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Abstract

In this paper we explore the impact of caching on search in the context of the recent
framework of AND/OR search in graphical models. Specifically, we extendthe depth-first
AND/OR Branch-and-Boundtree searchalgorithm to explore an AND/OR search graph
by equipping it with an adaptive caching scheme similar to good and no-good recording.
Furthermore, we presentbest-firstsearch algorithms for traversing the same underlying
AND/OR search graph and compare both depth-first and best-first approaches empirically.
We focus on two common optimization problems in graphical models: finding the Most
Probable Explanation (MPE) in belief networks and solving Weighted CSPs (WCSP). In
an extensive empirical evaluation we demonstrate conclusively the superiority of the mem-
ory intensive AND/OR search algorithms on a variety of benchmarks including random
and real-world problem instances.
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1 Introduction

This is the second of two articles describing and evaluatingthe power of AND/OR
search spaces for combinatorial optimization in graphicalmodels. The first pa-
per focused on extending Branch-and-Bound algorithms to exploring the AND/OR
search tree. The virtue of the AND/OR representation is thatthe search space size
may be far smaller than that of a traditional OR representation which often trans-
lates to significant time savings. In the current paper we improve efficiency further
by using more memory, exploring the context minimal AND/OR search graph.
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Graphical models such as belief networks or constraint networks are a widely used
representation framework for reasoning with probabilistic and deterministic infor-
mation. These models use graphs to capture conditional independencies between
variables, allowing a concise representation of the knowledge as well as efficient
graph-based query processing algorithms. Combinatorial optimization problems
such as finding the most likely state of a belief network or finding a solution that
violates the least number of constraints can be defined within this framework and
they are typically tackled with either inference or search algorithms.

Inference-based algorithms (e.g., Variable Elimination, Tree Clustering) are good
at exploiting the independencies captured by the underlying graphical model. They
provide superior worst case time guarantees, compared to simple search, as they
are time exponential in the treewidth of the problem’s graph. Since those methods
are also space exponential in the treewidth they are not practical for models with
large treewidth. Search algorithms on the other hand, can trade off time and space
in a more flexible manner.

Search-based algorithms (e.g., depth-first Branch-and-Bound, best-first search) tra-
verse the model’s search space where each path represents a partial or full solution.
In [1–3] we presented the AND/OR search tree for optimization tasks over graph-
ical models and showed how this framework can exploit problem decomposition
during Branch-and-Bound search [4]. As is known, the AND/OR search space can
provide exponential speedups over the traditional OR search methods oblivious to
problem structure: its worst-case size is exponential in the product of the graph
treewidth and the logarithm of the number of variables. Thisyield a bound on
the time complexity of any traversal algorithm, yet allows exploration using linear
space. In this paper we explore the added benefit of using morespace, and we show
that by allowing the use of caching on top of AND/OR search, wecan have a sig-
nificant additional gain and we can even reach the same worst-case time and space
exponential in the treewidth bounds, obeyed by inference algorithms. The advan-
tage of search with caching, compared with inference, is in facilitating pruning due
to determinism, due to the guiding heuristic function and due to context-sensitive
properties. These aspects make the memory demand in search less severe than in
inference, in practice.

Specifically, we extend the AND/OR Branch-and-Bound tree search algorithm in-
troduced in [1–3] to explore the context minimal AND/OR search graph using a
flexible caching mechanism that can adapt to memory limitations. The caching
scheme is similar to good and no-good recording used in several recent schemes
such as Recursive Conditioning [5], Valued Backtracking [6] and Backtracking
with Tree Decompositions [7]. Our contributions beyond those earlier schemes is
in presenting these ideas in an independent manner using thenotion of AND/OR
search spaces, and in our extensive empirical study.

Since best-first search is known to be superior among memory intensive search al-
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gorithms [8], we also present a new AND/OR search algorithm that explores the
context minimal AND/OR search graph in a best-first manner. Under conditions of
admissibility and monotonicity of the heuristic function,best-first search is known
to expand the minimal number of nodes, at the expense of usingadditional mem-
ory [8]. As we will show, these savings in number of nodes often translate into
significant time savings .

Clearly, the efficiency of both depth-first and best-first AND/OR search methods
also depends on the accuracy of the guiding heuristic function. We used the Mini-
Bucket heuristic [9] which is extracted automatically, fromthe functional specifi-
cation of the graphical model using the Mini-Bucket approximation algorithm [10].
Since the accuracy of the Mini-Bucket algorithm is controlled by a bounding pa-
rameter, calledi-bound, it allows heuristics having varying degrees of accuracy and
results in a spectrum of search algorithms that can trade offheuristic computation
and search. Following [1,2], we continue to explore empirically the efficiency of
static and dynamic mini-bucket heuristics within the cache-based search spaces.

Like in [1–3], we apply the algorithms to finding the Most Probable Explanation
(MPE) in belief networks [11] and to solving Weighted CSPs [12].We experiment
with both random models and real-world benchmarks. Our results show conclu-
sively that the memory intensive AND/OR search algorithms improve dramatically
over competitive approaches, especially when the heuristic estimates are less ac-
curate and do not prune the search space effectively. We demonstrate the impact
of caching, the impact of the guiding lower bound strength, as well as the impact
of best-first versus depth-first search regimes. We also investigate other factors that
impact the performance of any search algorithm such as: the availability of hard
constraints (i.e., determinism), the availability of good initial upper bounds, and
the availability of good quality guiding ordering schemes (e.g., pseudo trees).

