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Abstract of the Dissertation

AND/OR Search Strategies for Combinatorial Optimization inGraphical Models

By

Radu Marinescu

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2008

Professor Rina Dechter, Chair

This thesis presents a new generation of search algorithms for solving combinatorial

optimization problems over graphical models. The new algorithms exploit the principles

of problem decomposition using the AND/OR search spaces, avoid redundant solution of

subproblems using memory, focus on relevant promising portions of the solution space us-

ing the power of the mini-bucket heuristics and prune irrelevant spaces using constraint

propagation. As we show throughout the chapters of this thesis, putting all these principles

together yields powerful algorithms whose performance improves upon earlier schemes

significantly, sometimes by several orders of magnitude. Wedemonstrate the applicability

and the generality of our algorithms on optimization tasks over both probabilistic and de-

terministic graphical models, often showing superior performance on real application such

as linkage analysis and circuit design and diagnosis. The following paragraphs elaborate.

Our algorithms explore the AND/OR search spaces of the underlying graphical model.

The AND/OR search space is a unifying paradigm for advanced search schemes for graph-

ical models exploiting problem decomposability, which cantranslate into exponential time
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savings for search algorithms. In conjunction with the AND/OR search space we also

investigate a class of partition-based heuristic functions, based on the Mini-Bucket approx-

imation.

We start by introducing depth-first Branch-and-Bound search algorithms that explore

the AND/OR tree, use a variety of sources for heuristic guidance and incorporate some

dynamic variable ordering heuristics. We then extend the depth-first AND/OR Branch-and-

Bound and best-first search algorithms with the ability to recognize identical subproblems

and avoid redundant solutions by caching (similar to good and no-good recording), thus

traversing the AND/OR search graph. We also extend all the principles acquired within

the general framework of depth-first and best-first schemes to the well known 0-1 Integer

Linear Programs.

Our empirical evaluation shows conclusively that the new AND/OR search algorithms

improve dramatically over current state-of-the-art approaches exploring the traditional OR

search space, in many cases by several orders of magnitude. We illustrate one by one the

gain obtained by exploiting problem’s decomposition (using AND modes), equivalence

(by caching), branching strategy (via dynamic variable ordering heuristics), control strat-

egy (depth-first or best-first) as well as the impact of the lower bound heuristic strength.

As well, we investigate the impact of exploiting hard constraint (i.e., determinism) in the

problem, the initial upper bound provided to the algorithm,and the quality of the guiding

variable orderings.

In the last part of the thesis we also show how our AND/OR search algorithms can be

used as compilation algorithms for AND/OR decision diagrams. We present a new algo-

rithm for compiling AND/OR Multi-Valued Decision Diagrams(AOMDDs) that represent

the set of optimal solutions. We extend earlier work on AND/OR decision diagrams by con-

sidering general weighted graphical models based on cost functions rather than constraints.

On various domains we show that we sometimes get a substantial reduction beyond the

initial trace of state-of-the-art search algorithms.
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Finally, the starting chapter of this thesis (Chapter 2) setsthe stage for this whole work

by comparing the power of static and dynamic mini-bucket heuristics over regular search

spaces and compares against a number of popular stochastic local search algorithms, as

well as against the class of iterative belief propagation algorithms.
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Chapter 1

Introduction

Graphical models such as belief networks, constraint networks, Markov networks or influ-

ence diagrams are a widely used knowledge representation framework for reasoning with

probabilistic and deterministic information. These models usegraphs(directed or undi-

rected) that provide an intuitively appealing mechanism bywhich one can model highly

interacting sets of variables. This allows for a concise representation of the knowledge that

lends itself naturally to the design of efficient graph-based query processing algorithms.

Optimization queries such as finding the most likely state ofa belief network, finding

a solution that violates the least number of constraints in aconstraint network or finding a

set of actions that maximizes the expected utility in an influence diagram can be defined

within the framework of graphical models. These tasks are NP-hard and they are typically

solved by eitherinferenceor searchalgorithms.

Inference-based algorithms were always known to be good at exploiting the indepen-

dencies captured by the underlying graphical model yielding worst case time and space

guarantees exponential in the treewidth of the graph. Traditional search-based algorithms

traverse the model’s search space where each path represents a partial or full solution. The

linear structure of the search space does not retain the conditional independencies repre-

sented in the model and, therefore, search algorithms may not be nearly as effective as

inference algorithms in using this information. They are time exponential in the number of

variables. However, since they may operate in linear space,search algorithms are often the

preferred choice for problems with large treewidth.
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The focus of this dissertation is on search algorithms for optimization that do exploit

the structure of the problem. We present depth-first and best-first search regimes that are

sensitive to the conditional independencies encoded in themodel’s graph and decompose

the problem into independent components using the AND/OR data structure, often resulting

in exponential time savings.

1.1 Dissertation Outline and Contributions

We next provide a brief description of the structure of the dissertation, while the subsequent

subsections will provide more details.

• Chapter 2 explores the power of two systematic Branch-and-Bound search algorithms

that traverse the traditional OR search space and exploit the mini-bucket heuris-

tics, BBBT(i) - Branch-and-Bound with Mini-Bucket-Tree heuristics (for which the

heuristic information is constructed during search and allows dynamic variable and

value ordering) and its predecessor BBMB(i) - Branch-and-Bound with Mini-Bucket

heuristics (for which the heuristic information is pre-compiled). We compare them

against a number of popular stochastic local search (SLS) algorithms, as well as

against the recently popular iterative belief propagationalgorithms. We show empiri-

cally that the new Branch-and-Bound algorithm, BBBT(i), demonstrates tremendous

pruning of the search space far beyond its predecessor, BBMB(i), which translates

into impressive time saving for some classes of problems. Second, when viewed as

approximation anytime schemes, BBBT(i) and BBMB(i) together are highly com-

petitive with the best known SLS algorithms and are superior, especially when the

domain sizes increase beyond 2. The results also show that the class of belief prop-

agation algorithms can in general outperform SLS, but they are quite inferior to

BBMB(i) and BBBT(i).

• Chapter 3 is the first (in 3 chapters) to present and evaluate the power of a new
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framework for optimization in graphical models, based on AND/OR search spaces.

It focuses on linear space search which explores the AND/OR searchtreerather than

the searchgraph and makes no attempt to cache information. Specifically, we in-

troduce a depth-first Branch-and-Bound algorithms that explore the AND/OR search

tree using static and dynamic variable orderings. We also investigate the power of the

mini-bucket heuristics in both static and dynamic setups within this AND/OR search

framework. We focus on two popular optimization problems ingraphical models:

finding the Most Probable Explanation in belief networks andsolving Weighted

CSPs. In extensive empirical evaluations using a variety of benchmarks we demon-

strate conclusively that this new depth-first AND/OR Branch-and-Bound approach

improves dramatically over the traditional OR search.

• Chapter 4 extends the depth-first AND/OR Branch-and-Bound algorithm to explore

an AND/OR searchgraph, rather than a tree, by equipping it with a context-based

adaptive caching scheme similar to good and no-good recording. Sincebest-first

strategies are known to be superior to depth-first when memory is utilized, exploring

the best-first control strategy is called for. Therefore, wealso introduce a new class

of best-first AND/OR search algorithms that explore the context minimal AND/OR

search graph. Our empirical results demonstrate conclusively the superiority of the

new memory intensive AND/OR search approach over traditional OR search with

caching as well as over AND/OR Branch-and-Bound without caching discussed in

Chapter 3.

• Chapter 5 extends both depth-first and best-first AND/OR search algorithms to solv-

ing 0-1 Integer Linear Programs (0-1 ILPs). We also extend dynamic variable order-

ing heuristics while exploring an AND/OR search tree for 0-1ILPs. We demonstrate

the effectiveness of the new search algorithms on a variety of benchmarks, including

real-world combinatorial auctions, random uncapacitatedwarehouse location prob-
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lems and MAX-SAT instances.

• Chapter 6 presents a new top down search-based algorithm for compiling AND/OR

Multi-Valued Decision Diagrams (AOMDDs), as representations of the optimal set of

solutions for constraint optimization problems. The approach is based on AND/OR

search spaces for graphical models, on AND/OR Branch-and-Bound with caching,

and on decision diagram reduction techniques. We extend earlier work on AOMDDs

by considering general weighted graphs based on cost functions rather than con-

straints. An extensive experimental evaluation on a variety of benchmarks proves the

efficiency of the weighted AOMDD data structure.

• Chapter 7 presents the software implementation of the algorithms described in the

dissertation. Chapter 8 concludes the thesis.

The following subsections provide more details of the content in each chapter.

1.1.1 Systematic versus Non-systematic Search for Bayesian MPE

The chapter explores the power of two systematic Branch-and-Bound search algorithms

that exploit partition-based heuristics for solving the Most Probable Explanation (MPE)

task in Bayesian networks. While it is known that the MPE task isNP-hard [22], it is

nonetheless a common task in applications such as diagnosis, abduction, and explanation.

For example, given data on clinical findings, MPE can postulate a patient’s probable afflic-

tion. In decoding, the task is to identify the most likely input message transmitted over a

noisy channel given the observed output. Researchers in natural language consider the un-

derstanding of text to consist of finding the most likely facts (in an internal representation)

that explain the existence of the given text. In computer vision and image understanding,

researchers formulate the problem in terms of finding the most likely set of objects that

explain the image.
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Contribution

We introduce a new algorithm, called BBBT(i), for solving the MPE task in Bayesian

networks. It takes the idea of mini-bucket partition-basedheuristics one step further and

explores the feasibility of generating such heuristicsduring search, rather than in apre-

processing manner. This, in particular, allows dynamic variable orderings – afeature that

can have a tremendous effect on search. The dynamic generation of these heuristics is

facilitated by a recent extension of Mini-Bucket Elimination (MBE) [30] to Mini-Bucket

Tree Elimination (MBTE), a partition-based approximation defined over cluster trees and

described in [36]. This yields algorithm BBBT(i) that computes the MBTE(i) heuristic at

each node of the search tree. We compare BBBT(i) against BBMB(i) [65], a Branch-and-

Bound algorithm for which the heuristic information is pre-compiled. We also compare the

two Branch-and-Bound algorithms against several best-knownSLS algorithms as well as a

class of generalized belief propagation algorithms adapted for the MPE task.

We provide an extensive empirical evaluation on various random and real-world bench-

marks showing that BBMB(i) and BBBT(i) do not dominate one another. While BBBT(i)

can sometimes significantly improve over BBMB(i), in many other instances its (quite sig-

nificant) pruning power does not outweigh its time overhead.Both algorithms are powerful

in different cases. In general, for largei-bounds, which are more effective, BBMB(i) is

more powerful, however when space is at issue BBBT(i) with smalli-bounds is often more

powerful. More significantly, we show that the SLS algorithms we used are overall infe-

rior to BBBT(i) and BBMB(i), except when the domain size is small. The superiority of

BBBT(i) and BBMB(i) is especially significant because unlike local search theycan prove

optimality if given enough time. We also demonstrate that generalized belief propagation

algorithms are often superior to the SLS class we used as well.
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1.1.2 AND/OR Branch-and-Bound Search for Graphical Models

Search-based algorithms (e.g., depth-first Branch-and-Bound, best-first search) traverse the

search space of the problem, where each path represents a partial or full solution. The linear

structure of search spaces does not retain the independencies represented in the underly-

ing graphical models and, therefore, search-based algorithms may not be as effective as

inference-based algorithms in using this information. On the other hand, the space require-

ments of search algorithms may be much less severe than thoseof inference algorithms

as they can operate in linear space. In addition, search methods can accommodate anim-

plicit specification of the functional relationships (i.e., procedural or functional form) while

inference schemes often rely on an explicit tabular representation over the (discrete) vari-

ables. For these reasons, search algorithms are the only choice available for models with

large treewidth and with implicit representation. In earlier work, AND/OR search spaces

were introduced as data structures that can be used to exploit problem decomposition dur-

ing search.

The AND/OR search space for graphical models [38] is a relatively new framework for

search that is sensitive to the conditional independenciesin the model, often resulting in

significantly reduced complexities. It is guided by apseudo tree[48, 106] that captures

independencies in the graphical model, resulting in a search space exponential in the depth

of the pseudo tree, rather than in the number of variables.

Contribution

In this chapter we develop a new generation of AND/OR Branch-and-Bound algorithms

(AOBB) that explore the AND/OR search tree in a depth-first manner for solving opti-

mization problems in graphical models. As in traditional Branch-and-Bound search, the

efficiency of these algorithms depends heavily also on theirguiding heuristic function. We

extend themini-bucket heuristics, which were shown to be powerful for optimization prob-

lems in the context of OR search spaces [65], to the AND/OR search framework. The
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Mini-Bucket algorithm [42] provides a general scheme for extracting the heuristic infor-

mation automatically, from the functional specification ofthe graphical model. Since the

accuracy of this algorithm is controlled by a bounding parameter, calledi-bound, it allows

heuristics having varying degrees of accuracy and results in a spectrum of search algo-

rithms that can trade off heuristic computation and search [65]. In this chapter we show

how the pre-computed mini-bucket heuristic as well as any other heuristic information can

be incorporated into AND/OR search and we subsequently introducedynamic mini-bucket

heuristics, which are computed dynamically at each node of the search tree.

Since variable selection can influence dramatically the search performance, we also

introduce a collection ofdynamicvariable ordering heuristics that can be accommodated

by the AND/OR decomposition principle.

We apply our depth-first AND/OR Branch-and-Bound approach to both the MPE task in

belief networks [104] and to Weighted CSPs [9]. Our empiricalresults show conclusively

that the new depth-first AND/OR Branch-and-Bound algorithms improve dramatically over

traditional OR search space, especially when the heuristicestimates are inaccurate.

1.1.3 Memory Intensive AND/OR Search for Graphical Models

It is often the case that a search space that is a tree can become a graph if we merge nodes

that root identical subproblems. Some of these nodes can be identified based oncontexts

[38]. The context of a node is a subset of the currently assigned variables that completely

determines the remaining subproblem using graph information only. The AND/OR search

tree can be transformed into a graph by merging identical subtrees. Consequently, algo-

rithms that explore the search graph involve controlled memory management that allows

improving their time performance by increasing their use ofmemory.
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Contribution

In this chapter we extend the AND/OR Branch-and-Bound algorithm to explore the context

minimal AND/OR searchgraph, rather than the AND/OR search tree, using a flexible

caching mechanism that can adapt to memory limitations. Thecaching scheme is based

on contexts and is similar to good and no-good recording and recent schemes appearing in

Recursive Conditioning [24], Valued Backtracking [4] as well as Backtracking with Tree

Decomposition [59].

Since best-first search is known to be superior among memory intensive search algo-

rithms [40], we present a new best-first AND/OR search algorithm that explores the con-

text minimal AND/OR search graph. Under conditions of admissibility and monotonicity

of the guiding heuristic function, best-first search is known to expand the minimal number

of nodes, at the expense of using additional memory [40].

The efficiency of the proposed memory intensive depth-first and best-first AND/OR

search methods also depends on the accuracy of the guiding heuristic function, which is

based on the Mini-Bucket approximation. Here, we explore empirically the efficiency of

the mini-bucket heuristics in both static and dynamic settings, as well as the interaction

between the heuristic strength within the cache-based search spaces.

Our empirical results (on both MPE and Weighted CSP) demonstrate conclusively that

the new memory intensive AND/OR search algorithms improve dramatically (up to several

orders of magnitude) over competitive approaches, especially when the heuristic estimates

are less accurate. We illustrate the impressive gains in performance caused by exploiting

equivalence (caching), control strategy (depth-first or best-first) as well as strength of the

guiding lower bound function. We also investigate key factors that impact the performance

of any search algorithm such as: the availability of hard constraints (i.e., determinism) in

the problem, the availability of good initial upper bounds provided to the algorithm, and

the availability of good quality guiding pseudo trees.
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1.1.4 AND/OR Search for 0-1 Integer Linear Programming

One of the most important optimization problems in operations research and computer sci-

ence isinteger programming[95]. Applications of integer programming include schedul-

ing, routing, VLSI circuit design, combinatorial auctionsand facility locations [95]. A 0-1

Integer Linear Program (0-1 ILP) is to optimize (i.e., minimize or maximize) a linear ob-

jective function of binary integer decision variables, subject to a set of linear equality or

inequality constraints defined on subsets of variables. Theclassical approach to solving

0-1 ILPs is theBranch-and-Boundmethod [74]. The algorithm keeps in memory the best

solution found so far (theincumbent). Once a node in the search tree is generated, a lower

bound (i.e., heuristic evaluation function) on the solution value is computed by solving the

linear relaxation (i.e., relaxing the integrality constraints for all undecided variables) of the

current subproblem (e.g., using thesimplexmethod [23]), while honoring the commitments

made on the search path so far. A path terminates when the lower bound is at least the value

of the incumbent, or the subproblem is infeasible or yields an integer solution. Once all

paths have terminated, the incumbent is a provably optimal solution.

Contribution

In this chapter we extend the general principles of solving constraint optimization problems

using AND/OR search with context-based caching to the classof 0-1 ILPs. We explore both

depth-first and best-first control strategies. We also incorporate our dynamic variable order-

ing heuristics for AND/OR search and explore their impact on0-1 ILPs. We demonstrate

empirically the benefit of the AND/OR algorithms on benchmarks including combinato-

rial auctions, random uncapacitated warehouse location problems and MAX-SAT problem

instances. Our results show conclusively that the new search algorithms improve dramat-

ically over the traditional OR search on this domain, in somecases with several orders

of magnitude of improved performance. We illustrate the tremendous gain obtained by ex-

ploiting problem’s decomposition (using AND nodes), equivalence (by caching), branching
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strategy (via dynamic variable ordering heuristics) and control strategy. We also show that

the AND/OR algorithms are sometimes able (though not frequently) to outperform signifi-

cantly commercial solvers such as CPLEX.

1.1.5 AND/OR Multi-Valued Decision Diagrams for Optimization

The compilation of graphical models, including constraintand probabilistic networks, has

recently been under intense investigation. Compilation techniques are useful when an ex-

tended off-line computation can be traded for fast real-time answers. Typically, a tractable

compiled representation of the problem is desired. Since the tasks of interest are in general

NP-hard, this is not always possible in the worst case. In practice, however, it is often the

case that the compiled representation is much smaller than the worst case bound, as was

observed for Ordered Binary Decision Diagrams (OBDDs) [13] which are extensively used

in hardware and software verification.

In the context of constraint networks, compilation schemesare very useful for inter-

active solving or product configuration type problems [45, 52]. These are combinatorial

problems where a compact representation of the feasible setof solutions is necessary. The

system has to becomplete(to represent all sets of solutions),backtrack-free(to never en-

counter dead-ends) andreal-time(to provide fast answers).

Contribution

In this chapter we present a compilation scheme for constraint optimization. Our goal is to

obtain a compact representation of the set of optimal solutions, by employing techniques

from search, optimization and decision diagrams. Our approach is based on three main

ideas: (1) AND/OR search spaces for graphical models [38], (2) Branch-and-Bound search

for optimization, applied to AND/OR search spaces [79, 82] and (3) reduction rules simi-

lar to OBDDs, that lead to the compilation of the search algorithm trace into an AND/OR

Multi-Valued Decision Diagram (AOMDD) [89]. The novelty over previous results con-
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sists in: (1) the treatment of general weighted graphs basedon cost functions, rather than

constraints; (2) a top down search based approach for generating the AOMDD, rather than

Variable Elimination based as in [89]; (3) extensive experimental evaluation that proves

the compilation potential of the weighted AOMDD. We show that the compilation scheme

can often be accomplished relatively efficiently and that wesometimes get a substantial

reduction beyond the initial trace of state-of-the-art search algorithms.

1.2 Preliminaries

The remainder of this chapter contains preliminary notation and definitions, gives examples

of graphical models and reviews previous work on inference and search based algorithms

for optimization tasks over graphical models.

1.2.1 Notations

A reasoning problem is defined in terms of a set of variables taking values on finite domains

and a set of functions defined over these variables. We denotevariables by uppercase letters

(e.g., X,Y, Z, ...) and values of variables by lower case letters (e.g., x, y, z, ...). Sets are

usually denoted by bold letters, for exampleX = {X1, ..., Xn} is a set of variables. An

assignment(X1 = x1, ..., Xn = xn) can be abbreviated asx = (〈X1, x1〉, ..., 〈Xn, xn〉)

or x = (x1, ..., xn). For a subset of variablesY, DY denotes the Cartesian product of the

domains of variables inY. The projection of an assignmentx = (x1, ..., xn) over a subset

Y is denoted byxY or x[Y]. We will denote byY = y (or y for short) the assignment

of values to variables inY from their respective domains. We denote functions by letters

f, h, g etc., and the scope (set of arguments) of a functionf by scope(f).
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1.2.2 Graph Concepts

A directed graphis a pairG = {V,E}, whereV = {X1, ..., Xn} is a set of vertices

(nodes), andE = {(Xi, Xj)|Xi, Xj ∈ V} is a set of edges (arcs). If(Xi, Xj) ∈ E, we say

thatXi points toXj. The degree of a vertex is the number of incident arcs to it. For each

vertexXi, pa(Xi) or pai, is the set of vertices pointing toXi in G, while the set of child

vertices ofXi, denotedch(Xi), comprises the variables thatXi points to. The family of

Xi, denotedFi, includesXi and its parent vertices. A directed graph is acyclic if it hasno

directed cycles. Anundirectedgraph is defined similarly to a directed graph, but there is

no directionality associated with the edges.

DEFINITION 1 (induced width) An ordered graphis a pair (G, d) whereG is an undi-

rected graph, andd = (X1, ..., Xn) is an ordering of the nodes. Thewidth of a nodeis the

number of the node’s neighbors that precede it in the ordering. Thewidth of an orderingd

is the maximum width over all nodes. Theinduced width of an ordered graph, denoted by

w∗(d), is the width of the induced ordered graph obtained as follows:nodes are processed

from last to first; when nodeXi is processed, all its preceding neighbors are connected.

The induced widthof a graph, denoted byw∗, is the minimal induced width over all its

orderings.

DEFINITION 2 (hypergraph) A hypergraphis a pairH = (X,S), whereS = {S1, ..., St}

is a set of subsets ofX called hyperedges.

DEFINITION 3 (tree decomposition)A tree decompositionof a hypergraphH = (X,S),

is a treeT = (V,E), whereV is a set of nodes, also called ”clusters”, andE is a set

of edges, together with a labeling functionχ that associates with each vertexv ∈ V a set

χ(v) ⊆ X satisfying:

(1) For eachSi ∈ S there exists a vertexv ∈ V such thatSi ⊆ χ(v);
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(2) (running intersection property) For eachXi ∈ X, the set{v ∈ V|Xi ∈ χ(v)}

induces a connected subtree ofT .

DEFINITION 4 (treewidth, pathwidth) Thewidth of a tree decomposition of a hypergraph

is the size of the largest cluster minus 1 (i.e.,maxv|χ(v) − 1|). Thetreewidthof a hyper-

graph is the minimum width along all possible tree decompositions. Thepathwidthis the

treewidth over the restricted class of chain decompositions.

It is easy to see that given an induced graph, the set of maximal cliques (also called

clusters) provide a tree decomposition of the graph, namelythe clusters can be connected

in a tree structure that satisfies the running intersection property. It is well known that the

induced width of a graph is identical to its treewidth [41]. For various relationships between

these and other graph parameters see [3, 11, 10].

1.2.3 Propositional Theories

Propositional variables which can take only two values{true, false} or {1, 0} are denoted

by uppercase lettersP,Q,R, .... Propositional literals (i.e., P , ¬P ) stand forP = true or

P = false, and disjunctions of literals, orclauses, are denoted byα, β, .... For instance,

α = P ∨ ¬Q ∨ R is a clause. Aunit clauseis a clause of size 1. Theresolutionoperation

over two clauses(α ∨ Q) and(β ∨ ¬Q) results in a clause(α ∨ β), thus eliminatingQ.

A formula ϕ in conjunctive normal form(CNF) is a set of clausesϕ = {α1, ..., αt} that

denotes their conjunction. The set ofmodelsor solutionsof a formulaϕ, denotedm(ϕ), is

the set of all truth assignments to all its symbols (variables) that do not violate any clause.

1.2.4 AND/OR Search Spaces

An AND/OR state space representation of a problem is defined by a 4-tuple〈S,O, Sg, s0〉

[96]. S is a set of states which can be either OR or AND states (the OR states represent

alternative ways for solving the problem while the AND states often represent problem

13



decomposition into subproblems, all of which need to be solved). O is a set of operators.

An OR operator transforms an OR state into another state, andan AND operator transforms

an AND state into a set of states. There is also a set of goal statesSg ⊆ S and a start node

s0 ∈ S.

The AND/OR state space model induces an explicit AND/OR search graph. Each

state is a node and child nodes are obtained by applicable ANDor OR operators. The

search graph includes astart node. The terminal nodes (having no children) are labeled as

SOLVED or UNSOLVED.

A solution treeof an AND/OR search graphG is a treeSG which: (1) contains the start

nodes0; (2) if n ∈ SG is an OR node then it contains one of its child nodes inG and

if n ∈ SG is an AND node it contains all its children inG; (3) all its terminal nodes are

labeled SOLVED. AND/OR graphs can have a cost associated with each arc, and the cost

of a solution tree is a function (e.g., sum-cost) of the arcs included in the tree. In this case

we may seek a solution tree with optimal (maximum or minimum)cost [96].

1.2.5 Graphical Models

Graphical models include constraint networks [34] defined by relations of allowed tuples,

(directed or undirected) probabilistic networks [104], defined by conditional probability

tables over subsets of variables, cost networks defined by cost functions, and influence di-

agrams [55] which include both probabilistic functions andcost functions (i.e., utilities)

[33]. Each graphical model comes with its typical queries, such as finding a solution (over

constraint networks), finding the most probable assignmentor updating the posterior prob-

abilities given evidence (posed over probabilistic networks), or finding optimal solutions

for cost networks. The task for influence diagrams is to choose a sequence of actions that

maximizes the expected utility. Markov random fields are theundirected counterparts of

probabilistic networks. They are defined by a collection of probabilistic functions called

potentials, over arbitrary subsets of variables.
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In general, a graphical model is defined by a collection of functionsF, over a set of vari-

ablesX, conveying probabilistic, deterministic or preferentialinformation, whose structure

is captured by a graph.

DEFINITION 5 (graphical model) A graphical modelR is a 4-tupleR = 〈X,D,F,⊗〉,

where:

1. X = {X1, ..., Xn} is a set of variables;

2. D = {D1, ..., Dn} is the set of their respective finite domains of values;

3. F = {f1, ..., fr} is a set of real-valued functions, each defined over a subset of

variablesSi ⊆ X (i.e., the scope);

4. ⊗ifi ∈ {
∏

i fi,
∑

i fi} is a combination operator.

The graphical model represents the combination of all its functions:⊗r
i=1fi.

DEFINITION 6 (cost of a full and partial assignment) Given a graphical modelR, the

cost of a full assignmentx = (x1, ..., xn) is defined byc(x) = ⊗f∈Ff(x[scope(f)]). Given

a subset of variablesY ⊆ X, the cost of a partial assignmenty is the combination of all the

functions whose scopes are included inY (FY) evaluated at the assigned values. Namely,

c(y) = ⊗f∈FY
f(y[scope(f)]). We will often abuse notation writingc(y) = ⊗f∈FY

f(y)

instead.

DEFINITION 7 (primal graph) Theprimal graphof a graphical model has the variables

as its nodes and an edge connects any two variables that appearin the scope of the same

function.

There are various queries (tasks) that can be posed over graphical models. We refer to all

asautomated reasoning problems. In general, an optimization task is a reasoning problem

defined as a function from a graphical model to a set of elements, most commonly, the real

numbers.
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DEFINITION 8 (constraint optimization problem) A constraint optimization problem (or

COP for short)is a pairP = 〈R,⇓X〉, whereR = 〈X,D,F,⊗〉 is a graphical model. If

S is the scope of functionf ∈ F and⇓S f ∈ {maxSf,minSf}, the optimization problem

is to compute⇓X ⊗r
i=1fi.

The min/max (⇓) operator is sometimes called aneliminationoperator because it re-

moves the arguments from the input functions’ scopes.

We next elaborate on the three popular graphical models of constraint networks, cost

networks and belief networks which will be the primary focusof this dissertation.

1.2.6 Constraint Networks

Constraint networks provide a framework for formulating real world problems, such as

scheduling and design, planning and diagnosis, and many more as a set of constraints

between variables. Theconstraint satisfaction(CSP) task is to find an assignment of values

to all the variables that does not violate any constraints, or else to conclude that the problem

is inconsistent. Other tasks are finding all solutions and counting the solutions.

DEFINITION 9 (constraint network) Aconstraint network (CN)is a graphical modelR =

〈X,D,C, ./〉, whereX = {X1, ..., Xn} is a set of variables, associated with discrete-

valued domainsD = {D1, ..., Dn}, and a set of constraintsC = {C1, ..., Cr}. Each

constraintCi is a pair (Si, Ri), whereRi is a relationRi ⊆ DSi
defined on a subset

of variablesSi ⊆ X. The relation denotes all compatible tuples ofDSi
allowed by the

constraint. The combination operator⊗ is join, ./. The primal graph of a constraint net-

work is called aconstraint graph. A solution is an assignment of values to all variables

x = (x1, ..., xn), xi ∈ Di, such that∀Ci ∈ C, xSi
∈ Ri. The constraint network represents

its set of solutions,./i Ci. The elimination operator in this case isprojection.

Example 1 Figure 1.1(a) shows a graph coloring problem that can be modeled by a con-

straint network. Given a map of regions, the problem is to color each region by one of the
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(b) Constraint graph

Figure 1.1: Constraint network.

given colors{red, green, blue}, such that neighboring regions have different colors. The

variables of the problem are the regions, and each one has thedomain{red,green,blue}.

The constraints are the relation ”different” between neighboring regions. Figure 1.1(b)

shows the constraint graph, and a solution(A = red,B = blue, C = green,D =

green,E = blue, F = blue,G = red) is given in Figure 1.1(a).

Propositional Satisfiability. A special case of a CSP ispropositional satisfiability(SAT).

A formulaφ in conjunctive normal form(CNF) is a conjunction of clausesα1, ..., αt, where

a clause is a disjunction ofliterals (propositions or their negations). For example,α = (P ∨

¬Q∨ ¬R) is a clause, whereP ,Q andR are propositions, andP , ¬Q and¬R are literals.

The SAT problem is to decide whether a given CNF theory has a model, i.e., a truth-

assignment to its propositions that does not violate any clause. Propositional satisfiability

can be defined as a CSP, where propositions correspond to variables, domains are{0, 1},

and constraints are represented by clauses. For example theclause(¬A ∨ B) is a relation

over its propositional variables that allows all tuples over (A,B) except(A = 1, B = 0).

1.2.7 Cost Networks

An immediate extension of constraint networks arecost networkswhere the set of functions

are real-valued cost functions, the combination and elimination operators aresummation

andminimization, respectively, and the primary constraint optimization task is to find a
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Figure 1.2: A cost network.

solution with minimum cost, namely findingminX

∑r

i=1 fi.

A special class of cost networks which has gained a lot of interest in recent years is

the Weighted CSP (WCSP) [9]. WCSP extends the classical CSP formalism with soft

constraintswhich are represented as positive integer-valued cost functions. Formally,

DEFINITION 10 (WCSP) A Weighted CSP (WCSP)is a graphical model〈X,D,F,∑〉

where each of the functionsfi ∈ F assigns ”0” (no penalty) to allowed tuples and a

positive integer penalty cost to the forbidden tuples. Namely, fi : DSi1
× ... ×DSit

→ N,

whereSi = {Si1 , ..., Sit} is the scope of the function. The optimization problem is to find a

value assignment to the variables with minimum penalty cost,namely findingminX

∑

i fi.

DEFINITION 11 (MAX-CSP) A MAX-CSP is a WCSP with all penalty costs equal to1.

Namely,∀fi ∈ F, fi : DSi1
× ...×DSit

→ {0, 1}, wherescope(fi) = Si = {Si1 , ..., Sit}.

Solving a MAX-CSP task can also be interpreted as finding an assignment that violates

the minimum number of constraints (or maximizes the number of satisfied constraints).

Many real-world problems can be formulated as MAX-CSP/WCSPs, including resource

allocation problems [15], scheduling [7], bioinformatics[27, 120], combinatorial auctions

[111, 34] or maximum satisfiability problems [26].

Example 2 Figure 1.2 shows an example of a WCSP instance with binary variables. The

cost functions are given in Figure 1.2(a). The value∞ indicates a hard constraint. Figure
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1.2(b) depicts the constraint graph. The minimal cost solution of the problem is 5 and

corresponds to the optimal assignment(A = 0, B = 1, C = 1, D = 0, E = 1).

Maximum Satisfiability. Given a set of Boolean variables and a collection of clauses

defined over subsets of variables, the goal ofmaximum satisfiability (MAX-SAT) is to

find a truth assignment that violates the least number of clauses. If each clause is associated

with a positive weight, theweighted maximum satisfiability (Weighted MAX-SAT) is to

find a truth assignment such that the combined weight of the violated clauses is minimized.

Related Work on MAX-CSP/WCSP. MAX-CSP and WCSP can also be formulated

using the semiring framework introduced by [9]. As an optimization version of constraint

satisfaction, MAX-CSP/WCSP is NP-hard. A number of complete and incomplete al-

gorithms have been developed for MAX-CSP/WCSP. Stochastic Local Search (SLS) al-

gorithms, such as GSAT [110, 114], developed for Boolean Satisfiability and Constraint

Satisfaction can be directly applied to MAX-CSP [123]. Sincethey are incomplete, SLS

algorithms cannot guarantee an optimal solution, but they have been successful in practice

on many classes of SAT and CSP problems. A number of search-based complete algo-

rithms, using partial forward checking [49] for heuristic computation, have been developed

[51, 58]. The Branch-and-Bound algorithms proposed by [65, 36] use bounded inference

to compute the guiding heuristic function. More recently, [71, 25] introduced a family of

depth-first Branch-and-Bound algorithms that maintain various levels of directional soft

arc-consistency for solving WCSPs. The optimization method,calledBacktracking with

Tree Decomposition(BTD), developed by [59] uses a tree decomposition of the graphical

model to capture the problem structure and guide the search more effectively.
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Figure 1.3: Belief network.

1.2.8 Belief Networks

Belief networks[104], also known as Bayesian networks, provide a formalism for reasoning

about partial beliefs under conditions of uncertainty. They are defined by a directed acyclic

graph over vertices representing random variables of interest (e.g., the temperature of a

device, the gender of a patient, a feature of an object, the occurrence of an event). The arcs

can signify the existence of direct causal influences between linked variables quantified by

conditional probabilities that are attached to each cluster of parents-child vertices in the

network.

DEFINITION 12 (belief networks) A belief networkis a graphical model〈X,D,PG,
∏〉,

whereX = {X1, ..., Xn} is a set of variables over multi-valued domainsD = {D1, ..., Dn}.

Given a directed acyclic graphG overX as nodes,PG = {Pi}, wherePi = {P (Xi|pa(Xi))}

are conditional probability tables (CPTs) associated with each variableXi, andpa(Xi) are

the parents ofXi in the acyclic graphG. A belief network represents a joint probability dis-

tribution overX, P (x1, ..., xn) =
∏n

i=1 P (xi|xpa(Xi)). An evidence sete is an instantiated

subset of variables. The primal graph of a belief network is called amoral graph.

Example 3 Figure 1.3(a) gives an example of a belief network over 6 variables and Fig-

ure 1.3(b) shows its moral graph. The example expresses the causal relationship between
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variables ”Season” (A), ”The configuration of an automatic sprinkler system” (B), ”The

amount of rain expected” (C), ”The amount of manual watering necessary” (D), ”The wet-

ness of the pavement” (E) and ”Whether or not the pavement is slippery” (F). The belief

network expresses the probability distributionP (A,B,C,D,E, F ) = P (A) · P (B|A) ·

P (C|A) · P (E|B,C) · P (F |E).

The most popular optimization tasks for belief networks aredefined below:

DEFINITION 13 (most probable explanation, maximum a posteriori hypothesis) Given

a belief network〈X,D,PG,
∏〉, the most probable explanation (MPE)task is to find a

complete assignment which agrees with the evidence, and which has the highest probabil-

ity among all such assignments. Namely to find an assignmentxo
1, ..., x

o
n such that:

P (xo
1, ..., x

o
n) = maxx1,...,xn

n
∏

k=1

P (xk, e|xpak
)

The more general query, calledmaximum a posteriori hypothesis (MAP), requires finding

a maximum probability assignment to a subset of hypothesis variables, given the evidence.

Both tasks arise in a wide variety of applications, such as probabilistic error correcting

coding, speech recognition, medical diagnosis, airplane maintenance, monitoring and di-

agnosis in complex distributed computer systems, and so on.MPE queries are often used

as ways ofcompletingunknown information. For example, in probabilistic decoding, the

task is to reconstruct a message (e.g., a vector of bits) sent through a noisy channel, given

the channel output. In speech recognition and image understanding, the objective is to find

a sequence of objects (e.g., letters, images) that is most likely to produce the observed

sequence such as phonemes or pixel intensities. Yet anotherexample is diagnosis, where

the task is to reconstruct the hidden state of nature (e.g., a set of possible diseases and

unobserved symptoms the patient may have, or a set of failed nodes in a computer net-

work) given observations of the test outcomes (e.g., symptoms, medical tests, or network

transactions results).
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The general MAP queries are more applicable, used in cases such as medical diagno-

sis, when we observe part of the symptoms, and can accommodate some of the tests, and

still wish to find the most likely assignments to the diseasesonly, rather than to both dis-

eases and all unobserved variables. Although the MAP query is more general, MPE is an

important special case because it is computationally simpler and thus should be applied

when appropriate. It often serves as asurrogatetask for MAP due to computational rea-

sons. Since all the above problems can be posed as MPE or MAP queries, finding efficient

algorithms clearly has a great practical value.

Related Work on MPE. It is known that solving the MPE task is NP-hard [22]. Com-

plete algorithms use either the cycle cutset technique (also called conditioning) [104], the

join-tree-clustering technique [115, 60], or the bucket-elimination scheme [31]. However,

these methods work well only if the network is sparse enough to allow small cutsets or small

clusters. The complexity of algorithms based on the cycle cutset idea is time exponential

in the cutset size but require only linear space. The complexity of join-tree-clustering and

bucket-elimination algorithms are both time and space exponential in the cluster size that

equals the induced-width of the network’s moral graph. Following Pearl’s stochastic sim-

ulation algorithms [104], the suitability of Stochastic Local Search (SLS) algorithms for

MPE was studied in the context of medical diagnosis applications [105] and more recently

in [64, 102, 57]. Best-First search algorithms were proposed[116] as well as algorithms

based on linear programming [113]. Some extensions are alsoavailable for the task of find-

ing thek most-likely explanations [77, 118]. More recently, [65, 86] introduced a collection

of Branch-and-Bound algorithms that use bounded inference, in particular the Mini-Bucket

approximation [42], for computing a heuristic function that guides the search.
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1.3 Search and Inference for Optimization in Graphical

Models

It is convenient to classify algorithms that solve optimization problems in graphical models

as eithersearch(e.g., depth-first Branch-and-Bound, best-first search) orinference(e.g.,

variable elimination, join-tree clustering). Search is time-exponential in the number of

variables, yet it can be accomplished in linear memory. Inference exploits the graph struc-

ture of the model and can be accomplished in time and space exponential in the treewidth

of the problem. When the treewidth is big, inference must be augmented with search to

reduce the memory requirements. We next overview these two classes of algorithms.

1.3.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying algorithmic framework for dynamic programming

algorithms applicable to probabilistic and deterministicreasoning [31]. Many algorithms

for probabilistic inference, such as belief updating, finding the most probable explanation,

finding the maximum a posteriori hypothesis, as well as algorithms for constraint optimiza-

tion, such as MAX-CSP or WCSP, can be expressed as bucket elimination algorithms.

The input to the Bucket Elimination algorithm, described here by Algorithm 1, is an op-

timization problem, namely a collection of functions or relations (e.g., clauses in proposi-

tional satisfiability, constraints or cost functions, or conditional probability tables for belief

networks). For simplicity and without loss of generality weconsider an optimization prob-

lem for which the elimination and combination operators areminimization and summation,

respectively. Given a variable ordering, the algorithm partitions the functions into buckets,

each associated with a single variable. A function is placedin the bucket of its argument

that appears latest in the ordering. The algorithm has two phases. During the first, top-

down phase, it processes each bucket, from last to first by a variable elimination procedure

that computes a new function which is placed in a lower bucket. The variable elimination
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Algorithm 1 : BE: Bucket Elimination
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, ordering of the variablesd.
Output : Minimal cost solution toP and the optimal assignment.
// Initialize
Partition the functions inF into bucket1, ...,bucketn, wherebucketi contains all functions whose highest variable isXi. Let1
S1, ..., Sj be the scopes of the functions (original and intermediate) inthe processed bucket.
// Backward
for p← n down-to1 do2

Let h1, h2, ..., hj be the functions inbucketp3
if Xp is instantiated(Xp = xp) then4

AssignXp = xp to eachhi and put each resulting each into its appropriate bucket.5

else6
Generate the functionhp : hp = minXp

∑j
i=1 hi.7

Add hp to the bucket of the largest-index variable inscope(hp), wherescope(hp) =
⋃p

i=1 Si − {Xp}.8

// Forward
Assign a value to each variable in the orderingd s.t. the combination of functions in each bucket is minimized.9
return the function computed in the bucket of the first variable and the optimizing assignment.10

procedure computes the sum of all cost functions and minimizes over the bucket’s vari-

able. During the second, bottom-up phase, the algorithm constructs a solution by assigning

a value to each variable along the ordering, consulting the functions created during the

top-down phase.

Bucket Elimination can be viewed as message passing from leaves to root along a bucket

tree [66]. Let{B(X1), ..., B(Xn)} denote a set of buckets, one for each variable, along an

orderingd = (X1, ..., Xn). A bucket treeof a graphical modelR has buckets as its nodes.

BucketB(X) is connected to bucketB(Y ) if the function generated in bucketB(X) by

BE is placed inB(Y ). The variables ofB(X), are those appearing in the scopes of any of

its new and old functions. Therefore, in a bucket tree, everyvertexB(X) other than the

root, has one parent vertexB(Y ) and possibly several child verticesB(Z1), ..., B(Zt).

The structure of the bucket tree can also be extracted from the induced-ordered graph of

R alongd using the following definition.

DEFINITION 14 (bucket tree [31]) Let G∗d be the induced graph alongd of a graphical

modelR whose primal graph isG. The vertices of the bucket tree are then buckets each

associated with a variable. Each vertexB(X) points toB(Y ) (or, B(Y ) is the parent of

B(X)) if Y is the latest neighbor ofX that appear beforeX in G∗d. Each variableX and

its earlier neighbors in the induced graph are the variablesof bucketB(X). If B(Y ) is the
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Algorithm 2 : MBE(i): Mini-Bucket Elimination
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, ordering of the variablesd, parameteri.
Output : Lower-bound on the minimal cost solution toP , an assignment to all the variables, and the ordered augmented

buckets.
// Initialize
Partition the functions inF into bucket1, ...,bucketn, wherebucketi contains all functions whose highest variable isXi. Let1
S1, ..., Sj be the scopes of the functions (original and intermediate) inthe processed bucket.
// Backward
for p← n down-to1 do2

Let h1, h2, ..., hj be the functions inbucketp3
if Xp is instantiated(Xp = xp) then4

AssignXp = xp to eachhi and put each resulting each into its appropriate bucket.5

else6
Generate ani-partitioningQ′ = {Q1, ..., Qt}.7
foreachQl ∈ Q′ do8

Let hl1 , ..., hlt be the functions inQl.9
Generate the functionhl : hl = minXp

∑t
i=1 hli .10

Add hl to the bucket of the largest-index variable inscope(hl), where11
scope(hl) =

⋃t
i=1 scope(hli )− {Xp}.

// Forward
Assign a value to each variable in the orderingd s.t. the combination of functions in each bucket is minimized.12
return the function computed in the bucket of the first variable and the optimizing assignment.13

parent ofB(X) in the bucket tree, then the separator ofX andY is the set of variables

appearing inB(X) B(Y ) , denotedsep(X,Y ).

THEOREM 1 (complexity [31]) The time and space complexity of bucket elimination ap-

plied along orderd isO(r · k(w∗+1)) andO(n · kw∗
) respectively, wherew∗ is the induced

width of the primal graph along the orderingd, r is the number of functions,n is the

number of variables andk bounds the domain size.

The main drawback of bucket elimination algorithms is that they require too much space

for storing intermediate functions.Mini-Bucket Elimination(MBE) is an approximation

designed to avoid the space and time problem of full bucket elimination [42] by partition-

ing large buckets into smaller subsets, calledmini-bucketswhich are processed indepen-

dently. Here is the rationale. Leth1, ..., hj be the functions inbucketp. WhenBucket

Eliminationprocessesbucketp, it computes the functionhp: hp = minXp

∑j

i=1 hi, where

scope(hp) = ∪j
i=1Si − {Xp}. The Mini-Bucketalgorithm, on the other hand, creates a

partitionQ′ = {Q1, ..., Qt} where the mini-bucketQl contains the functionshl1 , ..., hlt .

The approximation processes each mini-bucket (by using thecombination and elimination
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operators) separately, therefore computinggp =
∑t

l=1minXp

∑t

i=1 hli. Clearly, gp is a

lower bound onhp, namelygp ≤ hp (for maximization,gp is an upper bound). Therefore,

the bound computed in each bucket yields an overall bound on the cost of the solution.

The quality of the bound depends on the degree of partitioning into mini-buckets. Given

a bounding parameteri (called herei-bound), the algorithm creates ani-partitioning, where

each mini-bucket includes no more thani variables. Algorithm MBE(i), described by Al-

gorithm 2, is parameterized by thisi-bound. It outputs not only a lower bound on the cost

of the optimal solution and an assignment, but also the collection of the augmented buck-

ets. By comparing the bound computed by MBE(i) to the cost of the assignment output

by MBE(i), we can always have an interval bound on the error for that given instance. For

example, if MBE(i) provides a lower bound on the optimal assignment in its firstbucket,

while the cost of the assignment generated yields an upper bound.

The complexity of the algorithm is time and spaceO(exp(i)) wherei < n. When thei-

bound is large enough (i.e., i ≥ w∗), the Mini-Bucket algorithm coincides with full bucket

elimination. In summary,

THEOREM 2 (complexity [42]) Algorithm MBE(i) generates an interval bound of the op-

timal solution, and its time and space complexity areO(r · ki) andO(r · ki−1) respectively,

wherer is the number of functions andk bounds the domain size.

Example 4 Figures 1.4(b) and 1.4(c) illustrate how algorithms BE and MBE(i) for i = 3

process the cost network in Figure 1.4(a) along the ordering(A,E,D,C,B). We assume

a minimization task.

Algorithm BE records the new functionshB(A,C,D,E), hC(A,D,E), hD(A,E), and

hE(A). Then, in the bucket ofA, it computes the cost of the optimal solution,opt =

minA(f(A) + hE(A)). Subsequently, an optimal assignment(A = a0;B = b0;C =

c0;D = d0;E = e0) is computed for each variable fromA to B by selecting a value that

minimizes the sum of functions in the corresponding bucket,conditioned on the previously
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Figure 1.4: Execution of BE and MBE(i).

assigned values. Namely,a0 = argminA(f(A) + hE(A)), e0 = argminEh
D(a0, E),

d0 = argminDf(a0, D, e0), and so on.

The approximation MBE(3) splits bucketB into two mini-buckets, each containing no

more than 3 variables, and generateshB(C,E) and hB(A,D). A lower bound on the

optimal value is computed byL = minA(f(A) + hE(A) + hD(A)). A suboptimal tuple is

computed by MBE(3) similarly to the optimal tuple computed by BE, by assigninga value

to each variable that minimizes the sum of cost functions in the corresponding bucket, given

the assignments to the previous variables. The value of thisassignment is an upper bound

on the optimal value.

1.3.2 Systematic Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization problems in graphical models fol-

low a Branch-and-Boundschema. These algorithms perform a depth-first traversal onthe

search tree defined by the problem, where internal nodes represent partial assignments and

leaf nodes stand for complete ones. Throughout the search, Branch-and-Bound maintains a

global bound on the cost of the optimal solution, which corresponds to the cost of the best

full variable instantiation found thus far. At each node, the algorithm computes a heuristic
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estimate of the best solution extending the current partialassignment and prunes the re-

spective subtree if the heuristic estimate is not better than the current global bound (that is

- not greater for maximization problems, not smaller for minimization problems).

The algorithm requires only a limited amount of memory and can be used as an anytime

scheme, namely whenever interrupted, it outputs the best solution found so far.

The effectiveness of the Branch-and-Bound search method depends on the quality of

the heuristic function. Therefore, one of the most important issues in heuristic search is

obtaining a good heuristic function. Often there is a trade-off between the quality of the

heuristic and the complexity of its computation. In the following section we will provide

an overview of a general scheme for generating heuristic estimates automatically from the

functional specification of the problem, based on the Mini-Bucket approximation.

Mini-Bucket Heuristics

The idea was first introduced in [65] and showed that the intermediate functions recorded

by the Mini-Bucket algorithm can be used to assemble a heuristic function that estimates

the cost of the completion of any partial assignment to a fullsolution, and therefore can

serve as an evaluation function that can guide search. The following definition summarizes

an automatic procedure that can generate heuristic functions for any partial assignment.

DEFINITION 15 (mini-bucket heuristic [65]) Given an ordered set of augmented buckets

generated by the Mini-Bucket algorithm MBE(i) along the orderingd = (X1, ..., Xp, ..., Xn)

and given a partial assignmentx̄p = (x1, ..., xp), the heuristic functionh(x̄p) is defined as

the combination of all the intermediatehk
j function that satisfy the following two properties:

1. They are generated in bucketsp+ 1 throughn,

2. They reside in buckets1 throughp.

Following [65], consider for illustration the cost networkshown in Figure 1.4(a), and

consider a given variable orderingd = (A,E,D,C,B) and the bucket and mini-buckets
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configuration in the output, as displayed in Figures 1.4(b) and 1.4(b), respectively. Let

us assume, without loss of generality, that variablesA, E andD have been instantiated

during search (see Figure 1.5,a = 0, e = 1, d = 1). Let f ∗(a, e, d) be the cost of the best

completion of the partial assignment(A = a,E = e,D = d). By definition,

f ∗(a, e, d) = minb,c(f(a) + f(a, c) + f(a, b) + f(b, c, e) + f(a, b, d))

= f(a) +minb,c(f(a, c) + f(a, b) + f(b, c, e) + f(a, b, d))

= g(a, e, d) + h∗(a, e, d)

where

g(a, e, d) = f(a)

h∗(a, e, d) = minb,c(f(a, c) + f(a, b) + f(b, c, e) + f(a, b, d))
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We can derive:

h∗(a, e, d) = minb,c(f(a, c) + f(a, b) + f(b, c, e) + f(a, b, d))

= minc(f(a, c) +minb(f(a, b) + f(b, c, e) + f(a, b, d))

= minc(f(c, e) + hB(a, d, c, e))

= hC(a, d, e)

where

hB(a, c, d, e) = minb(f(b, c, e) + f(a, b, d) + f(a, b))

hC(a, d, e) = minc(f(a, c) + hB(a, c, d, e))

Interestingly, the functionshB(a, c, d, e) andhC(a, d, e) are already produced by the

bucket elimination algorithm BE (see Figure 1.4(b)). Specifically, the functionhB(a, c, d, e),

generated inbucketB, is the result of a minimization operation over variableB. In practice,

however, this function may be too hard to compute as it requires processing a function on

four variables and recording a function on three variables.So, it can be replaced by an ap-

proximation, where the minimization is split into two parts. This yields a function, which

we denoteh(a, e, d), that is alower boundonh∗(a, e, d), namely,

h∗(a, e, d) = minc(f(a, c) +minb(f(b, c, e) + f(a, b) + f(a, b, d)))

≥ minc(f(a, c) +minbf(b, c, e) +minb(f(a, b) + f(a, b, d)))

= minc(f(a, c) + hB(c, e) + hB(a, d))

= hB(a, d) +minc(f(a, c) + hB(c, e))

= hB(a, d) + hC(a, e)

, h(a, e, d)
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where

hB(c, e) = minbf(b, c, e)

hB(a, d) = minb(f(a, b) + f(a, b, d))

hC(a, e) = minc(f(a, c) + hB(c, e))

Notice now that the functionshB(c, e), hB(a, d) andhC(a, e) were already computed

by the mini-bucket algorithm MBE(i) (see Figure 1.4(c)). Using the lower bound function

h(a, e, d), we can now define the functionf(a, e, d) that provides a lower bound on the

exact valuef ∗(a, e, d). Namely, replacingh∗(a, e, d) by h(a, e, d) in f ∗(a, e, d), we get:

f(a, e, d) = g(a, e, d) + h(a, e, d) ≤ f ∗(a, e, d)

It was shown that:

THEOREM 3 (monotonicity and admissibility [65]) For every partial assignment̄xp =

(x1, ..., xp) of the firstp variables, the heuristic functionh(x̄p) is admissible and monotonic.

We next elaborate on how to use the mini-bucket heuristic to guide depth-first Branch-

and-Bound and best-first search algorithms. These algorithms were first presented in [65].

The tightness of the bound generated by the Mini-Bucket approximation depends on its

i-bound. Larger values ofi generally yield better bounds, but require more computation.

Since the Mini-Bucket algorithm is parameterized byi, when using the heuristics in each

of the search methods, we get an entire class of Branch-and-Bound search and Best-First

search algorithms that are parameterized byi and which allow a controllable trade-off

between preprocessing and search, or between heuristic strength and its overhead.

Algorithms 3 and 4 show Branch-and-Bound with Mini-Bucket heuristics (BBMB(i))

and Best-First search with Mini-Bucket heuristics (BFMB(i)), developed in [65]. Both

algorithms have a preprocessing step of running the Mini-Bucket algorithm that produces
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Algorithm 3 : BBMB(i): Branch-and-Bound search with Mini-Bucket heuristics
Input : An optimization problemP = 〈X,D,F,∑,min〉, variable ordering

d = (X1, ..., Xp, ..., Xn), time limit.
Output : Minimal cost solution toP.
INITIALIZE : Run MBE(i) algorithm generating a set of ordered augmented buckets1

and a lower bound on the minimal cost. Initialize global upper boundUB to∞. Set
p to 0.
SEARCH: Execute the following procedure until variableX1 has no legal values left2

or until out of time, in which case output the current best solution
EXPAND: Given a partial instantiation̄xp, compute all partial assignments3

x̄p+1 = (x̄p, v) for each valuev of Xp+1. For each nodēxp+1 compute its heuristic
valuef(x̄p+1) = g(x̄p+1) + h(x̄p+1). Discard those assignments for which
f(x̄p+1) ≥ UB. Add the remaining assignments to the search tree as children of
x̄p.
FORWARD: If Xp+1 has no legal values left, goto BACKTRACK. Otherwise, let4

x̄p+1 = (x̄p, v) be the best extension tōxp according tof . If p+ 1 = n, then set
UB = f(x̄n) and goto BACKTRACK. Otherwise removev from the list of legal
values. Setp = p+ 1 and goto EXPAND.
BACKTRACK : If p = 1, Exit. Otherwise setp = p− 1 and repeat from the5

FORWARD step.

a set of ordered augmented buckets.

Branch-and-Bound Search with Mini-Bucket Heuristics

BBMB(i) traverses the search space in a depth-first manner, instantiating variables from

first to last. Throughout the search, the algorithm maintains a global bound on the cost of

the optimal solution, which corresponds to the cost of the best full variable instantiation

found thus far. When the algorithm processes variableXp, all the variables precedingXp

in the ordering are already instantiated, so it can computef(x̄p−1, Xp = v) = g(x̄p−1, v) +

h(x̄p−1, v) for each extensionXp = v. The algorithm prunes all valuesv whose heuristic

evaluation functionf(x̄p−1, Xp = v) is greater or equal than the current upper bound,

because such a partial assignment(x1, ..., xp−1, v) cannot be extended to an improved full

assignment. The algorithm assigns the best valuev to variableXp and proceeds to variable

Xp+1, and when variableXp has no values left, it backtracks to variableXp−1. Search

terminates when it reaches a time bound or when the first variable has no values left. In the
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Algorithm 4 : BFMB(i): Best-First search with Mini-Bucket heuristics
Input : An optimization problemP = 〈X,D,F,∑,min〉, variable ordering

d = (X1, ..., Xp, ..., Xn), time limit.
Output : Minimal cost solution toP.
INITIALIZE : Run MBE(i) algorithm generating a set of ordered augmented buckets1

and a lower bound on the minimal cost. Insert a dummy nodex̄0 in the setL of open
nodes.
SEARCH:2

If out of time, output Mini-Bucket assignment3

Select and remove a nodex̄p with the best heuristic valuef(x̄p) from the set of4

open nodesL.
If p = n thenx̄p is an optimal solution. Exit.5

Expandx̄p by computing all child nodes(x̄p, v) for each valuev in the domain of6

Xp+1. For each nodēxp+1 compute its heuristic value
f(x̄p+1) = g(x̄p+1) + h(x̄p+1).
Add all nodes(x̄p, v) toL and goto SEARCH.7

latter case, the algorithm has found an optimal solution.

Best-First Search with Mini-Bucket Heuristics

Algorithm BFMB(i) maintains a list of open nodes. Each node corresponds to a partial

assignment̄xp and has an associated heuristic valuef(x̄p). The basic step of the algorithm

consists of selecting an assignmentx̄p from the list of open nodes having the best heuristic

value (that is - the highest value for maximization problems; the smallest value for mini-

mization problems)f(x̄p), expanding it by computing all partial assignments(x̄p, v) for all

valuesv of Xp+1, and adding them to the list of open nodes.

Since the generated mini-bucket heuristics are admissibleand monotonic, their use

within Best-First search yieldsA∗ type algorithms whose properties are well understood.

The algorithm is guaranteed to terminate with an optimal solution. When provided with

more powerful heuristics, it explores a smaller search space, but otherwise it requires sub-

stantial space. It is known that Best-First search algorithms are optimal. Namely, when

given the same heuristic information, Best-First search is the most efficient algorithm in

terms of the size of the search space it explores [40]. In particular, Branch-and-Bound will
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expand any node that is expanded by Best-First search (up to some tie breaking conditions),

and in many cases it explores a larger space. Still, Best-First search may occasionally fail

because of its memory requirements, or because it has to maintain a large subset of open

nodes during search, or because of tie breaking rules at the last frontier of nodes having

evaluation function value that equals the optimal solution.

Impact of the Mini-Bucket i-bound

For any accuracy parameteri, we can determine the space complexity of Mini-Bucket

preprocessing in advance. This can be done by computing signatures (i.e., arguments) of

all intermediate functions, without computing the actual functions. Based on the signatures

of original and intermediate functions, we can compute the total space needed. Knowing

the space complexity, we can estimate the time complexity. Thus given the time and space

at our disposal, we can select the parameteri that would fit. However, the cost-effectiveness

of the heuristic produced by Mini-Bucket preprocessing may not be predicted a priori. It

was observed [65] that in general, as the problem graph is more dense, higher levels of

Mini-Bucket heuristic become more cost-effective.

1.3.3 Branch-and-Bound Search for Weighted CSP

The area of Weighted CSP has seen substantial advances in the last years by exploiting

and extending local consistency to cost functions, calledsoft local consistency. Several

increasingly stronger local consistency algorithms were introduced (soft node and arc con-

sistency [72], full directional arc consistency (DAC/FDAC) [71], existential directional arc

consistency (EDAC) [25]), leading to increasingly efficientBranch-and-Bound algorithms.

As in the classical case of constraint propagation, enforcing soft local consistency on

the initial problem provides, in polynomial time, anequivalentproblem defining the same

cost distribution on complete assignments, with possible smaller domains. It also produces

a lower bounding heuristic evaluation function that can be exploited during search. Con-
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sequently, the OR Branch-and-Bound algorithm maintaining FDAC/EDAC during search

introduced recently in [71, 72, 25] was demonstrated to be one of the best performing

algorithms for solving binary WCSPs.

Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistency on the initial problem provides

in polynomial time anequivalentproblem defining the same cost distribution on complete

assignments, with possible smaller domains [71, 72, 25].

Assume a binary Weighted CSPR = 〈X,D,C〉, whereX = {X1, ..., Xn} andD =

{D1, ..., Dn} are the variables and their corresponding domains.C is the set of binary and

unary cost functions (or soft constraints). A binary soft constraintCij(Xi, Xj) ∈ C (orCij

in short) isCij(Xi, Xj) : Di × Dj → N. A unary soft constraintCi(Xi) ∈ C (or Ci in

short) isCi(Xi) : Di → N. We assume the existence of a unary constraintCi(Xi) for every

variable, and a zero-arity constraint, denoted byC∅. If no such constraints are defined, we

can always define dummy ones, asCi(xi) = 0, ∀xi ∈ Di orC∅ = 0. We denote by>, the

maximum allowed cost (e.g., > = ∞). The cost of a tuplēx = (x1, ..., xn), denoted by

cost(x̄), is defined by:

cost(x̄) =
∑

Cij∈C
Cij(x̄[i, j]) +

∑

Ci∈C
CXi

(x̄[i]) + C∅

For completeness, we define next some local consistencies inWCSP, in particularnode,

arc anddirectional arc consistency, as in [71, 72]. We assume that the set of variables

X is totally ordered. We note that there are several stronger local consistencies which

were defined in recent years, such asfull directional arc consistency(FDAC) [71, 72] or

existential directional arc consistency(EDAC) [25].

DEFINITION 16 (soft node consistency [71, 72])LetR = 〈X,D,C〉 be a binary WCSP.

(Xi, xi) is star node consistent (NC∗) if C∅ + Ci(xi) < >. VariableXi is NC∗ if: i) all
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its values areNC∗ and ii) there exists a valuexi ∈ Di such thatCi(xi) = 0. Valuexi is a

supportfor variableXi. R isNC∗ if every variable isNC∗.

DEFINITION 17 (soft arc consistency [71, 72])Let R = 〈X,D,C〉 be a binary WCSP.

(Xi, xi) is arc consistent (AC) with respect to constraintCij if there exists a valuexj ∈ Dj

such thatCij(xi, xj) = 0. Valuexj is called asupportfor the valuexi. VariableXi is AC if

all its values are AC wrt. every binary constraint affectingXi. R isAC∗ if every variable

is AC andNC∗.

DEFINITION 18 (soft directional arc consistency [71, 72])LetR = 〈X,D,C〉 be a bi-

nary WCSP.(Xi, xi) is directional arc consistent (DAC) with respect to constraint Cij,

i < j, if there exists a valuexj ∈ Dj such thatCij(xi, xj) +Cj(xj) = 0. Valuexj is called

a full supportof xj. VariableXi is DAC is all its values are DAC wrt. everyCij, i < j. R

isDAC∗ if every variable is DAC andNC∗.

For our purpose, we point out that enforcing such local consistencies is done by the re-

peated application of atomic operations calledarc equivalence preserving transformations

[20]. This process may increase the value ofC∅ and the unary costsCi(xi) associated with

domain values. The zero-arity cost functionC∅ defines astrong lower boundwhich can be

exploited by Branch-and-Bound algorithms while the updatedCi(xi) can inform variable

and value orderings [71, 72, 25].

If we consider two cost functionsCij(Xi, Xj), defined over variablesXi andXj, and

Ci(Xi), defined over variableXi, a valuexi ∈ Di and a costα, we can addα toCi(xi) and

subtractα from everyCij(xi, xj) for all xj ∈ Dj. Simple arithmetic shows that the global

cost distribution is unchanged while costs may have moved from the binary to the unary

level (if α > 0, this is called aprojection) or from the unary to the binary level (ifα < 0,

this is called anextension). In these operations, any cost above>, the maximum allowed

cost, can be considered as infinite and is thus unaffected by subtraction. If no negative cost

appears and if all costs above> are set to>, the remaining problem is always a valid and
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Figure 1.6: Four equivalent WCSPs (for> = 4) [71].

equivalent WCSP. The same mechanism, at the unary level, can beused to move costs from

theCi(Xi) toC∅. Finally, any value such thatCi(xi)+C∅ is equal to> can be deleted. For

a detailed description of these operations, we refer the reader to [71, 72, 25].

