rooted at. The node based heuristic functidn) of v(n) is assumed to be
available to the algorithm, either retrieved from a cacheasnputed during search.

Since we use AND caching, before expanding the current AN@eno its cache table
is checked (line 13). If the same context was encountereatdeit is retrieved from the
cache, anducc(n) is set to the empty set, which will trigger tRRROPAGATE step. The
algorithm also computes the heuristic evaluation functarrevery partial solution subtree
rooted at the OR ancestors ofalong the path from the root (lines 17-21). The search
below n is terminated if, for some OR ancestor, f(7),) > v(m), wherev(m) is the
current upper bound on the optimal cost belaw The recursive computation ¢i7)) is
described by Algorithral7 from Chapter 3.

If a node is not found in cache, it is expanded in the usual @wegending on whether
it is an AND or OR node (lines 5-28). if is an OR node, labeled;, then its successors
are AND nodes represented by the valug$n variable X;'s domain (lines 5-10). Each
OR-to-AND arc is associated with the appropriate weight Befinition[25 in Chapt€r]3).
Similarly, if n is an AND node, labeledX;, x;), then its successors are OR nodes labeled
by the child variables ok in 7 (lines 22—26).

The node values are updated by BROPAGATE step (lines 30—43). Itis triggered when
a node value has an empty set of descendants (note that asueaelssor is evaluated, it is
removed from the set of successors in line 42). This meansthigs children have been
evaluated, and their final values are already determinete l€urrent node is the root, then
the search terminates with its value and an optimal solutes (line 33). Ifn is an OR

node, then its paremtis an AND node, ang updates its current valu€p) by summation

155

with the value ofn (line 34). An AND noden propagates its value to its parenin a
similar way, by minimization (lines 36—41). It also savesache the value and optimal
solution subtree below it (lines 37-38). Finally, the catraoden is set to its parenp
(line 43), because was completely evaluated. Each node in the search grapheaisaods
the current best assignment to the variables of the sulmrobElow it. Specifically, i

is an AND node, therb7(n) is the union of the optimal trees propagated frois OR
children (line 35). Alternatively, if» is an OR node and’ is its AND child such that
n = argminmesucem)(w(n, m) + v(m)), thenST(n) is obtained from the label of’
combined with the optimal solution tree bela(line 41). Search continues either with a

propagationstep (if conditions are met) or with axpansiorstep. Clearly,

THEOREM 10 (complexity) AOBB- Ctraversing the context minimal AND/OR graph rela-
tive to a pseudo tre is sound and complete. Its time and space complex®yis k"),

wherew* is the induced width of the pseudo tree @nldounds the domain size.

Since the space required BYBB- C can sometimes be prohibitive in practice, we next
present two caching schemes that can adapt to the currenbmpdéimitations. They use a
parameter calledache boundor simply j-bound) to control the amount of memory used

for storing unifiable nodes.

4.3.1 Naive Caching

The first scheme, calleghaive cachingand denoted hereafter BYOBB- C(5), stores nodes
at the variables whose context size is smaller than or equbktcache boungl It is easy
to see that when equals the induced width of the pseudo tree the algorithnoeepthe
context minimal AND/OR graph via full caching.

As we mentioned earlier, a straightforward way of implenmenthe caching scheme
is to have acache tablefor each variableX, recording the context. Specifically, lets as-

sume that the context of, is context(Xy) = {X, ..., Xx} and|context(Xs)| < 7. A

156

O—@©

(a) Primal graph (b) Pseudo tree

(c) AND/OR search graph

Figure 4.2: lllustration of naive caching used AgBB- C(2) .

157

cache table entry corresponds to a particular instantidtiq, ..., x } of the variables in
context(Xy) and records the minimal cost solution to the subproblemeabat the AND
node labeled Xy,).

However, some tables might never get cache hits. THead-cache§24,38] appear
at nodes that have only one incoming a#&BB- C(j) needs to record only nodes that are
likely to have additional incoming arcs, and these nodesbeadetermined by inspecting
the pseudo tree. For example, if the context of a node insltitl of its parent, then there

is no need to store anything for that node, because it woutteberitely a dead-cache.

Example 17 Figure [4.2(c) displays the AND/OR search graph obtained whth haive
caching scheme AOBB-C(2), relative to the pseudo tree givetigure[4.2(b). Notice
that there is no need to create cache tables for varialffeand B, because their AND
contexts include those of their respective parents in tieeighs tree, namelyontezt(A) C
context(H) and context(H) C context(B), respectively. MoreoveAOBB- C(2) does
not cache any of the AND nodes corresponding to vari@bleecause its corresponding

cache table, which is defined on 3 variableg(, A, B andC'), cannot be stored in memory.

4.3.2 Adaptive Caching

The second scheme, calladaptive cachingnd denoted bhyAOBB- AC(5), is inspired by
the AND/OR cutset conditioning scheme and was first explor¢8E]. It extends the naive
scheme by allowing caching even at nodes with contextsidnga the given cache bound,
based oradjusted contexts

Consider the nod€&;. in the pseudo tre& with context(Xy) = {Xi, ..., Xx}, where
k > j. During search, when variablg¢s(y, ..., X;_,} are instantiated, they can be viewed
as part of a cutset. The problem rooted Ky_;.; can be solved in isolation, like a
subproblem in the cutset scheme, after variablgs..., X;_; are assigned their current
values in all the functions. In this subproblem, conditidma the valueqzy, ..., z;_;},

context(Xy) = {Xi_j+1,..., Xi} (also called thedjusted contexof X [88]), so it can

158

Figure 4.3: lllustration of adaptive caching usedA§BB- AC(2) .

be cached within-bounded space. However, wha@BB- AC(j) retracts to variable;,_;

or above, the cache table for variablg needs to be purged, and will be used again when
a new subproblem rooted at,_;.; is solved. This caching scheme requires only a linear
increase in additional memory, compared to the nA@BB- C(j), but it has the potential

of exponential time savings, as shownlin/[88].

Example 18 Figure[4.3 shows the AND/OR graph traversed using the adaptehing
scheme AOBB-AC(2). In contrast to the naive scheme displayEajure (4.2, AOBB-
AC(2) caches the AND level corresponding to variabldased on its adjusted context.
The adjusted AND context 6f is {C, B} and a flag is installed at variablél, indicating

that the cache table must be purged whenet{é&s instantiated to a different value.

159

4.4 Best-First AND/OR Search

We now direct our attention tolgest-firstcontrol strategy for traversing the context minimal
AND/OR graph. The best-first search algorithm uses simiaownts of memory as the
depth-first AND/OR Branch-and-Bound with full caching andréfere the comparison is
warranted.

Best-first search is a search algorithm which optimizes brBedt search by expanding
the node whose heuristic evaluation function is the bestgratl nodes encountered so far.
Its main virtue is that it never expands nodes whose costysrizethe optimal one, unlike
depth-first search algorithms, and therefore is superi@mgrmemory intensive algorithms
employing the same heuristic evaluation function [40].

The best-first AND/OR graph search algorithm, denoted®BF- C, that traverses the
context minimal AND/OR search graph is described in Aldori{9. It specializes Nils-
son’sACO" algorithm [97] to AND/OR search spaces for graphical moaeld interleaves
forward expansion of the best partial solution tr&&XRPAND) with a cost revision step
(REVI SE) that updates node values, as detailed in [97]. The explicAND/OR search
graph is maintained by a data structure calléd the current node is, s is the root of the
search graph and the current best partial solution suldréenoted by/”. The children of
the current node are denoted fycc(n).

First, a top-down, graph-growing operation finds the bestaiaolution tree by tracing
down through the marked arcs of the explicit AND/OR searetpgC’- (lines 3-9). These
previously computed marks indicate the current best padiation tree from each node in
C’-. Before the algorithm terminates, the best partial solutiee, denoted by”, does not
yet have all of its leaf nodes terminal. One of its non-temhieaf nodes: is then expanded
by generating its successors, depending on whether it isaar@n AND node. Ifz is an
OR node, labeled;, then its successors are AND nodes represented by the vaglires
variableX;'s domain (lines 11-20). Notice that when expanding an ORenthge algorithm

does not generate AND children that are already presengiexplicit search grapf’, but

160

Algorithm 9: ACBF- C: Best-First AND/OR Graph Search

Input: An optimization problen? = (X, D, F, Y, min), pseudo tre€ rooted atX:, AND contextspas; for every
variable X ;, heuristic functiom(n).
Output: Minimal cost solution and an optimal solution assignment.

1 v(s) — h(s); G — {s}h /1 Initialize
2 while s is not labeledSOLV ED do
3 S—{shT «—{} /1 Create the marked PST
4 while S # () do
5 n <t op(.S) ; removen from S
6 T —T'U {n}
7 let L be the set of marked successorsof
8 if L # 0 then
9 | addL ontop ofS
10 let n be any nonterminal tip node of the marked (rooted ats) /| EXPAND
11 if n is an OR node, labeled’; then
12 foreachz; € D; do
13 letn’ be the AND node irG/- having context equal tpas;
14 if n == NULL then
15 create an AND node’ labeled{X;, ;)
16 v(n') « h(n')
17 wn,n') =X pep, (x,) flasgn(mn))
18 if n’ is TERMINALthen
19 | labeln’ as SOLVED
20 | succ(n) « succ(n) U {n'}
21 else ifn is an AND node, labeledX;, z;) then
22 foreach X; € childrent(X;) do
23 create an OR node’ labeledX;
24 v(n') « h(n')
25 succ(n) < succ(n) U {n'}
26 G4 — G4 U {succ(n)}
27 S— {n} /1 REVI SE
28 while S # () do
29 letm be a node irf such thatm has no descendants@- still in S; removem from S
30 if m is an AND node, labele¢lX;, z;) then
31 U(m) — Z'rnj Esucc(m) v(mJ)
32 mark all arcs to the successors
33 | labelm as SOLVED if all its children are labeled SOLVED
34 else ifm is an OR node, labeled’; then
35 ’U(m) = minmj €suce(m) (w(m,mj) + U(mj))
36 mark the arc through which this minimum is achieved
37 L labelm as SOLVED if the marked successor is labeled SOLVED
38 if m changes its valuer m is labeled SOLVEDRhen
39 L add toS all those parents af: such thatn is one of their successors through a marked arc.
40 | return v(s) /] Search term nates

161

rather links to them. All these identical AND nodes(#) are easily recognized based on
their contexts. Each OR-to-AND arc is associated with the@mpate weight. Similarly,

if nis an AND node, labeledX;, z;), then its successors are OR nodes labeled by the child
variables ofX; in 7 (lines 21-25). Moreover, a heuristic underestimate’) of v(n’) is
assigned to each afs successors’ € succ(n).

The second operation iOBF- Cis a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (lines 27-39). It aims at updating treuation function of any subtree
that might be affected, and marks the best one. Startingtivitimode just expanded the
procedure revises its valugn), using the newly computed values of its successors, and
marks the outgoing arcs on the estimated best path to ternodas. This revised value is
then propagated upwards in the graph. The revised vatugs an updated lower bound on
the cost of an optimal solution to the subproblem rootexd. @nly the ancestors of nodes
having their values revised can possibly have their valpemied, so only these need be
considered (lines 38-39). If we assume the monotone restrion h, cost revisions can
only be cost increases [87,/97]. During the bottom-up SABF- C labels an AND node
asSOLVED if all of its OR child nodes are solved, and labels an OR nod8@sVED if
its marked AND child is also solved. The algorithm termirsatgth the optimal solution
when the root node is labeledSOLVED.

If h(n) < wv(n), the exact cost at, for all nodes, and if. satisfies the monotone
restriction, then the algoriththOBF- Cwill terminates in an optimal solution tree [87, 97].
The optimal solution tree can be obtained by tracing dowmfrothrough the marked
connectors at termination and its optimal cost is equaleéo/tiuev(s) of s at termination.

It is possible to show that since the algorithm exploresyewede in the context minimal

graph just once, we get:

THEOREM 11 (complexity) The Best-First AND/OR search algorithm traversing the con-
text minimal AND/OR graph has time and space complexiy(ef- k*"), wherew* is the

induced width of the pseudo tree ahtbounds the domain size.

162

AOBB versus AOBF

We highlight next the main differences between depth-fildSDAOR Branch-and-Bound
(AOBB- C) and Best-First AND/OR searcAQBF- C) traversing the context minimal graph.
First, AOBF- C with the same heuristic function a&0BB- C is likely to expand the
smallest number of nodes [40], but empirically this depesdbow quicklyAOBB- C will
find an optimal solution. Secon&OBB- C can use far less memory by avoiding dead-
caches for example:(g., when the search graph is a tree), whAlBBF- C has to keep the
explicated search graph in memory. ThiADBB- C can be used as an anytime scheme,
namely whenever interrupted, the algorithm outputs thé $@&lstion found so far, unlike
AOBF- C which outputs a complete solution upon completion only. tA# above points
show that the relative merit of best-first versus depth-fiv&r context minimal AND/OR

search spaces cannot be determined by theory [40] and eai@vialuation is essential.

4.5 Experimental Results

In Chapter B we evaluated empirically AND/OR search algarghfor AND/OR trees
only. We now extend this evaluation to algorithms explotimg context minimal AND/OR
search graphs just described. We have conducted a numbeyesfraents on two common
optimization problems classes in graphical models: findmegMost Probable Explanation
in Bayesian networks and solving Weighted CSPs. We implerdentealgorithms in C++
and ran all experiments on a 2.4GHz single-core Pentium i 265B of RAM, running

Windows XP.

4.5.1 Overview and Methodology

Algorithms. We evaluated the following classes of memory intensive ADIR/search

algorithms guided by mini-bucket heuristics:

163

e Depth-first AND/OR Branch-and-Bound search algorithms with €aching, us-
ing static and dynamic mini-bucket heuristics, denotedA®BB- C+SMVB(i) and
AOBB- C+DVB(7) , respectively.

e Best-first AND/OR search algorithms using static and dynamiiu-bucket heuris-

tics, denoted byAOBF- C+SMB(7) andAOBF- C+DMB(7) , respectively.

We compare these algorithms against the AND/OR Branch-anshdalgorithms search-
ing the AND/OR tree (without caching) guided by the mini-ketcheuristics, denoted by
AOBB+SMB(i) and AOBB+DVB(i) , which were introduced in Chaptel 3. In addition,
we also ran the traditional OR Branch-and-Bound search alhgosi with full caching and
mini-bucket heuristics, denoted IBB- C+SMB(i) andBB- C+DVB(7) , respectively. The
parametei represents the mini-buckébound and controls the accuracy of the heuristic.

Throughout our extensive empirical evaluation we will aasthe following questions

that govern the performance of the proposed algorithms:

1 The impact of graph versus tree AND/OR Branch-and-Boundakear
2 The impact of best-first versus depth-first AND/OR search.

3 The impact of the mini-buckeétbound.

4 The impact of the cache boundn naive and adaptive caching.

5 The impact of the pseudo tree quality on AND/OR search.

6 The impact of determinism present in the network.

7 The impact of non-trivial initial upper bounds.

Since the pre-compiled mini-bucket heuristics requireaicstvariable ordering, the
corresponding OR and AND/OR search algorithms used theahariordering as well

derived from a depth-first traversal of the guiding pseu@e.tr We note however that

164

static MBEg) dynamic MBE() min-fill vs. nave vs. | constraint

BB-C+SMB(i) BB-C+DMB(i) hypergraph | adaptive | propagation| Samlam | Superlink
Benchmarks AOBB-C+SMB(i) | AOBB-C+DMB(i) | pseudo tree§ caching

AOBF-C+SMB(i) | AOBF-C+DMB(i)

Coding VA Vi - - - VA -
Grids Vi v Vv v v v -
Linkage v - v v - v v
ISCAS'89 vV Vv 4 Vv Va4 Vv -
UAI'06 Dataset Vv - Vv - - Vv

Table 4.1: Detailed outline of the experimental evaluatmrBayesian networks.

AOBB- C+SMB(i) and ACBB- C+DIVB(1) support a restricted form of dynamic variable

and value ordering. Namely, there is a dynamic internal imdeof the successors of the

node just expanded, before placing them onto the searck. s&gecifically, in line 29

of Algorithm[8, if the current node is AND, then the independent subproblems rooted

by its OR children can be solved in decreasing order of th@iresponding heuristic esti-

mates (variable ordering). Alternatively,sfis OR, then its AND children corresponding

to domain values can also be sorted in decreasing order iofbgristic estimates (value

ordering).

Bayesian Networks. For the MPE task, we tested the performance of the depth-first

AND/OR Branch-and-Bound and best-first AND/OR search algor# on the following

types of problems: random coding networks, grid networkgjeBen networks derived

from the ISCAS’89 digital circuits benchmark, genetic ligkaanalysis networks, and a

subset of networks from the UAI'06 Inference Evaluation &3att.

The detailed outline of the experimental evaluation for Bigme networks is given in

Table[4.1. We also consider an extension of the AND/OR BrarafrBound with caching

that exploits the determinism present in the Bayesian nétiwpconstraint propagation.

For reference, we also compared with theM3AM version 2.3.2 software pack%e

SAMIAM is a public implementation of Recursive Conditioning![24] alhican also be

viewed as an AND/OR search algorithm. The algorithm usesndegtbased caching

LAvailable at http://reasoning.cs.ucla.edu/samiam. Wadubebat cht ool

package.

165

1. 5 provided with the

static MBE) dynamic MBE() min-fill vs. nave vs. AOEDAC
BB-C+SMB(i) BB-C+DMB(i) hypergraph | adaptive | AOEDAC+PVO toolbar
Benchmarks| AOBB-C+SMB(i) | AOBB-C+DMB(i) | pseudo trees caching | DVO+AOEDAC | toolbar-BTD
AOBF-C+SMB()) | AOBF-C+DMB(i) AOEDAC+DSO
SPOT5 v v v v v v
ISCAS'89 VA Vv Vv v Vv v
Mastermind V4 - Vv Vv Vv v

Table 4.2: Detailed outline of the experimental evaluatmm/\eighted CSPs.

mechanism similar to our scheme. This version of recursoralitioning also explores a
context minimal AND/OR search graph [38] and therefore jtace complexity is expo-
nential in the treewidth. Note that when we use mini-buclezirtstics with high values of
17, we use space exponentialifor the heuristic calculation and storing, in addition te th

space required for caching.

Weighted CSPs. For WCSPs we evaluated the performance of the AND/OR searoh alg
rithms on the following types of problems: scheduling pevb$ from the SPOT5 bench-
mark, networks derived from the ISCAS’89 digital circuitsdanstances of the popular
game of Mastermind. The outline of the experimental evadagor WCSPs is detailed in
Tablel4.2.

For reference, we also report results obtained with theestathe-art solvers called
t ool bar [25] andt ool bar - BTD [28)4. t ool bar is an OR Branch-and-Bound algo-
rithm that maintains during search a form of soft local cstesicy called Existential Direc-
tional Arc Consistency (EDACY. ool bar - BTD extends théacktracking with Tree De-
composition(BTD) algorithm [59] and computes the guiding heuristic imf@tion as well
by enforcing EDAC during search. It can be shown that BTD engd@ context minimal
AND/OR search graph, relative to a pseudo tree correspgrdithe given tree decompo-
sition [38]. In addition, we also ran the depth-first AND/ORaBch-and-Bound tree search
algorithms with EDAC heuristics and dynamic variable ondgs described in Chaptel 3:
ACEDAC+PVOusing partial variable orderingpyO+ACEDAC using full dynamic variable

2Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/St#SP

166

ordering, andAOEDAC+DSOusing dynamic separator orderings, respectively.

The dynamic variable ordering heuristic used by the OR andANR Branch-and-
Bound algorithms with EDAC heuristics was th@n-dom/ddedheuristic, which selects
the variable with the smallest ratio of the domain size dididhy the future degree. Ties

were broken lexicographically.

Measures of Performance. We report the CPU time in seconds and the number of nodes
visited, required for proving optimality. We also specifietnumber of variables:§, num-

ber of evidence variables); maximum domain sizek{, the depth of the pseudo treés (
and the induced width of the graphs*} obtained for the test instances. When evidence
is asserted in the network;* andh are computed after the evidence nodes were removed
from the graph. We also report the time required by the Min¢igai algorithm MBE()

to pre-compile the heuristic information. The pseudo ttbas guide the AND/OR search
algorithms were generated using the min-fill and hyperggptitioning heuristics. In our
experiments we ran the min-fill heuristic just once and brtilesties lexicographically.
Since the hypergraph partitioning heuristic uses a noardehistic algorithm, the runtime

of the AND/OR search algorithms guided by the resulting psetwees may vary signif-
icantly from one run to the next. Therefore, we picked theupsetree with the smallest
depth out of 10 independent runs (unless otherwise specifibe best performance points
are highlighted. In each table, "-” denotes that the respeetigorithm exceeded the time

limit. Similarly, "out” indicates that the 2GB memory limitas exceeded.

4.5.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in Chapier 3 demonstrateded conclyshet the AND/OR Branch-
and-Bound tree search algorithms with pre-compiled mimkleti heuristics were the best
performing algorithms on this domain. The diference betw&€&BB+SMB(/) and the

OR tree search counterp&B+SMB(¢) was more pronounced at relatively smatilounds

167

(corresponding to relatively weak heuristic estimates) added up to 2 orders of mag-
nitude in terms of both running time and size of the searcltesxplored. For larger
i-bounds, when the heuristic estimates are strong enoughute the search space sub-
stantially, the diference between AND/OR and OR Branch-Badnd decreased. We also
showed thalAOBB+SMB(i) was in many cases able to outperform dramatically the cur-
rent state-of-the-art solvers for Bayesian networks sucBrasl AM as well SIPERLINK

(for genetic linkage analysis). The AND/OR Branch-and-Bowitth dynamic mini-bucket
heuristicsAOBB+DIVB(i) proved competitive only for relatively smaHbounds due to the
relatively reduced computational overhead. In this seatte continue the empirical eval-
uation, focusing on memory intensive depth-first and bestAND/OR search algorithms

guided by mini-bucket heuristics.

Coding Networks

We experimented with random coding networks from the clddsear block codegsle-
scribed in Chaptér] 3. They can be represented as 4-layef betigorks with X' nodes in
each layer4.e., the number of input bits). The second and third layers spoad to in-
put information bits and parity check bits respectivelyclparity check bit represents an
XOR function of the input bits. The first and last layers cep@nd to transmitted informa-
tion and parity check bits respectively. Input informaténd parity check nodes are binary,
while the output nodes are real-valued. Given a number aftibjps ', number of parents
P for each XOR bit, and channel noise variance a coding network structure is gener-
ated by randomly picking parents for each XOR node. Then mweilsite an input signal
by assuming a uniform random distribution of informatiotshcompute the corresponding
values of the parity check bits, and generate an assignméhé toutput nodes by adding
Gaussian noise to each information and parity check bit. dde®ding algorithm takes as
input the coding network and the observed real-valued a@gsignment and recovers the

original input bit-vector by computing an MPE assignment.

168

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
Samlam BB-C+SMB(j) BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB(j)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
(K, N) (w*, h) AOBB-C+SMB(i) AOBB-C+SMBJ(j) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMBY())
AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33
- - 16.55 174,205 0.09 148 0.72 130 8.36 130
(64, 128) (27, 40) out | 287.10 5052010/ 6.58 119,289 0.08 152 0.68 129 8.34 129
o2 =0.22 250.81 3,600,530 4.25 63,171 0.08 147 0.71 129 8.41 129
157 129 0.09 128 0.72 128 8.45 128
0.02 0.02 0.07 0.68 8.32
- - 76.38 807,319 0.99 10,688 0.81 1,189 8.41 158
(64, 128) (27, 40) out | 277.41 57250,380| 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160
02 =0.36 250.32 3,907,000/ 35.52 518,125 0.79 12,236 0.81 1,850 8.39 148
3.94 17,801 0.15 829 363 0.72 162 8.41 133
0.05 0.06 0.18 1.80 25.65
- 256.23 1,766,930 30.57 213,184 3.30 11,073 | 25.88 1,656
(128, 256) (53, 71) out 229.02 3,227,110 16.67 206,004| 3.51 22,644 | 2587 3,081
02 =0.22 - - | 21858 2,206,490 11.75 116,977 3.03 12,880 | 25.72 2,109
0.14 375 266 0.23 262 1.90 257 | 25.01 258
0.05 0.06 0.18 1.80 25.39
- - - | 26457 1,732,960 202.84 1,426,730| 97.98 603,342
(128, 256) (53, 71) out 291.61 4,309,160| 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120
o2 =0.36 - 290.12 2,951,230| 235.08 2,312,080| 178.90 1,816,940| 100.32 781,438
out 66.98 260,350 | 19.18 88,602 26,499 | 28.01 18,357
BB-C+DMB() BB-C+DMB() BB-C+DMB() BB-C+DMB() BB-C+DMB(i)
Samlam AOBB-+DMB(i) AOBB+DMB(i) AOBB-+DMB(i) AOBB-+DMB(i) AOBB+DMB(i)
(K, N) (w, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
22.46 9,331 0.41 183 141 130 [12.80 130 | 12267 130
(64, 128) (27, 40) out | 23.62 20,008 0.35 185 1.37 129 | 1277 129 | 121.12 129
o2 =0.22 21.26 13,971 0.34 176 1.36 129 | 12,62 129 | 120.81 129
129 0.37 128 2.15 128 | 19.98 128 | 192.66 128
46.66 18,781 5.12 1,204 558 432[1547 162 | 12357 144
(64, 128) (27, 40) out | 4871 44,734 5.17 1,864 5.53 512 | 1553 164 | 122.90 144
0% =0.36 44.20 29,191 4.91 1,323 5.41 399 | 1533 155 | 122.27 138
1.96 446 160 2.71 132 | 2050 128 | 191.08 128
195.84 39,109 48.49 3684 1748 482 | 13041 379 - -
(128, 256) (53, 71) out | 195.82 121,822| 4817 9,391 | 17.15 500 | 129.38 388
o2 =0.22 193.30 68,571| 48.06 5241 | 16.88 420 | 128.23 355
260 1.58 256 | 11.18 256 | 131.50 256
288.97 62,749 22955 19,776 | 234.08 4,402 276.95 804
(128, 256) (53, 71) out | 289.09 223,938| 229.91 46,768 | 233.96 7,947 | 276.31 953
o2 =0.36 288.79 121,278| 229.09 27,362 | 233.72 4,662 | 276.87 649
202.41 16,041 2,260 | 163.78 709 | 282.36 136

Table 4.3: CPU time and nodes visited for solviagdom coding networksusingstatic
and dynamic mini-bucket heuristicsas well as min-fill based pseudo trees. Time limit 5
minutes. The top four horizontal blocks show the resultsstatic mini-bucket heuristics,
while the bottom four blocks show the dynamic mini-bucketisics.

Table[4.8 shows the results for solving two classes of randoding networks with
K = 64 and K = 128 input bits, using static and dynamic mini-bucket heursstidhe
number of parents for each XOR bit w&s= 4 and we chose the channel noise variance
o? € {0.22,0.36}. For each value combination of the parameters we gener@tegh#lom
instances. The guiding pseudo trees were generated ugngithfill heuristic. The top

four horizontal blocks show the results for static mini-kefcheuristics, while the bottom

four ones correspond to dynamic mini-buckets heuristite dolumns are indexed by the

169

mini-bucket;-bound, which we varied between 4 and 20.

Treevs. graph AOBB. When comparing the tree versus the graph AND/OR Branch-and-
Bound algorithms we see thatOBB- C+SMB(@) is slightly better tharAOBB+SMB(i) .

We observe a similar picture when using dynamic mini-buckest well. This indicates
that, on this domain, most of the cache entries were acta@hd, namely the context
minimal AND/OR graph explored was very close to a tree. Noéitso that 8mIAM was

not able to solve any of these problem instances due to theonydimit.

AOBF vs. AOBB. When comparing the best-first versus the depth-first algosthsing
static mini-bucket heuristics, we see tA@BF- C+SMB(7) is better thamhOBB- C+SMB(1)
for relatively smalli-bounds {.e., : € {4,8}) which generate relatively weak heuris-
tic estimates. For instance, on clags = 64,P = 4,02 = 0.22), best-first search
AOBF- C+SVB(4) is 4 orders of magnitude faster th&©BB- C+SVB(4) . As thei-
bound increases and the heuristics become more accuraiiffdrence between Branch-
and-Bound and best-first search decreases, because Brah&woand finds close to op-
timal solutions fast, and therefore will not explore saus whose cost is below the op-
timum, like best-first search. When looking at the algorithmegg dynamic mini-bucket
heuristics, we notice th&OBF- C+DVB(7) is again far better thaAOBB- C+DIVB(i) for

smalleri-bounds.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dynamic
mini-bucket heuristic we see that the latter is competivinby for relatively small-bounds
(i.e., i € {4,8}). At higher levels of the-bound, the accuracy of the dynamic heuristic
does not outweigh its computational overhead.

Figure[4.4 plots the average running time and number of nedésd by the depth-
first and best-first AND/OR search algorithms with mini-betckeuristics, as a function of

the mini-bucket-bound, on the random coding networks with paramet&rs= 64, P =

170

random coding networks
(K=64, 5°=0.36) [minfill: w*=27, h=40]

1000 g
E ——&—— AOBB+SMB(i)
[e) AOBB+DMB(i)
——-¥-—— AOBB-C+SMB(i)
100 4 ——A.-—-- AOBB-C+DMB(j) P
E — —® — AOBF-C+SMB(i) e
——0—— AOBF-C+DMB() _J~
<
= 104 &
o
3
[\E ~
E a)
=1 1 -
N
o——0
\ X
_a
0.1 4 \- — —
b —m
-
0.01 T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22
i-bound

random coding networks
(K=64, 5°=0.36) [minfill: w*=27, h=40]

——@—— AOBB+SMB()

i o AOBB+DMB(i)
107 4 ———¥—— AOBB-C+SMB(j)
—.—A-—.- AOBB-C+DMB())
100] — —® — AOBF-C+SMB(i)
— —O—— AOBF-C+DMB(i)

(2]
o E
A
S 0% \\
N\ S
e
103? i\\i\i(
1 P~ g
102 4 U= O — g O —] e
10" T
2 4 6 8 10 12 14 16 18 20 22
i-bound

Figure 4.4: The impact of static and dynamic mini-bucketrlgtigs for solving theran-
dom coding networkswith parameter$ K = 64, 02 = 0.36) from Table4.3B.

4,0% = 0.36) (i.e., corresponding to the second and fifth horizontal blocksaibld4.3). It
shows explicitly how the performance of Branch-and-Bound laest-first search changes
with the mini-bucket strength for both heuristics. Focgdior example on best-first search,
we see that-bound of 6 is most cost effective for dynamic mini-buckeihjle i-bound of

10 yields best performance for static mini-buckets. We abs® clearly that the dynamic
mini-bucket heuristic is more accurate yielding smallersk spaces. It also demonstrates
that the dynamic mini-bucket heuristics are cost effectiveelatively smalli-bounds,

whereas the pre-compiled version is more powerful for laig®unds.

171

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
grid Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
v.232 AOBB+SMBY(i) AOBB+SMBJ(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMBY(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB()) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, e AOBF-C+SMB()) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB()
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.02 0.03 0.06 0.06
90-10-1 0.23 3,297 0.06 373 102 0.06 102 0.06 102
(13, 39) 0.13 0.33 8,080 0.11 2,052 101 0.06 101 0.06 101
(100, 0) 0.14 2,638 0.06 819 101 0.06 101 0.06 101
0.27 2,012 0.11 661 100 0.06 100 0.06 100
0.03 0.03 ! 0.14 0.44
90-14-1 12669 1233891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450
(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938
(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 1,361 0.53 1,210
3.20 18,796 2.70 15,764 0.55 2,899 898 0.63 857
0.05 0.05 0.11 } 0.63
90-16-1 - - - - 40.05 345255 2.38 16,942 1.23 5,327
(24,82) 147.19 | 666.68 10,104,350| 173.49 2,600,690 14.36 193,440 297 39,825 2.08 23,421
(256, 0) 209.60 2,695,249 3545 441,364 4.23 50,481 1.19 11,029 4,810
25.70 126,861| 10.59 54,796 4.47 22,993 1.42 6,015 3,067
=12 =14 =16 =18 =20
time nodes time nodes time nodes time nodes time nodes
0.28 0.64 1.69 4.60 19.14
90-24-1 - - - - - - - - - -
(33,111) out - - | 233867 24,117,151| 1548.09 18,238,983 138.67 1,413,764 146.85 1,308,009
(576, 20) - - | 127309 9,047,518 596.27 4,923,760 70.42 473,675| 74.99 412,201
out 21.94 75,637 | 10.59 33,770 5144 | 23.80 17,201
0.33 0.72 2.14 7.09 22.02
90-26-1 - - - - | 39567 1,635,447 - - 67.09 277,685
(36, 113) out | 311.89 2903489 369.49 3,205,257 8.42 59,055 | 22.99 165182 | 22.56 5,777
(676, 40) 146.97 878,874 152.80 962,484 4.36 15,632 | 12.92 46,489 | 2213 2,242
19.06 65271 | 24.39 79,619 7,190 8.05 3,777 | 22.44 1,435
0.47 0.98 2.77 7.98 30.44
90-30-1 - - - - - - - - - -
(43, 150) out | 1131.07 9,445224| 38627 3,324,942| 350.28 3,039,966| 149.69 1,358569| 97.09 485,300
(900, 60) 652.15 3,882,300| 16574 1,070,823 155.20 956,837| 40.14 212,963 59.28 174,715
158.97 534,385 46.73 157,187 | 47.27 154,496 45,201 | 57.97 100,800
0.63 1.25 372 40.00
90-34-1 - - - - - - - - - -
(45, 153) out - - - - - - - - | 47810 1,549,829
(1154, 80) - - - - - - - - | 369.36 823,604
out out 243.63 596,978 | 270.88 667,013 67,611
0.78 167 4.20 1236
90-38-1 - - - - - - - - - -
(47, 163) out | 2032.33 6,835,745 - - | 80738 2,850,393 568.69 2,079,146| 369.31 1,038,065
(1444, 120) 960.02 2,623,971 1753.10 3,794,053| 203.67 614,868 | 165.45 488,873| 113.06 214,919
101.69 174,786| 103.80 146,237| 54.00 95,511 78,431 | 73.10 59,856
Table 4.4: CPU time and nodes visited for solvgrgl networks usingstatic mini-bucket

heuristics and min-fill based pseudo trees. Time limit 1 hour. Top patheftable shows
results fori-bounds between 8 and 16, while the bottom part shelbaunds between 12
and 20.

We addressed so far the impact of tree versus graph AND/ORIsdhe impact of the
mini-bucketi-bound and best-first versus depth-first search regimesielnemainder we
will also investigate the impact of the level of caching, ithpact of pseudo tree quality, the
impact of determinism present in the network, as well as tiytime behavior of AND/OR

Branch-and-Bound and the impact of good initial bounds.

172

minfill pseudo tree
grid BB-C+DMB() BB-C+DMB(i) BB-C+DMB() BB-C+DMB() BB-C+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) | AOBB-C+DMB(i) | AOBB-C+DMB(i)
(n, e) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102
(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101
(100, 0) 0.28 235 0.25 170 101 0.28 101 0.30 101
0.39 135 0.36 115 0.36 100 0.41 100 0.41 100
90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199
(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199
(196, 0) 46.94 7,641 22.72 1,996 281 7.20 211 10.19 199
54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199
90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262
(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260
(256, 0) 382.78 44,949 245.50 11,855 65.41 1,430 48.61 525 260
194.08 11,453 252.99 6,622 94.88 1,061 75.41 413 38.46 258
=12 =14 =16 =18 i=20
time nodes time nodes time nodes time nodes time nodes
90-24-1 2586.38 3,243 | 1724.68 700 | 2368.83 601
(33,111) 1367.38 2,739 | 1979.42 1,228 | 1696.56 598
(576, 20) - - - - 1,058 | 1211.99 788 | 1693.00 598
3456.77 11,818 | 1834.71 2,728 | 1153.48 855 | 1871.03 759 | 2573.08 591
90-26-1 E B B B B B E E B B
(36, 113) - - - - 1514.18 2,545| 2889.49 1,191 - -
(676, 40) 2801.39 35,640| 2593.74 10,216 1,178 1698.70 861 | 2647.60 687
1262.76 5,392 | 1737.01 2,585| 1347.54 1,049 | 2587.10 828 - -
90-30-1 - - - - - - - -
(43, 150)
(900, 60)
90-34-1
(45, 153)
(1154, 80)
90-38-1
(47, 163)
(1444, 120)

Table 4.5: CPU time and nodes visited for solvigugd networks usingdynamic mini-
bucket heuristics and min-fill based pseudo trees. Time limit 1 hour. Top parthef
table shows results farbounds between 8 and 16, while the bottom part shelacunds
between 12 and 20.

Random Grid Networks

Tabled 4.4 and 4.5 show detailed results for experiments8\gtrids of increasing difficulty
from Chaptel B, using static and dynamic mini-bucket heisgsiThe columns are indexed
by the mini-bucket-bound. We varied the mini-buckéfound between 8 and 16 for the
first 3 grids, and between 12 and 20 for the remaining ones.e&oh instance we ran a
single MPE query witle nodes picked randomly and instantiated as evidence. Tldéngui

pseudo trees were generated using the min-fill heuristic.

Tree vs. graph AOBB. First, we observe tha®OBB- C+SMB(7) using full caching im-
proves significantly over the tree version of the algoritlespecially for relatively smat+

bounds which generate relatively weak heuristic estimd&esexample, on th80- 16- 1

173

grid network 90-14-1
[minfill: w*=22, h=66]

1000
——e—— AOBB+SMB(j)
% o AOBB+DMB(i)
SAN ——-v-—— AOBB-C+SMB(i)
N —..—A-—.- AOBB-C+DMB(i)
100 4 o — —® — AOBF-C+SMB(i)
N — —O— — AOBF-C+DMB(i)
W
o
@
w
= 104
@
=
14
0.1 - - - - - : : :
2 4 6 8 10 12 14 16 18 20
i-bound
grid network 90-14-1
- [minfill: w*=22, h=66]
——8—— AOBB+SMB(j)
o AOBB+DMB(i)
107 4 N ——-v—— AOBB-C+SMB(i)
N — —A—-- AOBB-C+DMB(i)
N — % — AOBF-C+SMB(i)
106 4 ¥ —-—O—— AOBF-C+DMB(i)
w
[
o 10° 4
o
c
104
10°
102 - - - - : : : :
2 4 6 8 10 12 14 16 18 20

Figure 4.5: The impact of static and dynamic mini-bucketristigs for solving the
90- 14- 1 grid network from Tabled 44 and 4.5, respectively. We show the CPU time
in seconds (top) and the number of nodes visited (bottom).

174

grid, AOBB- C+SMB(8) is 3 times faster thaAOBB+SMB(8) and explores a search space
5 times smaller. Notice also the significant additional itigun produced by the best-
first search algorithmAOBF- C+SMB(8) . While overall AOBF- C+SMB(i) is superior

to AOBB- C+SMB(i) with the samei-bound, the best performance on this network is
obtained byAOBB- C+SMB(16) . The algorithm is 2 times faster than the cache-less
AOBB+SMB(16) , and 155 times faster tham®8 1AM, respectively. When looking at the
algorithms using dynamic mini-bucket heuristics (TdbE)4ve observe a similar pattern,
namely the graph search AND/OR Branch-and-Bound algorithprores sometimes sig-
nificantly over the tree search one. Forinstance, 08€ke24- 1 grid, AOBB- C+DVB(16)

is about 2 times faster thahOBB+DVB(16) . Notice also that the AND/OR algorithms
with dynamic mini-buckets could not solve the last 3 testanses due to exceeding the
time limit. The OR Branch-and-Bound search algorithms witbhiag BB- C+SMB(7)
(resp. BB- C+DIVB(7)) are inferior to the AND/OR Branch-and-Bound graph search, es

pecially on the harder instancesq., 90- 30- 1).