Following preliminary notations and definitions (Section 2), Sections 3 and 4 pro-
vide background on graphical models and the AND/OR representation of the search
space. Sections 5 and 6 present the new depth-first and best-first AND/OR search
algorithms exploring the context minimal AND/OR graph. Section 7 reviews the
mini-bucket heuristics for AND/OR search. In Section 8 we present an extensive
empirical evaluation of the proposed memory intensive search methods, while Sec-
tions 9 and 10 provide a summary of related work as well as concluding remarks
and directions of future research. For completeness, Sections 2 through 4.2 repeat
much of the introductory material from [1]. This paper is based in part on [13–15].
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2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variables taking values on fi-
nite domains and a set of functions defined over these variables. We denote vari-
ables by uppercase letters (e.g., X,Y, Z, ...), subsets of variables by bold faced
uppercase letters (e.g., X,Y,Z, ...) and values of variables by lower case letters
(e.g.,x, y, z, ...). An assignment(X1 = x1, ..., Xn = xn) can be abbreviated as
x = (〈X1, x1〉, ..., 〈Xn, xn〉) or x = (x1, ..., xn). For a subset of variablesY, DY

denotes the Cartesian product of the domains of variables inY. xY andx[Y] are
both used as the projection ofx = (x1, ..., xn) over a subsetY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a functionf by scope(f).

2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected graphis defined by a pair
G = {V,E}, whereV = {X1, ..., Xn} is a set of vertices (nodes), andE =
{(Xi, Xj)|Xi, Xj ∈ V } is a set of edges (arcs). If(Xi, Xj) ∈ E, we say thatXi

points toXj. The degree of a vertex is the number of incident arcs to it. For each
vertexXi, pa(Xi) or pai, is the set of vertices pointing toXi in G, while the set
of child vertices ofXi, denotedch(Xi), comprises the variables thatXi points to.
The family ofXi, denotedFi, includesXi and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Anundirectedgraph is defined similarly to a
directed graph, but there is no directionality associated with the edges.

DEFINITION 2 (induced width) An ordered graphis a pair (G, d) whereG is an
undirected graph, andd = X1, ..., Xn is an ordering of the nodes. Thewidth of
a nodeis the number of the node’s neighbors that precede it in the ordering. The
width of an orderingd is the maximum width over all nodes. Theinduced width
of an ordered graph, denoted byw∗(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first; when nodeXi is pro-
cessed, all its preceding neighbors are connected. Theinduced widthof a graph,
denoted byw∗, is the minimal induced width over all its orderings.

DEFINITION 3 (hypergraph) A hypergraphis a pair H = (X,S), whereS =
{S1, ..., St} is a set of subsets ofX, called hyperedges.

DEFINITION 4 (tree decomposition)A tree decompositionof a hypergraphH =
(X,S), is a treeT = (V,E), whereV is a set of nodes, also called ”clusters”, and
E is a set of edges, together with a labeling functionχ that associates with each
vertexv ∈ V a setχ(v) ⊆ X satisfying:
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(1) For eachSi ∈ S there exists a vertexv ∈ V such thatSi ⊆ χ(v);
(2) (running intersection property) For eachXi ∈ X, the set{v ∈ V|Xi ∈ χ(v)}

induces a connected subtree ofT .

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (i.e.,maxv|χ(v) − 1|). The
treewidthof a hypergraph is the minimum width along all possible tree decom-
positions. Thepathwidthis the treewidth over the restricted class of chain decom-
positions.

3 Graphical Models

Graphical models include constraint networks defined by relations of allowed tu-
ples, directed or undirected probabilistic networks and cost networks defined by
cost functions. Each graphical model comes with its specificoptimization queries
such as finding a solution of a constraint network that violates the least number of
constraints, finding the most probable assignment given some evidence, posed over
probabilistic networks or finding the optimal solution for cost networks.

In general, a graphical model is defined by a collection of functionsF, over a set of
variablesX, conveying probabilistic or deterministic information, whose structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = 〈X,D,F,⊗〉, where:

(1) X = {X1, ..., Xn} is a set of variables;
(2) D = {D1, ..., Dn} is the set of their respective finite domains of values;
(3) F = {f1, ..., fr} is a set of real-valued functions, each defined over a subset

of variablesSi ⊆ X (i.e., the scope);
(4) ⊗ifi ∈ {

∏

i fi,
∑

i fi} is a combination operator.

The graphical model represents the combination of all its functions:⊗r
i=1fi.

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignmentx = (x1, ..., xn) is defined by:

c(x) = ⊗f∈Ff(x[scope(f)])

Given a subset of variablesY ⊆ X, the cost of a partial assignmenty is the combi-
nation of all the functions whose scopes are included inY, namelyFY, evaluated
at the assigned values. Namely,c(y) = ⊗f∈FY

f(y[scope(f)]). We will often abuse
notation writingc(y) = ⊗f∈FY

f(y) instead.
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DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two variables that appear in the
scope of the same function.

There are various queries (tasks) that can be posed over graphical models. We refer
to all asautomated reasoning problems. In general, an optimization task is a rea-
soning problem defined as a function from a graphical model toa set of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) Aconstraint optimization prob-
lem is a pair P = 〈R,⇓X〉, whereR = 〈X,D,F,⊗〉 is a graphical model. IfS
is the scope of functionf ∈ F then⇓S f ∈ {maxSf,minSf}. The optimization
problem is to compute⇓X ⊗r

i=1fi.

The min/max (⇓) operator is sometimes called aneliminationoperator because it
removes the arguments from the input functions’ scopes.

We next elaborate on several popular graphical models of constraint networks and
belief networks which will be the primary focus of this paper(see also [1] for
detailed examples of each of these graphical models).

3.1 Constraint Networks

Constraint Satisfactionis a framework for formulating real-world problems as a
set of constraints between variables. The task is to find an assignment of values to
variables that does not violate any constraint, or else to conclude that problem is
inconsistent. Such problems are graphically represented by nodes corresponding to
variables and edges corresponding to constraints between variables.