Example 5 Figure 1.6(a) shows a WCSP with a sets of costs[0, ..., 4] and with> = 4.

The network has three variablesX = {X,Y, Z}, each with values{a, b}. There are 2 bi-

nary constraintsC(X,Z),C(Y, Z) and two non-trivial unary constraintsC(X) andC(Z).

Unary costs are depicted inside their domain value. Binary costs are depicted as labeled

edges connecting the corresponding pair of values. Zero costs are not shown. Initially,C∅

is set to 0. One optimal solution is(X = b, Y = b, Z = b), with cost 2.

The problem in Figure 1.6(a) is notNC∗ sinceZ has no support. To enforceNC∗

we must force a support forZ by projectingCZ(Z) ontoC∅. The resulting problem in

Figure 1.6(b) isNC∗ but notAC∗. To enforceAC∗, it suffices to enforce a support for

(Y, a) and(Z, a), as follows: we projectCY Z(Y, Z) over(Y, a) by adding 1 toCY (a) and

subtracting 1 fromCY Z(a, a) andCY Z(a, b), and similarly projectCXZ(X,Z) over(Z, a).

Consequently, we get problem 1.6(d) which isAC∗. Observe also that problem 1.6(b) is

notDAC∗ for order (X,Y, Z) since(Y, a) has no full support onZ. Problem 1.6(c) is an

equivalentDAC∗ problem.

There is a strong relation between directional arc consistency and mini-buckets. It was

shown in [71] that given a WCSP with> =∞, and a variable ordering, the lower bound in-
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duced by mini-buckets involving at most 2 variables is the same as the lower bound induced

byC∅ after the problem is made directional arc consistent. However, the mini-bucket com-

putation provides only a lower bound while DAC enforcing provides both a lower bound

and a directional arc consistent equivalent problem. All the work done to compute the

lower bound is captured in this problem which offers the opportunity to perform incremen-

tal updates of the lower bound.
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Chapter 2

Systematic versus Non-systematic

Search for Most Probable Explanations

2.1 Introduction

As noted in Chapter 1, the Most Probable Explanation (MPE) task in Bayesian networks

arises in a wide variety of applications, such as probabilistic error correcting coding, speech

recognition, genetic linkage analysis, medical diagnosis, airplane maintenance, monitoring

and diagnosis in complex distributed computer systems. Forexample, in probabilistic de-

coding, the task is to reconstruct a message (e.g., a vector of bits) sent through a noisy

channel, given the channel output. In speech recognition and image understanding, the ob-

jective is to find a sequence of objects (e.g., letters, images) that is most likely to produce

the observed sequence such as phonemes or pixel intensities.

A Branch-and-Bound with mini-bucket heuristics (BBMB(i)) was introduced in [65]

(see also Chapter 1). The algorithm uses the functions generated by Mini-Bucket Elimina-

tion MBE(i) in a pre-processing step to create a heuristic function that guides the search.

In this chapter we introduce algorithm BBBT(i) [36] which explores the feasibility of

generating the mini-bucket heuristicsduring search, rather than in apre-processing man-

ner. This can yield more accurate heuristics and allow dynamic variable ordering - a feature

that can have tremendous effect on search. The dynamic generation of these heuristics is

facilitated by an extension of Mini-Bucket Elimination to Mini-Bucket Tree Elimination
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(MBTE(i)), a partition-based approximation defined over cluster-trees described in [36].

MBTE(i) outputs multiple (lower or upper) bounds for each possiblevariable and value

extension at once, which is much faster than running MBE(i) n times, one for each vari-

able, to generate the same result. BBBT(i) applies the MBTE(i) heuristic computation

at each node of the search tree. Clearly, the algorithm has a much higher time overhead

compared with BBMB(i) for the samei-bound, but it can prune the search space much

more effectively, hopefully yielding overall superior performance for some classes of hard

problems. Preliminary tests of the algorithms for the MAX-CSP task in constraint satisfac-

tion showed that, on a class of hard enough problems, BBBT(i) with the smallesti-bound

(i=2) is cost-effective [36]. In this chapter we extend the algorithm to solving the MPE

task over Bayesian networks. We will compare the performanceof BBBT(i) and BBMB(i)

against two incomplete schemes of stochastic local search and belief propagation adapted

to optimization tasks.

Stochastic Local Search (SLS) is a class of incomplete approximation algorithms which,

unlike complete algorithms, are not guaranteed to find an optimal solution, but as shown

during the last decade, are often far superior to complete systematic algorithms on CSP

and SAT problems. Some of these SLS algorithms are applied directly on the Bayesian

network and some translate the problem into a weighted SAT problem first and then apply

a weighted MAX-SAT algorithm.

The Iterative Join-Graph Propagation (IJGP(i)) methods apply Pearl’s belief propaga-

tion algorithm to loopy join-graphs of the belief network [39].

Contribution

The contribution of this chapter is an extensive empirical study of highly competitive ap-

proaches for solving the MPE task in Bayesian networks introduced in recent years. We

compare two depth-first Branch-and-Bound algorithms, BBBT(i) and BBMB(i), that ex-

ploit bounded inference for heuristic guidance on the one hand, against some of the best-
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known incomplete approximation algorithms, such as SLS andgeneralized iterative belief

propagation adapted for the MPE task, on the other.

Our empirical results on various random and real-world benchmarks show that BBMB(i)

and BBBT(i) do not dominate one another. While BBBT(i) can sometimes significantly

improve over BBMB(i), in many other instances its (quite significant) pruning power does

not outweigh its time overhead. Both algorithms are powerfulin different cases. In gen-

eral when largei-bounds are effective BBMB(i) is more powerful, however when space

is at issue BBBT(i) with small i-bound is often more powerful. We also show that SLS

algorithms are overall inferior to BBBT(i) and BBMB(i), except when the domain size is

small. The superiority of BBBT(i) and BBMB(i) is especially significant because unlike

local search they can prove optimality if given enough time.Finally, we demonstrate that

generalized belief propagation algorithms are often superior to the SLS class as well.

The research presented in this chapter is based in part on [86].

Chapter Outline

The chapter is organized as follows. Section 2.2 presents relevant recent work on cluster-

tree and mini-cluster elimination underlying the Branch-and-Bound algorithms. Section

2.3 illustrates the process of using bounded inference to guide Branch-and-Bound search.

Section 2.4 overviews current state-of-the-art non-systematic search approaches for solv-

ing the MPE task. In Section 2.5 we provide our experimental results, while Section 2.6

provides concluding remarks.

2.2 Background

DEFINITION 19 (cluster-tree decomposition [50])LetB = 〈X,D, G,P〉 be a belief net-

work. A cluster-tree decompositionfor B is a triple 〈T, χ, ψ〉, whereT = (V,E) is a

tree, andχ andψ are labeling functions which associate with each vertexv ∈ V two sets,
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χ(v) ⊆ X andψ(v) ⊆ P.

1. For each functionPi ∈ P, there isexactlyone vertexv ∈ V such thatpi ∈ ψ(v),

andscope(pi) ⊆ χ(v).

2. For each variableXi ∈ X, the set{v ∈ V|Xi ∈ χ(v)} induces a connected subtree

of T (the running intersection property).

Let (u, v) be an edge of a cluster-tree decomposition, theseparatorof u andv is defined

assep(u, v) = χ(u) ∩ χ(v); the eliminatorof u andv is defined aselim(u, v) = χ(u) −

sep(u, v). Thehyperwidthis hw = maxv∈V |ψ(v)|.

In addition to finding the global optimum (i.e., MPE), of particular interest to us is

the special case of finding, for each assignmentXi = xi, the highest probability of the

complete assignment that agrees withXi = xi. Formally,

DEFINITION 20 (singleton optimization) Given a belief network〈X,D,P,Π〉, singleton

optimizationis the task of finding the best cost extension to every singleton tuple(Xi, xi),

namely findingz(Xi) = maxX−{Xi}(
∏n

k=1 Pk) for each variableXi ∈ X.

The common exact algorithms for Bayesian inference are join-tree clustering defined

over tree decompositions [73] and variable elimination algorithms [32]. The variant we use

was presented for constraint networks [36] and we overview it next.

2.2.1 Cluster-Tree Elimination

Algorithm Cluster-Tree Elimination (CTE) [36] provides a unifying space conscious de-

scription of join-tree clustering algorithms. It is a message-passing scheme that runs on the

cluster-tree decomposition, well-known for solving a widerange of automated reasoning
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Procedure CTE
Input: A Bayesian networkBN , a cluster-tree decomposition〈T, χ, ψ〉.
Output: A set of functionszi as a solution to the singleton-optimality task.
Repeat

1. Select an edge(u, v) such thatm(u,v) has not been computed andu has received
messages

from all adjacent vertices other thanv.
2. m(u,v) ← maxelim(u,v)

∏

g∈cluster(u),g 6=m(v,u)
g (where cluster(u) = ψ(u) ∪

{m(w,u)|(w, u) ∈ T}).
Until all messages have been computed.
Return for eachi, z(Xi) = maxχ(u)−Xi

∏

g∈cluster(u)g, such thatXi ∈ cluster(u).

Figure 2.1: Algorithm cluster-tree elimination (CTE) for singleton-optimality task.

problems. We will briefly describe its partition-based mini-clustering approximation that

forms the basis for our heuristic generation scheme.

CTE provided in Figure 2.1 computes a solution to the singleton functionsz(Xi) in

a Bayesian network. It works by computingmessagesthat are sent along edges in the

tree. Messagem(u,v) sent from vertexu to vertexv, can be computed as soon as all

incoming messages tou other thanm(v,u) have been received. As leaves compute their

messages, their adjacent vertices also qualify and computation goes on until all messages

have been computed. The set of functions associated with a vertex u augmented with

the set of incoming messages is called acluster, cluster(u) = ψ(u) ∪(w,u)∈T m(w,u).

A messagem(u,v) is computed as the product of all functions incluster(u) excluding

m(v,u) and the subsequent elimination of variables in the eliminator of u andv. Formally,

m(u,v) = maxelim(u,v)(
∏

g∈cluster(u),g 6=m(v,u)
g). The computation is done by enumeration,

recording only the output message. The algorithm terminates when all messages are com-

puted. The functionsz(Xi) can be computed in any cluster that containsXi by eliminating

all variables other thanXi.

It was shown [36] that the complexity of CTE is timeO(r · (hw+dg) ·dtw+1) and space

O(r · ds), wherer is the number of vertices in the cluster-tree decomposition, hw is the

hyperwidth,dg is the maximum degree (i.e., number of adjacent vertices) in the tree,tw

43



is the treewidth,d is the largest domain size ands is the maximum separator size. This

assumes that step 2 is computed by enumeration.

There is a variety of ways in which a cluster-tree decomposition can be obtained. We

will choose a particular one calledbucket-tree decomposition, inspired by viewing the

Bucket Elimination algorithm as message passing along a tree[36]. Since a bucket-tree

is a special case of a cluster-tree, we define the CTE algorithmapplied to a bucket-tree to

be called Bucket-Tree Elimination (BTE). BTE has time and spacecomplexityO(r ·dtw+1).

2.2.2 Mini-Cluster-Tree Elimination

The main drawback of CTE and any variant of join-tree algorithms is that they are time and

space exponential in the treewidth (tw) and separator (s) size, respectively [36, 90], which

are often very large. In order to overcome this problem, partition-based algorithms were

introduced. Instead of combining all the functions in a cluster, when computing a mes-

sage, we first partition the functions in the cluster into a set of mini-clusters such that each

mini-cluster is bounded by a fixed number of variables (i-bound), and then process them

separately. The algorithm, called Mini-Cluster-Tree Elimination (MCTE(i)) approximates

CTE and it computes upper bounds on values computed by CTE.

In the Mini-Cluster-Tree Elimination the messageM(u,v) that nodeu sends to nodev is a

set of functions computed as follows. The functions incluster(u)−M(v,u) are partitioned

into P = P1, · · · ,Pk, where|scope(Pj)| ≤ i, for a giveni. The messageM(u,v) is

defined asM(u,v) = {maxelim(u,v)

∏

g∈Pj
g|Pj ∈ P}. Algorithm MCTE(i) applied to the

bucket-tree is called Mini-Bucket-Tree Elimination (MBTE(i)) [36].

Since the scope size of each mini-cluster is bounded byi, the time and space complex-

ity of MCTE(i)/MBTE(i) is exponential ini. However, because of the partitioning, the

functionsz(Xj) cannot be computed exactly any more. Instead, the output functions of

MCTE(i)/MBTE(i), calledmz(Xj), are upper bounds on the exact functionsz(Xj) [36].

Clearly, increasingi is likely to provide better upper bounds at a higher cost. Therefore,
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Procedure BBBT(T ,i,s,L)
Input: Bucket-treeT , parameteri,set of instantiated variablesS = s, lower boundL.
Output: MPE probability conditioned ons.
1. If S = X, return the probability of the current complete assignment.
2. Run MBTE(i); Let {mzj} be the set of heuristic values computed by MBTE(i) for
eachXj ∈ X− S.
3. Prune domains of uninstantiated variables, by removing valuesx ∈ DXl

for which
mzl(x) ≤ L.
4. Backtrack: If DXl

= ∅ for some variableXl, return 0.
5. Otherwise let Xj be the uninstantiated variable with the smallest domain:Xj =
argminXk∈X−S|DXk

|.
6. RepeatwhileDXj

6= ∅
i. Let xk be the value ofXj with the largest heuristic estimate:xk =

argmaxxj∈DXj
mzj(xj).

ii. SetDXj
= DXj

− xk.
iii. Computempe = BBBT (T , i, s ∪ {Xj = xk}, L).
iv. SetL = max(L,mpe).
v. PruneDXj

byL.
7. Return L.

Figure 2.2: BBBT(i): Branch-and-Bound with MBTE(i) based heuristics.

MCTE(i)/MBTE(i) allows trading upper bound accuracy for time and space complexity.

2.3 Partition-based Branch-and-Bound Search

This section focuses on the two systematic algorithms we used. Both use partition-based

mini-bucket heuristics.

2.3.1 BBBT: Branch-and-Bound with Dynamic Heuristics

Since MBTE(i) computes upper bounds for each singleton-variable assignment simultane-

ously, when incorporated within a depth-first Branch-and-Bound algorithm, MBTE(i) can

facilitate domain pruning and dynamic variable ordering.

Such a Branch-and-Bound algorithm, called BBBT(i), for solving the MPE problem

is given in Figure 2.2. Initially it is called with BBBT(〈T, χ, ψ〉, i, ∅, 0). At all times it
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maintains a lower boundL which corresponds to the probability of the best assignment

found so far. At each step, it executes MBTE(i) which computes the singleton assignment

costsmzi for each uninstantiated variableXi (step 2), and then uses these costs to prune

the domains of uninstantiated variables by comparingL against the heuristic estimate of

each value (step 3). If the cost of the value is not more thanL, it can be pruned because

it is an upper bound. If as a result a domain of a variable becomes empty, then the current

partial assignment is guaranteed not to lead to a better assignment and the algorithm can

backtrack (step 4). Otherwise, BBBT(i) expands the current assignment picking a variable

Xj with the smallest domain (variable ordering in step 5) and recursively solves a set of

subproblems, one for each value ofXj, in decreasing order of heuristic estimates of its

values (value ordering in step 6). If during the solution of the subproblem a better new

assignment is found, the lower boundL can be updated (step 6iv).

Thus, at each node in the search space, BBBT(i) first executes MBTE(i), then prunes

domains of all un-instantiated variables, and then recursively solves a set of subprob-

lems. BBBT(i) performs a look-ahead computation that is similar (but notidentical) to

i-consistency at each search node.

2.3.2 BBMB: Branch-and-Bound with Static Heuristics

The strength of the BBMB(i) algorithm described in Chapter 1 was established in sev-

eral empirical studies [65]. We highlight next the main differences between BBBT(i) and

BBMB(i):

• BBMB(i) uses as a pre-processing step the Mini-Bucket-Elimination, which com-

piles a set of functions that can be used to assemble efficiently heuristic estimates dur-

ing search. The main overhead is therefore the pre-processing step which is exponen-

tial in thei-bound but does not depend on the number of search nodes. BBBT(i) on

the other hand computes the heuristic estimates solely during search using MBTE(i).
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Consequently its overhead is exponential in thei-bound multiplied by the number of

nodes visited.

• Because of the pre-computation of heuristics, BBMB(i) is limited to static variable

ordering, while BBBT(i) uses a dynamic variable ordering.

• Finally, since at each step, BBBT(i) computes heuristic estimates for all un-instantiated

variables, it can prune their domains, which provides a formof look-ahead. BBMB(i)

on the other hand generates a heuristic estimate only for thenext variable in the static

ordering and prunes only its domain.

2.4 Non-Systematic Algorithms

This section focuses on two different types of incomplete algorithms: stochastic local

search and iterative belief propagation for solving the MPEtask in belief networks.

2.4.1 Local Search

Local search is a general optimization technique which can be used alone or as method for

improving solutions found by other approximation schemes.Unlike the Branch-and-Bound

algorithms, these methods do not guarantee an optimal solution.

Discrete Lagrangian Multipliers

The method ofDiscrete Lagrangian Multipliers (DLM) [122] is based on an extension

of constraint optimization using Lagrange multipliers forcontinuous variables. In the

weighted MAX-SAT domain, the clauses are the constraints, and the sum of the unsat-

isfied clauses is the cost function. In addition to the weightwC , a Lagrangian multiplierλC

is associated with each clause. The cost function for DLM is of the form:
∑

C wC+
∑

C λC ,

whereC ranges over the unsatisfied clauses. Every time a local maxima is encountered, the
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λs corresponding to the unsatisfied clauses are incremented by adding a constant. DLM can

be applied over the equivalent weighted MAX-SAT encoding ofthe given belief network,

as shown in [102].

Guided Local Search

Guided Local Search(GLS) [93, 102] is a heuristically developed method for solving

combinatorial optimization problems. It has been shown to be extremely efficient at solving

general weighted MAX-SAT problems. Like DLM, GLS associates an additional weight

with each clause C (λC). The cost function in this case is essentially
∑

C λC , whereC

ranges over the unsatisfied clauses. Every time a local maxima is reached, theλs of the

unsatisfied clauses with maximum utility are increased by adding constant, where the utility

of a clause C is given bywC/(1 + λC). Unlike DLM, which increments all the weights of

the unsatisfied clauses, GLS modifies only a few of them.

Stochastic Local Search

Stochastic Local Search(SLS) [64] is a local search algorithm that at each step performs

either a hill climbing or a stochastic variable change. Periodically, the search is restarted in

order to escape local maxima. It was shown to be superior to simulated annealing and some

pure greedy search algorithms. SLS can be applied directly on the given belief network.

2.4.2 Iterative Join-Graph Propagation

TheIterative Join Graph Propagation (IJGP) [39] algorithm belongs to the class of gen-

eralized belief propagation methods, recently proposed togeneralize Pearl’s belief prop-

agation algorithm [104] using analogy with algorithms in statistical physics. This class

of algorithms, developed initially for belief updating, isan iterative approximation method

that applies the message passing algorithm of join-tree clustering to join-graphs, iteratively.

It uses a parameteri that bounds the complexity and makes the algorithm anytime.
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2.5 Experiments

We tested the performance of our scheme for solving the MPE task on several types of

belief networks - random uniform Bayesian networks, NxN grids, coding networks, CPCS

networks and 9 real world networks obtained from the BayesianNetwork Repository1. On

each problem instance we ran BBBT(i) and BBMB(i) with variousi-bounds, as heuristics

generators, as well as the local search algorithms discussed earlier. We also ran the Iterative

Join Graph Propagation algorithm (IJGP(i)) on some of these problems.

We used themin-degreeheuristic for computing the ordering of variables. It places a

variable with the smallest degree at the end of the ordering,connects all of its neighbors,

removes the variable from the graph and repeats the whole procedure.

We treat all algorithms as approximation anytime schemes. Algorithms BBBT(i) and

BBMB(i) have any-time behavior and, if allowed to run until completion, will solve the

problem exactly. However, in practice, both algorithms maybe terminated at a time bound

and may return sub-optimal solutions. On the other hand, neither the local search tech-

niques, nor the belief propagation algorithms guarantee anoptimal solution, even if given

enough time.

To measure performance we used the accuracy ratioopt = Palg / PMPE between the

value of the solution found by the test algorithm (Palg) and the value of the optimal solu-

tion (PMPE), wheneverPMPE was available. We only report results for the rangeopt≥

0.95. We also recorded the average running time for all algorithms, as well as the average

number of search tree nodes visited by the Branch-and-Bound algorithms. When the size

and difficulty of the problem did not allow an exact computation, we compared the quality

of the solutions produced by the respective algorithms in the given time bound. For each

problem class we chose a number of evidence variables randomly and fixed their values.

1www.cs.huji.ac.il/labs/compbio/Repository
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BBBT BBBT BBBT BBBT BBBT
BBMB BBMB BBMB BBMB BBMB GLS DLM SLS

k IJGP IJGP IJGP IJGP IJGP
i=2 i=4 i=6 i=8 i=10

%[time]{nodes} %[time]{nodes} %[time]{nodes} %[time]{nodes} %[time]{nodes} %[time] %[time] %[time]

90[6.30]{3.9K} 100[1.19]{781} 100[0.65]{366} 100[0.44]{212} 100[0.43]{161}
2 71[2.19]{1.6M} 92[0.17]{0.1M} 92[0.02]{10K} 86[0.01]{3K} 91[0.01]{1.2K} 100[1.05] 0[30.01] 0[30.01]

62[0.04] 66[0.06] 66[0.13] 71[0.32] 67[0.87]
28[46.6]{19K} 65[27.5]{5.5K} 86[15.4]{1.1K} 86[19.3]{453} 80[27.5]{213}

3 5[43.1]{16M} 78[24.4]{8.2M} 90[3.20]{0.8M} 89[1.23]{0.3M} 83[0.58]{52.5K} 39[44.02] 0[60.01] 0[60.01]
34[0.07] 37[0.18] 36[0.94] 43[5.38] 44[32.5]

24[95.5]{63K} 46[74.7]{13.4K} 65[54.1]{1.6K} 67[65.7]{443} 37[151.2]{74}
4 3[89.4]{47M} 42[85.5]{37M} 89[25.4]{8M} 90[5.44]{1.5M} 99[4.82]{0.3M} 5[114.9] 0[120.01] 0[120.01]

17[0.14] 14[0.47] 14[4.33] 17[43.3] 20[468.5]

Table 2.1: Average accuracy and time.Random Bayesian networks(n = 100, c = 90,
p = 2). w∗ = 17, 10 evidence, 100 samples.

BBBT BBBT BBBT BBBT BBBT
BBMB BBMB BBMB BBMB BBMB GLS DLM SLS

k IJGP IJGP IJGP IJGP IJGP
i=2 i=4 i=6 i=8 i=10

%[time] %[time] %[time] %[time] %[time] %[time] %[time] %[time]

84[7.34] 98[2.48] 100[0.88] 100[0.66] 100[0.59]
2 61[3.49] 91[0.30] 89[0.05] 88[0.02] 88[0.02] 100[1.25] 0[30.02] 0[30.02]

62[0.04] 66[0.06] 66[0.13] 71[0.31] 67[0.86]
36[42.2] 78[19.1] 95[9.64] 94[10.7] 93[16.8]

3 8[47.5] 77[18.4] 95[1.81] 86[0.71] 84[0.33] 49[38.7] 0[60.02] 0[60.01]
34[0.04] 37[0.10] 36[0.49] 43[2.86] 44[17.0]
24[97.7] 40[80.3] 61[62.4] 58[82.0] 30[269]

4 2[114.4] 39[92.3] 84[33.2] 90[7.39] 99[7.95] 5[115.03] 0[120.01] 0[120.01]
17[0.06] 14[0.23] 14[2.12] 17[21.9] 20[226.8]

Table 2.2: Average accuracy and time.Random Noisy-OR networks(n = 100, c = 90,
p = 2). Pnoise = 0.2, Pleak = 0.01. w∗=17, 10 evidence, 100 samples.

2.5.1 Random Bayesian Networks and Noisy-OR Networks

The random Bayesian networks were generated using parameters (n, k, c, p), wheren is

the number of variables,k is their domain size,c is the number of conditional probability

tables (CPTs) andp is the number of parents in each CPT. The structure of the network is

created by randomly pickingc variables out ofn and, for each, randomly selectingp parents

from their preceding variables, relative to some ordering.For random uniform Bayesian

networks, each probability table is generated uniformly randomly. For Noisy-OR networks,

each probability table represents an OR-function with a given noise and leak probabilities:

P (X = 0|Y1, . . . , Yp) = Pleak ×
∏

Yi=1 Pnoise

Table 2.1 presents experiments with random uniform Bayesiannetworks. In each table,

parametersn, c and p are fixed, whilek, controlling the domain size of the network’s
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variables, is changing. For each value ofk, we generate 100 instances. We gave each

algorithm a time limit of 30, 60 and 120 seconds, depending onthe value of the domain

size. Each test case had 10 randomly selected evidence variables. We have highlighted the

best performance point in each row.

For example, Table 2.1 reports the results with random problems havingn = 100,

c = 90, p = 2. Each horizontal block corresponds to a different value ofk. The columns

show results for BBBT(i), BBMB(i) and IJGP(i) at various levels ofi, as well as for GLS,

DLM and SLS. Looking at the first line in Table 2.1 we see that inthe accuracy range

opt ≥ 0.95 and for the smallest domain size (k = 2) BBBT(i) with i=2 solved 90% of

the instances using 6.30 seconds on average and exploring 3.9K nodes, while BBMB(i)

with i=2 only solved 71% of the instances using 2.19 seconds on average and exploring

a much larger search space (1.6M nodes). GLS significantly outperformed the other local

search methods, as also observed in [102], and solved all instances using 1.05 seconds on

average. However, as BBBT(i)’s bound increases, it is better than GLS. As the domain size

increases, the problem instances become harder. The overall performance of local search

algorithms, especially GLS’s performance, deteriorates quite rapidly.

When comparing BBBT(i) to BBMB(i) we notice that at larger domain sizes (k ∈

{3, 4}) the superiority of BBBT(i) is more pronounced for smalli-bounds (i ∈ {2, 4}), both

in terms of the quality of the solution and search space explored. This may be significant,

because smalli-bounds require restricted space.

Figures 2.3 and 2.4 provide an alternative view of the performance of BBBT(i) and

BBMB(i) against GLS as anytime algorithms. LetFalg(t) be the fraction of problems

solved completely by the algorithmalg by timet. Each graph in Figure 2.3 plotsFBBBT (i)(t),

FBBMB(i)(t) for some selected values ofi, as well asFGLS(t). Different values of the do-

main size are discussed, namelyk = 2 andk = 3, respectively. Figure 2.3 shows the

distributions ofFBBBT (i)(t), FBBMB(i)(t) andFGLS(t) for the random Bayesian networks

whenN = 100, C = 90, P = 2 (corresponding to the first two rows in Table 2.1), while
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Figure 2.3: Accuracy versus time.Random Bayesian networks(n = 100, c = 90, p = 2).
(a)k = 2, (b) k = 3. 10 evidence, 100 samples.

52



0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Time [sec]

%
 S

ol
ve

d 
E

xa
ct

ly

BBBT-2
BBBT-5
GLS
BBMB-2
BBMB-5

(a)

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60
Time [sec]

%
 S

ol
ve

d 
E

xa
ct

ly

BBBT-2
BBBT-9
GLS
BBMB-2
BBMB-9

(b)

Figure 2.4: Accuracy versus time.Random Noisy-OR networks(n = 100, c = 90,
p = 2). (a)k = 2, (b) k = 3. 10 evidence, 100 samples.
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BBBT / GLS BBBT / GLS BBBT / GLS BBBT / GLS BBBT / GLS
BBMB / GLS BBMB / GLS BBMB / GLS BBMB / GLS BBMB / GLS

k i=2 i=3 i=4 i=5 i=6
# best # best # best # best # best

0/29 0/25 0/23 0/21 0/20
2 0/24 0/19 0/19 0/5 0/5

4/26 5/25 5/25 9/21 10/20
3 1/29 2/28 2/28 2/28 4/26

28/2 28/2 30/0 30/0 30/0
5 5/25 5/25 7/23 12/18 23/7

25/5 22/8 24/6 19/11 21/9
7 18/12 15/15 17/13 20/10 25/5

Table 2.3: # wins given fixed time bound.Random Bayesian networks(n = 100, c = 90,
p = 3). w∗ = 30, 10 evidence, 30 samples.

Figure 2.4 corresponds to the random Noisy-OR networks fromTable 2.2.

Clearly, ifFalgi(t) > Falgj(t), thenFalgi(t) completely dominatesFalgj(t). For example,

in Figure 2.3(a), GLS is highly competitive with BBBT(4) and both significantly outper-

form BBBT(i) and BBMB(i) for smalleri-bounds. In contrast, Figure 2.3(b) shows how

the best local search method deteriorates as the domain sizeincreases. The same pattern

appears for the case of Noisy-OR networks shown in Figure 2.4. GLS dominates slightly

BBBT(5) for k = 2 and is clearly outperformed by BBBT(9) fork = 3.

We also experimented with a much harder set of random Bayesiannetworks. The dataset

consisted of random networks with parametersn = 100, c = 90, p = 3. In this case, the

induced width of the problem instances was around 30, thus itwas not possible to compute

exact solutions. We studied four domain sizesk ∈ {2, 3, 5, 7}. For each value ofk, we

generated 30 problem instances. Each algorithm was alloweda time limit of 30, 60, 120

and 180 seconds, depending on the domain size. We found that the costs of the solutions

generated by DLM and SLS were several orders of magnitude smaller than those found by

GLS, BBBT(i) and BBMB(i). Hence, we only report the latter three algorithms.

Table 2.3 compares the frequency that the solution was the best for each of the three al-

gorithms (ties are removed). We notice again that GLS excelled at finding the best solution

for smaller domain sizes, in particular fork = 2 andk = 3. On the other hand, for larger
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Figure 2.5: Solution quality at fixed time bound.Random Bayesian networks(n = 100,
c = 90, k, p = 3). w∗ = 30, 10 evidence, 100 samples.k ∈ {2, 3}
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Figure 2.6: Solution quality at fixed time bound.Random Bayesian networks(n = 100,
c = 90, k, p = 3). w∗ = 30, 10 evidence, 100 samples.k ∈ {5, 7}
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BBBT / BBMB BBBT / BBMB BBBT / BBMB BBBT / BBMB
i=2 i=3 i=4 i=5

k # wins # wins # wins # wins
# nodes # nodes # nodes # nodes

20/10 12/18 18/12 18/12
2 15.3K/13.8M 14.5K/16.2M 12.3K/15.9M 9.4K/11.8M

27/3 26/4 29/1 28/2
3 19.9K/16.3M 13.8K/16.8M 12.3K/15.9M 4.8K/14.2

29/1 30/0 30/0 27/3
5 18.3K/10.5M 9.1K/13.8M 3.5K/13.2M 0.9K/12.6M

24/6 26/4 14/16 10/20
7 7.7K/8.3M 3.4K/10.6M 114/10.9M 8/9.6M

Table 2.4: BBBT(i) vs. BBMB(i). Random Bayesian networks(n = 100, c = 90, p = 3).
10 evidence, 30 samples, 30 seconds.

domain sizes (k ∈ {5, 7}), the power of BBBT(i) is more pronounced at smalleri-bounds,

whereas BBMB(i) is more efficient at largeri-bounds. Figures 2.5 and 2.6 show, pictori-

ally, the quality of the solutions produced by GLS against the ones produced by BBBT(i)

and BBMB(i). For each plot, corresponding to a different value of the domain sizek, the

X axis represents the negative log probability of the solutions found by GLS and the Y axis

represents the negative log probability of the solutions found by BBBT(i) and BBMB(i).

The superiority of Branch-and-Bound based methods for largerdomain sizes is significant

since these are algorithms that can prove optimality when given enough time, unlike local

search methods.

Table 2.4 shows comparatively the performance of BBBT(i) as compared to BBMB(i).

Each entry in the table shows the number of times BBBT(i) produced a better solution

than BBMB(i) (# wins) as well as the average number of search tree nodes visited by both

algorithms. We notice again the superiority of BBBT(i) at relatively smalli-bounds.

2.5.2 Random Grid Networks

In grid networks,n is a square number and each CPT is generated uniformly randomly or

as a Noisy-OR function. We experimented with a synthetic setof 10-by-10 grid networks.

We report results on three different domain sizes. For each value ofk, we generate 100
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BBBT / BBBT / BBBT / BBBT / BBBT /
BBMB BBMB BBMB BBMB BBMB GLS DLM SLS

k i=2 i=4 i=6 i=8 i=10
%[time] %[time] %[time] %[time] %[time] %[time] %[time] %[time]

2 51[17.7] 99[2.62] 100[0.66] 100[0.48] 100[0.42]
1[29.9] 13[23.7] 93[2.16] 92[0.08] 95[0.02] 100[1.54] 0[30.01] 0[30.01]

3 3[58.7] 28[47.4] 80[19.5] 93[14.8] 94[23.2]
0[60.01] 1[58.9] 25[50.9] 89[8.63] 92[0.73] 4[58.7] 0[60.01] 0[60.01]

4 1[118.8] 12[108.3] 46[78.4] 61[88.5] 33[136]
0[120] 0[120] 6[113.4] 72[46.4] 85[9.91] 0[120] 0[120] 0[120]

Table 2.5: Average accuracy and time.Random grid networks (n = 100). w∗ = 15, 10
evidence, 100 samples.

BBBT BBBT BBBT BBBT BBBT IBP
BBMB BBMB BBMB BBMB BBMB GLS

σ IJGP IJGP IJGP IJGP IJGP SLS
i=2 i=4 i=6 i=8 i=10

BER[time] BER[time] BER[time] BER[time] BER[time] BER[time]

0.0056[3.18] 0.0104[2.87] 0.0072[1.75] 0.0034[0.72] 0.0034[0.59] 0.0034[0.01]
0.32 0.0034[0.07] 0.0034[0.08] 0.0034[0.03] 0.0034[0.01] 0.0034[0.02] 0.2344[60.01]

0.0034[0.16] 0.0034[0.18] 0.0034[0.33] 0.0034[0.92] 0.0034[3.02] 0.4980[60.01]
0.0642[19.4] 0.0400[12.8] 0.0262[6.96] 0.0148[4.52] 0.0190[4.34] 0.0108[0.01]

0.40 0.0114[0.63] 0.0114[0.53] 0.0114[0.12] 0.0114[0.05] 0.0114[0.04] 0.2084[60.01]
0.0114[0.16] 0.0138[0.18] 0.0118[0.33] 0.0116[0.91] 0.0120[3.02] 0.5128[60.01]
0.1920[48.1] 0.1790[42.0] 0.1384[31.3] 0.1144[21.4] 0.1144[19.7] 0.0894[0.01]

0.52 0.0948[1.35] 0.0948[1.47] 0.0948[0.36] 0.0948[0.11] 0.0948[0.05] 0.2462[60.02]
0.1224[0.08] 0.1242[0.09] 0.1256[0.16] 0.1236[0.47] 0.1132[1.54] 0.5128[60.01]

Table 2.6: Average BER and time.Random coding networks(n = 200, p = 4). w∗ = 22,
60 seconds, 100 samples.

problem instances. Each algorithm was allowed a time limit of 30, 60 and 120 seconds,

depending on the domain size.

Table 2.5 shows the average accuracy and running time for each algorithm. Once again,

in terms of accuracy, GLS is highly competitive with the systematic search algorithms

at the lowest domain size (k = 2). Even though the difficulty of the problem instances

was relatively small (i.e., the induced width was around 15), the degradation in GLS’s

performance is more pronounced as the domain size increases. Comparing BBBT(i) to

BBMB(i), we notice again that BBBT(i) was superior to BBMB(i) for smalleri-bounds.
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BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/ BBBT/
Network BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ BBMB/ GLS DLM SLS
(n, w*) IJGP IJGP IJGP IJGP IJGP IJGP IJGP IJGP

(avg, max) i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=10 % % %
%[time] %[time] %[time] %[time] %[time] %[time] %[time] %[time] [time] [time] [time]

Barley - - 90[6.33] 100[4.28] 100[3.29] 100[2.81] 100[2.91] - 0 0 0
(48, 8) - - 25[12.8] 40[2.32] 65[0.43] 90[0.85] 100[2.41] - [30.01] [30.01] [30.01]
(8, 67) 67[0.99] 67[1.11] 63[1.49] 70[5.32] 80[17.9] - - -

Diabetes* 0[120] 0[123] 0[127] 90[21.1] - - - - 0 0 0
(413, 5) 0[120] 0[120] 5[114] 100[2.01] - - - - [120.01] [120.01] [120.01]
(11, 21) 3[8.60] 3[11.2] 43[86.0] 97[311.1] 100[384.6] - - -
Mildew 100[0.28] 100[0.17] 100[0.56] - - - - - 15 0 90
(35, 4) 30[10.5] 65[7.5] 95[0.18] - - - - - [30.02] [30.02] [30.02]

(17, 100) 90[3.59] 87[3.68] 97[33.3] 100[53.2] - - - -
Munin1 90[6.13] - 100[6.48] - 40[23.8] - 75[13.4] 80[43.1] 10 0 0
(189, 11) 0[30] - 5[27.2] - 20[24.1] - 70[6.77] 100[9.03] [30.02] [30.02] [30.02]
(5, 21) 90[0.45] 90[0.49] 97[1.10] 93[4.28] 93[14.5] 97[70.2] 100[191.9] -
Munin2 95[1.65] 95[1.73] 95[1.65] 95[1.99] 95[2.32] 95[2.48] 100[1.97] - 0 0 0
(1003, 7) 95[30.3] 95[31.7] 95[30.5] 95[31.8] 95[31.3] 100[30.5] 100[1.84] - [30.01] [30.01] [30.01]
(5, 21) 95[2.44] 95[2.94] 95[5.17] 100[20.3] 95[64.9] - - -
Munin3 0[30.8] 0[30.9] 0[31.3] 5[31.7] 0[40.9] 90[4.72] 100[2.2] - 0 0 0
(1044, 7) 0[30.2] 0[31] 0[32.3] 5[29.9] 0[32.7] 95[2.14] 100[1.01] - [30.02] [30.02] [30.02]
(5, 21) 80[1.47] 95[1.72] 85[3.10] 85[10.8] 90[38.9] - - -
Munin4 0[31] 0[31] 0[31.9] 0[37.7] 0[44.5] 0[58.8] 0[170.4] - 0 0 0
(1041, 8) 0[30.2] 0[31.4] 0[31.6] 0[32] 0[30.3] 30[22.1] 85[3.4] - [30.02] [30.02] [30.02]
(5, 21) 85[1.52] 75[1.66] 90[4.15] 95[15.6] 95[43.6] - - -
Pigs 90[15.2] - 100[3.73] - 100[2.36] - 100[0.58] 100[0.56] 10 0 0

(441, 12) 0[30.01] - 60[4.85] - 80[0.02] - 95[0.04] 95[0.12] [30.02] [30.02] [30.02]
(3, 3) 80[0.31] 73[0.37] 77[0.53] 83[0.86] 80[1.43] 80[2.49] 83[6.27] 93[27.3]
Water 100[0.01] - 100[0.02] - 100[0.03] - 100[0.04] 100[0.09] 100 75 100

(32, 11) 55[4.51] - 60[4.5] - 75[0.01] - 100[0.02] 100[0.06] [30.02] [30.02] [30.02]
(3, 4) 97[0.09] 97[0.09] 97[0.10] 97[0.14] 100[0.26] 100[0.45] 100[1.12] 100[5.94]

CPCS54 100[0.35] - 100[0.18] - 100[0.11] - 100[0.09] 100[0.06] 100 0 100
(54, 15) 35[0.02] - 60[0.01] - 50[0.01] - 55[0.004] 60[0.003] [30.02] [30.02] [30.02]
(2, 2) 67[0.06] 77[0.06] 67[0.06] 70[0.07] 63[0.09] 70[0.11] 63[0.16] 73[0.38]

CPCS179 100[1.69] - 100[1.01] - 100[0.05] - 100[0.11] - 100 30 30
(179, 8) 80[0.02] - 80[0.02] - 100[0.02] - 100[0.07] - [30.02] [30.02] [30.02]
(2, 4) 100[2.50] 100[2.52] 100[2.99] 100[3.37] 100[6.49] 100[8.63] 100[36.9] -

CPCS360b 100[0.17] - 100[0.27] - 100[0.21] - 100[0.19] 100[0.32] 100 100 100
(360, 20) 100[0.04] - 100[0.03] - 100[0.03] - 100[0.03] 100[0.04] [30.02] [30.02] [30.02]

(2, 2) 100[10.6] 100[10.4] 100[10.5] 100[10.1] 100[9.82] 100[8.19] 100[8.59] 100[12.5]
CPCS422b 65[52.6] - 70[48.7] - 70[47.2] - 90[21.5] 95[12.9] 100 65 65
(422, 23) 100[0.5] - 100[0.49] - 100[0.49] - 100[0.47] 100[0.47] [120.01] [120.01] [120.01]

(2, 2) 83[88.0] 83[86.8] 87[86.4] 90[84.3] 83[85.3] 87[77.7] 87[77.1] 90[70.9]

Table 2.7: Results for experiments on 13real world networks. Average accuracy and
time.

2.5.3 Random Coding Networks

Our coding networks fall within the class oflinear block codes[65]. They can be repre-

sented as four-layer belief networks having K nodes in each layer. The decoding algorithm

takes the coding network as input and the observed channel output and computes the MPE

assignment. The performance of the decoding algorithm is usually measured by the Bit

Error Rate (BER), which is simply the observed fraction of information bit errors.

We tested random coding networks with K=50 input bits and various levels of channel

noiseσ. For each value ofσ we generate 100 problem instances. Each algorithm was al-

lowed a time limit of 60 seconds. Table 2.6 reports the average Bit Error Rate, as well as the

average running time of the algorithms. We see that BBBT(i) and BBMB(i) outperformed

considerably GLS. On the other hand, only BBMB(i) is competitive to IBP, which is the
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best performing algorithm for coding networks.

2.5.4 Real-World Networks

Our realistic domain contained 9 Bayesian networks from the Bayesian Network Reposi-

tory, as well as 4 CPCS networks derived from the Computer-Based Care Simulation sys-

tem. For each network, we ran 20 test cases. Each test case had10 randomly selected

evidence variables, ensuring that the probability of evidence was positive. Each algorithm

was allowed a 30 second time limit.

Table 2.7 summarizes the results. For each network, we list the number of variables, the

average and maximum domain size for its variables, as well asthe induced width. We also

provide the percentage of exactly solved problem instancesand the average running time

for each algorithm.

In terms of accuracy, we notice a significant dominance of thesystematic algorithms

over the local search methods, especially for networks withlarge domains (e.g., Barley,

Mildew, Diabetes, Munin). For networks with relatively small domain sizes (e.g., Pigs,

Water, CPCS networks) the non-systematic algorithms, in particular GLS, solved almost as

many problem instances as the Branch-and-Bound algorithms. Nevertheless, the running

time of BBBT(i) and BBMB(i) was much better in this case, because GLS had to run until

exceeding the time limit, even though it might have found theoptimal solution within the

first few iterations. BBBT(i) and BBMB(i) on the other hand terminated, hence proving

optimality.

We also used for comparison the IJGP(i) algorithm, set up for 30 iterations. In terms of

average accuracy, we notice the stable performance of the algorithm in almost all test cases.

For networks with large domain sizes, IJGP(i) significantly dominated the local search

algorithms and in some cases it even outperformed the BBBT(i) and BBMB(i) algorithms

(e.g., Barley, Mildew, Munin).
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2.6 Conclusion to Chapter 2

We investigated the performance of two Branch-and-Bound search algorithms, BBBT(i)

and BBMB(i), against a number of state-of-the-art stochastic local search and general-

ized belief propagation algorithms for the problem of solving the MPE task in Bayesian

networks. Both BBBT(i) and BBMB(i) use the idea of partion-based approximation of

inference for heuristic computation, but in different ways: while BBMB(i) uses a static

pre-computed heuristic function, BBBT(i) computes it dynamically at each step. We ob-

served over a wide range of problem classes, both random and real-world benchmarks,

that BBBT(i) and BBMB(i) do not dominate each other. While BBBT(i) can sometimes

improve significantly over BBMB(i), in many other instances its (quite significant) prun-

ing power does not outweigh its time overhead. Both algorithms are powerful in different

cases. In general, when largei-bounds are effective, BBMB(i) is more powerful, how-

ever, when space is restricted, BBBT(i) with smalli-bounds is often more powerful. More

significantly, we also showed that the SLS algorithms are overall inferior to BBBT(i) and

BBMB(i), except when the domain size is small, in which case they arecompetitive. This

is in stark contrast with the performance of systematic versus non-systematic on CSP/SAT

problems, where SLS algorithms often significantly outperform complete methods. An ad-

ditional advantage of BBBT(i) and BBMB(i) is that as complete algorithms they can prove

optimality if given enough time, unlike SLS.

When designing algorithms to solve an NP-hard task, one cannot hope to develop a

single algorithm that would be superior across all problem classes. Our experiments show

that BBBT(i) and BBMB(i), when viewed as a collection of algorithms parameterized by

i, show robust performance over a wide range of MPE problem classes, because for each

problem instance there is a value ofi, such that the performance of BBBT(i) as well as

BBMB(i) dominates that of SLS.
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Chapter 3

AND/OR Branch-and-Bound Search for

Graphical Models

3.1 Introduction

Graphical models such as belief networks, constraint networks, Markov networks or influ-

ence diagrams are a widely used representation framework for reasoning with probabilistic

and deterministic information. These models use graphs to capture conditional indepen-

dencies between variables, allowing a concise representation of the knowledge as well as

efficient graph-based query processing algorithms. Optimization problems such as finding

the most likely state of a belief network or finding a solutionthat violates the least number

of constraints in a constraint network can be defined within this framework and they are

typically tackled with eitherinferenceor searchalgorithms.

Inference-based algorithms (e.g., Variable Elimination, Tree Clustering) were always

known to be good at exploiting the independencies captured by the underlying graphical

model. They provide worst case time guarantees exponentialin the treewidth of the un-

derlying graph. Unfortunately, any method that is time-exponential in the treewidth is also

space exponential in the treewidth or separator width, therefore not practical for models

with large treewidth.

Search-based algorithms (e.g., Branch-and-Bound search) traverse the model’s search

space where each path represents a partial or full solution.The linear structure of such
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traditional search spaces does not retain the independencies represented in the underlying

graphical models and, therefore, search-based algorithmsmay not be nearly as effective

as inference-based algorithms in using this information and therefore do not accommodate

informative performance guarantees. This situation has changed in the past few years with

the introduction of AND/OR search spaces for graphical models [38]. In addition, search

methods can accommodateimplicit specifications of the functional relationships (i.e., pro-

cedural or functional form) while inference schemes often rely on anexplicit tabular repre-

sentation over the (discrete) variables. For these reasons, search-based algorithms are the

only choice available for models with large treewidth and with implicit representation.

The AND/OR search space for graphical models [38] is a new framework that is sensi-

tive to the independencies in the model, often resulting in substantially reduced complex-

ities. It is guided by apseudo tree[48, 106] that captures independencies in the graphical

model, resulting in a search space exponential in the depth of the pseudo tree, rather than

in the number of variables.

Contribution

In this chapter we present a new generation of AND/OR Branch-and-Bound algorithms

(AOBB) that explore the AND/OR search tree in a depth-first manner for solving opti-

mization problems in graphical models. As in traditional Branch-and-Bound search, the

efficiency of these algorithms depends heavily also on theirguiding heuristic function. A

class of partitioning-based heuristic functions, based onthe Mini-Bucket approximation

[42] and known asstatic mini-bucket heuristicswas shown to be powerful for optimization

problems in the context of OR search spaces [65]. The Mini-Bucket algorithm provides a

scheme for extracting heuristic information automatically from the functional specification

of the graphical model, which is applicable to any graphicalmodel. The accuracy of the

Mini-Bucket algorithm is controlled by a bounding parameter, calledi-bound, which al-

lows varying degrees of heuristics accuracy and results in aspectrum of search algorithms
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that can trade off heuristic strength and search [65]. We show here how the pre-computed

mini-bucket heuristic as well as any other heuristic information can be incorporated in

AND/OR search, then we introducedynamic mini-bucket heuristics, which are computed

dynamically at each node of the search tree.

Since variable orderings can influence dramatically the search performance, we also

introduce a collection ofdynamicAND/OR Branch-and-Bound algorithms that extend

AOBB by combining the AND/OR decomposition principle with dynamic variable ordering

heuristics. There are three approaches to incorporating dynamic orderings intoAOBB. The

first one improvesAOBB by applying an independent semantic variable ordering heuris-

tic whenever the partial order dictated by the static decomposition principle allows. The

second, is an orthogonal approach that gives priority to thesemantic variable ordering

heuristic and applies problem decomposition as a secondaryprinciple. Since the structure

of the problem may change dramatically during search we introduce a third approach that

uses a dynamic decomposition method coupled with semantic variable ordering heuristics.

We apply the depth-first AND/OR Branch-and-Bound approach to two common op-

timization problems in graphical models: finding the Most Probable Explanation (MPE)

in Bayesian networks [104] and solving Weighted CSPs [9]. We experiment with both

random models and real-world benchmarks. Our results show conclusively that the new

depth-first AND/OR Branch-and-Bound algorithms improve dramatically over traditional

ones exploring the OR search space, especially when the heuristic estimates are inaccurate

and the algorithms rely primarily on search and cannot prunethe search space efficiently.

The research presented in this chapter is based in part on [79, 81].

Chapter Outline

The chapter is organized as follows. Section 3.2 describes the AND/OR representation of

the search space. In Section 3.3 we introduce the new depth-first AND/OR Branch-and-

Bound algorithm (AOBB) for searching AND/OR trees. Section 3.4 presents several general
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purpose heuristic functions that can guide the search focusing on the mini-bucket heuristics.

In Section 3.5 we describeAOBB’s extension with dynamic variable ordering heuristics.

Section 3.6 is dedicated to an extensive empirical evaluation, Section 3.7 overviews related

work, and Section 3.8 provides concluding remarks.

3.2 AND/OR Search Trees For Graphical Models

In this section we overview the AND/OR search space for graphical models, which forms

the core of our work in this chapter.

The usual way to do search in graphical models is to instantiate variables in turn, follow-

ing a static/dynamic variable ordering. In the simplest case, this process defines a search

tree (called here OR search tree), whose state nodes represent partial variable assignments.

Since this search space does not capture the structure of theunderlying graphical model an

AND/OR search space recently introduced for general graphical models [38] can be used

instead. The AND/OR search space is defined using a backbonepseudo tree[48, 106].

DEFINITION 21 (pseudo tree, extended graph)Given an undirected graphG = (V,E),

a directed rooted treeT = (V,E′) defined on all its nodes is calledpseudo treeif any arc

of G which is not included inE ′ is a back-arc, namely it connects a node to an ancestor

in T . Given a pseudo treeT of G, the extended graphof G relative toT is defined as

GT = (V,E ∪E′) (see Example 6 ahead).

We next define the notion of AND/OR search tree for a graphicalmodel.

DEFINITION 22 (AND/OR search tree [38]) Given a graphical modelR = 〈X,D,F〉,

its primal graphG and a backbone pseudo treeT of G, the associated AND/OR search

tree, denotedST (R), has alternating levels of AND and OR nodes. The OR nodes are

labeledXi and correspond to the variables. The AND nodes are labeled〈Xi, xi〉 (or simply

xi) and correspond to value assignments in the domains of the variables. The structure of
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the AND/OR search tree is based on the underlying backbone pseudo treeT . The root of

the AND/OR search tree is an OR node labeled with the root ofT . A path from the root of

the search treeST (R) to a noden is denoted byπn. If n is labeledXi or xi the path will be

denotedπn(Xi) or πn(xi), respectively. The assignment sequence along pathπn, denoted

asgn(πn), is the set of value assignments associated with the AND nodes alongπn:

asgn(πn(Xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi−1, xi−1〉}

asgn(πn(xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi, xi〉}

The set of variables associated with OR nodes along the pathπn is denoted byvar(πn):

var(πn(Xi)) = {X1, ..., Xi−1}, var(πn(xi)) = {X1, ..., Xi}. The parent-child relationship

between nodes in the search space are defined as follows:

1. An OR node,n, labeled byXi has a child AND node labeled〈Xi, xi〉 iff 〈Xi, xi〉 is

consistent withasgn(πn), relative to the hard constraints.

2. An AND node,n, labeled by〈Xi, xi〉 has a child OR node labeledY iff Y is a child

of Xi in the backbone pseudo treeT . Each OR arc, emanating from an OR to an

AND node is associated with a weight to be defined shortly.

Clearly, if a noden is labeledXi (OR node) orxi (AND node),var(πn) is the set of

variables mentioned on the path from the root toXi in the backbone pseudo tree, denoted

bypathT (Xi).

Semantically, the OR states in the AND/OR search tree represent alternative ways of

solving a problem, whereas the AND states represent problemdecomposition into inde-

pendent subproblems, conditioned on the assignment above them, all of which need to be

solved.

Following the general definition of a solution tree for AND/OR search graphs [97] we

have here that:
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Figure 3.1: AND/OR search spaces for graphical models.

DEFINITION 23 (solution tree) A solution treeof an AND/OR search treeST (R) is an

AND/OR subtreeT such that:

1. It contains the root ofST (R), s;

2. If a non-terminal AND noden ∈ ST (R) is in T then all of its children are inT ;

3. If a non-terminal OR noden ∈ ST (R) is in T then exactly one of its children is in

T ;

4. All its leaf (terminal) nodes are consistent.

Example 6 Figure 3.1(a) shows the primal graph of cost network with 6 bi-valued vari-

ablesA, B, C, D, E andF , and 9 binary cost functions. Figure 3.1(b) displays a pseudo

tree together with the back-arcs (dotted lines). Figure 3.1(c) shows the AND/OR search

tree based on the pseudo tree. A solution tree is highlighted. Notice that once variablesA

andB are instantiated, the search space below the AND node〈B, 0〉 decomposes into two

independent subproblems, one that is rooted atC and one that is rooted atE, respectively.

The virtue of an AND/OR search tree representation is that its size may be far smaller

than the traditional OR search tree. It was shown that:

THEOREM 4 (size of AND/OR search trees [38])Given a graphical modelR and a back-

bone pseudo treeT , its AND/OR search treeST (R) is sound and complete, and its size is
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O(l · km) wherem is the depth of the pseudo tree,l bounds its number of leaves, andk

bounds the domain size.

Given atree decompositionof the primal graphG havingn nodes, whose treewidth is

w∗, it is known that there exists a pseudo treeT of G whose depth,m, satisfies:m ≤

w∗ · logn [11, 5]. Therefore,

THEOREM 5 ([38]) A graphical model that has a treewidthw∗ has an AND/OR search

tree whose size isO(n · kw∗·logn), wherek bounds the domain size andn is the number of

variables.

Weights of OR-AND Arcs

The arcs in the AND/OR trees are associated with weights thatare defined based on the

graphical model’s functions and the combination operator.We next define arc weights for

any graphical model using the notion ofbuckets of functions[38].

DEFINITION 24 (buckets relative to a pseudo tree)Given a graphical model〈X,D,F〉

and a backbone pseudo treeT , the bucket ofXi relative toT , denotedBT (Xi), is the set

of functions whose scopes containXi and are included inpathT (Xi), which is the set of

variables from the root toXi in T . Namely,

BT (Xi) = {f ∈ F|Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}

For simplicity and without loss of generality we consider inthe remainder of the chapter

a graphical modelR = 〈X,D,F〉 for which the combination and elimination operators are

summationandminimization, respectively.

DEFINITION 25 (weights) Given an AND/OR search treeST (R), of a graphical modelR,

the weightw(n,m)(Xi, xi) (or simplyw(Xi, xi)) of arc (n,m), whereXi labelsn and xi
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labelsm, is thecombinationof all the functions inBT (Xi) assigned by values alongπm.

Formally,

w(Xi, xi) =











0 , if BT (Xi) = ∅
∑

f∈BT (Xi)
f(asgn(πm)) , otherwise

DEFINITION 26 (cost of a solution tree)Given a weighted AND/OR search treeST (R),

of a graphical modelR, and given a solution treeT having OR-to-AND set of arcsarcs(T ),

the cost ofT is defined byf(T ) =
∑

e∈arcs(T )w(e).

Let f(Tn) the cost of a solution tree rooted at noden. Thenf(Tn) can be computed

recursively, as follows:

1. If Tn consists only of a terminal AND noden, thenf(Tn) = 0.

2. If n is an OR node having an AND childm in Tn, thenf(Tn) = w(n,m) + f(Tm),

whereTm is the solution subtree ofTn that is rooted atm.

3. Ifn is an AND node having OR childrenm1, ...,mk in Tn, thenf(Tn) =
∑k

i=1 f(Tmi
),

whereTmi
is the solution subtree ofTn rooted atmi.

Example 7 Figure 3.2 shows the primal graph of a cost network with functions{f(A,B),

f(A,C), f(A,B,E), f(B,C,D)}, a pseudo tree that drives its weighted AND/OR search

tree, and a portion of the AND/OR search tree with appropriate weights on the arcs ex-

pressed symbolically. In this case the bucket ofE contains the functionf(A,B,E), the

bucket ofC contains two functionsf(A,C) andf(B,C,D) and the bucket ofB contains

the functionf(A,B). We see indeed that the weights on the arcs from the OR nodeE to any

of its AND value assignments include only the instantiated functionf(A,B,E), while the

weights on the arcs connectingC to its AND child nodes are the sum of the two functions

in its bucket instantiated appropriately. Notice that the buckets ofA andD are empty and

therefore the weights associated with the respective arcs are0.
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Figure 3.2: Arc weights for a cost network with 5 variables and 4 cost functions.

Node Value

With each noden of the search tree we can associate a valuev(n) which stands for the

answer to the particular query restricted to the subproblembelown [38].

DEFINITION 27 (node value)Given an optimization problemP = 〈R,min〉 over a graph-

ical modelR = 〈X,D,F,∑〉, thevalueof a noden in the AND/OR search treeST (R) is

the optimal cost to the subproblem belown.

The value of a node can be computed recursively, as follows: itis 0 for terminal AND

nodes and∞ for terminal OR nodes, respectively. The value of an internal OR node is

obtained bycombining (summing)the value of each AND child node with the weight on

its incoming arc and thenoptimize (minimize)over all AND children. The value of an

internal AND node is thecombination (summation)of values of its OR children. Formally,

if succ(n) denotes the children of the noden in the AND/OR search tree, then:
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v(n) =



































0 , if n = 〈X, x〉 is a terminal AND node

∞ , if n = X is a terminal OR node
∑

m∈succ(n) v(m) , if n = 〈X, x〉 is an AND node

minm∈succ(n)(w(n,m) + v(m)) , if n = X is an OR node
(3.1)

If n is the root ofST (R), thenv(n) is the minimal cost solution to the initial problem.

Alternatively, the valuev(n) can also be interpreted as the minimum of the costs of the

solution trees rooted atn. Therefore, search algorithms that traverse the AND/OR search

space can compute the value of the root node yielding the answer to the problem. It can be

immediately inferred from Theorems 4 and 5 that:

THEOREM 6 (complexity [38]) A depth-first search algorithm traversing an AND/OR tree

for finding the minimal cost solution is timeO(n · km), wheren is the number of variables,

k bounds the domain size andm is the depth of the pseudo tree, and may use linear space.

If the primal graph has a tree decomposition with treewidthw∗, there there exists a pseudo

treeT for which the time complexity isO(n · kw∗·logn).

3.3 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the chapter which is an AND/OR Branch-

and-Bound algorithm for AND/OR search spaces for graphical models. Traversing AND/OR

search spaces by best-first algorithms or depth-first Branch-and-Bound was described as

early as [97, 103, 62]. Here we adapt these algorithms to graphical models. We will revisit

next the notion of partial solution trees [97] to represent sets of solution trees which will be

used in our description.
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Figure 3.3: A partial solution tree and possible extensionsto solution trees.

DEFINITION 28 (partial solution tree) A partial solution treeT ′ of an AND/OR search

treeST is a subtree which: (1) contains the root nodes of ST ; (2) if n in T ′ is an OR node

then it contains at most one of its AND child nodes inST , and ifn is an AND node then it

contains all its OR children inST or it has no child nodes. A node inT ′ is called atip node

if it has no children inT ′. A tip node is either aterminalnode (if it has no children inST ),

or a non-terminalnode (if it has children inST ).

A partial solution tree can be extended (possibly in severalways) to a full solution tree.

It representsextension(T ′), the set of all full solution trees which can extend it. Clearly, a

partial solution tree all of whose tip nodes are terminal inST is a solution tree.

Example 8 Figure 3.3(c) shows a partial solution treeT ′ of the AND/OR search tree of
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Algorithm 5 : AO: Depth-first AND/OR tree search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1.
Output : Minimal cost solution toP and an optimal solution tree.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize the root node1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN // EXPAND3
succ(n)← ∅4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′ labeled by〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
foreachXj ∈ childrenT (Xi) do12

create an OR noden′ labeled byXj13
v(n′)←∞; ST (n′)← ∅14
succ(n)← succ(n) ∪ {n′}15

Add succ(n) on top ofOPEN16
// PROPAGATE

while succ(n) == ∅ do17
let p be the parent ofn18
if n is an OR node, labeledXi then19

if Xi == X1 then20
return (v(n), ST (n)) // Search terminates21

v(p)← v(p) + v(n) // Update AND value22
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node23

else ifn is an AND node, labeled〈Xi, xi〉 then24
if v(p) > (w(p, n) + v(n)) then25

v(p)← w(p, n) + v(n) // Update OR value26
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node27

removen from succ(p)28
n← p29

Figure 3.3(b) relative to the pseudo tree displayed in Figure 3.3(a). The set of solution trees

represented byT ′ is given in Figure 3.3(d) and corresponds to the following assignments:

(A = 0, B = 0, C = 0, D = 0), (A = 0, B = 0, C = 0, D = 1), (A = 0, B = 1, C =

0, D = 0) and(A = 0, B = 1, C = 0, D = 1).

Brute-force Depth-First AND/OR Tree Search

A simple depth-first search algorithm, calledAO, that traverses the AND/OR search tree is

described in Algorithm 5. The algorithm maintains the current partial solution being ex-

plored and will compute the value of each node (see Definition27) in a depth-first manner.

The value of the root node is the optimal cost. The algorithm also returns the optimal solu-
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tion tree. It interleaves a forward expansion of the currentpartial solution tree (EXPAND)

with a cost revision step (PROPAGATE) that updates the node values. The search stack is

maintained by theOPEN list, n denotes the current node andp its parent in the search tree.

Each noden in the search tree maintains its current valuev(n), which is updated based on

the values of its children. For OR nodes, the currentv(n) is an upper bound on the optimal

solution cost belown. Initially, v(n) is set to∞ if n is OR, and0 if n is AND, respectively.

A data structureST (n) maintains the actual best solution found in the subtree ofn (as a

list of value assignments to the variables in the respectivesubtree).

EXPAND selects a tip noden of the current partial solution tree and expands it by gen-

erating its successors. Ifn is an OR node, labeledXi, then its successors are AND nodes

represented by the valuesxi in variableXi’s domain (lines 5–10). Each OR-to-AND arc is

associated with the appropriate weight (see Definition 25).Similarly, if n is an AND node,

labeled〈Xi, xi〉, then its successors are OR nodes labeled by the child variables ofXi in T

(lines 11–15). There are no weights associated with AND-to-OR arcs.

