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Abstract AND/OR search spaces accommodate advanced algorithmic schemes for
graphical models which can exploit the structure of the model. We extend and
evaluate the depth-first and best-first AND/OR search algorithms to solving 0-1
Integer Linear Programs (0-1 ILP) within this framework. We also include a class
of dynamic variable ordering heuristics while exploring an AND/OR search tree for
0-1 ILPs. We demonstrate the effectiveness of these search algorithms on a variety
of benchmarks, including real-world combinatorial auctions, random uncapacitated
warehouse location problems and MAX-SAT instances.

Keywords Search - AND/OR search spaces - Constraint optimization -
Integer programming

1 Introduction

A constraint optimization problem is the minimization (or maximization) of an
objective function subject to a set of constraints on the possible values of a set
of independent decision variables. An important class of optimization problems in
operations research and computer science are the 0-1 Integer Linear Programming
problems (0-1 ILP) [40] where the objective is to optimize a linear function of bi-
valued integer decision variables, subject to a set of linear equality or inequality
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constraints defined on subsets of variables. The classical approach to solving 0-1 ILPs
is the Branch-and-Bound method [28] which maintains the best solution found so far,
while discarding partial solutions which cannot improve on the best.

The AND/OR search space for graphical models [14] is a relatively new frame-
work for search that is sensitive to the independencies in the model, often resulting
in substantially improved performance. It is based on a pseudo tree that captures con-
ditional independencies in the graphical model, resulting in a search tree exponential
in the depth of the pseudo tree, rather than in the number of variables.

The AND/OR Branch-and-Bound search (20BB) introduced in [31, 38] is a
Branch-and-Bound algorithm that explores the AND/OR search tree in a depth-
first manner, while the AND/OR Branch-and-Bound search with caching algorithm
(AOBB-C) [33, 39] also saves previously computed results and retrieves them when
the same subproblems are encountered again. The latter algorithm explores the
context minimal search graph. A best-first AND/OR search algorithm (AOBF-C)
that traverses the search graph was introduced subsequently [36, 37, 39]. Exten-
sions to dynamic variable orderings were also presented and tested [34, 36, 38].
Two such extensions, depth-first AND/OR Branch-and-Bound with Partial Variable
Ordering (A0BB+PVO) and best-first AND/OR search with Partial Variable Ordering
(AOBF+PVO) were shown to have significant impact on several domains.

In this paper we apply the general principles of AND/OR search with context-
based caching to the class of 0-1 ILPs, exploring both depth-first and best-first control
strategies. We also extend dynamic variable ordering heuristics for AND/OR search
and explore their impact on 0-1 ILPs.

We evaluate the impact of our advancement on several benchmarks for 0-1
ILP problems, including combinatorial auctions, random uncapacitated warehouse
location problems and MAX-SAT problem instances. Our results show conclusively
that these new algorithms improve dramatically over the traditional OR search, in
some cases by several orders of magnitude. Specifically, we illustrate a tremendous
gain obtained by exploiting problem decomposition (using AND nodes), equivalence
(by caching), branching strategy (via dynamic variable ordering heuristics) and
control strategy. We also show that the AND/OR algorithms are competitive and
in some cases even outperform significantly commercial ILP solvers such as CPLEX.

The paper is organized as follows. Sections 2 and 3 provide background on
0-1 ILP and AND/OR search spaces, respectively. In Sections 4 and 5 we present
the depth-first AND/OR Branch-and-Bound and the best-first AND/OR search
algorithms for 0-1 ILP. Section 6 describes the AND/OR search approach that
incorporates dynamic variable ordering heuristics. Section 7 is dedicated to our
empirical evaluation, Section 8 overviews related work, while Section 9 provides a
summary, concluding remarks and directions of future research.

The work we present here is based in part on two conference submissions [32, 35].
It provides a detailed presentation of the proposed algorithms as well as an extended
empirical evaluation.

2 Background

Notations The following notations will be used throughout the paper. We denote
variables by uppercase letters (e.g., X, Y, Z, ...), subsets of variables by bold faced
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uppercase letters (e.g., X,Y,Z,...) and values of variables by lower case letters
(e.g., x,¥,2,...). An assignment (X; = xy, ..., X, = x,,) can be abbreviated as x =
(X1, x1), ..., (X,, x)) or x = (x1, ..., x,). For a subset of variables Y, Dy denotes the
Cartesian product of the domains of variables in Y. xy and x[Y] are both used as the
projection of x = (xy, ..., x,,) over a subset Y. We denote functions by letters f, 4, g
etc., and the scope (set of arguments) of a function f by scope( f).

Definition 1 (constraint optimization problem) A finite constraint optimization
problem (COP) is a four-tuple (X,D,F, z), where X = {X, ..., X;} is a set of
variables, D = {D, ..., D,} is a set of finite domains, F = {Fy, ..., F,} is a set of
constraints on the variables and z(X) is a global cost function defined over X (also
called objective function) to be optimized (i.e., minimized or maximized). The scope
of a constraint F;, denoted scope(F;) € X, is the set of arguments of F;. Constraints
can be expressed extensionally, through relations, or intentionally, by a mathematical
formula (e.g., equality or inequality) with two possible values, i.e., it is satisfied or
not. An optimal solution to a COP is a complete value assignment to all the variables
such that every constraint is satisfied and the objective function is minimized or
maximized.

With every COP instance we can associate a constraint graph G which has a node
for each variable and connects any two nodes whose variables appear in the scope of
the same constraint.

Definition 2 (induced graph, induced width [13]) The induced graph of a constraint
graph G relative to an ordering d of its nodes, denoted G*(d), is obtained as follows:
nodes are processed from last to first; when node X is processed, all its preceding
neighbors in the ordering are connected. A new edge that is added to the graph
by this procedure is called an induced edge. Given a graph and an ordering of its
nodes, the width of a node is the number of edges connecting it to nodes lower in the
ordering. The induced width (or treewidth) of a graph, denoted w*, is the maximum
width of nodes in the induced graph (for illustration see Example 1).

Definition 3 (linear program) A linear program (LP) consists of a set of n continuous
non-negative variables X = { X1, ..., X,;} and a set of m linear constraints (equalities
or inequalities) F = {F}, ..., F;,;} defined on subsets of variables. The goal is to
minimize a global linear cost function, denoted z(X), subject to the constraints. One
of the standard forms of a linear program is:

min z(X) = Zci - X (1)
i=1
s.t. Zaij~X5§bj, Vi<j<m (2)
i=1
X;=0, VO<izn 3)

where (1) represents the linear objective function, and (2) defines the set of linear
constraints. In addition, (3) ensures that all variables are non-negative.
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A linear program can also be expressed in a matrix notation, as follows:
min{c' X |A-X <b,X >0} (4)

where ¢ e R”, b € R”, A € R™*" and X € R’}. Namely, ¢ represents the cost vector
and X is the vector of decision variables. The vector b and the matrix A define the m
linear constraints.

One of the most important constraint optimization problems in operations re-
search and computer science is integer programming. Applications of integer pro-
gramming include scheduling, routing, VLSI circuit design, combinatorial auctions,
and facility location [40]. Formally:

Definition 4 (integer linear program) An Integer Linear Program (ILP) is a linear
program where all the decision variables are constrained to have non-negative
integer values. Formally,

min z(X) =Y ¢ X 5)
i=1
n
s.t. Zﬂlj'A’ifbj, Vi<j<m (6)
i=1
X,eZ, VYO0<i<n (7)

If all variables are constrained to have integer values O or 1, then the problem is
called 0-1 Integer Linear Program (0-1 ILP). If not all variables are constrained to be
integral (they can be real), then the problem is called Mixed Integer Linear Program
(MILP).

Example 1 Figure la shows a 0-1 ILP instance with 6 binary decision variables
(A, B,C, D, E, F) and 4 linear constraints F;(A, B, C), F»(B,C, D), F5(A, B, E),
Fy(A, E, F). The objective function to be minimized is defined by z=7A + B —
2C+ 5D — 6E + 8F. Figure 1b displays the constraint graph G associated with this
0-1 ILP, where nodes correspond to the decision variables and there is an edge
between any two nodes whose variables appear in the scope of the same constraint.
Figures 1c and d show the induced graphs G*(d;) and G*(d,) obtained along the
orderings d, = (A, B,C, D, E, F) and d, = (F, E, D, C, B, A), respectively. Notice
that G*(d,) does not contain any induced edges, while G*(d,) contains 4 induced
edges (dotted lines). The induced widths corresponding to the ordering d; and d, are
2 and 4, respectively.

While 0-1 integer linear programming, and thus integer linear programming and
MILP are all NP-hard [24], there are many sophisticated techniques that can be used
and allow solving very large instances in practice. We next briefly review the existing
search techniques upon which we build our methods.