AOBF vs. AOBB. When comparing further the best-first and depth-first graincke
algorithms, we notice again the superiorityA®BF- C+SVB(i) over AOBB- C+SMB(7) ,
especially for relatively weak heuristic estimates whioh generated at relatively smail
bounds. For example, on t®®- 38- 1 grid, one of the hardest instances, best-first search
with the smallest reportedbound ¢ = 12) is 9 times faster thaAOBB- C+SMB(12) and
visits 15 times less nodes. The difference between besgficsdepth-first search is not too
prominent when using dynamic mini-bucket heuristics. Taisecause these heuristics are
far more accurate than the pre-compiled ones and the savimgsnber of nodes explored

by best-first search do not translate into additional tinvenggs as well.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dynamic
mini-bucket heuristics, we see that the former are more piolvéor relatively largei-

bounds, whereas the latter are cost effective only forivelgtsmalli-bounds. Figure 415

175

90-24-1 grid network
[minfill: w*=33, h=111]

90-26-1 grid network
[minfill: w*=36, h=113]

Q—:—o—o—o—o—o—o—o—o 260 o
90 4 \ o N
N SO 240 o
\ O~ _ ~vy. QU
V. o~ 220 N ~_
80 - N o N O~ _
= \ \ —~ 200 . el
o \ S \) ~ N
@ N) ~
@ N \ 3 v 1)
5 01 v a_ o 180 \\ N
£ \\ a_ £ \]
= N N = 160 \ \
3 N w N\
60 ~~ e ~ \
~w ~ 140 4 ~ °
~< o vo -5
v N T ~
T vV 120 4 S~
50 1 —e— AOBB+SMB(18) —®— AOBB+SMB(14) |
—O~ AOBB-C+SMB(18,j) 100 { ~ O~ AOBB-C+SMB(14,)) v
—¥ - AOBB-AC+SMB(18,) —-v— AOBB-AC+SMB(14,j)
40 T T T T 80 T T
2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound
90-30-1 grid network 90-38-1 grid network
[minfill: w*=43, h=150] [minfill: w*=47, h=163]
110 400
R N 350 F==f ¢
S~y ~0-—-0.
v o N
90 > oL
w oo 300 x N
N - \ N
—~ N QA ~ \ ~
9 804 AN N o \ N
N o \ ~
@ N a N
2 ~ [N = 250 \ o
© ~a o L'
E 704 \ £ N ~o-
= \ o = N -0
\‘v N 200 AN
60 o T~ N
JaN AN N
N N ¥
50] —®— AOBB+SMB(18) Y- _ ° 150 {1 —@— AOBB+SMB(16) -,
—O— AOBB-C+SMB(18,)) ‘\\V —O~ AOBB-C+SMB(16,)) eSS
—-¥— AOBB-AC+SMB(18,j) —¥- AOBB-AC+SMB(16,j) v
40 T T T T T T T T T T 100
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound

Figure 4.6: Naive versus adaptive caching schemes for ANCB@anch-and-Bound with
static mini-bucket heuristics agrid networks. Shown is the CPU time in seconds.
shows the CPU time and size of the search space explored byNB¢OR algorithms with
mini-bucket heuristics, as a function of thound, on thé®0- 14- 1 grid from Table$ 4.4
and4.b, respectively. Focusing 80BB- C+SMB(¢) , for example, we see that its running
time, as a function of, forms a U-shaped curve. At first & 4) it is high, then as the
i-bound increases the total time decreases (wWhenl4 the time is 0.23), but then as
increases further the time starts to increase again betheg@e-processing time of the
mini-bucket heuristic outweighs the search time. The saghaor can be observed in the

case of dynamic mini-buckets as well.

Impact of the level of caching. Figure[4.6 compares the naivA@BB- C+SMB(i, j))
and adaptiveAOBB- AC+SMB(i, j)) caching schemes, in terms of CPU time, on 4 grid
networks from Table 414 using AND/OR Branch-and-Bound seuaitihstatic mini-bucket

heuristics. In each test case we chose a relatively smaltmacketi-bound and varied

176

the cache bound (the X axis) from 2 to 20. We see that adaptive caching immove
significantly over the naive scheme especially for reldyivamall j-bounds. This may
be important because smaHbounds mean restricted space. At laggkeounds the two

schemes are identical and approach the full-caching scheme

Impact of the pseudo tree. Figurd 4.7 plots the runtime distribution A&0BB- C+SMB(7)
and ACBF- C+SMB(i) using hypergraph based pseudo trees. For each repebtaahd,
the corresponding data point and error bar represent thegeeas well as the mini-
mum and maximum run times obtained over 20 independent rithsax80 minute time
limit. The hypergraph based pseudo trees, which have fallantkepths, are sometimes
able to improve the performance ADBB- C+SMB(i) , especially for relatively small-
bounds é.9., 90- 24- 1). For largeri-bounds, the pre-compiled mini-bucket heuristic
benefits from the small induced widths obtained with the filirerdering. Therefore,
AOBB- C+SMB(7) using min-fill based pseudo trees is generally faster. We sd& that
on averag®OBF- C+SMB(¢) is faster when it is guided by min-fill rather than hypergraph
based pseudo trees. This verifies our hypothesis that menmtensive algorithms explor-
ing the AND/OR graph are more sensitive to the context sizedkwis smaller for min-fill

orderings), rather than the depth of the pseudo tree.

Memory usage of AND/OR graph search. Figure[4.8 displays the memory usage of
AOBB- C+SMB(i) andAOBF- C+SMB(7) on grids90- 30- 1 and90- 38- 1, respectively.
We see that for relatively smalbounds the memory requirementsASBF- C+SVB()

are significantly larger than those&AOBB- C+SMB(7) . This is becausAOBF- C+SMB(i)
has to keep in memory the entire search space explored eukIBB- C+SMB(i) which

can save space by avoiding dead-caches for example.

177

90-14-1 - AOBB-C+SMB(i) 90-14-1 - AOBF-C+SMB(i)

100 [hypergraph: w*=23, h=37] [minfill: w*=22, h=66] 100 [hypergraph: w*=23, h=37] [minfill: w*=22, h=66]
—— hypergraph —®— hypergraph
—O— minfill —O— minfill
10 10 4
° o
@ @
2 K
° o
£ £
14 14
0.1 T T T T T 0.1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
90-16-1 - AOBB-C+SMB(i) 90-16-1 - AOBF-C+SMB(i)
1000 [hypergraph: w*=26, h=43] [minfill: w*=24, h=82] 1000 [hypergraph: w*=26, h=43] [minfill: w*=24, h=82]
—@— hypergraph —e— hypergraph
—O— minfill —O— minfill
100 o 100 4
o Iy
@ @
@)
= 104 = 10
o o
£ £
N -
14 Noo—0-=0-=0"]
0.1 0.1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
90-24-1 - AOBB-C+SMB(i) 90-24-1 - AOBF-C+SMB(i)
10000 [hypergraph: w*=36, h=59] [minfill: w*=33, h=111] 1000 [hypergraph: w*=36, h=59] [minfill: w*=33, h=111]
—e— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 100 -
o o
8 &
o °
£ £
100 10 4
10 1
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound
90-26-1 - AOBB-C+SMB(i) 90-26-1 - AOBF-C+SMB(i)
10000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113] 1000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113]
—@— hypergraph —®— hypergraph
—O— minfill —O— minfill
1000
100 o
S °
@ I3
))
~ 100 =
o o
£ £
10 4
10 4
1 1
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound

Figure 4.7: Min-fill versus ypergraph partitioning heudst CPU time in seconds for
solving grid networks with ACBB- C+SVB(¢) (left side) andACBF- C+SMVB(¢) (right
side). The header of each plot records the average induaditi {wi*) and pseudo tree
depth (h) obtained with the hypergraph partitioning heigiswe also show the induced
width and pseudo tree depth for the min-fill heuristic.

178

90-30-1 grid network
[minfill: w*=43, h=150]

90-38-1 grid network

[minfill: w*=47, h=163]
1000

100
—8— AOBB-C+SMB(i) —e— AOBB-C+SMB(i)
0O AOBF-C+SMB(i) o O AOBF-C+SMB()
100 4 o
© o
o o 10 4 o

~ o ~

0] 1]

s 103 o s

P ®

5)

8 8

E 13 E1 13

> >

5 5

£ E

@ 0.1 4 o

E E

014
0.01 4 e — ., .
0.001 T T T T T 0.01 T T T T
10 12 14 16 18 20 22 10 12

i-bound

Figure 4.8: Memory usage b&OBB- C+SMB(i) and AOBF- C+SMB(i) on grid net-
works.
minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
pedigree Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB-+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes | time nodes
0.05 0.05 0.11 0.31 0.97
pedl 5.44 - - - - 1.14 7,997 0.73 3911 | 131 2,704
(15, 61) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 | 1.89 15,156
(299, 5) 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494
1.30 7,314 2.17 13,784 1,177 0.87 4,016 | 1.54 3,119
0.12 0.45 5.38 60.97 out
ped38 out - - - - - - - -
(17, 59) - - | 812058 85,367,022 - - | 3040.60 35,394,461
(582, 5) 5946.44 34,828,046| 1554.65 8,986,648| 2046.95 11,868,672| 272.69 1,412,976
out 134.41 348,723 216.94 583,401 103.17 242,429
0.11 0.74 5.38 37.19 out
ped50 out - - - - - - - -
(18, 58) - - - - - 476.77 5,566,578| 104.00 748,792
(479, 5) 4140.29 28,201,843| 2493.75 15,729,294 66.66 403,234 52.11 110,302
78.53 204,886| 36.03 104,289 25,507 38.52 5,766
=10 =12 i=14 =16 =18
time nodes time nodes time nodes time nodes | time nodes
0.42 2.33 11.33 274.75 out
ped23 out - - - - 76.11 339,125 270.22 74,261
(27,71) 9146.19 498.05 6,623,197 154,676 16.28 67,456 286.11 117,308
(310, 5) 193.78 1,726,897 74,672 13.33 23,557 274.00 62,613
out 58,180 14.36 12,987 out
0.67 21.53 58.59 out
ped37 out - - - - - - -
(21, 61) 64.17 3,191,218| 1682.09 25,729,009| 1096.79 15,598,863| 128.16 953,061
(1032, 5) 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
72,868 38.41 102,011| 95.27 223398| 62.97 12,296

Table 4.6: CPU time and nodes visited for solvonenetic linkage networksusingstatic
mini-bucket heuristics. Time limit 3 hours. Top part of the table shows results #or
bounds between 6 and 14, while the bottom part shela@unds between 10 and 18.

179

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
pedigree Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(i)
Superlink AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB()) AOBB-C+SMBJ()) AOBB-C+SMBJ(j) AOBB-C+SMB(j) AOBB-C+SMB())
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
051 142 459 12.87 19.30
ped18 157.05 - - - - - - - | 1515.43 1,388,791
(21, 119) 139.06 2177.81 28,651,103| 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184,5) - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972
out 127.41 542,156 42.19 171,039 53,961 19.91 2,027
1.42 511 3753 410.96 out
ped20 out - - - - - - - -
(24, 66) 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674/ 1080.05 9,151,195
(388, 5) 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751| 681.97 2,654,646
out out out out
0.34 0.89 320 10.46 33.42
ped25 out - - - - - - - -
(34,89) - - - | 9399.28 111,301,168 3607.82 34,306,937| 2965.60 28,326,541
(994, 5) - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 1,529,180
out out out out out
0.42 0.83 1.78 5.75 21.30
ped30 out - - - - - - -
(23,118) | 13095.83 - - - - 214.10 1,379,131 91.92 685,661
(1016, 5) 10212.70 93,233,570| 8858.22 82,552,957 - 34.19 193,436 30.48 66,144
out out out 30.39 72,798 18,795
0.58 2.31 7.84 33.44 112.83
ped33 out - - - - - - - - - -
(37, 165) - 2804.61 34,229,495 737.96 9,114,411| 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215
(581, 5) 1426.99 11,349,475 307.39 2,504,020| 1823.43 14,925,943 86.17 453,987 | 1373.90 10,570,695
out 140.61 407,387 out 134,068 out
052 232 8.41 33.15 81.27
ped39 out - - - - - - - -
(23, 94) 322.14 4041.56 52,804,044 386.13 2,171,470| 141.23 407,280
(1272, 5) - - 968.03 7,880,928 61.20 313,496 93.19 83,714
out out 68.52 218,925 79,356 87.63 14,479
4.20 31.33 96.28 out out
ped42 out - - -
(25, 76) 561.31 - -
(448, 5) - 2364.67 22,595,247
out out 133.1@ 93,831

Table 4.7: CPU time and nodes visited for solvipgnetic linkage networks Time limit
3 hours. Shown here are 7 linkage networks in addition to thet&vorks from Tablé 416.

Genetic Linkage Analysis

In human genetic linkage analysis [98], tha@plotypeis the sequence of alleles at different
loci inherited by an individual from one parent, and the taplotypes (maternal and pater-
nal) of an individual constitute this individualgenotype When genotypes are measured
by standard procedures, the result is a list of unordered péialleles, one pair for each
locus. Themaximum likelihood haplotyperoblem consists of finding a joint haplotype
configuration for all members of the pedigree which maximmi#ee probability of data.
The pedigree data can be represented as a belief networlsasbeéel in Chapterl3. The
haplotyping problem is equivalent to computing the MostRatde Explanation (MPE) of

the corresponding belief network [47 | 46].

180

ped50 linkage network ped50 linkage network
[minfill: w*=18, h=58] [minfill: w*=18, h=50]
10000 108
—e— AOBB+SMB(i) —e— AOBB+SMB(i)
© O AOBB-C+SMB(j) o O- AOBB-C+SMB(i)
o —-¥— AOBF-C+SMB(i) o} —-¥— AOBF-C+SMB(i)

1000
_ ‘ \ 106 4

100 4

nodes

time (se
!
|
!

Figure 4.9: CPU time and nodes visited for solving pleal 50 linkage network.

Tabled 4.6 an 417 display the results obtained for 12 hakédje analysis networ&s
We report only on the AND/OR search algorithms guided byistatni-bucket heuristics.
The dynamic mini-bucket heuristics performed very poonytlus domain because of their
prohibitively high computational overhead at larglkeounds. For comparison, we include

results obtained with SPERLINK 1.6 (see also Chapter 3 for an overview).

Tree versus graph AOBB. We observe thaAOBB- C+SMB(i) improves significantly
over AOBB+SMB(7) , especially for relatively smaitbounds for which the heuristic esti-
mates are less accurate. Pad37, for example AOBB- C+SVB(10) is 7 times faster
thanAOBB+SMB(10) and expands about 14 times fewer nodes. Agdbheund increases,
the accuracy of the heuristics increases as well prunniegearch space more efficiently
and the diference betwe&©OBB- C+SMB(i) andAOBB+SMB(i) decreases. Notice also
that the OR Branch-and-Bound with cachiBg- C+SMB(i) was able to solve only 3
out of the 12 test instances.q., pedl, ped23, ped18). Similarly, the performance
of SAMIAM was very poor and it was able to solve only 2 instances, napetil and

pedl18.

AOBB vs. AOBF. The best performing algorithm on this datasef@BF- C+SVB(1) ,

outperforming its competitors on 8 out of the 12 test cases. p@d42, for instance,

Shttp://bioinfo.cs.technion.ac.il/superlink/

181

hypergraph pseudo tree min-fill pseuso tree
MBE() MBE() MBE() MBE()
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMBY(j)
pedigree Samlam (w*, h) AOBB+SMB(i) AOBB+SMB(i) (w*, h) AOBB+SMB(i) AOBB+SMB(i)
(n, d) Superlink AOBB-C+SMB()) AOBB-C+SMB()) AOBB-C+SMB(i) AOBB-C+SMB(i)
AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=20 i=22 i=20 i=22
time nodes time nodes time nodes time nodes
ped? 25.26 164.49 117.03 out
(868, 4) out - - - - - -
- | (36,60) | 88571.68 1807,878,340 9395.17 195,845851/| (32,133)
30504.84 285,084,124 27,761,219 -
out out out
ped9 67.93 300.06 76.31 out
(936, 7) out - - - - - -
- | (35,58) | 11483.89 231,301,374 3982.60 72,844,362|| (27,130) | 151550 15,825,340
8922.81 117,328,162 40,251,723 12,444,961
out out out
ped19 59.31 150.38 out out
(693, 5) out - - - -
- | (35,53) | 98941.75 1519,213,924 12530.00 174,000,317 (24,122)
45075.31 466,748,365, 90,665,870
out out
ped34 42.21 209.51 out out
(923, 4) out - - - -
- | (34,60) | 70504.72 1,453,705,377 13598.50 294,637,173 | (32, 127)
67647.42 1,293,350,829 220,199,927
out out
pedal 35.41 111.24 out out
(886, 5) out - - - -
- | (36,61) | 6669.50 84,506,068 531.40 4,990,995 (33, 128)
3891.86 31,731,270 2,318,544
out out
pedas 32.92 140.81 57.88 34468
(644, 4) out - - - - - - - -
- | (31,52) | 8388.18 196,823,840 401.84 7,648,962|| (26, 73) 12742 1114,641| 38547 668,737
3597.12 62,385,573 1,355,595 752,970 | 366.18 447514
out out out out

Table 4.8: Impact of the pseudo tree qualitygenetic linkage networks Time limit 24
hours. We show results for the hypergraph partitioning istar(left side) and the min-fill
heuristic (right side).

AOBF- C+SMB(16) is 18 times faster thaAOBB- C+SMB(16) and explores a search
space 240 times smaller. In some cag¥3BF- C+SMB(i) was up to 3 orders of mag-
nitude faster than SPERLINK as well ¢.g., pedl, ped23, ped30). Figurel4.9 displays
the CPU time and number of nodes explored, as a function of thebucketi-bound,
for solving theped50 instance. It shows how the performance of best-first andhefst
AND/OR search changes with thiédbound. In this caseAOBB+SMB(i) could not solve

the problem instance fare {6, 8}, due to exceeding the time limit.

Impact of the pseudo tree. Figure[4.10 plots the runtime distribution of the depthtfirs
and best-first search algorithrdOBB- C+SMVB(¢) and AOBF- C+SMB(7)) , with hyper-
graph based pseudo trees, over 20 independent runs. Weas@atihAOBB- C+SVB(1)

and ACBF- C+SMB(i) perform much better when guided by hypergraph based pseudo

182

ped1 - AOBB-C+SMB(i) ped1 - AOBF-C+SMB(i)

10000 [hypergraph: w*=19, h=31] [minfill: w*=15, h=61] 1000 [hypergraph: w*=19, h=31] [minfill: w*=15, h=61]
—e— hypergraph —e— hypergraph
—O— minfill —O— minfill
1000 o
100 §
5 100 =
@ @
) 2
e < 10
o @
£ £
= 10 4 =
14
14
0.1 T T T T T 0.1
4 6 8 10 12 14 16 4 6 8 10 12 14 16
i-bound i-bound
ped23 - AOBB-C+SMB(i) ped23 - AOBF-C+SMB(i)
10000 [hypergraph: w*=24, h=38] [minfill: w*=27, h=71] 1000 [hypergraph: w*=24, h=38] [minfill: w*=27, h=71]
—@— hypergraph —@— hypergraph
—0O— minfill —O— minfill
1000
100
° °
) @
@ @
= 100 =
o o
£ £
10 4
10 4
1 1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
ped30 - AOBB-C+SMB(i) ped30 - AOBF-C+SMB(i)
10000 [hypergraph: w*=26, h=51] [minfill: w*=23, h=118] 1000 [hypergraph: w*=26, h=51] [minfill: w*=23, h=118]
—— hypergraph —@— hypergraph
—O— minfil —O— minfill
1000
o o
4 3
= = 100 -
o °
£ £
100
10 10
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound
ped33 - AOBB-C+SMB(i) ped33 - AOBF-C+SMB(i)
10000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165] 1000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165]
—@— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000
S °
@ I3
))
= ~ 100 -
o o
£ £
100
10 1o
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound

Figure 4.10: Min-fill versus hypergraph partitioning hetigs. CPU time in sec-
onds for solvinggenetic linkage networks with AOBB- C+SMB(i) (left side) and
AOBF- C+SMB(1) (right side). The header of each plot records the averageediwidth
(w*) and pseudo tree depth (h) obtained with the hypergraphipamg heuristic. We also
show the induced width and pseudo tree depth for the mindilristic.

183

ped1 linkage network
[minfill: w*=15, h=61]

time (sec)

] —®— AOBB+SMB(6)

Q
\
\
\
X\
\
N
\ AN
\ N
\ [o8
V\\ \\\
AN Q
Yo _ N
Two N\
SN0

—O~ AOBB-C+SMB(5,)
—¥ - AOBB-AC+SMB(6.)

0

3500

2 4 6 8 10 12 14 16
j-bound

ped38 linkage network
[minfill: w*=17, h=59]

3000 4

2500 4

2000 4

time (sec)

1500 o

1000 1

oo
AR
ey
\ N
\ o
\
\ \\
\
\ \
\ \
'\
~
| —e— AoBB+sMB(12) N
—O~ AOBB-C+SMB(12,j) \@
—v- AOBB-AC+SMB(12,) TTe———9—9
0 2 4 6 8 10 12 14 16 18 20 22

Figure 4.11: Naive versus adaptive caching schemes for AfBranch-and-Bound with
static mini-bucket heuristics agenetic linkage networks Shown is CPU time in seconds.
trees, especially on harder instances. For instancpedi33, AOBB- C+SVB(16) using

a hypergraph tree was able to outperfok@BB- C+SMB(16) guided by a min-fill tree by
almost 2 orders of magnitude. SimilarBOBF- C+SMB(i) with hypergraph trees was able
to solve the problem instance acrossiddbunds, unlikeAOBF- C+SVB() with a min-fill
tree which succeded only fere {14, 18}. Notice that the induced width of this problem
along the min-fill ordering is very largest = 37) which causes the mini-bucket heuris-
tics to be relatively weak. More importantly, it causes tHeéDXOR search algorithms to

traverse and AND/OR search graph that is very close to a #eause most of the cache

j-bound

entries are dead.

Table[4.8 displays the results obtained for 6 additionddge analysis networks using
randomized hypergraph partitioning based pseudo treesséldeted the hypergraph tree

having the smallest depth over 100 independent runs (ties im@ken on the smallest

time (sec)

time (sec)

184

22

ped23 linkage network
[minfill: w*=27, h=71]

20 1

7 —@— AOBB+SMB(12)

V\\ TT-0-——o
AR At SRS Sht

—O - AOBB-C+SMB(12,))

—V¥-- AOBB-AC+SMB(12,j)

0

2 4 6 8 10 12 14 16 18 20
j-bound

ped50 linkage network
[minfill: w*=18, h=58]

22

] —@— AOBB+SMB(10)

—— 06— — 06— 90— 06— 06— 9o

\
SN
v \
e
—O -~ AOBB-C+SMB(10,j) A St il St
—v - AOBB-AC+SMB(10,)

T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

j-bound

22

induced width). To the best of our knowledge, these netwark® never before solved for
the maximum likelihood haplotype task. We see that the grp@h pseudo trees offer the
overall best performance as well. This can be explainedéiatige induced width which in
this case renders most of the cache entries dead (see fomeeghat the difference between
AOBB+SMB(i) and AOBB- C+SMB(i) is not too prominent). Therefore, the AND/OR
graph explored effectively is very close to a tree and theidant factor that impacts the
search performance is then the depth of the guiding pseedowhich is far smaller for
hypergraph trees compared with min-fill based ones. Notsmethat best-first search could
not solve any of these networks due to running out of memdng AND/OR Branch-and-
Bound algorithms with min-fill based pseudo trees could onlyes?2 of the test instances
(e.g., ped9 andped44). This is because the induced width of these problem instawas
small enough and the mini-bucket heuristics were relatiaelcurate to prune the search
space substantially, thus overcomming the increase indostrae depth. One thing that
these experiments demonstrate is that the selection obthedp tree can have an enormous

impact if thei-bound is not large enough.

Impact of the level of caching. Figure[4.11 displays the CPU time for solving 4 link-
age analysis networks from Tables|4.6 4.7 usidBB- C+SMB(7, j) (naive caching)
and AOBB- AC+SMB(7, j) (adaptive caching), respectively. In each test case weecaos
relatively small mini-buckei-bound and varied the cache boupfthe X axis) from 2 to
20. We see again that adaptive caching is more powerful thendive scheme especially,
for relatively smallj-bounds, which require restricted space. As#imund increases, the

two schemes approach gradually full caching.

UAI'06 Evaluation Dataset

Tabled 4.0 and4.10 show the results for experiments withetivarks from the UAI'06

repository described in Chapiér 3. InstanBd&31 throughBN.41 are random grid net-

185

minfill pseudo tree
MBE() MBE() MBE(Q) MBE() MBE()
bn Samlam BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMBJ(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB() AOBB+SMB()
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, k) AOBF-C+SMB(i) AOBF-C+SMB() AOBF-C+SMB() AOBF-C+SMB(i) AOBF-C+SMB(i)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
553 10.31 17.45 38.36 62.11
BN.31 - - - - - - - - - -
(46, 160) out | 1026.73 4,741,037| 1394.90 7,895304| 664.27 3,988,933| 680.61 4,293,760 131.17 380,470
(1156, 2) 411.33 1,445200| 486.47 2,131,977| 209.80 831,431| 210.81 889,782 81.61 94,507
140.41 293,445| 126.23 292,293| 85.69 142,650 | 86.00 114,046 25,392
7.39 13.34 2438 46.08 81.72
BN_33 - - - - - - - - - -
(43, 163) 140415 3,540,778| 293.85 685246| 61855 1,441,245 410.08 1,018,353 197.08 360,880
(1444, 2) 429.02 982,130 125.78 210,552 236.42 408,855 160.61 256,191| 120.33 89,308
75.92 142,932 41,865 | 58.14 61,064 | 73.20 49,760 95.16 22,256
7.61 12.86 2450 4033 64.63
BN_35 - - - - - - - - - -
(41, 168) 464.44 1,755561| 548.11 1,954,720| 316.78 1,108,708| 199.67 663,784 226.10 622,551
(1444, 2) 42.95 126,215| 107.17 243533| 81.59 151,632| 56.11 65,657 78.27 58,973
29,837 36.58 34,987 | 43.28 28,088 | 51.28 15,953 76.28 18,048
7.25 1358 22.61 4414 87.30
BN_37 - - - - - - - - - -
(45, 159) 126.85 428,643 97.03 298,477| 79.75 183,016 | 65.74 89,948 | 121.39 168,957
(1444, 2) 26.42 55,571 20.19 33,475 | 25.45 14,703 | 45.61 8,815 94.55 16,400
15,399 19.47 11,046 | 2655 6,621 | 46.84 4,315 90.66 5,610
6.86 1313 2558 44.06 75.49
BN_39 - - - - - -
(48, 162) - - - - - - - - | 1202.01 3,366,427
(1444, 2) 1161.65 2,615,679 137021 3,448,072 507.18 1,499,020| 403.07 1,043,378| 220.74 518,011
117.03 340,362 | 247.08 725,738 131.44 316,862 | 112.27 213,676 [111.20 127,872
6.97 11.98 21.09 36.44 65.75
BN.41 - - - - - - - - - -
(49, 164) 188.60 486,844 | 151.80 364,363 83.39 168,340 | 109.92 195,506 123.58 162,274
(1444, 2) 56.72 119,737 | 47.30 77,653 | 33.81 32,774| 50.81 38,467 76.42 31,763
23.50 42,795 20,485 | 27.22 12,030 | 43.38 16,549 71.61 11,648

Table 4.9: CPU time and nodes visited for solvidgl’06 networks. Time limit 30 min-
utes.

works with deterministic CPTs, while instancBkl.126 throughBN 134 represent ran-
dom coding networks with 128 input bits, 4 parents per XORalitl channel variance
0% = 0.40. We report only on the Branch-and-Bound and Best-First sedgohithms us-
ing static mini-bucket heuristics. The dynamic mini-budkeuristics were not competitive
due to their much higher computational overhead at relgtiaege i-bounds. The guiding
pseudo trees were generated in this case using the mindtlistie.

We notice again the superiority &(0OBB- C+SMB(i) compared with the tree version
of the algorithm ACBB+SMB() , at relatively smali-bounds where both algorithms rely
primarily on search rather than on pruning, and especiallthe first set of grid networks
(e.g., BNL31, ...,BN.41). For instance, on thBN_35 network,AOBB- C+S\VB(17) finds
the most probable explanation 11 times faster tA@BB+SNVB(17) exploring a search
space 14 times smaller. This is in contrast to what we obsamntbe second set of coding

networks €.g., BN.126, ...,BN.133), whereAOBB- C+SMB(7) is only slightly better than

186

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
bn Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, k) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
3.27 6.69 11.63 23.42 47.84
BN_126 301.56 2,085,673| 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027
(54, 70) - 363.05 4,459,174| 953.71 10,991,861 118.58 1,333,266 52.24 386,490 57.74 150,391
(512, 2) 2,324,776| 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056
64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
6.66 14.59 26.66 47.66
BN_127 - - - - - - - 130.27 631,093
(57, 74) out - - - - - - - 155.09 1,384,957
(512, 2) - - - - - - - 128.94 860,026
223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
7.58 13.64 28.30 49.02
BN_128 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147
(48, 73) out 5,587 7.47 1,712 14.89 18,734 29.05 625 49.39 5,823
(512, 2) 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203
883 7.75 925 13.78 808 28.39 478 49.13 575
5.58 12.67 27.81 50.60
BN_129 - - - 176.24 1,603,304| 1337.90 11,794,805| 257.42 1,855,134
(52, 68) out 11,469,012 - - 194.91 1,999,591 - - 259.83 2,542,057
(512, 2) 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762| 219.09 1,747,613
194.56 922,831 out 132.45 537,371 246.39 910,769
6.50 10.95 26.31 46.44
BN_130 182,120 - - 869.44 7,310,190 - - 57.06 109,669
(54, 67) out 348,660 - - 1015.05 10,905,151 - - 60.91 205,010
(512, 2) 239,771 - - 863.15 8,414,475 - - 58.94 147,085
115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
6.59 11.20 21.88 39.70
BN_131 137,631 39.02 323,431 | 1149.74 10,230,128 47.25 228,703 - -
(48, 72) out 296,576 | 55.20 677,149 - - 66.63 673,358 - -
(512, 2) 176,456 41.63 396,234 | 1254.88 12,395,143 50.42 303,818 - -
116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
5.59 10.50 25.56 45.77
BN_132 - - - - - - 756.69 6,584,446 4,819,402
(49, 71) out - - - - - - 912.40 10,251,600 823.40 10,207,347
(512, 2) - - - - - - 778.22 7,456,812 643.96 6,037,908
out out out out out
3.61 7.03 13.20 27.50 52.69
BN_133 - - 104,521 31.28 171,645 127.32 929,016 55.33 30,699
(54, 71) out - - 19.38 169,574 35.58 272,258 168.17 1,859,117 56.22 71,195
(512, 2) - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483
59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
3.38 6.34 12.09 27.08 54.35
BN_134 - - - - - - - - - -
(52, 70) out - - - - - - - - - -
(512, 2) - - - - - - - - - -
out 373,081 out 96.19 377,064 97.59 214,591
Table 4.10: CPU time and nodes visited for solvidgl’'06 networks. Time limit 30

minutes.

AOBB+SIMB() across the reportedbounds. This is because the AND/OR graph explored
effectively was very close to a tree due to the substantialipg caused by the mini-bucket
heuristics (as also observed in Secfion 4.5.2).

Overall, best-first AND/OR search offers the best perforoeaon this domain and
the difference in running time as well as size of the sear@tesgxplored is up to sev-
eral orders of magnitude, compared to the Branch-and-Bouyaritdms. For exam-
ple, on theBN_133 network, AOBF- C+S\MB(17) found the optimal solution in about

1 minute, whereas bothOBB+SMB(17) andAOBB- C+SMB(17) exceed the 30 minute

187

time bound.

Figure[4.12 plots the runtime distribution AOBB- C+SMB(i) andAOBF- C+SMB()
using hypergraph partitioning based pseudo trees, ovatdpendent runs, on 4 UAI'06
networks. We see that the hypergraph trees are sometinmeetabiprove the performance
of AOBB- C+SMB(i) , especially at small-bounds ¢.¢g., BN.133). For best-first search,
the min-fill trees usually offer the best performance (exceBN_131, where the hyper-

graph trees are superior acradsounds).

ISCAS’'89 Circuits

Tables[4.1l an@ 4.12 show the results for experiments witheli@f networks derived
from ISCAS’89 circuits (as described in Chaplér 3), using filirsased pseudo trees
as well as static and dynamic mini-bucket heuristics. Fahe®st instance we gen-
erated a single MPE query without any evidence. We seeAGBB- C+SMB(i) im-
proves overAOBB+SMB(i), especially at relatively smallbounds. For instance, on
thes1196 circuit, AOBB- C+SMB(8) is about 3 times faster thakOBB+SMB(i) . This
is in contrast to what we see when using dynamic mini-buclkeiristics. Here, there
is no noticable difference between the tree and graph ANDBB&hch-and-Bound, be-
cause the pruning power of the heuristics rendered thelsspace almost backtrack free,
acrossi-bounds. Overall, the dynamic mini-bucket heuristics wiaferior to the corre-
sponding static ones for largebounds, however, smallérbound dynamic mini-buckets
were often cost-effective. Notice than®8IAawm is able to solve only 2 out of 10 test in-
stances. MoreoveAOBF- C+SMB(i) (resp. AOBF- C+DMVB(i)) was overall inferior to
AOBB- C+SMB(i) (resp.AOBB- C+DIMB(¢)) because of its computational overhead.

4.5.3 The Anytime Behavior of AND/OR Branch-and-Bound Search

As mentioned earlier, the virtue of AND/OR Branch-and-Bouedrsh is that, unlike

Best-First AND/OR search, it is an anytime algorithm. Nameenever interrupted,

188

BN_35 - AOBB-C+SMB(i)
[hypergraph: w*=46, h=78] [minfill: w*=41, h=168]

10000
—e— hypergraph
—O— minfill
1000
S
@
A
o
£
100
10 T
15 16 17 18 19 20 21 22 23
i-bound
BN_37 - AOBB-C+SMB(i)
1000 [hypergraph: w*=43, h=78] [minfill: w*=45, h=159]
—e— hypergraph
—O— minfill
100 o
o
@
A
o
£
10 4
1 T
15 16 17 18 19 20 21 22 23
i-bound
BN_131 - AOBB-C+SMB(i)
[hypergraph: w*=51, h=60] [minfill: w*=48, h=72]
10000
1000
)
4
~ 100 §
o
£
10 4
—®— hypergraph
—O— minfill
15 16 17 18 19 20 21 22 23
i-bound
BN_133 - AOBB-C+SMB(i)
[hypergraph: w*=54, h=63] [minfill: w*=54, h=71]
10000
1000 o
S
@
KA
o
£
100
&/ —@— hypergraph
—O— minfill
10 T
15 16 17 18 19 20 21 22 23

time (sec)

time (sec)

time (sec)

time (sec)

1000

BN_35 - AOBF-C+SMB(i)

[hypergraph: w*=46, h=78] [minfill: w*=41, h=168]

100 o

—— hypergraph
—O— minfill

1000

i-bound

BN_37 - AOBF-C+SMB(i)

[hypergraph: w*=43, h=78] [minfill: w*=45, h=159]

—&— hypergraph
—0— minfil

1000

18 19 20 21 22 23
i-bound

BN_131 - AOBF-C+SMB(i)

[hypergraph: w*=51, h=60] [minfill: w*=48, h=72]

100 4

—@— hypergraph
—O— minfill

1000

[hypergraph: w*=54, h=63] [minfill: w*=54, h=71]

18 19 20 21 22 23
i-bound

BN_133 - AOBF-C+SMB(i)

100 -

—e— hypergraph
—O— minfill

Figure 4.12: Min-fill versus hypergraph partitioning hetiis. CPU time in seconds for
solvingUAI'06 networks with AOBB- C+SVB(7) (left side) andAOBF- C+SMVB(i) (right

side). The header of each plot records the average indudditi {wi*) and pseudo tree
depth (h) obtained with the hypergraph partitioning heigiswe also show the induced

width and pseudo tree depth for the min-fill heuristic.

189

minfill pseudo tree
MBE() MBE() MBE(Q) MBE() MBE()
iscas89 Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB()) AOBB+SMB(j)
(w*, h) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(j)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.06 0.08 0.09 0.14 0.20
c432 - - - - - - 432 0.45 432
(27, 45) out - - - - 1154.96 20,751,699 432 0.24 432
(432, 2) - - - - 182.53 2,316,024 432 0.24 432
out 106.27 488,462 432 0.28 432
0.09 0.09 0.30
c499 499 0.42 499 0.42 499 499 0.59 499
(23, 55) 139.89 499 0.13 499 0.13 499 499 0.33 499
(499, 2) 499 0.11 499 0.14 499 499 0.31 499
499 0.17 499 0.17 499 499 0.39 499
0.16 0.19 0.44
c880 - 1.56 881 1.80 881 881 1.84 881
(27, 67) out 884 881 0.25 881 881 0.50 881
(880, 2) 884 0.24 881 0.25 881 881 0.48 881
884 0.34 881 0.36 881 881 0.61 881
0.03 0.05 0.16
s386 1,358 0.11 677 0.06 172 172 0.17 172
(19, 44) 3.66 257 257 172 172 0.16 172
(172, 2) 207 207 0 172 172 0.16 172
194 194 172 172 0.16 172
0.17 0.70
s953 - - - - - - - - 1170.80 4,031,967
(66, 101) out 1054.79 9,919,295 23.67 238,780 58.00 549,181 36.06 434,481 2.72 21,499
(440, 2) 899.63 7,715,133| 17.99 155,865 48.13 417,924 | 17.00 132,139 13,039
out 41.03 150,598 | 110.45 408,828| 36.50 113,322 4.06 12,256
0.14 0.16 0.19 0.34 0.91
s1196 - - - - - - - - - -
(54,97) out 31.55 316,875| 332.14 3,682,077 7.44 77,205 31.39 320,205 26.24 289,873
(560, 2) 18.05 104,316 | 124.53 686,069 26,847 14.23 94,985 9.47 62,883
26.16 77,019 | 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114
0.14 0.16 0.20 0.36 0.86
51238 - - - - 398.13 2,078,885| 208.45 1,094,713 931.71 4,305,175
(59, 94) out 4.45 57,355 14.77 187,499 3.70 47,340 2.28 25,538 2.45 20,689
(540, 2) 1.77 12,623 4.95 34,056 1.30 8,476 5,418 1.42 4,780
2.30 5,921 6.61 17,757 1.70 4,298 2,730 1.69 2,415
0.13 0.12 0.14 0.31
51423 - - - - - - 762 1.19 749
(24, 54) 107.48 0.27 1,986 0.50 5171 0.53 5,078 866 0.36 749
(748, 2) 1,246 1,256 1,235 818 0.36 749
959 0.31 921 0.31 913 774 0.44 749
0.17 0.22 1.00
s1488 15.38 92,764 1.69 6,460 3.20 17,410 1.77 6,511 1.94 4,083
(47, 67) out 16.58 135,563 2.20 17,150 3.39 28,420 1.63 12,285 1.64 6,670
(667, 2) 13.22 82,294 5,920 2.50 15,621 1.19 6,024 1.47 3,516
21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124
0.14 0.17 0.22 0.42 1.06
s1494 10.86 64,629 | 978.87 3,412,403| 222.28 815,708 5.94 36,804 73.35 268,814
(48, 69) out 14.75 158,070 47.41 479,498 11.69 118,754 18.74 202,343 3.06 21,530
(661, 2) 7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 8,104
9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 3.03 6,484

Table 4.11: CPU time and nodes visited for solving belief meks derived fromlS-
CAS’89 circuits with static mini-bucket heuristics and min-fill pseudo seg&ime limit 30

minutes.