PROPAGATE propagates node values bottom up in the search tree. Is is triggered when

a node has an empty set of descendants (note that as each successor is evaluated, it is

removed from the set of successors in line 28). This means that all its children have been

evaluated, and their final values are already determined. Ifthe current node is the root,

then the search terminates with its value and an optimal solution tree (line 21). Ifn is

an OR node, then its parentp is an AND node, andp updates its current valuev(p) by

summation with the value ofn (line 22). An AND noden propagates its value to its

parentp in a similar way, by minimization (lines 25–27). Finally, the current noden is

set to its parentp (line 29), becausen was completely evaluated. Each node in the search

tree also records the current best assignment to the variables of the subproblem below

it and when the algorithm terminates it contains an optimal solution tree. Specifically,

if n is an AND node, thenST (n) is the union of the optimal solution trees propagated

from n’s OR children (line 23). Ifn is an OR node andn′ is its AND child such that
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n′ = argminm∈succ(n)(w(n,m) + v(m)), thenST (n) is obtained from the label ofn′

combined with the optimal solution tree belown′ (line 27). Search continues either with a

propagationstep (if conditions are met) or with anexpansionstep.

Heuristic Lower Bounds on Partial Solution Trees

A regular OR Branch-and-Bound algorithm traverses the space of partial assignments in a

depth-first manner and discards any partial assignment thatcannot lead to a superior solu-

tion than the current best one found so far. This is normally achieved by using an evaluation

function that underestimates (for minimization tasks) thebest possible extension of the cur-

rent partial path. Thus, when the estimated lower bound, called also heuristic evaluation

function, is higher than the best current solution (upper bound), search terminates below

this path.

We will now extend the brute-forceAO algorithm into a Branch-and-Bound scheme,

guided by a lower bound heuristic evaluation function. For that, we first define the exact

evaluation function of a partial solution tree, and will then derive the notion of a lower

bound for it. Like in OR search, we assume a given heuristic evaluation functionh(n)

associated with each noden in the AND/OR search tree such thath(n) ≤ h∗(n), where

h∗(n) is the best cost extension of the subproblem belown (namely,h∗(n) = v(n)). We

call h(n) anode-based heuristic function.

DEFINITION 29 (exact evaluation function of a partial solution tree) Theexact evalua-

tion functionf ∗(T ′) of a partial solution treeT ′ is the minimum of the costs of all solution

trees represented byT ′, namely:

f ∗(T ′) = min{f(T ) | T ∈ extension(T ′)}

We definef ∗(T ′n) the exact evaluation function of a partial solution tree rooted at node

n. Thenf ∗(T ′n) can be computed recursively, as follows:
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1. If T ′n consists of a single noden, thenf ∗(T ′n) = v(n).

2. If n is an OR node having the AND childm in T ′n, thenf ∗(T ′n) = w(n,m)+f ∗(T ′m),

whereT ′m is the partial solution subtree ofT ′n that is rooted atm.

3. Ifn is an AND node with OR childrenm1, ...,mk in T ′n, thenf ∗(T ′n) =
∑k

i=1 f
∗(T ′mi

),

whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

Clearly, we are interested to find thef ∗(T ′) of a partial solution treeT ′ rooted at the

root s. If each non-terminal tip noden of T ′ is assigned a heuristic lower bound estimate

h(n) of v(n), then it induces a heuristic evaluation function on the minimal cost extension

of T ′, as follows.

DEFINITION 30 (heuristic evaluation function of a partial solution tree) Given a node-

based heuristic functionh(m) which is a lower bound on the optimal cost below any node

m, namelyh(m) ≤ v(m), and given a partial solution treeT ′n rooted at noden in the

AND/OR search treeST , thetree-based heuristic evaluation functionf(T ′n) ofT ′n, is defined

recursively by:

1. If T ′n consists of a single noden thenf(T ′n) = h(n).

2. If n is an OR node having the AND childm in T ′n, thenf(T ′n) = w(n,m) + f(T ′m),

whereT ′m is the partial solution subtree ofT ′n that is rooted atm.

3. Ifn is an AND node having OR childrenm1, ...,mk in T ′n, thenf(T ′n) =
∑k

i=1 f(T ′mi
),

whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

Clearly, by definition:

PROPOSITION1 For any noden, f(T ′n) ≤ f ∗(T ′n). If n is the root of the AND/OR search

tree, thenf(T ′) ≤ f ∗(T ′).
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Figure 3.4: Cost of a partial solution tree.

Example 9 Consider the cost network with bi-valued variablesA,B,C,D,E andF in

Figure 3.4(a). The cost functionsf1(A,B,C), f2(A,B, F ) andf3(B,D,E) are given in

Figure 3.4(b). A partially explored AND/OR search tree relative to the pseudo tree from

Figure 3.4(a) is displayed in Figure 3.4(c). The current partial solution treeT ′ is high-

lighted. It contains the nodes:A, 〈A, 0〉,B, 〈B, 1〉, C, 〈C, 0〉,D, 〈D, 0〉 andF . The nodes

labeled by〈D, 0〉 and byF are non-terminal tip nodes and their corresponding heuristic

estimates areh(〈D, 0〉) = 4 andh(F ) = 5, respectively. The node labeled by〈C, 0〉 is a

terminal tip node ofT ′. The subtree rooted at〈B, 0〉 along the path(A, 〈A, 0〉, B, 〈B, 0〉)

is fully explored, yielding the current best solution cost found so far equal to9. We assume

that the search is currently at the tip node labeled by〈D, 0〉 of T ′. The heuristic evaluation
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function ofT ′ is computed recursively as follows:

f(T ′) = w(A, 0) + f(T ′〈A,0〉)

= w(A, 0) + f(T ′B)

= w(A, 0) + w(B, 1) + f(T ′〈B,1〉)

= w(A, 0) + w(B, 1) + f(T ′C) + f(T ′D) + f(T ′F )

= w(A, 0) + w(B, 1) + w(C, 0) + f(T ′〈C,0〉) + w(D, 0) + f(T ′〈D,0〉) + h(F )

= w(A, 0) + w(B, 1) + w(C, 0) + 0 + w(D, 0) + h(〈D, 0〉) + h(F )

= 0 + 0 + 3 + 0 + 0 + 4 + 5

= 12

Notice that if the pseudo treeT is a chain, then a partial treeT ′ is also a chain and

corresponds to the partial assignmentx̄p = (x1, ..., xp). In this case,f(T ′) is equivalent to

the classical definition of the heuristic evaluation function of x̄p. Namely,f(T ′) is the sum

of the cost of the partial solution̄xp, g(x̄p), and the heuristic estimate of the optimal cost

extension of̄xp to a complete solution.

During search we maintain an upper boundub(s) on the optimal solutionv(s) as well as

the heuristic evaluation function of the current partial solution treef(T ′), and we can prune

the search space by comparing these two measures, as is common in Branch-and-Bound

search. Namely, iff(T ′) ≥ ub(s), then searching below the current tip nodet of T ′ is

guaranteed not to reduceub(s) and therefore, the search space belowt can be pruned.

Example 10 For illustration, consider again the partially explored AND/OR search tree

from Example 9 (see Figure 3.4(c)). In this case, the currentbest solution found after

exploring the subtree below〈B, 0〉, which ends the path(A, 〈A, 0〉, B, 〈B, 0〉), is 9. Since

we computedf(T ′) = 12 for the current partial solution tree highlighted in Figure3.4(c),

then exploring the subtree rooted at〈D, 0〉, which is the current tip node, cannot yield a
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better solution and search can be pruned.

Up until now we considered the case when the best solution found so far is maintained

at the root node of the search tree. It is also possible to maintain the current best solutions

for all the OR nodes along the active path between the tip nodet of T ′ ands. Then, if

f(T ′m) ≥ ub(m), wherem is an OR ancestor oft in T ′ andT ′m is the subtree ofT ′ rooted

atm, it is also safe to prune the search tree belowt. This provides an efficient mechanism

to discover that the search space below a node can be pruned more quickly.

Example 11 Consider the partially explored weighted AND/OR search tree inFigure 3.5,

relative to the pseudo tree from Figure 3.4(a). The current partial solution treeT ′ is high-

lighted. It contains the following nodes:A, 〈A, 1〉, B, 〈B, 1〉, C, 〈C, 0〉, D, 〈D, 1〉 andF .

The nodes labeled by〈D, 1〉 and byF are non-terminal tip nodes and their corresponding

heuristic estimates areh(〈D, 1〉) = 4 and h(F ) = 5, respectively. The subtrees rooted

at the AND nodes labeled〈A, 0〉, 〈B, 0〉 and 〈D, 0〉 are fully evaluated, and therefore the

current upper bounds of the OR nodes labeledA, B andD, along the active path, are

ub(A) = 12, ub(B) = 10 andub(D) = 5, respectively. Moreover, the heuristic evaluation

functions of the partial solution subtrees rooted at the OR nodes along the current path

can be computed recursively based on Definition 30, namelyf(T ′A) = 13, f(T ′B) = 12
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and f(T ′D) = 4, respectively. Notice that while we could prune below〈D, 1〉 because

f(T ′A) > ub(A), we could discover this pruning earlier by looking at nodeB only, because

f(T ′B) > ub(B). Therefore, the partial solution treeT ′A need not be consulted in this case.

Algorithm 6 : AOBB: Depth-first AND/OR Branch-and-Bound search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1, heuristic functionh(n).
Output : Minimal cost solution toP and an optimal solution tree.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize the root node1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN // EXPAND3
succ(n)← ∅4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′ labeled by〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
deadend← false12
foreachOR ancestorm of n do13

f(T ′
m)← evalPartialSolutionTree(T ′

m)14
if f(T ′

m) ≥ v(m) then15
deadend← true // Pruning the subtree below the current tip node16
break17

if deadend == false then18
foreachXj ∈ childrenT (Xi) do19

create an OR noden′ labeled byXj20
v(n′)←∞; ST (n′)← ∅21
succ(n)← succ(n) ∪ {n′}22

else23
p← parent(n)24
succ(p)← succ(p)− {n}25

Add succ(n) on top ofOPEN26
// PROPAGATE

while succ(n) == ∅ do27
let p be the parent ofn28
if n is an OR node, labeledXi then29

if Xi == X1 then30
return (v(n), ST (n)) // Search terminates31

v(p)← v(p) + v(n) // Update AND value32
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node33

if n is an AND node, labeled〈Xi, xi〉 then34
if v(p) > (w(p, n) + v(n)) then35

v(p)← w(p, n) + v(n) // Update OR value36
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node37

removen from succ(p)38
n← p39
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Algorithm 7 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n)
Input : Partial solution treeT ′

n rooted at noden.
Output : Return heuristic evaluation functionf(T ′

n).
if succ(n) == ∅ then1

return h(n)2
else3

if n is an AND nodethen4
let m1, ..., mk be the OR children ofn5

return
∑k

i=1 evalPartialSolutionTree(T ′
mi

)6

else ifn is an OR nodethen7
let m be the AND child ofm8
return w(n, m) + evalPartialSolutionTree(T ′

m)9

Depth-First AND/OR Branch-and-Bound Tree Search

TheAND/OR Branch-and-Boundalgorithm,AOBB, for searching AND/OR trees for graph-

ical models, is described by Algorithm 6. LikeAO, it interleaves a forward expansion of

the current partial solution tree with a backward propagation step that updates the nodes

values. The fringe of the search is maintained by a stack calledOPEN, the current node

is n, its parentp, and the current pathπn. As before,ST (n) accumulates the current best

solution tree belown. The node-based heuristic functionh(n) of v(n) is assumed to be

available to the algorithm, either retrieved from a cache orcomputed during search.

Before expanding the current AND noden, labeled〈Xi, xi〉, the algorithm computes the

heuristic evaluation function for every partial solution subtree rooted at the OR ancestors of

n along the path from the root (lines 11–17). The search belown is terminated if, for some

OR ancestorm, f(T ′m) ≥ v(m), wherev(m) is the current best upper bound on the optimal

cost belowm. The recursive computation off(T ′m) based on Definition 30 is described in

Algorithm 7. Notice also that for any OR noden, labeledXi in the search tree,v(n) is

trivially initialized to∞ and is updated in line 36.

The node values are updated by the propagation step, in the usual way (lines 24–40):

OR nodes by minimization, while AND nodes by summation. The search terminates when

the root node is evaluated in line 32.

THEOREM 7 (complexity) The time complexity of the depth-first AND/OR Branch-and-
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Bound algorithm (AOBB) isO(n · km), wherem is the depth of the pseudo tree,k bounds

the domain size andn is the number of variables, and it can use linear space.

Proof. The time complexity follows immediately from the size of theAND/OR search

tree explored (see Theorem 4). Since only the current partial solution tree needs to be

stored in memory, the algorithm can operate in linear space.�

3.4 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search strategy greatly depends on the quality

of the heuristic evaluation function. Naturally, more accurate heuristic estimates may yield

a smaller search space, possibly at a much higher computational cost for computing the

lower bound heuristic function. The right tradeoff betweenthe computational overhead

and the pruning power exhibited during search may be hard to predict. One of the primary

heuristics we used is the Mini-Bucket heuristic introduced in [65] for OR search spaces.

In the following subsections we discuss its extension to AND/OR search spaces. We also

extend the local consistency based lower bound developed in[71, 72, 25] to AND/OR

search spaces. Both of these heuristic functions were used inour experiments.

3.4.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figures 3.6(a) and 3.6(b), respectively,

and consider also the variable orderingd = (A,B,C,D,E, F,G) and the bucket and mini-

buckets configuration in the output as displayed in Figures 3.6(c) and 3.6(d), respectively

(see also Chapter 1, Sections 1.3.1 and 1.3.2 for a more details). For clarity, we display

the execution of the Bucket and Mini-Bucket Elimination algorithms along the bucket tree

corresponding to the given elimination ordering. The bucket tree is also a pseudo tree [38].
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Figure 3.6: Static mini-bucket heuristics fori = 3.
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The functions denoted on the arcs are those messages sent from a bucket node to its parent

in the tree.

Let us assume, without loss of generality, that variablesA andB have been instantiated

during search. Leth∗(a, b, c) be the minimal cost solution of the subproblem rooted at node

C in the pseudo tree, conditioned on(A = a,B = b, C = c). In the AND/OR search tree,

this is represented by the subproblem rooted at the AND node labeled〈C, c〉, ending the

path{A, 〈A, a〉, B, 〈B, b〉, C, 〈C, c〉}. By definition,

h∗(a, b, c) = mind,e(f(c, e) + f(b, e) + f(a, d) + f(c, d) + f(b, d)) (3.2)

Notice that we restrict ourselves to the subproblem over variablesD andE only. There-

fore, we obtain:

h∗(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d) +mine(f(c, e) + f(b, e)))

= mind(f(a, d) + f(c, d) + f(b, d)) +mine(f(c, e) + f(b, e))

= hD(a, b, c) + hE(b, c)

where,

hD(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d))

hE(b, c) = mine(f(c, e) + f(b, e))

Notice that the functionshD(a, b, c) andhE(b, c) are produced by the bucket elimination

algorithm shown in Figure 3.6(c). Specifically, the functionhD(a, b, c), generated in bucket

of D by bucket elimination, is the result of a minimization operation over variableD. In

practice, however, this function may be too hard to compute as it requires processing a
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function on four variables. It can be replaced by a partition-based approximation (e.g., the

minimization is split into two parts). This yields a lower bound approximation, denoted by

h(a, b, c), namely:

h∗(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d)) + hE(b, c)

≥ mindf(a, d) +mind(f(c, d) + f(b, d)) + hE(b, c)

= hD(a) + hD(b, c) + hE(b, c)

, h(a, b, c)

where,

hD(a) = mindf(a, d)

hD(c, b) = mind(f(c, d) + f(b, d))

The functionshD(a) andhD(b, c) are the ones computed by the Mini-Bucket algorithm

MBE(3), shown in Figure 3.6(d). Therefore, the functionh(a, b, c) can be constructed

during search from the pre-compiled mini-buckets, yielding a lower bound on the minimal

cost of the respective subproblem.

For OR nodes, such asn, labeled byC, ending the path{A, 〈A, a〉, B, 〈B, b〉, C}, h(n)

can be obtained by minimizing over the valuesc ∈ DC the sum between the weightw(n,m)

and the heuristic estimateh(m) below the AND childm of n, labeled〈C, c〉. Namely,

h(n) = minm(w(n,m) + h(m)).

In summary, similarly to [65], we can show that the mini-bucket heuristic associated

with any node in the AND/OR search tree can be obtained from the the pre-compiled mini-

bucket functions.

DEFINITION 31 (static mini-bucket heuristic) Given an ordered set of augmented buck-
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ets{B(X1), ..., B(Xn)} generated by the Mini-Bucket algorithm MBE(i) along the bucket

tree T , and given a noden in the AND/OR search tree, thestatic mini-bucket heuristic

functionh(n) is computed as follows:

1. If n is an AND node, labeled by〈Xp, xp〉, then:

h(n) =
∑

hk
j∈{B(Xp)∪B(X1

p ..X
q
p)}

hk
j

Namely, it is the sum of the intermediate functionshk
j that satisfy the following two

properties:

• They are generated in bucketsB(Xk), whereXk is any descendant ofXp in the

bucket treeT ,

• They reside in bucketB(Xp) or the bucketsB(X1
p ..X

q
p) = {B(X1

p ), ..., B(Xq
p)}

that correspond to the ancestors{X1
p , ..., X

q
p} ofXp in T .

2. If n is an OR node, labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp ofXp.

Example 12 Figure 3.6(d) shows the bucket tree for the cost network in Figure 3.6(a)

together with the intermediate functions generated by MBE(3) along the orderingd =

(A,B,C,D,E, F,G). The static mini-bucket functionh(a′, b′, c′) associated with the AND

node labeled〈C, c′〉 ending the path(A = a′, B = b′, C = c′) in the AND/OR search tree

is by definitionh(a′, b′, c′) = hD(a′) + hD(c′, b′) + hE(b′, c′). The intermediate functions

hD(c′, b′) andhE(b′, c′) are generated in bucketsD andE, respectively, and reside in bucket

C. The functionhD(a′) is also generated in bucketD, but it resides in bucketA, which is

an ancestor of bucketC in the bucket tree.
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Figure 3.7: AND/OR versus OR static mini-bucket heuristicsfor i = 3.

We see that the computation of the static mini-bucket heuristic of a noden in the

AND/OR search tree is identical to the OR case (see Definition15 in Chapter 1), except

that it only considers the intermediate functions generated by the buckets corresponding to

the current conditioned subproblem rooted atn.

Example 13 For example, consider again the cost network in Figure 3.6(a). Figures 3.7(a)

(which repeats Figure 3.6(d)) and 3.7(b) show the compiled bucket structure obtained by

MBE(3) along the given elimination orderd = (A,B,C,D,E, F,G), for the AND/OR

and OR spaces, respectively. The static mini-bucket heuristic function underestimating the

minimal cost extension of the partial assignment(A = a′, B = b′, C = c′) in the OR search

space ish(a′, b′, c′) = hD(a′) + hD(c′, b′) + hE(b′, c′) + hF (b′, a′). Namely, it involves the

extra functionhF (b′, a′) which was generated in bucketF and resides in bucketB, as

shown in Figure 3.7(b). This is because, in the OR space, variablesF andG are part of

the subproblem rooted atC, unlike the AND/OR search space.

3.4.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristic information dynamically during

search, as we show next. The idea is to compute MBE(i) conditioned on the current partial

assignment.
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DEFINITION 32 (dynamic mini-bucket heuristics) Given a bucket treeT with buckets

{B(X1), ..., B(Xn)}, a noden in the AND/OR search tree and given the current partial

assignmentasgn(πn) along the path ton, thedynamic mini-bucket heuristicfunctionh(n)

is computed as follows:

1. If n is an AND node labeled by〈Xp, xp〉, then:

h(n) =
∑

hk
j∈B(Xp)

hk
j

Namely, it is the sum of the intermediate functionshk
j that reside in bucketB(Xp)

and were generated by MBE(i), conditioned onasgn(πn), in bucketsB(X1
p ) through

B(Xq
p), where{X1

p , ..., X
q
p} are the descendants ofXp in T .

2. If n is an OR node labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp ofXp.

Given ani-bound, the dynamic mini-bucket heuristic implies a much higher computa-

tional effort compared with the static version. However, the bounds generated dynamically

may be far more accurate since some of the variables are assigned and will therefore yield

smaller functions and less partitioning. More importantly, the dynamic mini-bucket heuris-

tic can be used with dynamic variable ordering heuristics, unlike the pre-compiled one,

which restricts search to be conducted in an order that respects a static pseudo tree struc-

ture.

Example 14 Figure 3.8 shows the bucket tree structure corresponding to the binary cost

network displayed in Figure 3.6(a), along the elimination ordering(A,B,C,D,E, F,G).

The dynamic mini-bucket heuristic estimateh(a′, b′, c′) of the AND node labeled〈C, c′〉
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Figure 3.8: Dynamic mini-bucket heuristics fori = 3.

ending the path{A, 〈A, a′〉, B, 〈B, b′〉, C, 〈C, c′〉} is computed by MBE(3) on the subprob-

lem represented by the bucketsD andE, conditioned on the partial assignment(A =

a′, B = b′, C = c′). Namely, MBE(3) processes bucketsD andE by eliminating the re-

spective variables, and generates two new functions:hD(c′) andhE(c′), as illustrated in

Figure 3.8. These new functions are in fact constants since variablesA, B andC are

assigned in the scopes of the input functions that constitute the conditioned subproblem:

f(a′, D), f(b′, D), f(c′, D), f(b′, E) and f(c′, E), respectively. Thereforeh(a′, b′, c′) =

hD(c′) + hE(c′) and it equals the exacth∗(a′, b′, c′) in this case.

3.4.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for guiding Branch-and-Bound search

for solving binary Weighted CSPs is based on exploiting localconsistency algorithms for

cost functions. We discuss next its extension to AND/OR trees.

Extension of Local Consistency to AND/OR Search Spaces

As mentioned in Chapter 1, the zero-arity constraintC∅ which is obtained by enforcing lo-

cal consistency, can be used as a heuristic function to guideBranch-and-Bound search. The

extension of this heuristic to AND/OR search spaces is fairly straightforward and is similar
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to the extension of the mini-bucket heuristics from OR to AND/OR spaces. ConsiderPn,

the subproblem rooted at the AND noden, labeled〈Xi, xi〉, in the AND/OR search tree

defined by a pseudo treeT . The heuristic functionh(n) underestimatingv(n) is the zero-

arity cost functionCn
∅ resulted from enforcing soft arc consistency overPn only, subject to

the current partial instantiation of the variables along the path from the root of the search

tree. Note thatPn is defined by the variables and cost functions correspondingto the sub-

tree rooted atXi in T . If n is an OR node labeledXi thenh(n) is computed in the usual

way, namelyh(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn, labeled

with valuexi of Xi. Notice that in this case the weights associated with the OR-to-AND

arcs are computed now relative to the equivalent subproblemresulted from enforcing arc

consistency.

3.5 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introduced in Section 3.3 assumed

a static variable ordering determined by the underlying pseudo tree of the primal graph.

In classical CSPs, dynamic variable ordering is known to havea significant impact on the

size of the search space explored [34]. Well known variable ordering heuristics, such as

min-domain[54], min-dom/ddeg[8], brelaz[12] andmin-dom/wdeg[44, 14] were shown

to improve dramatically the performance of systematic search algorithms. In this section

we discuss some strategies that allow dynamic variable orderings in AND/OR search.

We distinguish two classes of variable ordering heuristics:

1. Graph-based heuristics (e.g., pseudo tree) that try to maximize problem decomposi-

tion, and

2. Semantic-based heuristics (e.g., min-domain) that aim at shrinking the search space,

based on context and current value assignment.
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These two approaches are orthogonal, namely we can use one asthe primary guide and

break ties based on the other. We present three schemes of combining these heuristics.

For simplicity and without loss of generality we consider the min-domainas our semantic

variable ordering heuristic. It selects the next variable to instantiate as the one having the

smallest current domain among the uninstantiated (future)variables. Clearly, it can be

replaced by any other heuristic.

3.5.1 Partial Variable Ordering (PVO)

The first approach, calledAND/OR Branch-and-Bound with Partial Variable Orderingand

denoted byAOBB+PVO uses the static graph-based decomposition given by a pseudotree

with a dynamic semantic ordering heuristic applied over chain portions of the pseudo tree.

It is an adaptation of the ordering heuristics developed in [56, 76] which were used for

solving large-scale SAT problem instances.

Consider the pseudo tree from Figure 3.1(a) inducing the following variable groups (or

chains): {A,B}, {C,D} and {E,F}, respectively. This implies that variables{A,B}

should be considered before{C,D} and {E,F}. The variables in each group can be

dynamically ordered based on a second, independent heuristic. Notice that once variables

{A,B} are instantiated, the problem decomposes into independentcomponents that can be

solved separately.

AOBB+PVO can be derived from Algorithm 6 with some simple modifications. As usual,

the algorithm traverses an AND/OR search tree in a depth-first manner, guided by a pre-

computed pseudo treeT . When the current AND noden, labeled〈Xi, xi〉 is expanded in

the forward step (line 9), the algorithm generates its OR successor, labeled byXj, based on

the semantic variable ordering heuristic (line 12). Specifically, the OR nodem, labeledXj

corresponds to the uninstantiated variable with the smallest current domain in the current

pseudo tree chain. If there are no uninstantiated variablesleft in the current chain, namely

variableXi was instantiated last, then the OR successors ofn are labeled by the variables
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Figure 3.9: Full dynamic variable ordering for AND/OR Branch-and-Bound search.

with the smallest domain from the variable groups rooted byXi in T .

3.5.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable orderings, calledAND/OR Branch-and-

Bound with Full Dynamic Variable Orderingand denoted byDVO+AOBB, gives priority

to the dynamic semantic variable ordering heuristic and applies static problem decomposi-

tion as a secondary principle during search. This idea was also explored in [6] for model

counting, and more recently in [119] for weighted model counting.

For illustration, consider the cost network with 8 variables {A,B,C,D,E, F,G,H},

13 binary cost functions, and the domains given in Figure 3.9(a), as follows:DA = {0, 1},

DB = {0, 1, 2}, andDC = DD = DE = DF = DG = DH = {0, 1, 2, 3}, respec-

tively. Each of the cost functionsf(A,B) andf(A,E) assigns an∞ cost to two of their

corresponding tuples, whereas the remaining 11 functions do not contain such tuples.

During search, variables are instantiated in min-domain order. However, after each vari-

able assignment we test for problem decomposition and solvethe remaining subproblems

independently. Figure 3.9(b) shows the partial AND/OR search tree obtained after several
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variable instantiations based on the min-degree ordering heuristic. Notice that, depend-

ing on the order in which the variables are instantiated, theprimal graph may decompose

into independent componentshigher or deeperin the search tree. For instance, after in-

stantiatingA to 0, the values{1, 2} can be removed from the domain ofB, because the

corresponding tuples have cost∞ in the cost functionf(A,B) (see Figure 3.9(a)). There-

fore,B is the next variable to be instantiated, at which point the problem decomposes into

independent components, as shown in Figure 3.9(b). Similarly, whenA is instantiated to

1, values{0, 1} can also be removed from the domain ofE, because of the cost func-

tion f(A,E). Then, variableE, having 2 values left in its domain, is selected next in the

min-domain order, followed byB with domain size 3.

DVO+AOBB can be expressed by modifying Algorithm 6 as follows. It instantiates the

variables dynamically using the min-domain ordering heuristic while maintaining the cur-

rent graph structure. Specifically, after the current AND noden, labeled〈Xi, xi〉, is ex-

panded,DVO+AOBB tentatively removes from the primal graph all nodes corresponding to

the instantiated variables together with their incoming arcs. If disconnected components

are detected, their corresponding subproblems are then solved separately and the results

combined in an AND/OR manner. In this case a variable selection may yield a significant

impact on tightening the search space, yet, it may not yield agood decomposition for the

remaining problem.

3.5.3 Dynamic Separator Ordering (DSO)

The third approach, calledAND/OR Branch-and-Bound with Dynamic Separator Ordering

and denoted byAOBB+DSO, exploits constraint propagation which can be used for dynamic

graph-based decomposition with a dynamic semantic variable ordering, giving priority to

the first. At each AND node we apply a lookahead procedure hoping to detect singleton

variables (i.e., with only one feasible value left in their domains). When thevalue of

a variable is known, it can be removed from the correspondingsubproblem, yielding a
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stronger decomposition of the simplified primal graph.

AOBB+DSO defined on top of Algorithm 6 creates and maintains a separator S of the

current primal graph. A graph separator can be computed using the hypergraph partitioning

method presented in [76]. The next variable is chosen dynamically from S by the min-

domain ordering heuristic untilS is fully instantiated and the current problem decomposes

into several independent subproblems, which are then solved separately. The separator of

each component is created from a simplified subgraph resulted from previous constraint

propagation steps and it may differ for different value assignments. Clearly, if no singleton

variables are discovered by the lookahead steps this approach is computationally identical

to AOBB+PVO, although it may have a higher overhead due to the dynamic generation of

the separators.

3.6 Experimental Results

We have conducted a number of experiments on two common optimization problem classes

in graphical models: finding the Most Probable Explanation in Bayesian networks and

solving Weighted CSPs. We implemented our algorithms in C++ and carried out all exper-

iments on a 1.8GHz dual-core Athlon64 with 2GB of RAM running Ubuntu Linux 7.04.

3.6.1 Overview and Methodology

Bayesian Networks. For the MPE task, we tested the performance of the AND/OR

Branch-and-Bound algorithms on the following types of problems: random Bayesian net-

works, random coding networks, grid networks, Bayesian networks derived from the IS-

CAS’89 digital circuit benchmark, genetic linkage analysisnetworks, networks from the

Bayesian Network Repository, and Bayesian networks from the UAI’06 Inference Evalua-

tion Dataset.

The detailed outline of the experimental evaluation for Bayesian networks is given
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static mini-buckets dynamic mini-buckets min-fill vs.
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph constraint SamIam Superlink

AOBB+SMB(i) AOBB+DMB(i) pseudo trees propagation
Random BN

√ √ √
- - -

Coding
√ √ √

-
√

-
Grids

√ √ √ √ √
-

Linkage
√

-
√ √ √ √

ISCAS’89
√ √ √ √ √

-
UAI’06 Dataset

√
-

√
-

√
-

BN Repository
√ √

- -
√

-

Table 3.1: Detailed outline of the experimental evaluationfor Bayesian networks.

in Table 3.1. We evaluated the two classes of depth-first AND/OR Branch-and-Bound

search algorithms, guided by the static and dynamic mini-bucket heuristics, denoted by

AOBB+SMB(i) andAOBB+DMB(i), respectively. We compare these algorithms against

traditional depth-first OR Branch-and-Bound algorithms withstatic and dynamic mini-

bucket heuristics introduced in [65, 86], denoted byBB+SMB(i) andBB+DMB(i), respec-

tively, which were among the best-performing complete search algorithms for this domain

at the time. The parameteri represents the mini-bucketi-bound and controls the accuracy

of the heuristic. The pseudo trees that guide AND/OR search algorithms were generated

using the min-fill and hypergraph partitioning heuristics,described later in this section. We

also consider an extension of the AND/OR Branch-and-Bound that exploits the determin-

ism present in the Bayesian network by constraint propagation.

Since the pre-compiled mini-bucket heuristics require a static variable ordering, the cor-

responding OR and AND/OR search algorithms used the variable ordering as well derived

from a depth-first traversal of the guiding pseudo tree. When we applied dynamic variable

orderings with dynamic mini-bucket heuristics we observedthat the computational over-

head was prohibitively large compared with the static variable ordering setup. We therefore

do not report these results. We note however that theAOBB+SMB(i) andAOBB+DMB(i)

algorithms support a restricted form of dynamic variable and value ordering. Namely, there

is a dynamic internal ordering of the successors of the node just expanded, before placing

them onto the search stack. Specifically, in line 26 of Algorithm 6, if the current noden

is AND, then the independent subproblems rooted by its OR children can be solved in de-
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static mini-buckets dynamic mini-buckets min-fill vs. EDAC heuristics
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph BBEDAC toolbar

AOBB+SMB(i) AOBB+DMB(i) pseudo trees AOEDAC, PVO, DVO, DSO
SPOT5

√ √ √ √ √
ISCAS’89

√ √ √ √ √
Mastermind

√
-

√ √ √
CELAR - - -

√ √

Table 3.2: Detailed outline of the experimental evaluationfor Weighted CSPs.

creasing order of their corresponding heuristic estimates(variable ordering). Alternatively,

if n is OR, then its AND children corresponding to domain values can also be sorted in

decreasing order of their heuristic estimates (value ordering).

We compared our algorithms with the SAM IAM 2.3.2 software package1. SAM IAM is

a public implementation of Recursive Conditioning [24] whichcan also be viewed as an

AND/OR search algorithm. The algorithm uses a context-based caching mechanism that

records the optimal solution of the subproblems and retrieves the saved values when the

same subproblems are encountered again during search. Thisversion of recursive condi-

tioning traverses a context minimal AND/OR search graph [38], rather than a tree, and

its space complexity is exponential in the treewidth. Note that when we use mini-bucket

heuristics with high values ofi, we use space exponential ini for the heuristic calculation

and storing. Our search regime however does not consume any additional space.

Weighted CSPs. For WCSPs we evaluated the performance of the depth-first AND/OR

Branch-and-Bound algorithms on: random binary WCSPs, scheduling problems from the

SPOT5 benchmark, networks derived from the ISCAS’89 digitalcircuits, radio link fre-

quency assignment problems and instances of the Mastermindgame.

The outline of the experimental evaluation for Weighted CSPsis detailed in Table 3.2.

In addition to the mini-bucket heuristics, we also considera heuristic evaluation func-

tion that is computed by maintaining Existential Directional Arc-Consistency (EDAC)

[25]. AOBB with this heuristic is calledAOEDAC. We also consider the extension of

1Available at http://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5 provided with the
package.
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AOEDAC that incorporates dynamic variable orderings heuristics described earlier yielding:

AOEDAC+PVO (partial variable ordering),DVO+AOEDAC (full dynamic variable ordering)

andAOEDAC+DSO (dynamic separator ordering). For comparison, we report results ob-

tained with our implementation of the classic OR Branch-and-Bound with EDAC, denoted

here byBBEDAC.

For reference, we also ran the state-of-the-art solver calledtoolbar2, which is the im-

plementation of the OR Branch-and-Bound maintaining EDAC introduced in [25]. toolbar

is currently one of the best performing solver for binary Weighted CSPs.

The semantic-based dynamic variable ordering heuristic used by the OR and AND/OR

Branch-and-Bound algorithms with EDAC based heuristics was themin-dom/ddegheuris-

tic, which selects the variable with the smallest ratio of the current domain size divided by

the future degree. Ties were broken lexicographically.

Measures of Performance. In all our experiments we report the average CPU time in

seconds and the number of nodes visited, required for proving optimality. We also report

problem’s parameters as the number of variables (n), number of evidence variables (e),

maximum domain size (k), the depth of the pseudo tree (h) and the induced width of the

graph (w∗). When evidence is asserted in the network,w∗ andh are computed after the

evidence nodes are removed from the graph. We also report thetime required by the Mini-

Bucket algorithm MBE(i) to pre-compile the heuristic information. The best performance

points are highlighted. In each table, ”-” denotes that the respective algorithm exceeded the

time limit. Similarly, ”out” stands for exceeding the 2GB memory limit.

3.6.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search algorithms is influenced by

the quality of the guiding pseudo tree. Finding the minimal depth/induced width pseudo

2Available at: http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
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Network hypergraph min-fill Network hypergraph min-fill
width depth width depth width depth width depth

barley 7 13 7 23 spot5 47 152 39 204
diabetes 7 16 4 77 spot28 108 138 79 199
link 21 40 15 53 spot29 16 23 14 42
mildew 5 9 4 13 spot42 36 48 33 87
munin1 12 17 12 29 spot54 12 16 11 33
munin2 9 16 9 32 spot404 19 26 19 42
munin3 9 15 9 30 spot408 47 52 35 97
munin4 9 18 9 30 spot503 11 20 9 39
water 11 16 10 15 spot505 29 42 23 74
pigs 11 20 11 26 spot507 70 122 59 160

Table 3.3: Bayesian Networks Repository (left); SPOT5 benchmarks (right).

tree is a hard problem [48, 11, 106]. We describe next two heuristics for generating pseudo

trees with relatively small depths/induced-widths which we used in our experiments.

Min-Fill Heuristic

Min-Fill [67] is one of the best and most widely used heuristics for creating small induced

width elimination orders. An ordering is generated by placing the variable with the smallest

fill set (i.e., number of induced edges that need be added to fully connect the neighbors of

a node) at the end of the ordering, connecting all of its neighbors and then removing the

variable from the graph. The process continues until all variables have been eliminated.

Once an elimination order is given, the pseudo tree can be extracted as a depth-first

traversal of the min-fill induced graph, starting with the variable that initiated the ordering,

always preferring as successor of a node the earliest adjacent node in the induced graph.

An ordering uniquely determines a pseudo tree. This approach was first used by [106].

To improve orderings, we can run the min-fill ordering several times by randomizing

the tie breaking. In our experiments, we ran the min-fill heuristic just once and broke the

ties lexicographically.
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Hypergraph Decomposition Heuristic

An alternative heuristic for generating a low height balanced pseudo tree is based on the

recursive decomposition of the dual hypergraph associatedwith the graphical model.

DEFINITION 33 (dual hypergraph) Thedual hypergraphof a graphical model〈X,D,F〉,

is a pairH = (V,E), where each function inF is a vertexvi ∈ V and each variable inX

is an edgeej ∈ E connecting all the functions (vertices) in which it appears.

DEFINITION 34 (hypergraph separators) Given a dual hypergraphH = (V,E) of a

graphical model, ahypergraph separator decompositionis a triple 〈H,S, α〉 where:

1. S ⊂ E, and the removal ofS separatesH into k disconnected components;

2. α is a relation over the size of the disjoint subgraphs (i.e., balance factor).

It is well known that the problem of finding the minimal size hypergraph separator is

hard. However heuristic approaches were developed over theyears. A good approach is

packaged inhMeTiS3.

We will use this software as a basis for our pseudo tree generation. Following [24],

generating a pseudo treeT for R usinghMeTiS is fairly straightforward. The vertices of

the hypergraph are partitioned into two balanced (roughly equal-sized) parts, denoted by

Hleft andHright respectively, while minimizing the number of hyperedges across. A small

number of crossing edges translates into a small number of variables shared between the

two sets of functions.Hleft andHright are then each recursively partitioned in the same

fashion, until they contain a single vertex. The result of this process is a tree of hypergraph

separators which can be shown to also be a pseudo tree of the original model where each

separator corresponds to a subset of variables chained together.

Since the hypergraph partitioning heuristic uses a non-deterministic algorithm (i.e.,

hMeTiS), the depth and induced width of the resulting pseudo tree may vary significantly

3Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
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from one run to the next. In our experiments we picked the pseudo tree with the smallest

depth out of 10 independent runs.

In Table3.3 we illustrate the induced width and depth of the pseudo tree obtained with

the hypergraph and min-fill heuristics for 10 belief networks from the Bayesian Networks

Repository4 and 10 constraint networks derived from the SPOT5 benchmark[7]. From

this and the experiments presented in the remaining of this section, we observe that the

min-fill heuristic generates lower induced width pseudo trees, while the hypergraph heuris-

tic produces much smaller depth pseudo trees. Therefore, perhaps the hypergraph based

pseudo trees appear to be favorable for tree search algorithms guided by heuristics that are

not sensitive to the treewidth (e.g., local consistency based heuristics), while the min-fill

pseudo trees, which minimize the treewidth, are more appropriate for search algorithms

whose guiding heuristic is sensitive to the treewidth (e.g., mini-bucket heuristics).

3.6.3 Results for Empirical Evaluation on Bayesian Networks

In this section we focus on mini-bucket heuristics and static variable orderings.

Random Bayesian Networks

The random Bayesian networks were generated using parameters (n, k, c, p), wheren is

the number of variables,k is the domain size,c is the number of conditional probability

tables (CPTs) andp is the number of parents in each CPT. The structure of the network is

created by randomly pickingc variables out ofn and, for each, randomly pickingp parents

from their preceding variables, relative to some ordering.The remainingn − c variables

are calledroot nodes. The entries of each probability table are generated randomly using a

uniform distribution, and the table is then normalized.

Table 3.4 shows detailed results for solving a class of random belief networks using

min-fill and hypergraph partitioning based pseudo trees. The columns are indexed by the

4Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

k (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=2 i=4 i=6 i=8 i=10 i=12
time nodes time nodes time nodes time nodes time nodes time nodes
0.43 0.43 0.44 0.43 0.44 0.45

174.86 2,109,890 89.33 1,088,420 38.19 488,197 3.28 41,539 0.90 12,918 1.06 15,021
2 (14, 25) 12.23 308,536 1.01 25,706 0.70 17,124 0.17 4,273 0.07 1,666 0.06 1,103

25.86 62,466 3.13 10,737 2.75 10,289 2.71 10,653 2.91 11,570 2.59 10,153
3.07 11,023 0.50 1,365 0.24 635 0.15 489 0.17 450 0.18 347
0.43 0.43 0.44 0.47 0.69 2.12

- - - - 122.00 1,061,530 37.44 344,128 7.23 67,299 3.55 21,341
3 (14, 25) - - 100.47 1,950,280 40.54 722,818 19.78 384,609 2.37 39,318 2.26 13,957

163.72 208,945 31.09 24,603 23.00 19,753 23.50 19,293 28.24 17,787 44.43 18,994
137.61 357,485 24.93 34,127 16.17 6,283 16.40 1,613 20.85 702 34.96 478

0.50 0.50 0.52 0.80 3.93 39.22
- - - - 251.01 1,724,330 107.49 742,803 20.31 137,357 43.14 42,869

4 (14, 25) - - 283.61 4,585,420 188.38 2,922,760 85.19 1,326,610 23.38 303,695 41.27 51,276
- - 162.86 48,281 157.93 31,620 170.88 28,508 218.89 27,731 323.48 13,235
- - 155.49 85,964 146.72 7,891 161.38 1,367 211.84 697 317.11 218

0.49 0.49 0.58 2.20 33.18
- - - - 298.49 1,645,150 174.05 998,579 116.31 572,171

5 (14, 25) - - - - 267.68 3,804,650 185.49 2,540,320 127.26 1,218,160
- - 277.68 51,702 288.91 42,167 293.88 38,522 - -
- - 270.10 69,453 282.30 5,623 291.07 1,054 - -

hypergraph pseudo tree

0.43 0.43 0.44 0.43 0.44 0.45
178.94 2,076,390 143.48 1,739,470 121.20 1,495,580 67.72 858,691 24.85 319,742 7.63 99,539

2 (14, 20) 18.87 453,372 2.37 44,796 0.83 9,181 0.73 7,135 0.54 2,415 0.50 1,242
120.80 203,392 8.83 15,798 3.65 9,299 3.47 9,134 3.41 9,013 3.47 9,163

3.64 11,524 0.85 899 0.63 480 0.58 363 0.60 336 0.66 294
0.43 0.43 0.44 0.47 0.69 2.12

- - - - - - 172.16 1,508,000 119.81 1,066,200 81.45 717,941
3 (14, 20) 178.35 3,965,780 137.11 2,558,520 67.95 1,078,460 14.27 198,026 5.10 68,847 2.94 13,396

- - 67.56 53,725 29.66 24,415 21.68 20,004 29.79 19,347 49.22 17,425
129.58 490,813 16.66 9,164 10.57 1,409 8.39 640 16.64 469 35.47 349

0.50 0.50 0.52 0.80 3.93 39.22
- - - - - - - - 243.82 1,685,500 157.19 848,755

4 (14, 20) - - 284.29 4,679,600 176.11 2,478,050 89.32 1,196,610 35.50 409,701 41.73 30,918
- - 167.98 52,789 141.18 32,760 164.00 30,774 213.91 31,316 300.53 13,787

287.64 666,192 142.71 18,706 125.39 2,834 139.73 785 196.69 502 303.70 195
0.49 0.49 0.58 2.20 33.18

- - - - - - - - 295.99 1,524,180
5 (14, 20) - - - - 257.71 2,955,420 152.83 1,365,200 102.25 586,760

- - 287.11 59,292 289.47 40,179 - - - -
- - 254.74 30,200 253.84 1,933 279.00 645 - -

Table 3.4: CPU time in seconds and number of nodes explored forsolvingrandom belief
networks with n = 100 nodes,p = 2 parents per CPT,c = 90 CPTs and domain sizes
k ∈ {2, 3, 4, 5}. Each test case hade = 10 variables chosen randomly as evidence. The
time limits are 180 seconds fork ∈ {2, 3} and 300 seconds fork ∈ {4, 5}, respectively.
Pseudo trees generated by min-fill and hypergraph heuristics.

mini-bucketi-bound. For each domain size we generated 20 random instances and in each

test casee = 10 variables were chosen randomly as evidence.

We observe thatAOBB+SMB(i) is better thanBB+SMB(i) at relatively smalli-bounds

(i.e., i ∈ {2, 4, 6}) when the heuristic is weak. This demonstrates the benefit ofAND/OR

over classical OR search when the heuristic estimates are relatively weak and the algorithms

rely primarily on search rather than on pruning via the heuristic evaluation function. As the

i-bound increases (e.g., i ≥ 8) and the heuristic estimates become strong enough to cut the
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Figure 3.10: Comparison of the impact of static and dynamic mini-bucket heuristics on
random belief networkswith parameters(n = 100, k = 3, p = 2, c = 90) from Table 3.4.

search space substantially, the difference between the AND/OR and OR Branch-and-Bound

decreases.

When focusing on dynamic mini-bucket heuristics, we observethatAOBB+DMB(i) is

better thanBB+DMB(i) at relatively smalli-bounds, but the difference is not that promi-

nent as in the static case. This is probably because these heuristics are far more accurate

compared with the pre-compiled version and the savings in number of nodes caused by

traversing the AND/OR search tree do not translate into additional time savings. When

comparing the static and dynamic mini-bucket heuristics, we see that the latter is com-

petitive only for relatively smalli-bounds, because of the high overhead of the dynamic

mini-bucket. This may be significant because smalli-bounds usually require restricted

space. At higher levels of thei-bound the accuracy of the dynamic mini-bucket heuristic

does not outweigh its overhead.

In some exceptional cases the OR Branch-and-Bound explored fewer nodes than the

AND/OR counterpart. For example, on problem class displayed in the third horizontal

block of Table 3.4, the search space explored byAOBB+DMB(4) was almost two times

larger that that explored byBB+DMB(4). Similarly, AOBB+SMB(8) expanded almost

two times more nodes thanBB+SMB(8) on this problem class. This can be explained by

the internal dynamic ordering used by AND/OR Branch-and-Bound to solve independent
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subproblems rooted at the AND nodes in the search tree, whichdid not pay off in this

case. We also see that even thoughBB+SMB(i) (resp.BB+DMB(i)) traversed a smaller

search space thanAOBB+SMB(i) (resp. AOBB+DMB(i)), the runtime of the AND/OR

algorithms was actually better. This is because the computational overhead of the mini-

bucket heuristics was much smaller for AND/OR search than for OR search, and, therefore,

the AND/OR algorithms were able to overcome the increase in size of the search space.

Figure 3.10 plots the running time and number of nodes visited byAOBB+SMB(i) and

AOBB+DMB(i) (resp. BB+SMB(i) andBB+DMB(i)) as a function of the mini-bucket

i-bound for solving the random belief networks with parameters (n = 100, k = 3, p =

2, c = 90) (i.e., corresponding to the second horizontal block from Table 3.4). It shows ex-

plicitly how the performance of Branch-and-Bound changes with the mini-bucket strength

for both types of heuristics. We see thati-bound of 6 is most cost effective for dynamic

mini-buckets, whilei-bound of 12 yields best performance for static mini-buckets. We

see clearly that the dynamic mini-bucket heuristic is more accurate yielding smaller search

spaces. It also demonstrates that the dynamic mini-bucket heuristics are cost effective at

small i-bounds, whereas the pre-compiled version is more powerfulfor larger i-bounds.

This behavior is typical for all instances presented in the subsequent sections.

When comparing the min-fill versus hypergraph heuristics forgenerating pseudo trees,

we observe that the hypergraph based pseudo trees have smaller depths. However, min-fill

trees appear to be favorable toAOBB+SMB(i). This may be explained by the fact that

pre-compiling the mini-bucket heuristic using a min-fill based elimination ordering tends

to generate more accurate estimates. ForAOBB+DMB(i) the picture is sometimes reversed,

but not in a significant way.

Random Coding Networks

The purpose ofchannel codingis to provide reliable communication through a noisy chan-

nel. A systematic error-correcting encoding [91] maps a vector of K information bits
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Figure 3.11: Belief network for structured (10,5) block codewith parent sizep = 3.

u = (u1, ..., uk), ui ∈ {0, 1} into anN -bit codewordc = (u, x), whereN −K additional

bitsx = (x1, ..., xN−K), xj ∈ {0, 1} add redundancy to the information source in order to

decrease the decoding error. The codeword, called the channel input, is transmitted through

a noisy channel. A commonly used Additive White Noise (AWGN) channel model implies

that independent Gaussian noise with varianceσ2 is added to each transmitted bit, produc-

ing the channel outputy. Given a real-valued vectory, the decoding task is to restore the

input information vectoru [91, 68, 78]. An alternative approach, not considered here,is to

roundy to a 0/1 vector before decoding.

Our random coding networks fall within the class of linear block codes. They can be

represented as four-layer belief networks (Figure 3.11). The second and third layers (from

top) correspond to input information bits and parity check bits respectively. Each parity

check bit represents an XOR function of input bitsui. The first and last layers correspond

to transmitted information and parity check bits respectively. Input information and parity

check nodes are binary, while the output nodes are real-valued. In our experiments, each

layer has the same number of nodes because we use code rate ofR = K
N

= 1
2
, whereK is

the number of input bits andN is the number of transmitted bits.

Given a number of input bitsK, number of parentsP for each XOR bit, and channel

noise varianceσ2, a coding network structure is generated by randomly picking parents

for each XOR node. Then we simulate an input signal by assuming a uniform random
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33

- - 19.71 203,028 0.09 184 0.71 153 8.51 153
(64, 128) (27, 40) - 287.10 5,052,010 6.58 119,289 0.08 152 0.68 129 8.34 129
σ2 = 0.22 23.42 9,932 0.43 232 1.43 153 12.76 153 121.90 153

23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129
0.02 0.02 0.07 0.68 8.32

- - 82.60 850,665 1.16 12,190 0.81 1,463 8.35 227
(64, 128) (27, 40) - 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160
σ2 = 0.36 48.81 19,489 5.38 1,504 5.71 618 15.70 240 123.76 192

48.71 44,734 5.17 1,864 5.53 512 15.53 164 122.90 144

hypergraph pseudo tree

0.32 0.33 0.38 1.02 8.91
- - 24.29 287,699 0.59 2,259 1.06 156 8.97 156

(64, 128) (27, 34) - - - 4.76 61,426 0.40 381 1.03 142 8.92 129
σ2 = 0.22 35.71 20,678 0.77 263 1.71 163 12.02 163 107.08 163

31.46 17,224 0.59 160 1.60 129 11.69 129 102.38 129
0.32 0.33 0.38 1.05 9.39

- - 113.04 1,391,480 22.26 275,844 1.74 9,039 9.40 295
(64, 128) (27, 34) - - - 34.73 489,614 1.82 19,040 1.69 9,494 9.40 295
σ2 = 0.36 92.76 50,006 3.34 1,134 3.67 408 14.80 307 105.92 185

54.25 26,031 5.55 1,312 7.91 472 12.52 143 105.76 142

Table 3.5: CPU time and nodes visited for solvingrandom coding networkswith 64 bits
and 4 parents per XOR bit. Time limit 300 seconds. Pseudo trees generated by min-fill and
hypergraph heuristics. SAM IAM was not able to solve any of the test instances.

distribution of information bits, compute the corresponding values of the parity check bits,

and generate an assignment to the output nodes by adding Gaussian noise to each informa-

tion and parity check bit. The decoding algorithm takes as input the coding network and

the observed real-valued output assignment and recovers the original input bit-vector by

computing or approximating an MPE assignment.

Tables 3.5 and 3.6 display the results using min-fill and hypergraph based pseudo trees

for solving two classes of random coding networks withK = 64 andK = 128 input bits,

respectively. The number of parents for each XOR bit wasP = 4 and we chose the chan-

nel noise varianceσ2 ∈ {0.22, 0.36}. We see thatAOBB+SMB(i) andAOBB+DMB(i) are

slightly faster thanBB+SMB(i) andBB+DMB(i), respectively, only for relatively small

i-bounds. In several test cases, however, the search space explored by the AND/OR al-

gorithms was larger than the corresponding OR space. For instance, on the problem

class withK = 128 andσ2 = 0.36 shown in the second horizontal block of Table 3.6,

AOBB+SMB(12) expanded almost 2 times more nodes thanBB+SMB(12). This was

caused again by the internal dynamic variable ordering usedby the AND/OR algorithms.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.05 0.06 0.18 1.80 25.65

257.42 1,581,950 52.69 345,028 3.53 12,513 25.75 2,065
(128, 256) (53, 71) - - - 229.02 3,227,110 16.67 206,004 3.51 22,644 25.87 3,081
σ2 = 0.22 196.64 41,359 48.80 4,178 17.86 726 130.95 588 - -

195.82 121,822 48.17 9,391 17.15 500 129.38 388 - -
0.05 0.06 0.18 1.80 25.39

- - - - 271.29 1,717,770 211.88 1,452,980 99.14 598,738
(128, 256) (53, 71) - - - 291.61 4,309,160 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120
σ2 = 0.36 289.06 65,591 230.23 22,617 234.33 6,857 276.40 1,957 - -

289.09 223,938 229.91 46,768 233.96 7,947 276.31 953 - -

hypergraph pseudo tree

0.73 0.74 0.86 2.49 27.13
- - 285.82 1,765,300 184.90 1,264,890 94.43 677,488 31.72 36,604

(128, 256) (53, 63) - - - 238.91 3,070,670 125.01 1,252,930 38.12 404,160 27.28 1,658
σ2 = 0.22 277.94 133,702 152.10 21,264 27.63 942 90.89 376 - -

282.15 126,614 84.82 6,358 73.46 1,307 166.75 409 - -
0.73 0.74 0.86 2.51 25.95

- - - - 296.69 1,948,930 285.70 2,009,240 210.16 1,360,710
(128, 256) (53, 63) - - - - - 296.02 3,583,930 251.96 2,969,470 142.85 1,340,740
σ2 = 0.36 - - 287.30 32,456 269.73 5,269 292.08 2,308 - -

- - 261.00 58,212 269.14 4,614 282.24 823 - -

Table 3.6: CPU time and nodes visited for solvingrandom coding networkswith 128 bits
and 4 parents per XOR bit. Time limit 300 seconds. Pseudo trees generated by min-fill and
hypergraph heuristics. SAM IAM was not able to solve any of the test instances.

We also see that the overhead of the mini-bucket heuristic was smaller in the AND/OR than

the OR case, which paid off in some test cases.

When looking at the impact of the min-fill versus the hypergraph based pseudo trees

we see that, even though the hypergraph trees were shallowerthan the min-fill ones, the

mini-bucket heuristics generated relative to min-fill orderings were more accurate than

those corresponding to hypergraph partitioning based orderings. In some cases this trans-

lated into significant time savings. For example, on the problem class withK = 128 and

σ2 = 0.22, the min-fill pseudo tree causes an 8-fold speedup over the hypergraph tree, for

AOBB+SMB(12). A similar behavior can be observed for dynamic mini-bucketheuristics.

Figure 3.12 plots the running time and number of nodes visited byAOBB+SMB(i) and

AOBB+DMB(i) (resp. BB+SMB(i) andBB+DMB(i)), for solving the coding networks

with parameters(K = 128, σ2 = 0.22) (i.e., corresponding to the first horizontal block

from Table 3.6). We see that as thei-bound increases, the mini-bucket heuristics become

more accurate and the performance of Branch-and-Bound improves. For example,i-bound

of 14 yields the best performance forAOBB+SMB(i), whereasAOBB+DMB(i) achieves

106



Figure 3.12: Comparison of the impact of static and dynamic mini-bucket heuristics on
random coding networkswith parameters(K = 128, σ2 = 0.22) from Table 3.6.

the best performance ati = 12. For even largeri-bounds however, the overhead of both the

pre-compiled and dynamic heuristics deteriorates the performance of the algorithms. The

dynamic mini-bucket heuristics are better for relatively small i-bounds, whereas relatively

largeri-bounds are cost effective for the pre-compiled heuristics.

Grid Networks

In random grid networks, the nodes are arranged in anN × N square and each CPT is

generated uniformly at random. We experimented with problem instances having bi-valued

variables that were initially developed in [112] for the task of weighted model counting. For

these problemsN ranges between 10 and 38, and, for each instance,90% of the CPTs are

deterministic (having only 0 and 1 probability entries).

Table 3.7 displays the results for experiments with 8 grids of increasing difficulty, using

mini-fill based pseudo trees. For each test instance we ran a single MPE query withe

evidence variables picked randomly. We see again the superiority of AOBB+SMB(i) over

the OR counterpart, especially on the harder instances. Forexample, on the90-30-1 grid,

AOBB+SMB(20) finds the MPE in about 87 seconds, whereasBB+SMB(20) exceeds the

1 hour time limit. The AND/OR Branch-and-Bound algorithms with dynamic mini-bucket

heuristics as well asSamIam are able to solve relatively efficiently only the first 3 test
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, e) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=8 i=10 i=12 i=14 i=16

time time nodes time nodes time nodes time nodes time nodes
0.01 0.02 0.04 0.07 0.07

90-10-1 0.12 3,348 0.04 424 0.05 153 0.07 153 0.08 153
(13, 39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101
(100, 0) 0.87 543 0.57 250 0.48 153 0.54 153 0.54 153

0.34 344 0.33 241 0.32 101 0.39 101 0.39 101
0.02 0.04 0.11 0.22 0.72

90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 0.54 5,035 0.90 2,826
(22, 66) 11.97 4.27 130,619 3.44 100,696 0.61 17,479 0.32 3,321 0.81 2,938
(196, 0) 149.44 16,415 52.34 2,894 12.46 537 13.71 211 19.22 199

65.74 31,476 33.57 4,137 7.50 397 12.00 211 17.65 199
0.03 0.05 0.14 0.46 1.01

90-16-1 - - - - 23.74 347,479 1.85 18,855 1.44 6,098
(24, 82) 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 1.78 23,421
(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 65.15 414

1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 40.68 260

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

0.33 0.89 2.69 7.61 31.26
90-24-1 - - - - - - - - - -
(33, 111) - - - 1500.66 24,117,151 921.96 18,238,983 93.73 1,413,764 111.46 1,308,009
(576, 20) - - - - - - - - - -

- - - - 1367.38 2,739 1979.42 1,228 2637.71 598
0.37 1.02 3.39 11.74 36.16

90-26-1 - - - - 324.30 2,234,558 - - 70.53 327,859
(36, 113) - 206.93 2,903,489 242.37 3,205,257 7.43 59,055 21.48 165,182 36.49 5,777
(676, 40) - - - - - - - - - -

- - - - 1514.18 2,545 2889.49 1,191 - -
0.53 1.35 4.36 13.34 50.53

90-30-1 - - - - - - - - - -
(43, 150) - 742.51 9,445,224 239.08 3,324,942 215.56 3,039,966 101.10 1,358,569 87.68 485,300
(900, 60) - - - - - - - - - -

- - - - - - - - - -
0.66 1.60 5.35 18.42 62.17

90-34-1 - - - - - - - - - -
(45, 153) - - - - - - - - - 257.14 1,549,829
(1154, 80) - - - - - - - - - -

- - - - - - - - - -
0.82 2.16 6.43 20.46 72.10

90-38-1 - - - - - - - - - -
(47, 163) - 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146 199.44 1,038,065
(1444, 120) - - - - - - - - - -

- - - - - - - - - -

Table 3.7: CPU time in seconds and nodes visited for solvinggrid networks. Time limit 1
hour.

instances.

Figure 3.13 plots the running time and number of nodes visited by AOBB+SMB(i)

andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), for solving the90-14-1 grid

network (i.e., corresponding to the second horizontal block from Table 3.7). Focusing on

AOBB+SMB(i) (resp.BB+SMB(i)) we see that its running time, as a function ofi, forms

a U-shaped curve. At first (i = 4) it is high, then as thei-bound increases the total time

decreases (wheni = 10 the time is 3.44 forAOBB+SMB(10) and 71.98 forBB+SMB(10),

respectively), but then asi increases further the time starts to increase again. The same

behavior can be observed in the case ofAOBB+DMB(i) (resp.BB+DMB(i)) as well.
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Figure 3.13: Comparison of the impact of static and dynamic mini-bucket heuristics on the
90-14-1 grid network from Table 3.7.

Figure 3.14: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvinggrid networks with AOBB+SMB(i).
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Figure 3.15: A fragment of a belief network used in genetic linkage analysis.

Figure 3.14 displays the runtime distribution ofAOBB+SMB(i) using hypergraph based

pseudo trees for 4 grid networks. For each reportedi-bound, the corresponding data point

and error bar reports the average as well as the minimum and maximum runtime obtained

over 20 independent runs of the algorithm with a 30 minute time limit. We also record the

average induced width and depth obtained for the hypergraphpseudo trees (see the header

of each plot in Figure 3.14). As observed earlier, the hypergraph based pseudo trees are

significantly shallower compared with the min-fill ones, andin some cases they are able to

improve performance dramatically, especially at relatively small i-bounds. For example,

on the grid90-24-1, AOBB+SMB(14) guided by a hypergraph pseudo tree is about 2

orders of magnitude faster thanAOBB+SMB(14) using a min-fill pseudo tree. At larger

i-bounds, the pre-compiled mini-bucket heuristic benefits from the small induced width

which normally is obtained with the min-fill ordering. Therefore AOBB+SMB(i) using

min-fill based trees is generally faster thanAOBB+SMB(i) guided by hypergraph based

trees (e.g., 90-26-1).

Genetic Linkage Analysis

In human genetic linkage analysis [98], thehaplotypeis the sequence of alleles at different

loci inherited by an individual from one parent, and the two haplotypes (maternal and pater-
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min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(n, k) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
ped1 0.05 0.05 0.11 0.31 0.97
(299, 5) 54.73 - - - - 6.34 37,657 7.33 42,447 8.30 41,134
(15, 61) 5.44 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156
ped38 0.12 0.45 2.20 60.97 out
(582, 5) 28.36 - - - - - - - -
(17, 59) out - - 8120.58 85,367,022 - - 3040.60 35,394,461
ped50 0.11 0.74 5.38 37.19 out
(479, 5) - - - - - - - - -
(18, 58) out - - - - 476.77 5,566,578 104.00 748,792

i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes

ped23 0.42 2.33 11.33 274.75 out
(310, 5) 9146.19 - - - - 3176.72 14,044,797 343.52 358,604
(27, 71) out 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308
ped37 0.67 5.16 21.53 58.59 out
(1032, 5) 64.17 - - - - - - - -
(21, 61) out 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

ped18 0.51 1.42 4.59 12.87 19.30
(1184, 5) 139.06 - - - - - - - - - -
(21, 119) 157.05 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
ped20 1.42 5.11 37.53 410.96 out
(388, 5) 14.72 - - - - - - - -
(24, 66) out 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195
ped25 0.34 0.72 2.27 6.56 29.30
(994, 5) - - - - - - - - - - -
(34, 89) out - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541
ped30 0.42 0.83 1.78 5.75 21.30
(1016, 5) 13095.83 - - - - - - - - - -
(23, 118) out - - - - - - 214.10 1,379,131 91.92 685,661
ped33 0.58 2.31 7.84 33.44 112.83
(581, 4) - - - - - - - - - - -
(37, 165) out 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215
ped39 0.52 2.32 8.41 33.15 81.27
(1272, 5) 322.14 - - - - - - - - - -
(23, 94) out - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280
ped42 4.20 31.33 206.40 out out
(448, 5) 561.31 - - - - - -
(25, 76) out - - - - - -

Table 3.8: CPU time and nodes visited for solvinggenetic linkage networks. Time limit
3 hours.

nal) of an individual constitute this individual’sgenotype. When genotypes are measured

by standard procedures, the result is a list of unordered pairs of alleles, one pair for each

locus. Themaximum likelihood haplotypeproblem consists of finding a joint haplotype

configuration for all members of the pedigree which maximizes the probability of data.