In Branch-and-Bound search, the best solution found so far (the incumbent) is
kept in memory. Once a node in the search tree is generated, a lower bound (also
known as a heuristic evaluation function) on the solution value is computed by
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minimize : z = 7A+3B—-2C +5D —6E +8F
subject to:
3A-12B+C<3
~2B+5C-3D<-2
2A+B-4E<2
A-3E+F<1
A,B,C,D,E,Fe{0,1}

(a) 0-1 Integer Linear Program (b) Constraint (c) (d)
graph In- In-
duced duced
graph graph
along along
dy d;

Fig. 1 Example of a 0-1 integer linear program (a—d)

solving a relaxed version of the problem, while honoring the commitments made
on the search path so far. The most common method is to relax the integrality
constraints of all undecided variables. The resulting linear program (LP) can be
solved fast in practice using the simplex algorithm [10] (and in polynomial worst-
case time using integer-point methods [23, 25]). A path terminates when the lower
bound is at least the value of the incumbent, or when the subproblem is infeasible
or yields an integer solution. Once all paths have terminated, the incumbent is a
provably optimal solution.

There are several ways to decide which leaf node of the search tree to expand next.
In depth-first Branch-and-Bound, the most recent node is expanded next. In best-
first search (i.e., A* search [42]), the leaf with the lowest lower bound is expanded
next. A* search is desirable because for any fixed branching variable ordering, no
tree search algorithm that finds a provably optimal solution can guarantee expanding
fewer nodes [15]. However, A* requires exponential space. A variant of a best-first
node-selection strategy, called best-bound search, is often used in MILP [47]. While
in general A* the children are evaluated when they are generated, in best-bound
search the children are queued for expansion based on their parents’ values and the
LP of each child is solved only if the child comes up for expansion from the queue.
Thus best-bound search needs to continue until each node on the queue has value
no better than the incumbent. Best-bound search generates more nodes, but may
require fewer (or more) LPs to be solved.

Branch-and-cut search for integer programming A modern algorithm for solving
MILPs is Branch-and-Cut, which was successful in solving large instances of the
traveling salesman problem [43, 44], and is now the core of the fastest commercial
general-purpose integer programming packages. It is a Branch-and-Bound that uses
the idea of cutting planes [40]. These are linear constraints that are deduced during
search and, when added to the subproblem at a search node, may result in a smaller
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feasible space for the LP and thus a higher lower bound. Higher lower bounds can
cause earlier termination of the search path, thus yielding smaller search trees.

Software packages CPLEX! is a leading commercial software product for solving
MILPs. It uses Branch-and-Cut, and it can be configured to support many different
branching algorithms (i.e., variable ordering heuristics). It also makes available low-
level interfaces (i.e., APIs) for controlling the search, as well as other components
such as the pre-solver, the cutting plane engine and the LP solver.

1p_solve? is an open source linear (integer) programming solver based on the
simplex and the Branch-and-Bound methods. We chose to develop our AND/OR
search algorithms in the framework of 1p solve, because we could have access to
the source code. Unlike CPLEX, 1p solve does not provide a cutting plane engine
nor a best-bound control strategy. We note however that open source LP solvers,
with potentially better performance than 1p_solve, such as: BPMPD,? CLP,* PCx,’
QSOPT,® SOPLEX’ or GLPKS are available online and any one of them can be used
within our proposed framework to replace 1p_solve.

3 Extending AND/OR search spaces to 0-1 integer linear programs

As mentioned earlier, the common way of solving 0-1 ILPs is by search, namely to
instantiate variables one at a time following a static/dynamic variable ordering. In the
simplest case, this process defines an OR search tree, whose nodes represent states
in the space of partial assignments. However, this search space does not capture
independencies that appear in the structure of the problem. To remedy this problem
the idea of AND/OR search spaces [41] was recently introduced to general graphical
models [14]. The AND/OR search space for a graphical model is defined using a
backbone pseudo tree [3, 19].

Definition 5 (pseudo tree) Given an undirected graph G = (V, E), a directed rooted
tree 7 = (V, E') defined on all its nodes is called a pseudo tree if any arc of G which
is not included in E' is a back-arc, namely it connects a node to an ancestor in 7. The
arcs of E’ are not necessarily included in E.

We will next specialize the AND/OR search space for 0-1 ILPs.

http://www.ilog.com/cplex/.

Zhttp://lpsolve.sourceforge.net/5.5/.
3http://www-neos.mes.anl.gov/neos/solvers/Ip:bpmpd/MPS.html.
4https://projects.coin-or.org/Clp.
Shttp://www-fp.mcs.anl.gov/OTC/Tools/PCx/.
Ohttp://www.isye.gatech.edu/ wcook/qsopt/.
http://soplex.zib.de/.

8http://www.gnu.org/software/glpk/.
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3.1 AND/OR search trees for 0-1 integer linear programs

Given a 0-1 ILP instance, its constraint graph G and a pseudo tree 7 of G, the
associated AND/OR search tree S7 has alternating levels of OR nodes and AND
nodes. The OR nodes are labeled by X; and correspond to the variables. The AND
nodes are labeled by (X, x;) (or simply x;) and correspond to value assignments
in the domains of the variables that are consistent relative to the constraints. The
structure of the AND/OR tree is based on the underlying pseudo tree 7 of G.
The root of the AND/OR search tree is an OR node, labeled with the root of 7.
The children of an OR node X; are AND nodes labeled with assignments (X;, x;),
consistent along the path from the root. The children of an AND node (Xj, x;) are
OR nodes labeled with the children of variable X; in 7.

Semantically, the OR states represent alternative ways of solving the problem,
whereas the AND states represent problem decomposition into independent sub-
problems, all of which need be solved. When the pseudo tree is a chain, the AND/OR
search tree coincides with the regular OR search tree.

As usual [14, 41], a solution tree T of an AND/OR search tree Sz is an AND/OR
subtree such that: (i) it contains the root of S+, s; (ii) if a non-terminal AND node
n € St isin T then all of its children are in T (iii) if a non-terminal OR node n € S
is in T then exactly one of its children is in 77 (iv) all its terminal leaf nodes (full
assignments) are consistent relative to the constraints of the 0-1 ILP.

Example 2 Consider the 0-1 ILP instance from Fig. 2a. A pseudo tree of the
constraint graph, together with the back-arcs (dotted lines) are given in Fig. 2b.
Figure 2c shows the corresponding AND/OR search tree. Notice that the par-
tial assignment (A =0, B=0,C =0, D =0) which is represented by the path
{A,(A,0), B,(B,0),C, (C,0), D, (D,0)}in the AND/OR search tree, is inconsistent
because the constraint —2B + 5C — 3D < —2 is violated. Similarly, the partial as-
signment (A = 0, B =0, C = 1) is also inconsistent due to the violation of the same
constraint for any value assignment of variable D.

It was shown that:

Theorem 1 (size of AND/OR search trees [14]) Given a 0-1 ILP instance and a
backbone pseudo tree T, its AND/OR search tree St contains all consistent solutions,
and its size is O(l - 2™) where m is the depth of the pseudo tree and | bounds its number
of leaves. If the 0-1 ILP instance has induced width w*, then there is a pseudo tree
whose associated AND/OR search tree is O(n - 2V 10¢"),

The arcs in the AND/OR search tree are associated with weights that are obtained
from the objective function of the given 0-1 ILP instance.

Definition 6 (weights) Given a 0-1 ILP with objective function ) i, ¢; - X; and an
AND/OR search tree S relative to a pseudo tree 7, the weight w(n, m) of the arc
from the OR node n, labeled Xj, to the AND node m, labeled (Xj, x;), is defined as
wn, m) = ¢ - x;.
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minimize:Z=7A+3B-2C+5D—-6E+8F
subject to:
3A-12B+C<3
—-2B+5C-3D<-2
2A+B-4E<2
A-3E+F<1
A,B,C,D,E,F €{0,1}

(a) 0-1 Integer Linear Program (b) Pseudo
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(c) AND/OR search tree

AN

o

Fig.2 AND/OR search tree for a 0-1 integer linear program instance (a—c)

Note that the arc-weights in general COPs are a more involved function of the
input specification (see also [31, 38] for additional details).

Definition 7 (cost of a solution tree) Given a weighted AND/OR search tree S of a
0-1 ILP, and given a solution tree 7 having OR-to-AND set of arcs arcs(T'), the cost
of T, f(T),is defined by f(T) = 3_,cppescr) w(e)-

With each node n of the search tree we can associate a value v(n) which stands for
the optimal solution cost of the subproblem below n, conditioned on the assignment
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on the path leading to it [14, 31, 38]. v(n) was shown to obey the following recursive
definition:

Definition 8 (node value) The value of a node n in the AND/OR search tree of a 0-1
ILP instance is defined recursively by:

0 , if n = (X, x) is a terminal AND node
) = (e , if n = X is a terminal OR node
v(m) = > mesucetn VM) , if n= (X, x)is an AND node

MiNyegucem) (W, m) + v(m)), if n = X is an OR node

where succ(n) denotes the children of n in the AND/OR tree.

Example 3 Figure 3 shows the weighted AND/OR search tree associated with the
0-1 ILP instance from Fig. 2. The numbers on the OR-to-AND arcs are the weights
corresponding to the objective function. For example, the weights associated with
the OR-to-AND arcs (A4, (A, 0)) and (A, (A, 1)) are 0 and 7, respectively. An opti-
mal solution tree that corresponds to the assignment (A =0,B=1,C=0,D =0,
E =1, F = 0) with cost —3 is highlighted. Note that inconsistent portions of the tree
are pruned.

Clearly, the value of the root node s is the minimal cost solution to the initial
problem, namely v(s) = minx Y - ¢; - X;.