190

minfill pseudo tree
BB-C+DMB(j) BB-C+DMB(j) BB-C+DMB() BB-C+DMB(i) BB-C+DMB()
iscas89 AOBB-+DMB(i) AOBB-+DMB(i) AOBB-+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) | AOBB-C+DMB() | AOBB-C+DMB(i) | AOBB-C+DMB(i)
(n, d) AOBF-C+DMBJ(j) AOBF-C+DMB(i) | AOBF-C+DMB(i) | AOBF-C+DMB(i) | AOBF-C+DMB(i)
i=6 i=8 i=10 =12 i=14

time nodes time nodes time nodes time nodes time nodes
c432 B - | 15956 21.215| 250 432 3.20 432 461 432
(27, 45) - - 3200 39,711 1.02 432 1.69 432 3.06 432
(432,2) | 116125 323,359 23.02 4,951 432 1.73 432 3.09 432
1019.19 86,460| 26.05 2,342 432 2.70 432 4.70 432
c499 1.95 499 211 499 499 3.77 499 6.67 499
(23, 55) 499 0.73 499 499 241 499 5.25 499
(499, 2) 499 0.74 499 499 241 499 5.27 499
499 1.11 499 499 3.75 499 8.03 499
880 881 | 10.64 881 881 | 13.33 881 | 18.56 881
(27,67) 881 1.47 881 881 3.92 881 9.11 881
(880,2) 881 1.42 881 881 3.94 881 9.03 881
881 2.20 881 881 6.14 881 | 13.81 881

5386 172 0.28 172 172 0.59 172 1.05 172
(19, 44) 172 0.17 172 172 0.52 172 0.97 172
(172,2) 172 0.17 172 172 0.52 172 0.97 172
172 0.30 172 172 0.83 172 1.51 172
s953 2.737| 16.75 912 1,000 | 17.20 267 | 137.08 577
(66, 101) 2,738 913 1,010 | 16.17 468 | 135.61 578
(440, 2) 2,738 | 1598 913 1,010 | 16.14 468 | 136.09 578
2,738 | 2522 913 1,010 | 26.45 468 | 213.59 578
51196 580 481 568 924 | 88.01 863 | 386.75 1,008
(54,97) 660 2.45 568 924 | 77.02 863 | 362.32 1,008
(560, 2) 620 2.44 568 924 | 79.05 863 | 355.10 1,008
604 4.03 568 924 | 154.17 857 | 676.68 1,008
51238 . 5,841 6.77 601 | 30253 17,278| 36.39 651 | 76.70 558
(59, 94) 2.61 1,089 3.70 795 | 13.16 1,824 | 26.39 849 | 59.20 744
(540, 2) 704 3.63 619 | 12.97 996 | 26.22 667 | 59.09 571
4.00 635 6.17 610 | 21.30 769 | 4423 657 | 97.00 564

51423 5.05 751 527 749 5.67 749 6.66 749 9.09 749
(24, 54) 0.88 751 0.97 749 1.36 749 2.27 749 475 749
(748, 2) 751 0.95 749 1.34 749 | 222 749 | 473 749
1.04 751 1.56 749 2.28 749 3.69 749 7.45 749

51488 434 670 439 670 5.81 668 | 10.64 667 | 27.50 667
(47,67) 670 1.67 670 3.11 668 7.70 667 | 24.19 667
(667,2) 1.13 670 1.64 670 3.06 668 7.67 667 | 24.25 667
1.89 670 2.95 670 5.62 668 | 13.58 667 | 41.12 667

51494 7.80 814 5.61 679 | 15.16 719 | 25.03 686 | 70.19 686
(48, 69) 7.53 898 679 | 1259 719 | 2244 686 | 68.11 686
(661,2) 5.06 814 2.97 679 | 12.66 719 | 22.98 686 | 69.81 686
8.00 814 4.50 679 | 17.39 719 | 30.20 686 | 88.50 686

Table 4.12: CPU time and nodes visited for solving belief meks derived fromlS-
CAS’89 circuits with dynamic mini-bucket heuristics and min-fill pseudoese Time

limit 30 minutes.

191

ped25 - graph search and static mini-buckets (i=20) 140 ped37 - graph search and static mini-buckets (i=10)

-140
-160 7 -150 4 |
-180 4 160 ; AOBB-C+GLS+SMB(10)
= AOBB-C+GLS+SMB(20) = AOBB-C+SMB(10)
Z 00] AOBB-C+SMB(20) = | e BB-C+GLS+SMB(10)
a2 BB-C+GLS+SMB(20) a2 ' ———- BB-C+SMB(10)
< —.—.—-- BB-C+SMB(20) S 170 4 — — — AOBF-C+SMB(10)
S 220 — — — AOBF-C+SMB(20) g |
> > |
° °
-180 4 '
2404 | e
,,,,,, [|
190] |
P N N P / 190
-280 T T T T T T -200 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds
80 ped42 - graph search with static mini-buckets (i=16) 60 ped50 - graph search with static mini-buckets (i=12)
T
85 - -65 e
,,,,,,,, | |
b
- 1 =~ !
S > \
= 901 £ 704 N
(% AOBB-C+GLS+SMB(16) % | '
2 AOBB-C+SMB(16) 2 | |
s 1 r m———— BB-C+GLS+SMB(16) 2 e |
S -954 —-—-—-- BB-C+SMB(16) = 754
o — — — AOBF-C+SMB(16) o i ‘
| S
100] R 80] [| AOBB-C+SMB(12)
777777 BB-C+GLS+SMB(12)
———- BB-CYSMB(12)
— — — AOBF-C+SMB(12)
-108 T T T T T T -85 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

Figure 4.13: Anytime behavior &fOBB- C+SMB(¢) ongenetic linkage networks Num-
ber of flips for GLS is 50,000. GLS running time is less than dosel.

90-24-1 - graph search and static mini-buckets (i=18) 3 90-30-1 - graph search and static mini-buckets (i=18)
14 ****J‘f ********************
8 ——— -
‘:’ 15 4 ‘
2 0 ' = 159 | AOBB-C+GLS+SMB(18)
H | AOBB-C+GLS+SMB(18) H | AOBB-C+SMB(18)
2 | AOBB-C+SMB(18) B N BB-C+GLS+SMB(18)
e 1 | BB-C+GLS+SMB(18) I3 | —-—-—-- BB-C+SMB(18)
% 124 | — . BB-C+SMB(18) % | — — — AOBF-C+SMB(18)
=] — — — . AOBF-C+SMB(18) S -18
° | ° |
' 9] \
-14 | |
| o -20 o . ———
16 T T T T T T 21 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds
16 90-34-1 - graph search and static mini-buckets (i=20) 20 90-38-1 - graph search and static mini-buckets (i=20)
S S —— —
18]
“ 2] fre—m—em————— ;,,,,
-20 4 ‘ '
- I 5 2 [
Z 22 z
= AOBB-C+GLS+SMB(20) | = AOBB-C+GLS+SMB(20) |
§ AOBB-C+SMB(20) ‘ § AOBB-C+SMB(20) |
g 29 | TTo- BB-C+GLS+SMB(20) g 27 | BB-C+OLS+SMB(20)
s T Necioueee | 2 —— BeCisMeaD) '
g’ 226 4 B (20) ' g’ — — — AOBF-C+SMB(20) '
! > !
-28 ‘ ‘
| -30 :
-30 ——
32 T T T T T T 32 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

Figure 4.14: Anytime behavior cAOBB- C+SMB() on grid networks. Number of flips
for GLS is 50,000. GLS running time is less than 1 second.

192

BN_31 - graph search and static mini-buckets (i=21) BN_35 - graph search and static mini-buckets (i=17)

24

,,,,,,,,,,,,,,,,,,,,,,,,,,
22 | 251 ;
| 26 4 |
~ 24 ~ |
B ——— AOBB-C+GLS+SMB(21) | > 41 @ et
= AOBB-C+SMB(21) ' z 27 ﬂ
S %l | T BB-C+GLS+SMB(21) 8 | —— AOBB-C+GLS+SMB(17)
2 T T BB-CHSMBRI) | 2 ‘ AOBB-C+SMB(17)
a — — — AOBF-C+SMB(21) ' e 289 L ______ BB-C+GLS+SMB(17)
> >
2 8] | 2 | ——-—-- BB-C+SMB(17)
| 29] | — — — AOBF-C+SMB(17)
-30 | | 301 l
32 T T T T T T 31 T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

BN_126 - graph search and static mini-buckets (i=16) BN_131 - graph search and static mini-buckets (i=17)

————— AOBB-C+GLS+GLS(16)
! ' AOBB-C+SMB(16)
/ |~ BB-C+GLS+SMB(16)
—-—-—-- BB-C+SMB(16)
| — —— Aosr.cesma(ts)

—— AOBB-C+GLS+SMB(17)
AOBB-C+SMB(17)

****** BB-C+GLS+SMB(17)

———-- BB-C+SMB(17)

| ——— AoBF-c+smB(17)

log(probability)
log(probability)
&
2

seconds seconds

Figure 4.15: Anytime behavior AOBB- C+SMB(i) on UAI'0O6 networks. Number of
flips for GLS is 50,000. GLS running time is less than 1 second.

AOBB- C outputs a suboptimal solution.£., the best solution found far), which yields a
lower bound on the most probable explanation. On the othed,&OBF- C outputs a
complete solution only upon completion. In this section waleate the anytime behavior
of AOBB- C+SMB(7) . We compare it against the state-of-the-art local seaguriéhm for
Bayesian MPE, calleGuided Local SearcfGLS) first introduced in [102], and improved
more recently by [57].

GLS [121] is a penalty-based meta-heuristic, which worksibpgmenting the objective
function of a local search algorithm.. hill climbing) with penalties, to help guide them
out of local minima. GLS has been shown to be successful inrgph number of practical
real life problems, such as the traveling salesman prohiadn link frequency assignment
problem and vehicle routing. It was also applied to solving MPE in belief networks
[102,/57] as well as weighted MAX-SAT problems [93].

The AND/OR Branch-and-Bound algorithms assumed a triviiiHower bound {.e.,

193

minfill pseudo tree
BB-C+SMB() BB-C+SMB() BB-C+SMB() BB-C+SMB() BB-C+SMB()
pedigree Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) GLS | AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes | time nodes
- - - - 1.14 7,997 0.73 3911 | 1.31 2,704
pedl 5.44 | 8943.68 59,627,660 1367.98 9,013,771 3.84 1,798 4.05 2,524 | 4.75 2,077
(15, 61) 54.73 4.19 69,751 217 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494
(299, 5) 0.31 3.01 46,663 2.10 29,877 3,138 0.33 6,092 | 0.92 4,350
1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 | 1.54 3,119
- - - - - - - - out
ped38 out - - - - - - - -
(17,59) 5046.44 34,828,046| 1554.65 8,986,648| 2046.95 11,868,672| 272.69 1,412,976
(582, 5) 7.05 4410.70 32,599,034 780.46 4,487,470 1650.05 9,844,485| 226.44 1,366,242
out 134.41 348,723 216.94 583,401 103.17 242,429
- - - - - - - out
ped50 out - - - - - - 52.95 83,025
(18, 58) - 4140.29 28,201,843| 2493.75 15,729,294 66.66 403,234 52.11 110,302
(479, 5) 5.30* 3177.43 24,209,840| 1610.33 13,299,343 67.85 400,698 32.67 15,865
78.53 204,886 | 36.03 104,289 25,507 38.52 5,766
i=10 =12 i=14 =16 =18
time nodes time nodes time nodes time nodes | time nodes
- - - - 76.11 339,125 270.22 74,261 out
ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412
(27,71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613
(310, 5) 3.94 196.68 1,720,633 73,082 10.58 20,329 | 274.26 60,424
out 15.33 58,180 14.36 12,987 out
- - - - - - - out
ped37 out - - | 207312 10,612,906 - - | 3386.01 16,382,262
(21, 61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
(1032, 5) 8.97+ 141,867 26.97 254,219 82.08 604,239 | 52.32 23,572
29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

Table 4.13: CPU time and nodes visited for solvopenetic linkage analysis networks
with static mini-bucket heuristics. Number of flips for GL&svset to 250,000. Time limit
3 hours.

0), which effectively guarantees that the MPE will be computeowever it provides lim-
ited pruning. We therefore extendA@BB- C+SMB(i) to exploit a non-trivial initial lower
bound computed by GLS. The algorithm is denotedN®BB- C+GLS+SMB(i) . For ref-
erence, we also ran the OR version of the algorithm, denotd&Bb C+ G S+SIVB()
Figure[4.1B displays the search trace of the OR and AND/ORBriéthgns on 4 genetic
linkage networks presented earlier. We chose the minidtuckound that offered the
best performance in Tables 4.6 dnd 4.7, respectively, aod ge first 50 seconds of the
search. We ran GLS for a fixed number of flips. We see that imguthe GLS lower
bound improves performance throughout. In all these tes#,cthe initial lower bound
was in fact the optimal solution (we did not plot the GLS rumntime because it was
less than 1 second). TherefoOBB- C+G.S+SMB(i) andBB- C+A.S+SMB(i) were
able to output the optimal solution quite early in the searaflike AOBB- C+SMVB(7)
andBB- C+SMB(i) . For instance, on theed50 network,AOBB- C+G.S+SMB(12) and

194

minfill pseudo tree
BB-C+SMB(i) BB-C+SMB()) BB-C+SMB()) BB-C+SMBJ()) BB-C+SMB()
pedigree Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(j)
(w*, h) GLS | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB() AOBF-C+SMB() AOBF-C+SMB() AOBF-C+SMB() AOBF-C+SMB()
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
- - - - - - - - | 1515.43 1,388,791
ped18 157.05 - - - - - - | 167215 1,389,831
(21, 119) 139.06 - - 406.88 3,567,729| 52.91 397,934| 23.83 118,869 20.60 2,972
(1184, 5) 10.16 | 10780.40 107,804,665 170.14 1,824,835| 37.64 396,961 | 11.66 118,170 2,720
out 127.41 542,156 | 42.19 171,039| 19.85 53,961 19.91 2,027
- - - - - - - out
ped20 out - - - - - - - -
(24, 66) 1983.00 18,615,009 635.74 6,424,477| 512.16 4,814,751| 681.97 2,654,646
(388, 5) 422 | 2079.43 18,611,778 667.66 6,419,317| 567.20 4,812,068 682.03 2,653,400
out out out out
ped25 out - - - - - - - -
(34, 89) - 1644.67 12,631,406| 865.83 6,676,835 249.47 1,789,094 1,529,180
(994, 5) 11.03* - 1644.87 12,631,282 864.09 6,676,061 245.79 1,788,621| 239.08 1,529,588
out out out out out
ped30 out - - - - - - - -
(23,118) | 13095.83 | 10212.70 93,233,570 8858.22 82,552,957 34.19 193,436 30.48 66,144
(1016, 5) 11.00 | 10620.20 93,030,080 9296.01 82,552,786 - 32.16 193,419 66,128
out out out 30.39 72,798 27.94 18,795
ped33 out - - - - - - - - - -
(37, 165) - 1426.99 11,349,475 307.39 2,504,020| 1823.43 14925943 86.17 453,987 | 1373.90 10,570,695
(581, 5) 6.86* | 1550.76 11,528,022 320.06 2,434,582 1970.72 15,124,932| 80.61 453,446 | 151824 10,970,922
out 140.61 407,387 out 134,068 out
ped39 out - - - - - -
(23, 94) 322.14 968.03 7,880,928 61.20 313,496 93.19 83,714
(1272, 5) 10.97* 518.04 6,473,615| 59.14 313,340 81.24 61,291
out out 68.52 218,925 79,356 87.63 14,479
- - - - out out
ped42 out - -
(25,76) 561.31 2364.67 22,595,247
(448, 5) 4.25% - 385.26 3,078,657
out out 133.1@ 93,831

Table 4.14: CPU time and nodes visited for solvinetic linkage analysis networks
with static mini-bucket heuristics. Number of flips for GL&svset to 250,000. Time limit
3 hours.

BB- C+GLS+SMB(12) found the optimal solution within the first second of the sbar
AOBB- C+SMB(12) , on the other hand, finds the optimal solution after 8 secomdsreas
BB- C+SMB(12) reaches a flat region after 18 seconds. In this o&GBF- C+SMVB(12)
finds the optimal solution after 25 seconds.

Tabled 4,18 and 4.14 compare the OR and AND/OR graph seajohthims with and
without an initial lower bound, as complete algorithms. &ighmsAOBB- C+G.S+SMVB()
andBB- C+A@.S+SMB(i) do not include the GLS time, because GLS can be tuned inde-
pendently for each problem instance to minimize its runrtingg, SO we report its time
separately (as before, GLS ran for a fixed number of flips). "Fhey the GLS running
time indicates that it found the optimal solution to the exgjve problem instance. We

see that indeeBB- C+GL.S+SMB(/) andAOBB- C+G.S+SMB(/) are sometimes able to

195

minfill pseudo tree
BB-C+SMB() BB-C+SMB() BB-C+SMB()) BB-C+SMB()) BB-C+SMB()
grid Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMBJ(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB()
(n, e) AOBF-C+SMB(i) AOBF-C+SMB() AOBF-C+SMB() AOBF-C+SMB(i) AOBF-C+SMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.23 3,297 0.06 373 102 0.06 102 0.06 102
90-10-1 0.13 0.38 3,272 0.19 289 0.19 0 0.19 0 0.20 0
(16, 26) 0.25* 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101
(100, 0) 0.28 2,580 0.22 789 0.19 0 0.20 0 0.19 0
0.27 2,012 0.11 661 100 0.06 100 0.06 100
126.69 1,233,891| 121.00 1317992 152 16,547 0.42 2,770 0.61 1,450
90-14-1 11.97 21.02 217,185 31.64 339,762 0.88 5,892 0.50 1,122 0.78 1,178
(23,37) 0.43* 4.22 55,120 3.66 48513 | 045 5,585 1,361 0.53 1,210
(196, 0) 3.59 45,023 2.77 32,454 | 0.66 3,684 0.45 1,067 0.78 1,062
3.20 18,796 2.70 15,764 | 055 2,899 0.30 898 0.63 857
- - - - | 40.05 345,255 2.38 16,942 1.23 5,327
90-16-1 147.19 - - | 1163.43 9,106,361 35.72 306,583 1.97 12,104 1.42 4,614
(26, 42) 0.49* | 209.60 2,695,249| 35.45 441,364| 4.23 50,481 1.19 11,029 4,810
(256, 0) 37.28 453,073 8.14 96,962 | 4.17 46,138 1.44 10,702 1.23 4,552
25.70 126,861| 10.59 54,796 | 4.47 22,993 1.42 6,015 1.22 3,067
=12 =14 =16 =18 =20
time nodes time nodes time nodes time nodes time nodes
90-24-1 out 1773.64 6,065,308 609.65 2,008,431| 11158 263,250 | 632.68 1,705,699
(36, 61) 0.53 - - | 1273.09 9,047,518| 596.27 4,923,760 70.42 473,675 74.99 412,291
(576, 20) 3504.60 24,363,798| 66.20 425,585| 20.16 93911 1117 7,850 | 28.16 27,868
out 21.94 75,637 | 1059 33,770 5144 | 23.80 17,201
- - - | 395.67 1,635,447 - - 67.09 277,685
90-26-1 out - - - - | 235.36 922,243 65.39 282,394| 4170 73,616
(35, 64) 056 | 146.97 878,874 152.80 962,484 436 15,632 12.92 46,489 | 22.13 2,242
(676, 40) 43.64 248,603| 85.72 495,039 | 10.83 14,580 | 14.47 6,226 | 28.38 1,466
19.06 65271 | 24.39 79,619 7,190 8.05 3,777 | 22.44 1,435
90-30-1 out - - - - - - - - - -
(38, 68) 072 | 652.15 3,882,300| 165.74 1,070,823| 155.20 956,837 40.14 212,963 | 59.28 174,715
(900, 60) 276.00 1,491,880 84.39 442,754 | 78.81 376,916 | 31.69 80,045 | 64.23 148,540
158.97 534,385| 46.73 157,187 | 47.27 154,496 45,201 | 57.97 100,800
90-34-1 out - - - - - -
(43,79) 1.31 - - - - - - - - | 369.36 823,604
(1154, 80) - - - - | 980.51 4,943,817| 1751.86 5516,888| 315.38 630,406
out out 243.63 596,978| 270.88 667,013 67,611
90-38-1 out - - - - - - - - - -
(47, 86) 111 | 969.02 2,623,971| 1753.10 3,794,053| 203.67 614,868| 165.45 488,873| 113.06 214,919
(1444, 120) 819.16 2,450,643| 1806.57 3,804,190| 224.80 607,453| 187.63 482,946 | 138.64 211,562
101.69 174,786| 103.80 146,237| 54.00 95,511 78431 | 73.10 59,856

Table 4.15: CPU time and nodes visited for solvgrgl networks with static mini-bucket
heuristics. Time limit 1 hour. Number of flips for GLS is 5000
improve significantly oveBB- C+SMB(i) andAOBB- C+SMB(i) , especially at relatively
smalli-bounds. For example, on tipeed37 linkage instanceAOBB- C+GLS+SMVB(12)
achieves almost an order of magnitude speedup 8@BB- C+SVB(12) . Similarly,
BB- C+AL.S+SMB(12) finds the optimal solution tped37 in about 35 minutes, whereas
BB- C+SMB(12) exceeds the 3 hour time limit.

Figured 4.14 and 4.15 show the search trace of the AND/OR Brand-Bound algo-
rithms for solving selected instances of grid networks add’@6 Dataset, respectively.

We see again thadOBB- C+GL.S+SMB(:) and BB- C+GLS+SMB(i) take advantage of

the quality of the initial lower bound produced by GLS, andifalose to optimal solutions

196

minfill pseudo tree
BB-C+SMBJ() BB-C+SMB() BB-C+SMB() BB-C+SMB(i) BB-C+SMBJ()
bn Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB()) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMB())
(w*, h) AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
BN_31 - - - - - - - - - -
(46, 160) out | 411.33 1,445,200 486.47 2,131,977| 209.80 831,431| 210.81 889,782 81.61 94,507
(1156, 2) 9.86* | 357.86 1,172,122| 375.05 1,573,677| 202.66 775,258| 187.34 752,284 79.01 56,409
140.41 293,445 126.23 292,293| 85.69 142,650 | 86.00 114,046 25,392
BN_33 - - - - - - - - - -
(43, 163) - 429.02 982,130 125.78 210,552 | 236.42 408,855 160.61 256,191 120.33 89,308
(1444,2) | 1230 | 434.97 980,701| 134.47 207,658 | 244.72 399,206| 167.39 245,144 129.35 85,745
75.92 142,932 41,865 | 58.14 61,064 | 73.20 49,760 | 95.16 22,256
BN_35 - - - - - - - - - -
(41, 168) - 42.95 126,215 107.17 243,533 81.59 151,632 | 56.11 65,657 78.27 58,973
(1444, 2) 12.38 49.97 120,205 | 112.42 224,908 89.85 151,619 | 66.16 74,585 89.31 71,614
29,837 36.58 34,987 | 43.28 28,088 | 51.28 15953 | 76.28 18,048
BN_37 - - : . - - . - - -
(45, 159) - 26.42 55,571 20.19 33,475| 25.45 14,703 | 4561 8,815 94.55 16,400
(1444, 2) 12.70 29.77 48,211 26.17 31,674| 3211 13,808 | 49.63 7,774 99.00 19,871
15,399 19.47 11,046 | 26.55 6,621 | 46.84 4,315 90.66 5,610
BN_39 - - - - - - - - - -
(48, 164) - | 1161.65 2,615,679| 1370.21 3,448,072| 507.18 1,499,020| 403.07 1,043,378| 220.74 518,011
(1444, 2) 12.88 | 472.36 1,076,698 782.69 2,026,535| 276.27 778,118| 190.16 436,932 113.67 168,410
117.03 340,362 247.08 725,738 | 131.44 316,862| 112.27 213,676 [111.20 127,872
BN_41 - - - - - - - - - -
(49, 164) - 56.72 119,737 | 47.30 77,653 | 33.81 32,774| 50.81 38,467 76.42 31,763
(1444,2) | 12.29* 63.16 117,948 52,52 73,947 | 40.45 30,930| 58.53 37,018 86.72 30,487
23.50 42,795 20,485 | 27.22 12,030 | 43.38 16,549 71.61 11,648

Table 4.16: CPU time and nodes visited for solvidgl’06 networks with static mini-
bucket heuristics. Time limit 30 minutes. Number of flips @S is 500,000.
much earlier tha\OBB- C+SVB(1) andBB- C+SMB() , respectively.
Tables[4.16[4.16, arld 4]17 report detailed resultsAoBB- C+G.S+SMB(i) and
BB- C+G.S+SMB(7) on grid networks and UAI'06 Dataset networks, respectivilg see
that the lower bound computed by GLS was in many cases equiaé toptimal solution
and thereforeAOBB- C+GLS+SMB(¢) andBB- C+A.S+SMB(7) improved considerably
overAOBB- C+SMB(i) andBB- C+SMB(i) , respectively.

4.5.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model explegh hard constraints and
general cost functions, it is beneficial to exploit the cotagianal power of the constraints
explicitly via constraint propagation as described in Cheft

We evaluated the AND/OR Branch-and-Bound algorithm withstatni-bucket heuris-

197

minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB()
bn Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(j)
GLS AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(j)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
301.56 2,085,673 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027
BN_126 63,674 15.78 85,215 19.31 76,346 27.69 37,226 51.38 30,317
(54, 70) - 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056
(512, 2) 6.08* 10.91 83,227 17.74 117,859 20.66 99,518 28.66 49,175 54.28 42,873
16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
- - - - - - - - 130.27 631,093
BN_127 238,020 31.02 250,746 36.19 215,054 44.34 166,176 57.52 83,380
(57,74) out - - - - - - - - 128.94 860,026
(512, 2) 5.75* 27.59 282,349 31.11 295,100 38.67 280,166 46.03 214,590 57.47 113,743
51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147
BN_128 4.50 854 8.05 694 14.17 778 29.44 461 48.75 551
(48, 73) out 411 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203
(512, 2) 5.95* 4.14 1,022 7.91 974 13.92 991 28.75 547 49.64 674
883 7.75 925 13.78 808 28.39 478 49.13 575
- - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134
BN_129 244.08 2,419,418 150.30 1,408,350 150.56 1,352,916 119.70 923,635 142.14 914,833
(52, 68) out 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613
(512, 2) 5.89* 245.08 2,443,843 95.64 961,434 142.55 1,412,079 564,895 138.53 979,046
194.56 922,831 out 537,371 246.39 910,769
182,120 - - 869.44 7,310,190 - - 57.06 109,669
BN_130 114,610 87.28 751,400 41.73 299,845 42.86 158,612 58.53 107,880
(54, 67) out 239,771 - - 863.15 8,414,475 - - 58.94 147,085
(512, 2) 5.87* 158,150 36.24 364,352 43.25 392,961 43.19 211,380 57.91 144,741
115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
137,631 39.02 323,431 | 1149.74 10,230,128 47.25 228,703 - -
BN_131 118,238 26.77 212,338 19.56 82,414 28.69 73,552 51.69 122,085
(48, 72) out 176,456 41.63 396,234 | 1254.88 12,395,143 50.42 303,818 - -
(512, 2) 5.87* 150,341 28.22 256,361 20.34 101,662 29.16 91,103 54.12 156,925
116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
- - - - - - 756.69 6,584,446 578.99 4,819,402
BN_132 683.65 5,987,145 429.96 3,750,177| 838.83 7,484,051| 627.50 5,584,689 392.78 3,296,711
(49, 71) out - - - - - - 778.22 7,456,812 643.96 6,037,908
(512, 2) 5.89*% 686.08 6,499,878 439.89 4,252,274| 718.66 6,905,710| 453.25 4,319,442 3,557,198
out out out out out
- - 104,521 31.28 171,645 127.32 929,016 55.33 30,699
BN_133 29.13 258,988 17.09 102,193 22.77 93,433 36.28 90,006 53.97 17,865
(49, 71) out - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483
(512, 2) 5.79* 30.50 329,146 16.50 125,945 22.66 116,553 36.17 112,317 53.92 17,069
59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
BN_134 105.61 1,029,072 373,641 115.67 1,065,258 60.94 376,402 75.16 213,954
(52, 70) out - - - - - - - - - -
(512, 2) 5.83* 109.97 1,170,028 44.33 439,065 123.91 1,253,376 60.72 401,521 76.38 241,382
out 85.77 373,081 out 96.19 377,064 97.59 214,591

Table 4.17: CPU time and nodes visited for solvidgl’06 networks with static mini-

bucket heuristics. Time limit 30 minutes. Number of flips €@iLS is 500,000.

198

minfill pseudo tree
AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB()) AOBB-C+SMB()
Samlam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(w*, h) GLS | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB()
(n,e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(j)
i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes
E ~ | 1273.09 9,047,518 596.27 4,923,760 70.42 473,675
90-24-1 out | 687.96 4,823,044| 202.05 1,564,800 172.31 1,370,222| 5552 401,294
(33,111) - - 66.20 425,585 20.16 93,911 11.17 7,850
(576, 20) 0.53 | 473.64 3,181,352 19.09 131,546 8.41 49,054 6,891
out 21.94 75,637 10.59 33,770 6.06 5,144
146.97 878,874| 152.80 962,484 436 15,632 12.92 46,489
90-26-1 out 32.67 230,030 53.11 360,612 11,620 11.95 40,075
(36, 113) 36.94 252,380 87.02 559,518 417 14,580 7.86 6,310
(676, 40) 0.56 15.09 104,775 32.85 219,037 10,932 8.06 8,128
19.06 65,271 24.39 79,619 427 7,190 8.05 3,777
652.15 3,882,300| 165.74 1,070,823 155.20 956,837 40.14 212,963
90-30-1 out | 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928
(43, 150) 263.32 1,498,756| 74.95 446,498 68.16 376,916 23.88 95,136
(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 52,260
158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201
90-34-1 out - - - - - - - -
(45, 153) - - - - | 1096.14 5,569,276| 1772.51 5,516,888
(1154, 80) 1.31 - - - - 550.55 2,944,055| 651.04 2,614,171
out out 243.63 596,978 | 270.88 667,013
969.02 2,623,971 1753.10 3,794,053] 203.67 614,868| 165.45 488,873
90-38-1 out | 141.89 577,763| 204.69 593,809 86.16 319,185 102.03 312,473
(47, 163) 854.61 2,498,702| 1822.71 3,792,826 212.63 647,089| 164.43 484,815
(1444, 120) 111 | 138.44 573,923| 204.68 597,751 96.27 339,729 98.21 311,072
101.69 174,786| 103.80 146,237| 54.00 95,511 78,431

Table 4.18: CPU time and nodes visited for solviohgterministic grid networks with
static mini-bucket heuristics. Number of flips for GLS is@@0). Time limit 1 hour.

tics on selected classes of Bayesian networks containiegrdetistic conditional probabil-
ity tables (.e., zero probability tuples). The algorithm, denotedd@BB- C+SAT+SMB()
exploits the determinism present in the networks by appglynit resolution over the CNF
encoding of the zero-probability tuples, at each node irsd@ch tree. We used a unit res-
olution scheme similar to the one employed4ahaf f , a the state-of-the-art SAT solver
introduced by|[94]. We also consider the extension ca€BB- C+SAT+GLS+SMB(1)
which uses GLS to compute the initial lower bound, in additio the constraint propaga-
tion scheme.

Table 4.18 shows the results for 5 deterministic grid neks@rom Section 4.512. These
networks have a high degree of determinism encoded in thelsCRMe observe that
AOBB- C+SAT+SMB(¢) improves significantly ovehOBB- C+SMB(i) , especially at small
i-bounds. On grid@0- 30- 1, for example AOBB- C+SAT+SMB(12) is 6 times faster
than AOBB- C+SMB(12) . As thei-bound increases and the search space is pruned more

effectively, the difference betweeSOBB- C+SMB(/) and AOBB- C+SAT+SMB(i) de-

199

minfill pseudo tree
AOBB-C+SMB() AOBB-C+SMB() AOBB-C+SMB(i) AOBB-C+SMB(j)
Samlam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
GLS | AOBB-C+SAT+GLS+SMB()) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12
time nodes time nodes time nodes time nodes
B N B — | 18253 2,316,024 0.16 432
c432 out | 374.29 4,336,403| 189.13 2,043,475 1.02 9,512 | 0.16 432
(27, 45) 0 0.06 0 0.09 0| 013 0
(432, 2) 0.08* 0.06 0 0.08 0 0.09 0| 013 0
out out 106.27 488,462| 0.20 432
899.63 7,715,133 17.99 155,865| 48.13 417,924 17.00 132,139
5953 out 0.19 829 0.16 667 0.20 685 | 0.31 623
(66, 101) 0 0.13 0 0.17 0| o028 0
(440, 2) 0.05* 0.13 0 0.13 0 0.17 0| 030 0
out 41.03 150,598 | 110.45 408,828 | 36.50 113,322
18.05 104,316 | 12453 686,069 3.69 26,847 | 14.23 94,985
51196 out 0.19 565 0.19 565 0.23 565 | 0.38 565
(54, 97) 0.14 0 0.16 0 0.20 0| 034 0
(560, 2) 0.08* 0 0.14 0 0.20 0| 034 0
26.16 77,019 | 158.19 372,129 7.22 23,348 | 26.97 80,264
13.22 82,294 1.02 5,920 250 15,621 | 1.19 6,024
51488 out 0.20 708 0.20 667 0.25 667 | 0.44 667
(47,67) 0.14 0 0.16 0 0.22 0| 044 0
(667, 2) 0.13* 0 0.16 0 0.20 0| 047 0
21.75 74,658 1.67 5,499 4.22 14,445 | 1.84 5,372
7.30 41,798 | 19.69 108,768 481 27,711 7.00 41,977
51494 out 0.20 665 0.22 665 0.27 665 | 0.45 665
(48, 69) 0 017 0 0.22 0| o041 0
(661, 2) 0.11* 0 0.17 0 0.22 0| 042 0
9.67 24,849 | 27.28 65,859 7.86 19,678 | 11.48 28,793

Table 4.19: CPU time and nodes visited for solving belief meks derived fromlS-
CAS’89 circuits using static mini-bucket heuristics. Time limit 30 minutes

creases because the heuristics are strong enough to cetattod space significantly. The
mini-bucket heuristic already does some level of constiaiopagation.

When looking at impact of the initial lower bound &©BB- C+SAT+SMB(i) we see
thatAOBB- C+SAT+G.S+SMB(i) is sometimes able to improve even more. For example,
on the90- 34- 1 grid, AOBB- C+SAT+G.S+SMB(16) finds the optimal solution in about
9 minutes (550.55 seconds) wherd@BB- C+SAT+SMB(16) exceeds the time limit.

Table[4.19 shows the results for experiments with 5 beliéfvaks derived from |IS-
CAS’89 circuits. We see that constraint propagation via tasblution plays a dramatic
role on this domain, rendering the search space almost laakkfree across-bounds.
For instance, on the953, AOBB- C+SAT+SMB(6) is 3 orders of magnitude faster than
AOBB- C+SMB(6) , while AOBF- C+SMB(6) exceeded the memory limit. When looking
at the AND/OR Branch-and-Bound algorithms that exploit thealcsearch initial lower
bound, namehACBB- C+GLS+SMB(i) and AOBB- C+SAT+G_S+SMB(7) , we see that

they did not expand any nodes. This is because the lower bobtathed by GLS, which

200

was the optimal solution in this case, was equal to the mickbt upper bound computed
at the root node. Here, the best performance was achieveXDBR- C+SAT+SMB(i)
andAOBB- C+SAT+A.S+SMB(1) , respectively, for the smallest reportedound (namely

i = 6). Notice also the poor performance ofil AM which ran out of memory on all tests.

4.5.5 Results for Empirical Evaluation of Weighted CSPs

In Chaptei_B we showed that the best performance on this dowesnobtained by the
AND/OR Branch-and-Bound tree search algorithm with statinifhucket heuristics, at
relatively largei-bounds, especially on non-binary WCSPs with relatively sihamnain
sizes €.g., SPOT5 networks, ISCAS’89 circuits, Mastermind instanc&&BB+SMB(i)
dominated all its competitors, including the classic OR Braand-BoundBB+SMB(7)
as well as the OR and AND/OR algorithms that enforce EDACrdusearch, namely
t ool bar and the ACEDAC family of algorithms ACEDAC+PVO, DVO+ACEDAC and
ACEDAC+DSOQ, respectively). The AND/OR Branch-and-Bound with dynamiairtiucket
heuristicsAOBB+SMB(i) was shown to be competitive only for relatively smaliounds.
In this section we continue the evaluation of the AND/OR alhons with mini-bucket

heuristics, focusing on memory intensive depth-first arst-fiest search strategies.

Earth Observing Satellites

SPOT5 benchmark contains a collection of large real scireglpiroblems for the daily
management of Earth observing satellites [7]. They can bidyegarmulated as WCSPs
with binary and ternary constraints, as described in Ch&pter

Tables[4.2D and_4.21 show detailed results on experimertts WEPOT5 networks
using min-fill pseudo trees, as well as static and dynamid-nunoket heuristics. The
networks42b, 408b and505b are sub-networks of the original ones and contain only

binary constraints.

201

minfill pseudo tree
MBE() MBE() MBE() MBE() toolbar
spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMB() AOBB+SMB() AOBB+SMB() AOBB+SMB(j) AOEDAC+PVO
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC
(n,k, ©) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOEDAC+DSO
i=4 i=6 i=8 i=12
time nodes time nodes time nodes time nodes time nodes
0.01 0.05 0.33 21.66 456 218,846
29 - - - - | 6313.73 50,150,302| 22.30 2,322 984
(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 54543 7,837,447
(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 0.81 8,698
6.42 36,396 2.23 12,801 0.47 757 21.77 96 11.36 92,970
0.11 0.17 0.56 28.83 - -
42b - - 2159.26 9,508,763| 145.77 684,109 9553.06 249,053,196
(18, 62) 1842.32 9,606,846 134.39 689,402 - -
(191, 4, 1341) - - - - | 1804.76 9,410,729| 116.98 584,838 - -
35.42 118,085| 29.11 106,648 82,611 38.91 43,127 | 6825.40 27,698,614
0.02 0.03 0.11 1.24 0.31 21,939
54 664.48 5715457| 2.06 17,787 0.38 2,289 1.27 236 0.18 779
(11,33) 11319 1,106,598| 1.59 17,757 0.39 3,616 1.27 329 9.11 90,495
(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 0.06 688
0.41 2,714 631 0.16 312 0.69 68 0.75 6,614
0.01 0.02 0.09 111 151,11 6,215,135
404 - - - - - - | 433637 32,723,215 5.09 139,968
(19, 42) 430.99 3,969,398| 151.99 1,373,846| 14.83 144,535 1.44 3,273 152.81 1,984,747
(100,4,710) | 174.09 1,396,321| 51.88 529,002 2.55 23,565 1.16 598 12.09 88,079
1.45 7,251 1.20 6,399 5,140 1.22 576 1.74 14,844
0.01 0.09 0.33 8.37 - -
408b - - - - -
(24, 59) - - 715.35 4,784,407
(201, 4, 1847) - - - - | 750710 54,826,929| 75.08 408,619 - -
208.41 185935| 52.53 175,366 | 44.99 145,901 39,238 747.71 2,134,472
0.02 0.05 0.14 0.41 - -
503 - - - - - 0.50 566 0.65 18,800
(9, 39) 43526 5,102,299| 421.10 4,990,898 0.44 641 - -
(144, 4, 639) - - | 189.39 2,442,998| 291.72 4,050,474 256 | 10005.00 44,495,545
5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 53.72 231,480
0.05 0.11 0.66 47.19 - -
505b - - - 33.62 1,119,538
(16, 98) - - - - - -
(240, 1721) - - - - - - | 1180.48 8,905,473
51.86 149,928 | 4273 144,723 111,223 54.09 31,692

Table 4.20: CPU time in seconds and number of nodes visiteddiming theSPOT5
benchmarks usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time
limit 3 hours.