DEFINITION 10 (constraint network) A constraint networkis a graphical model
P = 〈X,D,C, ./〉, whereX = {X1, ..., Xn} is a set of variables, associated
with discrete-valued domainsD = {D1, ..., Dn}, and a set of constraintsC =
{C1, ..., Cr}. Each constraintCi is a pair (Si, Ri), whereRi is a relationRi ⊆
DSi

defined on a subset of variablesSi ⊆ X. The relation denotes all compatible
tuples ofDSi

allowed by the constraint. The combination operator,./, is join. The
primal graph of a constraint network is called aconstraint graph. A solution is an
assignment of values to all variablesx = (x1, ..., xn), xi ∈ Di, such that∀Ci ∈ C,
xSi

∈ Ri. The constraint network represents its set of solutions,./i Ci.
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3.2 Cost Networks

An immediate extension of constraint networks arecost networkswhere the set of
functions are real-valued cost functions, the combinationand elimination operators
aresummationandminimization, respectively, and the primary constraint optimiza-
tion task is to find a solution with minimum cost.

A special class of COPs which has gained a lot of interest in recent years is the
Weighted Constraint Satisfaction Problem (WCSP). WCSP extends the classical
CSP formalism withsoft constraintswhich are represented as integer-valued cost
functions. Formally,

DEFINITION 11 (WCSP) A Weighted Constraint Satisfaction Problem (WCSP)is
a cost network〈X,D,F,

∑

〉 where each of the cost functionsFi ∈ F assigns ”0”
(no penalty) to allowed tuples and a positive integer penaltycost to the forbidden
tuples. Namely,fi : DSi1

× ... × DSit
→ N, whereSi = {Si1 , ..., Sit} is the scope

of the cost function. The optimization problem is to find a value assignment to the
variables with minimum penalty cost, namely finding⇓X ⊗ifi = minX

∑

i fi.

DEFINITION 12 (MAX-CSP) A MAX-CSP is a WCSP with all penalty costs equal
to 1. Namely,∀fi ∈ F, fi : DSi1

× ...×DSit
→ {0, 1}, whereSi = {Si1 , ..., Sit} is

the scope offi.

Solving a MAX-CSP can also be interpreted as finding an assignment that violates
the minimum number of constraints (or maximizes the number of satisfied con-
straints). Many real-world problems can be formulated as MAX-CSP/WCSPs, in-
cluding resource allocation problems [16], scheduling [17], bioinformatics [18,19],
combinatorial auctions [20,21] or maximum satisfiability problems [22].

3.3 Belief Networks

Belief networks[11] provide a formalism for reasoning about partial beliefs under
conditions of uncertainty. They are defined by a directed acyclic graph over vertices
representing variables of interest (e.g., the temperature of a device, the gender of
a patient, a feature of an object, the occurrence of an event). The arcs signify the
existence of direct causal influences between linked variables quantified by condi-
tional probabilities that are attached to each cluster of parents-child vertices in the
network.

DEFINITION 13 (belief network) A belief network (BN)is a graphical modelP =
〈X,D,PG,

∏

〉, whereX = {X1, ..., Xn} is a set of variables over multi-valued
domainsD = {D1, ..., Dn}. Given a directed acyclic graphG overX as nodes,
PG = {Pi}, wherePi = {P (Xi|pa(Xi))} are conditional probability tables (CPTs
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for short) associated with each variableXi, andpa(Xi) are the parents ofXi in the
acyclic graphG. A belief network represents a joint probability distribution over
X, P (x1, ..., xn) =

∏n
i=1 P (xi|xpa(Xi)). An evidence sete is an instantiated subset

of variables.

When formulated as a graphical model, the functions inPG denote conditional
probability tables and the scopes of these functions are determined by the directed
acyclic graphG: each functionfi ranges over variableXi and its parents inG. The
combination operator is multiplication, namely⊗j =

∏

j. The primal graph of a
belief network is called amoral graph. It connects any two variables appearing in
the same probability table.

DEFINITION 14 (most probable explanation)Given a belief network and evidence
e, the Most Probable Explanation(MPE) task is to find a complete assignment
which agrees with the evidence, and which has the highest probability among all
such assignments. Namely, to find an assignment(xo

1, ..., x
o
n) such that:

P (xo
1, ..., x

o
n) = maxx1,...,xn

n
∏

k=1

P (xk, e|xpak
)

As a reasoning problem, the MPE task is to find⇓X ⊗ifi = maxX

∏n
i=1 Pi.

4 AND/OR Search Spaces for Graphical Models

4.1 AND/OR Search Trees for Graphical Models

The usual way to do search in graphical models is to instantiate variables in turn,
following a static or dynamic variable ordering. In the simplest case, this process
defines a search tree (called here OR search tree), whose nodes represent states in
the state of partial assignments. This search space does notcapture the structure of
the underlying graphical model. To remedy this problem, an AND/OR search space
was recently introduced in the context of general graphicalmodels [4]. It specializes
the AND/OR space introduced in [23] to graphical models. TheAND/OR search
space is defined using a backbonepseudo tree[24,25].

DEFINITION 15 (pseudo tree, extended graph)Given an undirected graphG =
(V,E), a directed rooted treeT = (V,E′) defined on all its nodes is calledpseudo
tree if any arc ofG which is not included inE′ is a back-arc, namely it connects
a node to an ancestor inT . Given a pseudo treeT of G, theextended graphof G

relative toT is defined asGT = (V,E ∪ E
′).