Therefore, search algorithms that traverse the AND/OR search tree and compute
the value of the root node yield the answer to the problem. Consequently, depth-first

minimize:z=7A+3B—-2C+5D—-6E +8F

OR -3 o

0 7 < arc weights
3 [o] > 30
o _3 node values < _3
0 0 3
AND -1o] -6 1] -1o] 1] -6
@ O <> <>
OR 5 -6 0 -5 5 -s 0 -s
0 0/\-6 0 0/\-6 0 0/\-6 0 -6
ano 5 o] L ofo] [1]0 ofo] 4L ofo] [1]o 5[o] 1 ofo] [1]Jo ofo] L L [i]o
5 0/\80/\8  O/"5 0/\8 0/~8 5 o/\ 0/\8 OA5 08
avo 21| [offa]fo][2] foll2]  [offa]lo][2] =Z[s]  [o]2[o][a] [o]fa] of[1]

Fig. 3 Weighted AND/OR search tree for the 0-1 ILP instance from Fig. 2
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search algorithms traversing the weighted AND/OR search tree are guaranteed to
have time complexity bounded exponentially in the depth of the pseudo tree and can
operate in linear space only.

3.2 AND/OR search graphs for 0-1 integer linear programs

Often different nodes in the search tree root identical subtrees, and correspond to
identical subproblems. Any two such nodes can be merged, reducing the size of the
search space and converting it into a graph. Some of these mergeable nodes can be
identified based on contexts, as described in [14] and as we briefly outline below.

Given a pseudo tree 7 of an AND/OR search space, the context of an AND node
labeled (X}, xx), denoted by context(Xy), is the set of ancestors of X in 7, including
Xk, ordered descendingly, that are connected (in the induced graph) with descen-
dants of X} in 7. It is easy to see that context(X}) separates in the constraint graph,
and also in the induced graph, the ancestors (in 7') of X from its descendants (in
T). Therefore, all subtrees in the AND/OR search tree that are rooted by the AND
nodes labeled (X, xx) are identical, given the same value assignment to the variables
in context(Xy). The context minimal AND/OR graph [14], denoted by Gr, can be
obtained from the AND/OR search tree by merging all context mergeable nodes.

A depth-first search algorithm traverses the context minimal AND/OR graph by
using additional memory. During search, it caches in memory all context mergeable
nodes whose values have been determined. When the same nodes are encountered
again (i.e., corresponding to the same context instantiation), the algorithm retrieves
from cache their previously computed values thus avoiding to explore the subspaces
below them. This memoization process is referred to as full caching.

Example 4 Figure 4b shows the context minimal AND/OR search graph correspond-
ing to the 0-1 ILP from Fig. 2, relative to the pseudo tree given in Fig. 4a. The
square brackets next to each node in the pseudo tree indicate the AND contexts
of the variables, as follows: context(A) = { A}, context(B) = {A, B}, context(C) =
{B, C}, context(D) = {D}, context(E) = {A, E} and context(F) = {F}. Consider for
example variable E with context(E) = {A, E}. In Fig. 3, the search trees below any
appearance of (A =0, E=0) (i.e., corresponding to the subproblems below the
AND nodes labeled (E, 0) along the paths containing the assignments A = 0 and
E =0, respectively) are all identical, and therefore can be merged as shown in the
search graph from Fig. 4b.

It can be shown that:
Theorem 2 (size of AND/OR graphs [14]) Given a 0-1 ILP instance, its constraint
graph G, and a pseudo tree T having induced width w* = w1 (G), the size of the
context minimal AND/OR search graph based on T, G, is O(n - 2").

4 Depth-first AND/OR branch-and-bound search for 0-1 ILPs

Traversing AND/OR search spaces by best-first algorithms or depth-first Branch-
and-Bound was described as early as [22, 41, 45]. In a series of papers [31, 33, 34,
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AND

OR
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OR
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(a) Pseudo tree (b) AND/OR search graph

Fig. 4 Context minimal AND/OR search graph for the 0-1 ILP instance from Fig. 2 (a, b)

36, 37] we introduced extensions of these algorithms to AND/OR search spaces for
constraint optimization tasks in graphical models. Our extensive empirical evalua-
tions on a variety of probabilistic and deterministic graphical models demonstrated
the power of these new algorithms over competitive approaches exploring traditional
OR search spaces. In this section we revisit the notions of partial solution trees
[41] to represent sets of solution trees, and heuristic evaluation function of a partial
solution tree [31]. We will then recap the depth-first Branch-and-Bound algorithm
for searching the AND/OR spaces, focusing on the specific properties for 0-1 ILPs.

We start with the definition of partial solution tree which is central to the
algorithms.

Definition 9 (partial solution tree) A partial solution tree T’ of a context minimal
AND/OR search graph G is a subtree which: (1) contains the root node s of G7; (2)
if n is an OR node in 7" then it contains one of its AND child nodes in G, and if n
is an AND node it contains all its OR children in G7. A node of 7" is a tip node if it
has no children in 7”. A tip node of 7" is either a terminal node (if it has no children
in Gr), or a non-terminal node (if it has children in G7).

A partial solution tree represents extension(T’), the set of all full solution trees
which can extend it. Clearly, a partial solution tree whose all tip nodes are terminal
in G is a solution tree.

Branch-and-Bound algorithms for 0-1 ILP are guided by the LP based lower
bound heuristic function. The extension of heuristic evaluation functions to subtrees
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in an AND/OR search space was elaborated in [31, 38]. We briefly introduce here
the main elements and refer the reader for further details to the earlier references.

Heuristic lower bounds on partial solution trees We start with the notions of exact
and heuristic evaluation functions of a partial solution tree, which will be used to
guide the AND/OR Branch-and-Bound search.

The exact evaluation function f*(T’) of a partial solution tree 7" is the minimum
of the costs of all solution trees extending 7’, namely: f*(T") = min{f(T) | T €
extension(T")}. It f*(T)) is the exact evaluation function of a partial solution tree
rooted at node n, then f*(7)) can be computed recursively, as follows:

1. If T), consists of a single node n then f*(7}) = v(n).

2. If nis an OR node having the AND child m in T}, then f*(7,) = w(n, m)+
[(Ty).

3. If n is an AND node having OR children my, ...,my in T,, then f*(T}) =
Yt AT,

If each non-terminal tip node m of T’ is assigned a heuristic lower bound estimate
h(m) of v(m), then it induces a heuristic evaluation function on the minimal cost
extension of 7”. Given a partial solution tree 7, rooted at n in the AND/OR graph
G, the tree-based heuristic evaluation function f(T)), is defined recursively by:

1. If T} consists of a single node n, then f(7T}) = h(n).

2. If n is an OR node having the AND child m in 7T,, then f(T,) = w(n, m)+
f(T).

3. If nis an AND node having OR children my,...,my in T,, then f(T),) =
S (T,

Clearly, by definition, f(7},) < f*(T}), and if n is the root of the context minimal
AND/OR search graph, then f(7T") < f*(T) [31, 38].

During search, the algorithm maintains both an upper bound ub (s) on the optimal
solution v(s), where s is the root of the search space, as well as the heuristic evaluation
function f(7") of the current partial solution tree 7’ being explored. Whenever
f(T") > ub (s), then searching below the current tip node ¢ of 7" is guaranteed not
to yield a better solution cost than ub (s) and, therefore, search below ¢ can be
halted.

In [31, 38] we also showed that the pruning test can be sped up if we associate
upper bounds with internal nodes as well. Specifically, if 7 is an OR ancestor of ¢ in
T’ and T, is the subtree of 7" rooted at m, then it is also safe to prune the search tree
below ¢, if f(T,,) > ub (m).

Example 5 Consider the partially explored weighted AND/OR search tree in Fig. 5
(the weights and node values are given for illustration only). The current partial
solution tree 7" is highlighted. It contains the following nodes: A, (A, 1), B, (B, 1),
C, (C,0), D, (D, 1) and F. The nodes labeled by (D, 1) and by F are non-terminal
tip nodes and their corresponding heuristic estimates are 2({D, 1)) = 2 and h(F) =9,
respectively. The subtrees rooted at the AND nodes labeled (A4, 0), (B, 0) and (D, 0)
are fully evaluated, and therefore the current upper bounds of the OR nodes labeled
A, B and D, along the active path, are ub(A) = 12, ub(B) = 10 and ub (D) =0,
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Heuristic evalution functions:

OR
0

f(r,)=13

7r,)=12

/ i
on toe--d ®
0,74 tip nodes

AND

Fig. 5 Illustration of the pruning mechanism

respectively. The heuristic evaluation function of the partial solution tree rooted at
the OR node A can be computed recursively, as follows:

f(Ty) =w(A, )+ f(T4 )
=w(A, D)+ f(Tp)
=w(A, D+wB, D+ f(T)z,)
=w(A, D+wB, D+ f(Te) + f(Tp) + f(Tp)
=w(A, D+wB, ) +w(C 0+ (T +wD, 1)+ f(Tp,) +h(F)
=w(A, 1)+ wB, 1)+ w(C,0)+0+w(D,1)+h({(D,1)) + h(F)
=14+4+0+0-3+2+9

=13
The heuristic evaluation functions of the partial solution subtrees rooted at the OR
nodes B and D along the current path can be computed in a similar manner, namely
f(Ty) =12 and f(T}) = —1, respectively. Notice that while we could prune below
(D, 1) because f(T,) > ub(A), we could discover this pruning earlier by looking at
node B only, because f(Ty) > ub(B). Therefore, the partial solution tree 7%, need

not be consulted in this case.