Tree vs. graph AOBB. We notice again the benefit of using caching within depth-
first AND/OR Branch-and-Bound search. The differences, iminm time and num-
ber of nodes visited, betwee&OBB- C+SMB(i) andAOBB+SMB(i) are more prominent
at relatively smalli-bounds. For example, of08b, ACBB- C+SMB(12) outperforms
AOBB+SMB(12) by 1 order of magnitude in terms of both running time and sizthe
search space explored. When looking at the impact of cachimgnwsing dynamic mini-
bucket heuristics (Table_4.R1) we see that the differentedmn AOBB- C+DVB(i) and
AOBB+DIVB(7) , acrossi-bounds, is not that pronounced as in the static case. This-is
cause the dynamic mini-bucket heuristics are far more atethan the pre-compiled ones
and prune the search space more effectively, thus not lgawom for additional improve-

ments due to caching. Notice thatol bar andDVO+ACEDAC are able to solve relatively

202

min-fill pseudo tree
spots BB-C+DMB() BB-C+DMB() BB-C+DMB() BB-C+DMB()
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMBY(i) AOBB-C+DMB(i) | AOBB-C+DMB() | AOBB-C+DMB(i)
(n, k ©) AOBF-C+DMB(i) AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB(i)
i=4 i=6 i=8 i=12
time nodes time nodes time nodes time nodes
29 4424 11,637 12572 9417| 54.86 354 | 627.30 320
(14, 42) 65.24 14,438| 5292 11,850| 121.83 364 | 627.29 330
(83, 4, 476) 56.58 6,017 | 5306 4,638 | 12217 170 | 636.16 136
942 21.83 537 | 38.83 114 | 308.71 83
42b - - - - - - - -
(18, 62) -
(191, 4, 1341) - - - -
1455.69 101,453 - - - - | 6002.69 212
54 88651 118,219| 32.59 938 24.97 236 | 32081 236
(11,33) 20214 69,362 2673 2,188 | 2219 329 | 27181 329
(68, 4, 283) 84.27 15214 8.80 357 10.86 120 | 137.39 120
4.16 1,056 163 5.95 68 77.78 68
204 - - - — | 489525 78,602| 3450.31 3,008
(19, 42) 240.36 156,338| 257.20 39,144 | 199.67 5612| 563.02 1,327
(100, 4, 710) 6552 20457| 9883 6,152| 99.78 952 | 320.49 286
4,928 65.80 2,946 | 101.30 847 | 351.37 291
408b - - - - - - - -
(24,59) -
(201, 4, 1847) - - - -
655.41 70,655 | 2447.91 69,434 - -
503 - - - - 246.65 566
(9,39) 64.95 641
(144, 4, 639) - - - - - - 49.95 256
78.69 9,143 | 324.00 8175| 102540 5984 144
505b - - - - - - - -
(16, 98)
(240, 1721) - - - - - -
68140 33,969 | 2766.08 28,157| 3653.66 12,455

Table 4.21: CPU time in seconds and number of nodes visiteddiming theSPOT5
benchmarks using dynamic mini-bucket heuristics and min-fill based pseudo trees.
Time limit 3 hours.

efficiently only the first 3 test instances.

AOBB vs. AOBF. When comparing the best-first against the depth-first AND/@d&ch
algorithms we observe again here ti#gBF- C+SMB(i) improves significantly (up to
several orders of magnitude) in terms of both CPU time and murob nodes visited,
especially for relatively smali-bounds. For example, d805b, one of the hardest in-
stances AOBF- C+SMB(8) finds the optimal solution in less than 30 seconds, whereas
AOBB- C+SMB(8) exceeds the 3 hour time limit. As the mini-bucketound increases
and the heuristics become strong enough to cut the search splstantially, the difference
between Branch-and-Bound and best-first search decreasmsjskeBranch-and-Bound
finds almost optimal solutions fast, and therefore will rqtlere solutions whose cost is
above the optimal one, like best-first search. Notice tlwatl bar - BTD fails only on one

instance, namely08b, and is competitive withAOBF- C+SMB(/) on 4 test instances,

203

SPOTS5 404 network
[minfill: w*=19, h=42]

105
——e—— AOBB+SMB()
] o AOBB+DMB(i)
104 4 ——-v-—— AOBB-C+SMB(i)
E ——A—-- AOBB-C+DMB(i)
— —® — AOBF-C+SMB(i)
— —O—— AOBF-C+DMB(i)

10% 4

time (sec)
2
L

10" 4
100 E
107 T T T T T T T
0 2 4 6 8 10 12 14 16
i-bound
SPOTS5 404 network
100 [minfill: w*=19, h=42]
——e—— AOBB+SMB(i)
: o AOBB+DMB(i)
10 ———%—— AOBB-C+SMB(i)
L S8 —.—A—-- AOBB-C+DMB(i)
108 Q = — —&% — AOBF-C+SMB(i)
AOBF-C+DMB(i)
o)
» 10° N
[
o)
3 N
S 10t
:—lt —
—o N
10°
=
| — 0y
102 ~
10! T T T T T T T
0 2 4 6 8 10 12 14 16

i-bound

Figure 4.16: Comparison of the impact of static and dynamig-miicket heuristics on the
404 SPOTS5 network from Table$4.20 and 4.21. We show CPU time (top) and number of
nodes (bottom).

204

namely on29, 54, 503 and505b.

Static vs. dynamic mini-bucket heuristics. Figure[4.16 displays the running time and
number of nodes visited by the AND/OR search algorithms wi#tic and dynamic mini-
bucket heuristics, as a function of thidound, on thet04 network (.e., corresponding to
the fourth horizontal block from Tablés 4120 dnd 4.21, retipely). We see that the power
of the dynamic mini-bucket heuristics is again more promirfer smalli-bounds ¢.g.,

1 = 2). At largeri-bounds, the static mini-bucket heuristics are cost effector instance,
the the difference in running time betweA@BB- C+SMB(10) andACBB- C+DIVB(10)

is about 2 orders of magnitude. Notice that in this c#geBF- C+SMB(i) outperforms
AOBF- C+DVB(i) across all reporte@tbounds.

Impact of the pseudo tree. Figure[4.17 plots the runtime distributionAOBB- C+SMB()
andAOBF- C+SMB(7) using hypergraph based pseudo trees, over 20 independeniiie
see that the hypergraph based pseudo trees are sometimés iatghrove the performance
of Branch-and-Bound search, especially for relatively sibatunds ¢.¢., 404, 503) for
which the heuristic estimates are less accurate. For esséiarch however, the min-fill
pseudo trees offer the overall best performance, becaasaithi-bucket heuristics com-
puted along this ordering, rather than the hypergraph basedare relatively accurate thus

bounding the horizon of best-first search more effectively.

ISCAS’89 Benchmark Circuits

Tabled 4.2P and 4.23 report the results for experiments WitlWVCSPs derived from |IS-
CAS’89 circuits as described in Chapiér 3, using static anduhyomini-bucket heuristics

as well as min-fill based pseudo trees.

Treevs. graph AOBB. When comparing the tree versus the graph AND/OR Branch-and-

Bound search algorithms, we see again the benefit of cactspgcmlly when using pre-

205

spot 29 - AOBB-C+SMB(i)
[hypergraph: w*=15, h=23] [minfill: w*=14, h=42]

1000
—e— hypergraph
—O— minfill
100
)
8
£ 04
°
£
14
0.1 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 54 - AOBB-C+SMB(i)
100 [hypergraph: w*=12, h=16] [minfill: w*=11, h=33]
—@— hypergraph
—O— minfill
10 4
Iy
@
e
o
£
14
0.1 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 404 - AOBB-C+SMB(i)
1000 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42]
—®— hypergraph
—O— minfill
100
S
2
£ 0
°
E
14
0.1 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 503 - AOBB-C+SMB(i)
10000 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39]
—®— hypergraph
—O— minfill
1000 4
< 100 4
I3
KA
o
£
= 10 4
14
0.1 T T T T
2 4 6 8 10 12 14
i-bound

time (sec)

time (sec)

time (sec)

time (sec)

spot 29 - AOBF-C+SMB(i)
[hypergraph: w*=15, h=23] [minfill: w*=14, h=42]

1000

—e— hypergraph
—O— minfill

100
10 §
14
0.1 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 54 - AOBF-C+SMB(i)
100 [hypergraph: w*=12, h=16] [minfill: w*=11, h=33]
—@— hypergraph
—O— minfil
10 4
14
0.1
0.01 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 404 - AOBF-C+SMB(i)
100 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42]
—@— hypergraph
—O— minfill
10 §
w
7
A
o<
1 OO o e
o _©
e}
0.1 T T T T
2 4 6 8 10 12 14 16
i-bound
spot 503 - AOBF-C+SMB(i)
100 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39]
—@— hypergraph
—O— minfill
10 4
14
0.1

Figure 4.17: Min-fill versus hypergraph partitioning hetiis. CPU time in seconds for
solving SPOT5 networks witAOBB- C+SMB(7)) (left side) andACBF- C+SMVB(¢) (right

side). The header of each plot records the average induaditi {i*) and pseudo tree
depth (h) obtained with the hypergraph partitioning heigiswe also show the induced
width and pseudo tree depth for the min-fill heuristic.

206

Table 4.22: CPU time in seconds and number of nodes visitesioleimg ISCAS’89 cir-
cuits, usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time limit 1

hour.

minfill pseudo tree

MBE() MBE() MBE() MBE() toolbar
iscas89 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMBY()) AOBB+SMB(i) AOBB+SMB()) AOBB+SMBJ(j)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i)
i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.08 0.09 0.14 0.22
€432 - - - - 9.27 52,778 9.17 52,240 - -
(27,45) | 201053 23,355,897| 148.39 1,713,265 5.94 76,346 5.84 75,420 - -
(432,2) 422.08 2,945,230 40.91 337,574 0.89 6,254 0.89 6,010
39.33 196,892 0.52 2,154 1,007 0.38 847
0.08 0.08 0.28
c499 - - - - . 4,495 6.20 35,314 - -
(23, 55) 96.46 1,265,425 39.65 526,517 1.42 18,851 37.26 486,656 | 100.96 1,203,734
(499, 2) 19.28 99,906 7.36 40,285 0.47 2,401 5.83 34,708
3.91 14,049 2.45 8,816 1,032 2.52 8,755
0.16 0.19 0.45
880 - - - - - - - - - -
(27,67) | 1698.08 19,992,512 1316.73 15,247,946 505.75 5,835,825 1134.61 13,568,696 - -
(881, 2) 100.66 516,056 91.66 446,893| 31.06 169,138 59.35 316,124
1.36 4,454 0.91 2,792 2,231 1.19 2,862
0.02 0.03 0.06 0.14
$386 0.33 2,015 0.33 2,281 0.30 1,734 0.31 1,191 - -
(19, 44) 0.14 2,073 0.33 4,867 0.22 2,699 0.22 1,420 0.19 738
(172,2) 6 592 0.17 1,334 0.12 755 0.16 446
187 0.08 304 0.08 203 0.16 172
0.13 0.17 0.30 0.73
s935 - - - - - - - - - -
(66,101) | 2559.30 21,438,706 342.80 3,074,516 - - 41.34 348,699 1.51 11,368
(441,2) | 1285.07 6,623,608| 143.53 763,933 - - 22.28 128,372
6.16 25,493 1.22 4,087 3,319 1.22 2,216
0.16 0.19 0.38 0.94
51196 - - - - - - - - - -
(54,97) - - | 1347.95 12,392,442 - - | 194937 15,775,180| 376.35 1,276,514
(562,2) | 3347.38 13554,137| 503.30 2,425,152 2299.72 11,488,366| 734.66 3,524,780
22.67 72,075 9,336 13.02 40,210 7.27 21,989
0.16 0.22 0.38 0.92
s1238 - - - - - - - - - -
(59, 94) - - - - | 172253 18,302,873| 1394.86 14,213,319 - -
(541,2) | 1897.37 8,386,634 1682.99 7,431,223| 28105 1,350,933 248.27 1,220,658
34.09 137,960 | 29.41 111,205 12.31 53,095 26,101
0.12 0.14 0.17
s1423 - - - - - - - - -
(19, 44) 71.63 648520 | 25.58 228,634 7.56 68,102 70,043 - -
(749, 2) 7.61 37,244 2.75 11,423 1.48 7,164 5,868
1.16 3,873 0.70 2,193 1,683 1,663
0.24 0.41
51488 - - - 10.75 23,620 25,420 - -
(47, 67) 50,613 | 46.83 430,141 4.00 29,729 33,827 1.80 9,315
(667, 2) 15,998 13.14 45,560 2.22 9,337 10,640
778 0.41 724 0.56 688 710
0.25 0.45
51494 - - 191.36 366,822| 52.47 140,792 44,190 - -
(48, 69) 132.62 833,720 17.70 455,131| 376.65 3,207,718 83318 | 241 12,122
(661, 2) 62.87 127,934 5.64 17,279 27.64 80,895 23,131
1.44 5,694 1,472 0.95 2,311 1,476

207

min-fill pseudo tree
BB-C+DMB() BB-C+DMB() BB-C+DMB() BB-C+DMB()
iscas89 AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB()) AOBB-C+DMB() | AOBB-C+DMB() | AOBB-C+DMB(i)
(n, d) AOBF-C+DMB(i) AOBF-C+DMBY(j) AOBF-C+DMBY(j) AOBF-C+DMB(i)
i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes
432 40344 33,506| 19169 14,303 1356 1,026 8.86 627
(27, 45) 4559 34,904| 25.83 16,482 6.94 1,070 4.55 692
(432, 2) 35.19 3,861 | 20.69 2,302 6.69 860 4.53 627
448 2.28 444 3.02 434 4.92 432
c499 40.99 3502 | 31.85 3,102 9.91 987 4266 2,848
(23, 55) 2613 13529| 14.44 6,101 4.33 1,002 2591 3,353
(499, 2) 24.44 2,485 | 13.42 1,726 4.28 742 2525 1,251
931 2.25 579 3.73 541 9.08 499
880 - - - - | 54735 18112| 64852 19546
(27,67) | 1078.04 796,699| 762.16 569,471| 85.64 32,748| 170.55 36,187
(881, 2) 786.49 31,788| 560.80 16,546| 68.36 2486 | 15336 2,736
8.77 1,378 9.94 1,304 956 16.83 958
5386 258 1,191 291 1,191 341 1,191 228 1191
(19, 44) 0.81 1,420 1.14 1,420 1.61 1,420 2.52 1,420
(172,2) 0.69 446 1.02 446 1.53 446 2.44 446
172 0.50 172 0.86 172 153 172
5935 4927 6,217 | 264.99 9,028 30139 7,842| 95757 8,080
(66, 101) 18.27 7,400 | 23447 10,250| 267.02 9,164| 91557 11,164
(441, 2) 16.55 1,568 | 228.71 3,682| 26358 2,279 90312 2,528
479 | 2387 553 27.19 454 | 14051 490
51196 23339 18,040| 33550 15525| 670.04 13677 1362.32 11,939
(54,97) 61.64 21,849| 11416 17,524| 246.02 15443| 921.08 13,687
(562, 2) 50.80 3,787 | 97.53 3,160 | 217.97 2888| 857.35 2,772
688 | 11.58 586 32.11 635 | 102.45 632
51238 78404 34905| 521.27 15685| 139539 17,852| 2021.31 11,264
(59, 94) 266.45 39,493| 188.83 21,252| 56696 20,945| 91324 13,857
(541, 2) 242.16 8,792 | 174.80 4265| 54435 4511| 887.65 3,078
827 | 2247 666 57.59 591 | 192.10 632
51423 - - [7139 3620 | 13436 8132| 6239 3,045
(19, 44) 3836 26,772| 35.02 17,801| 3619 19,719 2227 3513
(749, 2) 28.97 3,078 | 28.64 2,492 | 3031 2,361| 2208 @ 1,477
1,191 6.25 1,141 9.48 1,126 12.39 762
s1488 146.03 14,365| 139.83 124/5| 18158 12,748 306.35 12,748
(47,67) 20.64 15064| 31.34 13279| 67.78 13762| 193.88 13,762
(667, 2) 18.33 2,824 | 29.20 2,634| 6534 2,576| 190.94 2576
670 5.61 668 13.80 667 | 41.81 667
s1494 27649 23931| 26791 21,032| 24630 14898 22883 9,465
(48, 69) 7152 25104| 84.92 22,082| 11249 15698| 151.00 9,706
(661, 2) 66.25 4,794 | 78.97 4,018| 11036 3,059| 149.30 2,386
10.42 758 679 20.38 667 58.75 666

Table 4.23: CPU time in seconds and number of nodes visitesioleimg ISCAS’89 cir-
cuits, usingdynamic mini-bucket heuristics and min-fill based pseudo trees. Time limit
1 hour.

compiled mini-bucket heuristics. For example, on$li€38 circuit, AOBB- C+SMB(12)

is 6 times faster thaAOBB+SMB(12) and explored 14 times fewer nodes. The diference
between the tree and graph AND/OR algorithms is not too pmentiwhen using dynamic
mini-bucket heuristics (Table 4.23), because these hesrigre far more accurate than the
static version and the search graph is very close to a tre@srcase. The performance
of t ool bar that is designed specifically for the WCSP domain was very poothis
dataset and it was not able to solve the any of the probleranoss within the 1 hour time
limit. On the other hand, ool bar - BTD, which traverses and AND/OR search graph, is

competitive on this dataset and solves 6 out of the 10 tefgtrinss.

208

AOBB vs. AOBF. When comparing the depth-first versus the best-first AND/Qj®-al
rithms with static and dynamic mini-bucket heuristics we again thaAOBF- C+SMB()
outperforms significanthAOBB- C+SMVB(7) , especially for relatively smaitbounds. The
same picture can be observed when compakiog-- C+DIVB(7) with AOBB- C+DIMB(7) .

For instance, on the1196 circuit, AOBF- C+SVB(10) is 2 orders of magnitude faster
than AOBB- C+SVB(10) . Similarly, on thes1238 circuit, ACBF- C+DVB(8) outper-
forms AOBB- C+DVB(8) by one order of magnitude in terms of both running time and
size of the search space explored. OverIBF- C+SMB(7) is the best performing algo-

rithm on this dataset.

Static vs. dynamic mini-bucket heuristics. Figure[4,.18 plots the CPU time and number
of nodes visited by the AND/OR algorithms with static and ayrc mini-bucket heuristics,
as a function of thé-bound, on th& 880 network from Tablek 4.22 aind 4123, respectively.
It shows explicitly how the performance of Branch-and-Bound best-first search changes
with the mini-bucket-bound. Focusing for example &OBF- C+SMB(;) we notice again
the U-shaped curve formed by the running time. At smyalbunds { = 4) the time is high,
then ag increases the runnning time decreasesg.(for i = 12 the time is 0.91), but then
asi increases further the time starts to increase again. The baimavior can be observed

for AOBF- C+DMB(7) , as well.

Impact of the level of caching. Figure[4.19 displays the CPU time, as a function of
the cache boung, on 4 ISCAS’89 networks from Tablés 4122 usigBB- C+SMB(i, j)

(naive caching) andOBB- AC+SMB(i, j) (adaptive caching), respectively. The spectrum
of results is similar to what we observed before. Namelyp&ida caching is more powerful
than naive caching at smallgrbounds. As the cache bound increases, the two schemes

approach full caching.

209

ISCAS'89 c880 network
[minfill: w*=27, h=67]

10° 5
E ——8—— AOBB+SMB(i)
o AOBB+DMB(i)
. ——-y-—— AOBB-C+SMB(j)
1004 —-—A—-- AOBB-C+DMB(i)
] — - — AOBF-C+SMB(i)
AOBF-C+DMB(i)
100 4 N
0 DN
B] \
< 02 4
£] \
= \% ~ _ ~ Pui
v~ ~
10" 4 BN o
— 0 —~ V\\\
AN _ A - v
.\
~¥ P
0 4
10 s S e
- —a—
101 T T T T T T T T
2 4 6 8 10 12 14 16 18 20
i-bound
ISCAS'89 c880 network
1o [minfill: w*=27, h=67]
——e—— AOBB+SMB(j)
] o AOBB+DMB(i)
10° 4 ———¥—— AOBB-C+SMB(i)
] ——A-—-- AOBB-C+DMB(i)
108 4 — —& — AOBF-C+SMB(j)
E AOBF-C+DMB(i)
107 o
(%]
[
'g 10 4
) S
< A —9\\\\ =
105 o v \\
\ © A o o ANy
104 4 =~ 7TA © h
o S
B~ ~ e \—t —A
108 o \D/’_D_fa_\[yf%__mf_f“ﬂ
102 T T T T — T T T
2 4 6 8 10 12 14 16 18 20
i-bound

Figure 4.18: Comparison of the impact of static and dynammi-micket heuristics on the
c880 ISCAS’89 network from Table§4.22 and 4.23, respectively.

210

ISCAS'89 circuit c432
[minfill: w*=27, h=45]

160
—_—
140 4
Q.
N
N
120 4 0,
\
A \\ —&— AOBB+SMB(10)
E’: 100 4 \\ \ —-O— AOBB-C+SMB(10,)) g
@ \ Q\ —-¥— AOBB-AC+SMB(10,j) @
\
© ~)
E 80 \ o £
= X A =
AN \\
60 AN \
V\\ \0————0———4}——07\,,0” 5
40] ey ¥y vV
20 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22
j-bound
ISCAS'89 circuit s1196
[minfill: w*=54, h=97]
1400
—9o —9o 9o 9o 9o 0o o o o
Q
1200 \
\
\
O —&— AOBB+SMB(10)
~ _o— .
— 1000] % oo _ -O— AOBB-C+SMB(10,)) _
S \ o —-¥— AOBB-AC+SMB(10,) B
<L \\ AN A
o \ “o- o
E A 3 TO—_ £
= 800 4 ~ -a_ =
~ ~
A S ~o
Tw ~0-——-0
~
600 - ‘\\\
Yy
A
400 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22

j-bound

ISCAS'89 circuit c880
[minfill: w*=27, h=67]

1400
—_—
1200
1000 \
\
\
800] \b —8— AOBB+SMB(10)
\ —O— AOBB-C+SMB(10,)
\ —-¥— AOBB-AC+SMB(10,j)
\
600] \
\ s
\ N
400 \ O~
(S N
~o - _
200 A O-~a.
o S~oo
Y- ——y——v -9
0 T T T T T T T T T
0 4 6 8 10 12 14 16 18 20 22
j-bound
ISCAS'89 circuit s1488
[minfill: w*=47, h=67]
50
——9o 90— 9o 0o 0o 0o 0o o
45 4
40 4 N
12N
~o. —8— AOBB+SMB(10)
35 1 “~o —-O— AOBB-C+SMB(10,))
o —-¥— AOBB-AC+SMB(10,j)
30 \Q\
N
\ 0\\
% \ .
~
~
AN o
20 ~ ~o——q
N
v _
15 4 g
VT ey~ v
10 T T T T T T T T T
0 4 6 8 10 12 14 16 18 20 22

j-bound

Figure 4.19: Naive versus adaptive caching schemes for &RBranch-and-Bound with
static mini-bucket heuristics d®CAS’89 circuits. Shown is CPU time in seconds.

211

c499 - AOBB-C+SMB(i) c499 - AOBF-C+SMB(i)
[hypergraph: w*=24, h=35] [minfill: w*=23, h=45] [hypergraph: w*=24, h=35] [minfill: w*=23, h=45]

10000 1000
—e— hypergraph —@— hypergraph
—O— minfill —O0— minfill
1000 o
100 §
< 1004 =
@ @
) 2
e < 10
o @
£ £
= 10 4 =
14
14
0.1 : 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
c880 - AOBB-C+SMB(i) c880 - AOBF-C+SMB(i)
10000 [hypergraph: w*=27, h=45] [minfill: w*=27, h=67] 1000 [hypergraph: w*=27, h=45] [minfill: w*=27, h=67]
—e— hypergraph —e— hypergraph
—O— minfill —O— minfill
1000
100 §
<5 1004 5
) @
@ @
e 2 40
o o
£ £
= 10 4 =
14
14
0.1 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
s1238 - AOBB-C+SMB(i) $1238 - AOBF-C+SMB(i)
10000 [hypergraph: w*=58, h=75] [minfill: w*=59, h=94] 1000 [hypergraph: w*=58, h=75] [minfill: w*=59, h=94]
—@— hypergraph —&— hypergraph
—O— minfill —O— minfill
1000 100 §
o o
4 3
= 100 § = 104
o °
£ £
10 4 14
1 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
s1488 - AOBB-C+SMB(i) s1488 - AOBF-C+SMB(i)
10000 [hypergraph: w*=45, h=57] [minfill: w*=47, h=67] 100 [hypergraph: w*=45, h=57] [minfill: w*=47, h=67]
—8— hypergraph —@— hypergraph
—0— minfill —O— minfill
1000
10 4
° Iy
I3 @
))
~ 100 =
o o
£ £
14
10 4
1 T T T T T T 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound

Figure 4.20: Min-fill versus hypergraph partitioning hetiis. CPU time in seconds for
solving ISCAS’89 networks with AOBB- C+SMVB(i) (left side) andAOBF- C+SMB(i)
(right side). The header of each plot records the averageediwidth {v*) and pseudo tree
depth (h) obtained with the hypergraph partitioning heigiswe also show the induced
width and pseudo tree depth for the min-fill heuristic.

212

minfill pseudo trees
MBE() MBE() MBE() MBE() MBE() MBE()
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, 1, k) i=8 i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes time nodes
0.30 0.34 0.44 0.80 2.00 5.31
mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980
(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153
(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031
1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220
0.75 0.83 1.02 1.75 4.38 15.77
mm-03-08-04 - - - - - - - - - - - -
(33,87) 92.64 150,642 | 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870
(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376
10.53 9,693 | 10.88 9,143 | 10.06 8,925 2,928 9.08 4,855 | 1952 4,266
0.34 0.41 0.51 0.91 2.44 7.83
mm-04-08-03 - - 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881
(26,72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570
(1418, 3, 2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444
1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450
i=12 i=14 i=16 =18 i=20 =22
time nodes time nodes time nodes time nodes time nodes time nodes
1.36 2.08 4.86 16.53 65.19 246.45
mm-04-08-04 - - - - - - - - - - - -
(39, 103) 494.50 744,993 | 270.60 447,464 | 506.74 798,507 80.86 107,463 206.58 242,865| 280.07 62,964
(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 | 253.25 11,650
38.55 33,069 | 29.19 26,729 | 44.95 38,989 3,957 74.67 8,716 | 250.00 3,491
2.34 8.52 8.31 24.94 84.52 out
mm-03-08-05 - - - - - - -
(41,111) 1084.48 1,122,008| 1283.04 1,185,327
(3692, 3, 2) - - - - 117.39 55,033 282.35 86,588
out out 473.07 199,725 8,297 | 131.88 21,950
1.64 3.09 7.55 21.08 77.81 out
mm-10-08-03 - - - - - - - - - -
(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112
(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362
3,705 8.16 4501 | 1117 3,622 24.67 3,619 81.52 3,573

Table 4.24: CPU time and number of nodes visited for sol\Mastermind game in-
stances using static mini-bucket heuristics and min-fill basedyaetrees. Time limit 1
hour.t ool bar andt ool bar - BTDwere not able to solve any of the test instances within
the time limit. The top part of the table shows the resultsifbounds between 8 and 18,
while the bottom part showisbounds between 12 and 22.

Impact of the pseudo tree. Figure[4.20 plots the runtime distributionAOBB- C+SMB()
and AOBF- C+SMB(7) , over 20 independent runs, using hypergraph based pseesk tr
We observe again that, in some cases, the hypergraph teealslarto improve significantly

the performance of Branch-and-Bound as well as best-firstis¢ar., c880, s1238).

Mastermind Game Instances

Table[4.24 shows the results for experiments with 6 Mastetrgame instances of increas-
ing difficulty, from Chaptel B using static mini-bucket hestics and min-fill based pseudo
trees. The performance of the AND/OR algorithms with dyramini-buckets was quite

poor in this case due to prohibitively high computationaihead at largé-bounds.

213

mastermind mm-03-08-04

mastermind mm-04-08-04
[minfill: w*=33, h=87] [minfill: w*=39, h=103]
70 350
90— 9o 90— 0o 0o oo
&—0—0—0—0—0—0—0—0—0—0 O-—
LS Q
60 o \\\ 300 \
NQ
A *
50 4 \\ 250 o N
Y\ —e— AOBB+SMB(10) o\
B \\\ —-O— AOBB-C+SMB(10,j) S ‘\ \ —8— AOBB+SMB(16)
3 \\ —¥— AOBB-AC+SMB(10,)) 2 v —O - AOBB-C+SMB(16,))
< 404 \\ = 200 \ o —¥- AOBB-AC+SMB(16,))
) &g Q \ ~
£ \ £ \ ~
= \ o = SN
\ S \\ AN
30 4 O-——q 150 4
o k«\ v o .
=) — —(
AN \ . o—q
N v \
20 - \'L‘*“\Q;:$**&>-O<e@ 100 \\V\\y \)
B e e
10 T 50 T T
0 5 10 15 20 25 0 5 10 15 20 25
j-bound j-bound
mastermind mm-03-08-05 mastermind mm-10-08-03
[minfill: w*=41, h=111] [minfill: w*=51, h=132]
1200 120
1000 4 100] FO¢ ¢ ¢ O ¢ 99— —0
-—Q, \\
o Y
200 AN o 0] O-——. —®— AOBB+SMB(12)
vy AN —@— AOBB+SMB(18) \ ~o._ —O— AOBB-C+SMB(12,j)
<o \ \Q —O— AOBB-C+SMB(18,j) < \ ~a_ —-w¥— AOBB-AC+SMB(12,))
8 \ AN —¥— AOBB-AC+SMB(18,) 3 \ Sn
=~ 600 o ~ 604 (SN
e \ ~o- o * ~o-
E \ 2 £ N TO0—=0——o_
= \ = -
\ \ “w o
400 \ \ 40 4 N
\ \ \,
\ \ AS
\ \ N
200 \ \ 20
v _ \ A e
Vo ¥y -9 T
0 T T 0 T
0 5 10 15 20 25 0 5 10 15 20 25
j-bound j-bound

Figure 4.21: Naive versus adaptive caching schemes for AfBranch-and-Bound with
static mini-bucket heuristics ddastermind networks. Shown is CPU time in seconds.

Tree vs. graph AOBB. We see again that using caching improves considerably the
performance of AND/OR Branch-and-Bound search. r®m 03- 08- 05, for example,
AOBB- C+SMB(18) is 9 times faster thaAOBB+SMB(18) and explores a search space

20 times smaller. We also note thatol bar andt ool bar - BTD were not able to solve

any of these instances within the time limit.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR seaneh,
see thahOBF- C+SMB(i) offers the overall best performance on this domain as weill. O
the mm 03- 08- 05 instance, for exampleAOBF- C+SVB(18) is about 3 times faster
than AOBB- C+SMB(18) and about 30 times faster th&0BB+SMB(18) , respectively.

As before, the time savings are more pronounced at relgtsmiall i-bounds when the

heuristic estimates are less accurate.

214

Impact of the level of caching. Figure[4.21 illustrates the CPU time, as a function of
the cache boung, obtained with the naive and adaptive caching schemes oobklgmn
instances from Table 4.P4. We notice again the superiofiagaptive caching at relatively

small j-bounds.

Impact of the pseudo tree. Figurd 4.2? plots the runtime distributionA©BB- C+SMB()
andAOBF- C+SMB(7) , over 20 independent runs, using hypergraph pseudo trbeshyF
pergraph trees are sometimes able to improve slightly tffenpeance of AND/OR Branch-
and-Bound, at relatively smalbounds §.g., mm 04- 08- 04). For best-first search how-

ever, the min-fill based pseudo trees offer the best perfoceman this case.

Memory usage of AND/OR graph search. In Figure[4.2B we emphasize again the sig-
nificant memory requirements of best-first AND/OR search garad with those of the
depth-first AND/OR Branch-and-Bound search with full cachi\ see for example that
on themrm 03- 08- 05 network AOBF- C+SMB(i) with relatively smalli-bounds €.¢.,

i € {12,14}) uses about 2 orders of magnitude more memory &@BB- C+SMB(i) .

4.6 Conclusion to Chapter 4

The chapter continues to investigate the impact of the AND&arch spaces perspective
to solving general constraint optimization problems inpdiaal models. In contrast to the
traditional OR space, the AND/OR search space is sensitpeblem decomposition. The
size of the AND/OR search tree can be bounded exponentialtiiddepth of its guiding
pseudo tree. This implies exponential time savings for amgar space search algorithms
traversing the AND/OR search tree, in particular AND/OR Bifaand-Bound search, as
we showed in Chaptért 3. Specifically, if the graphical modsltheewidthw*, the depth of

the pseudo tree i©(w* - logn). The AND/OR search tree can be extended into a graph by

merging identical subtrees using graph information onlye Size of the context minimal

215

mm-03-08-03 - AOBB-C+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57]

time (sec)

—e— hypergraph
—O— minfil

i-bound

mm-04-08-03 - AOBB-C+SMB(i)
[hypergraph: w*=22, h=35] [minfill: w*=26, h=72]

time (sec)

—e— hypergraph
—O— minfill

10000

i-bound

mm-04-08-04 - AOBB-C+SMB(i)
[hypergraph: w*=30, h=43] [minfill: w*=39, h=103]

1000 4

100 4

time (sec)

—— hypergraph
—O— minfill

10000

12 14 16 18 20 22 24
i-bound

mm-10-08-03 - AOBB-C+SMB(i)
[hypergraph: w*=41, h=55] [minfill: w*=51, h=132]

1000 4

time (sec)
>
8

—— hypergraph
—O— minfill

i-bound

time (sec)

time (sec)

time (sec)

time (sec)

mm-03-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57]

—— hypergraph
—O— minfill

i-bound

mm-04-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=22, h=35] [minfill: w*=26, h=72]

—@— hypergraph
—-O— minfill

10000

i-bound

mm-04-08-04 - AOBF-C+SMB(i)
[hypergraph: w*=30, h=43] [minfill: w*=39, h=103]

1000 4

100 4

—e— hypergraph
—O— minfill

1000

12 14 16 18 20 22 24
i-bound

mm-10-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=41, h=55] [minfill: w*=51, h=132]

100 o

—&— hypergraph
—O— minfill

12 14 16 18 20 22 24

i-bound

Figure 4.22: Min-fill versus hypergraph partitioning hetigs. CPU time in seconds for
solving Mastermind networks with AOBB- C+SMB(i) (left side) andAOBF- C+SMB(7)
(right side). The header of each plot records the averageauiwidth {v*) and pseudo tree
depth (h) obtained with the hypergraph partitioning hdiaiswe also show the induced
width and pseudo tree depth for the min-fill heuristic.

216

mm-03-08-05 Mastermind network mm-04-08-04 Mastermind network
[minfill: w*=41, h=111] [minfill: w*=30, h=43]

—®— AOBB-C+SMB(i) —@— AOBB-C+SMB(i)
O~ AOBF-C+SMB(i) O AOBF-C+SMB(i)

o
memory usage (MB)

014

Figure 4.23: Memory usage of thOBB- C+SMB(i) and ACBF- C+SMB(7)) algorithms
on theMastermind networks from Table 4.24.

AND/OR search graph is exponential in the treewidth whikegize of the context minimal
OR search graph is exponential in the pathwidth. Since faresgraphs the difference
between treewidth and pathwidth is substanta).(balanced pseudo trees) the AND/OR
representation implies substantial time and space safangsemory intensive algorithms
traversing the AND/OR graph. Searching the AND/OR searelplyican be implemented
by goods caching during search.

We therefore extended the AND/OR Branch-and-Bound algoritimaversing a search
graph rather than a search tree by equipping it with an efficaching mechanism. We in-
vestigated two flexible context-based caching schemesdmeadapt to the current memory
restrictions. Since best-first search strategies are kriiovime superior to depth-first ones
when memory is utilized, we also introduced a best-first ABIR/search algorithm that
traverses the context minimal AND/OR search graph.

All these algorithms can be guided by any heuristic functivve investigated exten-
sively the mini-bucket heuristics introduced earlier [@5]d shown to be effective in the
context of OR search trees [65]. The mini-bucket heuristens be either pre-compiled
(static mini-buckets) or generated dynamically duringreleat each node in the search
space (dynamic mini-buckets). They are parameterizeddiviihi-Bucket:-bound which
allows for a controllable trade-off between heuristic styth and computational overhead.

We focused our empirical evaluation on two common optinnraproblems in graph-

217

ical models: finding the MPE in Bayesian networks and solving WESOur results

demonstrated conclusively that the depth-first and best+fiemory intensive AND/OR
search algorithms guided by mini-bucket heuristics imprdvamatically over traditional
memory intensive OR search as well as over AND/OR BranchBouhd algorithms with-

out caching. We summarize next the most important aspef¢xtiag the better perfor-
mance of AND/OR graph search, such as the impact of the |éwalalin, the mini-bucket
i-bound, constraint propagation, informed initial uppeuhds and the quality of the guid-

ing pseudo trees.

e Impact of the level of caching. We proposed two parameterized context-based
caching schemes that can adapt to the memory limitatiorsn@itve caching records
contexts with size smaller or equal to the cache bourithe adaptive caching saves
also nodes whose context size is beygnhtased on adjusted contexts. Our results
showed that for small-bounds, adaptive caching is more powerfull than the naive
schemed.g., grid networks from Figure 416, genetic linkage networlasirFigure
4.1, ISCAS’'89 circuits from Figure 4.119). As more space bee® available and
thej-bound increases, the two schemes gradually approactaftiicg. The savings
in number of nodes due to caching are more pronounced avetyesmalli-bounds
of the mini-bucket heuristics. When the heuristics are gfrenough to prune the
search space substantiallye(, largei-bounds), the context minimal graph traversed
by AND/OR Branch-and-Bound is very close to a tree and the eéfiecaching is

diminished.

e Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket hewusstith relatively large
i-bounds are cost effective.(., genetic linkage analysis networks from Taliles 4.6
and 4.7, Mastermind game instances from Tablel4.24). Hawitke space is sev-
erly restricted, the dynamic mini-bucket heuristics appede the preferred choice,

especially for relatively smaltbounds ¢.g., ISCAS’89 networks from Tablés 4.22).

218

This is because these heuristics are far more accurated@atine-bound than the

pre-compiled version.