DEFINITION 16 (AND/OR search tree) Given a graphical modelR = 〈X,D,F〉,
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Fig. 1. AND/OR search tree for graphical models.

its primal graphG and a backbone pseudo treeT of G, the associated AND/OR
search tree, denotedST (R), has alternating levels of AND and OR nodes. The OR
nodes are labeledXi and correspond to the variables. The AND nodes are labeled
〈Xi, xi〉 (or simplyxi) and correspond to value assignments in the domains of the
variables. The structure of the AND/OR search tree is based onthe underlying
backbone pseudo treeT . The root of the AND/OR search tree is an OR node la-
beled with the root ofT . A path from the root of the search treeST (R) to a noden
is denoted byπn. If n is labeledXi or xi the path will be denotedπn(Xi) or πn(xi),
respectively. The assignment sequence along pathπn, denotedasgn(πn), is the set
of value assignments associated with the AND nodes alongπn:

asgn(πn(Xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi−1, xi−1〉}

asgn(πn(xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi, xi〉}

The set of variables associated with OR nodes along the pathπn is denoted by
var(πn): var(πn(Xi)) = {X1, ..., Xi−1}, var(πn(xi)) = {X1, ..., Xi}. The parent-
child relationship between nodes in the search space are defined as follows:

(1) An OR node,n, labeled byXi has a child AND node labeled〈Xi, xi〉 iff
〈Xi, xi〉 is consistent withasgn(πn).

(2) An AND node,n, labeled by〈Xi, xi〉 has a child OR node labeledY iff Y is a
child of Xi in the backbone pseudo treeT . Each OR arc, emanating from an
OR to an AND node is associated with a weight to be defined shortly.

Clearly, if a noden is labeledXi (OR node) orxi (AND node),var(πn) is the set
of variables mentioned on the path from the root toXi in the backbone pseudo tree,
denoted bypathT (Xi).

Semantically, the OR states in the AND/OR search tree represent alternative ways
of solving a problem, whereas the AND states represent problem decomposition
into independent subproblems, all of which need to be solved.

DEFINITION 17 (solution tree) A solution treeof an AND/OR search treeST (R)
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is an AND/OR subtreeT such that:

(1) It contains the root ofST (R), s;
(2) If a non-terminal AND noden ∈ ST (R) is in T then all of its children are in

T ;
(3) If a non-terminal OR noden ∈ ST (R) is in T then exactly one of its children

is in T ;
(4) All its leaf (terminal) nodes are consistent.

Example 1 Figure 1(a) shows the primal graph of cost network with 6 bi-valued
variablesA, B, C, D, E andF , and 9 binary cost functions. Figure 1(b) displays
a pseudo tree together with the back-arcs (dotted lines). Figure 1(c) shows the
AND/OR search tree based on the pseudo tree. A solution subtree is highlighted.
Notice that once variablesA and B are instantiated, the search space below the
AND node〈B, 0〉 decomposes into two independent subproblems, one that is rooted
at C and one that is rooted atE, respectively.

The virtue of an AND/OR search tree representation is that its size may be far
smaller than the traditional OR search tree.

THEOREM 1 (size of AND/OR search trees [4])Given a graphical modelR and
a backbone pseudo treeT , its AND/OR search treeST (R) is sound and complete,
and its size isO(l ·km) wherem is the depth of the pseudo tree,l bounds its number
of leaves, andk bounds the domain size.

Given atree decompositionof the primal graphG havingn nodes, whose treewidth
is w∗, there exists a pseudo treeT of G whose depth,m, satisfies:m ≤ w∗ · logn

[26,27]. Therefore,

THEOREM 2 ([4]) A graphical model that has a treewidthw∗ has an AND/OR
search tree whose size isO(n · kw∗·logn), wherek bounds the domain size andn
is the number of variables.

The arcs in the AND/OR trees are associated with weights thatare defined based
on the graphical model’s functions and combination operator. We next define arc
weights for any graphical model using the notion ofbuckets of functions.

DEFINITION 18 (buckets relative to a pseudo tree)Given a graphical modelR =
〈X,D,F〉 and a backbone pseudo treeT , the bucket ofXi relative to T , de-
notedBT (Xi), is the set of functions whose scopes containXi and are included
in pathT (Xi), which is the set of variables from the root toXi in T . Namely,

BT (Xi) = {f ∈ F|Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}
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Fig. 2. Arc weights for cost networks.

For simplicity and without loss of generality we consider inthe remainder a graph-
ical modelR = 〈X,D,F〉 for which the combination and elimination operators
aresummationandminimization, respectively.

DEFINITION 19 (OR-to-AND weights) Given an AND/OR search treeST (R), of
a graphical modelR, the weightw(n,m)(Xi, xi) (or simplyw(Xi, xi)) of arc(n,m),
whereXi labelsn andxi labelsm, is thecombinationof all the functions inBT (Xi)
assigned by values alongπm. Formally,

w(Xi, xi) =











0 , if BT (Xi) = ∅
∑

f∈BT (Xi) f(asgn(πm)[scope(f)]) , otherwise

DEFINITION 20 (cost of a solution tree)Given a weighted AND/OR search tree
ST (R), of a graphical modelR, and given a solution treeT having OR-to-AND
set of arcsarcs(T ), the cost ofT is defined byf(T ) =

∑

e∈arcs(T ) w(e).

We definef(Tn) the cost of a solution tree rooted at noden. Thenf(Tn) can be
computed recursively, as follows:

1. If Tn consists only of a terminal AND noden, thenf(Tn) = 0.
2. If n is an OR node having an AND childm in Tn, thenf(Tn) = w(n,m) +

f(Tm), whereTm is the solution subtree ofTn that is rooted atm.
3. If n is an AND node having OR childrenm1, ...,mk in Tn, thenf(Tn) =

∑k
i=1 f(Tmi

), whereTmi
is the solution subtree ofTn rooted atmi.