The Depth-First AND/OR Branch-and-Bound search algorithm, AOBB-C-ILP,
that traverses the context minimal AND/OR graph via full caching is described by
Algorithm 1 and shown here for completeness. It specializes the Branch-and-Bound
algorithm introduced in [33, 39] to 0-1 ILPs. If the caching mechanism is disabled
then the algorithm uses linear space only and traverses an AND/OR search tree
[31, 38].

The context based caching is done using tables [33, 39]. For each variable X, a
table is reserved in memory whose entries are indexed by each possible assignment
to its context. Initially, each entry has a predefined value, in our case NULL. The
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Algorithm 1: AOBB-C-ILP: AND/OR Branch-and-Bound Search for 0-1 ILP

Input: A 0-1 ILP instance with objective function 2:1:1 ¢; X, pseudo tree 7 rooted at X1, AND contexts pas; for every
variable X;, caching set to true or false.
Output: Minimal cost solution.

1 create an OR node s labeled X1 // Create and initialize the root node
2 v(s) « 00; OPEN «— {s}
3 if caching == true then
4 L Initialize cache tables with entries "NULL” // Initialize cache tables
5 while OPEN # () do
6 n « top(OPEN); remove n from OPEN; succ(n) « () // EXPAND
7 if n is marked INFEASIBLE or INTEGER then
8 | w(n) « oo (if INFEASIBLE) or v(n) < h(n) (if INTEGER)
9 else if n is an OR node, labeled X ; then
10 foreach z; € D; do
11 create an AND node »/, labeled (X, x;)
12 v(n') « 0; h(n') « LP(P,/) // Solve the LP relaxation
13 w(n,n') «c¢; - x; // Compute the arc weight
14 mark n’ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution
15 suce(n) «— suce(n) U {n'}
16 else if n is an AND node, labeled (X ;, ;) then
17 cached «— false; deadend «— false
18 if caching == true and Cache(asgn(mn)[pas;]) # NULL then
19 v(n) « Cache(asgn(mn)[pas;]) // Retrieve value
20 cached «— true // No need to expand below
21 foreach OR ancestor m of n do
22 lb — evalPartialSolutionTree(T),)
23 if b > v(m) then
24 deadend — true // Pruning
25 break
26 if deadend == false and cached == false then
27 foreach X; € childrens(X;) do
28 create an OR node n/ labeled X ;
29 v(n') « oo; h(n') « LP(P,/) // Solve the LP relaxation
30 mark n’ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution
31 suce(n) «— suce(n) U {n'}
32 else if deadend == true then
33 I_ suce(p) < suce(p) — {n}
34 Add suce(n) ontop of OPEN // PROPAGATE
35 while succ(n) == () do
36 if n is an OR node, labeled X ; then
37 if X; == X then
38 |_ return v(n) // Search is complete
39 v(p) «— v(p) +v(n) // Update AND node value (summation)
40 else if n is an AND node, labeled (X;, x;) then
41 if caching == true and v(n) # oo then
42 | Cache(asgn(mn)lpasi]) < v(n) // Save AND node value in cache
43 ifv(p) > (w(p,n) + v(n)) then
44 |_ v(p) «— w(p,n) + v(n) // Update OR node value (minimization)
45 remove n from succ(p)
46 n<«p

fringe of the search is maintained by a stack called OPEN. The current node is
denoted by n, its parent by p, and the current path by m,. The children of the
current node are denoted by succ(n). The flag caching is used to enable the caching
mechanism.
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Each node 7 in the search graph maintains its current value v(n), which is updated
based on the values of its children. For OR nodes, the current v(n) is an upper bound
on the optimal solution cost below n. Initially, v(n) is set to oo if n is OR, and 0 if
is AND, respectively. The heuristic function A(n) in the search graph is computed by
solving the LP relaxation of the subproblem rooted at n, conditioned on the current
partial assignment along =, (i.e., asgn(m,)) (lines 12 and 29, respectively). Notice
that if the LP relaxation is infeasible, we assign /(n) = oo and in this case v(n) = oo,
denoting inconsistency. Similarly, if the LP has an integer solution, then /(n) equals
v(n). In both cases, succ(n) is set to the empty set, thus avoiding n’s expansion
(lines 7-8).

Before expanding the current AND node #, its cache table is checked (line 18). If
the same context was encountered before, it is retrieved from the cache, and succ(n)
is set to the empty set, which will trigger the PROPAGATE step. Otherwise, the node is
expanded in the usual way, depending on whether it is an AND or OR node (lines 9-
33). The algorithm also computes the heuristic evaluation function for every partial
solution subtree rooted at the OR ancestors of #n along the path from the root (lines
21-25). The search below n is terminated if, for some OR ancestor m, f(7T),) > v(m),
where v(m) is the current upper bound on the optimal cost below m. The recursive
computation of f(7},) is described in Algorithm 2.

The node values are updated by the PROPAGATE step (lines 35-46). It is triggered
when a node has an empty set of descendants (note that as each successor is
evaluated, it is removed from the set of successors in line 45). This means that all
its children have been evaluated, and their final values are already determined. If
the current node is the root, then the search terminates with its value (line 38). If n
is an OR node, then its parent p is an AND node, and p updates its current value
v(p) by summation with the value of n (line 39). An AND node n propagates its
value to its parent p in a similar way, by minimization (lines 43-44). Finally, the
current node # is set to its parent p (line 46), because n was completely evaluated.
Search continues either with a propagation step (if conditions are met) or with an
expansion step.

AOBB-C-ILP is described relative to a static variable ordering determined by the
underlying pseudo tree and explores the context minimal AND/OR search graph
via full caching. However, if the memory requirements are prohibitive, rather than
using full caching, AOBB-C-ILP can be modified to use a memory bounded caching
scheme that saves only those nodes whose context size can fit in the available
memory, as shown in [33, 39].

Algorithm 2: Recursive computation of the heuristic evaluation function.

function: evalPartialSolutionTree (T},)
Input: Partial solution subtree T, rooted at node n.
Output: Heuristic evaluation function f(77,).
if succ(n) == () then
| return h(n)
else
if n is an AND node then
\\ let my, ..., my, be the OR children of n in T7,

return Zf:l eval Partial SolutionTree(T;, )

else if n is an OR node then
let m be the AND child of n in T7,
return w(n, m) + eval Partial SolutionTree(T),)

N AN AW =
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5 Best-first AND/OR search for 0-1 ILPs

We now direct our attention to a best-first rather than depth-first control strategy for
traversing the context minimal AND/OR graph and present a best-first AND/OR
search algorithm for 0-1 ILP. The algorithm uses similar amounts of memory as
the depth-first AND/OR Branch-and-Bound with full caching. The algorithm was
described in detail in [36, 37, 39] and evaluated for general constraint optimization
problems. By specializing it to 0-1 ILP using the LP relaxation for 4, we get
AOBF-C-ILP. For completeness sake, we describe the algorithm again including
minor modifications for the 0-1 ILP case.

The algorithm, denoted by AOBF-C-ILP (Algorithm 3), specializes Nilsson’s
AO* algorithm [41] to AND/OR search spaces for 0-1 ILPs. It interleaves forward
expansion of the best partial solution tree (EXPAND) with a cost revision step
(REVISE) that updates node values. The explicated AND/OR search graph, denoted
by G- is maintained, the current node is n, s is the root of the search graph and the
current best partial solution subtree is denoted by 7". The children of a node n are
denoted by succ(n).

First, a top-down, graph-growing operation finds the best partial solution tree
by tracing down through the marked arcs of the explicit AND/OR search graph
G- (lines 5-10). These previously computed marks indicate the current best partial
solution tree from each node in G/-. Before the algorithm terminates, the best partial
solution tree, 7”, does not yet have all of its leaf nodes terminal. One of its non-
terminal leaf nodes n is then expanded by generating its successors, depending
on whether it is an OR or an AND node. Notice that when expanding an OR
node, the algorithm does not generate AND children that are already present in
the explicit search graph G/ (lines 14-16). All these identical AND nodes in G’
are easily recognized based on their contexts. Upon node’s n expansion, a heuristic
underestimate h(n') of v(n’) is assigned to each of n’s successors n’ € succ(n) (lines
17 and 26). Again, h(n’) is obtained by solving the LP relaxation of the subproblem
rooted at n’, conditioned on the current partial assignment of the path to the root. As
before, AOBF-C-ILP avoids expanding those nodes for which the corresponding LP
relaxation is infeasible or yields an integer solution (lines 19-23 and 29-33).