Impact of determinism. When the graphical model contains both deterministic in-
formation (hard constraints) as well as general cost fonstiwe demonstrated that
it is beneficial to exploit the computational power of the staints via constraint
propagation. Our experiments on selected classes of deistinn Bayesian net-
works showed that enforcing unit resolution over the CNF dimap of the deter-
minism present in the network was able in some cases to rehdesearch space
almost backtrack-freee(g., ISCAS’89 networks from Table 4.119). This caused in
some cases a tremendous reduction in running time for thesmonding AND/OR
Branch-and-Bound algorithms.(., see for example the953 network from Table

4.19).

Impact of good initial upper bounds. The AND/OR Branch-and-Bound algorithm
assumed a trivial initial upper bound (resp. initial lowerubd for maximization
tasks). We incorporated a more informed upper bound (resperlbound for max-
imization), obtained by first solving the initial problemaviocal search. Our results
showed that in some cases it causes a tremendeous speeeltipeanitial approach
(see for example the grid network from Table 4.15, and the IS88 networks from

Table[4.19).

Impact of pseudo tree quality. The performance of the depth-first and best-first
memory intensive AND/OR search algorithms is influencedificantly by the qual-

ity of the guiding pseudo tree. We investigated two hewssior generating small in-
duced width/depth pseudo trees. The min-fill based pseeds trsually have smaller
induced width but significantly larger depth, whereas thpengraph partitioning
heuristic produces much smaller depth trees but with langkrced widths. Our ex-

periments demonstrated that when the induced width is gmnalligh, which is typi-

219

cally the case for min-fill based pseudo trees, the strerfgtieanini-bucket heuris-
tics compiled along these orderings determines the pedoca of the AND/OR
search algorithmse(g., SPOT5 networks from Figuie 4]17). However, when the
graph is highly connected, the relatively large inducedtlwvichuses the AND/OR
algorithms to traverse a search space that is very closergeand, therefore, the
hypergraph partitioning based pseudo trees, which havenfiatler depths than the
min-fill based ones, improve performance substantially.(genetic linkage net-
works from Figuré 4,70 and Takle 4.8). This is because far $earch the depth of

the pseudo tree matters more than the induced width.

220

Chapter 5

AND/OR Search for 0-1 Integer

Programming

5.1 Introduction

A constraint optimization problens the minimization (or maximization) of an objective
function subject to a set of constraints on the possibleegmbf a set of independent de-
cision variables. An important class of optimization peshk in operations research and
computer science are the 0-1 Integer Linear Programminigigms (0-1 ILP)![95] where
the objective is to optimize a linear function of bi-valuatEger decision variables, subject
to a set of linear equality or inequality constraints definoegubsets of variables. The clas-
sical approach to solving 0-1 ILPs is tBeanch-and-Boundanethod [74] which traverses
a search tree defined by the problem while maintaining thedmgtion found so far and
discarding partial solutions which cannot improve on thetbe

The AND/OR Branch-and-BoundA(BB) introduced in Chaptdr] 3 is a Branch-and-
Bound algorithm that explores an AND/OR search tree in a dégthmanner for solving
optimization tasks in graphical models. The AND/OR Branaod-8ound algorithm with
caching AOBB- C) from Chaptef# improveAOBB by allowing the algorithm to save pre-
viously computed results and retrieve them when the samgrshblems are encountered
again. The algorithm explores the context minimal AND/ORrsk graph. Abest-first
AND/OR search algorithmACOBF- C) that traverses the AND/OR search graph was in-

221

troduced subsequently in Chapleér 4. The algorithms wergligitrestricted to a static
variable ordering determined by the underlying pseudq traesubsequent extensions to
dynamic variable ordering heuristics were also introduCkdptef B. One extension, called
AND/OR Branch-and-Bound with Partial Variable OrderilgOBB+PVO) (AOBF+PVO)

was shown to have significant impact on several domains.

5.1.1 Contribution

In this chapter we extend the principles of AND/OR searchtheddeas of context-based
caching to solving 0-1 Integer Linear Programs. We explath ldepth-first and best-
first control strategies. Under conditions of admissipiéihd monotonicity of the guiding
heuristic function, best-first search is known to expandnti@mal number of nodes, at
the expense of using additional memary! [40]. We also exteymduchic variable ordering
heuristics for AND/OR search and explore their impact onl0fs.

We demonstrate empirically the benefit of the AND/OR seangbr@ach on several
benchmarks for 0-1 ILP problems, including combinatoriaiteons, random uncapacitated
warehouse location problems and MAX-SAT problem instan@es results show conclu-
sively that the new AND/OR search approach improves draalstiover the traditional
OR search on this domain, in some cases with several orderaghitude of improved
performance. We illustrate the tremendous gain obtaineekploiting problem’s decom-
position (using AND nodes), equivalence (by caching), bhamg strategy (via dynamic
variable ordering heuristics) and control strategy. We alsow that the AND/OR algo-
rithms are sometimes able to outperform significantly conemaésolvers like CPLEX.

The research presented in this chapter is based in part 908380

5.1.2 Chapter Outline

The chapter is organized as follows. Section$ 5.2[and 5dgedackground on 0-1 ILP
and AND/OR search spaces for 0-1 ILPs. In Sections 5.4 am& firesent the extensions

222

of the depth-first AND/OR Branch-and-Bound and the best-filSDAOR search algo-
rithms to 0-1 ILP. Sectiof 5.6 discusses the AND/OR searghageh that incorporates
dynamic variable ordering heuristics. Section 5.7 showsewopirical evaluation, while

Sectior. 5.8 provides concluding remarks.

5.2 Background

5.2.1 Integer Programming

DEFINITION 42 (linear program) A linear program (LP¥onsists of a set of continuous
variablesX = {Xj, ..., X,,} and a set ofn linear constraints (equalities or inequalities)
F = {F,..., F,} defined on subsets of variables. The goal is to minimize aaglotear
cost function, denoted(X), subject to the constraints. One of the standard forms of a

linear program is:

min 2(X) =) ¢ - X; (5.1)
=1
=1
X; >0, Vv0<i<n (5.3)

where(5.1) represents the linear objective function, a@d2) defines the set of linear con-
straints. In addition(5.3) ensures that all variables are positive.

A linear program can also be expressed in a matrix notatiafodows:

min{c' X | A-X <b,X >0} (5.4)

wherec € R", b € R™, A € R™*" andX € R’}. Namelyc represents the cost vector and

223

minimize:z=7A+3B-2C +5D -6E +8F
subject ta
3A-12B+C<3
-2B+5C-3D<-2
2A+B-4E<2
A-3E+F <1
AB,C,D,E,FD{0g

(a) 0-1 Integer Linear Program (b) Constraint graph

Figure 5.1: Example of a 0-1 Integer Linear Program.

X is the vector of decision variables. The vectoand the matrixA define then linear

constraints.

One of the most important constraint optimization probleémsperations research and
computer science imteger programming Applications of integer programming include
scheduling, routing, VLSI circuit design, combinatoriatéions, and facility location [95].

Formally:

DEFINITION 43 (0-1 integer linear programming) A 0-1 integer linear programming (O-
1 ILP) problem is a linear program where all the decision variables eonstrained to have

integer values 0 or 1 at the optimal solution. Formally,

min z(X)=> ¢ - X; (5.5)
=1
=1
X, €{0,1} V0<i<n (5.7)

Example 19 Figure [5.1(a) shows a 0-1 ILP instance with 6 binary decisionakdes
(A, B, C, D, E, F) and 4 linear constraintd' (A, B,C), F5,(B,C, D), F3(A,B, E),
Fi(A, E, F). The objective function to be minimized is defined by 7A + B — 2C +

224

5D — 6F + 8F. Figure[5.1(b) displays the constraint graph associatedhwhis 0-1 ILP,
where nodes correspond to the variables and there is an edgebga any two nodes whose

corresponding variables appear in the scope of the samaidicenstraint.

If some variables are constrained to be integers (not nagskinary), then the prob-
lem is simply callednteger programminglf not all variables are constrained to be integral
(they can be real), then the problem is calticted integer programmin@MIP). Otherwise,
the problem is calle@-1 integer programming

While 0-1 integer programming, and thus integer programraimgjyMIP are all NP-hard
[63], there are many sophisticated techniques that cae sely large instances in practice.

We next briefly review the existing search techniques upoichwve build our methods.

5.2.2 Branch-and-Bound Search for Integer Programming

In Branch-and-Boundearch, the best solution found so far (theumbenkis keptin mem-
ory. Once a node in the search tree is generated, a lower lalsadknown as a heuristic
evaluation function) on the solution value is computed blyieg a relaxed version of
the problem, while honoring the commitments made on thechgaath so far. The most
common method for doing this is to solve the problem whilexielg only the integrality
constraints of all undecided variables. The resultingar program(LP) can be solved
fast in practice, for example using tlsenplexalgorithm [23] (and in polynomial worst-
case time using integer-point methods [95]). A path terteimahen the lower bound is at
least the value of the incumbent, or when the subproblenfessgible or yields an integer
solution. Once all paths have terminated, the incumbenpi®eably optimal solution.
There are several ways to decide which leaf node of the sé@elho expand next. For
example, irdepth-firstBranch-and-Bound, the most recent node is expanded nelxéskn
first search(i.e., A* search![99]), the leaf with the lowest lower bound is expainaext.
A* search is desirable because for any fixed branching var@bkering, no tree search

algorithm that finds a provably optimal solution can guagaréxpanding fewer nodes [40].

225

Therefore, of the known node-selection strategi¢s seems to be best suited when the
goal is to find a provably optimal solution. A variant of a béstt node-selection strategy,
called best-bound searchs often used in MIP.[125]. While in general* the children
are evaluated when they are generated, in best-bound gbarchildren are queued for
expansion based on their parents’ values and the LP of ealchistonly solved if the
child comes up for expansion from the queue. Thus best-beaarth needs to continue
until each node on the queue has value no better than the bentmBest-bound search

generates more nodes, but may require fewer (or more) LRs $olled.

5.2.3 Branch-and-Cut Search for Integer Programming

A modern algorithm for solving MIPs iBranch-and-Cutwhich first achieved success in
solving large instances of the traveling salesman probfE0,[101], and is now the core
of the fastest commercial general-purpose integer progriampackages. It is Branch-

and-Bound except that in addition, the algorithm may geneaitting planeq495]. They

are linear constraints that, when added to the subproblearsaarch node, may result in
a smaller feasible space for the LP, while not cutting offdp&mal integer solution, and
thus a higher lower bound. The higher lower bound in turn carse earlier termination of

the search path, and thus yields smaller search trees.

5.2.4 State-of-the-art Software Packages

CPLE>@ Is a leading commercial software product for solving MIRsudes Branch-and-
Cut, and it can be configured to support many different bramgchigorithmsd.e., variable
ordering heuristics). It also makes available low-levétifaces{.e., APIs) for controlling
the search, as well as other components such as the pre;$lod/eutting plane engine and

the LP solver.

Ihttp://www.ilog.com/cplex/

226

| p_sol veQ is an open source linear (integer) programming solver basele simplex
and the Branch-and-Bound methods. We chose to develop our@RB£arch algorithms
in the framework ot p_sol ve, because we could have access to the source code. Unlike

CPLEX,| p_sol ve does not provide a cutting plane engine.

5.3 Extending AND/OR Search Spaces to 0-1 ILPs

As mentioned earlier, the common way of solving 0-1 ILPs iségrch, namely to instan-
tiate variables one at a time following a static/dynamidatale ordering. In the simplest
case, this process defines an OR search tree, whose nodesergpstates in the space
of partial assignments. However, this search space doesaptire independencies that
appear in the structure of the problem. The AND/OR searchesfia graphical models
presented in Chapters 3 dnd 4 remedies this problem and itecaxténded to 0-1 ILPs in

a straightforward manner. For completeness sake, we dedtnext briefly.

5.3.1 AND/OR Search Trees for 0-1 ILPs

Given a 0-1 ILP instance, its constraint gra@ghand a pseudo tre€ of ¢, the associated
AND/OR search tree€S; has alternating levels of OR nodes and AND nodes. The OR
nodes are labeled hy; and correspond to the variables. The AND nodes are labeled by
(X, z;) (or simplyz;) and correspond to value assignments in the domains of tiebles

that are consistent relative to the constraints. The straaf the AND/OR tree is based

on the underlying pseudo trgeof GG. The root of the AND/OR search tree is an OR node,
labeled with the root off . The children of an OR nod&; are AND nodes labeled with
assignments X;, z;), consistent along the path from the root. The children of &DA

node(X;, z;) are OR nodes labeled with the children of variallgn 7.

Example 20 Consider the 0-1 ILP from Figure 5.2(a). A pseudo tree of thest@int

2http://Ipsolve.sourceforge.net/5.5/

227

minimize:z=7A+3B-2C +5D -6E +8F

subject ta
3A-12B+C<3
-2B+5C-3D<-2
2A+B-4E<?2
A-3E+F<1
AB,C,D,E,F {0
(a) 0-1 Integer Linear Program (b) Pseudo tree
OR o
AND 0]
o 0. @
o] o] 1
<> O < <
= © ® @ © © 6 O ©
*=0® OO0 OO0 ©OOO ®
ano 1] [of[alo][s]jo]fs] [olfa]lo]fs] £ [1] [o] 2 [o][1]o][s] lo]fa]

(c) AND/OR search tree

Figure 5.2: AND/OR search tree for a 0-1 Integer Linear Paogimstance.

graph, together with the back-arcs (dotted lines) are giveRigure[5.2(b). Figuré 5.2(¢)
shows the corresponding AND/OR search tree. Notice that thigapassignmen{A =
0,B =0,C =0,D = 0) which is represented by the pafii, (A4, 0), B, (B,0), C, (C,0),
D, (D,0)} inthe AND/OR search tree, is inconsistent because the @nstr2B + 5C —
3D < —2is violated. Similarly, the partial assignmet = 0,B = 0,C = 1) is also

inconsistent due to the violation of the same constrainafor value assignment to.

The arcs in the AND/OR search tree of a 0-1 ILP are associatibdweightsthat are
derived from the objective functiop;, ¢; - X;. Theweightw(n, m) of the arc from the
OR noden, labeledX; to the AND noden, labeled(X;, x;), isw(n,m) = ¢; - z;.

Given a weighted AND/OR search tree of a 0-1 ILP, each of itlesacan be associated

with avalue The valuev(n) of a noden is the minimal cost solution to the subproblem

228

OR

(a)
AND 0]
or (8) (8)

- H B 4 B
o o&e‘e © @ ‘G
\(< =

<L/
o o o o
Q ’\\m

(a) Pseudo tree (b) Context minimal AND/OR search graph

AND

OR

AND

Figure 5.3: Context minimal AND/OR search graph for the 0-R ftom Figuré 5.P.

rooted atn, subject to the current variable instantiation along thé& p@m the root tou. It

can be computed recursively using the values'sfsuccessors, as shown in Chapter 3.

5.3.2 AND/OR Search Graphs for 0-1 ILPs

Often different nodes in the search tree root identicalreast and correspond to identical
subproblems. Any two such nodes canrberged reducing the size of the search space
and converting it into a graph. Some of these mergeable nzatebe identified based on

contextsas described in Chapfér 4.

Example 21 Figure[5.3(b) shows the context minimal AND/OR search graglative to
the pseudo tree from Figufe 5.3(a), corresponding to thel0F from Figure[5.2. The

square brackets indicate the AND contexts of the variables.

229

5.4 Depth-First AND/OR Branch-and-Bound Search

In Chaptef 4 we introduced a new generation of depth-first Braamzl-Bound and best-first
AND/OR search algorithms for solving constraint optimiaattasks in graphical models.
Our extensive empirical evaluations on a variety of prolsttd and deterministic graphi-
cal models demonstrated the power of these new algorithmisammpetitive approaches
exploring traditional OR search spaces. We next revisiggth-first Branch-and-Bound
algorithm for searching AND/OR graphs, focusing on the gmegroperties for O-1 ILPs.

TheDepth-First AND/OR Branch-and-Bound Searchalgorithm ,AOBB- C- | LP, that
traverses the context minimal AND/OR graph via full cachisglescribed by Algorithm
[10 and shown here for completeness. It specializes the BramttBound algorithm intro-
duced in Chapterl4 to 0-1 ILPs. If the caching mechanism isbtisiathen the algorithm
uses linear space only and traverses an AND/OR search ge@lso Chaptér 3 for more
details).

As we showed in Chaptét 4, the context based caching is dong tatiles. For each
variable X;, a table is reserved in memory for each possible assignroeits tontext.
Initially, each entry has a predefined value, in our ddskL. The fringe of the search is
maintained on a stack call&PEN. The current node is denoted hyits parent byp, and
the current path by,,. The children of the current node are denotedstayc(n). The flag
cachi ng is used to enable the caching mechanism.

Each noden in the search graph maintains its current valye), which is updated
based on the values of its children. For OR nodes, the curtfentis an upper bound
on the optimal solution cost below: Initially, v(n) is set toco if n is OR, and0 if n is
AND, respectively. The heuristic functidrn(n) of v(n) associated with each noden the
search graph is computed by solving the LP relaxation of tioblem rooted at, P,,
conditioned on the current partial assignment alepdi.c., asgn(m,)) (lines 11 and 28,
respectively). Notice that if the LP relaxation Bf is infeasible, then we assidiin) = oo

andv(n) = oo. Similarly, if P, has an integer solution, thér{n) equalsv(n). In both

230

Algorithm 10: AOBB- C- | LP: AND/OR Branch-and-Bound Search for 0-1 ILP

O NoOouohh WNPEF

Input: A 0-1 ILP instance with objective functioy. ", ¢; X;, pseudo tre@ rooted atX;, AND contextspas; for every

variableX;, cachi ng set totrue or false.

Output: Minimal cost solution.
v(s) < 00; OPEN «— {s}
if cachi ng == true then
L Initialize cache tables with entries "NULL”

while OPEN +# () do

if

Al

n « top(OPEN); removen from OPEN; succ(n) < 0

n is marked INFEASIBLE or INTEGERen

/1 Initialize search stack

/1 Initialize cache tables

/1 EXPAND

| v(n) < oo (if INFEASIBLE) or v(n) « h(n) (if INTEGER)

else ifn is an OR node, labeled’; then

foreachz; € D; do
create an AND node’, labeled(X;, ;)
v(n') « 0; h(n') < LP(P,/)

w(n,n') «—c¢; - x;

suce(n) «— suce(n) U {n'}

else ifn is an AND node, labeledX;, =;) then

cached — false; deadend «— false

v(n) «— Cache(asgn(mn)[pas;])
cached «— true

oreach OR ancestorn of n do

lb — eval Parti al Sol utionTree(T},)
if Ib > v(m) then

deadend «— true

break

—h

if deadend == false and cached == false then
foreach X; € childrens(X;) do

create an OR node’ labeledX;

v(n') <« oo; h(n') «— LP(P,:)

suce(n) «— suce(n) U {n'}

else ifdeadend == true then
L suce(p) «— suce(p) — {n}

dd succ(n) on top of OPEN

while succ(n) == 0 do

if nis an OR node, labeled’; then
if X; == X then
| return v(n)

L v(p) «— v(p) + v(n)
else ifn is an AND node, labeledX;, z;) then
if cachi ng == true and v(n) # oo then
L Cache(asgn(mn)[pas;]) < v(n)
if v(p) > (w(p,n) + v(n)) then
v(p) — w(p,n) +v(n)

removen from succ(p)
n<«<—p

/1 Solve the LP rel axation
/1 Conpute the arc wei ght

markn’ as INFEASIBLE or INTEGER if the LP relaxation is infeasibletmas an integer solution

if cachi ng == true and Cache(asgn(mn)[pas;]) # NULL then

/1 Retrieve val ue
/1 No need to expand bel ow

/1 Pruning

/1 Solve the LP rel axation

markn’ as INFEASIBLE or INTEGER if the LP relaxation is infeasibletms an integer solution

/1 PROPAGATE

/1 Search is conplete

/1 Update AND node val ue (sumration)

/1 Save AND node val ue in cache

/1 Update OR node val ue (mnimzation)

231

Algorithm 11: Recursive computation of the heuristic evaluation functio

function: eval Parti al Sol uti onTree(T})
Input : Partial solution subtre@, rooted at nodex.
Output: Heuristic evaluation functiotf (77,).
1 if suce(n) == B then
| retun h(n)
else
if n is an AND nodehen
L letmy, ..., my be the OR children of. in T?,

return > le eval PartialSolutionTree(T},,)

else ifn is an OR nodé¢hen
let m be the AND child ofn in T},
return w(n, m) + eval PartialSolutionTree(T},)

©oo~N O ObwWN

casessucc(n) is set to the empty set, thus avoiding expansion (lines 6-7).

Before expanding the current AND nodgits cache table is checked (line 18). If the
same context was encountered before, it is retrieved frentdéiche, anducc(n) is set to
the empty set, which will trigger theROPAGATE step. Otherwise, the node is expanded in
the usual way, depending on whether it is an AND or OR nodeglB+32). The algorithm
also computes the heuristic evaluation function for eveastigl solution subtree rooted
at the OR ancestors of along the path from the root (lines 20-24). The search below
n is terminated if, for some OR ancestar, f(7") > v(m), wherev(m) is the current
upper bound on the optimal cost belew The recursive computation ¢f(7;,) based on
Definition[30 in Chapter]3 is described in Algorithm 11.

The node values are updated by PIROPAGATE step (lines 34-45). It is triggered
when a node has an empty set of descendants (note that asieaebsor is evaluated, it is
removed from the set of successors in line 44). This meansthigs children have been
evaluated, and their final values are already determinglde l€urrent node is the root, then
the search terminates with its value (line 37).nlfs an OR node, then its parents an
AND node, andp updates its current valugp) by summation with the value of (line
38). An AND noden propagates its value to its parenin a similar way, by minimization
(lines 42—-43). Finally, the current nodeis set to its parenp (line 45), because was
completely evaluated. Search continues either wighiogpagationstep (if conditions are

met) or with anexpansiorstep. We give next an example of the pruning mechanism used

232

12 -) .
OR Heuristic evaluation functions:

AND 1201 f(T'A)213

or : f(T5)=12

flT',)=-1
A . (r,)
OR 4 3 A

AND \ 4 R

0,% 4

AY
AND [

tip nodes

Figure 5.4: lllustration of the pruning mechanism.
by AOBB- C- | LP.

Example 22 Consider the partially explored weighted AND/OR search treféiguire(5.4.
The current partial solution tre€” is highlighted. It contains the following nodest,
(A1), B, (B,1), C, (C,0), D, (D,1) and F'. The nodes labeled byD, 1) and byF" are
non-terminal tip nodes and their corresponding heurisstireates aréx((D, 1)) = 2 and
h(F) = 9, respectively. The subtrees rooted at the AND nodes lalieled), (B, 0) and
(D, 0) are fully evaluated, and therefore the current upper bousfdie OR nodes labeled
A, B and D, along the active path, areb(A) = 12, ub(B) = 10 andub(D) = 0, respec-
tively. Moreover, the heuristic evaluation functions d# frartial solution subtrees rooted
at the OR nodes along the current path can be computed remlydbased on Definition
in Chaptei B, namely(7") = 13, f(T;) = 12 and f(T},) = —1, respectively. Notice
that while we could prune beloyD, 1) becausef(7%) > ub(A), we could discover this
pruning earlier by looking at nod® only, becaus¢g (7;) > ub(B). Therefore, the partial

solution treel”; need not be consulted in this case.

AOBB- C- | LP is restricted to a static variable ordering determined leygbeudo tree
and explores the context minimal AND/OR search graphuwilacaching However, if the

memory requirements are prohibitive, rather than usingdathing, AOBB- C- | LP can

233

be modified to use a memory bounded caching scheme that salyebase nodes whose

context size can fit in the available memory, as described ap€hi 4.

5.5 Best-First AND/OR Search

We now direct our attention tolaest-firstrather than depth-first control strategy for travers-
ing the context minimal AND/OR graph and present a bestANID/OR search algorithm
for 0-1 ILP. The algorithm uses similar amounts of memoryhas depth-first AND/OR
Branch-and-Bound with full caching. It was described in Chaditend evaluated for gen-
eral constraint optimization problems. By specializingift1 ILP using the LP relaxation
for the heuristic functiork, we getAOBF- C- | LP. For completeness sake, we describe the
algorithm again including minor modifications for the 0-IPllcase.

The algorithm, denoted bOBF- C- | LP (Algorithm [12), specializes NilssonA0*
algorithm [97] to AND/OR search spaces for 0-1 ILPs. It ifeaves forward expansion
of the best partial solution tre&XPAND) with a cost revision steREVI SE) that updates
node values, as detailed in [97]. The explicated AND/OR degraph is maintained by
a data structure calle@;, the current node is, s is the root of the search graph and the
current best partial solution subtree is denotedhyThe children of a node are denoted
by succ(n).

First, a top-down, graph-growing operation finds the begtadaolution tree by tracing
down through the marked arcs of the explicit AND/OR sear@pbt’- (lines 4-9). These
previously computed marks indicate the current best patiaition tree from each node
in G--. Before the algorithm terminates, the best partial solutiee, 7”, does not yet
have all of its leaf nodes terminal. One of its non-termirafinodes: is then expanded
by generating its successors, depending on whether it isRaorGn AND node. Notice
that when expanding an OR node, the algorithm does not gengND children that are

already present in the explicit search gragh (lines 13-15). All these identical AND

234

Algorithm 12: ACBF- C- | LP: Best-First AND/OR Search for 0-1 ILP

O©CoO~NOUWNPE

Input: A 0-1 ILP instance with objective functioE?:1 ¢; X;, pseudo tre€ rooted atX;, AND contextspas; for every

variableX;

Output: Minimal cost solution.
v(s) « h(s); G4 — {s} /1 Initialize
while s is not labeled SOLVE@Do

S—{shT «—0; /1l Create the marked partial solution tree
while S # 0 do

n <t op(.S) ; removen from S

T — T U{n}

let L be the set of marked successorswof

if L # 0 then

| addL ontop ofS
letn be any nonterminal tip node of the marked (rooted ats) /| EXPAND
if n is an OR node, labeled’; then
foreachz; € D; do
letn’ be the AND node irG/- having context equal tpas;
if n” == NULL then
create an AND node’ labeled{X;, x;)
h(n') < LP(P,/); v(n') « h(n') /1 Solve the LP rel axation
w(n,n') < c¢; - x; /1 Conpute the arc wei ght
labeln’ as INFEASIBLE or INTEGER if the LP relaxation is infeasiblelas an integer solution
if n’ is INTEGER or TERMINAlthen
| labeln’ as SOLVED

else ifn’ is INFEASIBLEthen
| o) oo

suce(n) «— suce(n) U {n'}
else ifn is an AND node, labeledX;, z;) then
foreach X; € childrens(X;) do
create an OR node’ labeledX ;
h(n') «— LP(P,); v(n') < h(n’) /1 Solve the LP rel axation
labeln’ as INFEASIBLE or INTEGER if the LP relaxation is infeasiblelas an integer solution
if n’ is INTEGERthen
| markn’as SOLVED

else ifn’ is INFEASIBLEthen
| v() oo

succ(n) «— succ(n) U {n'}

L — Gl U suce(n)
— {n} /1 REVI SE
hile S # 0 do
letm be a node iS5 such thatn has no descendantsgj, still in S; removemn from S
if m is an AND node, labeledX;, z;) then
U(m) - Em/ESucc(m) v(m/)
mark all arcs to the successors
labelm as SOLVED if all its children are labeled SOLVED

else ifm is an OR node, labele&; then

U(m) = minm’e.succ(m) (w(m7 m/) + U(m/))

mark the arc through which this minimum is achieved

labelm as SOLVED if the marked successor is labeled SOLVED

nQ

S

if m changes its valuer m is labeled SOLVEDhen
L add toS all those parents o such thatn is one of their successors through a marked arc.

return v(s) /] Search term nates

235

nodes ing’- are easily recognized based on their contexts. Upon nedegansion, a
heuristic underestimate(n’) of v(n') is assigned to each afs successorg’ € succ(n)
(lines 12—-25). Againh(n') is obtained by solving the LP relaxation of the subproblem
rooted atr’, conditioned on the current partial assignment of the pathd root. As before,
AOBF- C- | LP avoids expanding those nodes for which the correspondinglaRation is
infeasible or yields an integer solution (lines 18—-22 and32).

The second operation iIAOBF- C- | LP is a bottom-up, cost revision, arc marking,
SOLVE-labeling procedure (lines 26—40). Starting with tioele just expanded, the pro-
cedure revises its valu€n), using the newly computed values of its successors, andsmark
the outgoing arcs on the estimated best path to terminalsnof@s revised value is then
propagated upwards in the graph. The revised valug is an updated lower bound esti-
mate of the cost of an optimal solution to the subproblemedatn. During the bottom-up
step,AOBF- C- | LPlabels an AND node aSOLVED:If all of its OR child nodes are solved,
and labels an OR node &L VED if its marked AND child is also solved. The algorithm
terminates with the optimal solution when the root naede labeledSOLVED. We next

summarize the complexity of both depth-first and best-fildDAOR graph search:

THEOREM 12 (complexity) The depth-first and best-first AND/OR graph search algorithms
guided by a pseudo treg are sound and complete for solving 0-1 ILPs. Their time and

space complexity i©(n - 2¢"), wherew* is the induced width of the pseudo tree.

Proof. Immediate from Theoreml 9, which bounds the size of the conterimal

AND/OR search graph.]

5.6 Dynamic Variable Orderings

The depth-first and best-first AND/OR search algorithmsearesd in the previous sections

assumed a static variable ordering determined by the yndgrpseudo tree of the con-

236

straint graph. However, the mechanism of identifying ubiB2AND nodes based solely on
their contexts is hard to extend when variables are insttautiin a different order than that
dictated by the pseudo tree. In this section we discuss &gjréhat allows dynamic vari-
able orderings in depth-first and best-first AND/OR seardiemboth algorithms traverse
an AND/OR search tree. The approach calRadtial Variable Ordering (PVO)which
combines the static AND/OR decomposition principle withyaahmic variable ordering
heuristic, was described and tested also for general @mnistoptimization over graphical

models in Chaptér 3. For completeness sake, we review ityriekt.

Variable Orderings for Integer Programming. At every node in the search tree, the
search algorithm has to decide what variable to instantiex¢. One common method in
operations research is to select next thast fractional variablgi.e., the variable whose
LP value is furthest from being integral [125]. Finding a d@iate variable under this rule
is fast and the method yields small search trees on manyeioistances.

A more sophisticated approach, which is better suited fdagehard problems istrong
branching[21]. This method performs a one-step lookahead for eadablarthat is non-
integral in the LP at the node. The one-step lookahead catipatsolves the LP relax-
ations for each of the children of the candidate variabld,ascore is computed based on
the LP values of the children. The next variable to instaatia selected as the one with

the highest score among the candidates.

Partial Variable Ordering (PVO). AND/OR Branch-and-Bound with Partial Variable Or-
dering (resp. Best-First AND/OR Search with Partial Variable Orderjpglenoted by
AOBB+PVO- | LP (resp. AOBF+PVO- | LP), uses the static graph-based decomposition
given by a pseudo tree with a dynamic semantic ordering stzigipplied over chain por-
tions of the pseudo tree. For simplicity and without losserfigrality we consider th@ost

fractional variableas our semantic variable ordering heuristic. Clearly, itloameplaced

237

Tree search Graph search| ILP solvers

AOBB-ILP AOBB+PVO-ILP | AOBB-C-ILP | BB (Ip_solve)

Problem classes AOBF-ILP AOBF+PVO-ILP | AOBF-C-ILP | CPLEX 11.0
Combinatorial Auctions v/ N N Vv
Warehouse Location Problems / Vv vV Vv
MAX-SAT Instances vV v vV vV

Table 5.1: Detailed outline of the experimental evaluafarD-1 ILP.

by any other heuristic.

Consider the pseudo tree from Figlire 5.P(b) inducing thevietig variable groups (or
chains): {A, B}, {C, D} and{E, F'}, respectively. This implies that variablé¢s!, B}
should be considered befofg”, D} and {E, F'}. The variables in each group can be
dynamically ordered based on a second, independent heurist

AOBB+PVO- | LP (resp. AOBF+PVO- | LP) can be derived from Algorithrin_10 (resp.
Algorithm [12) with some simple modifications. The algorithraverses an AND/OR
search tree in a depth-first (resp. best-first) manner, duiyea pre-computed pseudo
tree7. When the current AND node, labeled(X;, x;), is expanded in the forward step,
the algorithm generates its OR successgrabeledX;, based on the semantic ordering
heuristic. Specifically;n corresponds to the most fractional variable in the curreatido
tree chain. If there are no uninstantiated variables lethéncurrent chain, namely variable
X; was instantiated last, then the OR successors afe labeled by the most fractional

variables from the variable groups rooted.Byin 7.

5.7 Experimental Results

We evaluated the performance of the depth-first and bestAiN®/OR search algorithms
on 0-1 ILP problem classes such as combinatorial auctiooaparcitated warehouse lo-
cation problems and MAX-SAT problem instances. We impleteeérour algorithms in
C++ and carried out all experiments on a 2.4GHz Pentium IV @6&B of RAM, running

Windows XP.

238

Algorithms. The detailed outline of the experimental evaluation is giveTable[5.1. We

evaluated the following 6 classes of AND/OR search algorgh

1 Depth-first and best-first search algorithms using a stati@ble ordering and ex-

ploring the AND/OR tree, denoted BOBB- | LP andAOBF- | LP, respectively.

2 Depth-first and best-first search algorithms using dyngmartal variable orderings
and exploring the AND/OR tree, denotedA@BB+PVO- | LP andAOBF+PVO- | LP,

respectively.

3 Depth-first and best-first search algorithms with cachuagéxplore the context min-
imal AND/OR graph and use static variable orderings, dehbieACBB- C- | LP
andAOBF- C- | LP, respectively.

All of these AND/OR algorithms use simpleximplementation based on the open-
sourcd p_sol ve 5. 5 library to compute the guiding LP relaxation. For this regsee
compare them against the OR Branch-and-Bound algorithmadokaifrom thd p_sol ve
library, denoted byBB. The pseudo tree used by the AND/OR algorithms was constiuct
using the hypergraph partitioning heuristic described iajiéan3.BB, AOBB+PVO- | LP
andAOBF+PVO- | LP used a dynamic variable ordering heuristic basedeoluced costs
(i.e., dual values) [95]. Specifically, the next fractional vateato instantiate has the small-
est reduced cost in the solution of the LP relaxation. Tiedbaoken lexicographically.

We note however that thAOBB- | LP and AOBB- C- | LP algorithms support a re-
stricted form of dynamic variable and value ordering. Namislere is a dynamic internal
ordering of the successors of the node just expanded, befaceng them onto the search
stack. Specifically, in line 33 of Algorithin_10, if the curtemoden is AND, then the
independent subproblems rooted by its OR children can hedah decreasing order of

their corresponding heuristic estimates (variable ordgri Alternatively, ifn is OR, then

239

its AND children corresponding to domain values can alsodoed in decreasing order of
their heuristic estimates (value ordering).

For reference, we also ran the ILOG CPLEX version 11.0 solvéh(default settings),
which uses a best-first control strategy, dynamic variatidering heuristic based on strong
branching, as well as cutting planes to tighten the LP relama It explores however an
OR search tree.

In the MAX-SAT domain we ran, in addition, three specializadvers:

1 MaxSol ver [126], a DPLL-based algorithm that uses a 0-1 non-lineaget for-
mulation of the MAX-SAT problem,

2 t ool bar [26], a classic OR Branch-and-Bound algorithm that solves M3¥XT as

a Weighted CSP problemi[9], and

3 PBS [2], a DPLL-based solver capable of propagating and legrpseudo-boolean

constraints as well as clauses.

MaxSol ver andt ool bar were shown to perform very well on random MAX-SAT
instances with high graph connectivity [26], wher®@®S exhibits better performance on
relatively sparse MAX-SAT instances [126]. These algonsrexplore an OR search space.

Throughout our empirical evaluation we will address théoteing questions that govern

the performance of the proposed algorithms:
1 The impact of AND/OR versus OR search.
2 The impact of best-first versus depth-first AND/OR search.
3 The impact of caching.

4 The impact of dynamic variable orderings.

Measures of PerformanceWe report CPU time (in seconds) and number of nodes visited

240

(which is equivalent to the number of timssnplexwas called to solve the LP relaxation
of the current subproblem). We also specify the number atkées (), the number of
constraints €), the depth of the pseudo treég @nd the induced width of the graphs*(
obtained for each problem instance. The best performanoéspare highlighted. In each
table, ”-” denotes that the respective algorithm exceetleditme limit. Similarly, "out”

stands for exceeding the 2GB memory limit.

5.7.1 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of good$,= {1,2,...,m} to
sell and the buyers submit a set of bids,= {B;, Bs, ..., B,}. A bid is a tupleB; =
(Sj,pj), whereS; C M is a set of goods ang; > 0 is a price. The winner determination
problem is to label the bids as winning or losing so as to maerthe sum of the accepted
bid prices under the constraint that each good is allocatatithost one bid. The problem

can be formulated as a 0-1 ILP, as follows:
max ijxj (5.8)
j=1

s.t. Zj\iesj z; <1 ie{l.m}
T; € {0, 1} Je {171}
Combinatorial auctions can also be formulated as binary ket CSPs [9], as de-
scribed in[34]. Therefore, in addition to the 0-1 ILP soljere also ram ool bar which
is a specialized OR Branch-and-Bound algorithm that maistaievel of local consistency

calledexistential directional arc-consisten2s].

regions-upv and arbitrary-upv Combinatorial Auctions

Figured 5.6 and 516 display the results for experiments eathbinatorial auctions drawn

from theregions-upWFigure[5.5) andrbitrary-upv (Figure[5.6) distributions of CATS 2.0

241

1800

1600

1400

1200

1000

800

time (sec)

600

400

200

10° 3

108

107

108

10°

nodes

104

100 3
102 4

10° T T T T T T T T T
50 100 150 200 250 300 350 400 450

regions-upv combinatorial auctions - time
[average: 62 < w* < 250, 75 < h < 290]

—@— toolbar

—O- BB (Ip_solve) 0
—W¥ - AOBB-ILP & AOBB-C-ILP e
—V— AOBF-ILP & AOBF-C-ILP /

1 —# - AOBB+PVO-ILP /
1 —{— AOBF+PVO-ILP /

50 100 150 200 250 300 350 400 450
bids (# variables)

regions-upv combinatorial auctions - nodes
[average: 62 < w* < 250, 75 < h < 290]

j —@— toolbar

1 —O - BB (Ip_solve)
—W¥ - AOBB-ILP & AOBB-C-ILP
1 —— AOBF-ILP & AOBF-C-ILP
4 —# - AOBB+PVO-ILP

—O— AOBF+PVO-ILP

bids (# variables)

Figure 5.5: Comparing depth-first and best-first AND/OR deaigorithms with static
and dynamic variable orderings. CPU time in seconds (top)nammaber of nodes visited
(bottom) for solving combinatorial auctions from thegions-upv distribution with 100

goods and increasing number of bids. Time limit 3 hours.