Example 2 Figure 2 shows the primal graph of a cost network, a pseudo tree that
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drives its weighted AND/OR search tree, and a portion of the AND/OR search tree
with appropriate weights on the arcs expressed symbolically.In this case the bucket
of E contains the functionf(A,B,E), the bucket ofC contains two functions
f(A,C) and f(B,C,D) and the bucket ofB contains the functionf(A,B). We
see indeed that the weights on the arcs from the OR nodeE to any of its AND value
assignments include only the instantiated functionf(A,B,E), while the weights
on the arcs connectingC to its AND child nodes are the sum of the two functions in
its bucket instantiated appropriately. Notice that the buckets ofA andD are empty
and therefore the weights associated with the respective arcsare0.

With each noden of the search tree we can associate a valuev(n) which stands for
the answer to the particular query restricted to the subproblem belown [4].

DEFINITION 21 (value function) Given an optimization problemP = 〈R,min〉
over a graphical modelR = 〈X,D,F,

∑

〉, thevalue functionof a noden in the
AND/OR search treeST (R) is the optimal cost to the subproblem belown.

The value of a node can be computed recursively, as follows: itis 0 for terminal
AND nodes and∞ for terminal OR nodes, respectively. The value of an internal
OR node is obtained bycombining (summing)the value of each AND child node
with the weight on its incoming arc and thenoptimize (minimize)over all AND
children. The value of an internal AND node is thecombination (summation)of
values of its OR children. Formally, ifsucc(n) denotes the children of the noden

in the AND/OR search tree, then:

v(n) =







































0 , if n = 〈X, x〉 is a terminal AND node

∞ , if n = X is a terminal OR node
∑

m∈succ(n) v(m) , if n = 〈X, x〉 is an AND node

minm∈succ(n)(w(n,m) + v(m)) , if n = X is an OR node
(1)

If n is the root ofST (R), then v(n) is the minimal cost solution to the initial
problem. Alternatively, the valuev(n) can also be interpreted as the minimum of
the costs of the solution trees rooted atn. Therefore, search algorithms that traverse
the AND/OR search space can compute the value of the root nodeyielding the
answer to the problem. It can be immediately inferred from Theorems 1 and 2 that:

THEOREM 3 (complexity [4]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is timeO(n · km), wherek bounds
the domain size andm is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidthw∗, there there exists a
pseudo treeT for which the time complexity isO(n · kw∗·logn).
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4.2 AND/OR Branch-and-Bound Search on AND/OR Trees

In [1–3] we introduced a new generation of linear space Branch-and-Bound search
algorithms that exploit the underlying structure of the graphical model by travers-
ing in a depth-first manner an AND/OR search tree associated with the graphical
model. During search, the algorithm maintains the cost of the best solution found
so far, which is an upper boundub on the minimal cost solution. In addition, each
noden in the search tree is also associated with a static heuristicfunctionh(n) that
underestimates the minimal cost solutionv(n) to the subproblem belown, and it
can be either pre-compiled or computed during search. The current partial solution
being pursued is represented by a partial solution tree,T ′. The algorithm then com-
putes a heuristic lower bounding estimatef(T ′) on the optimal cost extension ofT ′

to a complete solution tree and prunes the search space belowthe current tip node
if f(T ′) ≥ ub.

The efficiency of this algorithm depends heavily on its guiding heuristic function.
Subsequently, in [1,2] we investigated the power of a heuristic generation scheme
based on the Mini-Bucket approximation [10], in both static and dynamic setups.
Since the Mini-Bucket algorithm is controlled by a bounding parameter, it allows
heuristics having varying degrees of accuracy and results in a spectrum of search
algorithms that can trade off heuristic computation and search.

We evaluated empirically the AND/OR Branch-and-Bound algorithm with mini-
bucket heuristics for probabilistic and deterministic optimization tasks [1,2]. The
results showed conclusively that the scheme improves dramatically over the tradi-
tional OR approaches. In many cases, the differences numberof nodes visited as
well as running time added up to several orders of magnitude.

In the following subsection we overview the notion of AND/ORsearchgraph for
general graphical models, which was presented in [4].

4.3 AND/OR Search Graphs for Graphical Models

It is often the case that a search space that is a tree can become a graph if identical
nodes are merged, because identical nodes root identical search subspaces, and
correspond to identical reasoning subproblems. Any two nodes that root identical
weighted can bemerged, reducing the size of the search space. Some of these nodes
can be identified based on graph-basedcontexts.

First, we present the notion ofinduced width of a pseudo tree ofG [4] which is nec-
essary for bounding the size of the AND/OR search graphs. We denote bydDFS(T )
a linear DFS ordering of a treeT .
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DEFINITION 22 (induced width of a pseudo tree)The induced width ofG rela-
tive to a pseudo treeT , wT (G), is the induced width alongdDFS(T ) ordering of
the extended graph ofG relative toT , denotedGT .

We now provide definitions which allow identifying nodes that can be merged. The
idea is to find a minimal set of variable assignments from the current path that will
always root the same conditioned subproblem, regardless ofthe assignments that
are not included in this minimal set. Since the path for an OR nodeXi and an AND
node〈Xi, xi〉 differ by the assignment ofXi to xi (Definition 16), the minimal set
of assignments that we want to identify will be different forXi and for〈Xi, xi〉.
The following definitions distinguish between two types of context-based caching
which may yield into two different schemes. The difference may seem a bit subtle.
In these definitions, ancestors and descendants are with respect to the pseudo tree
T , while connection is with respect to the primal graphG.

DEFINITION 23 (parents) Given a primal graphG and a pseudo treeT of a rea-
soning problemP, theparentsof an OR nodeXi, denoted bypai or paXi

, are the
ancestors ofXi that have connections inG to Xi or to descendants ofXi.

DEFINITION 24 (parent-separators) Given a primal graphG and a pseudo tree
T of a reasoning problemP, theparent-separatorsof Xi (or of 〈Xi, xi〉), denoted
bypasi or pasXi

, are formed byXi and its ancestors that have connections inG to
descendants ofXi.