The second operation in AOBF-C-ILP is a bottom-up, cost revision, arc marking,
SOLVE-labeling procedure (lines 37-48). Starting with the node just expanded #n, the
procedure revises its value v(n), using the newly computed values of its successors,
and marks the outgoing arcs on the estimated best path to terminal nodes. This
revised value is then propagated upwards in the graph. The revised value v(n) is an
updated lower bound estimate of the cost of an optimal solution to the subproblem
rooted at n. During the bottom-up step, AOBF-C-ILP labels an AND node as
SOLVED if all of its OR child nodes are solved, and labels an OR node as SOLVED
if its marked AND child is also solved. The algorithm terminates with the optimal
solution when the root node s is labeled SOLVED. We next summarize the complexity
of both depth-first and best-first AND/OR graph search [14, 33, 36, 39]:

Theorem 3 (complexity) Given a 0-1 ILP and its constraint graph G, the depth-first
AND/OR Branch-and-Bound and best-first AND/OR search algorithms guided by
a pseudo tree T of G are sound and complete. Their time and space complexity is
O(n - 2%"), where w* is the induced width of G along the pseudo tree.
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Algorithm 3: AOBF-C-ILP: Best-First AND/OR Search for 0-1 ILP

Input: A 0-1 ILP instance with objective function Z:Zl ¢; X;, pseudo tree 7 rooted at X1, AND contexts pas; for every
variable X;
Output: Minimal cost solution.

1 create an OR node s labeled X1 // Initialize
2 wv(s) « h(s); Q'T — {s}
3 while s is not labeled SOLVED do
4 S —{shT «0; // Create the marked partial solution tree
5 while S # () do
6 n « top (S); remove n from S
7 T — T u{n}
8 let L be the set of marked successors of n
9 if L # () then
10 | add L on top of §
11 let n be any nonterminal tip node of the marked T” (rooted at s) // EXPAND
12 if n is an OR node, labeled X ; then
13 foreachz; € D; do
14 let n be the AND node in G/ having context equal to pas;
15 ifn’ == NULL then
16 create an AND node n’ labeled (X, ;)
17 h(n') « LP(P,/);v(n') < h(n’) // Solve the LP relaxation
18 w(n,n') «— ¢; - ; // Compute the arc weight
19 label n’ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution
20 if n’ is INTEGER or TERMINAL then
21 | label n’ as SOLVED
22 else if n’ is INFEASIBLE then
23 |_ v(n') « oo
24 suce(n) «— suce(n) U {n'}
25 else if n is an AND node, labeled (X;, ;) then
26 foreach X; € childrens(X;) do
27 create an OR node n/ labeled X ;
28 h(n') < LP(P,/);v(n’) < h(n') // Solve the LP relaxation
29 label n/ as INFEASIBLE or INTEGER if the LP relaxation is infeasible or has an integer solution
30 if n/ is INTEGER then
31 | mark n’ as SOLVED
32 else if n’ is INFEASIBLE then
33 |_ v(n') « oo
34 suce(n) «— suce(n) U {n'}
35 gi, — QL[ U suce(n)
36 S — {n} // REVISE
37 while S # () do
38 let m be a node in S such that m has no descendants in g'T still in S’; remove m from S
39 if m is an AND node, labeled (X;, z;) then
0 CORD SR )
41 mark all arcs to the successors
42 label m as SOLVED if all its children are labeled SOLVED
43 else if m is an OR node, labeled X ; then
44 v(m) = MmNy e syce(m) (W(m, m') +v(m’))
45 mark the arc through which this minimum is achieved
46 label m as SOLVED if the marked successor is labeled SOLVED
47 if m changes its value or m is labeled SOLVED then
48 |_ add to S all those parents of m such that m is one of their successors through a marked arc.
49 return v(s) // Search terminates

AOBB versus AOBF Best-first search AOBF with the same heuristic function as
depth-first Branch-and-Bound AOBB is likely to expand the smallest number of nodes
[15], but empirically this depends on the optimal solution path itself. Second, AOBB
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can use far less memory by avoiding dead-caches for example (e.g., when the context
minimal search graph is a tree), while AOBF has to keep the explicated search graph
in memory no matter what. Third, AOBB can be used as an anytime scheme, namely
whenever interrupted, the algorithm outputs the best solution found so far, unlike
AOBF which outputs a solution upon termination only. All the above points show
that the relative merit of best-first versus depth-first over context minimal AND/OR
search spaces cannot be determined by theory [15] and empirical evaluation is
necessary.

6 Dynamic variable orderings

The depth-first and best-first AND/OR search algorithms presented in the previous
sections assumed a static variable ordering determined by the underlying pseudo
tree of the constraint graph. However, the mechanism of identifying unifiable AND
nodes based solely on their contexts is hard to extend when variables are instantiated
in a different order than that dictated by the pseudo tree. In this section we
discuss a strategy that allows dynamic variable orderings in depth-first and best-
first AND/OR search, when both algorithms traverse an AND/OR search tree.
The approach called Partial Variable Ordering (PVO), which combines the static
AND/OR decomposition principle with a dynamic variable ordering heuristic, was
described and tested also for general constraint optimization over graphical models
in [34, 38]. For completeness sake, we review it briefly next.

Variable orderings for integer programming At every node in the search tree, the
search algorithm has to decide what variable to instantiate next. One common
method in operations research is to select next the most fractional variable, i.e.,
variable whose LP value is furthest from being integral [47]. Another relatively
simple rule, which we used in our experiments, is reduced-cost branching. Specifically,
the next fractional variable to instantiate has the smallest reduced cost (i.e., dual
value) [40] in the solution of the LP relaxation.

A more sophisticated approach, which is better suited for certain hard problems is
strong branching [7]. This method performs a one-step lookahead for each variable
that is non-integral in the LP at the node. The one-step lookahead computation
solves the LP relaxations for each of the children of the candidate variable, and
a score is computed based on the LP values of the children. The next variable to
instantiate is selected as the one with the highest score among the candidates.

Pseudo-cost branching [4] is another rule that keeps a history of the success of the
variables on which already has been branched. A score is then calculated for each
variable based on its history, and the fractional variable with the highest score is
instantiated next.

Partial variable ordering (PVO) AND/OR Branch-and-Bound with Partial Variable
Ordering (resp. Best-First AND/OR Search with Partial Variable Ordering), denoted
by AOBB+PVO-ILP (resp. AOBF+PVO-ILP), uses the static graph-based decompo-
sition given by a pseudo tree with a dynamic semantic ordering heuristic applied
over chain portions of the pseudo tree. For simplicity and without loss of generality
we consider the reduced-cost heuristic as our semantic variable ordering heuristic.
Clearly, it can be replaced by any other heuristic.
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Consider the pseudo tree from Fig. 2 inducing the following variable groups (or
chains): {A, B}, {C, D} and {E, F}, respectively. This implies that variables {A, B}
should be considered before {C, D} and { E, F}. The variables in each group can be
dynamically ordered based on the semantic ordering heuristic.

AOBB+PVO-ILP (resp. AOBF+PVO-ILP) can be derived from Algorithm 1 (resp.
Algorithm 3) with some simple modifications. As usual, the algorithm traverses
an AND/OR search tree in a depth-first (resp. best-first) manner, guided by a
pre-computed pseudo tree 7. When the current AND node n, labeled (X, x;), is
expanded in the forward step, the algorithm generates its OR successor m, labeled
Xj, based on the semantic ordering heuristic. Specifically, m corresponds to the
variable with the smallest reduced cost in the current pseudo tree chain. If there
are no uninstantiated variables left in the current chain, namely variable X; was
instantiated last, then the OR successors of n are labeled by the variables with the
smallest reduced cost from the variable groups rooted by X; in 7.

7 Experimental results

We evaluated the performance of the depth-first and best-first AND/OR search
algorithms on 0-1 ILP problem classes such as combinatorial auction, uncapacitated
warehouse location problems and MAX-SAT problem instances. We implemented
our algorithms in C++ and carried out all experiments on a 2.4GHz Pentium IV with
2GB of RAM, running Windows XP.

Algorithms The detailed outline of the experimental evaluation is given in Table 1.
We evaluated the following 6 classes of AND/OR search algorithms:

1. Depth-first and best-first search algorithms using a static variable ordering and
exploring the AND/OR tree, denoted by A0BB-ILP and AOBF-ILP, respec-
tively.

2. Depth-first and best-first search algorithms using dynamic partial variable or-
derings and exploring the AND/OR tree, denoted by AOBB+PVO-ILP and
AOBF+PVO-ILP, respectively.

3. Depth-first and best-first search algorithms with caching that explore the con-
text minimal AND/OR graph and use static variable orderings, denoted by
AOBB-C-ILP and AOBF-C-ILP, respectively.

All of these AND/OR algorithms use a simplex implementation based on the
open-source 1lp solve library to compute the guiding LP relaxation. For this
reason, we compare them against the OR Branch-and-Bound algorithm available

Table 1 Detailed outline of the experimental evaluation for 0-1 ILP

Problem classes Tree search Graph search  ILP solvers

AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP BB (Ip_solve)
AOBF-ILP AOBF+PVO-ILP AOBF-C-ILP CPLEX11.0

Combinatorial auctions v Vv Vv V
Warehouse location problems  / v v v
MAX-SAT instances N4 N4 N4 J
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from the 1p_solve library, denoted by BB. The pseudo tree used by the AND/OR
algorithms was constructed using the hypergraph partitioning heuristic described in
[34, 38] and outlined briefly below. BB, AOBB+PVO-ILP and AOBF+PVO-ILP used a
dynamic variable ordering heuristic based on reduced costs and the ties were broken
lexicographically.