The pedigree data can be represented as a belief network withthree types of random

variables:genetic locivariables which represent the genotypes of the individualsin the

pedigree (two genetic loci variables per individual per locus, one for the paternal allele and

one for the maternal allele),phenotypevariables, andselectorvariables which are auxiliary

variables used to represent the gene flow in the pedigree. Figure 3.15 shows a fragment

of a network that describes parents-child interactions in asimple 2-loci analysis. The ge-
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netic loci variables of individuali at locusj are denoted byLi,jp andLi,jm. VariablesXi,j,

Si,jp andSi,jm denote the phenotype variable, the paternal selector variable and the ma-

ternal selector variable of individuali at locusj, respectively. The conditional probability

tables that correspond to the selector variables are parameterized by therecombination ra-

tio θ [47]. The remaining tables contain only deterministic information. It can be shown

that given the pedigree data, the haplotyping problem is equivalent to computing the Most

Probable Explanation (MPE) of the corresponding belief network [47, 46].

Table 3.8 shows results with 12 genetic linkage networks5. For comparison, we in-

clude results obtained with SUPERLINK 1.6. SUPERLINK [47, 46] which is currently one

of the most efficient solvers for genetic linkage analysis, uses a combination of variable

elimination and conditioning, and takes advantage of the determinism in the network. We

did not runAOBB+DMB(i) on this domain because of its prohibitively high computational

overhead associated with relatively largei-bounds.

We observe again thatAOBB+SMB(i) is the best performing algorithm, outperforming

its competitors on 8 out of the 12 test networks. For example,on theped23 instance,

AOBB+SMB(16) is 3 orders of magnitude faster than SUPERLINK, whereas SAM IAM

andBB+SMB(i) exceed the 2GB memory bound and the 3 hour time limit, respectively.

Similarly, on theped30 instance,AOBB+SMB(20) outperforms SUPERLINK with about

2 orders of magnitude, while neither SAM IAM nor BB+SMB(16) are able to solve the

problem instance. Notice also that theped42 instance is solved only by SUPERLINK.

Figure 3.16 displays the runtime distribution ofAOBB+SMB(i) with hypergraph based

pseudo trees over 20 independent runs, for 4 linkage instances. Again, we see that the

hypergraph partitioning heuristic generates pseudo treeshaving average depths almost

two times smaller than those of the min-fill based ones. Therefore, using hypergraph

based pseudo trees improves sometimes significantly the performance for relatively small

i-bounds (e.g., ped23, ped33).

5Available at http://bioinfo.cs.technion.ac.il/superlink/. The corresponding belief network of the pedigree
data was extracted using the export feature of the SUPERLINK 1.6 program.
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Figure 3.16: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvinglinkage networkswith AOBB+SMB(i).

ISCAS’89 Circuits (BN)

ISCAS’89 circuits6 are a common benchmark used in formal verification and diagnosis.

For our purpose, we converted each of these circuits into a belief network by removing

flip-flops and buffers in a standard way, creating a deterministic conditional probabilistic

tables for each gate and putting uniform distributions on the input signals.

Table 3.9 shows the results for experiments with 10 circuits, using min-fill based pseudo

trees. As usual, for each test instance we generated a singleMPE query without any ev-

idence. When comparing the algorithms using static mini-bucket heuristics we observe

again the superiority of the AND/OR over OR Branch-and-Bound search in almost all test

cases, acrossi-bounds. For instance, on thec880 circuit,AOBB+SMB(4) proves optimal-

ity in less than a second, whileBB+SMB(4) exceeds the 30 minute time limit. Similarly,

6Available at http://www.fm.vslib.cz/kes/asic/iscas/
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas89 SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
0.04 0.05 0.08 0.12 0.26

c432 - - - - - - 0.29 432 0.42 432
(27, 45) out - - - - 605.79 20,751,699 0.13 432 0.28 432
(432, 2) - - 132.19 21,215 2.23 432 3.44 432 5.85 432

1422.98 4,438,597 24.03 39,711 1.15 432 2.23 432 4.52 432
0.02 0.03 0.05 0.14 0.37

c499 0.16 499 0.17 499 0.19 499 0.28 499 0.50 499
(23, 55) 139.89 0.04 499 0.05 499 0.06 499 0.15 499 0.38 499
(499, 2) 1.09 499 1.32 499 2.00 499 4.01 499 8.92 499

0.39 499 0.63 499 1.31 499 3.32 499 8.21 499
0.09 0.09 0.11 0.18 0.51

c880 - - 0.59 881 0.60 881 0.66 881 0.99 881
(27, 67) out 0.13 884 0.13 881 0.15 881 0.21 881 0.55 881
(880, 2) 4.49 881 5.82 881 8.07 881 12.78 881 20.99 881

0.78 881 1.14 881 2.16 881 4.98 881 13.19 881
0.01 0.02 0.03 0.08 0.20

s386 0.10 1,358 0.06 677 0.05 172 0.10 172 0.22 172
(19, 44) 3.66 0.02 257 0.02 257 0.03 172 0.08 172 0.21 172
(172, 2) 0.15 172 0.21 172 0.42 172 0.78 172 1.56 172

0.09 172 0.16 172 0.36 172 0.72 172 1.50 172
0.06 0.07 0.12 0.31 1.01

s953 - - - - - - - - 601.69 4,031,967
(66, 101) out 715.60 9,919,295 15.25 238,780 37.11 549,181 22.83 434,481 2.30 21,499
(440, 2) 27.12 2,737 18.84 912 64.12 1,009 25.28 467 221.17 577

26.48 2,738 18.30 913 63.44 1,010 24.75 468 220.97 578
0.07 0.10 0.16 0.39 1.30

s1196 - - - - - - - - - -
(54, 97) out 21.75 316,875 215.81 3,682,077 4.57 77,205 19.81 320,205 16.64 289,873
(560, 2) 2.57 580 4.34 568 49.30 924 126.85 863 582.66 1,008

1.20 660 2.59 568 45.90 924 118.16 863 571.79 1,008
0.07 0.09 0.17 0.42 1.26

s1238 - - - - 272.63 2,078,885 144.85 1,094,713 585.48 4,305,175
(59, 94) out 2.63 57,355 8.32 187,499 2.14 47,340 1.49 25,538 2.12 20,689
(540, 2) 32.17 5,841 6.59 601 370.26 17,278 52.28 651 120.20 558

2.04 1,089 4.02 795 17.44 1,824 40.35 849 95.84 744
0.06 0.06 0.09 0.13 0.35

s1423 - - - - - - 0.46 762 0.67 749
(24, 54) 107.48 0.14 1,986 0.30 5,171 0.32 5,078 0.17 866 0.37 749
(748, 2) 2.95 751 3.37 749 4.05 749 5.50 749 9.62 749

0.55 751 0.76 749 1.35 749 2.81 749 6.93 749
0.08 0.10 0.18 0.46 1.50

s1488 11.91 92,764 1.65 12,080 2.19 17,410 1.26 6,480 2.17 5,327
(47, 67) out 11.83 135,563 1.48 17,170 2.29 28,420 1.25 12,285 2.26 12,370
(667, 2) 2.31 670 3.14 670 5.43 668 13.11 667 41.43 667

0.83 670 1.64 670 3.92 668 11.67 667 40.17 667
0.07 0.09 0.17 0.49 1.57

s1494 8.64 64,629 524.05 3,410,547 130.92 815,326 4.43 33,373 43.54 268,421
(48, 69) out 9.63 158,070 28.14 476,874 7.09 118,372 11.87 198,912 2.75 21,137
(661, 2) 6.29 873 6.23 711 9.81 681 26.60 680 93.29 686

4.88 873 4.77 711 8.36 681 25.10 680 91.70 686

Table 3.9: CPU time and nodes visited for solving belief networks derived fromISCAS’89
circuits. Time limit 30 minutes.

on thes953 circuit,AOBB+SMB(14) is 300 times faster thanBB+SMB(14) and explores

a search space 180 times smaller. Using the dynamic mini-bucket heuristics does pay off

in some test cases. For example, on thes1196 circuit, AOBB+DMB(4) causes a speedup

of 2 overBB+DMB(4) and 45 overAOBB+SMB(4), whileBB+SMB(4) exceeds the time

limit. The overall impact of the AND/OR algorithms versus the OR ones can be explained

by the relatively shallow pseudo-trees. In summary, the dynamic mini-bucket heuristics

were inferior to the corresponding static ones for largei-bounds, however, smalleri-bound
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Figure 3.17: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingISCAS’89 networkswith AOBB+SMB(i).

dynamic mini-buckets were overall more cost-effective. Notice that SAM IAM is able to

solve only 2 out of 10 test instances.

Figure 3.17 shows the runtime distribution ofAOBB+SMB(i) with hypergraph pseudo

trees, over 20 independent runs. We observe again that in several cases (e.g., s1196,

s1238) the hypergraph pseudo trees are able to improve performance with up to 3 orders

of magnitude, at relatively smalli-bounds.

UAI’06 Evaluation Dataset

The UAI 2006 Evaluation Dataset7 contains a collection of random as well as real-world

belief networks that were used during the first UAI 2006 Inference Evaluation contest.

Table 3.10 shows the results for experiments with 14 networks, using min-fill based

pseudo trees. InstancesBN 31 throughBN 41 are random grid networks with determin-

7http://ssli.ee.washington.edu/bilmes/uai06InferenceEvaluation
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min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, d) i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes
BN 31 10.31 20.06 34.15 74.17 121.5
(46, 160) out - - - - - - - - - -
(1156, 2) 828.60 4,741,037 1229.64 7,895,304 594.36 3,988,933 646.67 4,293,760 178.87 380,470
BN 33 13.84 26.27 48.61 90.35 159.67
(43, 163) - - - - - - - - - - -
(1444, 2) 865.01 3,540,778 193.79 685,246 395.99 1,441,245 308.14 1,018,353 230.53 360,880
BN 35 14.27 24.62 47.50 77.66 124.17
(41, 168) - - - - - - - - - - -
(1444, 2) 335.43 1,755,561 390.04 1,954,720 247.73 1,108,708 191.03 663,784 234.97 622,551
BN 37 13.82 26.58 44.21 85.17 170.20
(45, 159) - - - - - - - - - - -
(1444, 2) 94.27 428,643 82.15 298,477 79.99 183,016 100.41 89,948 196.06 168,957
BN 39 12.95 26.10 51.51 87.16 148.40
(48, 164) - - - - - - - - - - -
(1444, 2) - - - - - - - - 837.58 3,366,427
BN 41 13.41 23.51 42.01 71.77 125.97
(49, 164) - - - - - - - - - - -
(1444, 2) 125.27 486,844 107.81 364,363 79.23 168,340 115.18 195,506 161.10 162,274
BN 126 6.76 13.75 24.62 49.11 98.43
(54, 70) - 336.88 2,101,962 871.17 6,677,492 628.26 3,717,027 97.21 350,841 105.54 71,919
(512, 2) 351.91 4,459,174 918.04 10,991,861 126.49 1,333,266 75.40 386,490 108.20 150,391
BN 127 7.15 14.26 30.82 56.12 98.82
(57, 74) out - - - - - - - - 180.57 639,878
(512, 2) - - - - - - - - 200.14 1,384,957
BN 128 7.77 15.38 28.49 58.08 99.85
(48, 73) out 8.19 3,476 15.66 2,645 34.14 36,025 58.54 831 100.29 4,857
(512, 2) 8.11 5,587 15.48 1,712 29.64 18,734 58.12 625 100.18 5,823
BN 129 7.39 11.83 24.96 55.28 96.60
(52, 68) out 188.49 1,605,045 1423.49 11,860,050 343.68 2,049,880
(512, 2) 827.37 11,469,012 - - 198.24 1,999,591 1796.81 22,855,693 297.90 2,542,057
BN 130 6.29 13.24 22.63 53.68 94.78
(54, 67) out 25.42 184,439 - - 918.48 7,317,237 - - 105.43 110,193
(512, 2) 29.52 348,660 - - 981.08 10,905,151 - - 108.25 205,010
BN 131 7.16 13.72 23.36 44.94 82.36
(48, 72) out 21.55 142,487 47.11 328,560 1216.80 10,249,055 73.25 235,433 - -
(512, 2) 26.44 296,576 58.78 677,149 1695.44 24,678,072 87.01 673,358 - -
BN 132 6.16 11.63 22.31 52.78 91.20
(49, 71) out - - - - - - 792.42 6,596,296 644.01 4,829,396
(512, 2) - - - - - - 886.31 10,251,600 809.86 10,207,347
BN 133 7.60 14.43 27.55 56.54 106.24
(54, 71) out - - 24.18 105,920 46.69 174,274 157.04 932,745 110.05 32,041
(512, 2) - - 25.55 169,574 48.53 272,258 184.94 1,859,117 110.87 71,195

Table 3.10: CPU time and nodes visited for solvingUAI’06 instances. Time limit 30
minutes.
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Figure 3.18: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingUAI’06 networks with AOBB+SMB(i).

istic CPTs, while instancesBN 126 throughBN 133 represent random coding networks

with 128 input bits, 4 parents per XOR bit and channel noise varianceσ2 = 0.40. We report

only on the Branch-and-Bound algorithms using static mini-buckets. The dynamic mini-

buckets were not competitive due to their much higher computational overhead at relatively

largei-bounds. We notice again thatAOBB+SMB(i) clearly outperformsBB+SMB(i) at

all reportedi-bounds, especially on the first set of grid networks (e.g., BN 31, ...,BN 41).

For instance, on theBN 37, AOBB+SMB(19) finds the MPE solution in about 80 sec-

onds, whereas its OR counterpartBB+SMB(19) exceeds the 30 minute time limit. This

is in contrast to what we observe on the second set of coding networks (e.g., BN 126, ...,

BN 133), where the best performance is offered by the OR algorithmBB+SMB(i).

Figure 3.18 shows the runtime distribution ofAOBB+SMB(i) with hypergraph pseudo

trees, over 20 independent runs. We observe again that the hypergraph pseudo trees im-

prove slightly the performance compared with min-fill ones.
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Bayesian Network Repository

min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
bn SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=2 i=3 i=4 i=5 i=6

time nodes time nodes time nodes time nodes time nodes
0.01 0.01 0.01 0.01 0.01

cpcs54 10.41 141,260 18.26 252,886 0.54 8,072 2.18 30,912 0.62 9,237
(14, 23) 0.16 0.66 16,030 0.34 8,621 0.27 6,761 0.39 10,485 0.13 3,672
(54, 2) 1.99 2,493 1.45 2,214 0.70 1,003 0.53 848 0.34 532

1.48 2,339 1.16 1,889 0.86 798 0.42 419 0.29 159
0.09 0.09 0.09 0.09 0.09

cpcs360b 72.21 336,720 66.86 317,249 65.05 316,991 61.38 297,313 63.82 314,173
(20, 27) 18.91 0.45 10,027 0.44 9,827 0.44 9,809 0.40 8,947 0.43 9,771
(360, 2) 377.73 308,339 373.48 307,084 373.23 307,083 373.96 307,083 373.34 307,078

4.36 9,383 4.15 9,309 4.06 9,313 4.20 9,285 4.18 9,181
1.58 1.58 1.58 1.58 1.58

cpcs422b 57.43 204,209 56.60 203,448 55.61 203,410 54.27 203,410 54.34 203,409
(23, 36) 112.78 1.80 3,557 1.78 3,409 1.77 3,409 1.77 3,409 1.78 3,568
(422, 2) - - - - - - - - - -

54.48 3,140 54.41 3,142 54.98 3,094 54.98 3,029 55.03 2,998
0.01 0.01 0.01 0.01 0.01

Insurance 0.14 1,877 0.06 962 69.56 1,749,933 35.70 910,498 0.02 160
(7, 14) 0.08 0.04 977 0.02 453 0.02 411 0.01 255 0.01 62
(27, 5) 0.13 364 0.03 89 0.03 87 0.08 87 0.16 87

0.11 299 0.02 36 0.03 33 0.08 33 0.15 33
0.02 0.02 0.03 0.06 0.19

Munin1 - - - - - - - - 10.16 81,982
(12, 28) out 6.32 102,540 2.79 44,071 1.32 22,934 2.00 42,484 1.79 38,669
(189, 21) - - 256.48 80,411 228.91 66,583 62.08 15,523 65.29 15,513

45.76 84,788 25.46 27,217 18.15 11,230 9.45 2,557 12.30 2,547
0.14 0.16 0.20 0.32 0.46

Munin2 - - - - - - - - - -
(9, 32) 4.30 - - - - 137.72 712,814 30.53 174,333 2.57 15,978
(1003, 21) - - - - - - - - - -

- - - - - - 208.47 13,459 167.27 9,360
0.15 0.15 0.18 0.28 0.40

Munin3 - - - - - - - - - -
(9, 32) 7.28 - - - - 15.20 152,191 1.02 6,440 0.63 1,945
(1044, 21) - - - - - - - - - -

- - 345.26 146,866 28.54 2,573 12.11 1,319 10.50 1,180
0.16 0.15 0.19 0.32 0.86

Munin4 - - - - - - - - - -
(9, 35) 26.19 - - - - - - - - 292.30 3,183,146
(1041, 21) - - - - - - - - - -

- - - - - - - - - -
0.03 0.04 0.04 0.04 0.05

Pigs - - 0.50 6,060,855 0.48 6,446,055 0.48 5,956,733 0.48 81,982
(11, 26) 1.14 - - 0.06 455 0.06 455 0.06 455 0.07 455
(441, 3) 7.98 1,984 8.58 1,984 8.66 1,984 8.79 1,984

0.31 455 0.39 455 0.49 455 0.63 455
0.01 0.01 0.01 0.02 0.03

Water 78.53 1,658,313 78.02 1,670,307 3.47 53,784 0.34 5,202 0.45 6,769
(10, 15) 3.03 0.67 17,210 1.07 24,527 0.80 19,193 0.14 3,005 0.14 2,658
(32, 4) 344.89 697,777 4.39 1,932 0.92 535 0.67 235 0.98 468

8.49 11,125 3.97 1,622 0.82 193 0.61 153 0.88 113

Table 3.11: CPU time in seconds and number of nodes visited forsolvingBayesian Net-
work Repository instances. Time limit 10 minutes.

The Bayesian Network Repository8 contains a collection of belief networks extracted

from various real-life domains which are often used for benchmarking probabilistic infer-

ence algorithms.

Table 3.11 displays the results for experiments with 15 belief networks from the repos-

8http://www.cs.huji.ac.il/compbio/Repository/
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itory. We set the time limit to 10 minutes and for each test instance we generated a sin-

gle MPE query without evidence. We observe again a considerable improvement of the

new AND/OR Branch-and-Bound algorithms over the corresponding OR ones. For ex-

ample, on thecpcs360b network,AOBB+SMB(5) causes a CPU speedup of 153 over

BB+SMB(5), while exploring a search space 33 times smaller. Similarly, AOBB+DMB(5)

is 89 times faster thanBB+DMB(5) and expands about 33 times less nodes. Overall,

AOBB+SMB(i) is the best performing algorithm for this domain. In particular, for net-

works with relatively low connectivity and large domain sizes (e.g.,Munin networks) the

difference betweenAOBB+SMB(i) andBB+SMB(i) is up to several orders of magnitude

in terms of both running time and size of the search space explored.

3.6.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints and

general cost functions, it is beneficial to exploit the computational power of the constraints

explicitly via constraint propagation [37, 69, 1, 35]. For Bayesian networks, the hard con-

straints are represented by the zero probability tuples of the CPTs. We note that the use

of constraint propagation via directional resolution [108] or generalized arc consistency

has been explored in [37, 69], in the context of variable elimination algorithms where the

constraints are also extracted based on the zero probabilities in the Bayesian network. The

approach we take for handling the determinism in belief networks is based on the known

technique ofunit resolutionfor Boolean Satisfiability (SAT). The idea of using unit resolu-

tion during search for Bayesian networks was first explored in[1].

The CNF formula encodes the determinism in the network and is created based on the

zero CPT entries, as follows.
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SAT Variables

Given a belief networkP = 〈X,D,F〉, the CNF is defined over the multi-valued variables

{X1, ..., Xn}. Its propositions areLXi,xi
, wherexi ∈ Di. The proposition is true ifXi is

assigned valuexi ∈ Di and is false otherwise.

SAT Clauses

The CNF is augmented with a collection of 2-CNFs for each variable Xi in the network,

calledat-most-oneclauses, that forbids the assignments of more than one valueto a vari-

able. Formally,

DEFINITION 35 (at-most-one clause)GivenXi ∈ X with domainDi = {xi1 , ..., xid}, its

correspondingat-most-oneclauses have the following form:¬LXi,xip
∨¬LXi,xiq

for every

pair (xip , xiq) ∈ Di ×Di, where1 ≤ p < q ≤ d.

In addition, we will add to the CNF a set ofat-least-oneclauses to ensure that each

variable in the network is assigned at least one value from its domain:

DEFINITION 36 (at-least-one clause)GivenXi ∈ X with domainDi ∈ {xi1 , ..., xid}, its

correspondingat-least-oneclause is of the following form:LXi,xi1
∨ LXi,xi2

... ∨ LXi,xid
.

The remaining clauses are generated from the zero probability tuples in the CPTs.

DEFINITION 37 (no-good clauses)Given a conditional probability tableP (Xi|pa(Xi)),

each entry in the CPT havingP (xi|xpai
) = 0, wherepa(Xi) = {Y1, ..., Yt} areXi’s parents

andxpai
= (y1, ..., yt) is their corresponding value assignment, can be translatedto a no-

goodclause of the form:¬LY1,y1 ∨ ... ∨ ¬LYt,yt
∨ ¬LXi,xi

.

Example 15 Consider a belief network over variables{A,B,C} with domainsDA =

{1, 2}, DB = {1, 2} and DC = {1, 2, 3}, and probability tables:P (A), P (B) and
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A B C P (C|A, B) Clauses

1 1 1 1
1 1 2 0 (¬LA,1 ∨ ¬LB,1 ∨ ¬LC,2)
1 1 3 0 (¬LA,1 ∨ ¬LB,1 ∨ ¬LC,3)
1 2 1 0 (¬LA,1 ∨ ¬LB,2 ∨ ¬LC,1)
1 2 2 1
1 2 3 0 (¬LA,1 ∨ ¬LB,2 ∨ ¬LC,3)
2 1 1 .2
2 1 2 .8
2 1 3 0 (¬LA,2 ∨ ¬LB,1 ∨ ¬LC,3)
2 2 1 .7
2 2 2 .3
2 2 3 0 (¬LA,2 ∨ ¬LB,2 ∨ ¬LC,3)

Table 3.12: Deterministic CPTP (C|A,B)

P (C|A,B), respectively. The deterministic CPTP (C|A,B) is given in Table 3.12. The

corresponding CNF encoding has the following Boolean variables: LA,1, LA,2, LB,1, LB,2,

LC,1, LC,2 andLC,3. VariableLA,1 is trueif the network variableA takes value1, andfalse

otherwise.

To generate the no-good clauses in the knowledge base, we beginby iterating through

the parent instantiations of the CPT for variableC. Whenever a statec ∈ DC has a

probability of 0 we will generate a clause. This clause contains the negative literal¬LC,c,

as well as the negative literals{¬LA,a,¬LB,b} where(A = a,B = b) is the corresponding

parent instantiation. These clauses are given in the last column of Table 3.12.

The remaining at-least-one and at-most-one clauses are given in the table below:

at-least-one at-most-one

(LA,1 ∨ LA,2) (¬LA,1 ∨ ¬LA,2)

(LB,1 ∨ LB,2) (¬LB,1 ∨ ¬LB,2)

(LC,1 ∨ LC,2 ∨ LC,3) (¬LC,1 ∨ ¬LC,2)

(¬LC,1 ∨ ¬LC,3)

(¬LC,2 ∨ LC,3)

We evaluated the AND/OR Branch-and-Bound algorithms with static and dynamic mini-

bucket heuristics on selected classes of Bayesian networks containing deterministic condi-

tional probability tables (i.e., zero probability tuples). The algorithms exploit the determin-
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min-fill pseudo tree
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(n, e) i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

0.31 8,080 0.11 2,052 0.02 101 0.05 101 0.05 101
90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101
(16, 26) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101
(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101

7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938
90-14-1 2.36 45,870 2.52 46,064 0.66 11,914 0.31 3,286 0.61 2,922
(23,37) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199
(196, 0) 33.03 10,135 16.08 3,270 4.92 396 7.72 211 10.88 199

646.83 10,104,350 164.02 2,600,690 13.14 193,440 2.92 39,825 2.08 23,421
90-16-1 121.24 2,209,097 78.97 1,416,247 6.99 121,595 2.25 35,376 1.84 22,986
(26, 42) 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260
(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

- - 2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009
90-24-1 2605.56 30,929,553 689.47 9,868,626 738.17 11,100,088 106.00 1,282,902 121.67 1,273,738
(36, 61) - - - - 884.41 2,739 1223.18 1,228 1634.57 598
(576, 20) - - - - 843.79 2,739 1173.48 1,228 1611.74 598

314.88 2,903,489 382.22 3,205,257 8.42 59,055 23.14 165,182 22.22 5,777
90-26-1 103.56 1,264,309 167.27 1,805,787 6.20 43,798 19.36 150,345 22.11 4,935
(35, 64) - - - - 938.98 2,545 1701.64 1,191 2638.95 691
(676, 40) 1592.53 108,694 1034.26 12,819 862.38 2,545 1583.37 1,191 2478.19 691

1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300
90-30-1 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 70.14 387,242
(38, 68) - - - - - - - - - -
(900, 60) - - - - - - - - - -

- - - - - - - - 462.41 1,549,829
90-34-1 - - - - - - - - 255.08 981,831
(43, 79) - - - - - - - - - -
(1154, 80) - - - - - - - - - -

2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065
90-38-1 410.94 1,972,430 578.54 2,339,244 270.05 1,349,223 278.11 1,249,270 204.56 702,806
(47, 86) - - - - - - - - - -
(1444, 120) - - - - - - - - - -

Table 3.13: CPU time and nodes visited for solvingdeterministic grid networks using
static and dynamic mini-bucket heuristics. Time limit 1 hour.

ism present in the networks by applying unit resolution overthe CNF encoding of the zero-

probability tuples, at each node in the search tree. They aredenoted byAOBB+SAT+SMB(i)

andAOBB+SAT+DMB(i), respectively. We used a unit resolution scheme similar to the

one employed byzChaff, a state-of-the-art SAT solver introduced by [94]. These ex-

periments were performed on a 2.4GHz Pentium IV with 2GB of RAMrunning Windows

XP, and therefore the CPU times reported here may be slower than those in the previous

sections.

Table 3.13 shows the results for 8 grid networks from Section3.6.3. These networks

have a high degree of determinism encoded in their CPTs. Specifically, 90% of the proba-

bility tables are deterministic, containing only 0 and 1 probability entries.
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Figure 3.19: Comparison of the impact of static and dynamic mini-bucket heuristics on the
90-16-1 deterministic grid network from Table 3.13.

We see thatAOBB+SAT+SMB(i) improves significantly overAOBB+SMB(i), espe-

cially at relatively smalli-bounds. On grid90-26-1, for example,AOBB+SAT+SMB(10)

is 9 times faster thanAOBB+SMB(10). As thei-bound increases and the search space is

pruned more effectively, the difference betweenAOBB+SMB(i) andAOBB+SAT+SMB(i)

decreases because the heuristics are strong enough to cut the search space significantly.

The mini-bucket heuristic already does some level of constraint propagation.

When comparing the AND/OR search algorithms with dynamic mini-bucket heuristics,

we see that the difference betweenAOBB+DMB(i) andAOBB+SAT+DMB(i) is again more

pronounced at smalli-bounds.

Figure 3.19 displays the CPU time and number of nodes visited,as a function of the

mini-bucketi-bound, on the90-16-1 grid network (i.e., corresponding to the third hori-

zontal block from Table 3.13). We notice again the U-shaped curve of the running time for

all algorithms.

Table 3.14 displays the results obtained for the 10 ISCAS’89 circuits used in Section

3.6.3. We observe that, on this domain also, constraint propagation via unit resolution

does play a dramatic role rendering the search space almost backtrack-free for both static

and dynamic mini-bucket heuristics and at all reportedi-bounds. For instance, on the

s953 circuit, AOBB+SAT+SMB(6) is 3 orders of magnitude faster thanAOBB+SMB(6)

and the search space explored is about 4 orders of magnitude smaller. Similarly, on the
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min-fill pseudo tree
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

iscas89 AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

- - - - 1079.59 20,751,699 0.14 432 0.24 432
c432 1658.62 37,492,131 873.71 19,423,461 4.52 89,632 0.16 432 0.23 432
(27, 45) - - 30.08 39,711 1.03 432 1.75 432 3.20 432
(432, 2) 0.56 434 0.69 433 1.00 432 1.70 432 3.09 432

0.11 499 0.09 499 0.11 499 0.17 499 0.30 499
c499 0.10 499 0.09 499 0.11 499 0.17 499 0.30 499
(23, 55) 0.59 499 0.75 499 1.22 499 2.55 499 5.55 499
(499, 2) 0.59 499 0.77 499 1.19 499 2.56 499 5.59 499

0.22 884 0.23 881 0.23 881 0.28 881 0.48 881
c880 0.22 881 0.22 881 0.25 881 0.28 881 0.47 881
(27, 67) 1.17 881 1.41 881 2.14 881 4.08 881 9.33 881
(880, 2) 1.19 881 1.35 881 2.25 881 4.03 881 9.67 881

0.03 257 0.05 257 0.03 172 0.06 172 0.14 172
s386 0.03 172 0.03 172 0.05 172 0.08 172 0.14 172
(19, 44) 0.14 172 0.17 172 0.31 172 0.53 172 1.03 172
(172, 2) 0.11 172 0.16 172 0.30 172 0.52 172 1.02 172

1019.87 9,919,295 22.50 238,780 54.77 549,181 34.74 434,481 2.61 21,499
s953 0.19 829 0.19 667 0.22 685 0.33 623 0.74 623
(66, 101) 33.03 2,738 16.52 913 48.61 1,010 17.23 468 146.66 578
(440, 2) 2.64 543 4.31 525 12.53 550 14.56 459 98.31 527

33.00 316,875 343.50 3,682,077 7.22 77,205 31.25 320,205 26.80 289,873
s1196 0.19 565 0.20 565 0.23 565 0.38 565 0.92 565
(54, 97) 1.59 660 2.50 568 35.47 924 81.63 863 369.30 1,008
(560, 21) 1.17 564 2.00 563 4.61 563 13.05 563 42.02 563

4.31 57,355 13.73 187,499 3.55 47,340 2.16 25,538 2.41 20,689
s1238 0.20 771 0.30 2,053 0.34 2,053 0.49 2,037 1.00 2,037
(59, 94) 2.66 1,089 3.81 795 13.77 1,824 28.03 849 62.30 744
(540, 2) 1.63 748 2.48 734 7.44 1,655 19.41 802 52.86 736

0.27 1,986 0.47 5,171 0.48 5,078 0.22 866 0.34 749
s1423 0.24 1,903 0.45 4,918 0.45 4,896 0.22 860 0.36 749
(24, 54) 0.83 751 0.97 749 1.36 749 2.33 749 4.92 749
(748, 2) 0.81 751 0.97 749 1.37 749 2.34 749 4.92 749

15.95 135,563 2.09 17,170 3.24 28,420 1.56 12,285 1.64 12,370
s1488 0.22 1,115 0.22 667 0.27 667 0.44 667 1.05 667
(47, 67) 1.14 670 1.67 670 3.25 668 8.11 667 25.55 667
(667, 2) 0.89 667 1.30 667 2.63 667 6.61 667 20.641 667

15.13 158,070 43.58 476,874 11.30 118,372 17.48 198,912 3.00 21,137
s1494 0.20 665 0.22 665 0.25 665 0.45 665 1.11 665
(48, 69) 7.20 873 2.77 711 11.38 681 19.70 680 58.78 686
(661, 2) 1.11 665 1.75 665 3.92 665 10.41 665 31.11 665

Table 3.14: CPU time in seconds and number of nodes visited forsolving belief networks
corresponding toISCAS’89 circuits, using static and dynamic mini-bucket heuristics.
Time limit 30 minutes.
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min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
pedigree SamIam AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes

ped1 0.05 0.05 0.11 0.31 0.97
(299, 5) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156
(15, 61) 5.44 24.72 414,239 12.97 205,887 1.59 24,361 1.86 25,674 1.89 15,156
ped38 0.12 0.45 2.20 60.97 out
(582, 5) 28.36 - - 8120.58 85,367,022 - - 3040.60 35,394,461
(17, 59) out - - 7663.89 83,808,576 - - 3094.33 35,394,277
ped50 0.11 0.74 5.38 37.19 out
(479, 5) - - - - - 476.77 5,566,578 104.00 748,792
(18, 58) out - - - - 497.30 5,566,344 107.11 748,792

i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes

ped23 0.42 2.33 11.33 274.75 out
(310, 5) 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308
(27, 71) out 514.33 6,618,811 15.89 154,666 17.87 67,456 270.05 117,308
ped37 0.67 5.16 21.53 58.59 out
(1032, 5) 64.17 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(21, 61) out 282.83 3,189,847 1674.54 25,280,466 1066.79 15,372,724 131.56 953,061

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

ped18 0.51 1.42 4.59 12.87 19.30
(1184, 5) 139.06 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(21, 119) 157.05 - - 2199.44 28,651,103 285.03 2,555,078 103.89 682,175 20.41 7,689
ped20 1.42 5.11 37.53 410.96 out
(388, 5) 14.72 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195
(24, 66) out 3953.23 54,941,659 1349.51 18,449,393 1301.26 17,810,674 1112.49 9,151,195
ped25 0.34 0.72 2.27 6.56 29.30
(994, 5) - - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541
(34, 89) out - - - - 9690.70 111,301,168 3427.79 34,306,937 2987.50 28,326,541
ped30 0.42 0.83 1.78 5.75 21.30
(1016, 5) 13095.83 - - - - - - 214.10 1,379,131 91.92 685,661
(23, 118) out - - - - - - 225.67 1,379,131 96.16 685,661
ped33 0.58 2.31 7.84 33.44 112.83
(581, 4) - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215
(37, 165) out 3051.15 34,218,037 796.58 9,113,615 4290.28 50,071,828 171.31 1,647,488 3216.04 35,884,557
ped39 0.52 2.32 8.41 33.15 81.27
(1272, 5) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280
(23, 94) out - - - - 4242.59 52,804,044 405.08 2,171,470 145.03 407,280
ped42 4.20 31.33 206.40 out out
(448, 5) 561.31 - - - - - -
(25, 76) out - - - - - -

Table 3.15: CPU time and nodes visited for solvinggenetic linkage networksusing static
mini-bucket heuristics. Time limit 3 hours.

same network,AOBB+SAT+DMB(6) is 12 times faster thanAOBB+DMB(4) and explores

about 5 times fewer nodes. Notice that in the case of dynamic mini-bucket heuristics, the

difference betweenAOBB+SAT+DMB(i) andAOBB+DMB(i) is not too prominent as in

the static case, because the heuristic estimates prune the search space quite effectively.

Table 3.15 shows the results obtained for the 12 linkage analysis networks from Section

3.6.3. In this case, we observe that applying unit resolution was not cost effective.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i)

spot5 BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) AOEDAC
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) toolbar

(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(n, k, c) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.03 0.34 21.72 147.66

29 - - - - 25.69 5,095 148.27 632 613.79 8,997,894
(14, 42) 4.83 45,509 0.64 2,738 21.74 246 147.69 481 4.56 218,846
(83, 4, 476) 131.64 9,713 57.22 541 678.22 507 1758.78 507

65.91 11,850 53.72 364 630.09 330 1675.74 330
0.11 0.50 28.81 223.14

42b - - 2154.64 9,655,444 148.11 712,685 228.17 12,255 - -
(18, 62) - - 1790.76 9,606,846 131.34 689,402 223.64 4,189 - -
(191, 4, 1341) - - - - - - - -

- - - - - - - -
0.02 0.09 1.25 1.23

54 2.98 27,383 0.59 4,996 1.28 921 1.52 921 31.34 823,326
(11, 33) 1.50 17,757 0.34 3,616 1.28 329 1.27 329 0.31 21,939
(68, 4, 283) 52.44 2,469 38.63 921 464.58 921 465.35 921

27.27 2,188 21.91 329 266.55 329 265.89 329
0.02 0.09 1.09 4.03

404 - - - - 4009.57 32,763,223 1827.05 15,265,025 255.83 3,260,610
(19, 42) 146.05 1,373,846 14.08 144,535 1.39 3,273 4.06 367 151.11 6,215,135
(100, 4, 710) - - - - - - 1964.20 2,015

272.46 39,144 215.17 5,612 565.06 1,327 167.90 220
0.08 0.31 8.30 35.22

408b - - - - - - - - - -
(24, 59) - - - - 682.12 4,784,407 124.67 567,407 - -
(201, 4, 1847) - - - - - - - -

- - - - - - - -
0.03 0.14 0.39 0.39

503 - - - - 1.22 5,229 1.22 5,229 - -
(9, 39) 412.63 5,102,299 397.77 4,990,898 0.44 641 0.44 641 - -
(144, 4, 639) - - - - 690.44 5,229 694.86 5,229

- - - - 64.02 641 64.52 641
0.01 0.12 48.20 372.27

505b - - - - - - - - - -
(16, 98) - - - - - - 392.08 143,371 - -
(240, 4, 1721) - - - - - - - -

- - - - - - - -

Table 3.16: CPU time and nodes visited for solvingSPOT5 networks. Time limit 2 hours.

3.6.5 Results for Empirical Evaluation on Weighted CSPs

In this section we focus on both mini-bucket and EDAC heuristics when problems are

solved in a static variable ordering. We also evaluate the impact of dynamic variable order-

ings when using EDAC based heuristics.

SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scheduling problems for the daily

management of Earth observing satellites [7]. These problems can be described as follows:

• Given a setP of photographs which can be taken the next day from at least one of

the three instruments, w.r.t. the satellite trajectory;

• Given, for each photograph, a weight expressing its importance;
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• Given a set of imperative constraints: non overlapping and minimal transition time

between two successive photographs on the same instrument,limitation on the in-

stantaneous data flow through the satellite telemetry;

• The goal is to find an admissible subsetP′ of P which maximizes the sum of the

weights of the photographs inP′ when all imperative constraints are satisfied.

They can be casted as WCSPs by:

• Associating a variableXi with each photographpi ∈ P;

• Associating withXi a domainDi to express the different ways of achievingpi and

adding toDi a special value, calledrejectionvalue, to express the possibility of not

selecting the photographpi;

• Associating with everyXi an unary constraint forbidding the rejection value, with a

valuation equal to the weight ofpi;

• Translating as imperative constraints (binary or ternary)the constraints of non over-

lapping and minimal transition time between two (or three) photographs on the same

instrument, and of limitation on the instantaneous data flow. Each imperative con-

straint is defined over a subset of two or three photographs and for each value combi-

nation of its scope variables it associates a high penalty cost (106) if the correspond-

ing photographs cannot be taken simultaneously, on the sameinstrument.

The task is to compute:minX

∑r

i=1 fi, wherer is the number of unary, binary and

ternary cost functions in the problem.

Table 3.16 reports the results obtained for experiments with 7 SPOT5 networks, using

min-fill pseudo trees. We see thatAOBB+SMB(i) is the best performing algorithm on this

dataset. The overhead of the dynamic mini-bucket heuristics outweighs search pruning

here. For instance, on the404 network, the difference betweenAOBB+SMB(12) and
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Figure 3.20: Comparison of the impact of static and dynamic mini-bucket heuristics on the
29 SPOT5 instancefrom Table 3.16.

BB+SMB(12), in terms of runtime and size of the search space explored, isup to 3 orders

of magnitude. The best performances on this domain are obtained byAOBB+SMB(i) at

relatively largei-bounds which generate very accurate heuristic estimates.For example,

AOBB+SMB(14) is the only algorithm able to solve the505b network. AOEDAC and

toolbar were able to solve relatively efficiently only 3 out of the 7 test instances (e.g.,

29, 54 and404).

In Figure 3.20 we plot the running time and number of nodes visited byAOBB+SMB(i)

andAOBB+DMB(i) (resp. BB+SMB(i) andBB+DMB(i)), as a function of thei-bound,

on the29 SPOT5 network (i.e., corresponding to the first horizontal block from Table

3.16). In this caseAOBB+DMB(i) (resp.BB+DMB(i)) is inferior toAOBB+SMB(i) (resp.

BB+DMB(i)) across all reportedi-bounds. We see thatAOBB+SMB(i) achieves the best

performance ati = 8, whereasAOBB+DMB(i) performs best only at the smallest reported

i-bound, namelyi = 4.

Figure 3.21 displays the runtime distribution ofAOBB+SMB(i) guided by hypergraph

based pseudo trees, over 20 independent runs. Hypergraph based trees have far smaller

depths than the min-fill ones, and therefore are again able toimprove the runtime over

min-fill based ones only at relatively smalli-bounds (e.g., 404). On average, however,

the min-fill pseudo trees generally yield a more robust performance, especially for larger
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Figure 3.21: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingSPOT5 networkswith AOBB+SMB(i).

i-bounds of the mini-bucket heuristics (e.g., 503).

ISCAS’89 Circuits (WCSP)

For our purpose, we converted each of the ISCAS’89 circuits into a non-binary WCSP

instance by removing flip-flops and buffers in a standard way and creating for each gate a

cost function that assigns a high penalty cost (1000) to the forbidden tuples. For each of the

input signals we created, in addition, a unary cost functionwith penalty costs distributed

uniformly at random between 1 and 10.

Table 3.17 shows the results for experiments with 10 circuits, using min-fill pseudo

trees. The EDAC based algorithms performed very poorly on this dataset and could not

solve any of the test instances within the 30 minute time limit. This was due to the relatively

large arity of the constraints, with up to 10 variables in their scope.

AOBB+SMB(i) is superior, especially at relatively largei-bounds. For example, on the
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas89 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=6 i=8 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes
0.06 0.07 0.14 0.27 0.89

c432 - - - - 13.27 103,088 13.29 102,546 6.79 34,671
(27, 45) - - 1373.07 23,355,897 3.85 76,346 3.89 75,420 0.97 1,958
(432, 2) - - 104.57 35,073 485.61 70,401 125.95 35,502 122.09 35,609

- - 3.04 1,578 26.26 16,482 9.17 1,070 6.67 692
0.03 0.04 0.14 0.36 0.99

c499 - - - - 11.71 53,171 9.62 63,177 5.80 24,397
(23, 55) 4.72 117,563 61.48 1,265,425 0.83 18,851 24.18 486,656 1.80 22,065
(499, 2) 56.49 29,664 141.89 78,830 65.42 40,123 132.20 56,002 203.74 76,832

3.87 10,147 23.31 13,529 5.71 1,002 37.34 3,353 87.99 1,736
0.06 0.07 0.16 0.49 1.48

c880 - - - - - - - - 816.47 4,953,611
(27, 67) 2284.65 39,448,762 957.25 19,992,512 275.51 5,835,825 607.43 13,568,696 137.31 2,837,010
(880, 2) 2463.80 321,585 - - 2461.68 270,166 3532.50 410,360 2817.47 238,297

28.43 40,057 809.53 796,699 101.88 32,748 232.97 36,187 625.50 20,357
0.01 0.01 0.06 0.19 0.46

s386 3.26 31,903 0.48 5,118 0.51 5,108 0.61 4,543 0.86 4,543
(19, 44) 0.12 3,705 0.07 2,073 0.14 2,699 0.22 1,420 0.49 1,420
(172, 2) 2.92 4,543 3.14 4,543 4.46 4,543 5.92 4,543 8.64 4,543

0.42 1,420 0.65 1,420 1.98 1,420 3.44 1,420 6.13 1,420
0.06 0.07 0.31 1.00 3.35

s953 - - - - - - - - - -
(66, 101) - - 1734.71 21,438,706 - - 28.40 348,699 7.14 51,441
(440, 2) 110.11 100,180 125.49 103,086 466.71 106,825 1412.68 107,063 1094.88 103,383

6.44 6,885 17.49 7,400 350.17 9,164 1294.39 11,164 984.06 8,377
0.06 0.08 0.37 1.27 4.51

s1196 - - - - - - - - - -
(54, 97) - - - - 3146.04 34,576,509 1281.38 15,775,180 269.73 3,318,953
(560, 21) 828.59 217,500 1126.06 216,777 - - - - - -

39.22 26,501 62.99 21,849 355.39 15,443 1443.72 13,687 - -
0.06 0.09 0.41 1.25 4.72

s1238 - - - - - - - - - -
(59, 94) 2245.60 32,501,292 - - 1061.12 18,302,873 821.55 14,213,319 26.13 360,788
(540, 2) 2744.88 294,977 1661.09 141,562 - - - - - -

142.51 44,980 288.25 39,493 844.40 20,945 1449.22 13,857 - -
0.04 0.05 0.12 0.33 0.94

s1423 - - - - - - - - 167.07 448,044
(24, 54) 25.97 309,520 51.60 648,520 5.03 68,102 5.50 70,043 7.62 87,483
(748, 2) - - - - 1969.46 539,925 2056.07 565,423 2156.59 579,511

57.03 52,996 27.67 26,772 38.85 19,719 31.92 3,513 56.80 4,323
0.06 0.09 0.45 1.50 5.43

s1488 - - - - 20.49 58,330 21.56 58,859 23.59 50,080
(47, 67) 1076.11 13,244,002 4.79 50,613 3.08 29,729 4.28 33,827 6.63 17,904
(667, 2) 192.51 48,822 204.68 49,417 286.90 50,803 495.13 50,803 1205.42 50,803

11.58 15,025 18.02 15,064 94.05 13,762 304.60 13,762 1022.09 13,762
0.08 0.10 0.50 1.57 5.66

s1494 3483.40 11,667,673 94.08 362,002 396.38 1,544,960 22.78 66,745 26.81 68,848
(48, 69 345.91 3,076,992 91.55 833,720 343.58 3,207,718 9.06 83,318 17.01 124,765
(661, 2) 233.36 55,236 279.75 59,161 350.23 53,067 391.96 47,139 1431.41 48,119

41.40 21,156 64.60 21,743 162.70 15,699 232.34 9,706 1260.97 9,913

Table 3.17: CPU time and nodes visited for solvingISCAS’89 circuits as WCSPs. Time
limit 1 hour.AOEDAC andtoolbar were not able to solve any of the test instances within
the time limit.
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Figure 3.22: Comparison of the impact of static and dynamic mini-bucket heuristics on the
s1494 ISCAS’89 circuitfrom Table 3.17.

s1238 circuit, AOBB+SMB(16) finds the optimal solution in about 26 seconds, whereas

BB+SMB(16) as well asAOBB+DMB(16) andBB+DMB(16) exceed the time limit. In

this case,AOBB+DMB(i) is competitive at relatively smalli-bounds, which cause a rela-

tively small computational overhead. For instance,AOBB+DMB(6) is the best performing

algorithm on thes953 network. It is 18 times faster and expands 14 times fewer nodes

thanBB+DMB(6).

In Figure 3.22 we show the running time and size of the search space explored by

AOBB+SMB(i) andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), as a function

of the i-bound, on thes1494 ISCAS’89 circuit (i.e., corresponding to the last horizon-

tal block from Table 3.17). We see that the power of the dynamic mini-bucket heuris-

tics is again more prominent for relatively smalli-bounds. At largeri-bounds, the static

mini-bucket heuristics are cost effective, namely the difference in running time between

AOBB+SMB(i) and AOBB+DMB(i) (resp. betweenBB+SMB(i) and BB+DMB(i)) is

about two orders of magnitude in favor of the former.

Figure 3.23 depicts the runtime distribution ofAOBB+SMB(i) guided by hypergraph

based pseudo trees on the instances:c499, c880, s1238 ands1488, respectively. In

some cases (e.g., s1238), using hypergraph pseudo trees improves the runtime up to one

order of magnitude, compared with min-fill ones.
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Figure 3.23: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingISCAS’89 networkswith AOBB+SMB(i).

Mastermind Games

Each of these networks is a ground instance of a relational Bayesian network that mod-

els differing sizes of the popular game of Mastermind. Thesenetworks were produced by

the PRIMULA System9 and used in experimental results from [17]. For our purpose,we

converted these networks into equivalent WCSP instances by taking the negative log prob-

ability of each conditional probability table entry and rounding it to the nearest integer. The

resulting WCSP instances are quite large with the number of bi-valued variablesn ranging

between 1220 and 3692, and containingn unary and ternary cost functions.

Table 3.18 shows the results for experiments with 6 game instances of increasing diffi-

culty, using min-fill based pseudo trees. As before,AOBB+SMB(i) offers the overall best

performance. For example,AOBB+SMB(10) solves themm-04-08-03 instance in about

9http://www.cs.auc.dk/jaeger/Primula
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=8 i=10 i=12 i=14 i=16 i=18
(n, r, k) time nodes time nodes time nodes time nodes time nodes time nodes
mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99
(20, 57) - - - - - - 897.87 873,606 946.84 915,095 738.13 720,764
(1220, 3, 2) 1.16 10,369 0.88 7,075 0.93 6,349 1.23 3,830 3.11 3,420 8.25 3,153
mm-03-08-04 0.48 0.60 0.89 2.08 6.45 25.15
(33, 87) - - - - - - - - - - - -
(2288, 3, 2) 72.37 150,642 66.69 193,805 36.22 71,622 10.15 31,177 25.16 63,669 29.27 13,870
mm-04-08-03 0.21 0.27 0.48 1.06 3.54 12.52
(26, 72) - - - - 1609.86 1,315,415 1603.71 1,175,430 1157.09 901,309 1924.02 1,451,854
(1418, 3, 2) 8.20 68,929 3.05 26,111 4.23 34,445 3.10 17,255 5.29 15,443 13.71 10,570

i=12 i=14 i=16 i=18 i=20 i=22
time nodes time nodes time nodes time nodes time nodes time nodes

mm-04-08-04 1.19 2.35 6.85 26.47 106.37 395.57
(39, 103) - - - - - - - - - - - -
(2616, 3, 2) 324.06 744,993 166.67 447,464 310.06 798,507 64.72 107,463 192.39 242,865 414.54 62,964
mm-03-08-05 2.14 4.54 11.82 39.01 134.46 497.45
(41, 111) - - - - - - - - - - - -
(3692, 3, 2) - - - - - - 835.90 1,122,008 1162.22 1,185,327 1200.65 1,372,324
mm-10-08-03 1.48 3.78 11.39 34.53 127.55 593.25
(51, 132) - - - - - - - - - - - -
(2606, 3, 2) 109.50 290,594 128.29 326,662 64.31 151,128 74.14 127,130 169.84 133,112 623.83 79,724

Table 3.18: CPU time and nodes visited for solvingMastermind game instancesusing
static mini-bucket heuristics. Time limit 1 hour.AOEDAC andtoolbar did not solve any
of the test instances within the time limit.

3 seconds, whereasBB+SMB(10) exceeds the 1 hour time limit. We did not report re-

sults with dynamic mini-bucket heuristics because of the prohibitively large computational

overhead associated with relatively largei-bounds. We also note that the EDAC based al-

gorithms were not able to solve any of these instances withinthe alloted time bound (not

shown in the table).

In Figure 3.24 we display the runtime distribution ofAOBB+SMB(i) guided by hyper-

graph based pseudo trees over 20 independent runs, for 4 testinstances. The spectrum of

results is similar to what we observed earlier.

3.6.6 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variable orderings on AND/OR Branch-

and-Bound search guided by local consistency (EDAC) based heuristics. We did not use dy-

namic variable orderings with dynamic mini-bucket heuristics because of the prohibitively

large computational overhead.
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Figure 3.24: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingMastermind networks with AOBB+SMB(i).

SPOT5 Benchmark

Table 3.19 shows the results for experiments with the 7 SPOT5networks described in

Section 3.6.5. We see that variable ordering can have a tremendous impact on perfor-

mance. AOEDAC+DSO is the best performing among the EDAC based algorithms, and

is able to solve 6 out of 7 test instances. The second best algorithm in this category is

DVO+AOEDAC which solves relatively efficiently 3 test networks. This demonstrates the

benefit of using variable ordering heuristics within AND/ORBranch-and-Bound search.

We also observe that the best performance points highlighted in Table 3.19 are inferior to

those from Table 3.16 corresponding toAOBB+SMB(i). For example, on the42b network,

the difference in runtime and size of the search space explored betweenAOBB+SMB(12)

andAOEDAC+DSO is up to one order of magnitude in favor of the former. Similarly,

the 505b network could not be solved by any of the EDAC based algorithms, whereas
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minfill pseudo tree
spot5 n w* toolbar BBEDAC AOEDAC AOEDAC+PVO DVO+AOEDAC AOEDAC+DSO

c h

29 16 7 time 4.56 109.66 613.79 545.43 0.83 11.36
57 8 nodes 218,846 710,122 8,997,894 7,837,447 8,698 92,970

42b 14 9 time - - - - - 6825.4
75 9 nodes - - - - - 27,698,614

54 14 9 time 0.31 0.97 31.34 9.11 0.06 0.75
75 9 nodes 21,939 8,270 823,326 90,495 688 6,614

404 16 10 time 151.11 2232.89 255.83 152.81 12.09 1.74
89 12 nodes 6,215,135 7,598,995 3,260,610 1,984,747 88,079 14,844

408b 18 10 time - - - - - 747.71
106 13 nodes - - - - - 2,134,472

503 22 11 time - - - - - 53.72
131 15 nodes - - - - - 231,480

505b 16 9 time - - - - - -
70 10 nodes - - - - - -

Table 3.19: CPU time and nodes visited for solvingSPOT5 benchmarkswith EDAC
heuristics and dynamic variable orderings. Time limit 2 hours.

AOBB+SMB(14) finds the optimal solution in about 6 minutes. Notice thattoolbar is

much better thanBBEDAC in all test cases. This can be explained by a more careful and

optimized implementation of EDAC which is available intoolbar.

In Figure 3.25 we show the runtime distribution ofAOEDAC+PVO with hypergraph

pseudo trees on 20 independent runs. In this case, the difference between the min-fill and

the hypergraph case is dramatic, resulting in up to three orders of magnitude in favor of the

latter.

CELAR Benchmark

Radio Link Frequency Assignment Problem (RLFAP) is a communication problem where

the goal is to assign frequencies to a set of radio links in such a way that all links may

operate together without noticeable interferences [15]. It can be naturally casted as a binary

WCSP where each forbidden tuple has an associated penalty cost.

Table 3.20 shows detailed results for experiments withCELAR6 and CELAR7 sub-

instances. We considered only the OR and AND/OR using EDAC heuristics. The per-

formance of the mini-bucket based algorithms was quite pooron this domain, due to the

very low quality of the heuristic estimates resulted from approximating subproblems with

very large domains (up to 44 values).

We observe thattoolbar is the overall best performing algorithm on this dataset.
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Figure 3.25: Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construc-
tion. CPU time in seconds for solvingSPOT5 networkswith AOEDAC+PVO.

One reason is thath is close ton, so the AND/OR search is close to OR search. When

looking at the AND/OR algorithms we notice thatDVO+AOEDAC offers the best perfor-

mance. On average, the speedups caused byDVO+AOBB over the other algorithms are as

follows: 1.9x overAOEDAC, 1.6x overAOEDAC+PVO and 2.5x overBBEDAC. Further-

more,AOEDAC+DSO performs similarly toAOEDAC+PVO indicating that the quality of

the dynamic problem decomposition is comparable to the static one.

Random Binary WCSPs

A random binary WCSP class [117] is defined by〈n, d, c, t〉 wheren is the number of vari-

ables,d is the domain size,c is the number of binary constraints (i.e., graphconnectivity),

andt the number of forbidden tuples in each constraint (i.e., tightness). Pairs of constrained

variables and their forbidden tuples are randomly selectedusing a uniform distribution.

Using this model we first experimented with the following 6 classes of random binary
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minfill pseudo tree
celar n w* toolbar BBEDAC AOEDAC AOEDAC+PVO DVO+AOEDAC AOEDAC+DSO

c h

celar6-sub0 16 7 time 0.66 0.88 1.20 0.79 0.82 0.67
57 8 nodes 8,952 2,985 2,901 1,565 2,652 1,633

celar6-sub1 14 9 time 488.58 5079.28 6693.33 4972.42 4961.16 4999.17
75 9 nodes 7,521,496 6,381,472 5,558,900 4,376,510 4,420,050 4,326,480

celar6-sub1-24 14 9 time 47.80 269.88 319.20 251.11 248.55 252.65
75 9 nodes 1,028,814 716,746 512,419 446,808 440,238 440,857

celar6-sub2 16 10 time 1887.40 6579.99 23896.83 12026.15 6097.33 11323.30
89 12 nodes 30,223,624 10,941,839 21,750,156 8,380,049 6,700,589 5,584,139

celar6-sub3 18 10 time 4376.37 14686.60 32439.00 28251.70 11131.00 28407.40
106 13 nodes 61,700,735 63,304,285 39,352,900 32,467,100 28,803,649 32,451,800

celar6-sub4-20 22 11 time 27.76 1671.55 277.51 415.02 268.57 413.48
131 15 nodes 167,960 8,970,211 522,981 952,894 893,609 1,256,102

celar7-sub0 16 9 time 1.11 4.56 6.20 5.00 4.64 4.71
70 10 nodes 6,898 9,146 10,248 10,198 9,151 9,761

celar7-sub1 14 9 time 23.86 188.11 470.36 239.20 189.15 245.41
75 9 nodes 134,404 501,145 589,117 329,236 372,790 318,351

celar7-sub1-20 14 9 time 0.67 3.49 14.09 3.56 3.30 3.33
75 9 nodes 10,438 18,959 27,805 15,860 15,637 14,351

celar7-sub2 16 10 time 627.97 4822.89 7850.10 5424.98 4727.30 5545.80
89 11 nodes 1,833,808 4,026,263 7,644,780 3,454,750 3,326,511 2,654,120

celar7-sub3 18 10 time 6944.96 - - - - -
106 13 nodes 14,754,723

celar7-sub4-22 22 11 time 3604.47 23882.20 26210.05 7958.44 23166.40 2999.55
129 15 nodes 6,391,923 23,700,235 34,941,835 11,533,163 23,674,049 3,429,708

Table 3.20: CPU time and nodes visited for solvingCELAR6 andCELAR7 sub-instances
with EDAC heuristics and dynamic variable orderings. Time limit 10 hours.

min-fill pseudo tree
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) AOEDAC

wcsp AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO toolbar
BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) DVO+AOEDAC BBEDAC

(n, d, c, t) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOEDAC+DSO
(w*, h) i=2 i=4 i=6 i=8

time nodes time nodes time nodes time nodes time nodes time nodes
161.86 1,043,900 53.00 385,426 12.30 64,612 7.33 28,831

medium - - 159.46 1,085,370 51.98 388,580 12.44 67,733 2.80 11,404 0.28 1,910
(20,5,100,0.7) 144.44 69,690 134.17 4,935 160.49 506 - - 2.38 9,721 2.39 9,736
(12, 17) 144.06 73,587 134.01 4,997 160.40 484 - - 2.40 9,796

157.21 962,935 26.99 187,522 4.87 15,513 5.70 21,017
low - - 131.08 1,243,260 25.04 249,556 5.01 22,523 2.79 11,121 0.14 1,487
(30,5,90,0.7) 128.07 62,836 87.10 3,708 122.07 877 160.84 527 1.08 4,383 1.08 4,532
(11, 19) 127.38 103,388 87.17 4,805 122.02 587 160.61 223 1.25 5,117

- - 94.71 660,928 2.16 15,365 1.36 2,754 0.69 3,801
sparse 102.12 1,240,740 1.93 32,717 0.29 3,767 1.09 470 0.70 3,876 0.07 2,256
(50,5,80,0.7) 79.78 106,779 6.49 3,049 8.08 2,722 10.48 2,640 0.31 1,881 0.37 2,233
(8, 16) 19.55 33,801 4.72 810 6.22 299 8.64 237 0.48 2,937

- - - - 274.51 772,298 - - 133.49 353,812
medium - - - - 274.62 806,001 - - 41.47 101,627 2.80 11,079
(20,10,100,0.5) - - - - - - - - 33.86 83,060 33.91 83,074
(12, 17) - - - - - - - - 33.96 85,164

- - 251.91 613,804 107.21 265,294 - - 0.60 3,111
low 254.01 536,805 174.37 520,488 96.50 316,600 - - 0.60 3,061 0.06 1,502
(30,10,90,0.5) 181.47 18,857 - - - - - - 0.23 1,318 0.23 1,400
(11, 19) 176.83 25,377 - - - - - - 0.28 1,549

255.20 825,232 165.96 491,965 21.20 50,687 197.53 5,836 0.02 193
sparse 39.47 146,927 8.35 40,152 5.08 2,977 201.83 2,564 0.02 182 0.01 1,525
(50,10,80,0.5) 17.78 5,186 38.83 3,743 196.72 3,554 - - 0.02 192 0.07 362
(8, 16) 0.64 644 13.79 624 179.45 570 - - 0.03 274

Table 3.21: CPU time in seconds and number of nodes visited forsolvingrandom binary
WCSPs. Time limit 5 minutes.
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WCSPs:

1 〈20, 5, 100, 0.7〉 2 〈30, 5, 90, 0.7〉 3 〈50, 5, 80, 0.7〉

4 〈20, 10, 100, 0.7〉 5 〈30, 10, 90, 0.7〉 6 〈50, 10, 80, 0.7〉

Classes1 and4 have medium connectivity, classes2 and5 have low connectivity, and

classes3 and6 represent sparse problems. For each problem class we chose the tightness to

obtain over-constrained instances, and the penalty cost ofthe forbidden tuples was selected

uniformly at random between 1 and 10.

In Table 3.21 we give the detailed results of the experiment with 20 random instances

from each problem class. The columns are indexed by thei-bound of the mini-bucket

heuristics. We allowed each algorithm a 180 second time limit for problem classes1, 2 and

3, and a 300 second time limit for classes4, 5 and5, respectively. The guiding pseudo-tree

of the AND/OR Branch-and-Bound algorithms was constructed using themin-fill heuristic.

When comparing the mini-bucket based algorithms, we observethat AND/OR Branch-

and-Bound with static mini-buckets,AOBB+SMB(i), offers the best performance, espe-

cially for relatively sparse problems and largeri-bounds. For example, on problem class3,

AOBB+SMB(6) is 7 times faster thanBB+SMB(i), and explores 5 times fewer nodes. Al-

ternatively, the AND/OR Branch-and-Bound with dynamic mini-bucketsAOBB+DMB(i)

is superior only for the smallest reportedi-bound. For instance, on problem class6,

AOBB+DMB(2) causes a speed up in CPU time of 27 overBB+DMB(2), while explor-

ing a search space 9 times smaller.

The overall best performance on this dataset is obtained by the EDAC based algo-

rithms, in particular bytoolbar, which outperforms dramatically (with up to several

orders of magnitude) the mini-bucket based algorithms. Whencomparing the AND/OR

Branch-and-Bound with EDAC based heuristics, we observe thatAOEDAC+PVO improves

over the staticAOEDAC, especially on problems with low and medium graph connectiv-

ity. DVO+AOBB is only slightly better thanBBEDAC, which indicates that the semantic

variable selection heuristic is strong enough to shrink thesearch space significantly, thus
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leaving not much room for additional problem decompositions.AOEDAC+DSO is the third

better among these algorithms, showing the effectiveness of computing the separators dy-

namically. The difference betweenBBEDAC andtoolbar can be explained by a more

efficient implementation of EDAC which is available intoolbar.

For our second experiment we consider four classes of randombinary WCSPs with

domain size and maximum penalty cost for forbidden tuples of10, as described in [71].

For fixed values ofn, d andc, and increasing tightnesst, most problems are solved almost

instantly until a cross-over point is reached. Then problems become harder and much

harder to solve. We denoteto the lowest tightness where every instance is over-constrained.

Based on this different categories of problems can be defined as follows:

• For graph density, we defined two problem types:sparse(S) with c = 2.5n, and

dense(D) with c = n(n−1)
8

;

• For tightness, we define two problem types:loose(L) with t = to, andtight (T) with

t = d2 − 0.25to.