It follows from these definitions that the parents ofXi, pai, separate in the primal
graphG (and also in the extended graphGT and in the induced extended graph
GT

∗

) the ancestors ofXi from its descendants. Similarly, the parent-separators set
of Xi, pasi, separate the ancestors ofXi from its descendants. It is also easy to see
that each variableXi and its parentspai form a clique in the induced graphGT

∗

.
The following proposition establishes the relation between pai andpasi.

PROPOSITION1 ([4]) (1) If Y is the single child ofX in T , thenpasX = paY . (2)
If X has childrenY1, ..., Yk in T , thenpasX = ∪k

i=1paYi
.

THEOREM 4 (context based merge [4])GivenGT
∗

, let πn1 and πn2 be any two
partial paths in an AND/OR search graph, ending with two nodes,n1 andn2.

(1) If n1 andn2 are AND nodes annotated by〈Xi, xi〉 and

asgn(πn1)[pasXi
] = asgn(πn2)[pasXi

]

then the AND/OR search subtrees rooted byn1 andn2 are identical.asgn(πni
)[pasXi

]
is called theAND context of ni.

(2) If n1 andn2 are OR nodes annotated byXi and

asgn(πn1)[paXi
] = asgn(πn2)[paXi

]
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Fig. 3. AND/OR search graph for graphical models

then the AND/OR search subtrees rooted byn1 andn2 are identical.asgn(πni
)[paXi

]
is called theOR context of ni.

DEFINITION 25 (context minimal AND/OR search graph) The AND/OR search
graph ofR based on the backbone pseudo treeT that is closed under the context-
based merge operator is calledcontext minimal AND/OR search graphand is de-
noted byCT (R).

We should note that we can in general merge nodes based both onAND and OR
contexts. However, Proposition 1 shows that doing just one of them renders the
other unnecessary (up to some some small constant factor). In this paper we will
use AND context based merging.

THEOREM 5 (complexity [4]) Given a graphical modelR, its primal graphG,
and a pseudo treeT having induced widthw = wT (G), the size of the context
minimal AND/OR search graph based onT , CT (R), is O(n · kw), wherek bounds
the domain size.

Example 3 Consider the example given in Figure 3(a). The AND contexts of each
node in the pseudo tree is given in square brackets. The context minimal AND/OR
search graph (based on AND merging) is given in Figure 3(b). Its size is far smaller
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than that of the AND/OR search tree from Figure 1(c) (16 vs. 54 AND nodes).
Similarly, Figure 3(d) shows the context minimal AND/OR graphbased on the OR
contexts given in Figure 3(c). Its size is larger than that ofthe AND based graph
(38 vs. 16 AND nodes) in this case.

4.4 Finding Good Pseudo Trees

The performance of any AND/OR search algorithm is influencedheavily by the
quality of the pseudo tree. In [1–3] we described two heuristics for generating small
induced width/depth pseudo trees. Themin-fill heuristic extracts the pseudo tree by
a depth-first traversal of the induced graph obtained by a min-fill elimination or-
dering [28]. Thehypergraph partitioningheuristic constructs the pseudo tree by
recursively decomposing the dual hypergraph associated with the graphical model
[5]. We observed in [1–3] that the min-fill heuristic usuallygenerates lower width
trees, whereas the hypergraph heuristic produces much smaller depth trees. There-
fore, the hypergraph based pseudo trees appear to be favorable for tree search al-
gorithms, while the min-fill pseudo trees, which minimize the context size, may be
more appropriate for graph search algorithms. Both heuristics can randomize their
tie breaking rule, yielding varying qualities of the generated pseudo trees. In the
experimental section we provide an extensive evaluation detailing the impact of the
pseudo tree quality on the AND/OR search algorithms.

5 AND/OR Branch-and-Bound with Caching

Traversing AND/OR search spaces by depth-first Branch-and-Bound or by best-
first search algorithms was described as early as [23,29,30]in the context of gen-
eral search spaces. In the following two sections we revisitthe necessary defini-
tions needed to describe the algorithms such as the notion ofpartial solution trees
[23] to represent sets of solution trees, the exact evaluation as well as the heuristic
evaluation function of a partial solution tree. We will thenintroduce two classes
of memory intensive search algorithms that explore the context minimal AND/OR
search graph of graphical models in either adepth-firstor best-firstmanner for
finding optimal solution trees. The algorithms extend the algorithm presented in
[1–3] for exploring AND/OR search trees to exploring AND/ORsearch graphs us-
ing a flexible context-based caching scheme that can adapt tothe current memory
limitations.

DEFINITION 26 (partial solution tree) A partial solution treeT ′ of a context min-
imal AND/OR search graphCT is a subtree which: (1) contains the root nodes of
CT ; (2) if n in T ′ is an OR node then it contains one of its AND child nodes inCT ,
and ifn is an AND node it contains all its OR children inCT . A node inT ′ is called
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a tip node if it has no children inT ′. A tip node is either aterminalnode (if it has
no children inCT ), or a non-terminalnode (if it has children inCT ).

A partial solution tree can be extended (possibly in severalways) to a full solution
tree. It representsextension(T ′), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes areterminal inCT is a
solution tree. We next define the exact evaluation function of a partial solution tree,
and will then derive the notion of a lower bound for it.