We note however that the AOBB-ILP and AOBB-C-ILP algorithms support a
restricted form of dynamic variable and value ordering. Namely, there is a dynamic
internal ordering of the successors of the node just expanded, before placing them
onto the search stack. Specifically, if the current node n is AND, then the indepen-
dent subproblems rooted by its OR children can be solved in decreasing order of their
corresponding heuristic estimates (variable ordering). Alternatively, if n is OR, then
its AND children corresponding to domain values can also be sorted in decreasing
order of their heuristic estimates (value ordering).

For reference, we also ran the ILOG CPLEX version 11.0 solver (with default
settings), which uses a best-first control strategy, a dynamic variable ordering heuris-
tic based on strong branching, as well as cutting planes to tighten the LP relaxation.
It explores however an OR search tree.

In the MAX-SAT domain we ran, in addition, three specialized solvers:

1. MaxSolver [48], a DPLL-based algorithm that uses a 0-1 non-linear integer
formulation of the MAX-SAT problem,

2. toolbar [17],aclassic OR Branch-and-Bound algorithm that solves MAX-SAT
as a Weighted CSP problem [5], and

3. PBS [1], a DPLL-based solver capable of propagating and learning pseudo-
boolean constraints as well as clauses.

MaxSolver and toolbar were shown to perform very well on random MAX-
SAT instances with high graph connectivity [17], whereas PBS exhibits better perfor-
mance on relatively sparse MAX-SAT instances [48]. These algorithms explore an
OR search space.

Throughout our empirical evaluation we will address the following questions that
govern the performance of the proposed algorithms:

1. The impact of AND/OR versus OR search.

2. The impact of best-first versus depth-first AND/OR search.
3. The impact of caching.

4. The impact of dynamic variable orderings.

Constructing the Pseudo tree Our heuristic for generating a low height balanced
pseudo tree is based on the recursive decomposition of the dual hypergraph associ-
ated with the 0-1 ILP instance. The dual hypergraph of a 0-1 ILP with X variables
and F constraints is a pair (V, E) where each constraint in F is a vertex v; € V and
each variable in X is a hyperedge e; € E connecting all the constraints (vertices) in
which it appears.

Generating heuristically good hypergraph separators can be done using a package
called hMeTiS,” which we used following [11]. The vertices of the hypergraph are
partitioned into two balanced (roughly equal-sized) parts, denoted by Hjes; and Hign

9 Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis.
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respectively, while minimizing the number of hyperedges across. A small number
of crossing edges translates into a small number of variables shared between the
two sets of constraints. Hj.r, and H,;s, are then each recursively partitioned in the
same fashion, until they contain a single vertex. The result of this process is a tree of
hypergraph separators which can be shown to also be a pseudo tree of the original
model where each separator corresponds to a subset of variables chained together
[34, 38].

Measures of performance We report the CPU time (in seconds) and the number of
nodes visited. We also specify the number of variables (1), the number of constraints
(c), as well as the induced width (w*) and depth (%) of the pseudo trees obtained for
each problem instance. The best performance points are highlighted. In each table,
“-” denotes that the respective algorithm exceeded the time limit. Similarly, “out”
stands for exceeding the 2GB memory limit.

7.1 Combinatorial auctions

In combinatorial auctions (CA), an auctioneer has a set of goods, M = {1, 2, ..., m}
to sell and the buyers submit a set of bids, B = { By, B, ..., B,}. A bid is a tuple
Bj = (S}, pj), where §; € M is a set of goods and p; >0 is a price. The winner
determination problem is to label the bids as winning or loosing so as to maximize
the sum of the accepted bid prices under the constraint that each good is allocated to
at most one bid. Combinatorial auctions are special cases of the classical set packing
problem [9, 40]. The problem can be formulated as a 0-1 ILP, as follows:

max Z PjXj (8)
j=1

s.t. Zﬂiesj x<1 ie{l.m}
x€{0,1} je{l.n)

Combinatorial auctions can also be formulated as binary Weighted CSPs [5], as
described in [13]. Therefore, in addition to the 0-1 ILP solvers, we also ran toolbar
which is a specialized OR Branch-and-Bound algorithm that maintains a level of
local consistency called existential directional arc-consistency [16].

Figures 6 and 7 display the results for experiments with combinatorial auctions
drawn from the regions-upv (Fig. 6) and arbitrary-upv (Fig. 7) distributions of CATS
2.0 test suite [30]. The regions-upv problem instances simulate the auction of radio
spectrum in which a government sells the right to use specific segments of spectrum
in different geographical areas. The arbitrary-upv problem instances simulate the
auction of various electronic components. The suffix upv indicates that the bid prices
were drawn from a uniform distribution. We looked at moderate size auctions having
100 goods and increasing number of bids. The number of bids is also the number
of variables in the 0-1 ILP model. Each data point represents an average over 10
instances drawn uniformly at random from the respective distribution. The header of
each plot in Figs. 6 and 7 shows the average induced width and depth of the pseudo
trees.
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Fig. 6 Comparing depth-first regions-upv combinatorial auctions - time
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AND/OR vs. OR search  'When comparing the AND/OR versus OR search regimes,
we observe that both depth-first and best-first AND/OR search algorithms improve
considerably over the OR search algorithm, BB, especially when the number of
bids increases and the problem instances become more difficult. In particular, the
depth-first and best-first AND/OR search algorithm using partial variable orderings,
AOBB+PVO-ILP and AOBF+PVO-ILP, are the winners on this domain, among the
1p_solve based solvers. For example, on the regions-upv auctions with 400 bids
(Fig. 6), AOBF+PVO-ILP is on average about 8 times faster than BB. Similarly,
on the arbitrary-upv auctions with 280 bids (Fig. 7), the difference in running
time between AOBB+PVO-ILP and BB is about 1 order of magnitude. Notice that
on the regions-upv dataset, toolbar is outperformed significantly by BB as well
as the AND/OR algorithms. On the arbitrary-upv dataset, toolbar outperforms
dramatically the 1p solve based solvers. However, the size of the search space
explored by toolbar is significantly larger than the ones explored by the AND/OR
algorithms. Therefore, toolbar’s better performance in this case can be explained
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Fig. 7 Comparing depth-first arbitrary-upv combinatorial auctions - time
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by the far smaller computational overhead of the arc-consistency based heuristic
used, compared with the LP relaxation based heuristic.

AOBB vs. AOBF When comparing further best-first versus depth-first AND/OR
search, we see that AOBF-ILP (resp. AOBF+PVO-ILP) improves considerably over
AOBB- ILP (resp. AOBB+PVO-ILP), especially on the regions-upv dataset. The gain
observed when moving from depth-first AND/OR Branch-and-Bound to best-first
AND/OR search is primarily due to the optimal cost, which bounds the horizon
of best-first more effectively than for depth-first search. Note that in this case
AOBF-ILP (resp. AOBF+PVO- ILP) uses exponential space, unlike AOBB-ILP (resp.
AOBB+PVO-ILP) which requires linear space only.

Impact of caching 'When looking at the impact of caching on AND/OR search, we

notice that the graph search algorithms AOBB-C-ILP and AOBF-C-ILP expanded
the same number of nodes as the tree search algorithms A0OBB-ILP and AOBF-ILP,
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respectively (see Figs. 6 and 7). This indicates that, for this domain, the context
minimal AND/OR search graph explored is a tree. Or, the LP relaxation is very
accurate in this case and the AND/OR algorithms only explore a small part of the
search space, for which the corresponding context-based cache entries are actually
dead-caches.

Impact of dynamic variable orderings We can see that using dynamic variable
ordering heuristics improves the performance of best-first AND/OR search only.
For depth-first AND/OR search, the performance deteriorated sometimes (see for
example AOBB-ILP vs. AOBB+PVO-ILP on the regions-upv auctions in Fig. 6).

Comparison with CPLEX 1In Figs. 8 and 9 we contrast the results obtained with
CPLEX, toolbar, BB, AOBB+PVO-ILP and AOBF+PVO-ILP on the regions-upv
(Fig. 8) and arbitrary-upv (Fig. 9) distributions, respectively. Clearly, we can see that
CPLEX is the best performing solver on these datasets. In particular, it is several

Fig. 8 Comparison with
CPLEX. CPU time in seconds

regions-upv combinatorial auctions - time

[average: 62 < w* < 250, 75 < h < 290]

(top) and number of nodes
(bottom) visited for solving 770' — ‘B"E‘;‘:’IZ’ sonve)
combinatorial auctions from 108 4 —-0— AOBF+PVO-ILP
the regions-upv distribution x CPLEX .
with 100 goods and increasing _o—0
. . . . 2
number of bids. Time limit 3 h 0 P il
o
3
Z
L o
[
£
100 X Kex
X
® %
x x
Xoge
10 4 XX
X
102 T T T T T T T
50 100 150 200 250 300 350 400 450
bids (# variables)
regions-upv combinatorial auctions - nodes
[average: 62 < w* < 250, 75 < h < 290]
100
—@—— toolbar
10°4 ——0—— BB (Ip_solve)
—-O—: AOBF+PVO-ILP
107 4 X CPLEX
106 4
105 4
» _a—-0—-0
S 10t 4 O__&,O/‘CF{* ©
2 _0o——O~
_0-—C —-0

@ Springer

10° 4

102 o

10" o

10° 4

10°
50

T T T T T
200 250 300 350 400

bids (# variables)

T
150 450



Constraints (2010) 15:29-63

53

Fig. 9 Comparison with
CPLEX. CPU time in seconds
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orders of magnitude faster than the 1p_solve based solvers, especially the baseline
BB solver. Its excellent performance is leveraged by the powerful cutting planes
engine as well as the proprietary variable ordering heuristic used. Note that on the
arbitrary-upyv dataset, toolbar is competitive with CPLEX only for relatively small
number of bids.