242

arbitrary-upv combinatorial auctions - time
[average: 81 < w* < 232; 86 < h < 244]

10° 3
—@— toolbar
—O— BB (Ip_solve) 0
104 § —W%— AOBB-ILP & AOBB-C-ILP -
1 —V— AOBF-ILP & AOBF-C-ILP _-©
—#— AOBB+PVO-ILP o~ vﬁ?/’#
100 4 —O— AOBF+PVO-ILP o == _
5
q) -
2]
~ 102 A
(0] E
£
10° 3
100 3
107 LU N R L L L R LB B BL L B B BL L B N L B HL AL L AL L L L B B BN L BB B
80 100 120 140 160 180 200 220 240 260 280 300
bids (# variables)
arbitrary-upv combinatorial auctions - nodes
. [average: 81 < w* < 232; 86 < h < 244]
1 —@— toolbar
—O— BB (Ip_solve)
—¥— AOBB-ILP & AOBB-C-ILP
—vV— AOBF-ILP & AOBF-C-ILP
10° § —m— AOBB+PVO-ILP
1 —O— AOBF+PVO-ILP
_v
//v/./,./v
3 -V
4 .
3 1 T
< - — 0
_ - - o
- B = v o -
10° 4 ol /j. — /./'D
] v - .
i/// —
L
o~
102 LN L B B B LB L L L L S B B N BB L L AL LB AL L LA B B BL L L L BB B

T
80 100 120 140 160 180 200 220 240 260 280 300

bids (# variables)

Figure 5.6: Comparing depth-first and best-first AND/OR deaigorithms with static
and dynamic variable orderings. CPU time in seconds (top)nammaber of nodes visited
(bottom) for solving combinatorial auctions from thebitrary-upv distribution with 100

goods and increasing number of bids. Time limit 3 hours.

243

regions-upv combinatorial auctions - time
[average: 62 < w* < 250, 75 < h < 290]

10% 3
—@—— toolbar
——O—— BB (Ip_solve)
102 § — -O0—- AOBF+PVO-ILP _o~
i . XKoo CPLEX //O__O—
_O—o
2 4
102 5 ,D'/D\"D/.D/
)
[O]
(2]
~ 10" A
[0] E
£
100 E x Xx X X ... X
] X X
- Koo
...... x x
107" 5 X
3 x
102 ~— ; ; —— ; —— —— —— .
50 100 150 200 250 300 350 400 450
bids (# variables)
regions-upv combinatorial auctions - nodes
. [average: 62 < w* < 250, 75 < h < 290]
—@—— toolbar
108 § ——O—— BB (Ip_solve)
i —-O— AOBF+PVO-ILP
107] X CPLEX
106
10° 4
8] __0--0
S os] o _0—-—0-0
o —0— Y
c E O_/—O—'O—
103 = //O“'_' —-0
o~ o—0-4o—0
] o g -0
102 + oo~ 0 X
§ D"’D xx xx X..... % ®
10"] ST e X
] L% X
100 - X
3 X
1071 T
50 100 150 200 250 300 350 400 450

bids (# variables)
Figure 5.7: Comparison with CPLEX. CPU time in seconds (top) mmaiber of nodes

(bottom) visited for solving combinatorial auctions frohetregions-upv distribution with
100 goods and increasing number of bids. Time limit 3 hours.

244

arbitrary-upv combinatorial auctions - time
[average: 81 < w* < 232, 86 < h < 244]

105
—@— toolbar
—O— BB (Ip_solve) 0
10 § —®— AOBB+PVO-ILP -
1 —O— AOBF+PVO-ILP _C
% CPLEX _o”
103 4
o
(O]
2]
~ 102 A
(0] 3
£
10" 4
100 4
10!
80 100 120 140 160 180 200 220 240 260 280 300
bids (# variables)
arbitrary-upv combinatorial auctions - nodes
] [average: 81 < w* < 232, 86 < h < 244]
10° 3
1 —@— toolbar
—O— BB (Ip_solve)
. | —®— AoBB+PvO-ILP
10° 3 —O— AOBF+PVO-ILP
<% CPLEX
104 3 //I
@] l//;’././u
= - - B ST X
° o e e
10° 5 P /lr—'”_;;.%‘&
' R
L
o -
102§ %
101 LANLENL AL LA R R B L R L L B L B B B B BB B L B AL N AL LN L LA B B BN BB B R

80 100 120 140 160 180 200 220 240 260 280 300

bids (# variables)
Figure 5.8: Comparison with CPLEX. CPU time in seconds (top) mmaber of nodes

visited (bottom) for solving combinatorial auctions fronearbitrary-upv distribution with
100 goods and increasing number of bids. Time limit 3 hours.

245

test suitel[75]. Theegions-upyroblem instances simulate the auction of radio spectrum
in which a government sells the right to use specific segmeaigpectrum in different
geographical areas. Tlagbitrary-upv problem instances simulate the auction of various
electronic components. The suffipv indicates that the bid prices were drawn from a
uniformdistribution. We looked at moderate size auctions haviriydidbds and increasing
number of bids. The number of bids is also the number of viagin the 0-1 ILP model.
Each data point represents an average over 10 instances drafermly at random from
the respective distribution. The header of each plot in feigh.5 an@ 516 shows the average

induced width and depth of the pseudo trees.

AND/OR vs. OR search.When comparing the AND/OR versus OR search regimes, we
observe that both depth-first and best-first AND/OR seargbrihms improve consid-
erably over the OR search algorithiBB, especially when the number of bids increases
and the problem instances become more difficult. In padicuhe depth-first and best-
first AND/OR search algorithm using partial variable ordgs, AOBB+PVO-| LP and
AOBF+PVO- | LP, are the winners on this domain, among thgsol ve based solvers.
For example, on theegions-upvauctions with 400 bids (Figurie 5.50AOBF+PVO- | LP

is on average about 8 times faster tig# Similarly, on thearbitrary-upv auctions with
280 bids (Figuré 5]6), the difference in running time betwa&BB+PVO- | LP and BB

is about 1 order of magnitude. Notice that on thgions-upwdatasett ool bar is out-
performed significantly byBB as well as the AND/OR algorithms. On tlaebitrary-upv
datasett ool bar outperforms dramatically thiep_sol ve based solvers. However, the
size of the search space explored mol bar is significantly larger than the ones explored
by the AND/OR algorithms. Thereforepol bar s better performance in this case can be
explained by the far smaller computational overhead of tbecansistency based heuristic

used, compared with the LP relaxation based heuristic.

246

AOBB vs. AOBF. When comparing further best-first versus depth-first AND/@Rrsh,
we see thaAOBF- | LP (resp. AOBF+PVO- | LP) improve considerably ovekOBB- | LP
(resp. ACBB+PVO- | LP), especially on theegions-upwataset. The gain observed when
moving from depth-first AND/OR Branch-and-Bound to best-#&BtD/OR search is pri-
marily due to the optimal cost, which bounds the horizon sftifigst more effectively than

for depth-first search.

Impact of caching. When looking at the impact of caching on AND/OR search, we
notice that the graph search algorith@BB- C- | LP and AOBF- C- | LP expanded the
same number of nodes as the tree search algori&k®B8- | LP andACBF- | LP, respec-
tively (see Figures Bl5 anid 5.6). This indicates that, far lomain, the context minimal
AND/OR search graph explored is a tree. Or, the LP relaxasiorry accurate in this case
and the AND/OR algorithms only explore a small part of theugketree, for which the

corresponding context-based cache entries are actuaty-ciches.

Impact of dynamic variable orderings. We can see that using dynamic variable ordering
heuristics improves the performance of best-first AND/ORree only. For depth-first
AND/OR search, the performance deteriorated sometimesf(geexampleAOBB- | LP

vs. AOBB+PVCO- | LP onregions-upvauctions in Figuré 515).

Comparison with CPLEX. In Figured 5.7 an 5.8 we contrast the results obtained with
CPLEX,t ool bar, BB, AOBB+PVO- | LP andAOBF+PVO- | LP on theregions-up\Fig-
ure[5.7) andarbitrary-npv (Figure[5.8) distributions, respectively. Clearly, we car that
CPLEX is the best performing solver on these datasets. licpkat, it is several orders of
magnitude faster than tHep _sol ve based solvers, especially the baseBBesolver. Its
excellent performance is leveraged by the powerful cuttiages engine as well as the pro-

prietary variable ordering heuristic used. Note that orettiétrary-upvdatasett ool bar

247

is competitive with CPLEX only for relatively small number lofls.

regions-npv and arbitrary-npv Combinatorial Auctions

Figured 5.D anfd 5.10 show the results for experiments withb@eatorial auctions gener-
ated from thaegions-npFigure[5.9) andrbitrary-npv (Figure[5.10) distributions of the
CATS 2.0 suite. The bid prices of these auctions were drawmn mormal rather than
the uniform distribution. As before, each data point reprnés an average over 10 random
instances.

The spectrum of results is similar to what we observed foreg@ns-upwandarbitrary-
upvauctions. The AND/OR algorithms outperformBB by a significant margin. Caching
had no impact on these datasets as well, namely the contakhaliAND/OR graph ex-
plored was a tree (in Figurés 5.9 dnd 5.10 for example, theesworresponding to graph
searchAOBB- C- | LP andACBF- C- | LP overlap with those corresponding to tree search
AOBB- | LPandAOBF- | LP). On thearbitrary-npvdatasett ool bar outperformed again
thel p_sol ve based solvers, indicating that in this case the EDAC hearistd a far
smaller overhead than the LP based one.

Figureg 5.1l and 5.12 show the results obtained with CPLEXeregions-npyFigure
£.11) andarbitrary-npv (Figure[5.1P) distributions, respectively. Clearly, we cae that
CPLEX is the best performing solver on these datasets. ltvesrgkeorders of magnitude
faster than all other ILP solvers. On thebitrary-npvauctionst ool bar is competitive

with CPLEX only for relatively small number of bids.

5.7.2 Uncapacitated Warehouse Location Problems

In the uncapacitated warehouse location problenfUWLP) a company considers open-
ing m warehouses at some candidate locations in order to supply é@isting stores.
The objective is to determine which warehouse to open, andhatf these warehouses

should supply the various stores, such that the sum of theteraince and supply costs is

248

regions-npv combinatorial auctions - time
[average: 62 < w* < 345,75 <h <411]

4000
: —@— toolbar
] —O— BB (Ip_solve) e}
{ —%— AOBB-ILP & AOBB-C-ILP A
3000 41 —v— AOBF-ILP & AOBF-C-ILP // \O—O
] —®— AOBB+PVO-ILP |
| —O— AOBF+PVO-ILP |
| |
S 2000 -
bt |
2
[0
= -
1000 A
0 -
T T T T T T T T T T T T
0 100 200 300 400 500 600 700
bids (# variables)
regions-npv combinatorial auctions - nodes
108 [average: 62 < w* < 345,75 <h <411]
—@— toolbar
108 —O— BB (Ip_solve)
3 —¥— AOBB-ILP & AOBB-C-ILP
1 —vV— AOBF-ILP & AOBF-C-ILP
107 3 —#— AOBB+PVO-ILP
3 —O— AOBF+PVO-ILP
108 3
»]
(]
103 105 3
=] 000000
104] O’o/O_O .J;
-O/Q—O’o’ e S A
] Jo) SR NV
103 3 o ./.4 N V/E\g/ﬂ Vv oo
] Ofiw’ vVvip
107 - &_gﬁﬂﬂ'ﬂ
B e e L e o e L s oo S s s o S
0 100 200 300 400 500 600 700

bids (# variables)

Figure 5.9: Comparing depth-first and best-first AND/OR deaigorithms with static
and dynamic variable orderings. CPU time in seconds (top)nammaber of nodes visited
(bottom) for solving combinatorial auctions from thegions-npv distribution with 100

goods and increasing number of bids. Time limit 3 hours.

249

arbitrary-npv combinatorial auctions - time
[average: 81 < w* < 232; 86 < h < 244]

105 3
—@— toolbar
{1 —O— BB (Ip_solve) 0
10+ 4 —¥— AOBB-ILP & AOBB-C-ILP PRe
] —vV— AOBF-ILP & AOBF-C-ILP o~
1 —®— AOBB+PVO-ILP o v
100 | —0— AOBF+PVO-ILP - i
5
q) B
2]
~ 102 A
[0] E
£
10° 3
100 3
107 LU N R L L L R LB B BL L B B BL L B N L B HL AL L AL L L L B B BN L BB B
80 100 120 140 160 180 200 220 240 260 280 300
bids (# variables)
arbitrary-npv combinatorial auctions - nodes
o [average: 81 < w* < 232; 86 < h < 244]
] —e— toolbar
{1 —O- BB (Ip_solve)
108 { —w¥- AOBB-ILP
1 —v— AOBF-ILP
1 —# - AOBB+PVO-ILP
105 4 —O— AOBF+PVO-ILP
® _ -
103 1043 ..
e
- — L= -
o S
10° 4 Y e p—OT
3 — T - S
o
102§ 0
101 LANLENL AL LA R R B L R L L B L B B B B BB B L B AL N AL LN L LA B B BN BB B R

80 100 120 140 160 180 200 220 240 260 280 300

bids (# variables)

Figure 5.10: Comparing depth-first and best-first AND/OR dealgorithms with static
and dynamic variable orderings. CPU time in seconds (top)nammaber of nodes visited
(bottom) for solving combinatorial auctions from thebitrary-npv distribution with 100

goods and increasing number of bids. Time limit 3 hours.

250

regions-npv combinatorial auctions - time
[average: 62 < w* < 345,75 <h <411]

105 3
—@—— toolbar
104 _ ——O—— BB (Ip_solve)
j — -O— AOBF+PVO-ILP
....... X CPLEX 'O‘O—O
103 3
o 107 3
3 3
GJ B
£ 10 4
100 3
10-1 E x.,x..x"
1072
0 100 200 300 400 500 600 700
bids (# variables)
regions-npv combinatorial auctions - nodes
105 [average: 62 < w* < 345,75 <h <411]
103; —@—— toolbar
——O—— BB (Ip_solve)
107 4 — -0 — AOBF+PVO-ILP
§ X CPLEX
106§
105 3 °
E 00000
0 104 o O,O’O"O’O/
S O@/ow
g 3
10° 4 o O oo
c o 00" . ,A:L.D,D/D/E\j/ﬂﬂ O
] oo
102§ o X x X.,x. % %X
3 NPV TRV x,.x X X
101 3 x“x.x 23 X
101 4 x
102 }rr—r—1+—17-"1r—"-—"—"v""rr—r-—"arr—r—rrrr—r———r———————r
0 100 200 300 400 500 600 700

bids (# variables)
Figure 5.11: Comparison with CPLEX. CPU time in seconds (topl)rmmmber of nodes

visited (bottom) for solving combinatorial auctions frohetregions-npv distribution with
100 goods and increasing number of bids. Time limit 3 hours.

251

arbitrary-npv combinatorial auctions - time
[average: 81 < w* < 232, 86 < h < 244]

10° 3
—@&—— toolbar
——-0O-—— BB (Ip_solve) 0
10+ f — —#® — AOBB+PVO-ILP ///
i ——0O—— AOBF+PVO-ILP _-0
..x CPLEX /o//
108 3
o
q) B
2]
~ 102 A
[0] E
£
10° 3
100 3
10 1
80 100 120 140 160 180 200 220 240 260 280 300
bids (# variables)
arbitrary-npv combinatorial auctions - nodes
. [average: 81 < w* < 232, 86 < h < 244]
—@— toolbar
—O— BB (Ip_solve)
. | —®— AOBB+PVO-ILP
10° 3 —o— AOBF+PVO-ILP
% CPLEX
104 3
8 1 //I
3 v -
< o Y o —H
103 4 — g T e
E = /,g/ """""""""""
& o
— T x
D/,/ .x
102 E .
E %
100 e e e

80 100 120 140 160 180 200 220 240 260 280 300

bids (# variables)
Figure 5.12: Comparison with CPLEX. CPU time in seconds (topl)rmmmber of nodes

visited (bottom) for solving combinatorial auctions frohearbitrary-npv distribution with
100 goods and increasing number of bids. Time limit 3 hours.

252

minimized. Each store must be supplied by exactly one warshoThe typical 0-1 ILP

formulation of the problem is as follows:

min Z Z CijTij + Z fivi (5.9)
1=1

=1 i=1

st. Yt xy=1 Vje{l.n}
T <y Vi e {l.n},Vi € {1.m}
z; € {0,1} Vj e {l.n},Vie {l.m}
y; € {0,1} Vie {1.m}
where f; is the cost of opening a warehouse at locati@mndc;; is the cost of supplying
storej from the warehouse at location
Tabled 5.2 an@l 5.3 display the results obtained for 30 rahdgemerated UWLP in-
stanc£ with 50 warehouses, 200 and 400 stores, respectively. Thehaase opening
and store supply costs were chosen uniformly randomly batv@eand 1000. These are
large problems with 10,050 variables and 10,500 consgé&mttheuw p- 50- 200 class,
and 20,050 variables and 20,400 constraints fouthlep- 50- 400 class, respectively, but

having relatively shallow pseudo trees with depths of 123.

AND/OR vs. OR search.When looking at AND/OR versus OR search, we can see that
in almost all test cases the AND/OR algorithms domirae On theuwlp-50-200-013
instance, for exampleAOBF+PVO- | LP causes a speed-up of 186 ow#, exploring a
search tree 1,142 times smaller. Similarly,uomlp-50-400-001ACBB+PVO- | LP outper-
forms BB by almost 2 orders of magnitude in terms of running time ard of the search
space explored. On this domain, the best performing alguriamong thd p_sol ve

based solvers is best-filAOBF+PVO- | LP.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR Branuti-a

3Problem generator from http://www.mpi-sb.mpg.de/unigd/projects/benchmarks/UflLib/

253

uwlp-50-200 BB (Ip_solve) AOBB-ILP | AOBB+PVO-ILP | AOBB-C-ILP

(w*, h) CPLEX AOBF-ILP | AOBF+PVO-ILP | AOBF-C-ILP

(n=10,050, ¢c=10,500 time nodes| time nodes| time nodes| time nodes
uwlp-50-200-001 48.66 86| 69.74 62| 25.69 20| 69.69 62
(50, 123) 3| 44.45 20| 20.25 7| 4284 20
uwlp-50-200-003 33.14 72| 48.56 59| 18.20 17 | 48.56 59
(50, 123) 1.36 0| 34.89 22| 22.56 6| 34.09 22
uwlp-50-200-004 61.08 142| 46.39 46| 17.47 10| 46.42 46
(50, 123) 0| 3758 24| 15.49 3| 36.27 24
uwlp-50-200-005 1591.89 1,692 404.94 233| 125.81 50 | 405.72 233
(50, 123) 81 | 287.64 97| 145.53 37| 270.99 97
uwlp-50-200-011 256.19 358 233.96 246| 78.74 39] 233.21 246
(50, 123) 37| 88.22 41| 75.83 22| 83.75 41
uwlp-50-200-013 13693.76 14,846 116.19 44| 78.86 24] 116.25 44
(50, 123) 37 | 111.28 26| 74.53 13 | 105.72 26
uwlp-50-200-017 711.04 998 123.14 118| 18.17 9| 12470 118
(50, 123) 3| 48.06 21| 16.84 2| 47.77 21
uwlp-50-200-018 1477.74 2,666 161.03 146 59.52 37| 161.05 146
(50, 123) 8 | 5458 21| 32.33 8| 5241 21
uwlp-50-200-020 2179.39 3,668 190.77 138 68.91 36] 190.81 138
(50, 123) 28| 87.58 33| 48.33 10 | 83.70 33
uwlp-50-200-021 3252.60 5,774 609.74 580/ 37.63 960824 580
(50, 123) 25| 80.55 30| 46.80 7| 92.08 30
uwlp-50-200-022 50.70 122| 49.08 63| 17.00 9| 49.14 63
(50, 123) 1.84 3| 3839 26| 18.17 6| 37.34 26
uwlp-50-200-023 205.92 204 102.30 50 43.72 16| 102.09 50
(50, 123) 6| 60.70 19| 34.16 5| 58.50 19
uwlp-50-200-024 2177.67 3,288 125.85 71| 28.19 16| 125.86 71
(50, 123) 15| 86.64 31| 25.89 4| 8227 31
uwlp-50-200-029 14.94 10| 55.33 46| 15.06 5| 53.28 46
(50, 123) 1| 46.56 27| 16.33 3| 45.36 27
uwlp-50-200-030 21.77 42) 12739 164 15.03 512759 164
(50, 123) 1| 3152 15| 14.09 1| 30.64 15

Table 5.2: CPU time in seconds and number of nodes visitedfeingg UWLP instances
with 50 warehouses 200 stores, respectively. Time limitddrs.

254

uwlp-50-400 BB (Ip_solve) AOBB-ILP AOBB+PVO-ILP | AOBB-C-ILP

(w*, h) CPLEX AOBF-ILP AOBF+PVO-ILP | AOBF-C-ILP

(n=20,050, c=20,400 time nodes time nodes| time nodes time nodes
uwlp-50-400-001 13638.55 12,548 743.75 374| 106.63 29| 74368 374
(50, 123) 12| 130.03 20| 81.63 8| 126.39 20
uwlp-50-400-004 820.89 942| 1114.47 794| 55.10 10[111755 794
(50, 123) 6.52 6| 126.97 25| 51.85 3| 123.19 25
uwlp-50-400-005 57532.67 32,626 2719.09 617| 247.03 50| 2722.26 617
(50, 123) 58 | 331.87 36| 131.58 8 | 313.09 36
uwlp-50-400-006 365.93 632 48.41 11 32.31 1| 48.44 11
(50, 123) 0 51.62 8| 32.65 1| 51.95 8
uwlp-50-400-008 599.49 560| 175.60 49| 96.66 21| 175.67 49
(50, 123) 0| 119.28 13| 60.27 3| 116.42 13
uwlp-50-400-009 17608.98 17,262 281.02 76| 97.00 9| 281.30 76
(50, 123) 6| 132.27 14| 78.05 2| 128.58 14
uwlp-50-400-011 22727.61 22,324 193.91 77| 64.28 5| 193.89 77
(50, 123) 8.07 7| 9311 12| 64.58 4| 92.06 12
uwlp-50-400-012 5468.30 4,174 67190 307| 52.22 4] 671.77 307
(50, 123) 0| 164.64 32| 52.95 2| 159.28 32
uwlp-50-400-014 - 524.69 147| 248.27 41| 52225 147
(50, 123) 38| 229.88 27| 142.83 10 | 220.64 27
uwlp-50-400-019 459.39 436 85.11 18 41.80 3] 8513 18
(50, 123) 0| 7552 10| 42.28 1| 74.83 10
uwlp-50-400-026 232.25 252| 182.35 81| 59.13 14| 18252 81
(50, 123) 4.04 0| 94.13 19| 44.05 2| 91.89 19
uwlp-50-400-027 10725.29 12,654 699.86 328 78.44 13| 698.93 328
(50, 123) 16.5 50 | 292.28 80| 84.70 10| 276.21 80
uwlp-50-400-028 32669.82 29,166 508.14 175| 127.45 30| 507.33 175
(50, 123) 54 | 292.03 55| 127.44 15| 277.33 55
uwlp-50-400-029 22525.77 14,568 721.08 191| 260.08 44| 72077 191
(50, 123) 6.91] 4| 162.83 15| 100.96 5| 158.68 15
uwlp-50-400-030 133346.24 95,866 1336.26 313| 304.42 69| 1339.17 313
(50, 123) 19.80 31| 787.04 115/ 240.14 28| 74136 115

Table 5.3: CPU time in seconds and number of nodes visitedfeingg UWLP instances
with 50 warehouses 400 stores, respectively. Time limitddrs.

255

Bound search we observe only minor savings in running timaworf of best-first search.
This can be explained by the already small enough searchk sg&ersed by the algorithms,
which does not leave room for additional improvements dugh#éoptimal cost bound

exploited by best-first search.

Impact of caching. When looking at the impact of caching we see againA@&B- C- | LP
andACBF- C- | LP visited the same number of nodesA@BB- | LP andAOBF- | LP, re-
spectively (see columns 3 and 5 in Tallled 5.2[and 5.3). Tlwslgain that the context
minimal AND/OR search graph explored by tAéBB- C- | LP andACBF- C- | LP algo-

rithms was a tree and therefore all cache entries were dacuks.

Impact of dynamic variable orderings. We also observe that the dynamic variable order-
ing had a significant impact on performance in this case,aaslhefor depth-first search.
For example, on thewlp-50-200-02linstance AOBB+PVO- | LP is 16 times faster than
AOBB- | LP and expands 64 times fewer nodes. However, the differerrc@ining time be-
tween the best-first search algorithm&BF- | LP andAOBF+PVO- | LP, is smaller com-
pared to what we see for depth-first AND/OR search. This isibge the search space ex-
plored byAOBF- | LP is already small enough and the savings in number of nodesedau

by dynamic variable orderings cause only minor time savings

Comparison with CPLEX. When looking at the results obtained with CPLEX (column
2 in Tabled 5.2 and 5.3), we notice again its excellent perémrce in terms of both run-
ning time and size of the search space explored. However,e@dhat in some cases
AOBF+PVO- | LP actually explored fewer nodes than CPLEX¢(, uwlp-50-200-02L
This is important because it shows that the relative worsiepeance ofACBF+PVO- | LP
versus CPLEX is due mainly to the much slowanplexmplementation of the former, lack

of cutting planes engine as well as the naive dynamic vaiatdering heuristic used.

256

5.7.3 MAX-SAT Instances

Given a set of Boolean variables the goalnsdximum satisfiability (MAX-SAT) is to
find a truth assignment to the variables that violates th&t lmamber of clauses. We exper-
imented with problem classgs et andduboi s from the SATLIQ library, which were
previously shown to be difficult for 0-1 ILP solvels [26].

MAX-SAT can be formulated as a 0-1 ILP_[61] or pseudo-Booleammiula [124/) 43].
In the O-1 ILP model, a Boolean variableis mapped to an integer variabtethat takes
value 1 wherw is True or 0 when it is False. Similarly, —v is mapped tal — x. With
these mappings, a clause can be formulated as a linear iitggEar example, the clause
(v1 V =y V v3) can be mapped te;, + (1 — z3) + 23 > 1. Here, the inequality means that
the clause must be satisfied in order for the left side of thquality to have a value no less
than one.

However, a clause in a MAX-SAT may not be satisfied, so thatcthreesponding in-
equality may be violated. To address this issue, an auxildeger variable is introduced
to the left side of a mapped inequality. Varialgle- 1 if the corresponding clause is unsat-
isfied, making the inequality valid; otherwisge= 0. Since the objective is to minimize the
number of violated clauses, it is equivalent to minimize shen of the auxiliary variables
that are forced to take value 1. For example,V —vs V v3), (v2 V v4) can be written as a
0-1 ILP of minimizingz = y; + y2, subject to the constraints of + (1 —x2) + 23+ y; > 1

andzy + (1 —xy4) +y2 > 1.

pret Instances

Table[5.4 shows the results for experiments withrét instances. These are unsatisfiable
instances of graph 2-coloring with parity constraints. Fime of these problems is rela-
tively small (60 variables with 160 clauses fmet60and 150 variables with 400 clauses

for pret15Q respectively).

http://www.satlib.org/

257

pret CPLEX MaxS toolbar AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP
(w*, h) BB (Ip_solve 5.5) PBS AOBF-ILP AOBF+PVO-ILP | AOBF-C-ILP

time nodes| time time nodes time nodes time nodes| time nodes
pret60-40 676.94 3,926,422 9.47 | 53.89 7,297,773 7.88 1,255 8.41 1,216| 7.38 1,216
(6, 13) - - [0.00] 565 756 1,202| 870 1,326| 358 568
pret60-60 535.05 2,963,435 9.48 | 53.66 7,297,773 8.56 1,259 8.70 1,247| 7.30 1,140
(6, 13) - - [0.00] 495 8.08 1,184| 831 1,206| 356 538
pret60-75 402,53 2,005,738 9.37 | 53.52 7,297,773 6.97 1,124 6.80 1,089| 6.34 1,067
(6, 13) - - 0.00] 543 7.38 1,145 8.42 1,149| 3.08 506
pret150-40 out - - - 95.11 6,625| 108.84 7,152| 75.19 5,625
(6, 15) - - [0.02 2,592 | 101.78 6,535| 101.97 6,246| 19.70 1,379
pret150-60 out - - - 98.88 6,851| 112.64 7,347| 78.25 5,813
(6, 15) - - [0.01] 2,873 | 106.36 6,723 102.28 6,375| 19.75 1,393
pretl50-75 out - - - | 108.14 7,311| 115.16 7,452| 84.97 6,114
(6, 15) - - [0.02 2,898 | 98.95 6,282| 103.03 6,394| 20.95 1,430

Table 5.4: CPU time in seconds and number of nodes visitedfoing pr et MAX-SAT
instances. Time limit 10 hours.

AND/OR vs. OR search.When comparing AND/OR versus OR search we see again that
the AND/OR algorithms improved dramatically ov8B. For instance, on thpret150-75
network,AOBB- | LP finds the optimal solution in less than 2 minutes, wheR&exceeds

the 10 hour time limit. Similarlyiax Sol ver andt ool bar could not solve the instance

within the time limit. Overall PBS offers the best performance on this dataset.

AOBB vs. AOBF. The best-first AND/OR search algorithms improve sometinoesicl-
erably over the depth-first ones, especially when exploangAND/OR graphd{.g., see
AOBF- C- | LP versusAOBB- C- | LP in the leftmost column of Table 5.4). Moreover, the
search space explored BYBF- C- | LP appears to be the smallest. This indicates that the
computational overhead &OBF- C- | LP is mainly due to evaluating its guiding lower

bounding heuristic evaluation function.

Impact of caching. When looking at the depth-first AND/OR Branch-and-Bound graph
search algorithm we only observe minor improvements duathiag. This is probably
because most of the cache entries were actually dead-cadhdbke other hand, best-first

ACBF- C- | LP exploits the relatively small size of the context-minimalB/OR graph

258

(i.e., in this case the problem structure is captured by a verylsroatext with size 6 and
a shallow pseudo tree with depth 13 or 15) and achieves tliggbeermance among the

ILP solvers.

Impact of dynamic variable orderings. We also see that the dynamic variable ordering

did not have an impact on search performance for both deqstrafid best-first algorithms.

Comparison with CPLEX. Both depth-first and best-first AND/OR search algorithms
outperformed dramatically CPLEX on this dataset. Ongret60-40instance, for exam-
ple, AOBF- C- | LPis 2 orders of magnitude faster than CPLEX. Similarlypoet150-40

CPLEX exceeded the memory limit.

dubois Instances

Figurd5.1B displays the results for experiments with ramdaboisinstances with increas-
ing number of variables. These are unsatisfiable 3-SATmes®mwiIth3 x degree variables

and8 x degree clauses, each of them having 3 literals. As in the previossdase, the
duboisinstances have very small contexts of size 6 and shallowdostgaes with depths

ranging from 10 to 20.

AND/OR vs. OR search.As before, we see that the AND/OR algorithms are far superior
to BB, which could not solve any of the test instances within thedrhime limit. PBS is
again the overall best performing algorithm, however iefdito solve 4 test instances: on
instancedubois130 for which degree = 130, it exceeded the 3 hour time limit, whereas
on instanceslubois180 dubois200and dubois260the clause/pseudo-boolean constraint
learning mechanism caused the solver to run out of memoryndie thatvax Sol ver

andt ool bar were not able to solve any of the test instances within the timit.

259

dubois MAX-SAT instances - time
[average: w* =6, 10 < h < 20]

12000
1 —@— AOBB-ILP
{ O+ AOBF-ILP Y
10000 1 _w_ AoBB-C-ILP ll o
1 —A— AOBF-C-ILP ll /
8000] —W— AOBB+PVO-ILP ’l A
| —O— AOBF+PVO-ILP | P
] —&— PBs ’\ /i
‘S 5000 - ’\ S
1) i | | R
n
v _ I
£ 4000] ll |
] B
2000 -
1 |
[]
0 - b ‘g
T T T T T T T T T
0 50 100 150 200 250 300 350
degree [# vars = 3 x degree; # clauses = 8 x degree]
dubois MAX-SAT instances - nodes
o7 [average: w* =6, 10 < h < 20]
i —e— AOBB-ILP
1 O AOBF-ILP
1 —%— Ao0BB-C-ILP
10° § —A— AOBF-C-ILP W
] —@— AOBB+PVO-ILP I
1 —O— AOBF+PVO-ILP |
1 —&— PBs \
105 /
17]
(]
©
o
s
104 3
10° 5
102 +r—vrrv-"v-+-st->-rr————r————r————————————

0 50 100 150 200 250 300 350

degree [# vars = 3 x degree; # clauses = 8 x degree]

Figure 5.13: Comparing depth-first and best-first AND/OR dealgorithms with static
and dynamic variable orderings. CPU time in seconds (top)ramdber of nodes vis-
ited (bottom) for solvingdubois MAX-SAT instances. Time limit 3 hours. CPLEXB,

t ool bar andMaxSol ver were not able to solve any of the test instances within the tim
limit.

260

AOBB vs. AOBF. Best-first search outperforms again depth-first searchcedlyewhen
exploring the AND/OR graph. However, the depth-first tre@rsle algorithm#OBB- | LP
and ACBB+PVO- | LP were better than the best-first tree search counterpartssicase.
This was probably caused by the internal dynamic variabdermg used byAOBB- | LP
andAOBB+PVO- | LP to solve independent subproblems rooted at the AND noddtein t

search tree.

Impact of caching. We can see thadOBF- C- | LP takes full advantage of the relatively
small context minimal AND/OR search graph and, on some ofatger instances, it out-
performs its ILP competitors with up to one order of magrétual terms of both running
time and number of nodes expanded. On this datd€®BF- C- | LP explores the small-
est search space, but its computational overhead doesyoffpa terms of running time
when compared witlPBS. The impact of caching on AND/OR Branch-and-Bound is not

that pronounced as for best-first search.

Impact of dynamic variable orderings. The dynamic variable ordering had a minor im-
pact on depth-first AND/OR search onby (., seeAOBB+PVO- | LP versusAOBB- | LPin
Figure[5.1B).

Comparison with CPLEX. The performance of CPLEX was quite poor on this dataset

and could not solve any of the test instances within the timé.|

5.8 Conclusion to Chapterrb

The chapter investigates the impact of the AND/OR searchespperspective to solving
optimization problems from the class of 0-1 Integer LineargPams. In Chaptefs 3 ahdl 4

we showed that the AND/OR search paradigm can improve glec@ratraint optimization

261

algorithms. Here, we demonstrate empirically the bene#t/dD/OR search to 0-1 ILPs.
Specifically, we extended and evaluated the depth-first astdfirst AND/OR search al-
gorithm traversing the AND/OR search tree or context miniaMdD/OR graph to solving
0-1 ILPs. We also extended the algorithms with dynamic \deiardering strategies. Our
empirical evaluation demonstrated on a variety of benckmesblems that the AND/OR
search algorithms outperform the classic depth-first OR &rand-Bound sometimes by
several orders of magnitude. We summarize next the mostriamtofactors influencing
performance, including dynamic variable orderings, caghas well as the search control

strategy ¢.g., depth-first versus the best-first).

e Depth-first versus best-first search.Our results showed that the AND/OR search
algorithms using a best-first control strategy and trangrsither an AND/OR search
tree or graph were able, in many cases, to improve consilyevaer the depth-first
search onese(g., combinatorial auctions from Figurés b.5 dnd| 518boisMAX-
SAT instances from Figufe 5.1.3).

e Impact of caching. For problems with relatively small contexts (treewidth)et
memory intensive best-first AND/OR search algorithms wé@s to outperform
dramatically the corresponding tree search algorithimg,(duboisMAX-SAT in-
stances from Figufe 5.113). The impact of caching on the disthAND/OR Branch-
and-Bound search algorithms was less prominent on these tfg@oblems.q.,
pret andduboisMAX-SAT instances from Table 5.4 and Figure 5.13, respetfiv
probably because most of the cache entries were dead-caEbegroblems with
very large contextse(g., combinatorial auctions from Figurés b.5 5.9, UWLP
instances from Tablds 5.2 ahd]5.3) the context minimal AN®/aph explored

was a tree, and therefore caching had no impact.

e Impact of dynamic variable orderings. The AND/OR search approach was already

shown to be powerful when used in conjunction with dynamidalde ordering

262

schemes in Chaptét 3. Here, for 0-1 ILPs we also show that the/@R Branch-
and-Bound with partial variable orderings sometimes oditpered the AND/OR
Brach-and-Bound restricted to a static variable ordering iy arder of magnitude
(e.g., UWLP instances from Tablés 5.2 dnd]5.3). Similarly, best-AND/OR search
with partial variable orderings improved considerably roe counterpart using a

static ordering4.g., combinatorial auctions from Figures b.5 5.9).

AND/OR solvers versus CPLEX.Our current implementation of the depth-first and
best-first AND/OR search is far from being fully optimizedthwiespect to commer-
cial 0-1 ILP solvers such as CPLEX, as it relies on an open sounplementation
of the simplexalgorithm, as well as a naive dynamic variable ordering iséar
Nevertheless, we demonstrated that on selected classek ibff&s the AND/OR al-
gorithms outperformed CPLEX in terms of both the number ofasoekploredd.g.,
UWLP instances from Tablds 5.2 and]5.3) and CPU time.,(pr et MAX-SAT

instances from Table 5.4).

263

Chapter 6

AND/OR Multi-Valued Decision

Diagrams for Constraint Optimization

6.1 Introduction

The compilation of graphical models, including constrant probabilistic networks, has
recently been under intense investigation. Compilatiohriepies are useful when an ex-
tended off-line computation can be traded for fast reaktanswers. Typically, a tractable
compiled representation of the problem is desired. Sine¢abks of interest are in general
NP-hard, this is not always possible in the worst case. Intjme, however, it is often the
case that the compiled representation is much smaller titeworst case bound, as was
observed for Ordered Binary Decision Diagrams (OBDDs) [13Wiare extensively used
in hardware and software verification.

In the context of constraint networks, compilation schemesvery useful for inter-
active solving or product configuration type problems [42]. 5These are combinatorial
problems where a compact representation of the feasibtef setutions is necessary. The
system has to beomplete(to represent all set of solution®)acktrack-fregto never en-

counter dead-ends) ameial-time(to provide fast answers).

264

Contribution

In this chapter we present a compilation scheme for comswatimization, which has been
of interest recently in the context of post-optimality ayssd [53]. Our goal is to obtain a
compact representation of the set of optimal solutions. &pproach is based on three
main ideas: (1) AND/OR search spaces for graphical modéls [eir key feature is the
exploitation of problem structure during search, somesiielding exponential improve-
ment over structure-blind search methods. (2) Branch-andi@gearch for optimization,
applied to AND/OR search spaces|[79, 82]. (3) Reduction rsiledar to OBDDs, that
lead to the compilation of the search algorithm trace inté\BiD/OR Multi-Valued Deci-
sion Diagram (AOMDD)|[89].

The novelty over previous results consists in: (1) The immestt of general weighted
graphs based on cost functions, rather than constraintsA {@ down search based ap-
proach for generating the AOMDD, rather than Variable Efation based as in [39]. (3)
Extensive experimental evaluation that proves the effayier the weighted AOMDD. We
show that the compilation scheme can often be accomplisiatively efficiently and that
we sometimes get a substantial reduction beyond the itiéieé of state-of-the-art search
algorithms.

The research presented in this chapter is based in part @h [10

Chapter Outline

The chapter is structured as follows. Section$ 6.2arnd &dge background on Ordered
Binary Decision Diagrams and AND/OR Multi-Valued DecisioraBrams. In Section 6.4
we present the new search based compile algorithm for themalpgolution set to a COP.
Sectiorn 6.5 is dedicated to an extensive empirical evalnaliat proves the efficiency of the

AOMDD data-structure for optimization, while Sectionlé ®yides concluding remarks.