Combining the different types, we obtain 4 different classes, each being denoted by

a pair of characters (SL, ST, DL and DT). In each class, the domain size and maximum

penalty cost are set to 10, and the number of variablesn is used as a varying parameter.

Figures 3.26 and 3.27 display the average CPU time results in seconds. Each data

point represents an average over 20 samples. When comparingAOEDAC+PVO with static

AOEDAC we notice a considerable improvement in terms of both running time and size of

search space explored.AOEDAC+DSO has a similar performance asAOEDAC+PVO indi-

cating that both algorithms use decompositions of similar quality. The best performance

of all 4 problem classes is offered byDVO+AOEDAC andBBEDAC with no clear winner

between the two. This implies that the semantic ordering heuristic is powerful and it does

not leave much room for additional problem decompositions.The overall best performance

is offered on this dataset bytoolbar.
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Figure 3.26: CPU time for solvingsparse random binary WCSPs. Time limit 300 sec-
onds.
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Figure 3.27: CPU time for solvingdense random binary WCSPs. Time limit 300 sec-
onds.
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3.7 Related Work

The idea of exploiting structural properties of the problemin order to enhance the perfor-

mance of search algorithms in constraint satisfaction is not new. Freuder and Quinn [48]

introduced the concept of pseudo tree arrangement of a constraint graph as a way of cap-

turing independencies between subsets of variables. Subsequently,pseudo tree search[48]

is conducted over a pseudo tree arrangement of the problem which allows the detection of

independent subproblems that are solved separately. More recently, [70] extended pseudo

tree search [48] to optimization tasks in order to boost the Russian Doll search [51] for

solving Weighted CSPs. Our AND/OR Branch-and-Bound algorithmis also related to the

Branch-and-Bound method proposed by [62] for acyclic AND/OR graphs and game trees.

Dechter’s graph-based back-jumping algorithm [29] uses a depth-first (DFS) spanning

tree to extract knowledge about dependencies in the graph. The notion of DFS-based search

was also used by [19] for a distributed constraint satisfaction algorithm. Bayardo and

Miranker [106] reformulated the pseudo tree search algorithm in terms of back-jumping

and showed that the depth of a pseudo-tree arrangement is always within a logarithmic

factor off the induced width of the graph.

Recursive Conditioning(RC) [24] is based on the divide and conquer paradigm. Rather

than instantiating variables to obtain a tree structured network like the cycle cutset scheme,

RC instantiates variables with the purpose of breaking the network into independent sub-

problems, on which it can recurse using the same technique. The computation is driven by

a data-structure calleddtree, which is a full binary tree, the leaves of which correspond to

the network CPTs. It can be shown that RC explores an AND/OR space [38]. A pseudo

tree can be generated from the static ordering of RC dictated by the dtree. This ensures that

whenever RC splits the problem into independent subproblems, the same happens in the

AND/OR space.

Value Elimination[4] is a recently developed algorithm for Bayesian inference. It was

already explained in [4] that, under static variable ordering, there is a strong relation be-
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tween Value Elimination and Variable Elimination. Given a static orderingd for Value

Elimination, it can be shown that it actually traverses an AND/OR space [38]. The pseudo

tree underlying the AND/OR search space traversal by Value Elimination can be con-

structed as the bucket tree in reversedd. However, the traversal of the AND/OR space

will be controlled byd, advancing the frontier in a hybrid depth or breadth first manner.

Value Elimination is not a linear space algorithm.

Backtracking with Tree-Decomposition(BTD) [59] is a memory intensive method for

solving constraint satisfaction (or optimization) problems which combines search tech-

niques with the notion of tree decomposition. This mixed approach can in fact be viewed

as searching an AND/OR search space whose backbone pseudo tree is defined by and struc-

tured along the tree decomposition. What is defined in [59] as structural goods, that is parts

of the search space that would not be visited again as soon as their consistency (or opti-

mal value) is known, corresponds precisely to the decomposition of the AND/OR space at

the level of AND nodes, which root independent subproblems.The BTD algorithm is not

linear space, it uses substantial caching and may be exponential in the induced width.

3.8 Conclusion to Chapter 3

The chapter investigates the impact of AND/OR search spacesperspective on solving gen-

eral constraint optimization problems in graphical models. In contrast to the traditional

OR search, the new AND/OR search is sensitive the problem’s structure. The linear space

AND/OR tree search algorithms can be exponentially better (and never worse) than the

linear space OR tree search algorithms. Specifically, the size of the AND/OR search tree is

exponential in the depth of the guiding pseudo tree rather than the number of variables, as

in the OR case.

We introduced a general Branch-and-Bound algorithm that explores the AND/OR search

tree in a depth-first manner. It can be guided by any heuristicfunction. We investigated
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extensively the mini-bucket heuristic and showed that it can prune the search space very

effectively. The mini-bucket heuristics can be either pre-compiled (static mini-buckets) or

generated dynamically at each node in the search tree (dynamic mini-buckets). They are

parameterized by the Mini-Bucketi-bound which allows for a controllable trade-off be-

tween heuristic strength and computational overhead. In conjunction with the mini-bucket

heuristics we also explored the effectiveness of another class of heuristic lower bounds that

is based on exploiting local consistency algorithms for cost functions, in the context of

WCSPs.

Since variable ordering can influence dramatically the search performance, we also in-

troduced several ordering schemes that combine the AND/OR decomposition principle

with dynamic variable ordering heuristics. There are threeapproaches to incorporating

dynamic orderings into AND/OR Branch-and-Bound search. The first one applies an in-

dependent semantic variable ordering heuristic whenever the partial order dictated by the

static decomposition principle allows. The second, orthogonal approach gives priority to

the semantic variable ordering heuristic and applies problem decomposition as a secondary

principle. Since the structure of the problem may change dramatically during search we

presented a third approach that uses a dynamic decomposition method coupled with se-

mantic variable ordering heuristics.

We focused our empirical evaluation on two common optimization problems in graph-

ical models: finding the MPE in Bayesian networks and solving WCSPs. Our results

demonstrated conclusively that in many cases the depth-first AND/OR Branch-and-Bound

algorithms guided by either mini-bucket or local consistency based heuristics improve dra-

matically over traditional OR Branch-and-Bound search, especially for relatively weak

guiding heuristic estimates. We summarize next the most important aspects reflecting the

better performance of the AND/OR algorithms, including themini-bucketi-bound, dy-

namic variable orderings, constraint propagation and the quality of the guiding pseudo

tree.
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• Impact of the mini-bucket i-bound. Our results show conclusively that when

enough memory is available the static mini-bucket heuristics with relatively large

i-bounds are cost effective (e.g., genetic linkage analysis networks from Table 3.8,

Mastermind game instances from Table 3.18). However, if space is restricted, the dy-

namic mini-bucket heuristics, which exploit the partial assignment along the search

path, appear to be the preferred choice, especially for relatively smalli-bounds (e.g.,

ISCAS’89 networks from Tables 3.17 and 3.9). This is because these heuristics are

far more accurate for the samei-bound than the pre-compiled version and the savings

in number of nodes explored translate into important time savings.

• Impact of dynamic variable ordering. Our dynamic AND/OR search approach

was shown to be powerful especially when used in conjunctionwith local consis-

tency based heuristics. The AND/OR Branch-and-Bound algorithms with EDAC

based heuristics and dynamic variable orderings were sometimes able to outperform

the Branch-and-Bound counterpart with static variable orderings by two orders of

magnitude in terms of running time (e.g., see for example the503 SPOT5 network

from Table 3.19).

• Impact of determinism. When the graphical model contains both deterministic in-

formation (hard constraints) as well as general cost functions, we demonstrated that

is beneficial to exploit the computational power of the constraints explicitly, via con-

straint propagation. Our experiments on selected classes of deterministic Bayesian

networks showed that enforcing a form of constraint propagation, called unit reso-

lution, over the CNF encoding of the determinism present in the network was able

in some cases to render the search space almost backtrack-free (e.g., ISCAS’89 net-

works from Table 3.14). This caused a tremendous reduction in running time for the

corresponding AND/OR algorithms (e.g., see for example thes953 network from

Table 3.14).
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• Impact of the static variable ordering via the pseudo tree.The performance of the

AND/OR search algorithms is highly influenced by the qualityof the guiding pseudo

tree. We investigated two heuristics for generating small induced width/depth pseudo

trees. The min-fill based pseudo trees usually have small induced width but signif-

icantly larger depth, whereas the hypergraph partitioningheuristic produces much

smaller depth trees but with larger induced widths. Our experiments demonstrated

that the AND/OR algorithms using mini-bucket heuristics benefit, on average, from

the min-fill based pseudo trees because the guiding mini-bucket heuristic is sensi-

tive to the induced width size which is obtained for these types of pseudo trees.

In some exceptional cases however, the hypergraph partitioning based pseudo trees

were able to improve significantly the search performance, especially at relatively

small i-bounds (e.g., see for example thes1238 network from Figure 3.23), be-

cause in those cases the smaller depth guarantees a smaller AND/OR search tree.

The picture is reversed for the AND/OR algorithms that enforce local consistency,

which is not sensitive to the problem’s induced width. Here,the hypergraph based

trees were able to improve performance up to 3 orders of magnitude over the min-fill

based trees (e.g., SPOT5 networks from Figure 3.25).
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Chapter 4

Memory Intensive AND/OR Search for

Graphical Models

4.1 Introduction

In Chapter 3 we presented the AND/OR search space perspectivefor optimization tasks

over graphical models. In contrast with traditional OR search, the main virtue of AND/OR

search consists in exploiting independencies between variables during search. This can

provide exponential speedups over traditional search methods oblivious to problem struc-

ture. The AND/OR search tree is guided by a pseudo tree that spans the primal graph.

Assigning a value to a variable (also known as conditioning)is equivalent in graph terms to

removing that variable (and its incident edges) from the primal graph. A partial assignment

can therefore lead to the decomposition of the residual primal graph into independent com-

ponents, each of which can be searched (or solved) separately. The pseudo tree captures

some of these decompositions given an order of variable instantiation.

It is often the case that a search space that is a tree can become a graph if identical nodes

are merged, because identical nodes root identical subspaces and correspond to identical

subproblems. Some of these unifiable nodes in the AND/OR search tree can be identified

based on the graph notion ofcontexts. The context of a node is a subset of the currently

assigned variables that completely determines the remaining subproblem using graph in-

formation only. Consequently, algorithms that explore the search graph involve controlled
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memory management that allows improving their time-performance by increasing their use

of memory.

Contribution

In this chapter we improve significantly the AND/OR Branch-and-Bound tree search al-

gorithm introduced in Chapter 3 by usingcachingschemes. Namely, we extend the al-

gorithm to explore the context minimal AND/OR searchgraph rather than the AND/OR

search tree, using a flexible caching mechanism that can adapt to memory limitations. The

caching scheme, which is based on contexts, is similar to good and no-good recording and

recent schemes appearing in Recursive Conditioning [24], Valued Backtracking [4] and

Backtracking with Tree Decompositions [59].

Since best-first search is known to be superior among memory intensive search algo-

rithms [40], the comparison with the best-first approach that exploits similar amounts of

memory is warranted. We therefore present a new AND/OR search algorithm that explores

a context minimal AND/OR search graph in abest-firstrather than depth-first manner. Un-

der conditions of admissibility and monotonicity of the heuristic function, best-first search

is known to expand the minimal number of nodes, at the expenseof using additional mem-

ory [40]. These savings in number of nodes may often translate into time savings as well.

The efficiency of the proposed memory intensive depth-first and best-first AND/OR

search methods also depends on the accuracy of the guiding heuristic function, which is

based on the Mini-Bucket approximation [42]. Like in Chapter 3, we continue to explore

empirically the efficiency of the mini-bucket heuristics inboth static and dynamic settings,

as well as the interaction between the heuristic strength and the level of caching.

We apply the memory intensive depth-first and best-first AND/OR search algorithms to

two common optimization problems in graphical models: finding the Most Probable Ex-

planation (MPE) in belief networks [104] and solving Weighted CSPs [9]. We experiment

with both random models and real-world benchmarks. Our results show conclusively that
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the new memory intensive AND/OR search algorithms improve dramatically over compet-

itive approaches, especially when the heuristic estimatesare inaccurate and the algorithms

rely primarily on search rather than on pruning based on the heuristic evaluation function.

The research presented in this chapter is based in part on [82, 84, 85].

Chapter Outline

The chapter is organized as follows. Section 4.2 provides background on the AND/OR

search graph for graphical models. Sections 4.3 and 4.4 present the new depth-first and

best-first AND/OR search algorithms exploring the context minimal AND/OR graph. Sec-

tion 4.5 is dedicated to an extensive empirical evaluation of the proposed memory intensive

search methods, while Section 4.6 provides a summary and concluding remarks.

4.2 AND/OR Search Graphs for Graphical Models

The AND/OR search tree for graphical models presented in Chapter 3 exploits problem

structure during search by utilizing value assignment as a problem simplification mech-

anism. AnAND/OR search treeis defined using a backbonepseudo treethat spans the

primal graph and captures problem decomposition during search. The search tree contains

alternating levels of OR and AND nodes. The OR nodes correspond to the variables while

the AND nodes represent value assignments. A depth-first search algorithm traversing the

AND/OR search tree is time-exponential in the depth of the guiding pseudo tree and may

operate in linear space.

It is often the case that a search space that is a tree can become a graph if identical

nodes aremerged, because identical nodes root identical search subspaces and correspond

to identical subproblems. Some of these nodes can be identified based oncontexts. The

transition from a search tree to a search graph in AND/OR representations also yields

significant savings compared to the same transition in the original OR space. The notion of
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AND/OR searchgraphwas presented for general graphical models in [38]. We next give

an overview of the main concepts.

First, we present the notion ofinduced width of a pseudo tree ofG [38] which is neces-

sary for bounding the size of the AND/OR search graphs. We denote bydDFS(T ) a linear

DFS ordering of a treeT .

DEFINITION 38 (induced width of a pseudo tree)The induced width ofG relative to a

pseudo treeT ,wT (G), is the induced width alongdDFS(T ) ordering of the extended graph

ofG relative toT , denotedGT .

We now provide definitions which allow identifying nodes that can be merged. The idea

is to find a minimal set of variable assignments from the current path that will always root

the same conditioned subproblem, regardless of the assignments that are not included in

this minimal set. Since the path for an OR nodeXi and an AND node〈Xi, xi〉 differ by

the assignment ofXi to xi, the minimal set of assignments that we want to identify willbe

different forXi and for〈Xi, xi〉. The following definitions distinguish between two types

of context-based caching which may yield into two differentschemes. The difference may

seem a bit subtle. In these definitions, ancestors and descendants are with respect to the

pseudo treeT , while connection is with respect to the primal graphG.

DEFINITION 39 (parents) Given a primal graphG and a pseudo treeT of a graphical

modelR, theparentsof an OR nodeXi, denoted bypai or paXi
, are the ancestors ofXi

that have connections inG toXi or to descendants ofXi.

DEFINITION 40 (parent-separators) Given a primal graphG and a pseudo treeT of a

graphical modelR, theparent-separatorsofXi (or of 〈Xi, xi〉), denoted bypasi or pasXi
,

are formed byXi and its ancestors that have connections inG to descendants ofXi.

It follows from these definitions that the parents ofXi, pai, separate in the primal graph

G (and also in the extended graphGT and in the induced extended graphGT
∗
) the ancestors
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Figure 4.1: AND/OR search graph for graphical models.

of Xi from its descendants. Similarly, the parent-separators set of Xi, pasi, separate the

ancestors ofXi from its descendants. It is also easy to see that each variableXi and its

parentspai form a clique in the induced graphGT
∗
. The following proposition establishes

the relation betweenpai andpasi.

PROPOSITION2 ([38]) (1) If Y is the single child ofX in T , thenpasX = paY . (2) If X

has childrenY1, ..., Yk in T , thenpasX = ∪k
i=1paYi

.

THEOREM 8 (context based merge [38])GivenGT
∗
, let πn1 andπn2 be any two partial

paths in an AND/OR search graph, ending with two nodes,n1 andn2.

1. If n1 andn2 are AND nodes annotated by〈Xi, xi〉 and

asgn(πn1)[pasXi
] = asgn(πn2)[pasXi

]
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then the AND/OR search subtrees rooted byn1 andn2 are identical andn1 andn2

can be merged.asgn(πni
)[pasXi

] is called theAND context of ni.

2. If n1 andn2 are OR nodes annotated byXi and

asgn(πn1)[paXi
] = asgn(πn2)[paXi

]

then the AND/OR search subtrees rooted byn1 andn2 are identical andn1 andn2

can be merged.asgn(πni
)[paXi

] is called theOR contextof ni.

DEFINITION 41 (context minimal AND/OR search graph) The AND/OR search graph of

R based on the backbone pseudo treeT that is closed under the context-based merge op-

erator is calledcontext-minimal AND/OR search graphand is denoted byGT (R).

We should note that we can in general merge nodes based both onAND and OR con-

texts. However, Proposition 2 shows that doing just one of them renders the other unneces-

sary (up to some some small constant factor). In this chapterwe will be using AND context

based merging.

THEOREM 9 (complexity [38]) Given a graphical modelR, its primal graphG, and a

pseudo treeT having induced widthw = wT (G), the size of the context minimal AND/OR

search graph based onT , GT (R), isO(n · kw), wherek bounds the domain size.

Example 16 Consider the example given in Figure 4.1(a). The AND contexts of each node

in the pseudo tree is given in square brackets. The context minimal AND/OR search graph

(based on AND merging) is given in Figure 4.1(b). Its size is far smaller than that of the

AND/OR search tree from Figure 3.1(c) (16 vs. 54 AND nodes). Similarly, Figure 4.1(d)

shows the context minimal AND/OR graph based on the OR contextsgiven in Figure 4.1(c).

Its size is larger than that of graph based on AND contexts (38 vs. 16 nodes) in this case.
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Finding Good Pseudo Trees

The performance of any AND/OR search algorithm is influencedby the quality of the un-

derlying pseudo tree. In Chapter 3 we described two heuristics for generating small induced

width/depth pseudo trees. Themin-fill heuristic extracts the pseudo tree by a depth-first

traversal of the induced graph obtained by a min-fill elimination ordering [67]. Thehy-

pergraph partitioningheuristic constructs the pseudo tree by recursively decomposing the

dual hypergraph associated with the graphical model [24]. We observed that the min-fill

heuristic usually generates lower width trees, whereas thehypergraph heuristic produces

much smaller depth trees. Therefore, the hypergraph based pseudo trees appear to be fa-

vorable for tree search algorithms, while the min-fill pseudo trees, which minimize the

context size, are more appropriate for graph search algorithms. In the experimental section

we provide an extensive evaluation detailing the impact of the pseudo tree quality on the

AND/OR graph search algorithms.

4.3 AND/OR Branch-and-Bound with Caching

The depth-firstAND/OR Branch-and-Boundalgorithm, AOBB-C, for searching context

minimal AND/OR graphs for graphical models, is described byAlgorithm 8. It interleaves

a forward expansion step of the current partial solution tree (EXPAND) with a backward

propagation step (PROPAGATE) that updates the node values. This performance is identical

to the tree-based variant from Chapter 3 and we describe it here for completeness sake.

The context based caching uses table representation. For each variableXi, a table is

reserved in memory for each possible assignment to its parent-separator setpasi (i.e., AND

context). During search, each table entry records the optimal solution (both the cost and

an optimal solution tree) to the subproblem below the corresponding AND node. Initially,

each entry has a predefined value, in our caseNULL. The fringe of the search is maintained

by a stack calledOPEN. The current node is denoted byn, its parent byp, and the current
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Algorithm 8 : AOBB-C: AND/OR Branch-and-Bound Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1, AND contextspasi for every
variableXi, heuristic functionh(n).

Output : Minimal cost solution and an optimal solution assignment.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize search stack1
Initialize cache tables with entries ”NULL” // Initialize cache tables2
while OPEN 6= ∅ do3

n← top(OPEN); removen from OPEN // EXPAND4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′, labeled〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
cached← false; deadend← false12
if Cache(asgn(πn)[pasi]) 6= NULL then13

v(n)← Cache(asgn(πn)[pasi]).value // Retrieve value14
ST (n)← Cache(asg(πn)[pasi]).assignment; // Retrieve optimal assignment15
cached← true // No need to expand below16

foreachOR ancestorm of n do17
lb← evalPartialSolutionTree(T ′

m)18
if lb ≥ v(m) then19

deadend← true20
break21

if deadend == false and cached == false then22
foreachXj ∈ childrenT (Xi) do23

create an OR noden′ labeledXj24
v(n′)←∞; ST (n′)← ∅25
succ(n)← succ(n) ∪ {n′}26

else ifdeadend == true then27
succ(p)← succ(p)− {n}28

Add succ(n) on top ofOPEN // PROPAGATE29
while succ(n) == ∅ do30

if n is an OR node, labeledXi then31
if Xi == X1 then32

return (v(n), ST (n)) // Search is complete33

v(p)← v(p) + v(n) // Update AND node value (summation)34
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node35

else ifn is an AND node, labeled〈Xi, xi〉 then36
Cache(asgn(πn)[pasi]).value← v(n) // Save AND node value in cache37
Cache(asgn(πn)[pasi]).assignment← ST (n); // Save optimal assignment38
if v(p) > (w(p, n) + v(n)) then39

v(p)← w(p, n) + v(n) // Update OR node value (minimization)40
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node41

removen from succ(p)42
n← p43
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path byπn. The children of the current node are denoted bysucc(n).

Each noden in the search graph maintains its current valuev(n), which is updated

based on the values of its children. For OR nodes, the currentv(n) is an upper bound on

the optimal solution cost belown. Initially, v(n) is set to∞ if n is OR, and0 if n is AND,

respectively. A data structureST (n) maintains the actual best solution tree found in the

subgraph rooted atn. The node based heuristic functionh(n) of v(n) is assumed to be

available to the algorithm, either retrieved from a cache orcomputed during search.

Since we use AND caching, before expanding the current AND noden, its cache table

is checked (line 13). If the same context was encountered before, it is retrieved from the

cache, andsucc(n) is set to the empty set, which will trigger thePROPAGATE step. The

algorithm also computes the heuristic evaluation functionfor every partial solution subtree

rooted at the OR ancestors ofn along the path from the root (lines 17–21). The search

below n is terminated if, for some OR ancestorm, f(T ′m) ≥ v(m), wherev(m) is the

current upper bound on the optimal cost belowm. The recursive computation off(T ′m) is

described by Algorithm 7 from Chapter 3.

If a node is not found in cache, it is expanded in the usual way,depending on whether

it is an AND or OR node (lines 5–28). Ifn is an OR node, labeledXi, then its successors

are AND nodes represented by the valuesxi in variableXi’s domain (lines 5–10). Each

OR-to-AND arc is associated with the appropriate weight (seeDefinition 25 in Chapter 3).

Similarly, if n is an AND node, labeled〈Xi, xi〉, then its successors are OR nodes labeled

by the child variables ofXi in T (lines 22–26).

The node values are updated by thePROPAGATE step (lines 30–43). It is triggered when

a node value has an empty set of descendants (note that as eachsuccessor is evaluated, it is

removed from the set of successors in line 42). This means that all its children have been

evaluated, and their final values are already determined. Ifthe current node is the root, then

the search terminates with its value and an optimal solutiontree (line 33). Ifn is an OR

node, then its parentp is an AND node, andp updates its current valuev(p) by summation
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with the value ofn (line 34). An AND noden propagates its value to its parentp in a

similar way, by minimization (lines 36–41). It also saves incache the value and optimal

solution subtree below it (lines 37–38). Finally, the current noden is set to its parentp

(line 43), becausen was completely evaluated. Each node in the search graph alsorecords

the current best assignment to the variables of the subproblem below it. Specifically, ifn

is an AND node, thenST (n) is the union of the optimal trees propagated fromn’s OR

children (line 35). Alternatively, ifn is an OR node andn′ is its AND child such that

n′ = argminm∈succ(n)(w(n,m) + v(m)), thenST (n) is obtained from the label ofn′

combined with the optimal solution tree belown′ (line 41). Search continues either with a

propagationstep (if conditions are met) or with anexpansionstep. Clearly,

THEOREM 10 (complexity) AOBB-C traversing the context minimal AND/OR graph rela-

tive to a pseudo treeT is sound and complete. Its time and space complexity isO(n · kw∗
),

wherew∗ is the induced width of the pseudo tree andk bounds the domain size.

Since the space required byAOBB-C can sometimes be prohibitive in practice, we next

present two caching schemes that can adapt to the current memory limitations. They use a

parameter calledcache bound(or simplyj-bound) to control the amount of memory used

for storing unifiable nodes.

4.3.1 Naive Caching

The first scheme, callednaive cachingand denoted hereafter byAOBB-C(j), stores nodes

at the variables whose context size is smaller than or equal to the cache boundj. It is easy

to see that whenj equals the induced width of the pseudo tree the algorithm explores the

context minimal AND/OR graph via full caching.

As we mentioned earlier, a straightforward way of implementing the caching scheme

is to have acache tablefor each variableXk recording the context. Specifically, lets as-

sume that the context ofXk is context(Xk) = {X1, ..., Xk} and |context(Xk)| ≤ j. A
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Figure 4.2: Illustration of naive caching used byAOBB-C(2).
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cache table entry corresponds to a particular instantiation {x1, ..., xk} of the variables in

context(Xk) and records the minimal cost solution to the subproblem rooted at the AND

node labeled〈Xk, xk〉.

However, some tables might never get cache hits. Thesedead-caches[24, 38] appear

at nodes that have only one incoming arc.AOBB-C(j) needs to record only nodes that are

likely to have additional incoming arcs, and these nodes canbe determined by inspecting

the pseudo tree. For example, if the context of a node includes that of its parent, then there

is no need to store anything for that node, because it would bedefinitely a dead-cache.

Example 17 Figure 4.2(c) displays the AND/OR search graph obtained with the naive

caching scheme AOBB-C(2), relative to the pseudo tree given in Figure 4.2(b). Notice

that there is no need to create cache tables for variablesH andB, because their AND

contexts include those of their respective parents in the pseudo tree, namelycontext(A) ⊆

context(H) and context(H) ⊆ context(B), respectively. Moreover,AOBB-C(2) does

not cache any of the AND nodes corresponding to variableC because its corresponding

cache table, which is defined on 3 variables (e.g.,A,B andC), cannot be stored in memory.

4.3.2 Adaptive Caching

The second scheme, calledadaptive cachingand denoted byAOBB-AC(j), is inspired by

the AND/OR cutset conditioning scheme and was first exploredin [88]. It extends the naive

scheme by allowing caching even at nodes with contexts larger than the given cache bound,

based onadjusted contexts.

Consider the nodeXk in the pseudo treeT with context(Xk) = {X1, ..., Xk}, where

k > j. During search, when variables{X1, ..., Xk−j} are instantiated, they can be viewed

as part of a cutset. The problem rooted byXk−j+1 can be solved in isolation, like a

subproblem in the cutset scheme, after variablesX1, ..., Xk−j are assigned their current

values in all the functions. In this subproblem, conditioned on the values{x1, ..., xk−j},

context(Xk) = {Xk−j+1, ..., Xk} (also called theadjusted contextof Xk [88]), so it can
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Figure 4.3: Illustration of adaptive caching used byAOBB-AC(2).

be cached withinj-bounded space. However, whenAOBB-AC(j) retracts to variableXk−j

or above, the cache table for variableXk needs to be purged, and will be used again when

a new subproblem rooted atXk−j+1 is solved. This caching scheme requires only a linear

increase in additional memory, compared to the naiveAOBB-C(j), but it has the potential

of exponential time savings, as shown in [88].

Example 18 Figure 4.3 shows the AND/OR graph traversed using the adaptivecaching

scheme AOBB-AC(2). In contrast to the naive scheme displayedin Figure 4.2, AOBB-

AC(2) caches the AND level corresponding to variableC based on its adjusted context.

The adjusted AND context ofC is {C,B} and a flag is installed at variableA, indicating

that the cache table must be purged wheneverA is instantiated to a different value.
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4.4 Best-First AND/OR Search

We now direct our attention to abest-firstcontrol strategy for traversing the context minimal

AND/OR graph. The best-first search algorithm uses similar amounts of memory as the

depth-first AND/OR Branch-and-Bound with full caching and therefore the comparison is

warranted.

Best-first search is a search algorithm which optimizes breath-first search by expanding

the node whose heuristic evaluation function is the best among all nodes encountered so far.

Its main virtue is that it never expands nodes whose cost is beyond the optimal one, unlike

depth-first search algorithms, and therefore is superior among memory intensive algorithms

employing the same heuristic evaluation function [40].

The best-first AND/OR graph search algorithm, denoted byAOBF-C, that traverses the

context minimal AND/OR search graph is described in Algorithm 9. It specializes Nils-

son’sAO∗ algorithm [97] to AND/OR search spaces for graphical modelsand interleaves

forward expansion of the best partial solution tree (EXPAND) with a cost revision step

(REVISE) that updates node values, as detailed in [97]. The explicated AND/OR search

graph is maintained by a data structure calledC ′T , the current node isn, s is the root of the

search graph and the current best partial solution subtree is denoted byT ′. The children of

the current node are denoted bysucc(n).

First, a top-down, graph-growing operation finds the best partial solution tree by tracing

down through the marked arcs of the explicit AND/OR search graphC ′T (lines 3–9). These

previously computed marks indicate the current best partial solution tree from each node in

C ′T . Before the algorithm terminates, the best partial solutiontree, denoted byT ′, does not

yet have all of its leaf nodes terminal. One of its non-terminal leaf nodesn is then expanded

by generating its successors, depending on whether it is an OR or an AND node. Ifn is an

OR node, labeledXi, then its successors are AND nodes represented by the valuesxi in

variableXi’s domain (lines 11–20). Notice that when expanding an OR node, the algorithm

does not generate AND children that are already present in the explicit search graphC ′T , but
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Algorithm 9 : AOBF-C: Best-First AND/OR Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo treeT rooted atX1, AND contextspasi for every
variableXi, heuristic functionh(n).

Output : Minimal cost solution and an optimal solution assignment.
v(s)← h(s); G′T ← {s}; // Initialize1
while s is not labeledSOLV ED do2

S ← {s}; T ′ ← {}; // Create the marked PST3
while S 6= ∅ do4

n← top(S); removen from S5
T ′ ← T ′ ∪ {n}6
let L be the set of marked successors ofn7
if L 6= ∅ then8

addL on top ofS9

let n be any nonterminal tip node of the markedT ′ (rooted ats) // EXPAND10
if n is an OR node, labeledXi then11

foreachxi ∈ Di do12
let n′ be the AND node inG′T having context equal topasi13
if n′ == NULL then14

create an AND noden′ labeled〈Xi, xi〉15
v(n′)← h(n′)16
w(n, n′)←∑

f∈BT (Xi)
f(asgn(πn))17

if n′ is TERMINALthen18
labeln′ as SOLVED19

succ(n)← succ(n) ∪ {n′}20

else ifn is an AND node, labeled〈Xi, xi〉 then21
foreachXj ∈ childrenT (Xi) do22

create an OR noden′ labeledXj23
v(n′)← h(n′)24
succ(n)← succ(n) ∪ {n′}25

G′T ← G′T ∪ {succ(n)}26
S ← {n} // REVISE27
while S 6= ∅ do28

let m be a node inS such thatm has no descendants inG′T still in S; removem from S29
if m is an AND node, labeled〈Xi, xi〉 then30

v(m)←∑

mj∈succ(m) v(mj)31
mark all arcs to the successors32
labelm as SOLVED if all its children are labeled SOLVED33

else ifm is an OR node, labeledXi then34
v(m) = minmj∈succ(m)(w(m,mj) + v(mj))35
mark the arc through which this minimum is achieved36
labelm as SOLVED if the marked successor is labeled SOLVED37

if m changes its valueor m is labeled SOLVEDthen38
add toS all those parents ofm such thatm is one of their successors through a marked arc.39

return v(s) // Search terminates40
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rather links to them. All these identical AND nodes inC ′T are easily recognized based on

their contexts. Each OR-to-AND arc is associated with the appropriate weight. Similarly,

if n is an AND node, labeled〈Xi, xi〉, then its successors are OR nodes labeled by the child

variables ofXi in T (lines 21–25). Moreover, a heuristic underestimateh(n′) of v(n′) is

assigned to each ofn’s successorsn′ ∈ succ(n).

The second operation inAOBF-C is a bottom-up, cost revision, arc marking, SOLVE-

labeling procedure (lines 27–39). It aims at updating the evaluation function of any subtree

that might be affected, and marks the best one. Starting withthe node just expandedn, the

procedure revises its valuev(n), using the newly computed values of its successors, and

marks the outgoing arcs on the estimated best path to terminal nodes. This revised value is

then propagated upwards in the graph. The revised valuev(n) is an updated lower bound on

the cost of an optimal solution to the subproblem rooted atn. Only the ancestors of nodes

having their values revised can possibly have their values updated, so only these need be

considered (lines 38–39). If we assume the monotone restriction onh, cost revisions can

only be cost increases [87, 97]. During the bottom-up step,AOBF-C labels an AND node

asSOLVED if all of its OR child nodes are solved, and labels an OR node asSOLVED if

its marked AND child is also solved. The algorithm terminates with the optimal solution

when the root nodes is labeledSOLVED.

If h(n) ≤ v(n), the exact cost atn, for all nodes, and ifh satisfies the monotone

restriction, then the algorithmAOBF-C will terminates in an optimal solution tree [87, 97].

The optimal solution tree can be obtained by tracing down from s through the marked

connectors at termination and its optimal cost is equal to the valuev(s) of s at termination.

It is possible to show that since the algorithm explores every node in the context minimal

graph just once, we get:

THEOREM 11 (complexity) The Best-First AND/OR search algorithm traversing the con-

text minimal AND/OR graph has time and space complexity ofO(n · kw∗
), wherew∗ is the

induced width of the pseudo tree andk bounds the domain size.
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AOBB versus AOBF

We highlight next the main differences between depth-first AND/OR Branch-and-Bound

(AOBB-C) and Best-First AND/OR search (AOBF-C) traversing the context minimal graph.

First, AOBF-C with the same heuristic function asAOBB-C is likely to expand the

smallest number of nodes [40], but empirically this dependson how quicklyAOBB-C will

find an optimal solution. Second,AOBB-C can use far less memory by avoiding dead-

caches for example (e.g., when the search graph is a tree), whileAOBF-C has to keep the

explicated search graph in memory. Third,AOBB-C can be used as an anytime scheme,

namely whenever interrupted, the algorithm outputs the best solution found so far, unlike

AOBF-C which outputs a complete solution upon completion only. Allthe above points

show that the relative merit of best-first versus depth-firstover context minimal AND/OR

search spaces cannot be determined by theory [40] and empirical evaluation is essential.

4.5 Experimental Results

In Chapter 3 we evaluated empirically AND/OR search algorithms for AND/OR trees

only. We now extend this evaluation to algorithms exploringthe context minimal AND/OR

search graphs just described. We have conducted a number of experiments on two common

optimization problems classes in graphical models: findingthe Most Probable Explanation

in Bayesian networks and solving Weighted CSPs. We implemented our algorithms in C++

and ran all experiments on a 2.4GHz single-core Pentium IV with 2GB of RAM, running

Windows XP.

4.5.1 Overview and Methodology

Algorithms. We evaluated the following classes of memory intensive AND/OR search

algorithms guided by mini-bucket heuristics:
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• Depth-first AND/OR Branch-and-Bound search algorithms with full caching, us-

ing static and dynamic mini-bucket heuristics, denoted byAOBB-C+SMB(i) and

AOBB-C+DMB(i), respectively.

• Best-first AND/OR search algorithms using static and dynamicmini-bucket heuris-

tics, denoted byAOBF-C+SMB(i) andAOBF-C+DMB(i), respectively.

We compare these algorithms against the AND/OR Branch-and-Bound algorithms search-

ing the AND/OR tree (without caching) guided by the mini-bucket heuristics, denoted by

AOBB+SMB(i) andAOBB+DMB(i), which were introduced in Chapter 3. In addition,

we also ran the traditional OR Branch-and-Bound search algorithms with full caching and

mini-bucket heuristics, denoted byBB-C+SMB(i) andBB-C+DMB(i), respectively. The

parameteri represents the mini-bucketi-bound and controls the accuracy of the heuristic.

Throughout our extensive empirical evaluation we will answer the following questions

that govern the performance of the proposed algorithms:

1 The impact of graph versus tree AND/OR Branch-and-Bound search.

2 The impact of best-first versus depth-first AND/OR search.

3 The impact of the mini-bucketi-bound.

4 The impact of the cache boundj on naive and adaptive caching.

5 The impact of the pseudo tree quality on AND/OR search.

6 The impact of determinism present in the network.

7 The impact of non-trivial initial upper bounds.

Since the pre-compiled mini-bucket heuristics require a static variable ordering, the

corresponding OR and AND/OR search algorithms used the variable ordering as well

derived from a depth-first traversal of the guiding pseudo tree. We note however that
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static MBE(i) dynamic MBE(i) min-fill vs. nave vs. constraint
BB-C+SMB(i) BB-C+DMB(i) hypergraph adaptive propagation SamIam Superlink

Benchmarks AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching
AOBF-C+SMB(i) AOBF-C+DMB(i)

Coding
√ √

- - -
√

-
Grids

√ √ √ √ √ √
-

Linkage
√

-
√ √

-
√ √

ISCAS’89
√ √ √ √ √ √

-
UAI’06 Dataset

√
-

√
- -

√
-

Table 4.1: Detailed outline of the experimental evaluationfor Bayesian networks.

AOBB-C+SMB(i) andAOBB-C+DMB(i) support a restricted form of dynamic variable

and value ordering. Namely, there is a dynamic internal ordering of the successors of the

node just expanded, before placing them onto the search stack. Specifically, in line 29

of Algorithm 8, if the current noden is AND, then the independent subproblems rooted

by its OR children can be solved in decreasing order of their corresponding heuristic esti-

mates (variable ordering). Alternatively, ifn is OR, then its AND children corresponding

to domain values can also be sorted in decreasing order of their heuristic estimates (value

ordering).

Bayesian Networks. For the MPE task, we tested the performance of the depth-first

AND/OR Branch-and-Bound and best-first AND/OR search algorithms on the following

types of problems: random coding networks, grid networks, Bayesian networks derived

from the ISCAS’89 digital circuits benchmark, genetic linkage analysis networks, and a

subset of networks from the UAI’06 Inference Evaluation Dataset.

The detailed outline of the experimental evaluation for Bayesian networks is given in

Table 4.1. We also consider an extension of the AND/OR Branch-and-Bound with caching

that exploits the determinism present in the Bayesian network by constraint propagation.

For reference, we also compared with the SAM IAM version 2.3.2 software package1.

SAM IAM is a public implementation of Recursive Conditioning [24] which can also be

viewed as an AND/OR search algorithm. The algorithm uses a context-based caching

1Available at http://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5 provided with the
package.
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static MBE(i) dynamic MBE(i) min-fill vs. nave vs. AOEDAC
BB-C+SMB(i) BB-C+DMB(i) hypergraph adaptive AOEDAC+PVO toolbar

Benchmarks AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching DVO+AOEDAC toolbar-BTD
AOBF-C+SMB(i) AOBF-C+DMB(i) AOEDAC+DSO

SPOT5
√ √ √ √ √ √

ISCAS’89
√ √ √ √ √ √

Mastermind
√

-
√ √ √ √

Table 4.2: Detailed outline of the experimental evaluationfor Weighted CSPs.

mechanism similar to our scheme. This version of recursive conditioning also explores a

context minimal AND/OR search graph [38] and therefore its space complexity is expo-

nential in the treewidth. Note that when we use mini-bucket heuristics with high values of

i, we use space exponential ini for the heuristic calculation and storing, in addition to the

space required for caching.

Weighted CSPs. For WCSPs we evaluated the performance of the AND/OR search algo-

rithms on the following types of problems: scheduling problems from the SPOT5 bench-

mark, networks derived from the ISCAS’89 digital circuits and instances of the popular

game of Mastermind. The outline of the experimental evaluation for WCSPs is detailed in

Table 4.2.

For reference, we also report results obtained with the state-of-the-art solvers called

toolbar [25] andtoolbar-BTD [28]2. toolbar is an OR Branch-and-Bound algo-

rithm that maintains during search a form of soft local consistency called Existential Direc-

tional Arc Consistency (EDAC).toolbar-BTD extends theBacktracking with Tree De-

composition(BTD) algorithm [59] and computes the guiding heuristic information as well

by enforcing EDAC during search. It can be shown that BTD explores a context minimal

AND/OR search graph, relative to a pseudo tree corresponding to the given tree decompo-

sition [38]. In addition, we also ran the depth-first AND/OR Branch-and-Bound tree search

algorithms with EDAC heuristics and dynamic variable orderings described in Chapter 3:

AOEDAC+PVO using partial variable orderings,DVO+AOEDAC using full dynamic variable

2Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
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ordering, andAOEDAC+DSO using dynamic separator orderings, respectively.

The dynamic variable ordering heuristic used by the OR and AND/OR Branch-and-

Bound algorithms with EDAC heuristics was themin-dom/ddegheuristic, which selects

the variable with the smallest ratio of the domain size divided by the future degree. Ties

were broken lexicographically.

Measures of Performance. We report the CPU time in seconds and the number of nodes

visited, required for proving optimality. We also specify the number of variables (n), num-

ber of evidence variables (e), maximum domain size (k), the depth of the pseudo trees (h)

and the induced width of the graphs (w∗) obtained for the test instances. When evidence

is asserted in the network,w∗ andh are computed after the evidence nodes were removed

from the graph. We also report the time required by the Mini-Bucket algorithm MBE(i)

to pre-compile the heuristic information. The pseudo treesthat guide the AND/OR search

algorithms were generated using the min-fill and hypergraphpartitioning heuristics. In our

experiments we ran the min-fill heuristic just once and brokethe ties lexicographically.

Since the hypergraph partitioning heuristic uses a non-deterministic algorithm, the runtime

of the AND/OR search algorithms guided by the resulting pseudo trees may vary signif-

icantly from one run to the next. Therefore, we picked the pseudo tree with the smallest

depth out of 10 independent runs (unless otherwise specified). The best performance points

are highlighted. In each table, ”-” denotes that the respective algorithm exceeded the time

limit. Similarly, ”out” indicates that the 2GB memory limitwas exceeded.

4.5.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in Chapter 3 demonstrateded conclusively that the AND/OR Branch-

and-Bound tree search algorithms with pre-compiled mini-bucket heuristics were the best

performing algorithms on this domain. The diference between AOBB+SMB(i) and the

OR tree search counterpartBB+SMB(i) was more pronounced at relatively smalli-bounds
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(corresponding to relatively weak heuristic estimates) and added up to 2 orders of mag-

nitude in terms of both running time and size of the search space explored. For larger

i-bounds, when the heuristic estimates are strong enough to prune the search space sub-

stantially, the diference between AND/OR and OR Branch-and-Bound decreased. We also

showed thatAOBB+SMB(i) was in many cases able to outperform dramatically the cur-

rent state-of-the-art solvers for Bayesian networks such asSAM IAM as well SUPERLINK

(for genetic linkage analysis). The AND/OR Branch-and-Boundwith dynamic mini-bucket

heuristicsAOBB+DMB(i) proved competitive only for relatively smalli-bounds due to the

relatively reduced computational overhead. In this section we continue the empirical eval-

uation, focusing on memory intensive depth-first and best-first AND/OR search algorithms

guided by mini-bucket heuristics.

Coding Networks

We experimented with random coding networks from the class of linear block codesde-

scribed in Chapter 3. They can be represented as 4-layer belief networks withK nodes in

each layer (i.e., the number of input bits). The second and third layers correspond to in-

put information bits and parity check bits respectively. Each parity check bit represents an

XOR function of the input bits. The first and last layers correspond to transmitted informa-

tion and parity check bits respectively. Input informationand parity check nodes are binary,

while the output nodes are real-valued. Given a number of input bitsK, number of parents

P for each XOR bit, and channel noise varianceσ2, a coding network structure is gener-

ated by randomly picking parents for each XOR node. Then we simulate an input signal

by assuming a uniform random distribution of information bits, compute the corresponding

values of the parity check bits, and generate an assignment to the output nodes by adding

Gaussian noise to each information and parity check bit. Thedecoding algorithm takes as

input the coding network and the observed real-valued output assignment and recovers the

original input bit-vector by computing an MPE assignment.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33

- - 16.55 174,205 0.09 148 0.72 130 8.36 130
(64, 128) (27, 40) out 287.10 5,052,010 6.58 119,289 0.08 152 0.68 129 8.34 129
σ2 = 0.22 250.81 3,600,530 4.25 63,171 0.08 147 0.71 129 8.41 129

0.04 157 0.04 129 0.09 128 0.72 128 8.45 128
0.02 0.02 0.07 0.68 8.32

- - 76.38 807,319 0.99 10,688 0.81 1,189 8.41 158
(64, 128) (27, 40) out 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160
σ2 = 0.36 250.32 3,907,000 35.52 518,125 0.79 12,236 0.81 1,850 8.39 148

3.94 17,801 0.15 829 0.12 363 0.72 162 8.41 133
0.05 0.06 0.18 1.80 25.65

- - 256.23 1,766,930 30.57 213,184 3.30 11,073 25.88 1,656
(128, 256) (53, 71) out - - 229.02 3,227,110 16.67 206,004 3.51 22,644 25.87 3,081
σ2 = 0.22 - - 218.58 2,206,490 11.75 116,977 3.03 12,880 25.72 2,109

0.14 375 0.11 266 0.23 262 1.90 257 25.01 258
0.05 0.06 0.18 1.80 25.39

- - - - 264.57 1,732,960 202.84 1,426,730 97.98 603,342
(128, 256) (53, 71) out - - 291.61 4,309,160 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120
σ2 = 0.36 - - 290.12 2,951,230 235.08 2,312,080 178.90 1,816,940 100.32 781,438

out 66.98 260,350 19.18 88,692 7.23 26,499 28.01 18,357

BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
SamIam AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(K, N) (w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes

22.46 9,331 0.41 183 1.41 130 12.80 130 122.67 130
(64, 128) (27, 40) out 23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129
σ2 = 0.22 21.26 13,971 0.34 176 1.36 129 12.62 129 120.81 129

0.19 129 0.37 128 2.15 128 19.98 128 192.66 128
46.66 18,781 5.12 1,204 5.58 432 15.47 162 123.57 144

(64, 128) (27, 40) out 48.71 44,734 5.17 1,864 5.53 512 15.53 164 122.90 144
σ2 = 0.36 44.20 29,191 4.91 1,323 5.41 399 15.33 155 122.27 138

1.96 446 0.82 160 2.71 132 20.50 128 191.08 128
195.84 39,109 48.49 3,684 17.48 482 130.41 379 - -

(128, 256) (53, 71) out 195.82 121,822 48.17 9,391 17.15 500 129.38 388 - -
σ2 = 0.22 193.30 68,571 48.06 5,241 16.88 420 128.23 355 - -

0.75 260 1.58 256 11.18 256 131.50 256 - -
288.97 62,749 229.55 19,776 234.08 4,402 276.95 804 - -

(128, 256) (53, 71) out 289.09 223,938 229.91 46,768 233.96 7,947 276.31 953 - -
σ2 = 0.36 288.79 121,278 229.09 27,362 233.72 4,662 276.87 649 - -

202.41 16,041 70.68 2,260 163.78 709 282.36 136 - -

Table 4.3: CPU time and nodes visited for solvingrandom coding networksusingstatic
and dynamic mini-bucket heuristicsas well as min-fill based pseudo trees. Time limit 5
minutes. The top four horizontal blocks show the results forstatic mini-bucket heuristics,
while the bottom four blocks show the dynamic mini-bucket heuristics.

Table 4.3 shows the results for solving two classes of randomcoding networks with

K = 64 andK = 128 input bits, using static and dynamic mini-bucket heuristics. The

number of parents for each XOR bit wasP = 4 and we chose the channel noise variance

σ2 ∈ {0.22, 0.36}. For each value combination of the parameters we generated 20 random

instances. The guiding pseudo trees were generated using the min-fill heuristic. The top

four horizontal blocks show the results for static mini-bucket heuristics, while the bottom

four ones correspond to dynamic mini-buckets heuristics. The columns are indexed by the
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mini-bucketi-bound, which we varied between 4 and 20.

Tree vs. graph AOBB. When comparing the tree versus the graph AND/OR Branch-and-

Bound algorithms we see thatAOBB-C+SMB(i) is slightly better thanAOBB+SMB(i).

We observe a similar picture when using dynamic mini-buckets as well. This indicates

that, on this domain, most of the cache entries were actuallydead, namely the context

minimal AND/OR graph explored was very close to a tree. Notice also that SAM IAM was

not able to solve any of these problem instances due to the memory limit.

AOBF vs. AOBB. When comparing the best-first versus the depth-first algorithms using

static mini-bucket heuristics, we see thatAOBF-C+SMB(i) is better thanAOBB-C+SMB(i)

for relatively smalli-bounds (i.e., i ∈ {4, 8}) which generate relatively weak heuris-

tic estimates. For instance, on class〈K = 64, P = 4, σ2 = 0.22〉, best-first search

AOBF-C+SMB(4) is 4 orders of magnitude faster thanAOBB-C+SMB(4). As the i-

bound increases and the heuristics become more accurate, the difference between Branch-

and-Bound and best-first search decreases, because Branch-and-Bound finds close to op-

timal solutions fast, and therefore will not explore solutions whose cost is below the op-

timum, like best-first search. When looking at the algorithmsusing dynamic mini-bucket

heuristics, we notice thatAOBF-C+DMB(i) is again far better thanAOBB-C+DMB(i) for

smalleri-bounds.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dynamic

mini-bucket heuristic we see that the latter is competitiveonly for relatively smalli-bounds

(i.e., i ∈ {4, 8}). At higher levels of thei-bound, the accuracy of the dynamic heuristic

does not outweigh its computational overhead.

Figure 4.4 plots the average running time and number of nodesvisited by the depth-

first and best-first AND/OR search algorithms with mini-bucket heuristics, as a function of

the mini-bucketi-bound, on the random coding networks with parameters(K = 64, P =
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Figure 4.4: The impact of static and dynamic mini-bucket heuristics for solving theran-
dom coding networkswith parameters(K = 64, σ2 = 0.36) from Table 4.3.

4, σ2 = 0.36) (i.e., corresponding to the second and fifth horizontal blocks in Table 4.3). It

shows explicitly how the performance of Branch-and-Bound andbest-first search changes

with the mini-bucket strength for both heuristics. Focusing for example on best-first search,

we see thati-bound of 6 is most cost effective for dynamic mini-buckets,while i-bound of

10 yields best performance for static mini-buckets. We alsosee clearly that the dynamic

mini-bucket heuristic is more accurate yielding smaller search spaces. It also demonstrates

that the dynamic mini-bucket heuristics are cost effectiveat relatively smalli-bounds,

whereas the pre-compiled version is more powerful for larger i-bounds.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
v. 2.3.2 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.02 0.03 0.03 0.06 0.06

90-10-1 0.23 3,297 0.06 373 0.05 102 0.06 102 0.06 102
(13, 39) 0.13 0.33 8,080 0.11 2,052 0.05 101 0.06 101 0.06 101
(100, 0) 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101

0.27 2,012 0.11 661 0.05 100 0.06 100 0.06 100
0.03 0.03 0.08 0.14 0.44

90-14-1 126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450
(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938
(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 0.23 1,361 0.53 1,210

3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857
0.05 0.05 0.11 0.31 0.63

90-16-1 - - - - 40.05 345,255 2.38 16,942 1.23 5,327
(24, 82) 147.19 666.68 10,104,350 173.49 2,600,690 14.36 193,440 2.97 39,825 2.08 23,421
(256, 0) 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 0.95 4,810

25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

0.28 0.64 1.69 4.60 19.14
90-24-1 - - - - - - - - - -
(33, 111) out - - 2338.67 24,117,151 1548.09 18,238,983 138.67 1,413,764 146.85 1,308,009
(576, 20) - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291
0.33 0.72 2.14 7.09 22.02

90-26-1 - - - - 395.67 1,635,447 - - 67.09 277,685
(36, 113) out 311.89 2,903,489 369.49 3,205,257 8.42 59,055 22.99 165,182 22.56 5,777
(676, 40) 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435
0.47 0.98 2.77 7.98 30.44

90-30-1 - - - - - - - - - -
(43, 150) out 1131.07 9,445,224 386.27 3,324,942 350.28 3,039,966 149.69 1,358,569 97.09 485,300
(900, 60) 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800
0.63 1.25 3.72 11.66 40.00

90-34-1 - - - - - - - - - -
(45, 153) out - - - - - - - - 478.10 1,549,829
(1154, 80) - - - - - - - - 369.36 823,604

out out 243.63 596,978 270.88 667,013 71.19 67,611
0.78 1.67 4.20 12.36 43.69

90-38-1 - - - - - - - - - -
(47, 163) out 2032.33 6,835,745 - - 807.38 2,850,393 568.69 2,079,146 369.31 1,038,065
(1444, 120) 969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

Table 4.4: CPU time and nodes visited for solvinggrid networks usingstatic mini-bucket
heuristics and min-fill based pseudo trees. Time limit 1 hour. Top part ofthe table shows
results fori-bounds between 8 and 16, while the bottom part showsi-bounds between 12
and 20.

We addressed so far the impact of tree versus graph AND/OR search, the impact of the

mini-bucketi-bound and best-first versus depth-first search regimes. In the remainder we

will also investigate the impact of the level of caching, theimpact of pseudo tree quality, the

impact of determinism present in the network, as well as the anytime behavior of AND/OR

Branch-and-Bound and the impact of good initial bounds.
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minfill pseudo tree
grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes

90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102
(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101
(100, 0) 0.28 235 0.25 170 0.23 101 0.28 101 0.30 101

0.39 135 0.36 115 0.36 100 0.41 100 0.41 100
90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199
(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199
(196, 0) 46.94 7,641 22.72 1,996 4.67 281 7.20 211 10.19 199

54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199
90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262
(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260
(256, 0) 382.78 44,949 245.50 11,855 65.41 1,430 48.61 525 24.52 260

194.08 11,453 252.99 6,622 94.88 1,061 75.41 413 38.46 258

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

90-24-1 - - - - 2586.38 3,243 1724.68 700 2368.83 601
(33, 111) - - - - 1367.38 2,739 1979.42 1,228 1696.56 598
(576, 20) - - - - 781.21 1,058 1211.99 788 1693.00 598

3456.77 11,818 1834.71 2,728 1153.48 855 1871.03 759 2573.08 591
90-26-1 - - - - - - - - - -
(36, 113) - - - - 1514.18 2,545 2889.49 1,191 - -
(676, 40) 2801.39 35,640 2593.74 10,216 892.88 1,178 1698.70 861 2647.60 687

1262.76 5,392 1737.01 2,585 1347.54 1,049 2587.10 828 - -
90-30-1 - - - - - - - - - -
(43, 150) - - - - - - - - - -
(900, 60) - - - - - - - - - -

- - - - - - - - - -
90-34-1 - - - - - - - - - -
(45, 153) - - - - - - - - - -
(1154, 80) - - - - - - - - - -

- - - - - - - - - -
90-38-1 - - - - - - - - - -
(47, 163) - - - - - - - - - -
(1444, 120) - - - - - - - - - -

- - - - - - - - - -

Table 4.5: CPU time and nodes visited for solvinggrid networks usingdynamic mini-
bucket heuristics and min-fill based pseudo trees. Time limit 1 hour. Top part ofthe
table shows results fori-bounds between 8 and 16, while the bottom part showsi-bounds
between 12 and 20.

Random Grid Networks

Tables 4.4 and 4.5 show detailed results for experiments with 8 grids of increasing difficulty

from Chapter 3, using static and dynamic mini-bucket heuristics. The columns are indexed

by the mini-bucketi-bound. We varied the mini-bucketi-bound between 8 and 16 for the

first 3 grids, and between 12 and 20 for the remaining ones. Foreach instance we ran a

single MPE query withe nodes picked randomly and instantiated as evidence. The guiding

pseudo trees were generated using the min-fill heuristic.

Tree vs. graph AOBB. First, we observe thatAOBB-C+SMB(i) using full caching im-

proves significantly over the tree version of the algorithm,especially for relatively smalli-

bounds which generate relatively weak heuristic estimates. For example, on the90-16-1
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Figure 4.5: The impact of static and dynamic mini-bucket heuristics for solving the
90-14-1 grid network from Tables 4.4 and 4.5, respectively. We show the CPU time
in seconds (top) and the number of nodes visited (bottom).
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grid,AOBB-C+SMB(8) is 3 times faster thanAOBB+SMB(8) and explores a search space

5 times smaller. Notice also the significant additional reduction produced by the best-

first search algorithmAOBF-C+SMB(8). While overallAOBF-C+SMB(i) is superior

to AOBB-C+SMB(i) with the samei-bound, the best performance on this network is

obtained byAOBB-C+SMB(16). The algorithm is 2 times faster than the cache-less

AOBB+SMB(16), and 155 times faster than SAM IAM , respectively. When looking at the

algorithms using dynamic mini-bucket heuristics (Table 4.5) we observe a similar pattern,

namely the graph search AND/OR Branch-and-Bound algorithm improves sometimes sig-

nificantly over the tree search one. For instance, on the90-24-1 grid,AOBB-C+DMB(16)

is about 2 times faster thanAOBB+DMB(16). Notice also that the AND/OR algorithms

with dynamic mini-buckets could not solve the last 3 test instances due to exceeding the

time limit. The OR Branch-and-Bound search algorithms with caching BB-C+SMB(i)

(resp.BB-C+DMB(i)) are inferior to the AND/OR Branch-and-Bound graph search, es-

pecially on the harder instances (e.g., 90-30-1).

AOBF vs. AOBB. When comparing further the best-first and depth-first graph search

algorithms, we notice again the superiority ofAOBF-C+SMB(i) overAOBB-C+SMB(i),

especially for relatively weak heuristic estimates which are generated at relatively smalli-

bounds. For example, on the90-38-1 grid, one of the hardest instances, best-first search

with the smallest reportedi-bound (i = 12) is 9 times faster thanAOBB-C+SMB(12) and

visits 15 times less nodes. The difference between best-first and depth-first search is not too

prominent when using dynamic mini-bucket heuristics. Thisis because these heuristics are

far more accurate than the pre-compiled ones and the savingsin number of nodes explored

by best-first search do not translate into additional time savings as well.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dynamic

mini-bucket heuristics, we see that the former are more powerful for relatively largei-

bounds, whereas the latter are cost effective only for relatively small i-bounds. Figure 4.5
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Figure 4.6: Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics ongrid networks. Shown is the CPU time in seconds.

shows the CPU time and size of the search space explored by the AND/OR algorithms with

mini-bucket heuristics, as a function of thei-bound, on the90-14-1 grid from Tables 4.4

and 4.5, respectively. Focusing onAOBB-C+SMB(i), for example, we see that its running

time, as a function ofi, forms a U-shaped curve. At first (i = 4) it is high, then as the

i-bound increases the total time decreases (wheni = 14 the time is 0.23), but then asi

increases further the time starts to increase again becausethe pre-processing time of the

mini-bucket heuristic outweighs the search time. The same behavior can be observed in the

case of dynamic mini-buckets as well.

Impact of the level of caching. Figure 4.6 compares the naive (AOBB-C+SMB(i,j))

and adaptive (AOBB-AC+SMB(i,j)) caching schemes, in terms of CPU time, on 4 grid

networks from Table 4.4 using AND/OR Branch-and-Bound searchwith static mini-bucket

heuristics. In each test case we chose a relatively small mini-bucket i-bound and varied
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the cache boundj (the X axis) from 2 to 20. We see that adaptive caching improves

significantly over the naive scheme especially for relatively small j-bounds. This may

be important because smallj-bounds mean restricted space. At largej-bounds the two

schemes are identical and approach the full-caching scheme.

Impact of the pseudo tree. Figure 4.7 plots the runtime distribution ofAOBB-C+SMB(i)

andAOBF-C+SMB(i) using hypergraph based pseudo trees. For each reportedi-bound,

the corresponding data point and error bar represent the average as well as the mini-

mum and maximum run times obtained over 20 independent runs with a 30 minute time

limit. The hypergraph based pseudo trees, which have far smaller depths, are sometimes

able to improve the performance ofAOBB-C+SMB(i), especially for relatively smalli-

bounds (e.g., 90-24-1). For largeri-bounds, the pre-compiled mini-bucket heuristic

benefits from the small induced widths obtained with the min-fill ordering. Therefore,

AOBB-C+SMB(i) using min-fill based pseudo trees is generally faster. We also see that

on averageAOBF-C+SMB(i) is faster when it is guided by min-fill rather than hypergraph

based pseudo trees. This verifies our hypothesis that memoryintensive algorithms explor-

ing the AND/OR graph are more sensitive to the context size (which is smaller for min-fill

orderings), rather than the depth of the pseudo tree.

Memory usage of AND/OR graph search. Figure 4.8 displays the memory usage of

AOBB-C+SMB(i) andAOBF-C+SMB(i) on grids90-30-1 and90-38-1, respectively.

We see that for relatively smalli-bounds the memory requirements ofAOBF-C+SMB(i)

are significantly larger than those ofAOBB-C+SMB(i). This is becauseAOBF-C+SMB(i)

has to keep in memory the entire search space explored, unlike AOBB-C+SMB(i) which

can save space by avoiding dead-caches for example.
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Figure 4.7: Min-fill versus ypergraph partitioning heuristics. CPU time in seconds for
solving grid networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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Figure 4.8: Memory usage byAOBB-C+SMB(i) and AOBF-C+SMB(i) on grid net-
works.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.05 0.05 0.11 0.31 0.97

ped1 5.44 - - - - 1.14 7,997 0.73 3,911 1.31 2,704
(15, 61) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156
(299, 5) 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119
0.12 0.45 5.38 60.97 out

ped38 out - - - - - - - -
(17, 59) 28.36 - - 8120.58 85,367,022 - - 3040.60 35,394,461
(582, 5) 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976

out 134.41 348,723 216.94 583,401 103.17 242,429
0.11 0.74 5.38 37.19 out

ped50 out - - - - - - - -
(18, 58) - - - - - 476.77 5,566,578 104.00 748,792
(479, 5) 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes

0.42 2.33 11.33 274.75 out
ped23 out - - - - 76.11 339,125 270.22 74,261
(27, 71) 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308
(310, 5) 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613

out 15.33 58,180 14.36 12,987 out
0.67 5.16 21.53 58.59 out

ped37 out - - - - - - - -
(21, 61) 64.17 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(1032, 5) 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

Table 4.6: CPU time and nodes visited for solvinggenetic linkage networksusingstatic
mini-bucket heuristics. Time limit 3 hours. Top part of the table shows results fori-
bounds between 6 and 14, while the bottom part showsi-bounds between 10 and 18.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
0.51 1.42 4.59 12.87 19.30

ped18 157.05 - - - - - - - - 1515.43 1,388,791
(21, 119) 139.06 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184, 5) - - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972

out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027
1.42 5.11 37.53 410.96 out

ped20 out - - - - - - - -
(24, 66) 14.72 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195
(388, 5) 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646

out out out out
0.34 0.89 3.20 10.46 33.42

ped25 out - - - - - - - - - -
(34, 89) - - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541
(994, 5) - - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 236.88 1,529,180

out out out out out
0.42 0.83 1.78 5.75 21.30

ped30 out - - - - - - - - - -
(23, 118) 13095.83 - - - - - - 214.10 1,379,131 91.92 685,661
(1016, 5) 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436 30.48 66,144

out out out 30.39 72,798 27.94 18,795
0.58 2.31 7.84 33.44 112.83

ped33 out - - - - - - - - - -
(37, 165) - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215
(581, 5) 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 1373.90 10,570,695

out 140.61 407,387 out 74.86 134,068 out
0.52 2.32 8.41 33.15 81.27

ped39 out - - - - - - - - - -
(23, 94) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280
(1272, 5) - - - - 968.03 7,880,928 61.20 313,496 93.19 83,714

out out 68.52 218,925 41.69 79,356 87.63 14,479
4.20 31.33 96.28 out out

ped42 out - - - - - -
(25, 76) 561.31 - - - - - -
(448, 5) - - - - 2364.67 22,595,247

out out 133.19 93,831

Table 4.7: CPU time and nodes visited for solvinggenetic linkage networks. Time limit
3 hours. Shown here are 7 linkage networks in addition to the 5networks from Table 4.6.