We also experimented with combinatorial auctions derived from the regions-npv
and arbitrary-npv distributions for which the bid prices were drawn from a normal
distribution. The results displayed a similar pattern as those presented in this section
and therefore we do not show them here. An extended version of the paper which
contains these results is available online.

7.2 Uncapacitated warehouse location problems

In the uncapacitated warehouse location problem (UWLP) a company considers
opening m warehouses at some candidate locations in order to supply its n existing
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stores. The objective is to determine which warehouse to open, and which of these
warehouses should supply the various stores, such that the sum of the maintenance
and supply costs is minimized. Each store must be supplied by exactly one warehouse.
The typical 0-1 ILP formulation of the problem is as follows:

min Z Z CijXij =+ Z ﬁy, (9)
i=1

j=1 i=1

sty x=1 Vje {l.n}
Xij = Vi Vje{l.n},Vie{l.m}
x;;€{0,1} Vje{l.n},Vie{l.m}
yi€{0,1} Vie{l.m}

where f; is the cost of opening a warehouse at location i and ¢;; is the cost of supplying
store jfrom the warehouse at location i.

Table 2 display the results obtained for 16 randomly generated UWLP instances'®
with 50 warehouses, 200 and 400 stores, respectively. The warehouse opening and
store supply costs were chosen uniformly randomly between 0 and 1000. These are
large problems with 10,050 variables and 10,500 constraints for the uwlp-50-200 class,
and 20,050 variables and 20,400 constraints for the uwlp-50-400 class, respectively,
having pseudo trees with induced widths of 50 and depths of 123.

AND/OR vs. OR search 'When looking at AND/OR versus OR search, we can see
that in almost all test cases the AND/OR algorithms dominate BB. On the uwlp-50-
200-013 instance, for example, AOBF+PVO-ILP has a speed-up of 186 over BB, and
explores a search tree 1,142 times smaller. Similarly, on the uwlp-50-400-001 instance,
AOBB+PVO-ILP outperforms BB by almost 2 orders of magnitude in terms of running
time and size of the search space explored. On this domain, the best performing
algorithm among the 1p_solve based solvers is best-first AOBF+PVO-ILP.

AOBB vs. AOBF We observe only minor savings in running time in favor of best-
first search. This can be explained by the already small enough search space traversed
by the algorithms, which does not leave room for additional improvements due to the
optimal cost bound exploited by best-first search.

Impact of caching We see again that AOBB-C-ILP and AOBF-C-ILP visited the
same number of nodes as AOBB-ILP and AOBF-ILP, respectively (see columns 3
and 5 in Table 2). This shows again that the context minimal AND/OR search graph
explored by the AOBB-C-ILP and AOBF-C-ILP algorithms was a tree and therefore
all cache entries were dead-caches.

Impact of dynamic variable orderings We also observe that the dynamic variable
ordering had a significant impact on performance in this case, especially for depth-
first search. For example, on the uwlp-50-200-021 instance, AOBB+PVO-ILP is 16
times faster than AOBB-ILP and expands 64 times fewer nodes. However, the

10problem generator from http://www.mpi-sb.mpg.de/units/agl/projects/benchmarks/UfILib/.
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Table 2 CPU time in seconds and number of nodes visited for solving uncapacitated warehouse
location problems with 50 warehouses 200 (top part) and 400 (bottom part) stores, respectively

uwlp BB (Ip_solve) AOBB-ILP AOBB+PVO-ILP AOBB-C-ILP
CPLEX AOBF-ILP AOBF+PVO-ILP  AOBF-C-ILP
time nodes time nodes time nodes time nodes
50 warehouses 200 locations: (n=10,050, c=10,500), (w*=50, h=123)
uwlp-50-200-004  61.08 142 4639 46 1747 10 4642 46
0 3758 24 1549 3 3627 24
uwlp-50-200-005 159189 1692 40494 233 12581 50 40572 233
81 287.64 97 14553 37 27099 97
uwlp-50-200-011  256.19 358 23396 246 7874 39 23321 246
37 8822 41 7583 22 8375 41
uwlp-50-200-013 1369376 14,846 11619 44 7886 24 11625 44
37 11128 26 7453 13 10572 26
uwlp-50-200-017 71104 998 12314 118 1817 9 12470 118
2.15 3 4806 21 1684 4777 21
uwlp-50-200-018  1477.74 2,666 16103 146  59.52 37 161.05 146
574 8 5458 21 3233 8 5241 21
uwlp-50-200-020 217939 3,668 19077 138 6891 36 190.81 138
28 8758 33 4833 10 8370 33
uwlp-50-200-021 325260 5774  609.74 580  37.63 9 608.24 580
25 8055 30 4680 7 92.08 30
50 warehouses 400 locations: (n=20,050, c=20,400), (w*=50, h=123)
uwlp-50-400-001 1363855 12,548 74375 374  106.63 29 743.68 374
12 13003 20 8163 8 12639 20
uwlp-50-400-004  820.89 942 111447 794 5510 10 111755 794
6.52 6 12697 25 5185 3 12319 25
uwlp-50-400-005 5753267 32,626 2719.09 617  247.03 50 272226 617
58 33187 36 13158 31300 36
uwlp-50-400-006  365.93 632 4841 11 3231 1 4844 11
0 5.2 8 3265 1 5195 8
uwlp-50-400-008  599.49 560 17560 49 96.66 21 17567 49
0 11928 13 6027 3 11642 13
uwlp-50-400-009 1760898 17262 28102 76 97.00 9 28130 76
9.02 6 13227 14 7805 2 12858 14
uwlp-50-400-011  22727.61 22324 19391 77 6428 5 19389 77
8.07 7 9311 12 6458 4 9206 12
uwlp-50-400-012 546830 4174 67190 307 5222 4 67177 307
0 16464 32 5295 2 15928 32

No time limit. The best performance points among the Ip_solve based solvers are shown in bold
types, while the overall best performance points are boxed

difference in running time between the best-first search algorithms, AOBF-ILP and
AOBF+PVO-ILP, is smaller compared to what we see for depth-first AND/OR
search. This is because the search space explored by AOBF-ILP is already small
enough and the savings in number of nodes caused by dynamic variable orderings
cause only minor time savings.
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Comparison with CPLEX When looking at the results obtained with CPLEX
(column 2 in Table 2), we notice again its excellent performance in terms of both
running time and size of the search space explored. However, we see that in some
cases AOBF+PVO-ILP actually explored fewer nodes than CPLEX (e.g., uwlp-50-
200-021). This is important because it shows that the relative worse performance of
AOBF+PVO-ILP versus CPLEX is due mainly to lack of cutting planes as well as the
naive dynamic variable ordering heuristic used.

7.3 MAX-SAT instances

Given a set of Boolean variables the goal of maximum satisfiability (MAX-SAT) is
to find a truth assignment to the variables that violates the least number of clauses.
We experimented with problem classes pret and dubois from the SATLIB!! library,
which were previously shown to be difficult for 0-1 ILP solvers [17].

MAX-SAT can be formulated as a 0-1 ILP [21] or pseudo-Boolean formula [18,
46]. In the 0-1 ILP model, a Boolean variable v is mapped to an integer variable x
that takes value 1 when v is True or 0 when it is False. Similarly, —v is mapped to
1 — x. With these mappings, a clause can be formulated as a linear inequality. For
example, the clause (v; v —v, V v3) can be mapped to x; + (1 — xp) + x3 > 1. Here,
the inequality means that the clause must be satisfied in order for the left side of the
inequality to have a value no less than one.

However, a clause in a MAX-SAT may not be satisfied, so that the corresponding
inequality may be violated. To address this issue, an auxiliary integer variable y is in-
troduced to the left side of a mapped inequality. Variable y = 1 if the corresponding
clause is unsatisfied, making the inequality valid; otherwise, y = 0. Since the objective
is to minimize the number of violated clauses, it is equivalent to minimize the sum of
the auxiliary variables that are forced to take value 1. For example, (v; vV —v; V v3),
(v2 V vg4) can be written as an 0-1 ILP of minimizing z = y; + y», subject to the
constraints of x; + (1 —x2) +x3+y; > land xo + (1 —x4) + y2 > 1.

7.3.1 pret instances

Table 3 shows the results for experiments with 6 pret instances. These are unsatisfi-
able instances of graph 2-coloring with parity constraints. The size of these problems
is relatively small (60 variables with 160 clauses for pret60 and 150 variables with 400
clauses for pret150, respectively).