DEFINITION 27 (exact evaluation function of a partial solution tree) The exact
evaluation functionf ∗(T ′) of a partial solution treeT ′ is the minimum of the costs
of all solution trees represented byT ′, namely:

f ∗(T ′) = min{f(T ) | T ∈ extension(T ′)}

We definef ∗(T ′n) the exact evaluation function of a partial solution tree rooted at
noden. Thenf ∗(T ′n) can be computed recursively, as follows:

1. If T ′n consists of a single noden, thenf ∗(T ′n) = v(n).
2. If n is an OR node having the AND childm in T ′n, thenf ∗(T ′n) = w(n,m) +

f ∗(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf ∗(T ′n) =

∑k
i=1 f ∗(T ′mi

), whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

Clearly, we are interested to find thef ∗(T ′) of a partial solution treeT ′ rooted at
the roots. If each non-terminal tip noden of T ′ is assigned a heuristic lower bound
estimateh(n) of v(n), then it induces a heuristic lower bound evaluation function
on the minimal cost ofT ′, as follows.

DEFINITION 28 (heuristic evaluation function of a partial solution tree) Given a
node-based heuristic functionh(m) which is a lower bound on the minimal cost be-
low any nodem, namelyh(m) ≤ v(m), and given a partial solution treeT ′n rooted
at noden in the context minimal AND/OR search graphCT , thetree-based heuristic
evaluation functionf(T ′n) of T ′n, is defined recursively by:

1. If T ′n consists of a single noden, thenf(T ′n) = h(n).
2. If n is an OR node having the AND childm in T ′n, thenf(T ′n) = w(n,m) +

f(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf(T ′n) =

∑k
i=1 f(T ′mi

), whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

During search we maintain an upper boundub(s) on the optimal solutionv(s) as
well as the heuristic evaluation function of the current partial solution treef(T ′),
and we can prune the search space by comparing these two measures, as is common
in Branch-and-Bound search. Namely, iff(T ′) ≥ ub(s), then searching below the
current tip nodet of T ′ is guaranteed not to reduceub(s) and therefore, the search
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Algorithm 1 : AOBB-C: AND/OR Branch-and-Bound Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1, parent separator setspasi

(AND-context) for every variableXi, heuristic functionh(n).
Output : Minimal cost solution and an optimal solution assignment.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize search stack1
Initialize cache tables with entries ”NULL” // Initialize cache tables2
while OPEN 6= ∅ do3

n← top(OPEN); removen from OPEN // EXPAND4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′, labeled〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
cached← false; deadend← false12
if Cache(asgn(πn)[pasi]) 6= NULL then13

v(n)← Cache(asgn(πn)[pasi]).value // Retrieve value14
ST (n)← Cache(asg(πn)[pasi]).assignment; // Retrieve optimal assignment15
cached← true // No need to expand below16

foreachOR ancestorm of n do17
lb← evalPartialSolutionTree(T ′

m)18
if lb ≥ v(m) then19

deadend← true20
break21

if deadend == false and cached == false then22
foreachXj ∈ childrenT (Xi) do23

create an OR noden′ labeledXj24
v(n′)←∞; ST (n′)← ∅25
succ(n)← succ(n) ∪ {n′}26

else ifdeadend == true then27
succ(p)← succ(p)− {n}28

Add succ(n) on top ofOPEN // PROPAGATE29
while succ(n) == ∅ do30

if n is an OR node, labeledXi then31
if Xi == X1 then32

return (v(n), ST (n)) // Search is complete33

v(p)← v(p) + v(n) // Update AND node value (summation)34
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node35

else ifn is an AND node, labeled〈Xi, xi〉 then36
Cache(asgn(πn)[pasi]).value← v(n) // Save AND node value in cache37
Cache(asgn(πn)[pasi]).assignment← ST (n); // Save optimal assignment38
if v(p) > (w(p, n) + v(n)) then39

v(p)← w(p, n) + v(n) // Update OR node value (minimization)40
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node41

removen from succ(p)42
n← p43

space belowt can be pruned.

We considered so far the case when the best solution found so far is maintained
at the root node of the search tree. It is also possible to maintain the current best
solutions for all the OR nodes along the active path between the tip nodet of T ′

ands. Then, iff(T ′m) ≥ ub(m), wherem is an OR ancestor oft in T ′ andT ′m is
the subtree ofT ′ rooted atm, it is also safe to prune the search space belowt. This

18



Algorithm 2 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n)
Input : Partial solution subtreeT ′

n rooted at noden.
Output : Heuristic evaluation functionf(T ′

n).
if succ(n) == ∅ then1

return h(n)2
else3

if n is an AND nodethen4
let m1, ..., mk be the OR children ofn in T ′

n5

return
∑k

i=1
evalPartialSolutionTree(T ′

mi
)6

else ifn is an OR nodethen7
let m be the AND child ofn in T ′

n8
return w(n, m) + evalPartialSolutionTree(T ′

m)9

provides an efficient mechanism to discover that the search space below a node can
be pruned more quickly. For illustration, see also Section 6in [1].

The depth-firstAND/OR Branch-and-Boundalgorithm, AOBB-C, for searching
AND/OR graphs for graphical models, is described by Algorithm 1. It interleaves a
forward expansion step of the current partial solution tree(EXPAND) with a back-
ward propagation step (PROPAGATE) that updates the node values. This part is
identical to the tree-based variant [1] and we describe it here for completeness.

The context based caching uses table representation. For each variableXi, a table
is reserved in memory for each possible assignment to its parent-separator setpasi

(i.e., AND context). During search, each table entry records the optimal solution
(both the cost and an optimal solution tree) to the subproblem below the corre-
sponding AND node. Initially, each entry has a predefined value, in our caseNULL.
The fringe of the search is maintained by a stack calledOPEN. The current node
is denoted byn, its parent byp, and the current path byπn. The children of the
current node are denoted bysucc(n).

Each noden in the search graph maintains its current valuev(n), which is updated
based on the values of its children. For OR nodes, the currentv(n) is an upper
bound on the optimal solution cost belown. Initially, v(n) is set to∞ if n is OR,
and0 if n is AND, respectively. A data structureST (n) maintains the actual best
solution tree found in the subgraph rooted atn. The node based heuristic function
h(n) of v(n) is assumed to be available to the algorithm, either retrieved from a
cache or computed during search.