265

A] B | C [{(ABC) ° °

o [ofo 0

0|01 0 S S

O B (e) (e) (&) O

S Er— -
Llolot o 0 o ©© © 0 o ©© ©
110711 1 > > > > > > > >

1 l 0 0 /I /I /I /I /I /I /I /I
] D]] Ce]]][] fe][][] [+]

(a) Table (b) Unordered tree (c) Ordered tree

Figure 6.1: Boolean function representations

6.2 Review of Binary Decision Diagrams

Decision diagrams are widely used in many areas of researokptesent decision pro-
cesses. In particular, they can be used to represent fasctiDue to the fundamental
importance of Boolean functions, a lot of effort has been céid to the study dBinary
Decision Diagram¢BDDs), which are extensively used in formal verification,[2&].

A BDD is arepresentation of a Boolean function. Gi#nr-= {0, 1}, a Boolean function
f : B — B, hasn arguments,X,--- , X,,, which are Boolean variables, and takes
Boolean values. A Boolean function can be represented by a tabé Figurg 6.1(a)), but
this is exponential im, and so is the binary tree representation in Figure §.1(@.goal is
to have a compact representation, that also supports effmperations between functions.
Ordered Binary Decision Diagram®BDDs) [13] provide such a framework by imposing
the same order to the variables along each path in the biregy and then applying the
following two reduction rules exhaustively: (i9omorphism merge nodes that have the
same label and the same respective childrenrg@)yndancy eliminate nodes whose low
(zero) and high (one) edges point to the same node, and dotireeparent of removed

node directly to the child of removed node.

Example 23 Figure[6.2(a) shows the binary tree from Figdire 6.1(c) aftee tsomorphic
terminal nodes (leaves) have been merged. The highligltteels) labeled with C, are also
isomorphic, and Figurg 6.2(p) shows the result after theyraeeged. Now, the highlighted

nodes labeled with C and B are redundant, and removing theesghe OBDD in Figure

266

(a) Isomorphism (b) Redundancy (c) OBDD

Figure 6.2: Reduction rules

6.2(C).

6.3 Weighted AND/OR Multi-Valued Decision Diagrams

The context minimal AND/OR graph described in Chajpter 4 sffen effective way of
identifying some unifiable nodes during the execution ofdbarch algorithm. However,
merging based on context is not complete, there may still be unifiable nodes in the
search graph that do not have identical contexts. The cbh&sed merging uses only
information available from the ancestors in the pseuda tfedl the information from the
descendants would also be available, it could lead to thatiftation of more unifiable
nodes. This comes at a higher cost, however, since infoom&tbom descendants in the
pseudo tree means that the entire associated subproblémbeasolved. Orthogonal to the
problem of unification, some of the nodes in an AND/OR searelply may be redundant,
for example when the set of solutions rooted at variablés not dependent on the specific
value assigned td;.

The above criteria suggest that once an AND/OR search geagbailable €.g., after
search terminates, and its trace is saved) reduction raksdoorisomorphismandredun-
dancy(similar to OBDDs) can be applied further, reducing the sizéhe AND/OR search
graph that was explicated by search. In order to apply thectezh rules, it is convenient

to group each OR node and its children intmata-nodg89]:

267

DEFINITION 44 (meta-node) A meta-node in a weighted AND/OR search graph consists

of an OR node labeledar(v) = X; and itsk; AND children labeledr;,, ..., z;

k

) that
correspond to its value assignments. Each AND node labglegoints to a list of child

meta-nodesy.children;, and also stores the weight(X;, z;,).

The reduction rules are straightforward. Two meta-nodessamorphicif they have
the same variable label and the same respective lists alrehiand weights. A meta-node

is redundantf all its lists of children and weights are respectivelyntieal. Formally,

DEFINITION 45 (isomorphic meta-nodes)Given a weighted AND/OR search gra@inep-
resented with meta-nodes, two meta-nodeend v havingvar(u) = var(v) = X and

|D(X)| = k are isomorphic iff:
1. w.childreni = v.children;, Vi € {1, ..., k} and

2. w(X, ;) = w'(X,z;), Vi € {1,...,k}, wherew", w’ are the weights ofi and v,

respectively).

DEFINITION 46 (redundant meta-node) Given a weighted AND/OR search gra@hep-
resented with meta-nodes, a meta-nadeith var(u) = X and|Dx| = k is redundant

iff:
1. u.children,; = ... = u.children;, and
2. w(X,x1) = ... = w(X, xy).

When reduction rules are applied exhaustively to an AND/CRRadegraph, the result is
an AND/OR Multi-Valued Decision Diagram (AOMDD). The AOMDB®ata structure for
constraint networks (where weights are all 1) was introdung89], along with a Variable
Elimination type algorithm to generate it, based ondpplyoperator, similar to the OBDD

case.

268

DEFINITION 47 (AOMDD) An AND/OR Multi-Valued Decision Diagram (AOMDD) is a
weighted AND/OR search graph that is completely reduced byasgehic merging and

redundancy removal, namely:

1. it contains no isomorphic meta-nodes; and

2. it contains no redundant meta-nodes.

An example of a AOMDD appears in Figdre 6.4(b), represerttiiegexhaustive reduc-
tion of the context minimal AND/OR graph in Figure 6.4(a). efterminal nodes labeled
with 0 and1 denote inconsistent and consistent assignments, regggctihe AOMDD
can be understood as a collection of MDDs (Multi-Valued Bexi Diagrams, based on a
chain pseudo tree), each based on a path in the underlyingps®ee, and synchronized on
their common variables. In this examp}g,is identical to the function in Figufe 6.1{a), and
the portion of the AOMDD corresponding to variabldsB, C' is identical to the OBDD
in Figure[6.2(d). This is also because whén= 1, B is redundant forf, and f3, so the
common portion of the OBDDs correspondingA®C' andAB D E (namely that o B is
the same). Note that wheh = 1, B is redundant and its common list of children becomes
the list of children forA = 1, namely the problem already splits into two independent

components afted = 1, even though this can not be read from the pseudo tree ind-igur

6.3(c).

6.4 Using AND/OR Search to Generate AOMDDs

In this section we extend the AOMDD to the case of weighteglgsawhich captures
a COP. We also propose a generation algorithm based on AND/@RcBrand-Bound
search with context based caching. More specifically, wenatenterested in an AOMDD
that represents all consistent assignments, but ratheethat represents only the optimal

assignments (solutions of a COP).

269

A|B|c|f,(ABC)| |A|B|D|f,(ABD)| |B|D|E|f,(BDE) Q
0j0]0 © 0fo]0 1 0/0]0 ®
0/0]|1 o 0[0]1 ® 0/0]|1 3 f,(ABC)
0/1]0 © of1]0 0 0j/1]0 ©
0Of[1]1 2 0f[1]1 2 0[1]1 4 f(ABD) e’ Q
iloJo] e 1lolo] 6 1/ofo] o 1;(BDE)
1/0]1 2 101 5 1101 3
1]1]0 o 1[1/0 6 1]1]0 ®
KK 2 111 5 11171 4 G G
(a) Functions (b) Primal graph (c) Pseudo tree

(d) AND/OR search tree

Figure 6.3: AND/OR search tree for COP

(b) AOMDD

Figure 6.4: AND/OR graphs for COP

270

We next define the AOMDD describing the set of optimal sohsito a COP and present

a general scheme for generating these compiled datatstesct

DEFINITION 48 Given a set of tupleS over variablesX and atreel overX, 7 expresses

S iff there exists an AND/OR tree guided Bythat expresses all and only tuplessn
It can be shown that:

ProPOSITION3 If 7 is a pseudo tree of a COP, then7 can be used to expres$s?’, the

set of optimal solutions @?.

Proof. Let 7 be a pseudo tree with rodf and two child node$” and Z, respectively.
Assume thatS°?* contains two optimal solutions associated with the tupfés= z,Y =
y, Z =x)and(X = z,Y =y, Z = x;), respectively. The AND/OR tree relative Tothat
expressesr’, S7, contains the AND nodéX,, x) with two OR child nodes labeled and
Z, each of them with two AND children, namel(Y, y), (Y, v1)} and{(Z, 2),(Z, z1) },
respectively. Yet, the tupldsX = z,Y =y, Z = z;) and(X = z,Y = y;, Z = z) are not
optimal solutions, while the AND/OR tree expresses themis Tha contradiction since

St, by definition, expresses only optimal solutions.

Therefore, the following is well defined:

DEFINITION 49 Given a COPP, its set of optimal solution§°?* and a pseudo tre@ of

P, its AOMDD?" is the AOMDD that expresses all and oifl§?” relative to7 .

The target is to generate AOMDOD of a COP. The idea is to use a pseudo Febat can
express all solutions and explore a subset of its contexinmainPAND/OR graph.,G; that
contains all the optimal solutions and then process it sbithéll represent only optimal
solutions and be completely reduced relative to isomorplaad redundancy. Therefore,

any search algorithm for optimal solutions that exploresdabntext minimal graph can be

271

used to generate the initial trace. The better the algoritlnuse, the more efficient the
procedure would be because the initial trace will be tightiad the context minimal graph

that is restricted to the optimal solutions.

6.4.1 The Search Based Compile Algorithm

The compilation algorithm, calledOBB- COVPI LE, is described in Algorithrh 13. It ex-
tends the AND/OR Branch-and-Bound algorithm with contexteblasaching AOBB- C)
described in Chaptét 4 by compiling the trace of the searchantAND/OR Multi-Valued
Decision Diagram representing all optimal solutions toittput COP instance.

The algorithm is based on two mutually recursive steps,laimw AOBB- C. EXPAND
and PROPAGATE which call each other until the search tertagia The fringe of the
search is maintained by a stack call@@EN. The current node is, its parentp, and the
current pathr,,. The children of the current node in the AND/OR search grapldanoted
by succ(n). The AND/OR decision diagram being constructed is denoted®MDD.
Each node: in the AND/OR search graph has a pointer, denoted. byetanode, to the
corresponding meta-node in AOMDD.

In the EXPAND step, when the current OR nades expandedAOBB- COVPI LE cre-
ates a new meta-node corresponding tand adds it to AOMDD. Ifn is already present
in cache, therMOBB- COVPI LE ensures that the meta-node correspondingd@arent in
the context minimal search graph points to the meta-nodevascreated when was first
expanded.

In the PROPAGATE step when node values are propagated bed&whe algorithm
also attempts to reduce the diagram by removing isomorpletamodes. Specifically,
if n is the current OR node being evaluated and if there existsta-no&lem which is
isomorphic withn.metanode, then the parents of. metanode in the AOMDD are updated
to point tom instead ofn.metanode, which is then removed from the diagram. Every

meta-node in AOMDD also records the optimal cost solutiothéoproblem below it.

272

Algorithm 13: AOBB- COWPI LE

Data: A COP instancé® = (X, D, F), pseudo-tre€’, root s, heuristic functionfy,.

Result AOMDD containing the optimal solutions 8.
1 v(X4) < 00; OPEN «— {X1};AOMDD — {; /1 Initialize
2 while OPEN # () do

3 n «— top(OPEN); removen from OPEN
4 let ,, be the assignment along the path from the root to
5 if n is an OR node, labeled’; then /1 EXPAND
6 if Cache(n, context(X;)) # (0 then
7 v(n) <« Cache(n, context(X;))
8 suce(n) «— 0
9 letp = (X, z;) be the AND parent of. in the AND/OR search graph
10 L p.metanode.childrens; «— p.metanode.childreny; U {n.metanode}
11 else
12 suce(n) «— {(X;, zi)|(X;, x;) is consistent withry, }
13 for (Xi,x;) € succ(n) do
14 v((X;,x;:)) «— 0; h({(Xi,z;)) < heuri stic(X;, z;)
15 w(X'“ml) - ZfEF‘,X,iescope(f) f(Tr'"-)
16 create a new meta-node for X; and add it to AOMDD
17 letp = (X, z;) be the AND parent of: in the AND/OR search graph
18 L p.metanode.childreng; < p.metanode.childreny; U {m}
19 Add suce(n) on top of OPEN
20 else ifn is an AND node, labeledX;, z:;) then
21 for a € ancestors(X;,z;) do
22 if (ais OR)and (f(7a) > v(a)) then
23 n.deadend «— true
24 n.metanode.childreng, «<— UNSOLV ED
25 break
26 if n.deadend == false then
27 succ(n) «— {X;|X; € childrent(X;)}
28 v(X;) « oo; h(X;) < heuri stic(Xj)
29 Add succ(n) on top of OPEN
30 if succ(n) == 0 then
31 L n.metanode.childreny, < SOLV ED
32 while succ(n) == () do /1 PROPAGATE
33 let p be the parent of
34 if nis an OR node, labeled’; then
35 if X; == X then /1 Search is conplete
36 | return AOMDD
37 Cache(n, context(X;)) « v(n)
38 v(p) — v(p) +v(n)
39 n.metanode.value — v(n)
40 if fi ndl sonor phi sm(n.metanode) == true then
41 let m be the meta-node isomorphic withmetanode
42 redirect the links oh.metanode’s parents in AOMDD to point tan
43 AOMDD «— AOMDD — {n.metanode}
44 if n is an AND node, labeledX;, z;) then
45 L v(p) = min(u(p), w(Xi, ;) + v(n)
46 removen from succ(p)
47 n<—p

The compiled AOMDD may contain sub-optimal solutions thatewisited during the
Branch-and-Bound search but were not pruned. Thereforepad@ass over the decision

diagram is necessary to remove any path which does not appaay optimal solution.

273

Specifically,AOBB- COVPI LE traverses the AOMDD in a depth-first manner and, for every
meta-node: along the current path from the root, it pruneshildren; from the diagram if
(X wewchitdren, V(W) +w (X, x3;)) > v(u), namely the optimal cost solution to the problem

below thej child of » is not better than the optimal cost:at

THEOREM13 Given a COP instanc® = (X,D,F) and a pseudo tre€ of P, the
AOMDD generated bA\OBB- COVPI LE along7T is AOMDDY".

Proof. Follows immediately from Propositidn 8l

The complexity ofAOBB- COVPI LE is bounded time and space by the trace generated,
which isO(n - exp(w*)). However, the heuristic evaluation function used by the AQIR

Branch-and-Bound typically restricts the trace far below tamplexity bound.

6.5 EXxperiments

In this section we evaluate empirically the compilationesde on two common classes
of optimization problems: Weighted CSPs (WCSP) [9] and O-1getd.inear Programs
(0-1 ILP) [95]. In our experiments we compiled the searcledreelative to isomorphic
meta-nodes only, without removing redundant nodes. Alsdid@ot perform the second

top-down pass over the diagram to remove additional suirapsolutions.

6.5.1 Weighted CSPs

We consider the compilation algorithm based on the AND/ORnBiheand-Bound algo-
rithm with pre-compiled mini-bucket heuristics and fullcténg introduced in Chaptét 4
and denoted byAOBB- C+SMB(i) . The parametei represents the mini-bucketoound

and controls the accuracy of the heuristic.

274

spot 29 spot 54
3108 (n=83, d=3, c=476) - [w*=14, h=42] 50x10° (n=68, d=3, c=283) - [w*=11, h=33]
EEE #cm (AOBB) B /cm (AOBB)
s [#aomdd (AOBB) [#aomdd (AOBB)
3x10° 1 BN #cm (BB) 40x10° 1 B jom (BB)
[#mdd (BB) C— #mdd (BB)
2x10° o
30x10° A
[[
N 2x10° N
> >
20x10°
105
5104] 10x10°
0 il H IDVIH B4 VIH ,IH 0 H, D H ID, i | [=1C 0l allc
8 10 12 14 16 18 0 2 4 6 8 10 12
i-bound i-bound
spot 404 spot 408
1800 (n=100, d=3, ¢=710) - [w*=19, h=42] S (n=201, d=3, ¢=2034) - [w*=35, h=97]
EE #cm (AOBB) B #cm (AOBB)
1600 § = #aomdd (AOBB) ' = #aomdd (AOBB)
. #cm (BB) 250x10° 7
1400 4 =1 #mdd (BB)
1200 200x103 4
1000
[[
N o 150x10°
800 1
600 1 100x10°
400
50x10°
SR 1) 0
0 H H . H H 0 ﬂ ﬂ o uu| O
6 8 10 12 14 16 18 6 8 10 12 14 16 18
i-bound i-bound
spot 503 spot 505
7000 (n=144, d=3, ¢=639) - [w*=9, h=39] 250x10° (n=240, d=3, ¢=2002) - [w*=23, h=74]
EEN #cm (AOBB) EE #cm (AOBB)
6000 = #aomdd (AOBB) [#aomdd (AOBB)
200x10% o
5000
4000] 150x10°
[} [}
N N
» »
3000 7 100x10%
2000
50x10°
1000 H
0 " " H H IH 0 T T ﬂ -, -
0 2 4 6 8 10 12 6 8 10 12 14 16 18
i-bound i-bound

Figure 6.5: The trace of AND/OR Branch-and-Bound search (#@mgus the AOMDD
size (#aomdd) for the SPOT5 networks. Compilation time libiour.

275

[AOBB-C+SMB()]

iscas n w* i=10 i=12 i=14 i=16
c h time #cm #aomdd time #em #aomdd time #cm #aomdd time #cm #aomdd
s386 172 19 0.50 2,420 811 0.17 1,132 558 0.21 527 360 0.38 527 360
172 44 ratio = 2.98 ratio = 2.03 ratio = 1.46 ratio = 1.46
s953 440 66 - - 981.20 186,658 37,084 22.46 22,053 9,847
464 101 ratio = 5.03 ratio = 2.24
s1423 | 748 24 21.12 21,863 9,389 7.47 13,393 6,515 5.09 10,523 6,043 201 5,754 4,316
751 54 ratio = 2.33 ratio = 2.06 ratio = 1.74 ratio = 1.33
51488 667 47 250.18 83,927 20,774 4.48 15,008 3,929 10.72 23,872 5,375 5.54 5,830 3,246
667 67 ratio = 4.04 ratio = 3.82 ratio = 4.44 ratio = 1.80
s1494 | 661 48 138.61 63,856 18,501 387.73 125,030 22,393 37.78 31,355 11,546 39.75 30,610 12,467
661 69 ratio = 3.45 ratio = 5.58 ratio = 2.72 ratio = 2.46
c432 432 27 1867.49 395,766 41,964 1.29 7,551 4,024 1.30 7,112 3,693 0.74 1,120 881
432 45 ratio = 9.43 ratio = 1.88 ratio = 1.93 ratio = 1.27
c499 499 23 363.78 93,936 33,157 6.66 12,582 7,051 271.26 88,131 23,502 16.75 17,714 9,536
499 74 ratio = 2.83 ratio = 1.78 ratio = 3.75 ratio = 1.86

Table 6.1: CPU time in seconds, the trace of AND/OR BranchBmdAd search (#cm)

and the AOMDD size (#aomdd) for the ISCAS’89 circuits. Comjadia time limit 1 hour.
For each test instance we report the number of OR nodes ittiext minimal AND/OR

search graph (#cm) visited ®AOBB- C+SMB(¢) , and the number of meta-nodes in the re-

sulting AND/OR decision diagram (#aomdd), as well as thatrordefined as-atio =

#cm
#aomdd”®

In some cases we also report the compilation time. We rett@rchumber of
variables {), maximum domain sizedf, the number of constraints)(the depth of the
pseudo-treesh) and the induced width of the graphs*() obtained for the test instances.

The pseudo trees were generated using the min-fill heudsticribed in Chaptér 3.

Earth Observing Satellites

Figurel6.5 displays the results for experiments with 6 SPEataorks described in Chap-
ter[3. Each subgraph depicts the traceA@BB- C+SMB(i) and the size of the resulting
AND/OR decision diagram as a function of tiwound of the mini-bucket heuristic. For
comparison, we also include the results obtained with thev@&®Rion of the compilation
scheme that explores the traditional OR search space.

We observe that the resulting AOMDD is substantially snmalian the context minimal
AND/OR graph traversed bpOBB- C+SMB(i) , especially for relatively smallbounds
that generate relatively weak heuristic estimates. Fdant®, on thet08 network, we
were able to compile an AOMDD 11 times smaller than the AND/€Rrch graph ex-

plored by ACBB- C+SMB(8) . As thei-bound increases, the heuristic estimates become

276

[AOBB-C+SMB()]

planning n w* i=6 i=8 i=10 i=12

c h time #cm #aomdd time #cm #aomdd| time #cm #aomdd time #cm #aomdd
bwt3ac 45 16 77.45 28,558 12,152 45.76 22,475 11,106 8.92 3,878 2,537| 99.00 1,775 1,252
d=11 301 34 ratio = 2.35 ratio = 2.02 ratio = 1.53 ratio = 1.42
bwt3bc 45 11 54.22 23,560 10,544 29.62 18,734 9,422| 8.61 3,455 2,243| 85.73 1,599 1,141
d=11 301 33 ratio = 2.23 ratio = 1.99 ratio = 1.54 ratio = 1.40
bwt3cc 45 19 32.55 19,643 9,122| 20.03 15,696 8,149 8.51 3,113 2,046| 85.57 935 731
d=11 301 42 ratio = 2.15 ratio = 1.93 ratio = 1.52 ratio = 1.28
depotOlac 66 14 1.45 7,420 2,504 0.73 4,056 1,995| 0.42 1,214 830 1.48 506 432
d=5 298 33 ratio = 2.96 ratio = 2.03 ratio = 1.46 ratio = 1.17
depotOlbc 66 14 131 7,068 2,358 0.55 3,333 1,641| 0.39 1,316 886 | 1.47 514 432
d=5 298 33 ratio = 3.00 ratio = 2.03 ratio = 1.49 ratio = 1.19
depotOlcc 66 14 1.36 7,156 2,411 0.82 4,333 2,196| 0.38 1,262 841| 147 269 219
d=5 298 33 ratio = 2.97 ratio = 1.97 ratio = 1.50 ratio = 1.23

i=2 i=4 i=6 i=8

driverlog0lac 71 9 1.37 7,490 2,134 041 3,143 1,412| 0.05 279 237 0.10 451 331
d=4 271 38 ratio = 3.51 ratio = 2.23 ratio = 1.18 ratio = 1.36
driverlogO1bc 71 9 1.36 7,447 2,128 0.42 3,098 1,389 0.04 231 210 0.07 247 212
d=4 271 38 ratio = 3.50 ratio = 2.23 ratio = 1.10 ratio = 1.17
driverlog0lcc 71 9 1.61 7,741 2,185 0.10 883 622 | 0.04 279 237 0.07 295 239
d=4 271 38 ratio = 3.54 ratio = 1.42 ratio = 1.18 ratio = 1.23
mprime03ac 49 9 212 7,172 1,562 0.66 3,343 863| 0.11 595 386 0.16 111 94
d=10 185 23 ratio = 4.59 ratio = 3.87 ratio = 1.54 ratio = 1.18
mprimeO3bc 49 9 2.07 7,266 1,573| 0.68 3,486 849 0.12 641 396 0.10 111 94
d=10 185 23 ratio = 4.62 ratio = 4.11 ratio = 1.62 ratio = 1.18
mprime03cc 49 9 1.47 5,469 1,391 0.45 2,336 721| 0.12 534 366 0.10 111 94
d=10 185 23 ratio = 3.93 ratio = 3.24 ratio = 1.46 ratio = 1.18

Table 6.2: CPU time in seconds, the trace of AND/OR Branch®BmaiRd search (#cm)
and the AOMDD size (#aomdd) for the planning instances. Ctatipn time limit 1 hour.
stronger and they are able to prune the search space sigtlifida consequence, the dif-
ference in size between the AOMDD and the AND/OR graph esgoatecreases. When
looking at the OR versus the AND/OR compilation schemes, ateca that AOMDD is
smaller than the OR MDD, for all reportéebounds. On some of the harder instances, the

OR compilation scheme did not finish within the 1 hour timeiti(a.g.,408, 505).

ISCAS’89 Benchmark Circuits

Table[6.1 shows the results for experiments with 7 WCSPs defiven the ISCAS’89
circuits described in Chapter 3. The columns are indexed dyrini-bucketi-bound. We
observe again that the difference in size between the g AOMDD and the AND/OR
search graph explored &OBB- C+SMB(i) is more prominent for relatively smait

bounds. For example, on tlet32 circuit and at: = 10, the AOMDD is about 9 times

smaller than the corresponding AND/OR graph.

277

Planning Instances

We also experimented with problems from planning in temjparal metric domair@s
These instances were converted into binary WCSPs as folloach #uent of the plan-
ning graph is represented by a variable with domain valupesenting possible actions
to produce this fluent. Hard binary constraints representiai@xclusions between fluents
and actions, and activity edges in the graph. Soft unarytcaings represent action costs.
The goal is to find a valid plan which minimizes the sum of thiocaccosts.

Table[6.2 shows the results for experiments with 12 plannetgiorks. On this domain
we only observe minor differences between the size of thepdech AOMDD and the
corresponding AND/OR search graph. This is due to very ateunini-bucket heuristics
which cause the AND/OR Branch-and-Bound to avoid expandimgsthat correspond to

solutions whose cost is above the optimal one.

6.5.2 0-1 Integer Linear Programs

We consider the AND/OR Branch-and-Bound algorithm develape@haptef b and de-

noted byAOBB- C- | LP, as the basis for our AND/OR compilation scheme. The hearist
evaluation function used b§OBB- C- | LP is computed by solving the linear relaxation of
the current subproblem with tremplexmethod [23] (our code used the implementation

from the open source libratyp_sol ve 5. 54).

MIPLIB Instances

MIPLIB is a library of Mixed Integer Linear Programming iasices that is commonly
used for benchmarking integer programming algorithms.deompurpose we selected four
0-1 ILP instances of increasing difficulty. Talblel6.3 rep@tsummary of the experiment.

We observe that the AOMDD is much smaller than the correspgndND/OR search

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenmarkS
2Available at http://Ipsolve.sourceforge.net/5.5/)

278

miplib (n, c) (w*, h) time #cm #aomdd ratio
p0033 | (33,15) | (19,21) 0.52 441 164 2.69
p0040 | (40,23) | (19, 23) 0.36 129 77| 1.66
p0201 | (201, 133)| (120, 142)| 89.44 12,683 5,499 2.31
Iseu (89,28) | (57,68) | 454.79 109,126 21,4915.08

Table 6.3: The trace of AND/OR Branch-and-Bound search (#argus the AOMDD size
(#aomdd) for the MIPLIB instances. Compilation time limit ur.

graph, especially for harder problems where the heuristiction is less accurate. For
example, on thé seu instance, the compiled AOMDD has about 5 times fewer nodas th

the AND/OR search graph explored BgBB- C- | LP.

Combinatorial Auctions

Figurd 6.6 shows results for experiments with combinatariations drawn from theegions-
upv and regions-npwdistribution of the CATS 2.0 test suite |75] (see also Chaptésr5
additional details). The suffixegov andupv indicate that the bid prices were drawn from
either a normal or uniform distribution. These problemamsies simulate the auction of ra-
dio spectrum in which a government sells the right to useipesegments of spectrum in
different geographical areas. We looked at auctions withddbds and increasing number
of bids. Each data point represents an average over 10 raimdgtgnces. For comparison,
we also included results obtained with the OR compilatidmesze. On this domain, we
observe that the compiled AOMDD improves only slightly otlee size of the AND/OR
search graph. This is because the context minimal AND/ORMgexplored is already

compact enough due to very accurate heuristic estimates.

MAX-SAT Instances

Table[6.4 shows the results for experiments withr&t instances (see also Chaptér 5
for additional details). These are unsatisfiable instaméegaph 2-coloring with parity

constraints. The size of these problems is relatively s(8llvariables with 160 clauses

279

16x103 -
14x103§ o

3]
12x10° 7 o
10x10°]

8x103

size

6x103 §

4x103

2x103 J

1 —e— #cm (AOBB)

#aomdd (AOBB)
] —v— #cm (BB)
#mdd (BB)

25x10°

200

bids

400

O

{ —®— #cm (AOBB)
] #aomdd (AOBB)

20x10° 1 —y— #cm (BB)

v

15x10° -

size

10x10° -

5x10° -

#mdd (BB)

200

300
bids

400

500

Figure 6.6: The trace of AND/OR Branch-and-Bound search gettset AOMDD size for
theregions-up\(top) andregions-npyWbottom) combinatorial auctions.

pret (w*, h) | time #cm #aomdd ratio
pret60-25 | (6,13) | 2.74 593 255 2.33
pret60-40 | (6,13) | 3.39 698 256/ 2.73
pret60-60 | (6,13)| 3.31 603 222 2.72
pret60-75 | (6,13) | 2.70 565 253 2.23
pret150-25| (6,15) | 18.19 1,544 851 1.81
pretl50-40| (6, 15) | 29.09 2,042 922 2.21
pretl50-60| (6, 15) | 30.09 2,051 871 2.34
pretl50-75| (6, 15) | 29.08 2,033 890 2.28

Table 6.4: The trace of AND/OR Branch-and-Bound search (#@&rgus the AOMDD size
(#aomdd) for MAX-SATpr et instances.

280

108
—&— #cm (AOBB)
O+ #aomdd (AOBB)

10° 5

104 4

log(size)

103 4

1 +— 77—
0 100 200 300 400 500

degree

Figure 6.7: The trace of AND/OR Branch-and-Bound search (#@mgus the AOMDD
size (#aomdd) for MAX-SATduboi s instances.

for pr et 60 and 150 variables with 400 clauses faret 150, respectively). However,
they have a very small context with size 6 and a shallow pséeg@owith depth 13 and 15,
respectively. For this problem class we observe that the ANDdecision diagrams have
about 2 times fewer nodes than the AND/OR search graphs rexplyy ACBB- C- | LP.
This is because the respective search spaces are alrealliyesmagh, and this does not
leave much room for additional merging of isomorphic nocethe diagram.

Figure[6.T displays the results for experiments with randhrboi s instances with
increasing number of variables (see also Chdgter 5 for additidetails). These are 3-
SAT instances witt3 x degree variables an® x degree clauses, each of them having 3
literals. As in the previous test case, ttheboi s instances have very small contexts of
size 6 and shallow pseudo trees with depths ranging from 20toThe AND/OR deci-
sion diagrams compiled for these problem instances arerfaller than the corresponding
AND/OR search graphs, especially for some of the largeamsts. For example, at degree

320, the corresponding AOMDD is 40 times smaller than theet AOBB- C- | LP.

281

6.5.3 Summary of Empirical Results

In summary, the AOMDD offers a very compact representatidhesearch space explored
by an AND/OR Branch-and-Bound algorithm to find the set of optisolutions to a COP,

especially on problem classes for which the heuristic geoeiproduces relatively weak
estimates. When the heuristic function is strong, the erpl&ND/OR search space is far
tighter around the set of optimal solutions and does notleawm for additional reductions
relative to isomorphic meta-nodes in the decision diagr@mthe WCSP domain the size
of the compiled AOMDD varies across different levels of thiairbucket:-bound because

we did not prune the non-optimal solutions contained in tR&VOD.

6.6 Conclusion to Chapter 6

We presented a new search based algorithm for compilingptimal solutions of a con-
straint optimization problem into a weighted AND/OR Mwialued Decision Diagram
(AOMDD). Our approach draws its efficiency from: (1) AND/ORasch spaces for graph-
ical models |[38] that exploit problem structure, yieldinggmory intensive search algo-
rithms exponential in the problemtseewidthrather tharpathwidth (2) Heuristic search
algorithms exploring tight portions of the AND/OR searclasp. In particular, we use
here a state-of-the-art AND/OR Branch-and-Bound searchrittigo [79,182], with very
efficient heuristics (mini-bucket, or simplex-based) ttingoractice traverses only a small
portion of the context minimal graph. (3) Reduction techegjgimilar to OBDDs further
reduce the trace of the search algorithm.

We extended earlier work on AOMDDs [89] by considering wegghAOMDDs based
on cost functions, rather than constraints. This can noilydasextended to any weighted
graphical model, for example to probabilistic networksndfly, using an extensive ex-
perimental evaluation we show the efficiency and compastoéthe weighted AOMDD

data-structure.

282

Chapter 7

Software

All the algorithms described in this dissertation have biegplemented in two software
packages, called REES and AOLIB, developed in C++ and curramtifable online, on
the web page of the research group of Professor Rina Dechtitie &niversity of Cali-
fornia, Irvine (ttp://graphmod.ics.uci.edl/ This chapter contains a short overview and

description of the implementations.

7.1 REES: Reasoning Engine Evaluation Shell

In a typical application, a design is implemented that méle¢sset of requirements at
the time of development. Often, after a program is deliveted user will want added
functionality, or different users will require custom fdimmality based on their specific
needs. In order to accommodate these situations withoutn@lete re-write, or causing a
develop/compile/test/ship scenario, a framework thatalfor future additions of modules
without breaking the existing code base needs to be implesde’\ Plug-In architecture
will meet these needs.

To put it simply, a system using this architecture would heatéde of looking for various
Plug-In modules when starting up. Once all the Plug-Ins leen located they are loaded
by the main application one by one, or selectively so as taheebuilt-in features. These
Plug-Ins are normally DLLs (Dynamic Linked Library) in disige and many commercial

applications, even the Windows operating system, cugrarge similar technologies to

283

allow third-party developers to integrate with their exigtapplication to add functionality
or robustness, otherwise missing from the application.

The REES system was purposely designed in this manner. Theregson behind this
is that different research groups in the community usuadlyetbp their own libraries of
algorithms and in most cases they are incompatible with e#toér, thus making a joint
comparison and evaluation practically impossible. REESiges a common interface that
promotes reuse of already existing components and alloiwsofmparison and evaluation

of alternative technologies, while using a common worklhenc

7.1.1 REES Architecture

The architecture of REES system is described in Figure 7.1.st@ant based or proba-

bilistic reasoning problems are locally defined and/or &shhto the main workspace and
transferred to the available Plug-Ins for processing. Bselts produced by the inference
algorithms residing in various Plug-Ins are passed backa¢dEES main workspace for
further refining and appropriate display. The existencepréadetermined interface, imple-
mented by each Plug-In, facilitates easy and complete canuation between them and

REES. We will now discuss the main components of the propastatacture:Workspace,

Model, Plug-In modules

Workspace and Models

The Workspace is the main component of the system. It encapsulates all tbielgm
models defined by the user and available for evaluation, disasdhe list of currently
loaded Plug-Ins. Using the graphical interface, one hagussibility of defining new
problem models, modifying existing ones or selectiveldiog/unloading Plug-In modules
for additional functionality.

A Model is an abstract representation of a reasoning problem. h\iki@ framework,

such a problem instance may be represented either in parafoet (e.g. we use the well

284

REES

i Plug-Ins
{'

INTERFACE

« Method k

Plug-In

Workspace

e

Figure 7.1: REES Plug-In Architecture

known (N, K, C, T) parametric model representation) or as a completely defiretdnce
in terms of variables, domain sizes and relationships batwariables (i.e. functions).
Depending on the chosen model representation (parametgoroplete), the graphical
interface assists the user in further refining the model. id@ptsuch as modifying the
values of some parameters (parametric model) or alteragridph structure of the network
(complete model) are also available.

Together with the problem structure (i.e. constraintéfelietwork) a list of processing
algorithms must also be defined. These inference algoritmiang all reside in a single
Plug-In library, but in the common case they may be part décght Plug-Ins. The list of
selected algorithms together with their control paransefiemm theexperimentssociated
with the problem model. In this way, reasoning algorithmgedigped within different re-
search groups can be executed and evaluated altogethexr weryhsame problem instances
or benchmarks.

Once a problem model has been completely defined in the ¢wgkspace, the com-

mon interface takes care of creating an object thahiderstoodand can be transferred to

285

any attached Plug-In. This sub-process is catlatiom problem generatioand in both
cases it creates a complete problem instance. In case chmptic model representation,
the parameters completely define the graph structure anfdinicéons of the problem. In
the other case, there is no need for a problem instance gemeaad the already existing

object can be passed along, as is.

Plug-Ins

A Plug-In is an external module (a DLL in our framework) that implensesdme func-
tionality. Once installed, it can be loaded at runtime byrtien application (REES) to use
the functionality provided using exported functions/skeswithin the DLL. All the Plug-In
modules must conform to a pre-defined interface (see Figde The reason for that is
determined by the fact that a call to a function residingdagihe Plug-In can be issued
only after knowing the function name.

As itis defined in this framework, a Plug-In library implentea collection of determin-
istic and/or non-deterministic reasoning algorithms. A&-pgefined header structure ensures
the compatibility with the main application (REES). In oupl@mentation, a Plug-In must
export the list of implemented algorithms together withitigout/output control parame-

ters as well as the list of functions that form the commonrfate.

7.1.2 A Closer Look

This section describes in more detail the main featuressoREEES environment and shows
the basic steps of the entire process, from model creati@xperimentation to viewing
and interpreting the results. REES provides an easy to updiged interface that allows
intuitive creation/editing of the problem model, direcjusiment of the control parameters
for all algorithms involved in some experiment as well ag isendly display of the results
produced by the experiments. REES also provides supportaiong either the entire

workspace or individual models to a file for later use.

286

. TR
= | Network = Marne unkitled
Mame unkitled Output File | criresults bt
| Type Constrainkt Optirnization Task o Max-CSP v awg statistics
= Ua;,ia-,hie.s L T
s .NIU,IT,EF;,. T sl - o
e | bimes b Sobes s =
i Al --SIZE 3 ='| algarithms
= Graph Structure = BTE [e
Type Random | BeeT | -
ity 2 Lot :
Mumber of constraints | 80 ool
fet : I-Step
= Funchions Time bound
Type Raljdom weighted tuple. — -Output
Tightress 4 CukpUt _ :

Figure 7.2: REES Graphical Interface. (a) Model. (b) Expenim
Model Definition

The first step in any deterministic/probabilistic reasgrimoblem is defining the problem
model. To create a new model, simply seladd Modelfrom the main menu or select the
appropriate icon from the toolbar. REES will then begin thecpss of helping the user
to create the model. The underlying network of the modehéeia constraint network for
deterministic reasoning problems or a belief network fadabilistic reasoning problems)

can be specified in two ways:

1. Parametric Form In this case, a parametric model of the problem is creatdsk T
user has the options of specifying the size of the networluasber of variables and
domain size, the type of graph structure to be generatedr@gmgom, grid, etg. as
well as the type of functions to be defined over subsets otlibes (e.g.random
weighted tuple Figure[7.2(a) displays an example of model definition gif*EES
Graphical Interface. At any time, the system allows the wganodify the values
of all these parameters. Later, ttndom problem generatawill use all these user

defined parameters to build a complete model, as descrikt®edtior 7.111.

2. Complete FormIn this case, the entire model, as represented by the gtapitise
and functions defined over subsets of variables, residestaxtafile that will be

loaded into the workspace. At this moment, REES system istalplarse several file

287

formats (e.g. DIMACS), as well as a proprietary format thayrmantain additional
information for a graphical display of the nethrIREES Net Editor provides easy
graphical editing of constraint/belief networks incluglinut/paste/duplicate nodes
and edges. All these options and many others are availaistetfie main menu and
toolbar of the application. In this way, the user is offerled possibility of creating

its own model either from scratch or modifying an existingon

The model definition is completed once an experiment is defarel attached to it.

Details on how to do it can be followed in the next section.

Running Experiments

Once a problem model is created, the knowledge it contaimgedransferred to the avail-
able Plug-Ins, each one of them implementing a set of inferatgorithms as described in
Sectior. 7Z.111. To create a new experiment, using the cuprebtem model, simply select
New Experimentrom the main menu or select the appropriate icon from thébtoo A
REES wizard will then assist the user in the process of crgdhia experiment. A typi-
cal experiment must specify thaskit will perform, the number of problermstancego

be generated as well as the setatifjorithmstogether with their control parameters to be
executed. Figure 7.2(b) shows an example of an experiméiniedeon a constraint-based

model.