AND/OR vs. OR search We see again that the AND/OR algorithms improved
dramatically over BB. For instance, on the pret]50-75 network, AOBB-ILP finds the
optimal solution in less than 2 min, whereas BB exceeds the 10 h time limit. Similarly,
MaxSolver and toolbar could not solve the instance within the time limit. Overall,
PBS offers the best performance on this dataset.

AOBB vs. AOBF The best-first AND/OR search algorithms improve sometimes
considerably over the depth-first ones, especially when exploring an AND/OR graph
(e.g., see AOBF-C-ILP versus AOBB-C-ILP in the leftmost column of Table 3).

Uhttp://www.satlib.org/.
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Moreover, the search space explored by AOBF-C-ILP appears to be the smallest.
This indicates that the computational overhead of AOBF-C-ILP is mainly due to
evaluating its guiding lower bounding heuristic evaluation function.

Impact of caching When looking at the depth-first AND/OR Branch-and-Bound
graph search algorithm we only observe minor improvements due to caching. This is
probably because most of the cache entries were actually dead-caches. On the other
hand, best-first AOBF - C- ILP exploits the relatively small size of the context-minimal
AND/OR graph (i.e., in this case the problem structure is captured by a very small
context with size 6 and a shallow pseudo tree with depth 13 or 15) and achieves the
best performance among the ILP solvers.

Impact of dynamic variable orderings We also see that the dynamic variable order-
ing did not have an impact on search performance for both depth-first and best-first
algorithms.

Comparison with CPLEX Both depth-first and best-first AND/OR search algo-
rithms outperformed dramatically CPLEX on this dataset. On the pret60-40 instance,
for example, AOBF-C-ILP is 2 orders of magnitude faster than CPLEX. Similarly,
on pretl150-40, CPLEX exceeded the memory limit.

7.3.2 dubois instances

Figure 10 displays the results for experiments with random dubois instances with
increasing number of variables. These are unsatisfiable 3-SAT instances with 3 x
degree variables and 8 x degree clauses, each of them having 3 literals. As in the
previous test case, the dubois instances have very small contexts of size 6 and shallow
pseudo trees with depths ranging from 10 to 20.

AND/OR vs. OR search As before, we see that the AND/OR algorithms are far
superior to BB, which could not solve any of the test instances within the 3 h time
limit. PBS is again the overall best performing algorithm, however it failed to solve 4
test instances: on instance dubois130, for which degree = 130, it exceeded the 3 h time
limit, whereas on instances dubois180, dubois200 and dubois260 the clause/pseudo-
boolean constraint learning mechanism caused the solver to run out of memory. We
note that MaxSolver and toolbar were not able to solve any of the test instances
within the time limit.

AOBB vs. AOBF Best-first search outperforms again depth-first search, especially
when exploring the AND/OR graph. However, the depth-first tree search algorithms
AOBB-ILP and AOBB+PVO-ILP were better than the best-first tree search counter-
parts in this case. This was probably caused by the internal dynamic variable ordering
used by AOBB-ILP and A0BB+PVO-ILP to solve independent subproblems rooted
at the AND nodes in the search tree.

Impact of caching We can see that AOBF-C-ILP takes full advantage of the
relatively small context minimal AND/OR search graph and, on some of the larger
instances, it outperforms its ILP competitors with up to one order of magnitude in
terms of both running time and number of nodes expanded. On this dataset as well
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Fig. 10 Comparing depth-first dubois MAX-SAT instances - time
and best-first AND/OR search [average: w* = 6, 10 < h < 20]
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AOBF-C-ILP explores the smallest search space, but its computational overhead
does not pay off in terms of running time when compared with PBS. The impact
of caching on AND/OR Branch-and-Bound is not that pronounced as for best-first.

Impact of dynamic variable orderings The dynamic variable ordering had a mi-
nor impact on depth-first AND/OR search only (e.g., see AOBB+PVO-ILP versus
AOBB-ILP in Fig. 10).

Comparison with CPLEX The performance of CPLEX was quite poor on this
dataset and it could not solve any of the test instances within the time limit.

8 Related work

The idea of exploiting structural properties of the problem in order to enhance the
performance of search algorithms is not new. Freuder and Quinn [19] introduced
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the concept of pseudo tree arrangement of a constraint graph as a way of capturing
independencies between subsets of variables. Subsequently, pseudo tree search is
conducted over a pseudo tree arrangement of the problem which allows the detection
of independent subproblems that are solved separately. More recently, [27] extended
pseudo tree search to optimization tasks in order to boost the Russian Doll search
[29] for solving Weighted CSPs. Our depth-first AND/OR Branch-and-Bound and
best-first AND/OR search algorithms for 0-1 ILPs are also related to the Branch-and-
Bound method proposed by [22] for acyclic AND/OR graphs and game trees, as well
as the depth-first and best-first AND/OR search algorithms for general constraint
optimization over graphical models introduced in [31, 33, 34, 36-39].

Dechter’s graph-based back-jumping algorithm [12] uses a depth-first (DFS)
spanning tree to extract knowledge about dependencies in the graph. The notion
of DFS-based search was also used by [8] for a distributed constraint satisfaction
algorithm. Bayardo and Miranker [3] reformulated the pseudo tree search algorithm
in terms of back-jumping and showed that the depth of a pseudo tree arrangement is
always within a logarithmic factor off the induced width of the graph.

In probabilistic reasoning, Recursive Conditioning (RC) [11] and Value Elimina-
tion (VE) [2] are search methods for likelihood and counting computations that can
be viewed as exploring graph-based AND/OR search spaces.

In optimization, Backtracking with Tree-Decomposition (BTD) [20] is a memory
intensive method for solving constraint optimization problems which combines
search techniques with the notion of tree decomposition. This mixed approach can in
fact be viewed as searching an AND/OR search space whose backbone pseudo tree
is defined by and structured along the tree decomposition [14].

9 Summary and conclusion

The paper investigates the impact of the AND/OR search spaces perspective to solv-
ing optimization problems from the class of 0-1 Integer Linear Programs. In earlier
papers [31, 33, 36-39] we showed that the AND/OR search paradigm can improve
general constraint optimization algorithms. Here, we demonstrate empirically the
benefit of AND/OR search to 0-1 Integer Linear Programs.

Specifically, we extended and evaluated depth-first and best-first AND/OR search
algorithm traversing the AND/OR search tree or graph for solving 0-1 ILPs. We also
augmented the algorithms with dynamic variable ordering strategies. Our empirical
evaluation demonstrated that the AND/OR search principle can improve 0-1 integer
programming schemes sometimes by several orders of magnitude. We summarize
next the most important factors influencing performance, including dynamic variable
orderings, caching, as well as the search control strategy.

e Depth-first versus best-first search Our results showed conclusively that the
AND/OR search algorithms using a best-first control strategy and traversing
either an AND/OR search tree or graph were able, in many cases, to improve
considerably over the depth-first search ones (e.g., combinatorial auctions from
Fig. 6, dubois MAX-SAT instances from Fig. 10).

e Impact of caching For problems with relatively small induced width and
therefore small context, best-first AND/OR search was shown to outperform
dramatically the traditional tree search algorithms (e.g., dubois MAX-SAT
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instances from Fig. 10). The impact of caching on the depth-first AND/OR
Branch-and-Bound search algorithms was less prominent (e.g., pret and dubois
MAX-SAT instances from Table 3 and Fig. 10, respectively) probably because
most of the cache entries were dead-caches. Also, for problems with very large
contexts (e.g., combinatorial auctions from Fig. 6, UWLP instances from Table 2)
the context minimal AND/OR graph explored was a tree, and therefore caching
had no impact.

e Impact of dynamic variable orderings As with general AND/OR search where
we showed that dynamic variable ordering schemes are powerful [34, 38], for
0-1 ILPs too the AND/OR Branch-and-Bound with partial variable orderings
sometimes outperformed the AND/OR Brach-and-Bound restricted to a sta-
tic variable ordering by one order of magnitude (e.g., UWLP instances from
Table 2). Similarly, best-first AND/OR search with partial variable orderings for
0-1 ILP improved considerably over its counterpart using a static ordering (e.g.,
combinatorial auctions from Fig. 6).

e AND/OR solvers versus CPLEX Our current implementation of the depth-first
and best-first AND/OR search is far from being fully optimized with respect
to commercial 0-1 ILP solvers such as CPLEX, as it relies on an open source
implementation of the simplex algorithm, as well as a naive dynamic variable
ordering heuristic. Nevertheless, we demonstrated that on selected classes of
0-1 ILPs the AND/OR algorithms outperformed CPLEX in terms of both the
number of nodes explored (e.g., UWLP instances from Table 2) and CPU time
(e.g., pret MAX-SAT instances from Table 3).

Our depth-first and best-first AND/OR search can be extended to accommodate
all known enhancement schemes. In particular, it can be modified to incorporate
cutting planes to tighten the linear relaxation of the current subproblem. The space
required by the best-first AND/OR search can be enormous, because all nodes
generated have to be saved. To remedy this problem, the algorithm can be equiped
with a memory bounding scheme [6, 26, 41]. Our AND/OR search approach can
be easily extended to accommodate mixed integer linear programs for which a
subset of the decision variables are required to have integer values at the optimal
solution.
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