Genetic Linkage Analysis

In human genetic linkage analysis [98], thehaplotypeis the sequence of alleles at different

loci inherited by an individual from one parent, and the two haplotypes (maternal and pater-

nal) of an individual constitute this individual’sgenotype. When genotypes are measured

by standard procedures, the result is a list of unordered pairs of alleles, one pair for each

locus. Themaximum likelihood haplotypeproblem consists of finding a joint haplotype

configuration for all members of the pedigree which maximizes the probability of data.

The pedigree data can be represented as a belief network as described in Chapter 3. The

haplotyping problem is equivalent to computing the Most Probable Explanation (MPE) of

the corresponding belief network [47, 46].
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Figure 4.9: CPU time and nodes visited for solving theped50 linkage network.

Tables 4.6 and 4.7 display the results obtained for 12 hard linkage analysis networks3.

We report only on the AND/OR search algorithms guided by static mini-bucket heuristics.

The dynamic mini-bucket heuristics performed very poorly on this domain because of their

prohibitively high computational overhead at largei-bounds. For comparison, we include

results obtained with SUPERLINK 1.6 (see also Chapter 3 for an overview).

Tree versus graph AOBB. We observe thatAOBB-C+SMB(i) improves significantly

overAOBB+SMB(i), especially for relatively smalli-bounds for which the heuristic esti-

mates are less accurate. Onped37, for example,AOBB-C+SMB(10) is 7 times faster

thanAOBB+SMB(10) and expands about 14 times fewer nodes. As thei-bound increases,

the accuracy of the heuristics increases as well prunning the search space more efficiently

and the diference betweenAOBB-C+SMB(i) andAOBB+SMB(i) decreases. Notice also

that the OR Branch-and-Bound with cachingBB-C+SMB(i) was able to solve only 3

out of the 12 test instances (e.g., ped1, ped23, ped18). Similarly, the performance

of SAM IAM was very poor and it was able to solve only 2 instances, namelyped1 and

ped18.

AOBB vs. AOBF. The best performing algorithm on this dataset isAOBF-C+SMB(i),

outperforming its competitors on 8 out of the 12 test cases. On ped42, for instance,

3http://bioinfo.cs.technion.ac.il/superlink/
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hypergraph pseudo tree min-fill pseuso tree
MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
pedigree SamIam (w*, h) AOBB+SMB(i) AOBB+SMB(i) (w*, h) AOBB+SMB(i) AOBB+SMB(i)
(n, d) Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=20 i=22 i=20 i=22

time nodes time nodes time nodes time nodes
ped7 25.26 164.49 117.03 out
(868, 4) out - - - - - -

- (36, 60) 88571.68 1,807,878,340 9395.17 195,845,851 (32, 133) - -
30504.84 285,084,124 3005.66 27,761,219 - -

out out out
ped9 67.93 300.06 76.31 out
(936, 7) out - - - - - -

- (35, 58) 11483.89 231,301,374 3982.69 72,844,362 (27, 130) 1515.50 15,825,340
8922.81 117,328,162 3292.30 40,251,723 1163.09 12,444,961

out out out
ped19 59.31 150.38 out out
(693, 5) out - - - -

- (35, 53) 98941.75 1,519,213,924 12530.00 174,000,317 (24, 122)
45075.31 466,748,365 8321.42 90,665,870

out out
ped34 42.21 209.51 out out
(923, 4) out - - - -

- (34, 60) 70504.72 1,453,705,377 13598.50 294,637,173 (32, 127)
67647.42 1,293,350,829 11719.28 220,199,927

out out
ped41 35.41 111.24 out out
(886, 5) out - - - -

- (36, 61) 6669.50 84,506,068 531.40 4,990,995 (33, 128)
3891.86 31,731,270 380.01 2,318,544

out out
ped44 32.92 140.81 57.88 344.68
(644, 4) out - - - - - - - -

- (31, 52) 8388.18 196,823,840 401.84 7,648,962 (26, 73) 127.42 1,114,641 385.47 668,737
3597.12 62,385,573 204.96 1,355,595 95.09 752,970 366.18 447,514

out out out out

Table 4.8: Impact of the pseudo tree quality ongenetic linkage networks. Time limit 24
hours. We show results for the hypergraph partitioning heuristic (left side) and the min-fill
heuristic (right side).

AOBF-C+SMB(16) is 18 times faster thanAOBB-C+SMB(16) and explores a search

space 240 times smaller. In some cases,AOBF-C+SMB(i) was up to 3 orders of mag-

nitude faster than SUPERLINK as well (e.g., ped1, ped23, ped30). Figure 4.9 displays

the CPU time and number of nodes explored, as a function of the mini-bucket i-bound,

for solving theped50 instance. It shows how the performance of best-first and depth-first

AND/OR search changes with thei-bound. In this case,AOBB+SMB(i) could not solve

the problem instance fori ∈ {6, 8}, due to exceeding the time limit.

Impact of the pseudo tree. Figure 4.10 plots the runtime distribution of the depth-first

and best-first search algorithmsAOBB-C+SMB(i) andAOBF-C+SMB(i), with hyper-

graph based pseudo trees, over 20 independent runs. We see that bothAOBB-C+SMB(i)

andAOBF-C+SMB(i) perform much better when guided by hypergraph based pseudo
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Figure 4.10: Min-fill versus hypergraph partitioning heuristics. CPU time in sec-
onds for solvinggenetic linkage networks with AOBB-C+SMB(i) (left side) and
AOBF-C+SMB(i) (right side). The header of each plot records the average induced width
(w∗) and pseudo tree depth (h) obtained with the hypergraph partitioning heuristic. We also
show the induced width and pseudo tree depth for the min-fill heuristic.
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Figure 4.11: Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics ongenetic linkage networks. Shown is CPU time in seconds.

trees, especially on harder instances. For instance, onped33, AOBB-C+SMB(16) using

a hypergraph tree was able to outperformAOBB-C+SMB(16) guided by a min-fill tree by

almost 2 orders of magnitude. Similarly,AOBF-C+SMB(i)with hypergraph trees was able

to solve the problem instance across alli-bounds, unlikeAOBF-C+SMB(i) with a min-fill

tree which succeded only fori ∈ {14, 18}. Notice that the induced width of this problem

along the min-fill ordering is very large (w∗ = 37) which causes the mini-bucket heuris-

tics to be relatively weak. More importantly, it causes the AND/OR search algorithms to

traverse and AND/OR search graph that is very close to a tree because most of the cache

entries are dead.

Table 4.8 displays the results obtained for 6 additional linkage analysis networks using

randomized hypergraph partitioning based pseudo trees. Weselected the hypergraph tree

having the smallest depth over 100 independent runs (ties were broken on the smallest
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induced width). To the best of our knowledge, these networkswere never before solved for

the maximum likelihood haplotype task. We see that the hypergraph pseudo trees offer the

overall best performance as well. This can be explained by the large induced width which in

this case renders most of the cache entries dead (see for instance that the difference between

AOBB+SMB(i) andAOBB-C+SMB(i) is not too prominent). Therefore, the AND/OR

graph explored effectively is very close to a tree and the dominant factor that impacts the

search performance is then the depth of the guiding pseudo tree, which is far smaller for

hypergraph trees compared with min-fill based ones. Notice also that best-first search could

not solve any of these networks due to running out of memory. The AND/OR Branch-and-

Bound algorithms with min-fill based pseudo trees could only solve 2 of the test instances

(e.g., ped9 andped44). This is because the induced width of these problem instances was

small enough and the mini-bucket heuristics were relatively accurate to prune the search

space substantially, thus overcomming the increase in pseudo tree depth. One thing that

these experiments demonstrate is that the selection of the pseudo tree can have an enormous

impact if thei-bound is not large enough.

Impact of the level of caching. Figure 4.11 displays the CPU time for solving 4 link-

age analysis networks from Tables 4.6 and 4.7 usingAOBB-C+SMB(i,j) (naive caching)

andAOBB-AC+SMB(i,j) (adaptive caching), respectively. In each test case we chose a

relatively small mini-bucketi-bound and varied the cache boundj (the X axis) from 2 to

20. We see again that adaptive caching is more powerful than the naive scheme especially,

for relatively smallj-bounds, which require restricted space. As thej-bound increases, the

two schemes approach gradually full caching.

UAI’06 Evaluation Dataset

Tables 4.9 and 4.10 show the results for experiments with 15 networks from the UAI’06

repository described in Chapter 3. InstancesBN 31 throughBN 41 are random grid net-
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, k) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
5.53 10.31 17.45 38.36 62.11

BN 31 - - - - - - - - - -
(46, 160) out 1026.73 4,741,037 1394.90 7,895,304 664.27 3,988,933 680.61 4,293,760 131.17 380,470
(1156, 2) 411.33 1,445,200 486.47 2,131,977 209.80 831,431 210.81 889,782 81.61 94,507

140.41 293,445 126.23 292,293 85.69 142,650 86.00 114,046 73.14 25,392
7.39 13.34 24.38 46.08 81.72

BN 33 - - - - - - - - - -
(43, 163) - 1404.15 3,540,778 293.85 685,246 618.55 1,441,245 410.08 1,018,353 197.08 360,880
(1444, 2) 429.02 982,130 125.78 210,552 236.42 408,855 160.61 256,191 120.33 89,308

75.92 142,932 41.14 41,865 58.14 61,064 73.20 49,760 95.16 22,256
7.61 12.86 24.50 40.33 64.63

BN 35 - - - - - - - - - -
(41, 168) - 464.44 1,755,561 548.11 1,954,720 316.78 1,108,708 199.67 663,784 226.10 622,551
(1444, 2) 42.95 126,215 107.17 243,533 81.59 151,632 56.11 65,657 78.27 58,973

29.77 29,837 36.58 34,987 43.28 28,088 51.28 15,953 76.28 18,048
7.25 13.58 22.61 44.14 87.30

BN 37 - - - - - - - - - -
(45, 159) - 126.85 428,643 97.03 298,477 79.75 183,016 65.74 89,948 121.39 168,957
(1444, 2) 26.42 55,571 20.19 33,475 25.45 14,703 45.61 8,815 94.55 16,400

15.83 15,399 19.47 11,046 26.55 6,621 46.84 4,315 90.66 5,610
6.86 13.13 25.58 44.06 75.49

BN 39 - - - - - - - - - -
(48, 162) - - - - - - - - - 1202.01 3,366,427
(1444, 2) 1161.65 2,615,679 1370.21 3,448,072 507.18 1,499,020 403.07 1,043,378 220.74 518,011

117.03 340,362 247.08 725,738 131.44 316,862 112.27 213,676 111.20 127,872
6.97 11.98 21.09 36.44 65.75

BN 41 - - - - - - - - - -
(49, 164) - 188.60 486,844 151.80 364,363 83.39 168,340 109.92 195,506 123.58 162,274
(1444, 2) 56.72 119,737 47.30 77,653 33.81 32,774 50.81 38,467 76.42 31,763

23.50 42,795 22.05 20,485 27.22 12,030 43.38 16,549 71.61 11,648

Table 4.9: CPU time and nodes visited for solvingUAI’06 networks . Time limit 30 min-
utes.

works with deterministic CPTs, while instancesBN 126 throughBN 134 represent ran-

dom coding networks with 128 input bits, 4 parents per XOR bitand channel variance

σ2 = 0.40. We report only on the Branch-and-Bound and Best-First search algorithms us-

ing static mini-bucket heuristics. The dynamic mini-bucket heuristics were not competitive

due to their much higher computational overhead at relatively largei-bounds. The guiding

pseudo trees were generated in this case using the min-fill heuristic.

We notice again the superiority ofAOBB-C+SMB(i) compared with the tree version

of the algorithm,AOBB+SMB(i), at relatively smalli-bounds where both algorithms rely

primarily on search rather than on pruning, and especially on the first set of grid networks

(e.g., BN 31, ...,BN 41). For instance, on theBN 35 network,AOBB-C+SMB(17) finds

the most probable explanation 11 times faster thanAOBB+SMB(17) exploring a search

space 14 times smaller. This is in contrast to what we observeon the second set of coding

networks (e.g., BN 126, ...,BN 133), whereAOBB-C+SMB(i) is only slightly better than
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, k) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
3.27 6.69 11.63 23.42 47.84

BN 126 301.56 2,085,673 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027
(54, 70) - 363.05 4,459,174 953.71 10,991,861 118.58 1,333,266 52.24 386,490 57.74 150,391
(512, 2) 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056

16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
3.42 6.66 14.59 26.66 47.66

BN 127 - - - - - - - - 130.27 631,093
(57, 74) out - - - - - - - - 155.09 1,384,957
(512, 2) - - - - - - - - 128.94 860,026

51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
3.81 7.58 13.64 28.30 49.02

BN 128 4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147
(48, 73) out 4.13 5,587 7.47 1,712 14.89 18,734 29.05 625 49.39 5,823
(512, 2) 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203

3.97 883 7.75 925 13.78 808 28.39 478 49.13 575
3.56 5.58 12.67 27.81 50.60

BN 129 - - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134
(52, 68) out 865.99 11,469,012 - - 194.91 1,999,591 - - 259.83 2,542,057
(512, 2) 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613

out 194.56 922,831 out 132.45 537,371 246.39 910,769
3.03 6.50 10.95 26.31 46.44

BN 130 21.56 182,120 - - 869.44 7,310,190 - - 57.06 109,669
(54, 67) out 28.67 348,660 - - 1015.05 10,905,151 - - 60.91 205,010
(512, 2) 22.49 239,771 - - 863.15 8,414,475 - - 58.94 147,085

27.72 115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
3.44 6.59 11.20 21.88 39.70

BN 131 17.06 137,631 39.02 323,431 1149.74 10,230,128 47.25 228,703 - -
(48, 72) out 24.36 296,576 55.20 677,149 - - 66.63 673,358 - -
(512, 2) 18.69 176,456 41.63 396,234 1254.88 12,395,143 50.42 303,818 - -

29.03 116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
2.95 5.59 10.50 25.56 45.77

BN 132 - - - - - - 756.69 6,584,446 578.99 4,819,402
(49, 71) out - - - - - - 912.40 10,251,600 823.40 10,207,347
(512, 2) - - - - - - 778.22 7,456,812 643.96 6,037,908

out out out out out
3.61 7.03 13.20 27.50 52.69

BN 133 - - 16.84 104,521 31.28 171,645 127.32 929,016 55.33 30,699
(54, 71) out - - 19.38 169,574 35.58 272,258 168.17 1,859,117 56.22 71,195
(512, 2) - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483

59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
3.38 6.34 12.09 27.08 54.35

BN 134 - - - - - - - - - -
(52, 70) out - - - - - - - - - -
(512, 2) - - - - - - - - - -

out 85.77 373,081 out 96.19 377,064 97.59 214,591

Table 4.10: CPU time and nodes visited for solvingUAI’06 networks . Time limit 30
minutes.

AOBB+SMB(i) across the reportedi-bounds. This is because the AND/OR graph explored

effectively was very close to a tree due to the substantial pruning caused by the mini-bucket

heuristics (as also observed in Section 4.5.2).

Overall, best-first AND/OR search offers the best performance on this domain and

the difference in running time as well as size of the search space explored is up to sev-

eral orders of magnitude, compared to the Branch-and-Bound algorithms. For exam-

ple, on theBN 133 network,AOBF-C+SMB(17) found the optimal solution in about

1 minute, whereas bothAOBB+SMB(17) andAOBB-C+SMB(17) exceed the 30 minute
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time bound.

Figure 4.12 plots the runtime distribution ofAOBB-C+SMB(i) andAOBF-C+SMB(i)

using hypergraph partitioning based pseudo trees, over 20 independent runs, on 4 UAI’06

networks. We see that the hypergraph trees are sometimes able to improve the performance

of AOBB-C+SMB(i), especially at smalli-bounds (e.g., BN 133). For best-first search,

the min-fill trees usually offer the best performance (except onBN 131, where the hyper-

graph trees are superior acrossi-bounds).

ISCAS’89 Circuits

Tables 4.11 and 4.12 show the results for experiments with 10belief networks derived

from ISCAS’89 circuits (as described in Chapter 3), using min-fill based pseudo trees

as well as static and dynamic mini-bucket heuristics. For each test instance we gen-

erated a single MPE query without any evidence. We see thatAOBB-C+SMB(i) im-

proves overAOBB+SMB(i), especially at relatively smalli-bounds. For instance, on

thes1196 circuit, AOBB-C+SMB(8) is about 3 times faster thanAOBB+SMB(i). This

is in contrast to what we see when using dynamic mini-bucket heuristics. Here, there

is no noticable difference between the tree and graph AND/ORBranch-and-Bound, be-

cause the pruning power of the heuristics rendered the search space almost backtrack free,

acrossi-bounds. Overall, the dynamic mini-bucket heuristics wereinferior to the corre-

sponding static ones for largei-bounds, however, smalleri-bound dynamic mini-buckets

were often cost-effective. Notice that SAM IAM is able to solve only 2 out of 10 test in-

stances. Moreover,AOBF-C+SMB(i) (resp. AOBF-C+DMB(i)) was overall inferior to

AOBB-C+SMB(i) (resp.AOBB-C+DMB(i)) because of its computational overhead.

4.5.3 The Anytime Behavior of AND/OR Branch-and-Bound Search

As mentioned earlier, the virtue of AND/OR Branch-and-Bound search is that, unlike

Best-First AND/OR search, it is an anytime algorithm. Namely, whenever interrupted,
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Figure 4.12: Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for
solvingUAI’06 networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

iscas89 SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.06 0.08 0.09 0.14 0.20

c432 - - - - - - 0.35 432 0.45 432
(27, 45) out - - - - 1154.96 20,751,699 0.16 432 0.24 432
(432, 2) - - - - 182.53 2,316,024 0.16 432 0.24 432

out out 106.27 488,462 0.20 432 0.28 432
0.08 0.09 0.09 0.16 0.30

c499 0.38 499 0.42 499 0.42 499 0.48 499 0.59 499
(23, 55) 139.89 0.11 499 0.13 499 0.13 499 0.19 499 0.33 499
(499, 2) 0.13 499 0.11 499 0.14 499 0.19 499 0.31 499

0.17 499 0.17 499 0.17 499 0.25 499 0.39 499
0.17 0.16 0.19 0.22 0.44

c880 - - 1.56 881 1.80 881 1.70 881 1.84 881
(27, 67) out 0.23 884 0.22 881 0.25 881 0.28 881 0.50 881
(880, 2) 0.22 884 0.24 881 0.25 881 0.28 881 0.48 881

0.33 884 0.34 881 0.36 881 0.39 881 0.61 881
0.03 0.03 0.05 0.08 0.16

s386 0.17 1,358 0.11 677 0.06 172 0.09 172 0.17 172
(19, 44) 3.66 0.05 257 0.05 257 0.05 172 0.08 172 0.16 172
(172, 2) 0.05 207 0.05 207 0.05 172 0.08 172 0.16 172

0.05 194 0.05 194 0.06 172 0.08 172 0.16 172
0.13 0.14 0.17 0.28 0.70

s953 - - - - - - - - 1170.80 4,031,967
(66, 101) out 1054.79 9,919,295 23.67 238,780 58.00 549,181 36.06 434,481 2.72 21,499
(440, 2) 899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139 2.19 13,039

out 41.03 150,598 110.45 408,828 36.50 113,322 4.06 12,256
0.14 0.16 0.19 0.34 0.91

s1196 - - - - - - - - - -
(54, 97) out 31.55 316,875 332.14 3,682,077 7.44 77,205 31.39 320,205 26.24 289,873
(560, 2) 18.05 104,316 124.53 686,069 3.69 26,847 14.23 94,985 9.47 62,883

26.16 77,019 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114
0.14 0.16 0.20 0.36 0.86

s1238 - - - - 398.13 2,078,885 208.45 1,094,713 931.71 4,305,175
(59, 94) out 4.45 57,355 14.77 187,499 3.70 47,340 2.28 25,538 2.45 20,689
(540, 2) 1.77 12,623 4.95 34,056 1.30 8,476 1.00 5,418 1.42 4,780

2.30 5,921 6.61 17,757 1.70 4,298 1.31 2,730 1.69 2,415
0.13 0.12 0.14 0.16 0.31

s1423 - - - - - - 0.98 762 1.19 749
(24, 54) 107.48 0.27 1,986 0.50 5,171 0.53 5,078 0.22 866 0.36 749
(748, 2) 0.22 1,246 0.22 1,256 0.22 1,235 0.22 818 0.36 749

0.31 959 0.31 921 0.31 913 0.31 774 0.44 749
0.14 0.17 0.22 0.39 1.00

s1488 15.38 92,764 1.69 6,460 3.20 17,410 1.77 6,511 1.94 4,083
(47, 67) out 16.58 135,563 2.20 17,150 3.39 28,420 1.63 12,285 1.64 6,670
(667, 2) 13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124
0.14 0.17 0.22 0.42 1.06

s1494 10.86 64,629 978.87 3,412,403 222.28 815,708 5.94 36,804 73.35 268,814
(48, 69) out 14.75 158,070 47.41 479,498 11.69 118,754 18.74 202,343 3.06 21,530
(661, 2) 7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104

9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 3.03 6,484

Table 4.11: CPU time and nodes visited for solving belief networks derived fromIS-
CAS’89 circuits with static mini-bucket heuristics and min-fill pseudo trees. Time limit 30
minutes.
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minfill pseudo tree
BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

iscas89 AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, d) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes

c432 - - 159.56 21,215 2.50 432 3.20 432 4.61 432
(27, 45) - - 32.00 39,711 1.02 432 1.69 432 3.06 432
(432, 2) 1161.25 323,359 23.02 4,951 1.00 432 1.73 432 3.09 432

1019.19 86,460 26.05 2,342 1.58 432 2.70 432 4.70 432
c499 1.95 499 2.11 499 2.52 499 3.77 499 6.67 499
(23, 55) 0.58 499 0.73 499 1.14 499 2.41 499 5.25 499
(499, 2) 0.58 499 0.74 499 1.14 499 2.41 499 5.27 499

0.83 499 1.11 499 1.88 499 3.75 499 8.03 499
c880 8.30 881 10.64 881 10.19 881 13.33 881 18.56 881
(27, 67) 1.25 881 1.47 881 2.16 881 3.92 881 9.11 881
(880, 2) 1.20 881 1.42 881 2.11 881 3.94 881 9.03 881

1.74 881 2.20 881 3.41 881 6.14 881 13.81 881
s386 0.22 172 0.28 172 0.39 172 0.59 172 1.05 172
(19, 44) 0.13 172 0.17 172 0.28 172 0.52 172 0.97 172
(172, 2) 0.11 172 0.17 172 0.30 172 0.52 172 0.97 172

0.18 172 0.30 172 0.50 172 0.83 172 1.51 172
s953 33.02 2,737 16.75 912 46.28 1,009 17.20 467 137.08 577
(66, 101) 32.08 2,738 15.95 913 45.80 1,010 16.17 468 135.61 578
(440, 2) 32.23 2,738 15.98 913 45.92 1,010 16.14 468 136.09 578

54.72 2,738 25.22 913 73.86 1,010 26.45 468 213.59 578
s1196 3.75 580 4.81 568 37.45 924 88.91 863 386.75 1,008
(54, 97) 1.56 660 2.45 568 33.30 924 77.02 863 362.32 1,008
(560, 2) 1.55 620 2.44 568 33.52 924 79.05 863 355.10 1,008

2.53 604 4.03 568 63.70 924 154.17 857 676.68 1,008
s1238 43.56 5,841 6.77 601 302.53 17,278 36.39 651 76.70 558
(59, 94) 2.61 1,089 3.70 795 13.16 1,824 26.39 849 59.20 744
(540, 2) 2.52 704 3.63 619 12.97 996 26.22 667 59.09 571

4.00 635 6.17 610 21.30 769 44.23 657 97.00 564
s1423 5.05 751 5.27 749 5.67 749 6.66 749 9.09 749
(24, 54) 0.88 751 0.97 749 1.36 749 2.27 749 4.75 749
(748, 2) 0.83 751 0.95 749 1.34 749 2.22 749 4.73 749

1.24 751 1.56 749 2.28 749 3.69 749 7.45 749
s1488 4.34 670 4.39 670 5.81 668 10.64 667 27.50 667
(47, 67) 1.13 670 1.67 670 3.11 668 7.70 667 24.19 667
(667, 2) 1.13 670 1.64 670 3.06 668 7.67 667 24.25 667

1.89 670 2.95 670 5.62 668 13.58 667 41.12 667
s1494 7.80 814 5.61 679 15.16 719 25.03 686 70.19 686
(48, 69) 7.53 898 2.95 679 12.59 719 22.44 686 68.11 686
(661, 2) 5.06 814 2.97 679 12.66 719 22.98 686 69.81 686

8.00 814 4.50 679 17.39 719 30.20 686 88.50 686

Table 4.12: CPU time and nodes visited for solving belief networks derived fromIS-
CAS’89 circuits with dynamic mini-bucket heuristics and min-fill pseudo trees. Time
limit 30 minutes.
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Figure 4.13: Anytime behavior ofAOBB-C+SMB(i) ongenetic linkage networks. Num-
ber of flips for GLS is 50,000. GLS running time is less than 1 second.

Figure 4.14: Anytime behavior ofAOBB-C+SMB(i) on grid networks. Number of flips
for GLS is 50,000. GLS running time is less than 1 second.
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Figure 4.15: Anytime behavior ofAOBB-C+SMB(i) on UAI’06 networks . Number of
flips for GLS is 50,000. GLS running time is less than 1 second.

AOBB-C outputs a suboptimal solution (i.e., the best solution found far), which yields a

lower bound on the most probable explanation. On the other hand, AOBF-C outputs a

complete solution only upon completion. In this section we evaluate the anytime behavior

of AOBB-C+SMB(i). We compare it against the state-of-the-art local search algorithm for

Bayesian MPE, calledGuided Local Search(GLS) first introduced in [102], and improved

more recently by [57].

GLS [121] is a penalty-based meta-heuristic, which works byaugmenting the objective

function of a local search algorithm (e.g. hill climbing) with penalties, to help guide them

out of local minima. GLS has been shown to be successful in solving a number of practical

real life problems, such as the traveling salesman problem,radio link frequency assignment

problem and vehicle routing. It was also applied to solving the MPE in belief networks

[102, 57] as well as weighted MAX-SAT problems [93].

The AND/OR Branch-and-Bound algorithms assumed a trivial initial lower bound (i.e.,
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minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes

- - - - 1.14 7,997 0.73 3,911 1.31 2,704
ped1 5.44 8943.68 59,627,660 1367.98 9,013,771 3.84 1,798 4.05 2,524 4.75 2,077
(15, 61) 54.73 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494
(299, 5) 0.31 3.01 46,663 2.10 29,877 0.13 3,138 0.33 6,092 0.92 4,350

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119
- - - - - - - - out

ped38 out - - - - - - - -
(17, 59) 28.36 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976
(582, 5) 7.05 4410.70 32,599,034 780.46 4,487,470 1650.05 9,844,485 226.44 1,366,242

out 134.41 348,723 216.94 583,401 103.17 242,429
- - - - - - - - out

ped50 out - - - - - - 52.95 83,025
(18, 58) - 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302
(479, 5) 5.30* 3177.43 24,209,840 1610.33 13,299,343 67.85 400,698 32.67 15,865

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes

- - - - 76.11 339,125 270.22 74,261 out
ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412
(27, 71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613
(310, 5) 3.94 196.68 1,720,633 7.56 73,082 10.58 20,329 274.26 60,424

out 15.33 58,180 14.36 12,987 out
- - - - - - - - out

ped37 out - - 2073.12 10,612,906 - - 3386.01 16,382,262
(21, 61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
(1032, 5) 8.97* 16.36 141,867 26.97 254,219 82.08 604,239 52.32 23,572

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

Table 4.13: CPU time and nodes visited for solvinggenetic linkage analysis networks
with static mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limit
3 hours.

0), which effectively guarantees that the MPE will be computed, however it provides lim-

ited pruning. We therefore extendedAOBB-C+SMB(i) to exploit a non-trivial initial lower

bound computed by GLS. The algorithm is denoted byAOBB-C+GLS+SMB(i). For ref-

erence, we also ran the OR version of the algorithm, denoted by BB-C+GLS+SMB(i)

Figure 4.13 displays the search trace of the OR and AND/OR algorithms on 4 genetic

linkage networks presented earlier. We chose the mini-bucket i-bound that offered the

best performance in Tables 4.6 and 4.7, respectively, and show the first 50 seconds of the

search. We ran GLS for a fixed number of flips. We see that including the GLS lower

bound improves performance throughout. In all these test case, the initial lower bound

was in fact the optimal solution (we did not plot the GLS running time because it was

less than 1 second). Therefore,AOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i) were

able to output the optimal solution quite early in the search, unlike AOBB-C+SMB(i)

andBB-C+SMB(i). For instance, on theped50 network,AOBB-C+GLS+SMB(12) and
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minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

- - - - - - - - 1515.43 1,388,791
ped18 157.05 - - - - - - - - 1672.15 1,389,831
(21, 119) 139.06 - - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972
(1184, 5) 10.16 10780.40 107,804,665 170.14 1,824,835 37.64 396,961 11.66 118,170 10.58 2,720

out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027
- - - - - - - - out

ped20 out - - - - - - - -
(24, 66) 14.72 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646
(388, 5) 4.22 2079.43 18,611,778 667.66 6,419,317 567.20 4,812,068 682.03 2,653,400

out out out out
- - - - - - - - - -

ped25 out - - - - - - - - - -
(34, 89) - - - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 236.88 1,529,180
(994, 5) 11.03* - - 1644.87 12,631,282 864.09 6,676,061 245.79 1,788,621 239.08 1,529,588

out out out out out
- - - - - - - - - -

ped30 out - - - - - - - - - -
(23, 118) 13095.83 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436 30.48 66,144
(1016, 5) 11.00 10620.20 93,030,080 9296.01 82,552,786 - - 32.16 193,419 22.25 66,128

out out out 30.39 72,798 27.94 18,795
- - - - - - - - - -

ped33 out - - - - - - - - - -
(37, 165) - 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 1373.90 10,570,695
(581, 5) 6.86* 1550.76 11,528,022 320.06 2,434,582 1970.72 15,124,932 80.61 453,446 1518.24 10,970,922

out 140.61 407,387 out 74.86 134,068 out
- - - - - - - - - -

ped39 out - - - - - - - - - -
(23, 94) 322.14 - - - - 968.03 7,880,928 61.20 313,496 93.19 83,714
(1272, 5) 10.97* - - - - 518.04 6,473,615 59.14 313,340 81.24 61,291

out out 68.52 218,925 41.69 79,356 87.63 14,479
- - - - - - out out

ped42 out - - - - - -
(25, 76) 561.31 - - - - 2364.67 22,595,247
(448, 5) 4.25* - - - - 385.26 3,078,657

out out 133.19 93,831

Table 4.14: CPU time and nodes visited for solvinggenetic linkage analysis networks
with static mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limit
3 hours.

BB-C+GLS+SMB(12) found the optimal solution within the first second of the search.

AOBB-C+SMB(12), on the other hand, finds the optimal solution after 8 seconds, whereas

BB-C+SMB(12) reaches a flat region after 18 seconds. In this case,AOBF-C+SMB(12)

finds the optimal solution after 25 seconds.

Tables 4.13 and 4.14 compare the OR and AND/OR graph search algorithms with and

without an initial lower bound, as complete algorithms. AlgorithmsAOBB-C+GLS+SMB(i)

andBB-C+GLS+SMB(i) do not include the GLS time, because GLS can be tuned inde-

pendently for each problem instance to minimize its runningtime, so we report its time

separately (as before, GLS ran for a fixed number of flips). The”*” by the GLS running

time indicates that it found the optimal solution to the respective problem instance. We

see that indeedBB-C+GLS+SMB(i) andAOBB-C+GLS+SMB(i) are sometimes able to
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minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

grid SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes

0.23 3,297 0.06 373 0.05 102 0.06 102 0.06 102
90-10-1 0.13 0.38 3,272 0.19 289 0.19 0 0.19 0 0.20 0
(16, 26) 0.25* 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101
(100, 0) 0.28 2,580 0.22 789 0.19 0 0.20 0 0.19 0

0.27 2,012 0.11 661 0.05 100 0.06 100 0.06 100
126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450

90-14-1 11.97 21.02 217,185 31.64 339,762 0.88 5,892 0.50 1,122 0.78 1,178
(23, 37) 0.43* 4.22 55,120 3.66 48,513 0.45 5,585 0.23 1,361 0.53 1,210
(196, 0) 3.59 45,023 2.77 32,454 0.66 3,684 0.45 1,067 0.78 1,062

3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857
- - - - 40.05 345,255 2.38 16,942 1.23 5,327

90-16-1 147.19 - - 1163.43 9,106,361 35.72 306,583 1.97 12,104 1.42 4,614
(26, 42) 0.49* 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 0.95 4,810
(256, 0) 37.28 453,073 8.14 96,962 4.17 46,138 1.44 10,702 1.23 4,552

25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067

i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes

- - - - - - - - - -
90-24-1 out - - 1773.64 6,065,308 609.65 2,008,431 111.58 263,250 632.68 1,705,699
(36, 61) 0.53 - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
(576, 20) 3594.60 24,363,798 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291
- - - - 395.67 1,635,447 - - 67.09 277,685

90-26-1 out - - - - 235.36 922,243 65.39 282,394 41.70 73,616
(35, 64) 0.56 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
(676, 40) 43.64 248,603 85.72 495,039 10.83 14,580 14.47 6,226 28.38 1,466

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435
- - - - - - - - - -

90-30-1 out - - - - - - - - - -
(38, 68) 0.72 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715
(900, 60) 276.00 1,491,880 84.39 442,754 78.81 376,916 31.69 89,045 64.23 148,540

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800
- - - - - - - - - -

90-34-1 out - - - - - - - - - -
(43, 79) 1.31 - - - - - - - - 369.36 823,604
(1154, 80) - - - - 980.51 4,943,817 1751.86 5,516,888 315.38 630,406

out out 243.63 596,978 270.88 667,013 71.19 67,611
- - - - - - - - - -

90-38-1 out - - - - - - - - - -
(47, 86) 1.11 969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919
(1444, 120) 819.16 2,450,643 1806.57 3,804,190 224.80 607,453 187.63 482,946 138.64 211,562

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

Table 4.15: CPU time and nodes visited for solvinggrid networks with static mini-bucket
heuristics. Time limit 1 hour. Number of flips for GLS is 50,000.

improve significantly overBB-C+SMB(i) andAOBB-C+SMB(i), especially at relatively

small i-bounds. For example, on theped37 linkage instance,AOBB-C+GLS+SMB(12)

achieves almost an order of magnitude speedup overAOBB-C+SMB(12). Similarly,

BB-C+GLS+SMB(12) finds the optimal solution toped37 in about 35 minutes, whereas

BB-C+SMB(12) exceeds the 3 hour time limit.

Figures 4.14 and 4.15 show the search trace of the AND/OR Branch-and-Bound algo-

rithms for solving selected instances of grid networks and UAI’06 Dataset, respectively.

We see again thatAOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i) take advantage of

the quality of the initial lower bound produced by GLS, and find close to optimal solutions
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minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

bn SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes

- - - - - - - - - -
BN 31 - - - - - - - - - -
(46, 160) out 411.33 1,445,200 486.47 2,131,977 209.80 831,431 210.81 889,782 81.61 94,507
(1156, 2) 9.86* 357.86 1,172,122 375.05 1,573,677 202.66 775,258 187.34 752,284 79.01 56,409

140.41 293,445 126.23 292,293 85.69 142,650 86.00 114,046 73.14 25,392
- - - - - - - - - -

BN 33 - - - - - - - - - -
(43, 163) - 429.02 982,130 125.78 210,552 236.42 408,855 160.61 256,191 120.33 89,308
(1444, 2) 12.30* 434.97 980,701 134.47 207,658 244.72 399,206 167.39 245,144 129.35 85,745

75.92 142,932 41.14 41,865 58.14 61,064 73.20 49,760 95.16 22,256
- - - - - - - - - -

BN 35 - - - - - - - - - -
(41, 168) - 42.95 126,215 107.17 243,533 81.59 151,632 56.11 65,657 78.27 58,973
(1444, 2) 12.38 49.97 120,205 112.42 224,908 89.85 151,619 66.16 74,585 89.31 71,614

29.77 29,837 36.58 34,987 43.28 28,088 51.28 15,953 76.28 18,048
- - - - - - - - - -

BN 37 - - - - - - - - - -
(45, 159) - 26.42 55,571 20.19 33,475 25.45 14,703 45.61 8,815 94.55 16,400
(1444, 2) 12.70 29.77 48,211 26.17 31,674 32.11 13,808 49.63 7,774 99.00 19,871

15.83 15,399 19.47 11,046 26.55 6,621 46.84 4,315 90.66 5,610
- - - - - - - - - -

BN 39 - - - - - - - - - -
(48, 164) - 1161.65 2,615,679 1370.21 3,448,072 507.18 1,499,020 403.07 1,043,378 220.74 518,011
(1444, 2) 12.88 472.36 1,076,698 782.69 2,026,535 276.27 778,118 190.16 436,932 113.67 168,410

117.03 340,362 247.08 725,738 131.44 316,862 112.27 213,676 111.20 127,872
- - - - - - - - - -

BN 41 - - - - - - - - - -
(49, 164) - 56.72 119,737 47.30 77,653 33.81 32,774 50.81 38,467 76.42 31,763
(1444, 2) 12.29* 63.16 117,948 52.52 73,947 40.45 30,930 58.53 37,018 86.72 30,487

23.50 42,795 22.05 20,485 27.22 12,030 43.38 16,549 71.61 11,648

Table 4.16: CPU time and nodes visited for solvingUAI’06 networks with static mini-
bucket heuristics. Time limit 30 minutes. Number of flips forGLS is 500,000.

much earlier thanAOBB-C+SMB(i) andBB-C+SMB(i), respectively.

Tables 4.15, 4.16, and 4.17 report detailed results forAOBB-C+GLS+SMB(i) and

BB-C+GLS+SMB(i) on grid networks and UAI’06 Dataset networks, respectively. We see

that the lower bound computed by GLS was in many cases equal tothe optimal solution

and thereforeAOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i) improved considerably

overAOBB-C+SMB(i) andBB-C+SMB(i), respectively.

4.5.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints and

general cost functions, it is beneficial to exploit the computational power of the constraints

explicitly via constraint propagation as described in Chapter 3.

We evaluated the AND/OR Branch-and-Bound algorithm with static mini-bucket heuris-
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minfill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

bn SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes

301.56 2,085,673 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027
BN 126 9.83 63,674 15.78 85,215 19.31 76,346 27.69 37,226 51.38 30,317
(54, 70) - 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056
(512, 2) 6.08* 10.91 83,227 17.74 117,859 20.66 99,518 28.66 49,175 54.28 42,873

16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
- - - - - - - - 130.27 631,093

BN 127 26.44 238,020 31.02 250,746 36.19 215,054 44.34 166,176 57.52 83,380
(57, 74) out - - - - - - - - 128.94 860,026
(512, 2) 5.75* 27.59 282,349 31.11 295,100 38.67 280,166 46.03 214,590 57.47 113,743

51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147

BN 128 4.50 854 8.05 694 14.17 778 29.44 461 48.75 551
(48, 73) out 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203
(512, 2) 5.95* 4.14 1,022 7.91 974 13.92 991 28.75 547 49.64 674

3.97 883 7.75 925 13.78 808 28.39 478 49.13 575
- - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134

BN 129 244.08 2,419,418 150.30 1,408,350 150.56 1,352,916 119.70 923,635 142.14 914,833
(52, 68) out 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613
(512, 2) 5.89* 245.08 2,443,843 95.64 961,434 142.55 1,412,079 76.16 564,895 138.53 979,046

out 194.56 922,831 out 132.45 537,371 246.39 910,769
21.56 182,120 - - 869.44 7,310,190 - - 57.06 109,669

BN 130 14.55 114,610 87.28 751,400 41.73 299,845 42.86 158,612 58.53 107,880
(54, 67) out 22.49 239,771 - - 863.15 8,414,475 - - 58.94 147,085
(512, 2) 5.87* 15.36 158,150 36.24 364,352 43.25 392,961 43.19 211,380 57.91 144,741

27.72 115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
17.06 137,631 39.02 323,431 1149.74 10,230,128 47.25 228,703 - -

BN 131 15.42 118,238 26.77 212,338 19.56 82,414 28.69 73,552 51.69 122,085
(48, 72) out 18.69 176,456 41.63 396,234 1254.88 12,395,143 50.42 303,818 - -
(512, 2) 5.87* 16.70 150,341 28.22 256,361 20.34 101,662 29.16 91,103 54.12 156,925

29.03 116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
- - - - - - 756.69 6,584,446 578.99 4,819,402

BN 132 683.65 5,987,145 429.96 3,750,177 838.83 7,484,051 627.50 5,584,689 392.78 3,296,711
(49, 71) out - - - - - - 778.22 7,456,812 643.96 6,037,908
(512, 2) 5.89* 686.08 6,499,878 439.89 4,252,274 718.66 6,905,710 453.25 4,319,442 387.02 3,557,198

out out out out out

- - 16.84 104,521 31.28 171,645 127.32 929,016 55.33 30,699
BN 133 29.13 258,988 17.09 102,193 22.77 93,433 36.28 90,006 53.97 17,865
(49, 71) out - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483
(512, 2) 5.79* 30.50 329,146 16.50 125,945 22.66 116,553 36.17 112,317 53.92 17,069

59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
- - - - - - - - - -

BN 134 105.61 1,029,072 43.16 373,641 115.67 1,065,258 60.94 376,402 75.16 213,954
(52, 70) out - - - - - - - - - -
(512, 2) 5.83* 109.97 1,170,028 44.33 439,065 123.91 1,253,376 60.72 401,521 76.38 241,382

out 85.77 373,081 out 96.19 377,064 97.59 214,591

Table 4.17: CPU time and nodes visited for solvingUAI’06 networks with static mini-
bucket heuristics. Time limit 30 minutes. Number of flips forGLS is 500,000.
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minfill pseudo tree
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(w*, h) GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes

- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675
90-24-1 out 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294
(33, 111) - - 66.20 425,585 20.16 93,911 11.17 7,850
(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 5.45 6,891

out 21.94 75,637 10.59 33,770 6.06 5,144
146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489

90-26-1 out 32.67 230,030 53.11 360,612 3.58 11,620 11.95 40,075
(36, 113) 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310
(676, 40) 0.56 15.09 104,775 32.85 219,037 3.58 10,932 8.06 8,128

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777
652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963

90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928
(43, 150) 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136
(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 15.50 52,260

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201
- - - - - - - -

90-34-1 out - - - - - - - -
(45, 153) - - - - 1096.14 5,569,276 1772.51 5,516,888
(1154, 80) 1.31 - - - - 550.55 2,944,055 651.04 2,614,171

out out 243.63 596,978 270.88 667,013
969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873

90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473
(47, 163) 854.61 2,498,702 1822.71 3,792,826 212.63 647,089 164.43 484,815
(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431

Table 4.18: CPU time and nodes visited for solvingdeterministic grid networks with
static mini-bucket heuristics. Number of flips for GLS is 50,000. Time limit 1 hour.

tics on selected classes of Bayesian networks containing deterministic conditional probabil-

ity tables (i.e., zero probability tuples). The algorithm, denoted byAOBB-C+SAT+SMB(i)

exploits the determinism present in the networks by applying unit resolution over the CNF

encoding of the zero-probability tuples, at each node in thesearch tree. We used a unit res-

olution scheme similar to the one employed byzChaff, a the state-of-the-art SAT solver

introduced by [94]. We also consider the extension calledAOBB-C+SAT+GLS+SMB(i)

which uses GLS to compute the initial lower bound, in addition to the constraint propaga-

tion scheme.

Table 4.18 shows the results for 5 deterministic grid networks from Section 4.5.2. These

networks have a high degree of determinism encoded in their CPTs. We observe that

AOBB-C+SAT+SMB(i) improves significantly overAOBB-C+SMB(i), especially at small

i-bounds. On grid90-30-1, for example,AOBB-C+SAT+SMB(12) is 6 times faster

thanAOBB-C+SMB(12). As thei-bound increases and the search space is pruned more

effectively, the difference betweenAOBB-C+SMB(i) and AOBB-C+SAT+SMB(i) de-
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minfill pseudo tree
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12

time nodes time nodes time nodes time nodes
- - - - 182.53 2,316,024 0.16 432

c432 out 374.29 4,336,403 189.13 2,043,475 1.02 9,512 0.16 432
(27, 45) 0.05 0 0.06 0 0.09 0 0.13 0
(432, 2) 0.08* 0.06 0 0.08 0 0.09 0 0.13 0

out out 106.27 488,462 0.20 432
899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139

s953 out 0.19 829 0.16 667 0.20 685 0.31 623
(66, 101) 0.12 0 0.13 0 0.17 0 0.28 0
(440, 2) 0.05* 0.13 0 0.13 0 0.17 0 0.30 0

out 41.03 150,598 110.45 408,828 36.50 113,322
18.05 104,316 124.53 686,069 3.69 26,847 14.23 94,985

s1196 out 0.19 565 0.19 565 0.23 565 0.38 565
(54, 97) 0.14 0 0.16 0 0.20 0 0.34 0
(560, 2) 0.08* 0.13 0 0.14 0 0.20 0 0.34 0

26.16 77,019 158.19 372,129 7.22 23,348 26.97 80,264
13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024

s1488 out 0.20 708 0.20 667 0.25 667 0.44 667
(47, 67) 0.14 0 0.16 0 0.22 0 0.44 0
(667, 2) 0.13* 0.13 0 0.16 0 0.20 0 0.47 0

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372
7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977

s1494 out 0.20 665 0.22 665 0.27 665 0.45 665
(48, 69) 0.16 0 0.17 0 0.22 0 0.41 0
(661, 2) 0.11* 0.16 0 0.17 0 0.22 0 0.42 0

9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793

Table 4.19: CPU time and nodes visited for solving belief networks derived fromIS-
CAS’89 circuits using static mini-bucket heuristics. Time limit 30 minutes.

creases because the heuristics are strong enough to cut the search space significantly. The

mini-bucket heuristic already does some level of constraint propagation.

When looking at impact of the initial lower bound onAOBB-C+SAT+SMB(i) we see

thatAOBB-C+SAT+GLS+SMB(i) is sometimes able to improve even more. For example,

on the90-34-1 grid,AOBB-C+SAT+GLS+SMB(16) finds the optimal solution in about

9 minutes (550.55 seconds) whereasAOBB-C+SAT+SMB(16) exceeds the time limit.

Table 4.19 shows the results for experiments with 5 belief networks derived from IS-

CAS’89 circuits. We see that constraint propagation via unitresolution plays a dramatic

role on this domain, rendering the search space almost backtrack-free acrossi-bounds.

For instance, on thes953, AOBB-C+SAT+SMB(6) is 3 orders of magnitude faster than

AOBB-C+SMB(6), while AOBF-C+SMB(6) exceeded the memory limit. When looking

at the AND/OR Branch-and-Bound algorithms that exploit the local search initial lower

bound, namelyAOBB-C+GLS+SMB(i) andAOBB-C+SAT+GLS+SMB(i), we see that

they did not expand any nodes. This is because the lower boundobtained by GLS, which
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was the optimal solution in this case, was equal to the mini-bucket upper bound computed

at the root node. Here, the best performance was achieved byAOBB-C+SAT+SMB(i)

andAOBB-C+SAT+GLS+SMB(i), respectively, for the smallest reportedi-bound (namely

i = 6). Notice also the poor performance of SAM IAM which ran out of memory on all tests.

4.5.5 Results for Empirical Evaluation of Weighted CSPs

In Chapter 3 we showed that the best performance on this domainwas obtained by the

AND/OR Branch-and-Bound tree search algorithm with static mini-bucket heuristics, at

relatively largei-bounds, especially on non-binary WCSPs with relatively small domain

sizes (e.g., SPOT5 networks, ISCAS’89 circuits, Mastermind instances). AOBB+SMB(i)

dominated all its competitors, including the classic OR Branch-and-BoundBB+SMB(i)

as well as the OR and AND/OR algorithms that enforce EDAC during search, namely

toolbar and theAOEDAC family of algorithms (AOEDAC+PVO, DVO+AOEDAC and

AOEDAC+DSO, respectively). The AND/OR Branch-and-Bound with dynamic mini-bucket

heuristicsAOBB+SMB(i) was shown to be competitive only for relatively smalli-bounds.

In this section we continue the evaluation of the AND/OR algorithms with mini-bucket

heuristics, focusing on memory intensive depth-first and best-first search strategies.

Earth Observing Satellites

SPOT5 benchmark contains a collection of large real scheduling problems for the daily

management of Earth observing satellites [7]. They can be easily formulated as WCSPs

with binary and ternary constraints, as described in Chapter3.

Tables 4.20 and 4.21 show detailed results on experiments with 7 SPOT5 networks

using min-fill pseudo trees, as well as static and dynamic mini-bucket heuristics. The

networks42b, 408b and505b are sub-networks of the original ones and contain only

binary constraints.
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minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) toolbar

spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC
(n, k, c) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOEDAC+DSO

i=4 i=6 i=8 i=12
time nodes time nodes time nodes time nodes time nodes
0.01 0.05 0.33 21.66 4.56 218,846

29 - - - - 6313.73 50,150,302 22.30 2,322 0.35 984
(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 545.43 7,837,447
(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 0.81 8,698

6.42 36,396 2.23 12,801 0.47 757 21.77 96 11.36 92,970
0.11 0.17 0.56 28.83 - -

42b - - - - 2159.26 9,598,763 145.77 684,109 9553.06 249,053,196
(18, 62) - - - - 1842.32 9,606,846 134.39 689,402 - -
(191, 4, 1341) - - - - 1804.76 9,410,729 116.98 584,838 - -

35.42 118,085 29.11 106,648 20.80 82,611 38.91 43,127 6825.40 27,698,614
0.02 0.03 0.11 1.24 0.31 21,939

54 664.48 5,715,457 2.06 17,787 0.38 2,289 1.27 236 0.18 779
(11, 33) 113.19 1,106,598 1.59 17,757 0.39 3,616 1.27 329 9.11 90,495
(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 0.06 688

0.41 2,714 0.11 631 0.16 312 0.69 68 0.75 6,614
0.01 0.02 0.09 1.11 151.11 6,215,135

404 - - - - - - 4336.37 32,723,215 5.09 139,968
(19, 42) 430.99 3,969,398 151.99 1,373,846 14.83 144,535 1.44 3,273 152.81 1,984,747
(100, 4, 710) 174.09 1,396,321 51.88 529,002 2.55 23,565 1.16 598 12.09 88,079

1.45 7,251 1.20 6,399 1.02 5,140 1.22 576 1.74 14,844
0.01 0.09 0.33 8.37 - -

408b - - - - - - - - - -
(24, 59) - - - - - - 715.35 4,784,407 - -
(201, 4, 1847) - - - - 7507.10 54,826,929 75.08 408,619 - -

208.41 185,935 52.53 175,366 44.99 145,901 16.97 39,238 747.71 2,134,472
0.02 0.05 0.14 0.41 - -

503 - - - - - - 0.50 566 0.65 18,800
(9, 39) - - 435.26 5,102,299 421.10 4,990,898 0.44 641 - -
(144, 4, 639) - - 189.39 2,442,998 291.72 4,050,474 0.42 256 10005.00 44,495,545

5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 53.72 231,480
0.05 0.11 0.66 47.19 - -

505b - - - - - - - - 33.62 1,119,538
(16, 98) - - - - - - - - - -
(240, 1721) - - - - - - 1180.48 8,905,473 - -

51.86 149,928 42.73 144,723 29.25 111,223 54.09 31,692 - -

Table 4.20: CPU time in seconds and number of nodes visited forsolving theSPOT5
benchmarks, usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time
limit 3 hours.

Tree vs. graph AOBB. We notice again the benefit of using caching within depth-

first AND/OR Branch-and-Bound search. The differences, in running time and num-

ber of nodes visited, betweenAOBB-C+SMB(i) andAOBB+SMB(i) are more prominent

at relatively smalli-bounds. For example, on408b, AOBB-C+SMB(12) outperforms

AOBB+SMB(12) by 1 order of magnitude in terms of both running time and size of the

search space explored. When looking at the impact of caching when using dynamic mini-

bucket heuristics (Table 4.21) we see that the difference betweenAOBB-C+DMB(i) and

AOBB+DMB(i), acrossi-bounds, is not that pronounced as in the static case. This isbe-

cause the dynamic mini-bucket heuristics are far more accurate than the pre-compiled ones

and prune the search space more effectively, thus not leaving room for additional improve-

ments due to caching. Notice thattoolbar andDVO+AOEDAC are able to solve relatively
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min-fill pseudo tree
spot5 BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, k, c) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=4 i=6 i=8 i=12
time nodes time nodes time nodes time nodes

29 44.24 11,637 125.72 9,417 54.86 354 627.30 320
(14, 42) 65.24 14,438 52.92 11,850 121.83 364 627.29 330
(83, 4, 476) 56.58 6,017 53.06 4,638 122.17 170 636.16 136

7.25 942 21.83 537 38.83 114 308.71 83
42b - - - - - - - -
(18, 62) - - - - - - - -
(191, 4, 1341) - - - - - - - -

1455.62 101,453 - - - - 6002.69 212
54 886.51 118,219 32.59 938 24.97 236 320.81 236
(11, 33) 202.14 69,362 26.73 2,188 22.19 329 271.81 329
(68, 4, 283) 84.27 15,214 8.80 357 10.86 120 137.39 120

4.16 1,056 3.66 163 5.95 68 77.78 68
404 - - - - 4895.25 78,692 3459.31 3,008
(19, 42) 240.36 156,338 257.20 39,144 199.67 5,612 563.02 1,327
(100, 4, 710) 65.52 20,457 98.83 6,152 99.78 952 320.49 286

23.41 4,928 65.80 2,946 101.30 847 351.37 291
408b - - - - - - - -
(24, 59) - - - - - - - -
(201, 4, 1847) - - - - - - - -

655.41 70,655 2447.91 69,434 - - - -
503 - - - - - - 246.65 566
(9, 39) - - - - - - 64.95 641
(144, 4, 639) - - - - - - 49.95 256

78.69 9,143 324.09 8,175 1025.40 5,984 25.14 144
505b - - - - - - - -
(16, 98) - - - - - - - -
(240, 1721) - - - - - - - -

681.40 33,969 2766.08 28,157 3653.66 12,455 - -

Table 4.21: CPU time in seconds and number of nodes visited forsolving theSPOT5
benchmarks, using dynamic mini-bucket heuristics and min-fill based pseudo trees.
Time limit 3 hours.

efficiently only the first 3 test instances.

AOBB vs. AOBF. When comparing the best-first against the depth-first AND/OR search

algorithms we observe again here thatAOBF-C+SMB(i) improves significantly (up to

several orders of magnitude) in terms of both CPU time and number of nodes visited,

especially for relatively smalli-bounds. For example, on505b, one of the hardest in-

stances,AOBF-C+SMB(8) finds the optimal solution in less than 30 seconds, whereas

AOBB-C+SMB(8) exceeds the 3 hour time limit. As the mini-bucketi-bound increases

and the heuristics become strong enough to cut the search space substantially, the difference

between Branch-and-Bound and best-first search decreases, because Branch-and-Bound

finds almost optimal solutions fast, and therefore will not explore solutions whose cost is

above the optimal one, like best-first search. Notice thattoolbar-BTD fails only on one

instance, namely408b, and is competitive withAOBF-C+SMB(i) on 4 test instances,
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Figure 4.16: Comparison of the impact of static and dynamic mini-bucket heuristics on the
404 SPOT5 network from Tables 4.20 and 4.21. We show CPU time (top) and number of
nodes (bottom).
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namely on29, 54, 503 and505b.

Static vs. dynamic mini-bucket heuristics. Figure 4.16 displays the running time and

number of nodes visited by the AND/OR search algorithms withstatic and dynamic mini-

bucket heuristics, as a function of thei-bound, on the404 network (i.e., corresponding to

the fourth horizontal block from Tables 4.20 and 4.21, respectively). We see that the power

of the dynamic mini-bucket heuristics is again more prominent for small i-bounds (e.g.,

i = 2). At largeri-bounds, the static mini-bucket heuristics are cost effective. For instance,

the the difference in running time betweenAOBB-C+SMB(10) andAOBB-C+DMB(10)

is about 2 orders of magnitude. Notice that in this case,AOBF-C+SMB(i) outperforms

AOBF-C+DMB(i) across all reportedi-bounds.

Impact of the pseudo tree. Figure 4.17 plots the runtime distribution ofAOBB-C+SMB(i)

andAOBF-C+SMB(i) using hypergraph based pseudo trees, over 20 independent runs. We

see that the hypergraph based pseudo trees are sometimes able to improve the performance

of Branch-and-Bound search, especially for relatively smalli-bounds (e.g., 404, 503) for

which the heuristic estimates are less accurate. For best-first search however, the min-fill

pseudo trees offer the overall best performance, because the mini-bucket heuristics com-

puted along this ordering, rather than the hypergraph basedone, are relatively accurate thus

bounding the horizon of best-first search more effectively.

ISCAS’89 Benchmark Circuits

Tables 4.22 and 4.23 report the results for experiments with10 WCSPs derived from IS-

CAS’89 circuits as described in Chapter 3, using static and dynamic mini-bucket heuristics

as well as min-fill based pseudo trees.

Tree vs. graph AOBB. When comparing the tree versus the graph AND/OR Branch-and-

Bound search algorithms, we see again the benefit of caching, especially when using pre-
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Figure 4.17: Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for
solving SPOT5 networks withAOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.

206



minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) toolbar

iscas89 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i) AOBF+SMB(i)

i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
0.08 0.09 0.14 0.22

c432 - - - - 9.27 52,778 9.17 52,240 - -
(27, 45) 2010.53 23,355,897 148.39 1,713,265 5.94 76,346 5.84 75,420 - -
(432, 2) 422.08 2,945,230 40.91 337,574 0.89 6,254 0.89 6,010

39.33 196,892 0.52 2,154 0.31 1,007 0.38 847
0.08 0.08 0.14 0.28

c499 - - - - 1.53 4,495 6.20 35,314 - -
(23, 55) 96.46 1,265,425 39.65 526,517 1.42 18,851 37.26 486,656 100.96 1,203,734
(499, 2) 19.28 99,906 7.36 40,285 0.47 2,401 5.83 34,708

3.91 14,049 2.45 8,816 0.34 1,032 2.52 8,755
0.16 0.19 0.22 0.45

c880 - - - - - - - - - -
(27, 67) 1698.08 19,992,512 1316.73 15,247,946 505.75 5,835,825 1134.61 13,568,696 - -
(881, 2) 100.66 516,056 91.66 446,893 31.06 169,138 59.35 316,124

1.36 4,454 0.91 2,792 0.81 2,231 1.19 2,862
0.02 0.03 0.06 0.14

s386 0.33 2,015 0.33 2,281 0.30 1,734 0.31 1,191 - -
(19, 44) 0.14 2,073 0.33 4,867 0.22 2,699 0.22 1,420 0.19 738
(172, 2) 0.06 592 0.17 1,334 0.12 755 0.16 446

0.05 187 0.08 304 0.08 203 0.16 172
0.13 0.17 0.30 0.73

s935 - - - - - - - - - -
(66, 101) 2559.30 21,438,706 342.80 3,074,516 - - 41.34 348,699 1.51 11,368
(441, 2) 1285.07 6,623,608 143.53 763,933 - - 22.28 128,372

6.16 25,493 1.22 4,087 1.19 3,319 1.22 2,216
0.16 0.19 0.38 0.94

s1196 - - - - - - - - - -
(54, 97) - - 1347.95 12,392,442 - - 1949.37 15,775,180 376.35 1,276,514
(562, 2) 3347.38 13,554,137 503.30 2,425,152 2299.72 11,488,366 734.66 3,524,780

22.67 72,075 2.89 9,336 13.02 40,210 7.27 21,989
0.16 0.22 0.38 0.92

s1238 - - - - - - - - - -
(59, 94) - - - - 1722.53 18,302,873 1394.86 14,213,319 - -
(541, 2) 1897.37 8,386,634 1682.99 7,431,223 281.05 1,350,933 248.27 1,220,658

34.09 137,960 29.41 111,205 12.31 53,095 6.64 26,101
0.12 0.14 0.17 0.31

s1423 - - - - - - - - - -
(19, 44) 71.63 648,520 25.58 228,634 7.56 68,102 7.92 70,043 - -
(749, 2) 7.61 37,244 2.75 11,423 1.48 7,164 1.39 5,868

1.16 3,873 0.70 2,193 0.53 1,683 0.69 1,663
0.16 0.24 0.41 1.05

s1488 - - - - 10.75 23,620 13.75 25,420 - -
(47, 67) 6.67 50,613 46.83 430,141 4.00 29,729 5.19 33,827 1.80 9,315
(667, 2) 3.33 15,998 13.14 45,560 2.22 9,337 3.11 10,640

0.36 778 0.41 724 0.56 688 1.22 710
0.19 0.25 0.45 1.16

s1494 - - 191.36 366,822 52.47 140,792 19.86 44,190 - -
(48, 69) 132.62 833,720 17.70 455,131 376.65 3,207,718 15.49 83,318 2.41 12,122
(661, 2) 62.87 127,934 5.64 17,279 27.64 80,895 6.92 23,131

1.44 5,694 0.59 1,472 0.95 2,311 1.50 1,476

Table 4.22: CPU time in seconds and number of nodes visited forsolving ISCAS’89 cir-
cuits, usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time limit 1
hour.
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min-fill pseudo tree
BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

iscas89 AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, d) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes

c432 403.44 33,506 191.69 14,303 13.56 1,026 8.86 627
(27, 45) 45.59 34,904 25.83 16,482 6.94 1,070 4.55 692
(432, 2) 35.19 3,861 20.69 2,302 6.69 860 4.53 627

1.53 448 2.28 444 3.02 434 4.92 432
c499 40.99 3,502 31.85 3,102 9.91 987 42.66 2,848
(23, 55) 26.13 13,529 14.44 6,101 4.33 1,002 25.91 3,353
(499, 2) 24.44 2,485 13.42 1,726 4.28 742 25.25 1,251

1.39 931 2.25 579 3.73 541 9.08 499
c880 - - - - 547.35 18,112 648.52 19,546
(27, 67) 1078.04 796,699 762.16 569,471 85.64 32,748 170.55 36,187
(881, 2) 786.49 31,788 560.80 16,546 68.36 2,486 153.36 2,736

8.77 1,378 9.94 1,304 7.28 956 16.83 958
s386 2.58 1,191 2.91 1,191 3.41 1,191 4.28 1,191
(19, 44) 0.81 1,420 1.14 1,420 1.61 1,420 2.52 1,420
(172, 2) 0.69 446 1.02 446 1.53 446 2.44 446

0.30 172 0.50 172 0.86 172 1.53 172
s935 49.27 6,217 264.99 9,028 301.39 7,842 957.57 8,080
(66, 101) 18.27 7,400 234.47 10,250 267.02 9,164 915.57 11,164
(441, 2) 16.55 1,568 228.71 3,682 263.58 2,279 903.12 2,528

5.47 479 23.87 553 27.19 454 140.51 490
s1196 233.39 18,040 335.50 15,525 670.04 13,677 1362.32 11,939
(54, 97) 61.64 21,849 114.16 17,524 246.02 15,443 921.08 13,687
(562, 2) 50.80 3,787 97.53 3,160 217.97 2,888 857.35 2,772

6.80 688 11.58 586 32.11 635 102.45 632
s1238 784.04 34,905 521.27 15,685 1395.39 17,852 2021.31 11,264
(59, 94) 266.45 39,493 188.83 21,252 566.96 20,945 913.24 13,857
(541, 2) 242.16 8,792 174.80 4,265 544.35 4,511 887.65 3,078

18.69 827 22.47 666 57.59 591 192.10 632
s1423 - - 71.39 3,629 134.36 8,132 62.39 3,045
(19, 44) 38.36 26,772 35.02 17,801 36.19 19,719 22.27 3,513
(749, 2) 28.97 3,078 28.64 2,492 30.31 2,361 22.08 1,477

5.97 1,191 6.25 1,141 9.48 1,126 12.39 762
s1488 146.03 14,365 139.83 12,475 181.58 12,748 306.35 12,748
(47, 67) 20.64 15,064 31.34 13,279 67.78 13,762 193.88 13,762
(667, 2) 18.33 2,824 29.20 2,634 65.34 2,576 190.94 2,576

2.86 670 5.61 668 13.80 667 41.81 667
s1494 276.49 23,931 267.91 21,032 246.30 14,898 228.83 9,465
(48, 69) 71.52 25,104 84.92 22,082 112.49 15,698 151.00 9,706
(661, 2) 66.25 4,794 78.97 4,018 110.36 3,059 149.30 2,386

10.42 758 9.88 679 20.38 667 58.75 666

Table 4.23: CPU time in seconds and number of nodes visited forsolving ISCAS’89 cir-
cuits, usingdynamic mini-bucket heuristics and min-fill based pseudo trees. Time limit
1 hour.

compiled mini-bucket heuristics. For example, on thes1238 circuit,AOBB-C+SMB(12)

is 6 times faster thanAOBB+SMB(12) and explored 14 times fewer nodes. The diference

between the tree and graph AND/OR algorithms is not too prominent when using dynamic

mini-bucket heuristics (Table 4.23), because these heuristics are far more accurate than the

static version and the search graph is very close to a tree in this case. The performance

of toolbar that is designed specifically for the WCSP domain was very poor on this

dataset and it was not able to solve the any of the problem instances within the 1 hour time

limit. On the other hand,toolbar-BTD, which traverses and AND/OR search graph, is

competitive on this dataset and solves 6 out of the 10 test instances.
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AOBB vs. AOBF. When comparing the depth-first versus the best-first AND/OR algo-

rithms with static and dynamic mini-bucket heuristics we see again thatAOBF-C+SMB(i)

outperforms significantlyAOBB-C+SMB(i), especially for relatively smalli-bounds. The

same picture can be observed when comparingAOBF-C+DMB(i)with AOBB-C+DMB(i).