1. Task Depending on the problem model on which the experimentfinel@, several
tasks may be available (e.ylax-CSP, Solution Counting, etfor constraint-based
models,Belief, Most Probable Explanation, etdor probabilistic models). Each
algorithm exported by a Plug-In must have its header inféionacontaining the task

type it is able to perform.

'REES Net Editor is currently available only for belief netks

288

Tirme ! 1k | % exack | # backtracks

BTE 0.009z 17,2

BEET-Z2 | 6.3257 | 17.2 20 1970.7
BEET-3 | 4.3495 | 17.2 Q0 1259.3
BEEET-4 | 1.8437 | 17.2 Q0 525.5
I1GRP-2 00064 17,2 j=1n]

IJGP-3 0.0123 17.2 &0

I11GP-4 a.014 17.2 7O

Figure 7.3: REES Results Display Window.

2. Instances If there is no random behavior specified for this particutesdel (i.e.
complete modgl then there can only be one instance of the underlying rm&two
there is either a random structure definition and/or a ranfimrction definition (i.e.
parametric modglthen REES can create as many problem instances as indigated b

the parameter value.

3. Algorithms Each algorithm exported by some Plug-In library has a setootrol
parameters associated with. The user must set values forpall parameters (if
there are any) and may select one or mauwgoutparameters for visualization. After
the execution of the experiment has successfully complé¢tedaverage values of

the output parameters will be displayed for further analysi

Once the experiment is created, REES can be instructed totexéecA detailed log of
the execution can also be recorded so as the user to be ablertdle experiment once an
error is signaled. The results produced by an experimentctirapleted successfully are
displayed in a spreadsheet, each column representing dne £¢lected output parameters.
This should make comparison between algorithms quite simpdl intuitive, where such a
comparison is appropriate.

In Figure[7.8 we provide an example of results produced byIBE experiment, that is
finding theMost Probable Explanatiom Bayesian models. The problem was represented

as a parametric model that generated 10 random instancdsimdirgy belief network with

289

100 variables and 90 conditional probability tables. Thadgorithms were chosen for
evaluation:BTE (i.e. Bucket Tree Eliminatiop an exact inference algorithms based on the
well known variable elimination mechanis®BBT(:) (i.e. Branch and Bound with mini-
Bucket Tredheuristics) a complete Branch and Bound search algorithnutest dynamic
heuristics generated by a Mini-Bucket Tree Elimination alyon to guide the search and
IJGP(7) (i.e. Iterative Join Graph Propagatignan iterative version of graph propaga-
tion algorithms. The latter two algorithms are controllgdeébparameter calledtbound.
For each algorithm, REES displays the average values of theted output parameters,
columnwise. They are: average running tinién{e, average induced width of the prob-
lem (w*), average accuracy as percent of exactly solved instaPtes#c} as well as the

average number of backtracks for the branch and bound salgatithm ¢ backtracks

7.2 AND/OR Search for Optimization

The depth-first and best-first AND/OR search algorithms Hasen implemented from
scratch by the author, in a package called AOLIB. The systess iis own input format
file (*.simple), but can load any other usual format files Kj.dor Bayesian networks,
*.wesp for Weighted CSPs, as well as *.mps for 0-1 Integer airferograms). The package
supports the following optimization tasks: finding the M&bbable Explanation of a
Bayesian network (AOLIB-MPE), finding the minimal cost sofutiof a Weighted CSP
(AOLIB-WCSP), as well as solving 0-1 Integer Linear Program@I(AB-ILP).
The AOLIB-MPE system participated in the UAI'06 (Uncertainb Artificial Intelli-

gence) Evaluation of Probabilistic Inference SystemstHerMPE task. Results are avail-
able athttp://ssli.ee.washington.edu/bilmes/uaiO6inferenadiation/ We describe next

the components of the AOLIB package.

290

7.2.1 AOLIB-MPE

AOLIB-MPE contains the implementations of the depth-firstM®R Branch-and-Bound
with caching ACBB- C) as well as the best-first AND/ORQOBF- C) search algorithms for
solving the MPE task in Bayesian networks. Both algorithmseirse the context mini-
mal AND/OR search graph associated with the input Bayesiamank and use static or
dynamic mini-bucket heuristics.

AOLIB-MPE is invoked with three (if no evidence present) oufdif evidence present)
arguments, as followsaolibMPE networkFile [evidenceFile] parameterFile output

File, with the following meaning:

e <net wor kFi | e> specifies the path to the network specification in Qrtye for-

mat.

e <evi denceFi | e> (optional) specifies the path to the evidence specificaten a

cording to the Ergo file format.

e <par anet er Fi | e> specifies the path to the file containing custom parameters fo

the algorithm.

e <out put Fi | e> specifies the path to the file to which (the logarithm of) thetyar

bility of the most probable explanation is written.

The parameters can be specified within the parameter filg tisensyntaxparameter

= value. The following parameters are defined for AOLIB-MPE:

e h: (string) the heuristic to use for finding an variable eliation order by which to

construct the AND/OR search space. The following valuesheansed:

— minfill: to indicate the min-fill heuristic

2A detailed description of the Ergo (*.erg) file format for Bsjan networks is available online at
http://graphmod.ics.uci.edu/group/Erfjte_format

291

— hypergraph to indicate the hypergraph partitioning heuristic
e a: (integer) specifies which algorithm to run. The followinglwes can be used:

— 3: AND/OR Branch-and-Bound with static mini-bucket heudsti

— 300: AND/OR Branch-and-Bound with static mini-bucket heticssand con-

straint propagation via unit resolution
— 4: AND/OR Branch-and-Bound with dynamic mini-bucket heucist

— 400: AND/OR Branch-and-Bound with dynamic mini-bucket hstics and

constraint propagation via unit resolution
— 9: Best-First AND/OR search with static mini-bucket heucist

— 10: Best-First AND/OR search with dynamic mini-bucket hstics
¢ ib: (integer) specifies thebound of the guiding mini-bucket heuristic.

e ch: (integer) specifies the cache bound used by AND/OR BrandkBaund algo-

rithms.

e Cs (string) specifies the caching scheme used by AND/OR BramchBound algo-

rithms. The following values can be used:

— classic to indicate the naive caching scheme
— adaptive to indicate the adaptive caching scheme
¢ | (integer) specifies the time limit in seconds. Default vatuel, which indicates no

time limit.

7.2.2 AOLIB-WCSP

AOLIB-WCSP contains the implementations of the depth-first AGR Branch-and-Bound
as well as the Best-First AND/OR search algorithms for sgfWWMCSPs. In addition to the

292

mini-bucket heuristics, we also provide an implementatbthe AND/OR Branch-and-
Bound guided by a form of local soft consistency propagataailed Existential Direc-
tional Arc Consistency (EDAC). The algorithm can also accomate dynamic variable
ordering heuristics. The input WCSP instance must be speaifitae WCSQﬁIe format.
AOLIB-WCSP is invoked with three arguments, as follovaslibWCSP networkFile
parameterFile outputFile. The arguments have the same meaning as for AOLIB-MPE.

The following parameters are defined for AOLIB-WCSP:

e h: (string) the heuristic to use for finding a variable elintioa order by which to

construct the AND/OR search space:
— minfill: indicates the min-fill heuristic
— hypergraph indicates the hypergraph partitioning heuristic
e a: (integer) specifies which algorithm to run. The followingiwes can be used:
— 3: AND/OR Branch-and-Bound with static mini-bucket heudsti
— 4: AND/OR Branch-and-Bound with dynamic mini-bucket heucist
— 7: AND/OR Branch-and-Bound with EDAC heuristics

— 9: Best-First AND/OR search with static mini-bucket heucist

— 10: Best-First AND/OR search with dynamic mini-bucket hstics
e ib: (integer) specifies thebound of the guiding mini-bucket heuristic.

e ch: (integer) specifies the cache bound used by AND/OR BrandkBaund algo-

rithms.

e Cs (string) specifies the caching scheme used by AND/OR BramchBound algo-

rithms. The following values can be used:

3A detailed description of the WCSP (*.wcsp) file format for \leied CSPs is available online at
http://graphmod.ics.uci.edu/group/WCSFR _format

293

— classic to indicate the naive caching scheme
— adaptive to indicate the adaptive caching scheme
¢ | (integer) specifies the time limit in seconds. Default vatudl, which indicates no
time limit.
e VO: (string) specifies the variable ordering used. The folimywalues can be used:

— sva stands for Static Variable Ordering (algorithms: 3, 4,,71®)
— pva stands for Partial Variable Ordering (algorithm 7 only)
— dva stands for Full Dynamic Variable Ordering (algorithm 7 nl

— dsol stands for Dynamic Separator Ordering (algorithm 7 only)

7.2.3 AOLIB-ILP

AOLIB-ILP contains the implementations of the depth-first BADR Branch-and-Bound
as well as the Best-First AND/OR search algorithms for sgivdal Integer Linear Pro-
grams. The input 0-1 ILP instance must be specified in thelMiRSformat. AOLIB-ILP
is based on the open-souicp_sol ve library (see also Chaptel 5 for more details).

The following parameters are defined for AOLIB-ILP:

e h: (string) the heuristic to use for finding a variable elintioa order by which to

construct the AND/OR search space:

— minfill: indicates the min-fill heuristic

— hypergraph indicates the hypergraph partitioning heuristic
e a: (integer) specifies which algorithm to run. The followingwes can be used:

— 1: OR Branch-and-Bound search

4A detailed description of the MPS (*.mps) file format for igee programs is available online at
http://graphmod.ics.uci.edu/group/MPBi& _format

294

— 2: AND/OR Branch-and-Bound search without caching (i.ee search)
— 3: AND/OR Branch-and-Bound search with caching (i.e., gragarch)
— 4: Best-First AND/OR tree search

— 5: Best-First AND/OR graph search

¢ | (integer) specifies the time limit in seconds. Default vatuel, which indicates no

time limit.
e VO: (string) specifies the variable ordering used. The follmywalues can be used:

— sva stands for Static Variable Ordering (algorithms: 2, 3,4, 5

— pva stands for Partial Variable Ordering (algorithms: 2, 4)

295

Chapter 8

Conclusion

The research presented in this dissertation is focusedeoaghlication of the AND/OR

search spaces perspective to solving general constraimtination tasks over graphical
models. In contrast to the traditional OR search, the new AD®search is sensitive
to problem decomposition, resulting often in significamiguced computational costs.
In conjunction with the AND/OR search space, we investigaggtensively a class of
partition-based heuristic functions, based on the Mini&ti@pproximation.

We introduced a general Branch-and-Bound algorithm tha¢tszs an AND/OR search
tree in a depth-first manner and explored the impact of vargynamic variable order-
ing heuristics. We also investigated memory intensivectealgorithms that traverse an
AND/OR search graph using both depth-first and best-firstrobschemes. Subsequently,
we extended the general principles of solving optimizapimblems using AND/OR search
with context-based caching to the class of 0-1 Integer Liragrams. Our extensive
empirical evaluation demonstrated conclusively that tee AND/OR search algorithms
improved dramatically over the traditional OR competitafgoroaches, in many cases by
several orders of magnitude.

We also applied the AND/OR search perspective to decisiagrdms. We introduced
a new search-based algorithm for compiling AND/OR Multinéad Decision Diagrams
(AOMDDs), as representations of the optimal solutions toptimization problem. Using
an extensive experimental evaluation we showed the eftigiamd compactness of the

weighted AOMDD data-structure compared with the initialce of the search algorithm.

296

Finally, we explored empirically the power of two systemmd&ranch-and-Bound search
algorithms that traverse the traditional OR search spadegploit the mini-bucket based
heuristics in both static and dynamic settings. We compéreth against a number of
popular stochastic local search algorithms, as well asnagai class of iterative belief
propagation algorithms. We showed that, when viewed asoappation schemes, the
Branch-and-Bound algorithms were overall superior to thallsearch algorithms, except

when the domain size was small, in which case they were catinpet

Directions of Future Research

The AND/OR search perspective for optimization leaves rémmadditional improvements

that can be pursued in the future.

AND/OR Branch-and-Bound. Our current approach for handling the deterministic in-
formation present in the graphical model within the AND/ORaBech-and-Bound frame-
work is based on a restricted form of relational arc consistenamely unit resolution.
Therefore, it would be interesting to exploit more powedwoihstraint propagation schemes
such as generalized arc or path consistency. Recent impemsrof the Mini-Bucket al-
gorithm (e.g., Depth-First Mini-Bucket EliminatiofiL09]) could also be explored further in
the context of AND/OR search. Finally, we plan to extend oanmory intensive algorithms

to dynamic variable orderings.

Best-First AND/OR Search. Our best-first AND/OR search algorithmOBF- C, can

also be improved. First, rather than recompute a new estaragst partial solution tree
after every node expansion, it is possible instead to expaedor more leaf nodes and
some number of their descendants all at once, and then reterap estimated best partial
solution tree. This strategy reduces the computationathesel of frequent bottom-up

operations but incurs the risk that some node expansionsnmialye on the best solution

297

tree.

The space required BAOBF- Ccan be enormous, due to the fact that all nodes generated
by the algorithm have to be saved prior to termination. Tloees a memory bounding
strategy may also be used for context minimal AND/OR grapsspreviously suggested
in [97,/103,/16]. To employ it, the algorithm periodicallyctaims needed storage space
by discarding some portions of the explicated AND/OR searelph. For example, it is
possible to determine a few of those partial solution tregkimnvthe entire search graph
having thelargestestimated costs. These can be discarded periodically,thathmisk of

discarding one that might turn out to be the top of an optiroalteon tree.

AND/OR Search for 0-1 ILP. Our depth-first and best-first AND/OR search approach
for 0-1 ILP leaves room for future improvements, which akelly to make it more efficient

in practice. For instance, it can be modified to incorporattting planedo tighten the
linear relaxation of the current subproblem. We can alsoriparate good initial upper
bound techniques (using incomplete schemes), which in s@ses can allow a best-first
performance using depth-first AND/OR Branch-and-Bound algais. Finally, we plan to
accelerate our solvers as well as to incorporate other digmeamiable ordering heuristics

(e.g., strong branching) in order to improve our results.

Multi-Objective Optimization. Multi-objective constraint optimization is the process of
simultaneously optimizing two or more conflicting objeetsssubject to certain constraints.
Maximizing profit and minimizing the cost of a product, maxing performance and
minimizing fuel consumption of a vehicle and minimizing gkt while maximizing the
strength of a particular component are examples of mufgeilye optimization problems.
Advances in exact methods for multi-objective optimizatawe critical in many real world
applications. Therefore, we could extend our recent resultAND/OR search for single
objective optimization to the multi-objective case. Thessv algorithms would exploit

efficiently the problem structure during search and useingaf partial results effectively.

298

Bibliography

[1] D. Allen and A. Darwiche. New advances in inference usegursive conditioning.
In Uncertainty in Artificial Intelligence (UAI-2003pages 2-10, 2003.

[2] F. Aloul, A. Ramani, I. Markov, and K. Sakallah. Pbs: A barekck search pseudo-
boolean solver. Iisymposium on the Theory and Applications of Satisfiabiit-T
ing (SAT'02) 2002.

[3] S. A. Arnborg. Efficient algorithms for combinatorial gflems on graphs with
bounded decomposability - a survaBiT, 25:2—-23, 1985.

[4] F. Bacchus, S. Dalmao, and T. Pitassi. Value eliminatiBayesian inference via
backtracking search. IRroceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence (UAI'03) pages 20-28, 2003.

[5] R. Bayardo and D. Miranker. A complexity analysis of sphoemnd learning algo-
rithms for the constraint satisfaction problem. National Conference on Artificial
Intelligence (AAAI)pages 298—-304, 1996.

[6] R. Bayardo and J. D. Pehoushek. Counting models using ctetheomponents. In
National Conference of Atrtificial Intelligence (AAAI-200pages 157-162, 2000.

[7] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth obsgorasatellite management.
Constraints 4(3):293-299, 1999.

[8] C.Bessiere and J.-C. Regin. Mac and combined heuristicsrdagnns to forsake fc
(and cbj) on hard problems. Principles and Practice of Constraint Programming
(CP-1996) pages 6175, 1996.

[9] S. Bistarelli, U. Montanari, and F. Rossi. Semiring basedstraint solving and
optimization.Journal of ACM 44(2):309-315, 1997.

[10] H. L. Bodlaender. Treewidth: Algorithmic techniqguesdasults. InThe Twenty
Second International Symposium on Mathematical Foundatmf Computer Sci-
ence (MFCS'97)pages 19-36, 1997.

[11] H. L. Bodlaender and J. R. Gilbert. Approximating treethicpathwidth and mini-
mum elimination tree-height. Technical report, Utrechivgnsity, 1991.

[12] D. Brelaz. New method to color the vertices of a graffommunications of the
ACM, 4(22):251-256, 1979.

299

[13] R. E. Bryant. Graph-based algorithms for boolean fumctimanipulation. IEEE
Transaction on Computer85:677-691, 1986.

[14] F. B. C. Lecoutre and F. Hemery. Backjump-based technigaesus conflict di-
rected heuristics. IRroceedings of ICTAI-2004¢ages 549-557, 2004.

[15] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warn&adio link frequency
assignmentConstraints 4:79-89, 1999.

[16] P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkarisfietsearch in restricted
memory.In Artificial Intelligence 3(41):197-221, 1989.

[17] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relatibbayesian networks
for exact inferencelnternational Journal of Approximate Reasonjd@(1-2):4—20,
2006.

[18] E. Clarke, O. Grumberg, and D. Peleédodel CheckingMIT Press, 1999.

[19] Z. Collin, R. Dechter, and S. Katz. On the feasibility o$wibuted constraint satis-
faction. InProceedings of the Twelfth International Conference of Aréfilntelli-
gence (IJCAI'91)pages 318-324, 1991.

[20] M. C. Cooper and T. Schiex. Arc consistency for soft caats. Artificial Intelli-
gence 154(1-2):199-227, 2004.

[21] V. C. D. Applegate, R. Bixby and W. Cook. Finding cuts in thp (a preliminary
report). InTechnical Report 95-05, DIMACS, Rutgers Universii§95.

[22] P. Dagum and M. Luby. Approximating probabilistic iné@ce in bayesian belief
networks is np-hard. IMNational Conference on Atrtificial Intelligence (AAAI-93)
1993.

[23] G. Dantzig. Maximization of a linear function of varials subject to linear inequal-
ities. Activity Analysis of Production and Allocatiph951.

[24] A. Darwiche. Recursive conditionindhrtificial Intelligence 125(1-2):5-41, 2001.

[25] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Esmdtal arc consistency: get-
ting closer to full arc consistency in weighted cspdntiernational Joint Conference
in Artificial Intelligence (IJCAI-2005)2005.

[26] S. de Givry, J. Larrosa, and T. Schiex. Solving max-satvaighted csp.In CP,
2003.

[27] S.de Givry, |. Palhiere, Z. Vitezica, and T. Schiex. Mehan error detection in com-
plex pedigree using weighted constraint satisfactionrtegles. InICLP Workshop
on Constraint Based Methods for Bioinformati2805.

300

[28] S. de Givry, T. Schiex, and G. Verfaillie. Exploitinger decomposition and soft
local consistency in weighted csp. INational Conference on Atrtificial Intelligence
(AAAI-2006) 2006.

[29] R. Dechter. Enhancement schemes for constraint primged3ackjumping, learning
and cutset decompositioArtificial Intelligence 41:273-312, 1990.

[30] R. Dechter. Mini-buckets: A general scheme of genegaéipproximations in auto-
mated reasoning. IRroceedings of the Fifteenth International Joint Conferena
Artificial Intelligence (IJCAI) pages 1297-1302, 1997.

[31] R. Dechter. Bucket elimination: A unifying framework foeasoning. Artificial
Intelligence 113:41-85, 1999.

[32] R. Dechter. Bucket elimination: A unifying framework foeasoning. Artificial
Intelligence 113/1-2:41-85, 1999.

[33] R. Dechter. A new perspective on algorithms for optimigipolicies under un-
certainty. Ininternational Conference on Atrtificial Intelligence Plangi Systems
(AIPS-2000)pages 72-81, 2000.

[34] R. Dechter.Constraint ProcessingMorgan Kaufmann Publishers, 2003.
[35] R. Dechter. And/or search spaces for graphical modibmitted2004.

[36] R. Dechter, K. Kask, and J. Larrosa. A general scheme fidtipte lower bound
computation in constraint optimizatiofrinciples and Practice of Constraint Pro-
gramming (CP200Q)2001.

[37] R. Dechter and D. Larkin. Hybrid processing of beliefsl @onstraints. Iruncer-
tainty in Artificial Intelligence (UAI-2001)pages 112-119, 2001.

[38] R. Dechter and R. Mateescu. AND/OR search spaces for gpaphodels Artificial
Intelligence 171(2-3):73-106, 2007.

[39] R. Dechter, R. Mateescu, and K. Kask. Iterative join-grpmpagation. IfProceed-
ings of the Eighteenth Conference on Uncertainty in Artifikigelligence (UAI'02)
pages 128-136, 2002.

[40] R. Dechter and J. Pearl. Generalized best-first searategies and the optimality
of a*. In Journal of ACM 32(3):505-536, 1985.

[41] R. Dechter and J. Pearl. Tree clustering for constragtévarks. Artificial Intelli-
gence 38:353-366, 1989.

[42] R. Dechter and I. Rish. Mini-buckets: A general schemeppiraximating inference.
Journal of ACM (JACM)2003.

301

[43] H. Dixon and M. Ginsberg. Inference methods for a pselbdolean satisfiability
solver. InNational Conference on Atrtificial Intelligence (AAAI-200pages 635—
640, 2006.

[44] C. L. F. Boussemart, F. Hemery and L. Sais. Boosting sydiers@arch by weight-
ing constraints. InEuropean Conference on Atrtificial Intelligence (ECAI-2Q04)
pages 146-150, 2004.

[45] H. Fargier and M. Vilarem. Compiling csps into tree-@tvautomata for interactive
solving. Constraints 9(4):263—-287, 2004.

[46] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximukelihood haplotyping for
general pedigreesiuman Heredity2005.

[47] M. Fishelson and D. Geiger. Exact genetic linkage cotaons for general pedi-
grees.Bioinformatics 18(1):189-198, 2002.

[48] E. C. Freuder and M. J. Quinn. Taking advantage of stable of variables in
constraint satisfaction problems. limernational Joint Conference on Artificial In-
telligence (IJCAI)pages 1076-1078, 1985.

[49] E. C. Freuder and R. Wallace. Partial constraint satisfacAtrtificial Intelligence
58(1-3):21-70, 1992.

[50] N. L. G. Gottlob and F. Scarcello. A comparison of stuwat csp decomposition
methods. Irninternational Joint Conference on Artificial IntelligenddCAl), pages
394-399, 1999.

[51] M. L. G. Verfaillie and T. Schiex. Russian doll search gmlving constraint opti-
mization problems. IiNational Conference on Atrtificial Intelligence (AAA1Q96.

[52] T. Hadzic and H. R. Andersen. A bdd-based polytime atbarifor cost-bounded
interactive configuration. INational Conference on Atrtificial Intelligence (AAAI)
2006.

[53] T. Hadzic and J. Hooker. Postoptimality analysis faeger programming using
binary decision diagramd.echnical Report, Carnegie Mellqr2006.

[54] R. Haralick and G. Elliot. Increasing tree search efficiefor constraint satisfaction
problems.Artificial Intelligence 14(3):263-313, 1980.

[55] R. A. Howard and J. E. Mathesoinfluence diagrams. The principles and applica-
tions of Decision analyisStrategic decisions Group, Menlo Park, CA, USA, 1984.

[56] J. Huang and A. Darwiche. A structure-based variabtkeong heuristic. Irinter-
national Joint Conference on Artificial Intelligence (IJCAI@3), pages 1167-1172,
2003.

302

[57] F. Hutter, H. Hoos, and T. Stutzle. Efficient stochakiwal search for mpe solving.
In In International Joint Conference on Artificial Intelligea¢lJCAI-2005) pages
169-174, 2005.

[58] P. M. J. Larrosa and T. Schiex. Maintaining reversibde dor max-csp.Artificial
Intellignce pages 149-163, 1999.

[59] P. Jegou and C. Terrioux. Decomposition and good rengrfiir solving max-csps.

In European Conference on Atrtificial Intelligence (ECAI 2Q0gages 196—200,
2004.

[60] F. Jensen, S. Lauritzen, and K. Olesen. Bayesian uggatirtausal probabilis-
tic networks by local computatiorComputational Statistics Quarterly:269-282,
1990.

[61] S. Joy, J. Mitchell, and B. Borchers. A branch and cut athor for max-sat and
weighted max-satin Satisfiability Problem: Theory and Applicatignsages 519—
536, 1997.

[62] L. Kanal and V. KumarSearch in artificial intelligenceSpringer-Verlag., 1988.

[63] R. Karp. Reducibility among combinatorial problem&omplexity of Computer
Computations, Plenum Press, Ndages 85-103, 1972.

[64] K. Kask and R. Dechter. Stochastic local search for hapasetworks. InNorkshop
on Al and Statisticgpages 113-122, 1999.

[65] K. Kask and R. Dechter. A general scheme for automatiegeion of search heuris-
tics from specification dependencidstificial Intelligence 129(1-2):91-131, 2001.

[66] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifyahgster-tree decomposi-
tions for reasoning in graphical modelArtificial Intelligence 166 (1-2):165-193,
2005.

[67] U. Kjeeaerulff. Triangulation of graph-based algorithms givingadl total space.
Technical Report, University of Aalborg, Denmat!®90.

[68] F. R. Kschischang and B. H. Frey. Iterative decoding of pound codes by proba-
bility propagation in graphical model$n IEEE Journal of Selected Areas in Com-
munication 16(2):219-230, 1998.

[69] D. Larkin and R. Dechter. Bayesian inference in the pres@fdeterminism. IThe
Ninth International Workshop on Artificial Intelligence adatistics, AISTATS'Q3
2003.

[70] J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-taeehseith soft constraints.
In In European Conference on Atrtificial Intelligence (ECAI-20(2ages 131-135,
2002.

303

[71] J. Larrosa and T. Schiex. In the quest of the best formoo&ll consistency for
weighted csp. Irinternational Joint Conference in Artificial Intelligenc&ICAI-
2003) pages 631-637, 2003.

[72] J. Larrosa and T. Schiex. Solving weighted csp by maiirig arc consistency.
Artificial Intelligence 159(1-2):1-26, 2004.

[73] S. Lauritzen and D. Spiegelhalter. Local computatiatiywrobabilities on graphical
structures and their application to expert systedsurnal of the Royal Statistical
Society 1988.

[74] E. Lawler and D. Wood. Branch-and-bound methods: A surv@perations Re-
search 14(4):699-719, 1966.

[75] K. Leyton-Brown, M. Pearson, and Y. Shoham. Towards aensal test suite for
combinatorial auction algorithms. IACM Electronic Commercepages 66—76,
2000.

[76] W. Li and P. van Beek. Guiding real-world sat solving withnamic hypergraph
separator decomposition. International Conference on Tools with Artificial Intel-
ligence (ICTAI'04) pages 542-548, 2004.

[77] Z. Li and B. DAmbrosio. An efficient approach for findingetmpe in belief net-
works. InUncertainty in Artificial Intelligence (UAI-1993pages 342—-349, 1993.

[78] D. MacKay and R. Neal. Near shannon limit performanceow bensity parity
check codesln Electronic Letters33(1):457-458, 1996.

[79] R. Marinescu and R. Dechter. And/or branch-and-boundyfaphical models. In
International Joint Conference on Atrtificial IntelligencCAI-2005) pages 224—
229, 2005.

[80] R. Marinescu and R. Dechter. And/or branch-and-bouncthdar pure 0/1 integer
linear programming problems. International Conference on Integration of Al and
OR techniques for Combinatorial Optimization (CPAIOR3ges 152—-166, 2006.

[81] R. Marinescu and R. Dechter. Dynamic orderings for ant#@anch-and-bound
search in graphical models.n European Conference on Atrtificial Intelligence
(ECAI-2006) pages 138-142, 2006.

[82] R.Marinescu and R. Dechter. Memory intensive branchHaomahd search for graph-
ical models.In National Conference on Atrtificial Intelligence (AAAI-200B006.

[83] R. Marinescu and R. Dechter. Best-first and/or search fbim@éger programming.
In International Conference on Integration of Al and OR techeisjfor Combinato-
rial Optimization (CPAIOR-2007R007.

[84] R. Marinescu and R. Dechter. Best-first and/or search faplycal models. IMNa-
tional Conference on Atrtificial Intelligence (AAAI-200ppges 1171-1176, 2007.

304

[85] R. Marinescu and R. Dechter. Best-first and/or search fastmpmbable explana-
tions. InUncertainty in Artificial Intelligence (UAI-2007R007.

[86] R. Marinescu, K. Kask, and R. Dechter. Systematic vs n@tesnatic algorithms
for solving the mpe task. Ibincertainty in Artificial Intelligence (UAI-2003pages
394-402, 2003.

[87] A. Martelli and U. Montanari. Additive and/or graphaa Proceedings of Interna-
tional Joint Conference on Attificial Intelligence (IJCApages 1-11, 1973.

[88] R. Mateescu and R. Dechter. AND/OR cutset conditioning. Ptoceedings of
the Nineteenth International Joint Conference on Artificraklligence (IJCAI'05)
pages 230-235, 2005.

[89] R. Mateescu and R. Dechter. Compiling constraint networtcs AND/OR multi-
valued decision diagrams (AOMDDs). Mrinciples and Practice of Constraint
Programming (CP)pages 329-343, 2006.

[90] R. Mateescu, R. Dechter, and K. Kask. Tree approximateyrbtlief updating.
In Proceedings of The Eighteenth National Conference on Adificitelligence
(AAAI'02), pages 553-559, 2002.

[91] R. McEliece, D. MacKay, and J. Cheng. Turbo decoding asmatance of pearls
belief propagation algorithmin IEEE Journal of Selected Areas in Communication
16(2):140-152, 1998.

[92] K. L. McMillan. Symbolic Model Checkindgluwer Academic, 1993.

[93] P. Mills and E. Tsang. Guided local search for solvingaad weighted max-sat
problems.Journal of Automated Reasoning (JARDOO.

[94] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. MalRhaff: Engineering
an efficient sat solveiDesign and Automation Conferen@901.

[95] G. Nemhauser and L. Wolseiteger and combinatorial optimizatiohViley, 1988.
[96] N. J. Nilsson.Principles of Atrtificial IntelligenceTioga, Palo Alto, CA, 1980.
[97] N. J. Nilsson.Principles of Atrtificial IntelligenceTioga, 1980.

[98] J. Ott. Analysis of Human Genetic Linkag&he Johns Hopkins University Press,
1999.

[99] N. N. P. Hart and B. Raphael. A formal basis for the heuwridétermination of mini-
mum cost pathdEEE Transactions on Systems Science and Cybern8{2s100—
107, 1968.

[100] M. Padberg and G. Rinaldi. Optimization of a 532-citysyetric traveling salesman
problem by branch-and-cuDperations Research Lettei&1-7, 1987.

305

[101] M. Padberg and G. Rinaldi. A branch-and-cut algorittumthe resolution of large
scale symmetric traveling salesman proble®\M Review33:60-100, 1991.

[102] J. Park. Using weighted max-sat engines to solve mp&lational Conference on
Artificial Intelligence (AAAI) 2002.

[103] J. Pearl. Heuristics: Intelligent search strategiss\ddison-Wesley1984.
[104] J. PearlProbabilistic Reasoning in Intelligent Systeniorgan Kaufmann, 1988.

[105] Y. Peng and J. Reggia. A connectionist model for diaja@soblem solvingIEEE
Transactions on Systems, Man and Cyberngfi6g9.

[106] J. R. Bayardo and D. P. Miranker. On the space-time tcdflier solving constraint
satisfaction problems. IRourteenth International Joint Conference on Artificial
Intelligence(195) pages 558-562, 1995.

[107] R. M. R. Mateescu and R. Dechter. And/or multi-valued sieai diagrams for con-
straint optimization. Irinternational Conference on Principles and Practice of Con-
straint Programming (CP-20072007.

[108] I. Rish and R. Dechter. Resolution vs. search: two stresefpr sat. Journal of
Automated Reasoning4(1-2):225-275, 2000.

[109] E. Rollon and J. Larrosa. Depth-first mini-bucket ehation. InPrinciples and
Practice of Constraint Programming (CP)ages 563-577, 2005.

[110] A. P. S. Minton, M.D. Johnston and P. Laired. Solvingg&ascale constraint satis-
faction and scheduling problems using heuristic repaithods. InNational Con-
ference on Atrtificial Intelligence (AAAlpages 17-24, Anaheim, CA, 1990.

[111] T. Sandholm. An algorithm for optimal winner determaiion in combinatorial auc-
tions. InIn International Joint Conference on Atrtificial Intelligea¢lJCAI-1999)
pages 542-547, 1999.

[112] T. Sang, P. Beame, and H. Kautz. Solving Bayesian nesMoykweighted model
counting. InNational Conference of Atrtificial Intelligence (AAAI-200pages 475—
482, 2005.

[113] E. Santos. On the generation of alternative explanatwith implications for belief
revision. InUncertainty in Artificial Intelligence (UAI-1991pages 339-347, 1991.

[114] B. Selman, H. Levesque, and D. Mitchell. A new methoddolving hard satisfia-
bility problems. InNational Conference on Atrtificial Intelligencpages 440446,
1992.

[115] P. Shenoy and G. Shafer. Propagating belief functwitis local computationsin
|[EEE Expert 1(4):43-52, 1986.

306

[116] S. Shimony and E. Charniak. A new algorithm for findingprassignments to
belief networks. InUncertainty in Artificial Intelligence (UAI-199]1)ages 185—
193, 1991.

[117] B. Smith. Phase transition and the mushy region in camdtsatisfaction. Irin
European Conference on Atrtificial Intelligence (ECAI-199#9ges 100-104, 1994.

[118] B. K. Sy. Reasoning mpe to multiply connected belief roeks using message-
passing. IMNational Conference of Artificial Intelligence (AAAI-199ppges 570—
576, 1992.

[119] P. B. T. Sang and H. Kautz. A dynamic approach to mpe anghtexd max-sat. In
Proceedings of the International Joint Conference on Aréfitntelligence (IJCAI-
2007) pages 549-557, 2007.

[120] P. Thbault, S. de Givry, T. Schiex, and C. Gaspin. Commgjrtionstraint processing
and pattern matching to describe and locate structuredsmogenomic sequences.
In Fifth 1IJCAI-05 Workshop on Modelling and Solving Problemsh@ionstraints
2005.

[121] C. Voudouris. Guided local search for combinatoridimjzation problems. Tech-
nical report, PhD Thesis. University of Essex, 1997.

[122] B. Wah and Y. Shang. Discrete lagrangian-based searcsoiving max-sat prob-
lems. IniInternational Joint Conference on Atrtificial IntelligencBICAI), pages
378-383, 1997.

[123] R. Wallace. Analysis of heuristic methods for partiahstraint satisfaction prob-
lems. Inin Principles and Practice of Constraint Programming (CP-63%ages
482-496, 1996.

[124] J. WalserInteger Optimization Local Searctspringer, 1999.
[125] L. A. Wolsey. Integer ProgrammingWiley, 1998.

[126] Z. Xing and W. Zhang. Efficient strategies for (weightenaximum satisfiability.
In Principles and Practice of Constraint Programming (CP-200zgges 660—-705,
2004.

307

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Dissertation Outline and Contributions
	Systematic versus Non-systematic Search for Bayesian MPE
	AND/OR Branch-and-Bound Search for Graphical Models
	Memory Intensive AND/OR Search for Graphical Models
	AND/OR Search for 0-1 Integer Linear Programming
	AND/OR Multi-Valued Decision Diagrams for Optimization

	Preliminaries
	Notations
	Graph Concepts
	Propositional Theories
	AND/OR Search Spaces
	Graphical Models
	Constraint Networks
	Cost Networks
	Belief Networks

	Search and Inference for Optimization in Graphical Models
	Bucket and Mini-Bucket Elimination
	Systematic Search with Mini-Bucket Heuristics
	Branch-and-Bound Search for Weighted CSP

	Systematic versus Non-systematic Search for Most Probable Explanations
	Introduction
	Background
	Cluster-Tree Elimination
	Mini-Cluster-Tree Elimination

	Partition-based Branch-and-Bound Search
	BBBT: Branch-and-Bound with Dynamic Heuristics
	BBMB: Branch-and-Bound with Static Heuristics

	Non-Systematic Algorithms
	Local Search
	Iterative Join-Graph Propagation

	Experiments
	Random Bayesian Networks and Noisy-OR Networks
	Random Grid Networks
	Random Coding Networks
	Real-World Networks

	Conclusion to Chapter 2

	AND/OR Branch-and-Bound Search for Graphical Models
	Introduction
	AND/OR Search Trees For Graphical Models
	AND/OR Branch-and-Bound Search
	Lower Bound Heuristics for AND/OR Search
	Static Mini-Bucket Heuristics
	Dynamic Mini-Bucket Heuristics
	Local Consistency Based Heuristics for AND/OR Search

	Dynamic Variable Orderings
	Partial Variable Ordering (PVO)
	Full Dynamic Variable Ordering (DVO)
	Dynamic Separator Ordering (DSO)

	Experimental Results
	Overview and Methodology
	Finding Good Pseudo Trees
	Results for Empirical Evaluation on Bayesian Networks
	The Impact of Determinism in Bayesian Networks
	Results for Empirical Evaluation on Weighted CSPs
	The Impact of Dynamic Variable Orderings

	Related Work
	Conclusion to Chapter 3

	Memory Intensive AND/OR Search for Graphical Models
	Introduction
	AND/OR Search Graphs for Graphical Models
	AND/OR Branch-and-Bound with Caching
	Naive Caching
	Adaptive Caching

	Best-First AND/OR Search
	Experimental Results
	Overview and Methodology
	Results for Empirical Evaluation of Bayesian Networks
	The Anytime Behavior of AND/OR Branch-and-Bound Search
	The Impact of Determinism in Bayesian Networks
	Results for Empirical Evaluation of Weighted CSPs

	Conclusion to Chapter 4

	AND/OR Search for 0-1 Integer Programming
	Introduction
	Contribution
	Chapter Outline

	Background
	Integer Programming
	Branch-and-Bound Search for Integer Programming
	Branch-and-Cut Search for Integer Programming
	State-of-the-art Software Packages

	Extending AND/OR Search Spaces to 0-1 ILPs
	AND/OR Search Trees for 0-1 ILPs
	AND/OR Search Graphs for 0-1 ILPs

	Depth-First AND/OR Branch-and-Bound Search
	Best-First AND/OR Search
	Dynamic Variable Orderings
	Experimental Results
	Combinatorial Auctions
	Uncapacitated Warehouse Location Problems
	MAX-SAT Instances

	Conclusion to Chapter 5

	AND/OR Multi-Valued Decision Diagrams for Constraint Optimization
	Introduction
	Review of Binary Decision Diagrams
	Weighted AND/OR Multi-Valued Decision Diagrams
	Using AND/OR Search to Generate AOMDDs
	The Search Based Compile Algorithm

	Experiments
	Weighted CSPs
	0-1 Integer Linear Programs
	Summary of Empirical Results

	Conclusion to Chapter 6

	Software
	REES: Reasoning Engine Evaluation Shell
	REES Architecture
	A Closer Look

	AND/OR Search for Optimization
	AOLIB-MPE
	AOLIB-WCSP
	AOLIB-ILP

	Conclusion
	Bibliography