For instance, on thes1196 circuit, AOBF-C+SMB(10) is 2 orders of magnitude faster

thanAOBB-C+SMB(10). Similarly, on thes1238 circuit, AOBF-C+DMB(8) outper-

formsAOBB-C+DMB(8) by one order of magnitude in terms of both running time and

size of the search space explored. Overall,AOBF-C+SMB(i) is the best performing algo-

rithm on this dataset.

Static vs. dynamic mini-bucket heuristics. Figure 4.18 plots the CPU time and number

of nodes visited by the AND/OR algorithms with static and dynamic mini-bucket heuristics,

as a function of thei-bound, on thec880 network from Tables 4.22 and 4.23, respectively.

It shows explicitly how the performance of Branch-and-Bound and best-first search changes

with the mini-bucketi-bound. Focusing for example onAOBF-C+SMB(i)we notice again

the U-shaped curve formed by the running time. At smalli-bounds (i = 4) the time is high,

then asi increases the runnning time decreases (e.g., for i = 12 the time is 0.91), but then

asi increases further the time starts to increase again. The same behavior can be observed

for AOBF-C+DMB(i), as well.

Impact of the level of caching. Figure 4.19 displays the CPU time, as a function of

the cache boundj, on 4 ISCAS’89 networks from Tables 4.22 usingAOBB-C+SMB(i,j)

(naive caching) andAOBB-AC+SMB(i,j) (adaptive caching), respectively. The spectrum

of results is similar to what we observed before. Namely, adaptive caching is more powerful

than naive caching at smallerj bounds. As the cache bound increases, the two schemes

approach full caching.
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Figure 4.18: Comparison of the impact of static and dynamic mini-bucket heuristics on the
c880 ISCAS’89 network from Tables 4.22 and 4.23, respectively.
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Figure 4.19: Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics onISCAS’89 circuits. Shown is CPU time in seconds.
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Figure 4.20: Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for
solving ISCAS’89 networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i)
(right side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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minfill pseudo trees
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, r, k) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes
0.30 0.34 0.44 0.80 2.00 5.31

mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980
(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153
(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031

0.72 1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220
0.75 0.83 1.02 1.75 4.38 15.77

mm-03-08-04 - - - - - - - - - - - -
(33, 87) 92.64 150,642 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870
(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376

10.53 9,693 10.88 9,143 10.06 8,925 3.89 2,928 9.08 4,855 19.52 4,266
0.34 0.41 0.51 0.91 2.44 7.83

mm-04-08-03 - - 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881
(26, 72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570
(1418, 3, 2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444

0.94 1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450

i=12 i=14 i=16 i=18 i=20 i=22
time nodes time nodes time nodes time nodes time nodes time nodes

1.36 2.08 4.86 16.53 65.19 246.45
mm-04-08-04 - - - - - - - - - - - -
(39, 103) 494.50 744,993 270.60 447,464 506.74 798,507 80.86 107,463 206.58 242,865 280.07 62,964
(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 253.25 11,650

38.55 33,069 29.19 26,729 44.95 38,989 20.64 3,957 74.67 8,716 250.00 3,491
2.34 8.52 8.31 24.94 84.52 out

mm-03-08-05 - - - - - - - - - -
(41, 111) - - - - - - 1084.48 1,122,008 1283.04 1,185,327
(3692, 3, 2) - - - - - - 117.39 55,033 282.35 86,588

out out 473.07 199,725 36.99 8,297 131.88 21,950
1.64 3.09 7.55 21.08 77.81 out

mm-10-08-03 - - - - - - - - - -
(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112
(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362

4.80 3,705 8.16 4,501 11.17 3,622 24.67 3,619 81.52 3,573

Table 4.24: CPU time and number of nodes visited for solvingMastermind game in-
stances, using static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1
hour.toolbar andtoolbar-BTDwere not able to solve any of the test instances within
the time limit. The top part of the table shows the results fori-bounds between 8 and 18,
while the bottom part showsi-bounds between 12 and 22.

Impact of the pseudo tree. Figure 4.20 plots the runtime distribution ofAOBB-C+SMB(i)

andAOBF-C+SMB(i), over 20 independent runs, using hypergraph based pseudo trees.

We observe again that, in some cases, the hypergraph trees are able to improve significantly

the performance of Branch-and-Bound as well as best-first search (e.g., c880, s1238).

Mastermind Game Instances

Table 4.24 shows the results for experiments with 6 Mastermind game instances of increas-

ing difficulty, from Chapter 3 using static mini-bucket heuristics and min-fill based pseudo

trees. The performance of the AND/OR algorithms with dynamic mini-buckets was quite

poor in this case due to prohibitively high computational overhead at largei-bounds.
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Figure 4.21: Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics onMastermind networks. Shown is CPU time in seconds.

Tree vs. graph AOBB. We see again that using caching improves considerably the

performance of AND/OR Branch-and-Bound search. Onmm-03-08-05, for example,

AOBB-C+SMB(18) is 9 times faster thanAOBB+SMB(18) and explores a search space

20 times smaller. We also note thattoolbar andtoolbar-BTD were not able to solve

any of these instances within the time limit.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR search,we

see thatAOBF-C+SMB(i) offers the overall best performance on this domain as well. On

the mm-03-08-05 instance, for example,AOBF-C+SMB(18) is about 3 times faster

thanAOBB-C+SMB(18) and about 30 times faster thanAOBB+SMB(18), respectively.

As before, the time savings are more pronounced at relatively small i-bounds when the

heuristic estimates are less accurate.
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Impact of the level of caching. Figure 4.21 illustrates the CPU time, as a function of

the cache boundj, obtained with the naive and adaptive caching schemes on 4 problem

instances from Table 4.24. We notice again the superiority of adaptive caching at relatively

smallj-bounds.

Impact of the pseudo tree. Figure 4.22 plots the runtime distribution ofAOBB-C+SMB(i)

andAOBF-C+SMB(i), over 20 independent runs, using hypergraph pseudo trees. The hy-

pergraph trees are sometimes able to improve slightly the performance of AND/OR Branch-

and-Bound, at relatively smalli-bounds (e.g., mm-04-08-04). For best-first search how-

ever, the min-fill based pseudo trees offer the best performance in this case.

Memory usage of AND/OR graph search. In Figure 4.23 we emphasize again the sig-

nificant memory requirements of best-first AND/OR search compared with those of the

depth-first AND/OR Branch-and-Bound search with full caching. We see for example that

on themm-03-08-05 networkAOBF-C+SMB(i) with relatively smalli-bounds (e.g.,

i ∈ {12, 14}) uses about 2 orders of magnitude more memory thanAOBB-C+SMB(i).

4.6 Conclusion to Chapter 4

The chapter continues to investigate the impact of the AND/OR search spaces perspective

to solving general constraint optimization problems in graphical models. In contrast to the

traditional OR space, the AND/OR search space is sensitive to problem decomposition. The

size of the AND/OR search tree can be bounded exponentially by the depth of its guiding

pseudo tree. This implies exponential time savings for any linear space search algorithms

traversing the AND/OR search tree, in particular AND/OR Branch-and-Bound search, as

we showed in Chapter 3. Specifically, if the graphical model has treewidthw∗, the depth of

the pseudo tree isO(w∗ · logn). The AND/OR search tree can be extended into a graph by

merging identical subtrees using graph information only. The size of the context minimal
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Figure 4.22: Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for
solvingMastermind networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i)
(right side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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Figure 4.23: Memory usage of theAOBB-C+SMB(i) andAOBF-C+SMB(i) algorithms
on theMastermind networks from Table 4.24.

AND/OR search graph is exponential in the treewidth while the size of the context minimal

OR search graph is exponential in the pathwidth. Since for some graphs the difference

between treewidth and pathwidth is substantial (e.g., balanced pseudo trees) the AND/OR

representation implies substantial time and space savingsfor memory intensive algorithms

traversing the AND/OR graph. Searching the AND/OR search graph can be implemented

by goods caching during search.

We therefore extended the AND/OR Branch-and-Bound algorithmto traversing a search

graph rather than a search tree by equipping it with an efficient caching mechanism. We in-

vestigated two flexible context-based caching schemes thatcan adapt to the current memory

restrictions. Since best-first search strategies are knownto be superior to depth-first ones

when memory is utilized, we also introduced a best-first AND/OR search algorithm that

traverses the context minimal AND/OR search graph.

All these algorithms can be guided by any heuristic function. We investigated exten-

sively the mini-bucket heuristics introduced earlier [65]and shown to be effective in the

context of OR search trees [65]. The mini-bucket heuristicscan be either pre-compiled

(static mini-buckets) or generated dynamically during search at each node in the search

space (dynamic mini-buckets). They are parameterized by the Mini-Bucketi-bound which

allows for a controllable trade-off between heuristic strength and computational overhead.

We focused our empirical evaluation on two common optimization problems in graph-
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ical models: finding the MPE in Bayesian networks and solving WCSPs. Our results

demonstrated conclusively that the depth-first and best-first memory intensive AND/OR

search algorithms guided by mini-bucket heuristics improve dramatically over traditional

memory intensive OR search as well as over AND/OR Branch-and-Bound algorithms with-

out caching. We summarize next the most important aspects reflecting the better perfor-

mance of AND/OR graph search, such as the impact of the level of cachin, the mini-bucket

i-bound, constraint propagation, informed initial upper bounds and the quality of the guid-

ing pseudo trees.

• Impact of the level of caching. We proposed two parameterized context-based

caching schemes that can adapt to the memory limitations. The naive caching records

contexts with size smaller or equal to the cache boundj. The adaptive caching saves

also nodes whose context size is beyondj, based on adjusted contexts. Our results

showed that for smallj-bounds, adaptive caching is more powerfull than the naive

scheme (e.g., grid networks from Figure 4.6, genetic linkage networks from Figure

4.11, ISCAS’89 circuits from Figure 4.19). As more space becomes available and

thej-bound increases, the two schemes gradually approach full caching. The savings

in number of nodes due to caching are more pronounced at relatively smalli-bounds

of the mini-bucket heuristics. When the heuristics are strong enough to prune the

search space substantially (i.e., largei-bounds), the context minimal graph traversed

by AND/OR Branch-and-Bound is very close to a tree and the effect of caching is

diminished.

• Impact of the mini-bucket i-bound. Our results show conclusively that when

enough memory is available the static mini-bucket heuristics with relatively large

i-bounds are cost effective (e.g., genetic linkage analysis networks from Tables 4.6

and 4.7, Mastermind game instances from Table 4.24). However, if the space is sev-

erly restricted, the dynamic mini-bucket heuristics appear to be the preferred choice,

especially for relatively smalli-bounds (e.g., ISCAS’89 networks from Tables 4.22).
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This is because these heuristics are far more accurate for the samei-bound than the

pre-compiled version.

• Impact of determinism. When the graphical model contains both deterministic in-

formation (hard constraints) as well as general cost functions, we demonstrated that

it is beneficial to exploit the computational power of the constraints via constraint

propagation. Our experiments on selected classes of deterministic Bayesian net-

works showed that enforcing unit resolution over the CNF encoding of the deter-

minism present in the network was able in some cases to renderthe search space

almost backtrack-free (e.g., ISCAS’89 networks from Table 4.19). This caused in

some cases a tremendous reduction in running time for the corresponding AND/OR

Branch-and-Bound algorithms (e.g., see for example thes953 network from Table

4.19).

• Impact of good initial upper bounds. The AND/OR Branch-and-Bound algorithm

assumed a trivial initial upper bound (resp. initial lower bound for maximization

tasks). We incorporated a more informed upper bound (resp. lower bound for max-

imization), obtained by first solving the initial problem via local search. Our results

showed that in some cases it causes a tremendeous speed-up over the initial approach

(see for example the grid network from Table 4.15, and the ISCAS’89 networks from

Table 4.19).

• Impact of pseudo tree quality. The performance of the depth-first and best-first

memory intensive AND/OR search algorithms is influenced significantly by the qual-

ity of the guiding pseudo tree. We investigated two heuristics for generating small in-

duced width/depth pseudo trees. The min-fill based pseudo trees usually have smaller

induced width but significantly larger depth, whereas the hypergraph partitioning

heuristic produces much smaller depth trees but with largerinduced widths. Our ex-

periments demonstrated that when the induced width is smallenough, which is typi-
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cally the case for min-fill based pseudo trees, the strength of the mini-bucket heuris-

tics compiled along these orderings determines the performance of the AND/OR

search algorithms (e.g., SPOT5 networks from Figure 4.17). However, when the

graph is highly connected, the relatively large induced width causes the AND/OR

algorithms to traverse a search space that is very close to a tree and, therefore, the

hypergraph partitioning based pseudo trees, which have farsmaller depths than the

min-fill based ones, improve performance substantially (e.g., genetic linkage net-

works from Figure 4.10 and Table 4.8). This is because for tree search the depth of

the pseudo tree matters more than the induced width.

220



Chapter 5

AND/OR Search for 0-1 Integer

Programming

5.1 Introduction

A constraint optimization problemis the minimization (or maximization) of an objective

function subject to a set of constraints on the possible values of a set of independent de-

cision variables. An important class of optimization problems in operations research and

computer science are the 0-1 Integer Linear Programming problems (0-1 ILP) [95] where

the objective is to optimize a linear function of bi-valued integer decision variables, subject

to a set of linear equality or inequality constraints definedon subsets of variables. The clas-

sical approach to solving 0-1 ILPs is theBranch-and-Boundmethod [74] which traverses

a search tree defined by the problem while maintaining the best solution found so far and

discarding partial solutions which cannot improve on the best.

The AND/OR Branch-and-Bound (AOBB) introduced in Chapter 3 is a Branch-and-

Bound algorithm that explores an AND/OR search tree in a depth-first manner for solving

optimization tasks in graphical models. The AND/OR Branch-and-Bound algorithm with

caching (AOBB-C) from Chapter 4 improvesAOBB by allowing the algorithm to save pre-

viously computed results and retrieve them when the same subproblems are encountered

again. The algorithm explores the context minimal AND/OR search graph. Abest-first

AND/OR search algorithm (AOBF-C) that traverses the AND/OR search graph was in-
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troduced subsequently in Chapter 4. The algorithms were initially restricted to a static

variable ordering determined by the underlying pseudo tree, but subsequent extensions to

dynamic variable ordering heuristics were also introducedChapter 3. One extension, called

AND/OR Branch-and-Bound with Partial Variable Ordering (AOBB+PVO) (AOBF+PVO)

was shown to have significant impact on several domains.

5.1.1 Contribution

In this chapter we extend the principles of AND/OR search andthe ideas of context-based

caching to solving 0-1 Integer Linear Programs. We explore both depth-first and best-

first control strategies. Under conditions of admissibility and monotonicity of the guiding

heuristic function, best-first search is known to expand theminimal number of nodes, at

the expense of using additional memory [40]. We also extend dynamic variable ordering

heuristics for AND/OR search and explore their impact on 0-1ILPs.

We demonstrate empirically the benefit of the AND/OR search approach on several

benchmarks for 0-1 ILP problems, including combinatorial auctions, random uncapacitated

warehouse location problems and MAX-SAT problem instances. Our results show conclu-

sively that the new AND/OR search approach improves dramatically over the traditional

OR search on this domain, in some cases with several orders ofmagnitude of improved

performance. We illustrate the tremendous gain obtained byexploiting problem’s decom-

position (using AND nodes), equivalence (by caching), branching strategy (via dynamic

variable ordering heuristics) and control strategy. We also show that the AND/OR algo-

rithms are sometimes able to outperform significantly commercial solvers like CPLEX.

The research presented in this chapter is based in part on [80, 83].

5.1.2 Chapter Outline

The chapter is organized as follows. Sections 5.2 and 5.3 provide background on 0-1 ILP

and AND/OR search spaces for 0-1 ILPs. In Sections 5.4 and 5.5we present the extensions
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of the depth-first AND/OR Branch-and-Bound and the best-first AND/OR search algo-

rithms to 0-1 ILP. Section 5.6 discusses the AND/OR search approach that incorporates

dynamic variable ordering heuristics. Section 5.7 shows our empirical evaluation, while

Section 5.8 provides concluding remarks.

5.2 Background

5.2.1 Integer Programming

DEFINITION 42 (linear program) A linear program (LP)consists of a set ofn continuous

variablesX = {X1, ..., Xn} and a set ofm linear constraints (equalities or inequalities)

F = {F1, ..., Fm} defined on subsets of variables. The goal is to minimize a global linear

cost function, denotedz(X), subject to the constraints. One of the standard forms of a

linear program is:

min z(X) =
n

∑

i=1

ci ·Xi (5.1)

s.t.
n

∑

i=1

aij ·Xi ≤ bj, ∀ 1 ≤ j ≤ m (5.2)

Xi ≥ 0, ∀ 0 ≤ i ≤ n (5.3)

where(5.1) represents the linear objective function, and(5.2)defines the set of linear con-

straints. In addition,(5.3)ensures that all variables are positive.

A linear program can also be expressed in a matrix notation, as follows:

min{c>X |A ·X ≤ b,X ≥ 0} (5.4)

wherec ∈ R
n, b ∈ R

m, A ∈ R
m×n andX ∈ R

n
+. Namely,c represents the cost vector and
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Figure 5.1: Example of a 0-1 Integer Linear Program.

X is the vector of decision variables. The vectorb and the matrixA define them linear

constraints.

One of the most important constraint optimization problemsin operations research and

computer science isinteger programming. Applications of integer programming include

scheduling, routing, VLSI circuit design, combinatorial auctions, and facility location [95].

Formally:

DEFINITION 43 (0-1 integer linear programming) A 0-1 integer linear programming (0-

1 ILP) problem is a linear program where all the decision variables are constrained to have

integer values 0 or 1 at the optimal solution. Formally,

min z(X) =
n

∑

i=1

ci ·Xi (5.5)

s.t.
n

∑

i=1

aij ·Xi ≤ bj, ∀ 1 ≤ j ≤ m (5.6)

Xi ∈ {0, 1} ∀ 0 ≤ i ≤ n (5.7)

Example 19 Figure 5.1(a) shows a 0-1 ILP instance with 6 binary decision variables

(A, B, C, D, E, F ) and 4 linear constraintsF1(A,B,C), F2(B,C,D), F3(A,B,E),

F4(A,E, F ). The objective function to be minimized is defined byz = 7A + B − 2C +
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5D − 6E + 8F . Figure 5.1(b) displays the constraint graph associated with this 0-1 ILP,

where nodes correspond to the variables and there is an edge between any two nodes whose

corresponding variables appear in the scope of the same linear constraint.

If some variables are constrained to be integers (not necessarily binary), then the prob-

lem is simply calledinteger programming. If not all variables are constrained to be integral

(they can be real), then the problem is calledmixed integer programming(MIP). Otherwise,

the problem is called0-1 integer programming.

While 0-1 integer programming, and thus integer programmingand MIP are all NP-hard

[63], there are many sophisticated techniques that can solve very large instances in practice.

We next briefly review the existing search techniques upon which we build our methods.

5.2.2 Branch-and-Bound Search for Integer Programming

In Branch-and-Boundsearch, the best solution found so far (theincumbent) is kept in mem-

ory. Once a node in the search tree is generated, a lower bound(also known as a heuristic

evaluation function) on the solution value is computed by solving a relaxed version of

the problem, while honoring the commitments made on the search path so far. The most

common method for doing this is to solve the problem while relaxing only the integrality

constraints of all undecided variables. The resultinglinear program(LP) can be solved

fast in practice, for example using thesimplexalgorithm [23] (and in polynomial worst-

case time using integer-point methods [95]). A path terminates when the lower bound is at

least the value of the incumbent, or when the subproblem is infeasible or yields an integer

solution. Once all paths have terminated, the incumbent is aprovably optimal solution.

There are several ways to decide which leaf node of the searchtree to expand next. For

example, indepth-firstBranch-and-Bound, the most recent node is expanded next. Inbest-

first search(i.e., A∗ search [99]), the leaf with the lowest lower bound is expanded next.

A∗ search is desirable because for any fixed branching variableordering, no tree search

algorithm that finds a provably optimal solution can guarantee expanding fewer nodes [40].
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Therefore, of the known node-selection strategies,A∗ seems to be best suited when the

goal is to find a provably optimal solution. A variant of a best-first node-selection strategy,

calledbest-bound search, is often used in MIP [125]. While in generalA∗ the children

are evaluated when they are generated, in best-bound searchthe children are queued for

expansion based on their parents’ values and the LP of each child is only solved if the

child comes up for expansion from the queue. Thus best-boundsearch needs to continue

until each node on the queue has value no better than the incumbent. Best-bound search

generates more nodes, but may require fewer (or more) LPs to be solved.

5.2.3 Branch-and-Cut Search for Integer Programming

A modern algorithm for solving MIPs isBranch-and-Cut, which first achieved success in

solving large instances of the traveling salesman problem [100, 101], and is now the core

of the fastest commercial general-purpose integer programming packages. It is aBranch-

and-Bound, except that in addition, the algorithm may generatecutting planes[95]. They

are linear constraints that, when added to the subproblem ata search node, may result in

a smaller feasible space for the LP, while not cutting off theoptimal integer solution, and

thus a higher lower bound. The higher lower bound in turn can cause earlier termination of

the search path, and thus yields smaller search trees.

5.2.4 State-of-the-art Software Packages

CPLEX1 is a leading commercial software product for solving MIPs. It uses Branch-and-

Cut, and it can be configured to support many different branching algorithms (i.e., variable

ordering heuristics). It also makes available low-level interfaces (i.e., APIs) for controlling

the search, as well as other components such as the pre-solver, the cutting plane engine and

the LP solver.
1http://www.ilog.com/cplex/
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lp solve2 is an open source linear (integer) programming solver basedon the simplex

and the Branch-and-Bound methods. We chose to develop our AND/OR search algorithms

in the framework oflp solve, because we could have access to the source code. Unlike

CPLEX,lp solve does not provide a cutting plane engine.

5.3 Extending AND/OR Search Spaces to 0-1 ILPs

As mentioned earlier, the common way of solving 0-1 ILPs is bysearch, namely to instan-

tiate variables one at a time following a static/dynamic variable ordering. In the simplest

case, this process defines an OR search tree, whose nodes represent states in the space

of partial assignments. However, this search space does notcapture independencies that

appear in the structure of the problem. The AND/OR search space for graphical models

presented in Chapters 3 and 4 remedies this problem and it can be extended to 0-1 ILPs in

a straightforward manner. For completeness sake, we describe it next briefly.

5.3.1 AND/OR Search Trees for 0-1 ILPs

Given a 0-1 ILP instance, its constraint graphG and a pseudo treeT of G, the associated

AND/OR search treeST has alternating levels of OR nodes and AND nodes. The OR

nodes are labeled byXi and correspond to the variables. The AND nodes are labeled by

〈Xi, xi〉 (or simplyxi) and correspond to value assignments in the domains of the variables

that are consistent relative to the constraints. The structure of the AND/OR tree is based

on the underlying pseudo treeT of G. The root of the AND/OR search tree is an OR node,

labeled with the root ofT . The children of an OR nodeXi are AND nodes labeled with

assignments〈Xi, xi〉, consistent along the path from the root. The children of an AND

node〈Xi, xi〉 are OR nodes labeled with the children of variableXi in T .

Example 20 Consider the 0-1 ILP from Figure 5.2(a). A pseudo tree of the constraint

2http://lpsolve.sourceforge.net/5.5/
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Figure 5.2: AND/OR search tree for a 0-1 Integer Linear Program instance.

graph, together with the back-arcs (dotted lines) are given in Figure 5.2(b). Figure 5.2(c)

shows the corresponding AND/OR search tree. Notice that the partial assignment(A =

0, B = 0, C = 0, D = 0) which is represented by the path{A, 〈A, 0〉,B, 〈B, 0〉,C, 〈C, 0〉,

D, 〈D, 0〉} in the AND/OR search tree, is inconsistent because the constraint−2B+5C−

3D ≤ −2 is violated. Similarly, the partial assignment(A = 0, B = 0, C = 1) is also

inconsistent due to the violation of the same constraint forany value assignment toD.

The arcs in the AND/OR search tree of a 0-1 ILP are associated with weightsthat are

derived from the objective function
∑n

i=1 ci · Xi. Theweightw(n,m) of the arc from the

OR noden, labeledXi to the AND nodem, labeled〈Xi, xi〉, isw(n,m) = ci · xi.

Given a weighted AND/OR search tree of a 0-1 ILP, each of its nodes can be associated

with a value. The valuev(n) of a noden is the minimal cost solution to the subproblem
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Figure 5.3: Context minimal AND/OR search graph for the 0-1 ILP from Figure 5.2.

rooted atn, subject to the current variable instantiation along the path from the root ton. It

can be computed recursively using the values ofn’s successors, as shown in Chapter 3.

5.3.2 AND/OR Search Graphs for 0-1 ILPs

Often different nodes in the search tree root identical subtrees, and correspond to identical

subproblems. Any two such nodes can bemerged, reducing the size of the search space

and converting it into a graph. Some of these mergeable nodescan be identified based on

contexts, as described in Chapter 4.

Example 21 Figure 5.3(b) shows the context minimal AND/OR search graph, relative to

the pseudo tree from Figure 5.3(a), corresponding to the 0-1ILP from Figure 5.2. The

square brackets indicate the AND contexts of the variables.
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5.4 Depth-First AND/OR Branch-and-Bound Search

In Chapter 4 we introduced a new generation of depth-first Branch-and-Bound and best-first

AND/OR search algorithms for solving constraint optimization tasks in graphical models.

Our extensive empirical evaluations on a variety of probabilistic and deterministic graphi-

cal models demonstrated the power of these new algorithms over competitive approaches

exploring traditional OR search spaces. We next revisit thedepth-first Branch-and-Bound

algorithm for searching AND/OR graphs, focusing on the specific properties for 0-1 ILPs.

TheDepth-First AND/OR Branch-and-Bound Searchalgorithm,AOBB-C-ILP, that

traverses the context minimal AND/OR graph via full cachingis described by Algorithm

10 and shown here for completeness. It specializes the Branch-and-Bound algorithm intro-

duced in Chapter 4 to 0-1 ILPs. If the caching mechanism is disabled then the algorithm

uses linear space only and traverses an AND/OR search tree (see also Chapter 3 for more

details).

As we showed in Chapter 4, the context based caching is done using tables. For each

variableXi, a table is reserved in memory for each possible assignment to its context.

Initially, each entry has a predefined value, in our caseNULL. The fringe of the search is

maintained on a stack calledOPEN. The current node is denoted byn, its parent byp, and

the current path byπn. The children of the current node are denoted bysucc(n). The flag

caching is used to enable the caching mechanism.

Each noden in the search graph maintains its current valuev(n), which is updated

based on the values of its children. For OR nodes, the currentv(n) is an upper bound

on the optimal solution cost belown. Initially, v(n) is set to∞ if n is OR, and0 if n is

AND, respectively. The heuristic functionh(n) of v(n) associated with each noden in the

search graph is computed by solving the LP relaxation of the subproblem rooted atn, Pn,

conditioned on the current partial assignment alongπn (i.e., asgn(πn)) (lines 11 and 28,

respectively). Notice that if the LP relaxation ofPn is infeasible, then we assignh(n) =∞

andv(n) = ∞. Similarly, if Pn has an integer solution, thenh(n) equalsv(n). In both
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Algorithm 10 : AOBB-C-ILP: AND/OR Branch-and-Bound Search for 0-1 ILP
Input : A 0-1 ILP instance with objective function

∑n
i=1 ciXi, pseudo treeT rooted atX1, AND contextspasi for every

variableXi, caching set totrue or false.
Output : Minimal cost solution.
v(s)←∞; OPEN ← {s} // Initialize search stack1
if caching == true then2

Initialize cache tables with entries ”NULL” // Initialize cache tables3

while OPEN 6= ∅ do4
n← top(OPEN); removen from OPEN ; succ(n)← ∅ // EXPAND5
if n is marked INFEASIBLE or INTEGERthen6

v(n)←∞ (if INFEASIBLE) or v(n)← h(n) (if INTEGER)7

else ifn is an OR node, labeledXi then8
foreachxi ∈ Di do9

create an AND noden′, labeled〈Xi, xi〉10
v(n′)← 0; h(n′)← LP (Pn′ ) // Solve the LP relaxation11
w(n, n′)← ci · xi // Compute the arc weight12
markn′ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution13
succ(n)← succ(n) ∪ {n′}14

else ifn is an AND node, labeled〈Xi, xi〉 then15
cached← false; deadend← false16
if caching == true and Cache(asgn(πn)[pasi]) 6= NULL then17

v(n)← Cache(asgn(πn)[pasi]) // Retrieve value18
cached← true // No need to expand below19

foreachOR ancestorm of n do20
lb← evalPartialSolutionTree(T ′

m)21
if lb ≥ v(m) then22

deadend← true // Pruning23
break24

if deadend == false and cached == false then25
foreachXj ∈ childrenT (Xi) do26

create an OR noden′ labeledXj27
v(n′)←∞; h(n′)← LP (Pn′ ) // Solve the LP relaxation28
markn′ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution29
succ(n)← succ(n) ∪ {n′}30

else ifdeadend == true then31
succ(p)← succ(p)− {n}32

Add succ(n) on top ofOPEN // PROPAGATE33
while succ(n) == ∅ do34

if n is an OR node, labeledXi then35
if Xi == X1 then36

return v(n) // Search is complete37

v(p)← v(p) + v(n) // Update AND node value (summation)38

else ifn is an AND node, labeled〈Xi, xi〉 then39
if caching == true and v(n) 6=∞ then40

Cache(asgn(πn)[pasi])← v(n) // Save AND node value in cache41

if v(p) > (w(p, n) + v(n)) then42
v(p)← w(p, n) + v(n) // Update OR node value (minimization)43

removen from succ(p)44
n← p45
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Algorithm 11 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n)
Input : Partial solution subtreeT ′

n rooted at noden.
Output : Heuristic evaluation functionf(T ′

n).
if succ(n) == ∅ then1

return h(n)2
else3

if n is an AND nodethen4
let m1, ..., mk be the OR children ofn in T ′

n5

return
∑k

i=1 evalPartialSolutionTree(T ′
mi

)6

else ifn is an OR nodethen7
let m be the AND child ofn in T ′

n8
return w(n, m) + evalPartialSolutionTree(T ′

m)9

cases,succ(n) is set to the empty set, thus avoidingn’s expansion (lines 6–7).

Before expanding the current AND noden, its cache table is checked (line 18). If the

same context was encountered before, it is retrieved from the cache, andsucc(n) is set to

the empty set, which will trigger thePROPAGATE step. Otherwise, the node is expanded in

the usual way, depending on whether it is an AND or OR node (lines 8–32). The algorithm

also computes the heuristic evaluation function for every partial solution subtree rooted

at the OR ancestors ofn along the path from the root (lines 20–24). The search below

n is terminated if, for some OR ancestorm, f(T ′m) ≥ v(m), wherev(m) is the current

upper bound on the optimal cost belowm. The recursive computation off(T ′m) based on

Definition 30 in Chapter 3 is described in Algorithm 11.

The node values are updated by thePROPAGATE step (lines 34–45). It is triggered

when a node has an empty set of descendants (note that as each successor is evaluated, it is

removed from the set of successors in line 44). This means that all its children have been

evaluated, and their final values are already determined. Ifthe current node is the root, then

the search terminates with its value (line 37). Ifn is an OR node, then its parentp is an

AND node, andp updates its current valuev(p) by summation with the value ofn (line

38). An AND noden propagates its value to its parentp in a similar way, by minimization

(lines 42–43). Finally, the current noden is set to its parentp (line 45), becausen was

completely evaluated. Search continues either with apropagationstep (if conditions are

met) or with anexpansionstep. We give next an example of the pruning mechanism used
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Figure 5.4: Illustration of the pruning mechanism.

by AOBB-C-ILP.

Example 22 Consider the partially explored weighted AND/OR search tree inFigure 5.4.

The current partial solution treeT ′ is highlighted. It contains the following nodes:A,

〈A, 1〉, B, 〈B, 1〉, C, 〈C, 0〉, D, 〈D, 1〉 andF . The nodes labeled by〈D, 1〉 and byF are

non-terminal tip nodes and their corresponding heuristic estimates areh(〈D, 1〉) = 2 and

h(F ) = 9, respectively. The subtrees rooted at the AND nodes labeled〈A, 0〉, 〈B, 0〉 and

〈D, 0〉 are fully evaluated, and therefore the current upper boundsof the OR nodes labeled

A, B andD, along the active path, areub(A) = 12, ub(B) = 10 andub(D) = 0, respec-

tively. Moreover, the heuristic evaluation functions of the partial solution subtrees rooted

at the OR nodes along the current path can be computed recursively based on Definition

30 in Chapter 3, namelyf(T ′A) = 13, f(T ′B) = 12 andf(T ′D) = −1, respectively. Notice

that while we could prune below〈D, 1〉 becausef(T ′A) > ub(A), we could discover this

pruning earlier by looking at nodeB only, becausef(T ′B) > ub(B). Therefore, the partial

solution treeT ′A need not be consulted in this case.

AOBB-C-ILP is restricted to a static variable ordering determined by the pseudo tree

and explores the context minimal AND/OR search graph viafull caching. However, if the

memory requirements are prohibitive, rather than using full caching,AOBB-C-ILP can
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be modified to use a memory bounded caching scheme that saves only those nodes whose

context size can fit in the available memory, as described in Chapter 4.

5.5 Best-First AND/OR Search

We now direct our attention to abest-firstrather than depth-first control strategy for travers-

ing the context minimal AND/OR graph and present a best-firstAND/OR search algorithm

for 0-1 ILP. The algorithm uses similar amounts of memory as the depth-first AND/OR

Branch-and-Bound with full caching. It was described in Chapter 4 and evaluated for gen-

eral constraint optimization problems. By specializing it to 0-1 ILP using the LP relaxation

for the heuristic functionh, we getAOBF-C-ILP. For completeness sake, we describe the

algorithm again including minor modifications for the 0-1 ILP case.

The algorithm, denoted byAOBF-C-ILP (Algorithm 12), specializes Nilsson’sAO∗

algorithm [97] to AND/OR search spaces for 0-1 ILPs. It interleaves forward expansion

of the best partial solution tree (EXPAND) with a cost revision step (REVISE) that updates

node values, as detailed in [97]. The explicated AND/OR search graph is maintained by

a data structure calledG ′T , the current node isn, s is the root of the search graph and the

current best partial solution subtree is denoted byT ′. The children of a noden are denoted

by succ(n).

First, a top-down, graph-growing operation finds the best partial solution tree by tracing

down through the marked arcs of the explicit AND/OR search graphG ′T (lines 4–9). These

previously computed marks indicate the current best partial solution tree from each node

in G ′T . Before the algorithm terminates, the best partial solutiontree,T ′, does not yet

have all of its leaf nodes terminal. One of its non-terminal leaf nodesn is then expanded

by generating its successors, depending on whether it is an OR or an AND node. Notice

that when expanding an OR node, the algorithm does not generate AND children that are

already present in the explicit search graphG ′T (lines 13–15). All these identical AND
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Algorithm 12 : AOBF-C-ILP: Best-First AND/OR Search for 0-1 ILP
Input : A 0-1 ILP instance with objective function

∑n
i=1 ciXi, pseudo treeT rooted atX1, AND contextspasi for every

variableXi

Output : Minimal cost solution.
v(s)← h(s); G′T ← {s} // Initialize1
while s is not labeled SOLVEDdo2

S ← {s}; T ′ ← ∅; // Create the marked partial solution tree3
while S 6= ∅ do4

n← top(S); removen from S5
T ′ ← T ′ ∪ {n}6
let L be the set of marked successors ofn7
if L 6= ∅ then8

addL on top ofS9

let n be any nonterminal tip node of the markedT ′ (rooted ats) // EXPAND10
if n is an OR node, labeledXi then11

foreachxi ∈ Di do12
let n′ be the AND node inG′T having context equal topasi13
if n′ == NULL then14

create an AND noden′ labeled〈Xi, xi〉15
h(n′)← LP (Pn′ ); v(n′)← h(n′) // Solve the LP relaxation16
w(n, n′)← ci · xi // Compute the arc weight17
labeln′ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution18
if n′ is INTEGER or TERMINALthen19

labeln′ as SOLVED20

else ifn′ is INFEASIBLEthen21
v(n′)←∞22

succ(n)← succ(n) ∪ {n′}23

else ifn is an AND node, labeled〈Xi, xi〉 then24
foreachXj ∈ childrenT (Xi) do25

create an OR noden′ labeledXj26
h(n′)← LP (Pn′); v(n′)← h(n′) // Solve the LP relaxation27
labeln′ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution28
if n′ is INTEGERthen29

markn′ as SOLVED30

else ifn′ is INFEASIBLEthen31
v(n′)←∞32

succ(n)← succ(n) ∪ {n′}33

G′T ← G′T ∪ succ(n)34
S ← {n} // REVISE35
while S 6= ∅ do36

let m be a node inS such thatm has no descendants inG′T still in S; removem from S37
if m is an AND node, labeled〈Xi, xi〉 then38

v(m)←∑

m′∈succ(m) v(m′)39
mark all arcs to the successors40
labelm as SOLVED if all its children are labeled SOLVED41

else ifm is an OR node, labeledXi then42
v(m) = minm′∈succ(m)(w(m, m′) + v(m′))43
mark the arc through which this minimum is achieved44
labelm as SOLVED if the marked successor is labeled SOLVED45

if m changes its valueor m is labeled SOLVEDthen46
add toS all those parents ofm such thatm is one of their successors through a marked arc.47

return v(s) // Search terminates48
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nodes inG ′T are easily recognized based on their contexts. Upon node’sn expansion, a

heuristic underestimateh(n′) of v(n′) is assigned to each ofn’s successorsn′ ∈ succ(n)

(lines 12–25). Again,h(n′) is obtained by solving the LP relaxation of the subproblem

rooted atn′, conditioned on the current partial assignment of the path to the root. As before,

AOBF-C-ILP avoids expanding those nodes for which the corresponding LPrelaxation is

infeasible or yields an integer solution (lines 18–22 and 28–32).

The second operation inAOBF-C-ILP is a bottom-up, cost revision, arc marking,

SOLVE-labeling procedure (lines 26–40). Starting with thenode just expandedn, the pro-

cedure revises its valuev(n), using the newly computed values of its successors, and marks

the outgoing arcs on the estimated best path to terminal nodes. This revised value is then

propagated upwards in the graph. The revised valuev(n) is an updated lower bound esti-

mate of the cost of an optimal solution to the subproblem rooted atn. During the bottom-up

step,AOBF-C-ILP labels an AND node asSOLVED if all of its OR child nodes are solved,

and labels an OR node asSOLVED if its marked AND child is also solved. The algorithm

terminates with the optimal solution when the root nodes is labeledSOLVED. We next

summarize the complexity of both depth-first and best-first AND/OR graph search:

THEOREM 12 (complexity) The depth-first and best-first AND/OR graph search algorithms

guided by a pseudo treeT are sound and complete for solving 0-1 ILPs. Their time and

space complexity isO(n · 2w∗
), wherew∗ is the induced width of the pseudo tree.

Proof. Immediate from Theorem 9, which bounds the size of the context minimal

AND/OR search graph.�

5.6 Dynamic Variable Orderings

The depth-first and best-first AND/OR search algorithms presented in the previous sections

assumed a static variable ordering determined by the underlying pseudo tree of the con-
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straint graph. However, the mechanism of identifying unifiable AND nodes based solely on

their contexts is hard to extend when variables are instantiated in a different order than that

dictated by the pseudo tree. In this section we discuss a strategy that allows dynamic vari-

able orderings in depth-first and best-first AND/OR search, when both algorithms traverse

an AND/OR search tree. The approach calledPartial Variable Ordering (PVO), which

combines the static AND/OR decomposition principle with a dynamic variable ordering

heuristic, was described and tested also for general constraint optimization over graphical

models in Chapter 3. For completeness sake, we review it briefly next.

Variable Orderings for Integer Programming. At every node in the search tree, the

search algorithm has to decide what variable to instantiatenext. One common method in

operations research is to select next themost fractional variable, i.e., the variable whose

LP value is furthest from being integral [125]. Finding a candidate variable under this rule

is fast and the method yields small search trees on many problem instances.

A more sophisticated approach, which is better suited for certain hard problems isstrong

branching[21]. This method performs a one-step lookahead for each variable that is non-

integral in the LP at the node. The one-step lookahead computation solves the LP relax-

ations for each of the children of the candidate variable, and a score is computed based on

the LP values of the children. The next variable to instantiate is selected as the one with

the highest score among the candidates.

Partial Variable Ordering (PVO). AND/OR Branch-and-Bound with Partial Variable Or-

dering (resp. Best-First AND/OR Search with Partial Variable Ordering), denoted by

AOBB+PVO-ILP (resp. AOBF+PVO-ILP), uses the static graph-based decomposition

given by a pseudo tree with a dynamic semantic ordering heuristic applied over chain por-

tions of the pseudo tree. For simplicity and without loss of generality we consider themost

fractional variableas our semantic variable ordering heuristic. Clearly, it canbe replaced
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Tree search Graph search ILP solvers
AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP BB (lp solve)

Problem classes AOBF-ILP AOBF+PVO-ILP AOBF-C-ILP CPLEX 11.0
Combinatorial Auctions

√ √ √ √
Warehouse Location Problems

√ √ √ √
MAX-SAT Instances

√ √ √ √

Table 5.1: Detailed outline of the experimental evaluationfor 0-1 ILP.

by any other heuristic.

Consider the pseudo tree from Figure 5.2(b) inducing the following variable groups (or

chains): {A,B}, {C,D} and {E,F}, respectively. This implies that variables{A,B}

should be considered before{C,D} and {E,F}. The variables in each group can be

dynamically ordered based on a second, independent heuristic.

AOBB+PVO-ILP (resp. AOBF+PVO-ILP) can be derived from Algorithm 10 (resp.

Algorithm 12) with some simple modifications. The algorithmtraverses an AND/OR

search tree in a depth-first (resp. best-first) manner, guided by a pre-computed pseudo

treeT . When the current AND noden, labeled〈Xi, xi〉, is expanded in the forward step,

the algorithm generates its OR successorm, labeledXj, based on the semantic ordering

heuristic. Specifically,m corresponds to the most fractional variable in the current pseudo

tree chain. If there are no uninstantiated variables left inthe current chain, namely variable

Xi was instantiated last, then the OR successors ofn are labeled by the most fractional

variables from the variable groups rooted byXi in T .

5.7 Experimental Results

We evaluated the performance of the depth-first and best-first AND/OR search algorithms

on 0-1 ILP problem classes such as combinatorial auction, uncapacitated warehouse lo-

cation problems and MAX-SAT problem instances. We implemented our algorithms in

C++ and carried out all experiments on a 2.4GHz Pentium IV with2GB of RAM, running

Windows XP.
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Algorithms. The detailed outline of the experimental evaluation is given in Table 5.1. We

evaluated the following 6 classes of AND/OR search algorithms:

1 Depth-first and best-first search algorithms using a staticvariable ordering and ex-

ploring the AND/OR tree, denoted byAOBB-ILP andAOBF-ILP, respectively.

2 Depth-first and best-first search algorithms using dynamicpartial variable orderings

and exploring the AND/OR tree, denoted byAOBB+PVO-ILP andAOBF+PVO-ILP,

respectively.

3 Depth-first and best-first search algorithms with caching that explore the context min-

imal AND/OR graph and use static variable orderings, denoted by AOBB-C-ILP

andAOBF-C-ILP, respectively.

All of these AND/OR algorithms use asimpleximplementation based on the open-

sourcelp solve 5.5 library to compute the guiding LP relaxation. For this reason, we

compare them against the OR Branch-and-Bound algorithm available from thelp solve

library, denoted byBB. The pseudo tree used by the AND/OR algorithms was constructed

using the hypergraph partitioning heuristic described in Chapter 3.BB, AOBB+PVO-ILP

andAOBF+PVO-ILP used a dynamic variable ordering heuristic based onreduced costs

(i.e., dual values) [95]. Specifically, the next fractional variable to instantiate has the small-

est reduced cost in the solution of the LP relaxation. Ties are broken lexicographically.

We note however that theAOBB-ILP and AOBB-C-ILP algorithms support a re-

stricted form of dynamic variable and value ordering. Namely, there is a dynamic internal

ordering of the successors of the node just expanded, beforeplacing them onto the search

stack. Specifically, in line 33 of Algorithm 10, if the current noden is AND, then the

independent subproblems rooted by its OR children can be solved in decreasing order of

their corresponding heuristic estimates (variable ordering). Alternatively, ifn is OR, then
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its AND children corresponding to domain values can also be sorted in decreasing order of

their heuristic estimates (value ordering).

For reference, we also ran the ILOG CPLEX version 11.0 solver (with default settings),

which uses a best-first control strategy, dynamic variable ordering heuristic based on strong

branching, as well as cutting planes to tighten the LP relaxation. It explores however an

OR search tree.

In the MAX-SAT domain we ran, in addition, three specializedsolvers:

1 MaxSolver [126], a DPLL-based algorithm that uses a 0-1 non-linear integer for-

mulation of the MAX-SAT problem,

2 toolbar [26], a classic OR Branch-and-Bound algorithm that solves MAX-SAT as

a Weighted CSP problem [9], and

3 PBS [2], a DPLL-based solver capable of propagating and learning pseudo-boolean

constraints as well as clauses.

MaxSolver andtoolbar were shown to perform very well on random MAX-SAT

instances with high graph connectivity [26], whereasPBS exhibits better performance on

relatively sparse MAX-SAT instances [126]. These algorithms explore an OR search space.

Throughout our empirical evaluation we will address the following questions that govern

the performance of the proposed algorithms:

1 The impact of AND/OR versus OR search.

2 The impact of best-first versus depth-first AND/OR search.

3 The impact of caching.

4 The impact of dynamic variable orderings.

Measures of Performance.We report CPU time (in seconds) and number of nodes visited
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(which is equivalent to the number of timessimplexwas called to solve the LP relaxation

of the current subproblem). We also specify the number of variables (n), the number of

constraints (c), the depth of the pseudo trees (h) and the induced width of the graphs (w∗)

obtained for each problem instance. The best performance points are highlighted. In each

table, ”-” denotes that the respective algorithm exceeded the time limit. Similarly, ”out”

stands for exceeding the 2GB memory limit.

5.7.1 Combinatorial Auctions

In combinatorial auctions (CA), an auctioneer has a set of goods,M = {1, 2, ...,m} to

sell and the buyers submit a set of bids,B = {B1, B2, ..., Bn}. A bid is a tupleBj =

(Sj, pj), whereSj ⊆ M is a set of goods andpj ≥ 0 is a price. The winner determination

problem is to label the bids as winning or losing so as to maximize the sum of the accepted

bid prices under the constraint that each good is allocated to at most one bid. The problem

can be formulated as a 0-1 ILP, as follows:

max

n
∑

j=1

pjxj (5.8)

s.t.
∑

j|i∈Sj
xj ≤ 1 i ∈ {1..m}

xj ∈ {0, 1} j ∈ {1..n}

Combinatorial auctions can also be formulated as binary Weighted CSPs [9], as de-

scribed in [34]. Therefore, in addition to the 0-1 ILP solvers, we also rantoolbar which

is a specialized OR Branch-and-Bound algorithm that maintains a level of local consistency

calledexistential directional arc-consistency[25].

regions-upv and arbitrary-upv Combinatorial Auctions

Figures 5.5 and 5.6 display the results for experiments withcombinatorial auctions drawn

from theregions-upv(Figure 5.5) andarbitrary-upv(Figure 5.6) distributions of CATS 2.0
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Figure 5.5: Comparing depth-first and best-first AND/OR search algorithms with static
and dynamic variable orderings. CPU time in seconds (top) andnumber of nodes visited
(bottom) for solving combinatorial auctions from theregions-upv distribution with 100
goods and increasing number of bids. Time limit 3 hours.
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Figure 5.6: Comparing depth-first and best-first AND/OR search algorithms with static
and dynamic variable orderings. CPU time in seconds (top) andnumber of nodes visited
(bottom) for solving combinatorial auctions from thearbitrary-upv distribution with 100
goods and increasing number of bids. Time limit 3 hours.
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Figure 5.7: Comparison with CPLEX. CPU time in seconds (top) andnumber of nodes
(bottom) visited for solving combinatorial auctions from theregions-upv distribution with
100 goods and increasing number of bids. Time limit 3 hours.

244



Figure 5.8: Comparison with CPLEX. CPU time in seconds (top) andnumber of nodes
visited (bottom) for solving combinatorial auctions from thearbitrary-upv distribution with
100 goods and increasing number of bids. Time limit 3 hours.
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test suite [75]. Theregions-upvproblem instances simulate the auction of radio spectrum

in which a government sells the right to use specific segmentsof spectrum in different

geographical areas. Thearbitrary-upv problem instances simulate the auction of various

electronic components. The suffixupv indicates that the bid prices were drawn from a

uniformdistribution. We looked at moderate size auctions having 100 goods and increasing

number of bids. The number of bids is also the number of variables in the 0-1 ILP model.

Each data point represents an average over 10 instances drawn uniformly at random from

the respective distribution. The header of each plot in Figures 5.5 and 5.6 shows the average

induced width and depth of the pseudo trees.

AND/OR vs. OR search.When comparing the AND/OR versus OR search regimes, we

observe that both depth-first and best-first AND/OR search algorithms improve consid-

erably over the OR search algorithm,BB, especially when the number of bids increases

and the problem instances become more difficult. In particular, the depth-first and best-

first AND/OR search algorithm using partial variable orderings, AOBB+PVO-ILP and

AOBF+PVO-ILP, are the winners on this domain, among thelp solve based solvers.

For example, on theregions-upvauctions with 400 bids (Figure 5.5),AOBF+PVO-ILP

is on average about 8 times faster thanBB. Similarly, on thearbitrary-upv auctions with

280 bids (Figure 5.6), the difference in running time between AOBB+PVO-ILP andBB

is about 1 order of magnitude. Notice that on theregions-upvdataset,toolbar is out-

performed significantly byBB as well as the AND/OR algorithms. On thearbitrary-upv

dataset,toolbar outperforms dramatically thelp solve based solvers. However, the

size of the search space explored bytoolbar is significantly larger than the ones explored

by the AND/OR algorithms. Therefore,toolbar’s better performance in this case can be

explained by the far smaller computational overhead of the arc-consistency based heuristic

used, compared with the LP relaxation based heuristic.
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AOBB vs. AOBF. When comparing further best-first versus depth-first AND/OR search,

we see thatAOBF-ILP (resp.AOBF+PVO-ILP) improve considerably overAOBB-ILP

(resp.AOBB+PVO-ILP), especially on theregions-upvdataset. The gain observed when

moving from depth-first AND/OR Branch-and-Bound to best-firstAND/OR search is pri-

marily due to the optimal cost, which bounds the horizon of best-first more effectively than

for depth-first search.

Impact of caching. When looking at the impact of caching on AND/OR search, we

notice that the graph search algorithmsAOBB-C-ILP andAOBF-C-ILP expanded the

same number of nodes as the tree search algorithmsAOBB-ILP andAOBF-ILP, respec-

tively (see Figures 5.5 and 5.6). This indicates that, for this domain, the context minimal

AND/OR search graph explored is a tree. Or, the LP relaxationis very accurate in this case

and the AND/OR algorithms only explore a small part of the pseudo tree, for which the

corresponding context-based cache entries are actually dead-caches.

Impact of dynamic variable orderings. We can see that using dynamic variable ordering

heuristics improves the performance of best-first AND/OR search only. For depth-first

AND/OR search, the performance deteriorated sometimes (see for exampleAOBB-ILP

vs.AOBB+PVO-ILP on regions-upvauctions in Figure 5.5).

Comparison with CPLEX. In Figures 5.7 and 5.8 we contrast the results obtained with

CPLEX,toolbar, BB, AOBB+PVO-ILP andAOBF+PVO-ILP on theregions-upv(Fig-

ure 5.7) andarbitrary-npv(Figure 5.8) distributions, respectively. Clearly, we can see that

CPLEX is the best performing solver on these datasets. In particular, it is several orders of

magnitude faster than thelp solve based solvers, especially the baselineBB solver. Its

excellent performance is leveraged by the powerful cuttingplanes engine as well as the pro-

prietary variable ordering heuristic used. Note that on thearbitrary-upvdataset,toolbar
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is competitive with CPLEX only for relatively small number ofbids.

regions-npv and arbitrary-npv Combinatorial Auctions

Figures 5.9 and 5.10 show the results for experiments with combinatorial auctions gener-

ated from theregions-npv(Figure 5.9) andarbitrary-npv(Figure 5.10) distributions of the

CATS 2.0 suite. The bid prices of these auctions were drawn from a normal rather than

the uniform distribution. As before, each data point represents an average over 10 random

instances.

The spectrum of results is similar to what we observed for theregions-upvandarbitrary-

upvauctions. The AND/OR algorithms outperformedBB by a significant margin. Caching

had no impact on these datasets as well, namely the context minimal AND/OR graph ex-

plored was a tree (in Figures 5.9 and 5.10 for example, the curves corresponding to graph

searchAOBB-C-ILP andAOBF-C-ILP overlap with those corresponding to tree search

AOBB-ILP andAOBF-ILP). On thearbitrary-npvdataset,toolbar outperformed again

the lp solve based solvers, indicating that in this case the EDAC heuristic had a far

smaller overhead than the LP based one.

Figures 5.11 and 5.12 show the results obtained with CPLEX on theregions-npv(Figure

5.11) andarbitrary-npv (Figure 5.12) distributions, respectively. Clearly, we cansee that

CPLEX is the best performing solver on these datasets. It is several orders of magnitude

faster than all other ILP solvers. On thearbitrary-npvauctions,toolbar is competitive

with CPLEX only for relatively small number of bids.

5.7.2 Uncapacitated Warehouse Location Problems

In theuncapacitated warehouse location problem(UWLP) a company considers open-

ing m warehouses at some candidate locations in order to supply its n existing stores.

The objective is to determine which warehouse to open, and which of these warehouses

should supply the various stores, such that the sum of the maintenance and supply costs is
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Figure 5.9: Comparing depth-first and best-first AND/OR search algorithms with static
and dynamic variable orderings. CPU time in seconds (top) andnumber of nodes visited
(bottom) for solving combinatorial auctions from theregions-npv distribution with 100
goods and increasing number of bids. Time limit 3 hours.
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Figure 5.10: Comparing depth-first and best-first AND/OR search algorithms with static
and dynamic variable orderings. CPU time in seconds (top) andnumber of nodes visited
(bottom) for solving combinatorial auctions from thearbitrary-npv distribution with 100
goods and increasing number of bids. Time limit 3 hours.
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Figure 5.11: Comparison with CPLEX. CPU time in seconds (top) and number of nodes
visited (bottom) for solving combinatorial auctions from theregions-npv distribution with
100 goods and increasing number of bids. Time limit 3 hours.
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Figure 5.12: Comparison with CPLEX. CPU time in seconds (top) and number of nodes
visited (bottom) for solving combinatorial auctions from thearbitrary-npv distribution with
100 goods and increasing number of bids. Time limit 3 hours.
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minimized. Each store must be supplied by exactly one warehouse. The typical 0-1 ILP

formulation of the problem is as follows:

min

n
∑

j=1

m
∑

i=1

cijxij +
m

∑

i=1

fiyi (5.9)

s.t.
∑m

i=1 xij = 1 ∀j ∈ {1..n}

xij ≤ yi ∀j ∈ {1..n},∀i ∈ {1..m}

xij ∈ {0, 1} ∀j ∈ {1..n},∀i ∈ {1..m}

yi ∈ {0, 1} ∀i ∈ {1..m}

wherefi is the cost of opening a warehouse at locationi andcij is the cost of supplying

storej from the warehouse at locationi.

Tables 5.2 and 5.3 display the results obtained for 30 randomly generated UWLP in-

stances3 with 50 warehouses, 200 and 400 stores, respectively. The warehouse opening

and store supply costs were chosen uniformly randomly between 0 and 1000. These are

large problems with 10,050 variables and 10,500 constraints for theuwlp-50-200 class,

and 20,050 variables and 20,400 constraints for theuwlp-50-400 class, respectively, but

having relatively shallow pseudo trees with depths of 123.

AND/OR vs. OR search.When looking at AND/OR versus OR search, we can see that

in almost all test cases the AND/OR algorithms dominateBB. On theuwlp-50-200-013

instance, for example,AOBF+PVO-ILP causes a speed-up of 186 overBB, exploring a

search tree 1,142 times smaller. Similarly, onuwlp-50-400-001, AOBB+PVO-ILP outper-

formsBB by almost 2 orders of magnitude in terms of running time and size of the search

space explored. On this domain, the best performing algorithm among thelp solve

based solvers is best-firstAOBF+PVO-ILP.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR Branch-and-

3Problem generator from http://www.mpi-sb.mpg.de/units/ag1/projects/benchmarks/UflLib/
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uwlp-50-200 BB (lp solve) AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP
(w*, h) CPLEX AOBF-ILP AOBF+PVO-ILP AOBF-C-ILP
(n=10,050, c=10,500) time nodes time nodes time nodes time nodes
uwlp-50-200-001 48.66 86 69.74 62 25.69 20 69.69 62
(50, 123) 1.73 3 44.45 20 20.25 7 42.84 20
uwlp-50-200-003 33.14 72 48.56 59 18.20 17 48.56 59
(50, 123) 1.36 0 34.89 22 22.56 6 34.09 22
uwlp-50-200-004 61.08 142 46.39 46 17.47 10 46.42 46
(50, 123) 0.80 0 37.58 24 15.49 3 36.27 24
uwlp-50-200-005 1591.89 1,692 404.94 233 125.81 50 405.72 233
(50, 123) 9.91 81 287.64 97 145.53 37 270.99 97
uwlp-50-200-011 256.19 358 233.96 246 78.74 39 233.21 246
(50, 123) 7.97 37 88.22 41 75.83 22 83.75 41
uwlp-50-200-013 13693.76 14,846 116.19 44 78.86 24 116.25 44
(50, 123) 8.94 37 111.28 26 74.53 13 105.72 26
uwlp-50-200-017 711.04 998 123.14 118 18.17 9 124.70 118
(50, 123) 2.15 3 48.06 21 16.84 2 47.77 21
uwlp-50-200-018 1477.74 2,666 161.03 146 59.52 37 161.05 146
(50, 123) 5.74 8 54.58 21 32.33 8 52.41 21
uwlp-50-200-020 2179.39 3,668 190.77 138 68.91 36 190.81 138
(50, 123) 7.47 28 87.58 33 48.33 10 83.70 33
uwlp-50-200-021 3252.60 5,774 609.74 580 37.63 9 608.24 580
(50, 123) 6.66 25 80.55 30 46.80 7 92.08 30
uwlp-50-200-022 50.70 122 49.08 63 17.00 9 49.14 63
(50, 123) 1.84 3 38.39 26 18.17 6 37.34 26
uwlp-50-200-023 205.92 204 102.30 50 43.72 16 102.09 50
(50, 123) 6.05 6 60.70 19 34.16 5 58.50 19
uwlp-50-200-024 2177.67 3,288 125.85 71 28.19 16 125.86 71
(50, 123) 5.52 15 86.64 31 25.89 4 82.27 31
uwlp-50-200-029 14.94 10 55.33 46 15.06 5 53.28 46
(50, 123) 1.59 1 46.56 27 16.33 3 45.36 27
uwlp-50-200-030 21.77 42 127.39 164 15.03 5 127.59 164
(50, 123) 0.95 1 31.52 15 14.09 1 30.64 15

Table 5.2: CPU time in seconds and number of nodes visited for solving UWLP instances
with 50 warehouses 200 stores, respectively. Time limit 10 hours.
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uwlp-50-400 BB (lp solve) AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP
(w*, h) CPLEX AOBF-ILP AOBF+PVO-ILP AOBF-C-ILP
(n=20,050, c=20,400) time nodes time nodes time nodes time nodes
uwlp-50-400-001 13638.55 12,548 743.75 374 106.63 29 743.68 374
(50, 123) 10.76 12 130.03 20 81.63 8 126.39 20
uwlp-50-400-004 820.89 942 1114.47 794 55.10 10 1117.55 794
(50, 123) 6.52 6 126.97 25 51.85 3 123.19 25
uwlp-50-400-005 57532.67 32,626 2719.09 617 247.03 50 2722.26 617
(50, 123) 30.55 58 331.87 36 131.58 8 313.09 36
uwlp-50-400-006 365.93 632 48.41 11 32.31 1 48.44 11
(50, 123) 3.59 0 51.62 8 32.65 1 51.95 8
uwlp-50-400-008 599.49 560 175.60 49 96.66 21 175.67 49
(50, 123) 3.40 0 119.28 13 60.27 3 116.42 13
uwlp-50-400-009 17608.98 17,262 281.02 76 97.00 9 281.30 76
(50, 123) 9.02 6 132.27 14 78.05 2 128.58 14
uwlp-50-400-011 22727.61 22,324 193.91 77 64.28 5 193.89 77
(50, 123) 8.07 7 93.11 12 64.58 4 92.06 12
uwlp-50-400-012 5468.30 4,174 671.90 307 52.22 4 671.77 307
(50, 123) 4.49 0 164.64 32 52.95 2 159.28 32
uwlp-50-400-014 - 524.69 147 248.27 41 522.25 147
(50, 123) 22.15 38 229.88 27 142.83 10 220.64 27
uwlp-50-400-019 459.39 436 85.11 18 41.80 3 85.13 18
(50, 123) 3.90 0 75.52 10 42.28 1 74.83 10
uwlp-50-400-026 232.25 252 182.35 81 59.13 14 182.52 81
(50, 123) 4.04 0 94.13 19 44.05 2 91.89 19
uwlp-50-400-027 10725.29 12,654 699.86 328 78.44 13 698.93 328
(50, 123) 16.57 50 292.28 80 84.70 10 276.21 80
uwlp-50-400-028 32669.82 29,166 508.14 175 127.45 30 507.33 175
(50, 123) 17.16 54 292.03 55 127.44 15 277.33 55
uwlp-50-400-029 22525.77 14,568 721.08 191 260.08 44 720.77 191
(50, 123) 6.91 4 162.83 15 100.96 5 158.68 15
uwlp-50-400-030 133346.24 95,866 1336.26 313 304.42 69 1339.17 313
(50, 123) 19.80 31 787.04 115 240.14 28 741.36 115

Table 5.3: CPU time in seconds and number of nodes visited for solving UWLP instances
with 50 warehouses 400 stores, respectively. Time limit 10 hours.
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Bound search we observe only minor savings in running time in favor of best-first search.

This can be explained by the already small enough search space traversed by the algorithms,

which does not leave room for additional improvements due tothe optimal cost bound

exploited by best-first search.

Impact of caching. When looking at the impact of caching we see again thatAOBB-C-ILP

andAOBF-C-ILP visited the same number of nodes asAOBB-ILP andAOBF-ILP, re-

spectively (see columns 3 and 5 in Tables 5.2 and 5.3). This shows again that the context

minimal AND/OR search graph explored by theAOBB-C-ILP andAOBF-C-ILP algo-

rithms was a tree and therefore all cache entries were dead-caches.

Impact of dynamic variable orderings. We also observe that the dynamic variable order-

ing had a significant impact on performance in this case, especially for depth-first search.

For example, on theuwlp-50-200-021instance,AOBB+PVO-ILP is 16 times faster than

AOBB-ILP and expands 64 times fewer nodes. However, the difference inrunning time be-

tween the best-first search algorithms,AOBF-ILP andAOBF+PVO-ILP, is smaller com-

pared to what we see for depth-first AND/OR search. This is because the search space ex-

plored byAOBF-ILP is already small enough and the savings in number of nodes caused

by dynamic variable orderings cause only minor time savings.

Comparison with CPLEX. When looking at the results obtained with CPLEX (column

2 in Tables 5.2 and 5.3), we notice again its excellent performance in terms of both run-

ning time and size of the search space explored. However, we see that in some cases

AOBF+PVO-ILP actually explored fewer nodes than CPLEX (e.g., uwlp-50-200-021).

This is important because it shows that the relative worse performance ofAOBF+PVO-ILP

versus CPLEX is due mainly to the much slowersimpleximplementation of the former, lack

of cutting planes engine as well as the naive dynamic variable ordering heuristic used.
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5.7.3 MAX-SAT Instances

Given a set of Boolean variables the goal ofmaximum satisfiability (MAX-SAT) is to

find a truth assignment to the variables that violates the least number of clauses. We exper-

imented with problem classespret anddubois from the SATLIB4 library, which were

previously shown to be difficult for 0-1 ILP solvers [26].

MAX-SAT can be formulated as a 0-1 ILP [61] or pseudo-Boolean formula [124, 43].

In the 0-1 ILP model, a Boolean variablev is mapped to an integer variablex that takes

value 1 whenv is True or 0 when it isFalse. Similarly, ¬v is mapped to1 − x. With

these mappings, a clause can be formulated as a linear inequality. For example, the clause

(v1 ∨ ¬v2 ∨ v3) can be mapped tox1 + (1− x2) + x3 ≥ 1. Here, the inequality means that

the clause must be satisfied in order for the left side of the inequality to have a value no less

than one.

However, a clause in a MAX-SAT may not be satisfied, so that thecorresponding in-

equality may be violated. To address this issue, an auxiliary integer variabley is introduced

to the left side of a mapped inequality. Variabley = 1 if the corresponding clause is unsat-

isfied, making the inequality valid; otherwise,y = 0. Since the objective is to minimize the

number of violated clauses, it is equivalent to minimize thesum of the auxiliary variables

that are forced to take value 1. For example,(v1 ∨ ¬v2 ∨ v3), (v2 ∨ v4) can be written as a

0-1 ILP of minimizingz = y1 +y2, subject to the constraints ofx1 +(1−x2)+x3 +y1 ≥ 1

andx2 + (1− x4) + y2 ≥ 1.

pret Instances

Table 5.4 shows the results for experiments with 6pret instances. These are unsatisfiable

instances of graph 2-coloring with parity constraints. Thesize of these problems is rela-

tively small (60 variables with 160 clauses forpret60and 150 variables with 400 clauses

for pret150, respectively).

4http://www.satlib.org/
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pret CPLEX MaxS toolbar AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP
(w*, h) BB (lp solve 5.5) PBS AOBF-ILP AOBF+PVO-ILP AOBF-C-ILP

time nodes time time nodes time nodes time nodes time nodes
pret60-40 676.94 3,926,422 9.47 53.89 7,297,773 7.88 1,255 8.41 1,216 7.38 1,216
(6, 13) - - 0.00 565 7.56 1,202 8.70 1,326 3.58 568
pret60-60 535.05 2,963,435 9.48 53.66 7,297,773 8.56 1,259 8.70 1,247 7.30 1,140
(6, 13) - - 0.00 495 8.08 1,184 8.31 1,206 3.56 538
pret60-75 402.53 2,005,738 9.37 53.52 7,297,773 6.97 1,124 6.80 1,089 6.34 1,067
(6, 13) - - 0.00 543 7.38 1,145 8.42 1,149 3.08 506
pret150-40 out - - - 95.11 6,625 108.84 7,152 75.19 5,625
(6, 15) - - 0.02 2,592 101.78 6,535 101.97 6,246 19.70 1,379
pret150-60 out - - - 98.88 6,851 112.64 7,347 78.25 5,813
(6, 15) - - 0.01 2,873 106.36 6,723 102.28 6,375 19.75 1,393
pret150-75 out - - - 108.14 7,311 115.16 7,452 84.97 6,114
(6, 15) - - 0.02 2,898 98.95 6,282 103.03 6,394 20.95 1,430

Table 5.4: CPU time in seconds and number of nodes visited for solving pret MAX-SAT
instances. Time limit 10 hours.

AND/OR vs. OR search.When comparing AND/OR versus OR search we see again that

the AND/OR algorithms improved dramatically overBB. For instance, on thepret150-75

network,AOBB-ILP finds the optimal solution in less than 2 minutes, whereasBB exceeds

the 10 hour time limit. Similarly,MaxSolver andtoolbar could not solve the instance

within the time limit. Overall,PBS offers the best performance on this dataset.

AOBB vs. AOBF. The best-first AND/OR search algorithms improve sometimes consid-

erably over the depth-first ones, especially when exploringan AND/OR graph (e.g., see

AOBF-C-ILP versusAOBB-C-ILP in the leftmost column of Table 5.4). Moreover, the

search space explored byAOBF-C-ILP appears to be the smallest. This indicates that the

computational overhead ofAOBF-C-ILP is mainly due to evaluating its guiding lower

bounding heuristic evaluation function.

Impact of caching. When looking at the depth-first AND/OR Branch-and-Bound graph

search algorithm we only observe minor improvements due to caching. This is probably

because most of the cache entries were actually dead-caches. On the other hand, best-first

AOBF-C-ILP exploits the relatively small size of the context-minimal AND/OR graph
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(i.e., in this case the problem structure is captured by a very small context with size 6 and

a shallow pseudo tree with depth 13 or 15) and achieves the best performance among the

ILP solvers.

Impact of dynamic variable orderings. We also see that the dynamic variable ordering

did not have an impact on search performance for both depth-first and best-first algorithms.

Comparison with CPLEX. Both depth-first and best-first AND/OR search algorithms

outperformed dramatically CPLEX on this dataset. On thepret60-40instance, for exam-

ple,AOBF-C-ILP is 2 orders of magnitude faster than CPLEX. Similarly, onpret150-40,

CPLEX exceeded the memory limit.

dubois Instances

Figure 5.13 displays the results for experiments with random duboisinstances with increas-

ing number of variables. These are unsatisfiable 3-SAT instances with3×degree variables

and8 × degree clauses, each of them having 3 literals. As in the previous test case, the

duboisinstances have very small contexts of size 6 and shallow pseudo trees with depths

ranging from 10 to 20.

AND/OR vs. OR search.As before, we see that the AND/OR algorithms are far superior

to BB, which could not solve any of the test instances within the 3 hour time limit. PBS is

again the overall best performing algorithm, however it failed to solve 4 test instances: on

instancedubois130, for which degree = 130, it exceeded the 3 hour time limit, whereas

on instancesdubois180, dubois200and dubois260the clause/pseudo-boolean constraint

learning mechanism caused the solver to run out of memory. Wenote thatMaxSolver

andtoolbar were not able to solve any of the test instances within the time limit.
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Figure 5.13: Comparing depth-first and best-first AND/OR search algorithms with static
and dynamic variable orderings. CPU time in seconds (top) andnumber of nodes vis-
ited (bottom) for solvingdubois MAX-SAT instances. Time limit 3 hours. CPLEX,BB,
toolbar andMaxSolverwere not able to solve any of the test instances within the time
limit.
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AOBB vs. AOBF. Best-first search outperforms again depth-first search, especially when

exploring the AND/OR graph. However, the depth-first tree search algorithmsAOBB-ILP

andAOBB+PVO-ILP were better than the best-first tree search counterparts in this case.

This was probably caused by the internal dynamic variable ordering used byAOBB-ILP

andAOBB+PVO-ILP to solve independent subproblems rooted at the AND nodes in the

search tree.

Impact of caching. We can see thatAOBF-C-ILP takes full advantage of the relatively

small context minimal AND/OR search graph and, on some of thelarger instances, it out-

performs its ILP competitors with up to one order of magnitude in terms of both running

time and number of nodes expanded. On this dataset,AOBF-C-ILP explores the small-

est search space, but its computational overhead does not pay off in terms of running time

when compared withPBS. The impact of caching on AND/OR Branch-and-Bound is not

that pronounced as for best-first search.

Impact of dynamic variable orderings. The dynamic variable ordering had a minor im-

pact on depth-first AND/OR search only (e.g., seeAOBB+PVO-ILP versusAOBB-ILP in

Figure 5.13).

Comparison with CPLEX. The performance of CPLEX was quite poor on this dataset

and could not solve any of the test instances within the time limit.

5.8 Conclusion to Chapter 5

The chapter investigates the impact of the AND/OR search spaces perspective to solving

optimization problems from the class of 0-1 Integer Linear Programs. In Chapters 3 and 4

we showed that the AND/OR search paradigm can improve general constraint optimization
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algorithms. Here, we demonstrate empirically the benefit ofAND/OR search to 0-1 ILPs.

Specifically, we extended and evaluated the depth-first and best-first AND/OR search al-

gorithm traversing the AND/OR search tree or context minimal AND/OR graph to solving

0-1 ILPs. We also extended the algorithms with dynamic variable ordering strategies. Our

empirical evaluation demonstrated on a variety of benchmark problems that the AND/OR

search algorithms outperform the classic depth-first OR Branch-and-Bound sometimes by

several orders of magnitude. We summarize next the most important factors influencing

performance, including dynamic variable orderings, caching, as well as the search control

strategy (e.g., depth-first versus the best-first).

• Depth-first versus best-first search.Our results showed that the AND/OR search

algorithms using a best-first control strategy and traversing either an AND/OR search

tree or graph were able, in many cases, to improve considerably over the depth-first

search ones (e.g., combinatorial auctions from Figures 5.5 and 5.9,duboisMAX-

SAT instances from Figure 5.13).

• Impact of caching. For problems with relatively small contexts (treewidth), the

memory intensive best-first AND/OR search algorithms were shown to outperform

dramatically the corresponding tree search algorithms (e.g., duboisMAX-SAT in-

stances from Figure 5.13). The impact of caching on the depth-first AND/OR Branch-

and-Bound search algorithms was less prominent on these types of problems (e.g.,

pret andduboisMAX-SAT instances from Table 5.4 and Figure 5.13, respectively)

probably because most of the cache entries were dead-caches. For problems with

very large contexts (e.g., combinatorial auctions from Figures 5.5 and 5.9, UWLP

instances from Tables 5.2 and 5.3) the context minimal AND/OR graph explored

was a tree, and therefore caching had no impact.

• Impact of dynamic variable orderings. The AND/OR search approach was already

shown to be powerful when used in conjunction with dynamic variable ordering
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schemes in Chapter 3. Here, for 0-1 ILPs we also show that the AND/OR Branch-

and-Bound with partial variable orderings sometimes outperformed the AND/OR

Brach-and-Bound restricted to a static variable ordering by one order of magnitude

(e.g., UWLP instances from Tables 5.2 and 5.3). Similarly, best-first AND/OR search

with partial variable orderings improved considerably over its counterpart using a

static ordering (e.g., combinatorial auctions from Figures 5.5 and 5.9).

• AND/OR solvers versus CPLEX.Our current implementation of the depth-first and

best-first AND/OR search is far from being fully optimized with respect to commer-

cial 0-1 ILP solvers such as CPLEX, as it relies on an open source implementation

of the simplexalgorithm, as well as a naive dynamic variable ordering heuristic.

Nevertheless, we demonstrated that on selected classes of 0-1 ILPs the AND/OR al-

gorithms outperformed CPLEX in terms of both the number of nodes explored (e.g.,

UWLP instances from Tables 5.2 and 5.3) and CPU time (e.g., pret MAX-SAT

instances from Table 5.4).
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Chapter 6

AND/OR Multi-Valued Decision

Diagrams for Constraint Optimization

6.1 Introduction

The compilation of graphical models, including constraintand probabilistic networks, has

recently been under intense investigation. Compilation techniques are useful when an ex-

tended off-line computation can be traded for fast real-time answers. Typically, a tractable

compiled representation of the problem is desired. Since the tasks of interest are in general

NP-hard, this is not always possible in the worst case. In practice, however, it is often the

case that the compiled representation is much smaller than the worst case bound, as was

observed for Ordered Binary Decision Diagrams (OBDDs) [13] which are extensively used

in hardware and software verification.

In the context of constraint networks, compilation schemesare very useful for inter-

active solving or product configuration type problems [45, 52]. These are combinatorial

problems where a compact representation of the feasible setof solutions is necessary. The

system has to becomplete(to represent all set of solutions),backtrack-free(to never en-

counter dead-ends) andreal-time(to provide fast answers).
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Contribution

In this chapter we present a compilation scheme for constraint optimization, which has been

of interest recently in the context of post-optimality analysis [53]. Our goal is to obtain a

compact representation of the set of optimal solutions. Ourapproach is based on three

main ideas: (1) AND/OR search spaces for graphical models [38]. Their key feature is the

exploitation of problem structure during search, sometimes yielding exponential improve-

ment over structure-blind search methods. (2) Branch-and-Bound search for optimization,

applied to AND/OR search spaces [79, 82]. (3) Reduction rulessimilar to OBDDs, that

lead to the compilation of the search algorithm trace into anAND/OR Multi-Valued Deci-

sion Diagram (AOMDD) [89].

The novelty over previous results consists in: (1) The treatment of general weighted

graphs based on cost functions, rather than constraints. (2) A top down search based ap-

proach for generating the AOMDD, rather than Variable Elimination based as in [89]. (3)

Extensive experimental evaluation that proves the efficiency of the weighted AOMDD. We

show that the compilation scheme can often be accomplished relatively efficiently and that

we sometimes get a substantial reduction beyond the initialtrace of state-of-the-art search

algorithms.

The research presented in this chapter is based in part on [107].

Chapter Outline

The chapter is structured as follows. Sections 6.2 and 6.3 provide background on Ordered

Binary Decision Diagrams and AND/OR Multi-Valued Decision Diagrams. In Section 6.4

we present the new search based compile algorithm for the optimal solution set to a COP.

Section 6.5 is dedicated to an extensive empirical evaluation that proves the efficiency of the

AOMDD data-structure for optimization, while Section 6.6 provides concluding remarks.
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Figure 6.1: Boolean function representations

6.2 Review of Binary Decision Diagrams

Decision diagrams are widely used in many areas of research to represent decision pro-

cesses. In particular, they can be used to represent functions. Due to the fundamental

importance of Boolean functions, a lot of effort has been dedicated to the study ofBinary

Decision Diagrams(BDDs), which are extensively used in formal verification [18, 92].

A BDD is a representation of a Boolean function. GivenB = {0, 1}, a Boolean function

f : Bn → B, hasn arguments,X1, · · · , Xn, which are Boolean variables, and takes

Boolean values. A Boolean function can be represented by a table (see Figure 6.1(a)), but

this is exponential inn, and so is the binary tree representation in Figure 6.1(b). The goal is

to have a compact representation, that also supports efficient operations between functions.

Ordered Binary Decision Diagrams(OBDDs) [13] provide such a framework by imposing

the same order to the variables along each path in the binary tree, and then applying the

following two reduction rules exhaustively: (1)isomorphism: merge nodes that have the

same label and the same respective children; (2)redundancy: eliminate nodes whose low

(zero) and high (one) edges point to the same node, and connect the parent of removed

node directly to the child of removed node.

Example 23 Figure 6.2(a) shows the binary tree from Figure 6.1(c) after the isomorphic

terminal nodes (leaves) have been merged. The highlighted nodes, labeled with C, are also

isomorphic, and Figure 6.2(b) shows the result after they aremerged. Now, the highlighted

nodes labeled with C and B are redundant, and removing them gives the OBDD in Figure
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6.2(c).

6.3 Weighted AND/OR Multi-Valued Decision Diagrams

The context minimal AND/OR graph described in Chapter 4 offers an effective way of

identifying some unifiable nodes during the execution of thesearch algorithm. However,

merging based on context is not complete,i.e. there may still be unifiable nodes in the

search graph that do not have identical contexts. The context-based merging uses only

information available from the ancestors in the pseudo tree. If all the information from the

descendants would also be available, it could lead to the identification of more unifiable

nodes. This comes at a higher cost, however, since information from descendants in the

pseudo tree means that the entire associated subproblem hasto be solved. Orthogonal to the

problem of unification, some of the nodes in an AND/OR search graph may be redundant,

for example when the set of solutions rooted at variableXi is not dependent on the specific

value assigned toXi.

The above criteria suggest that once an AND/OR search graph is available (e.g., after

search terminates, and its trace is saved) reduction rules based onisomorphismandredun-

dancy(similar to OBDDs) can be applied further, reducing the size of the AND/OR search

graph that was explicated by search. In order to apply the reduction rules, it is convenient

to group each OR node and its children into ameta-node[89]:
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DEFINITION 44 (meta-node)A meta-nodev in a weighted AND/OR search graph consists

of an OR node labeledvar(v) = Xi and its ki AND children labeledxi1 , ..., xiki
that

correspond to its value assignments. Each AND node labeledxij points to a list of child

meta-nodes,u.childrenj, and also stores the weightw(Xi, xij).

The reduction rules are straightforward. Two meta-nodes are isomorphicif they have

the same variable label and the same respective lists of children and weights. A meta-node

is redundantif all its lists of children and weights are respectively identical. Formally,

DEFINITION 45 (isomorphic meta-nodes)Given a weighted AND/OR search graphG rep-

resented with meta-nodes, two meta-nodesu and v havingvar(u) = var(v) = X and

|D(X)| = k are isomorphic iff:

1. u.childreni = v.childreni, ∀i ∈ {1, ..., k} and

2. wu(X, xi) = wv(X, xi), ∀i ∈ {1, ..., k}, wherewu, wv are the weights ofu andv,

respectively).

DEFINITION 46 (redundant meta-node)Given a weighted AND/OR search graphG rep-

resented with meta-nodes, a meta-nodeu with var(u) = X and |DX | = k is redundant

iff:

1. u.children1 = ... = u.childrenk and

2. w(X, x1) = ... = w(X, xk).

When reduction rules are applied exhaustively to an AND/OR search graph, the result is

an AND/OR Multi-Valued Decision Diagram (AOMDD). The AOMDDdata structure for

constraint networks (where weights are all 1) was introduced in [89], along with a Variable

Elimination type algorithm to generate it, based on theapplyoperator, similar to the OBDD

case.
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DEFINITION 47 (AOMDD) An AND/OR Multi-Valued Decision Diagram (AOMDD) is a

weighted AND/OR search graph that is completely reduced by isomorphic merging and

redundancy removal, namely:

1. it contains no isomorphic meta-nodes; and

2. it contains no redundant meta-nodes.

An example of a AOMDD appears in Figure 6.4(b), representingthe exhaustive reduc-

tion of the context minimal AND/OR graph in Figure 6.4(a). The terminal nodes labeled

with 0 and1 denote inconsistent and consistent assignments, respectively. The AOMDD

can be understood as a collection of MDDs (Multi-Valued Decision Diagrams, based on a

chain pseudo tree), each based on a path in the underlying pseudo tree, and synchronized on

their common variables. In this example,f1 is identical to the function in Figure 6.1(a), and

the portion of the AOMDD corresponding to variablesA,B,C is identical to the OBDD

in Figure 6.2(c). This is also because whenA = 1, B is redundant forf2 andf3, so the

common portion of the OBDDs corresponding toABC andABDE (namely that onAB is

the same). Note that whenA = 1,B is redundant and its common list of children becomes

the list of children forA = 1, namely the problem already splits into two independent

components afterA = 1, even though this can not be read from the pseudo tree in Figure

6.3(c).

6.4 Using AND/OR Search to Generate AOMDDs

In this section we extend the AOMDD to the case of weighted graphs which captures

a COP. We also propose a generation algorithm based on AND/OR Branch-and-Bound

search with context based caching. More specifically, we arenot interested in an AOMDD

that represents all consistent assignments, but rather in one that represents only the optimal

assignments (solutions of a COP).
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We next define the AOMDD describing the set of optimal solutions to a COP and present

a general scheme for generating these compiled data-structures.

DEFINITION 48 Given a set of tuplesS over variablesX and a treeT overX, T expresses

S iff there exists an AND/OR tree guided byT that expresses all and only tuples inS.

It can be shown that:

PROPOSITION3 If T is a pseudo tree of a COPP, thenT can be used to expressSopt, the

set of optimal solutions ofP.

Proof. Let T be a pseudo tree with rootX and two child nodesY andZ, respectively.

Assume thatSopt contains two optimal solutions associated with the tuples(X = x, Y =

y, Z = x) and(X = x, Y = y1, Z = x1), respectively. The AND/OR tree relative toT that

expressesSopt, ST , contains the AND node〈X, x〉 with two OR child nodes labeledY and

Z, each of them with two AND children, namely{〈Y, y〉, 〈Y, y1〉} and{〈Z, z〉, 〈Z, z1〉},

respectively. Yet, the tuples(X = x, Y = y, Z = z1) and(X = x, Y = y1, Z = z) are not

optimal solutions, while the AND/OR tree expresses them. This is a contradiction since

ST , by definition, expresses only optimal solutions.�

Therefore, the following is well defined:

DEFINITION 49 Given a COPP, its set of optimal solutionsSopt and a pseudo treeT of

P, its AOMDDopt
T is the AOMDD that expresses all and onlySopt relative toT .

The target is to generate AOMDDopt
T of a COP. The idea is to use a pseudo treeT that can

express all solutions and explore a subset of its context minimal AND/OR graph,GT that

contains all the optimal solutions and then process it so that it will represent only optimal

solutions and be completely reduced relative to isomorphism and redundancy. Therefore,

any search algorithm for optimal solutions that explores the context minimal graph can be
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used to generate the initial trace. The better the algorithmwe use, the more efficient the

procedure would be because the initial trace will be tight around the context minimal graph

that is restricted to the optimal solutions.

6.4.1 The Search Based Compile Algorithm

The compilation algorithm, calledAOBB-COMPILE, is described in Algorithm 13. It ex-

tends the AND/OR Branch-and-Bound algorithm with context based caching (AOBB-C)

described in Chapter 4 by compiling the trace of the search into an AND/OR Multi-Valued

Decision Diagram representing all optimal solutions to theinput COP instance.

The algorithm is based on two mutually recursive steps, similar toAOBB-C: EXPAND

and PROPAGATE which call each other until the search terminates. The fringe of the

search is maintained by a stack calledOPEN. The current node isn, its parentp, and the

current pathπn. The children of the current node in the AND/OR search graph are denoted

by succ(n). The AND/OR decision diagram being constructed is denoted by AOMDD.

Each nodeu in the AND/OR search graph has a pointer, denoted byu.metanode, to the

corresponding meta-node in AOMDD.

In the EXPAND step, when the current OR noden is expanded,AOBB-COMPILE cre-

ates a new meta-node corresponding ton and adds it to AOMDD. Ifn is already present

in cache, thenAOBB-COMPILE ensures that the meta-node corresponding ton’s parent in

the context minimal search graph points to the meta-node that was created whenn was first

expanded.

In the PROPAGATE step when node values are propagated backwards, the algorithm

also attempts to reduce the diagram by removing isomorphic meta-nodes. Specifically,

if n is the current OR node being evaluated and if there exists a meta-nodem which is

isomorphic withn.metanode, then the parents ofn.metanode in the AOMDD are updated

to point tom instead ofn.metanode, which is then removed from the diagram. Every

meta-node in AOMDD also records the optimal cost solution tothe problem below it.
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Algorithm 13 : AOBB-COMPILE
Data: A COP instanceP = 〈X,D,F〉, pseudo-treeT , roots, heuristic functionfh.
Result: AOMDD containing the optimal solutions toP .
v(X1)←∞; OPEN ← {X1};AOMDD ← ∅; // Initialize1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN3
let πn be the assignment along the path from the root ton4
if n is an OR node, labeledXi then // EXPAND5

if Cache(n, context(Xi)) 6= ∅ then6
v(n)← Cache(n, context(Xi))7
succ(n)← ∅8
let p = 〈Xj , xj〉 be the AND parent ofn in the AND/OR search graph9
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {n.metanode}10

else11
succ(n)← {〈Xi, xi〉|〈Xi, xi〉 is consistent withπn}12
for 〈Xi, xi〉 ∈ succ(n) do13

v(〈Xi, xi〉)← 0; h(〈Xi, xi〉)← heuristic(Xi,xi)14
w(Xi, xi)←

∑

f∈F,Xi∈scope(f) f(πn)15

create a new meta-nodem for Xi and add it to AOMDD16
let p = 〈Xj , xj〉 be the AND parent ofn in the AND/OR search graph17
p.metanode.childrenxj

← p.metanode.childrenxj
∪ {m}18

Add succ(n) on top ofOPEN19

else ifn is an AND node, labeled〈Xi, xi〉 then20
for a ∈ ancestors(Xi, xi) do21

if (a is OR)and (f(Ta) > v(a)) then22
n.deadend← true23
n.metanode.childrenxi

← UNSOLV ED24
break25

if n.deadend == false then26
succ(n)← {Xj |Xj ∈ childrenT (Xi)}27
v(Xj)←∞; h(Xj)← heuristic(Xj)28
Add succ(n) on top ofOPEN29
if succ(n) == ∅ then30

n.metanode.childrenxi
← SOLV ED31

while succ(n) == ∅ do // PROPAGATE32
let p be the parent ofn33
if n is an OR node, labeledXi then34

if Xi == X1 then // Search is complete35
return AOMDD36

Cache(n, context(Xi))← v(n)37
v(p)← v(p) + v(n)38
n.metanode.value← v(n)39
if findIsomorphism(n.metanode) == true then40

let m be the meta-node isomorphic withn.metanode41
redirect the links ofn.metanode’s parents in AOMDD to point tom42
AOMDD ← AOMDD − {n.metanode}43

if n is an AND node, labeled〈Xi, xi〉 then44
v(p)← min(v(p), w(Xi, xi) + v(n))45

removen from succ(p)46
n← p47

The compiled AOMDD may contain sub-optimal solutions that were visited during the

Branch-and-Bound search but were not pruned. Therefore, a second pass over the decision

diagram is necessary to remove any path which does not appearin any optimal solution.
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Specifically,AOBB-COMPILE traverses the AOMDD in a depth-first manner and, for every

meta-nodeu along the current path from the root, it prunesu.childrenj from the diagram if

(
∑

u′∈u.childrenj
v(u′)+w(Xi, xij)) > v(u), namely the optimal cost solution to the problem

below thej child of u is not better than the optimal cost atu.

THEOREM 13 Given a COP instanceP = 〈X,D,F〉 and a pseudo treeT of P, the

AOMDD generated byAOBB-COMPILE alongT is AOMDDopt
T .

Proof. Follows immediately from Proposition 3.�

The complexity ofAOBB-COMPILE is bounded time and space by the trace generated,

which isO(n · exp(w∗)). However, the heuristic evaluation function used by the AND/OR

Branch-and-Bound typically restricts the trace far below this complexity bound.

6.5 Experiments

In this section we evaluate empirically the compilation scheme on two common classes

of optimization problems: Weighted CSPs (WCSP) [9] and 0-1 Integer Linear Programs

(0-1 ILP) [95]. In our experiments we compiled the search trace relative to isomorphic

meta-nodes only, without removing redundant nodes. Also wedid not perform the second

top-down pass over the diagram to remove additional sub-optimal solutions.

6.5.1 Weighted CSPs

We consider the compilation algorithm based on the AND/OR Branch-and-Bound algo-

rithm with pre-compiled mini-bucket heuristics and full caching introduced in Chapter 4

and denoted byAOBB-C+SMB(i). The parameteri represents the mini-bucketi-bound

and controls the accuracy of the heuristic.
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Figure 6.5: The trace of AND/OR Branch-and-Bound search (#cm)versus the AOMDD
size (#aomdd) for the SPOT5 networks. Compilation time limit1 hour.
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AOBB-C+SMB(i)

iscas n w* i=10 i=12 i=14 i=16
c h time #cm #aomdd time #cm #aomdd time #cm #aomdd time #cm #aomdd

s386 172 19 0.50 2,420 811 0.17 1,132 558 0.21 527 360 0.38 527 360
172 44 ratio = 2.98 ratio = 2.03 ratio = 1.46 ratio = 1.46

s953 440 66 - - 981.20 186,658 37,084 22.46 22,053 9,847
464 101 ratio = 5.03 ratio = 2.24

s1423 748 24 21.12 21,863 9,389 7.47 13,393 6,515 5.09 10,523 6,043 2.01 5,754 4,316
751 54 ratio = 2.33 ratio = 2.06 ratio = 1.74 ratio = 1.33

s1488 667 47 250.18 83,927 20,774 4.48 15,008 3,929 10.72 23,872 5,375 5.54 5,830 3,246
667 67 ratio = 4.04 ratio = 3.82 ratio = 4.44 ratio = 1.80

s1494 661 48 138.61 63,856 18,501 387.73 125,030 22,393 37.78 31,355 11,546 39.75 30,610 12,467
661 69 ratio = 3.45 ratio = 5.58 ratio = 2.72 ratio = 2.46

c432 432 27 1867.49 395,766 41,964 1.29 7,551 4,024 1.30 7,112 3,693 0.74 1,120 881
432 45 ratio = 9.43 ratio = 1.88 ratio = 1.93 ratio = 1.27

c499 499 23 363.78 93,936 33,157 6.66 12,582 7,051 271.26 88,131 23,502 16.75 17,714 9,536
499 74 ratio = 2.83 ratio = 1.78 ratio = 3.75 ratio = 1.86

Table 6.1: CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm)
and the AOMDD size (#aomdd) for the ISCAS’89 circuits. Compilation time limit 1 hour.

For each test instance we report the number of OR nodes in the context minimal AND/OR

search graph (#cm) visited byAOBB-C+SMB(i), and the number of meta-nodes in the re-

sulting AND/OR decision diagram (#aomdd), as well as their ratio defined asratio =

#cm

#aomdd
. In some cases we also report the compilation time. We recordthe number of

variables (n), maximum domain size (d), the number of constraints (c), the depth of the

pseudo-trees (h) and the induced width of the graphs (w∗) obtained for the test instances.

The pseudo trees were generated using the min-fill heuristicdescribed in Chapter 3.

Earth Observing Satellites

Figure 6.5 displays the results for experiments with 6 SPOT5networks described in Chap-

ter 3. Each subgraph depicts the trace ofAOBB-C+SMB(i) and the size of the resulting

AND/OR decision diagram as a function of thei-bound of the mini-bucket heuristic. For

comparison, we also include the results obtained with the ORversion of the compilation

scheme that explores the traditional OR search space.

We observe that the resulting AOMDD is substantially smaller than the context minimal

AND/OR graph traversed byAOBB-C+SMB(i), especially for relatively smalli-bounds

that generate relatively weak heuristic estimates. For instance, on the408 network, we

were able to compile an AOMDD 11 times smaller than the AND/ORsearch graph ex-

plored byAOBB-C+SMB(8). As thei-bound increases, the heuristic estimates become
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AOBB-C+SMB(i)

planning n w* i=6 i=8 i=10 i=12
c h time #cm #aomdd time #cm #aomdd time #cm #aomdd time #cm #aomdd

bwt3ac 45 16 77.45 28,558 12,152 45.76 22,475 11,106 8.92 3,878 2,537 99.00 1,775 1,252
d=11 301 34 ratio = 2.35 ratio = 2.02 ratio = 1.53 ratio = 1.42
bwt3bc 45 11 54.22 23,560 10,544 29.62 18,734 9,422 8.61 3,455 2,243 85.73 1,599 1,141
d=11 301 33 ratio = 2.23 ratio = 1.99 ratio = 1.54 ratio = 1.40
bwt3cc 45 19 32.55 19,643 9,122 20.03 15,696 8,149 8.51 3,113 2,046 85.57 935 731
d=11 301 42 ratio = 2.15 ratio = 1.93 ratio = 1.52 ratio = 1.28
depot01ac 66 14 1.45 7,420 2,504 0.73 4,056 1,995 0.42 1,214 830 1.48 506 432
d=5 298 33 ratio = 2.96 ratio = 2.03 ratio = 1.46 ratio = 1.17
depot01bc 66 14 1.31 7,068 2,358 0.55 3,333 1,641 0.39 1,316 886 1.47 514 432
d=5 298 33 ratio = 3.00 ratio = 2.03 ratio = 1.49 ratio = 1.19
depot01cc 66 14 1.36 7,156 2,411 0.82 4,333 2,196 0.38 1,262 841 1.47 269 219
d=5 298 33 ratio = 2.97 ratio = 1.97 ratio = 1.50 ratio = 1.23

i=2 i=4 i=6 i=8

driverlog01ac 71 9 1.37 7,490 2,134 0.41 3,143 1,412 0.05 279 237 0.10 451 331
d=4 271 38 ratio = 3.51 ratio = 2.23 ratio = 1.18 ratio = 1.36
driverlog01bc 71 9 1.36 7,447 2,128 0.42 3,098 1,389 0.04 231 210 0.07 247 212
d=4 271 38 ratio = 3.50 ratio = 2.23 ratio = 1.10 ratio = 1.17
driverlog01cc 71 9 1.61 7,741 2,185 0.10 883 622 0.04 279 237 0.07 295 239
d=4 271 38 ratio = 3.54 ratio = 1.42 ratio = 1.18 ratio = 1.23
mprime03ac 49 9 2.12 7,172 1,562 0.66 3,343 863 0.11 595 386 0.16 111 94
d=10 185 23 ratio = 4.59 ratio = 3.87 ratio = 1.54 ratio = 1.18
mprime03bc 49 9 2.07 7,266 1,573 0.68 3,486 849 0.12 641 396 0.10 111 94
d=10 185 23 ratio = 4.62 ratio = 4.11 ratio = 1.62 ratio = 1.18
mprime03cc 49 9 1.47 5,469 1,391 0.45 2,336 721 0.12 534 366 0.10 111 94
d=10 185 23 ratio = 3.93 ratio = 3.24 ratio = 1.46 ratio = 1.18

Table 6.2: CPU time in seconds, the trace of AND/OR Branch-and-Bound search (#cm)
and the AOMDD size (#aomdd) for the planning instances. Compilation time limit 1 hour.

stronger and they are able to prune the search space significantly. In consequence, the dif-

ference in size between the AOMDD and the AND/OR graph explored decreases. When

looking at the OR versus the AND/OR compilation schemes, we notice that AOMDD is

smaller than the OR MDD, for all reportedi-bounds. On some of the harder instances, the

OR compilation scheme did not finish within the 1 hour time limit (e.g.,408, 505).

ISCAS’89 Benchmark Circuits

Table 6.1 shows the results for experiments with 7 WCSPs derived from the ISCAS’89

circuits described in Chapter 3. The columns are indexed by the mini-bucketi-bound. We

observe again that the difference in size between the resulting AOMDD and the AND/OR

search graph explored byAOBB-C+SMB(i) is more prominent for relatively smalli-

bounds. For example, on thec432 circuit and ati = 10, the AOMDD is about 9 times

smaller than the corresponding AND/OR graph.
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Planning Instances

We also experimented with problems from planning in temporal and metric domains1.

These instances were converted into binary WCSPs as follows: each fluent of the plan-

ning graph is represented by a variable with domain values representing possible actions

to produce this fluent. Hard binary constraints represent mutual exclusions between fluents

and actions, and activity edges in the graph. Soft unary constraints represent action costs.

The goal is to find a valid plan which minimizes the sum of the action costs.

Table 6.2 shows the results for experiments with 12 planningnetworks. On this domain

we only observe minor differences between the size of the compiled AOMDD and the

corresponding AND/OR search graph. This is due to very accurate mini-bucket heuristics

which cause the AND/OR Branch-and-Bound to avoid expanding nodes that correspond to

solutions whose cost is above the optimal one.

6.5.2 0-1 Integer Linear Programs

We consider the AND/OR Branch-and-Bound algorithm developedin Chapter 5 and de-

noted byAOBB-C-ILP, as the basis for our AND/OR compilation scheme. The heuristic

evaluation function used byAOBB-C-ILP is computed by solving the linear relaxation of

the current subproblem with thesimplexmethod [23] (our code used the implementation

from the open source librarylp solve 5.52).

MIPLIB Instances

MIPLIB is a library of Mixed Integer Linear Programming instances that is commonly

used for benchmarking integer programming algorithms. Forour purpose we selected four

0-1 ILP instances of increasing difficulty. Table 6.3 reports a summary of the experiment.

We observe that the AOMDD is much smaller than the corresponding AND/OR search

1http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS
2Available at http://lpsolve.sourceforge.net/5.5/)
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miplib (n, c) (w*, h) time #cm #aomdd ratio
p0033 (33, 15) (19, 21) 0.52 441 164 2.69
p0040 (40, 23) (19, 23) 0.36 129 77 1.66
p0201 (201, 133) (120, 142) 89.44 12,683 5,499 2.31
lseu (89, 28) (57, 68) 454.79 109,126 21,491 5.08

Table 6.3: The trace of AND/OR Branch-and-Bound search (#cm) versus the AOMDD size
(#aomdd) for the MIPLIB instances. Compilation time limit 1 hour.

graph, especially for harder problems where the heuristic function is less accurate. For

example, on thelseu instance, the compiled AOMDD has about 5 times fewer nodes than

the AND/OR search graph explored byAOBB-C-ILP.

Combinatorial Auctions

Figure 6.6 shows results for experiments with combinatorial auctions drawn from theregions-

upv and regions-npvdistribution of the CATS 2.0 test suite [75] (see also Chapter 5for

additional details). The suffixesnpv andupv indicate that the bid prices were drawn from

either a normal or uniform distribution. These problem instances simulate the auction of ra-

dio spectrum in which a government sells the right to use specific segments of spectrum in

different geographical areas. We looked at auctions with 100 goods and increasing number

of bids. Each data point represents an average over 10 randominstances. For comparison,

we also included results obtained with the OR compilation scheme. On this domain, we

observe that the compiled AOMDD improves only slightly overthe size of the AND/OR

search graph. This is because the context minimal AND/OR graph explored is already

compact enough due to very accurate heuristic estimates.

MAX-SAT Instances

Table 6.4 shows the results for experiments with 8pret instances (see also Chapter 5

for additional details). These are unsatisfiable instancesof graph 2-coloring with parity

constraints. The size of these problems is relatively small(60 variables with 160 clauses
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Figure 6.6: The trace of AND/OR Branch-and-Bound search versus the AOMDD size for
theregions-upv(top) andregions-npv(bottom) combinatorial auctions.

pret (w*, h) time #cm #aomdd ratio
pret60-25 (6, 13) 2.74 593 255 2.33
pret60-40 (6, 13) 3.39 698 256 2.73
pret60-60 (6, 13) 3.31 603 222 2.72
pret60-75 (6, 13) 2.70 565 253 2.23
pret150-25 (6, 15) 18.19 1,544 851 1.81
pret150-40 (6, 15) 29.09 2,042 922 2.21
pret150-60 (6, 15) 30.09 2,051 877 2.34
pret150-75 (6, 15) 29.08 2,033 890 2.28

Table 6.4: The trace of AND/OR Branch-and-Bound search (#cm) versus the AOMDD size
(#aomdd) for MAX-SATpret instances.
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Figure 6.7: The trace of AND/OR Branch-and-Bound search (#cm)versus the AOMDD
size (#aomdd) for MAX-SATdubois instances.

for pret60 and 150 variables with 400 clauses forpret150, respectively). However,

they have a very small context with size 6 and a shallow pseudotree with depth 13 and 15,

respectively. For this problem class we observe that the AND/OR decision diagrams have

about 2 times fewer nodes than the AND/OR search graphs explored byAOBB-C-ILP.

This is because the respective search spaces are already small enough, and this does not

leave much room for additional merging of isomorphic nodes in the diagram.

Figure 6.7 displays the results for experiments with randomdubois instances with

increasing number of variables (see also Chapter 5 for additional details). These are 3-

SAT instances with3 × degree variables and8 × degree clauses, each of them having 3

literals. As in the previous test case, thedubois instances have very small contexts of

size 6 and shallow pseudo trees with depths ranging from 10 to20. The AND/OR deci-

sion diagrams compiled for these problem instances are far smaller than the corresponding

AND/OR search graphs, especially for some of the larger instances. For example, at degree

320, the corresponding AOMDD is 40 times smaller than the trace ofAOBB-C-ILP.
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6.5.3 Summary of Empirical Results

In summary, the AOMDD offers a very compact representation of the search space explored

by an AND/OR Branch-and-Bound algorithm to find the set of optimal solutions to a COP,

especially on problem classes for which the heuristic generator produces relatively weak

estimates. When the heuristic function is strong, the explored AND/OR search space is far

tighter around the set of optimal solutions and does not leave room for additional reductions

relative to isomorphic meta-nodes in the decision diagram.On the WCSP domain the size

of the compiled AOMDD varies across different levels of the mini-bucketi-bound because

we did not prune the non-optimal solutions contained in the AOMDD.

6.6 Conclusion to Chapter 6

We presented a new search based algorithm for compiling the optimal solutions of a con-

straint optimization problem into a weighted AND/OR Multi-Valued Decision Diagram

(AOMDD). Our approach draws its efficiency from: (1) AND/OR search spaces for graph-

ical models [38] that exploit problem structure, yielding memory intensive search algo-

rithms exponential in the problem’streewidthrather thanpathwidth. (2) Heuristic search

algorithms exploring tight portions of the AND/OR search space. In particular, we use

here a state-of-the-art AND/OR Branch-and-Bound search algorithm [79, 82], with very

efficient heuristics (mini-bucket, or simplex-based), that in practice traverses only a small

portion of the context minimal graph. (3) Reduction techniques similar to OBDDs further

reduce the trace of the search algorithm.

We extended earlier work on AOMDDs [89] by considering weighted AOMDDs based

on cost functions, rather than constraints. This can now easily be extended to any weighted

graphical model, for example to probabilistic networks. Finally, using an extensive ex-

perimental evaluation we show the efficiency and compactness of the weighted AOMDD

data-structure.
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Chapter 7

Software

All the algorithms described in this dissertation have beenimplemented in two software

packages, called REES and AOLIB, developed in C++ and currentlyavailable online, on

the web page of the research group of Professor Rina Dechter, at the University of Cali-

fornia, Irvine (http://graphmod.ics.uci.edu/). This chapter contains a short overview and

description of the implementations.

7.1 REES: Reasoning Engine Evaluation Shell

In a typical application, a design is implemented that meetsthe set of requirements at

the time of development. Often, after a program is delivered, the user will want added

functionality, or different users will require custom functionality based on their specific

needs. In order to accommodate these situations without a complete re-write, or causing a

develop/compile/test/ship scenario, a framework that allows for future additions of modules

without breaking the existing code base needs to be implemented. A Plug-In architecture

will meet these needs.

To put it simply, a system using this architecture would be capable of looking for various

Plug-In modules when starting up. Once all the Plug-Ins havebeen located they are loaded

by the main application one by one, or selectively so as to usetheir built-in features. These

Plug-Ins are normally DLLs (Dynamic Linked Library) in disguise and many commercial

applications, even the Windows operating system, currently use similar technologies to

283



allow third-party developers to integrate with their existing application to add functionality

or robustness, otherwise missing from the application.

The REES system was purposely designed in this manner. The main reason behind this

is that different research groups in the community usually develop their own libraries of

algorithms and in most cases they are incompatible with eachother, thus making a joint

comparison and evaluation practically impossible. REES provides a common interface that

promotes reuse of already existing components and allows for comparison and evaluation

of alternative technologies, while using a common workbench.

7.1.1 REES Architecture

The architecture of REES system is described in Figure 7.1. Constraint based or proba-

bilistic reasoning problems are locally defined and/or loaded into the main workspace and

transferred to the available Plug-Ins for processing. The results produced by the inference

algorithms residing in various Plug-Ins are passed back to the REES main workspace for

further refining and appropriate display. The existence of apre-determined interface, imple-

mented by each Plug-In, facilitates easy and complete communication between them and

REES. We will now discuss the main components of the proposed architecture:Workspace,

Model, Plug-In modules.

Workspace and Models

The Workspace is the main component of the system. It encapsulates all the problem

models defined by the user and available for evaluation, as well as the list of currently

loaded Plug-Ins. Using the graphical interface, one has thepossibility of defining new

problem models, modifying existing ones or selectively loading/unloading Plug-In modules

for additional functionality.

A Model is an abstract representation of a reasoning problem. Within the framework,

such a problem instance may be represented either in parametric form (e.g. we use the well
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Figure 7.1: REES Plug-In Architecture

known (N, K, C, T) parametric model representation) or as a completely definedinstance

in terms of variables, domain sizes and relationships between variables (i.e. functions).

Depending on the chosen model representation (parametric or complete), the graphical

interface assists the user in further refining the model. Options such as modifying the

values of some parameters (parametric model) or altering the graph structure of the network

(complete model) are also available.

Together with the problem structure (i.e. constraint/belief network) a list of processing

algorithms must also be defined. These inference algorithmsmay all reside in a single

Plug-In library, but in the common case they may be part of different Plug-Ins. The list of

selected algorithms together with their control parameters form theexperimentassociated

with the problem model. In this way, reasoning algorithms developed within different re-

search groups can be executed and evaluated altogether on the very same problem instances

or benchmarks.

Once a problem model has been completely defined in the current workspace, the com-

mon interface takes care of creating an object that isunderstoodand can be transferred to
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any attached Plug-In. This sub-process is calledrandom problem generationand in both

cases it creates a complete problem instance. In case of a parametric model representation,

the parameters completely define the graph structure and thefunctions of the problem. In

the other case, there is no need for a problem instance generation and the already existing

object can be passed along, as is.

Plug-Ins

A Plug-In is an external module (a DLL in our framework) that implements some func-

tionality. Once installed, it can be loaded at runtime by themain application (REES) to use

the functionality provided using exported functions/classes within the DLL. All the Plug-In

modules must conform to a pre-defined interface (see Figure 7.1). The reason for that is

determined by the fact that a call to a function residing inside the Plug-In can be issued

only after knowing the function name.

As it is defined in this framework, a Plug-In library implements a collection of determin-

istic and/or non-deterministic reasoning algorithms. A pre-defined header structure ensures

the compatibility with the main application (REES). In our implementation, a Plug-In must

export the list of implemented algorithms together with their input/output control parame-

ters as well as the list of functions that form the common interface.

7.1.2 A Closer Look

This section describes in more detail the main features of the REES environment and shows

the basic steps of the entire process, from model creation toexperimentation to viewing

and interpreting the results. REES provides an easy to use graphical interface that allows

intuitive creation/editing of the problem model, direct adjustment of the control parameters

for all algorithms involved in some experiment as well as user friendly display of the results

produced by the experiments. REES also provides support for saving either the entire

workspace or individual models to a file for later use.
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Figure 7.2: REES Graphical Interface. (a) Model. (b) Experiment

Model Definition

The first step in any deterministic/probabilistic reasoning problem is defining the problem

model. To create a new model, simply selectAdd Modelfrom the main menu or select the

appropriate icon from the toolbar. REES will then begin the process of helping the user

to create the model. The underlying network of the model (either a constraint network for

deterministic reasoning problems or a belief network for probabilistic reasoning problems)

can be specified in two ways:

1. Parametric Form. In this case, a parametric model of the problem is created. The

user has the options of specifying the size of the network as number of variables and

domain size, the type of graph structure to be generated (e.g. random, grid, etc.) as

well as the type of functions to be defined over subsets of variables (e.g.random

weighted tuple). Figure 7.2(a) displays an example of model definition using REES

Graphical Interface. At any time, the system allows the userto modify the values

of all these parameters. Later, therandom problem generatorwill use all these user

defined parameters to build a complete model, as described inSection 7.1.1.

2. Complete Form. In this case, the entire model, as represented by the graph structure

and functions defined over subsets of variables, resides in atext file that will be

loaded into the workspace. At this moment, REES system is ableto parse several file
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formats (e.g. DIMACS), as well as a proprietary format that may contain additional

information for a graphical display of the network1. REES Net Editor provides easy

graphical editing of constraint/belief networks including cut/paste/duplicate nodes

and edges. All these options and many others are available from the main menu and

toolbar of the application. In this way, the user is offered the possibility of creating

its own model either from scratch or modifying an existing one.

The model definition is completed once an experiment is defined and attached to it.

Details on how to do it can be followed in the next section.

Running Experiments

Once a problem model is created, the knowledge it contains can be transferred to the avail-

able Plug-Ins, each one of them implementing a set of inference algorithms as described in

Section 7.1.1. To create a new experiment, using the currentproblem model, simply select

New Experimentfrom the main menu or select the appropriate icon from the toolbar. A

REES wizard will then assist the user in the process of creating the experiment. A typi-

cal experiment must specify thetask it will perform, the number of probleminstancesto

be generated as well as the set ofalgorithmstogether with their control parameters to be

executed. Figure 7.2(b) shows an example of an experiment defined on a constraint-based

model.

1. Task: Depending on the problem model on which the experiment is defined, several

tasks may be available (e.g.Max-CSP, Solution Counting, etc.for constraint-based

models,Belief, Most Probable Explanation, etc.for probabilistic models). Each

algorithm exported by a Plug-In must have its header information containing the task

type it is able to perform.

1REES Net Editor is currently available only for belief networks.
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Figure 7.3: REES Results Display Window.

2. Instances: If there is no random behavior specified for this particularmodel (i.e.

complete model), then there can only be one instance of the underlying network. If

there is either a random structure definition and/or a randomfunction definition (i.e.

parametric model) then REES can create as many problem instances as indicated by

the parameter value.

3. Algorithms: Each algorithm exported by some Plug-In library has a set ofcontrol

parameters associated with. The user must set values for allinput parameters (if

there are any) and may select one or moreoutputparameters for visualization. After

the execution of the experiment has successfully completed, the average values of

the output parameters will be displayed for further analysis.

Once the experiment is created, REES can be instructed to execute it. A detailed log of

the execution can also be recorded so as the user to be able to abort the experiment once an

error is signaled. The results produced by an experiment that completed successfully are

displayed in a spreadsheet, each column representing one ofthe selected output parameters.

This should make comparison between algorithms quite simple and intuitive, where such a

comparison is appropriate.

In Figure 7.3 we provide an example of results produced by anMPEexperiment, that is

finding theMost Probable Explanationin Bayesian models. The problem was represented

as a parametric model that generated 10 random instances of abinary belief network with
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100 variables and 90 conditional probability tables. Threealgorithms were chosen for

evaluation:BTE (i.e. Bucket Tree Elimination), an exact inference algorithms based on the

well known variable elimination mechanism,BBBT(i) (i.e. Branch and Bound with mini-

Bucket Treeheuristics) a complete Branch and Bound search algorithm thatuses dynamic

heuristics generated by a Mini-Bucket Tree Elimination algorithm to guide the search and

IJGP(i) (i.e. Iterative Join Graph Propagation) an iterative version of graph propaga-

tion algorithms. The latter two algorithms are controlled by a parameter calledi-bound.

For each algorithm, REES displays the average values of the selected output parameters,

columnwise. They are: average running time (Time), average induced width of the prob-

lem (w*), average accuracy as percent of exactly solved instances (% exact) as well as the

average number of backtracks for the branch and bound searchalgorithm (# backtracks).

7.2 AND/OR Search for Optimization

The depth-first and best-first AND/OR search algorithms havebeen implemented from

scratch by the author, in a package called AOLIB. The system uses its own input format

file (*.simple), but can load any other usual format files (*.erg for Bayesian networks,

*.wcsp for Weighted CSPs, as well as *.mps for 0-1 Integer Linear Programs). The package

supports the following optimization tasks: finding the MostProbable Explanation of a

Bayesian network (AOLIB-MPE), finding the minimal cost solution of a Weighted CSP

(AOLIB-WCSP), as well as solving 0-1 Integer Linear Programs (AOLIB-ILP).

The AOLIB-MPE system participated in the UAI’06 (Uncertainty in Artificial Intelli-

gence) Evaluation of Probabilistic Inference Systems, forthe MPE task. Results are avail-

able athttp://ssli.ee.washington.edu/bilmes/uai06InferenceEvaluation/. We describe next

the components of the AOLIB package.
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7.2.1 AOLIB-MPE

AOLIB-MPE contains the implementations of the depth-first AND/OR Branch-and-Bound

with caching (AOBB-C) as well as the best-first AND/OR (AOBF-C) search algorithms for

solving the MPE task in Bayesian networks. Both algorithms traverse the context mini-

mal AND/OR search graph associated with the input Bayesian network and use static or

dynamic mini-bucket heuristics.

AOLIB-MPE is invoked with three (if no evidence present) or four (if evidence present)

arguments, as follows:aolibMPE networkFile [evidenceFile] parameterFile output-

File, with the following meaning:

• <networkFile> specifies the path to the network specification in Ergo2 file for-

mat.

• <evidenceFile> (optional) specifies the path to the evidence specification ac-

cording to the Ergo file format.

• <parameterFile> specifies the path to the file containing custom parameters for

the algorithm.

• <outputFile> specifies the path to the file to which (the logarithm of) the proba-

bility of the most probable explanation is written.

The parameters can be specified within the parameter file using the syntax:parameter

= value. The following parameters are defined for AOLIB-MPE:

• h: (string) the heuristic to use for finding an variable elimination order by which to

construct the AND/OR search space. The following values canbe used:

– minfill: to indicate the min-fill heuristic

2A detailed description of the Ergo (*.erg) file format for Bayesian networks is available online at
http://graphmod.ics.uci.edu/group/Ergofile format
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– hypergraph: to indicate the hypergraph partitioning heuristic

• a: (integer) specifies which algorithm to run. The following values can be used:

– 3: AND/OR Branch-and-Bound with static mini-bucket heuristics

– 300: AND/OR Branch-and-Bound with static mini-bucket heuristics and con-

straint propagation via unit resolution

– 4: AND/OR Branch-and-Bound with dynamic mini-bucket heuristics

– 400: AND/OR Branch-and-Bound with dynamic mini-bucket heuristics and

constraint propagation via unit resolution

– 9: Best-First AND/OR search with static mini-bucket heuristics

– 10: Best-First AND/OR search with dynamic mini-bucket heuristics

• ib: (integer) specifies thei-bound of the guiding mini-bucket heuristic.

• cb: (integer) specifies the cache bound used by AND/OR Branch-and-Bound algo-

rithms.

• cs: (string) specifies the caching scheme used by AND/OR Branch-and-Bound algo-

rithms. The following values can be used:

– classic: to indicate the naive caching scheme

– adaptive: to indicate the adaptive caching scheme

• l (integer) specifies the time limit in seconds. Default valueis -1, which indicates no

time limit.

7.2.2 AOLIB-WCSP

AOLIB-WCSP contains the implementations of the depth-first AND/OR Branch-and-Bound

as well as the Best-First AND/OR search algorithms for solving WCSPs. In addition to the
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mini-bucket heuristics, we also provide an implementationof the AND/OR Branch-and-

Bound guided by a form of local soft consistency propagation,called Existential Direc-

tional Arc Consistency (EDAC). The algorithm can also accommodate dynamic variable

ordering heuristics. The input WCSP instance must be specifiedin the WCSP3 file format.

AOLIB-WCSP is invoked with three arguments, as follows:aolibWCSP networkFile

parameterFile outputFile. The arguments have the same meaning as for AOLIB-MPE.

The following parameters are defined for AOLIB-WCSP:

• h: (string) the heuristic to use for finding a variable elimination order by which to

construct the AND/OR search space:

– minfill: indicates the min-fill heuristic

– hypergraph: indicates the hypergraph partitioning heuristic

• a: (integer) specifies which algorithm to run. The following values can be used:

– 3: AND/OR Branch-and-Bound with static mini-bucket heuristics

– 4: AND/OR Branch-and-Bound with dynamic mini-bucket heuristics

– 7: AND/OR Branch-and-Bound with EDAC heuristics

– 9: Best-First AND/OR search with static mini-bucket heuristics

– 10: Best-First AND/OR search with dynamic mini-bucket heuristics

• ib: (integer) specifies thei-bound of the guiding mini-bucket heuristic.

• cb: (integer) specifies the cache bound used by AND/OR Branch-and-Bound algo-

rithms.

• cs: (string) specifies the caching scheme used by AND/OR Branch-and-Bound algo-

rithms. The following values can be used:

3A detailed description of the WCSP (*.wcsp) file format for Weighted CSPs is available online at
http://graphmod.ics.uci.edu/group/WCSPfile format

293



– classic: to indicate the naive caching scheme

– adaptive: to indicate the adaptive caching scheme

• l (integer) specifies the time limit in seconds. Default valueis -1, which indicates no

time limit.

• vo: (string) specifies the variable ordering used. The following values can be used:

– svo: stands for Static Variable Ordering (algorithms: 3, 4, 7, 9, 10)

– pvo: stands for Partial Variable Ordering (algorithm 7 only)

– dvo: stands for Full Dynamic Variable Ordering (algorithm 7 only)

– dso1: stands for Dynamic Separator Ordering (algorithm 7 only)

7.2.3 AOLIB-ILP

AOLIB-ILP contains the implementations of the depth-first AND/OR Branch-and-Bound

as well as the Best-First AND/OR search algorithms for solving 0-1 Integer Linear Pro-

grams. The input 0-1 ILP instance must be specified in the MPS4 file format. AOLIB-ILP

is based on the open-sourcelp solve library (see also Chapter 5 for more details).

The following parameters are defined for AOLIB-ILP:

• h: (string) the heuristic to use for finding a variable elimination order by which to

construct the AND/OR search space:

– minfill: indicates the min-fill heuristic

– hypergraph: indicates the hypergraph partitioning heuristic

• a: (integer) specifies which algorithm to run. The following values can be used:

– 1: OR Branch-and-Bound search
4A detailed description of the MPS (*.mps) file format for integer programs is available online at

http://graphmod.ics.uci.edu/group/MPSfile format
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– 2: AND/OR Branch-and-Bound search without caching (i.e., tree search)

– 3: AND/OR Branch-and-Bound search with caching (i.e., graph search)

– 4: Best-First AND/OR tree search

– 5: Best-First AND/OR graph search

• l (integer) specifies the time limit in seconds. Default valueis -1, which indicates no

time limit.

• vo: (string) specifies the variable ordering used. The following values can be used:

– svo: stands for Static Variable Ordering (algorithms: 2, 3, 4, 5)

– pvo: stands for Partial Variable Ordering (algorithms: 2, 4)
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Chapter 8

Conclusion

The research presented in this dissertation is focused on the application of the AND/OR

search spaces perspective to solving general constraint optimization tasks over graphical

models. In contrast to the traditional OR search, the new AND/OR search is sensitive

to problem decomposition, resulting often in significantlyreduced computational costs.

In conjunction with the AND/OR search space, we investigated extensively a class of

partition-based heuristic functions, based on the Mini-Bucket approximation.

We introduced a general Branch-and-Bound algorithm that traverses an AND/OR search

tree in a depth-first manner and explored the impact of various dynamic variable order-

ing heuristics. We also investigated memory intensive search algorithms that traverse an

AND/OR search graph using both depth-first and best-first control schemes. Subsequently,

we extended the general principles of solving optimizationproblems using AND/OR search

with context-based caching to the class of 0-1 Integer Linear Programs. Our extensive

empirical evaluation demonstrated conclusively that the new AND/OR search algorithms

improved dramatically over the traditional OR competitiveapproaches, in many cases by

several orders of magnitude.

We also applied the AND/OR search perspective to decision diagrams. We introduced

a new search-based algorithm for compiling AND/OR Multi-Valued Decision Diagrams

(AOMDDs), as representations of the optimal solutions to anoptimization problem. Using

an extensive experimental evaluation we showed the efficiency and compactness of the

weighted AOMDD data-structure compared with the initial trace of the search algorithm.
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Finally, we explored empirically the power of two systematic Branch-and-Bound search

algorithms that traverse the traditional OR search space and exploit the mini-bucket based

heuristics in both static and dynamic settings. We comparedthem against a number of

popular stochastic local search algorithms, as well as against a class of iterative belief

propagation algorithms. We showed that, when viewed as approximation schemes, the

Branch-and-Bound algorithms were overall superior to the local search algorithms, except

when the domain size was small, in which case they were competitive.

Directions of Future Research

The AND/OR search perspective for optimization leaves roomfor additional improvements

that can be pursued in the future.

AND/OR Branch-and-Bound. Our current approach for handling the deterministic in-

formation present in the graphical model within the AND/OR Branch-and-Bound frame-

work is based on a restricted form of relational arc consistency, namely unit resolution.

Therefore, it would be interesting to exploit more powerfulconstraint propagation schemes

such as generalized arc or path consistency. Recent improvements of the Mini-Bucket al-

gorithm (e.g., Depth-First Mini-Bucket Elimination[109]) could also be explored further in

the context of AND/OR search. Finally, we plan to extend our memory intensive algorithms

to dynamic variable orderings.

Best-First AND/OR Search. Our best-first AND/OR search algorithm,AOBF-C, can

also be improved. First, rather than recompute a new estimated best partial solution tree

after every node expansion, it is possible instead to expandone or more leaf nodes and

some number of their descendants all at once, and then recompute an estimated best partial

solution tree. This strategy reduces the computational overhead of frequent bottom-up

operations but incurs the risk that some node expansions maynot be on the best solution
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tree.

The space required byAOBF-C can be enormous, due to the fact that all nodes generated

by the algorithm have to be saved prior to termination. Therefore, a memory bounding

strategy may also be used for context minimal AND/OR graphs,as previously suggested

in [97, 103, 16]. To employ it, the algorithm periodically reclaims needed storage space

by discarding some portions of the explicated AND/OR searchgraph. For example, it is

possible to determine a few of those partial solution trees within the entire search graph

having thelargestestimated costs. These can be discarded periodically, withthe risk of

discarding one that might turn out to be the top of an optimal solution tree.

AND/OR Search for 0-1 ILP. Our depth-first and best-first AND/OR search approach

for 0-1 ILP leaves room for future improvements, which are likely to make it more efficient

in practice. For instance, it can be modified to incorporatecutting planesto tighten the

linear relaxation of the current subproblem. We can also incorporate good initial upper

bound techniques (using incomplete schemes), which in somecases can allow a best-first

performance using depth-first AND/OR Branch-and-Bound algorithms. Finally, we plan to

accelerate our solvers as well as to incorporate other dynamic variable ordering heuristics

(e.g., strong branching) in order to improve our results.

Multi-Objective Optimization. Multi-objective constraint optimization is the process of

simultaneously optimizing two or more conflicting objectives subject to certain constraints.

Maximizing profit and minimizing the cost of a product, maximizing performance and

minimizing fuel consumption of a vehicle and minimizing weight while maximizing the

strength of a particular component are examples of multi-objective optimization problems.

Advances in exact methods for multi-objective optimization are critical in many real world

applications. Therefore, we could extend our recent results on AND/OR search for single

objective optimization to the multi-objective case. Thesenew algorithms would exploit

efficiently the problem structure during search and use caching of partial results effectively.
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