Since we use AND caching, before expanding the current AND noden, its cache
table is checked (line 13). If the same context was encountered before, it is re-
trieved from the cache, andsucc(n) is set to the empty set, which will trigger the
PROPAGATE step. The algorithm also computes the heuristic evaluationfunction
for every partial solution subtree rooted at the OR ancestors of n along the path
from the root (lines 17–21). The search belown is terminated if, for some OR
ancestorm, f(T ′m) ≥ v(m), wherev(m) is the current upper bound on the opti-
mal cost belowm. The recursive computation off(T ′m) based on Definition 28 is
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described in Algorithm 2 (we give it here for completeness).

If a node is not found in cache, it is expanded in the usual way,depending on
whether it is an AND or OR node (lines 5–28). Ifn is an OR node, labeledXi, then
its successors are AND nodes represented by the valuesxi in variableXi’s domain
(lines 5–10). Each OR-to-AND arc is associated with the appropriate weight (see
Definition 19). Similarly, ifn is an AND node, labeled〈Xi, xi〉, then its successors
are OR nodes labeled by the child variables ofXi in T (lines 22–26). There are no
weights associated with AND-to-OR arcs.

The node values are updated by thePROPAGATE step (lines 30–43). It is triggered
when a node value has an empty set of descendants (note that aseach successor is
evaluated, it is removed from the set of successors in line 42). This means that all
its children have been evaluated, and their final values are already determined. If
the current node is the root, then the search terminates withits value and an optimal
solution tree (line 33). Ifn is an OR node, then its parentp is an AND node, and
p updates its current valuev(p) by summation with the value ofn (line 34). An
AND noden propagates its value to its parentp in a similar way, by minimization
(lines 36–41). It also saves in cache the value and optimal solution subtree below it
(lines 37–38). Finally, the current noden is set to its parentp (line 43), becausen
was completely evaluated. Each node in the search graph alsorecords the current
best assignment to the variables of the subproblem below it.Specifically, ifn is an
AND node, thenST (n) is the union of the optimal trees propagated fromn’s OR
children (line 35). Alternatively, ifn is an OR node andn′ is its AND child such
thatn′ = argminm∈succ(n)(w(n,m)+v(m)), thenST (n) is obtained from the label
of n′ combined with the optimal solution tree belown′ (line 41). Search continues
either with apropagationstep (if conditions are met) or with anexpansionstep.
Clearly,

THEOREM 6 (complexity) AOBB-C traversing the context minimal AND/OR search
graph relative to a pseudo treeT is sound and complete. Its time and space com-
plexity isO(n ·kw∗

), wherew∗ is the induced width of the pseudo tree andk bounds
the domain size.

Since the space required byAOBB-C can sometimes be prohibitive, we next present
two caching schemes that can adapt to the memory limitations. They use a parame-
ter calledcache bound(or simplyj-bound) to control the amount of memory used
for storing unifiable nodes.

5.1 Naive Caching

The first scheme, callednaive cachingand denoted hereafter byAOBB-C(j), stores
nodes at the variables whose context size is smaller than or equal to the cache
boundj. It is easy to see that whenj equals the induced width of the pseudo tree
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Fig. 4. Illustration of naive caching used byAOBB-C(2).

the algorithm explores the context minimal AND/OR graph viafull caching.

As we mentioned earlier, a straightforward way of implementing the caching scheme

21



B

0

EC

D D

0 1

1

EC

D D

0 1

B

0

EC

1

EC

A

0 1

H

0 1

B

0

EC

D D

0 1

1

EC

D D

0 1

B

0

EC

1

EC

H

0 1

0 1

0 1 0 1

GF GF GF GF

0 1 0 1

Fig. 5. Illustration of adaptive caching used byAOBB-AC(2).

is to have acache tablefor each variableXk recording the context. Specifically, lets
assume that the context ofXk is context(Xk) = {X1, ..., Xk} and|context(Xk)| ≤
j. A cache table entry corresponds to a particular instantiation {x1, ..., xk} of the
variables incontext(Xk) and records the minimal cost solution to the subproblem
rooted at the AND node labeled〈Xk, xk〉.

However, some tables might never get cache hits. Thesedead-caches[5,4] appear
at nodes that have only one incoming arc.AOBB-C(j) needs to record only nodes
that are likely to have additional incoming arcs, and these nodes can be determined
by inspecting the pseudo tree. For example, if the context ofa node includes that of
its parent, then there is no need to store anything for that node, because it would be
definitely a dead-cache.

Example 4 Figure 4(c) displays the AND/OR search graph obtained with thenaive
caching schemeAOBB-C(2), relative to the pseudo tree given in Figure 4(b).
Notice that there is no need to create cache tables for variablesH andB, because
their AND contexts include those of their respective parentsin the pseudo tree,
namelycontext(A) ⊆ context(H) and context(H) ⊆ context(B), respectively.
Moreover,AOBB-C(2) does not cache any of the AND nodes corresponding to
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variableC because its corresponding cache table, which is defined on 3 variables
(e.g., A, B andC), cannot be stored in memory.

5.2 Adaptive Caching

The second scheme, calledadaptive cachingand denoted byAOBB-AC(j), is in-
spired by the AND/OR cutset conditioning scheme and was firstexplored in [31].
It extends the naive scheme by allowing caching even at nodeswith contexts larger
than the given cache bound, based onadjusted contexts.

Specifically, consider the nodeXk in the pseudo treeT with context(Xk) =
{X1, ..., Xk}, wherek > j. During search, when variables{X1, ..., Xk−j} are in-
stantiated, they can be viewed as part of a cutset. The problem rooted byXk−j+1

can be solved in isolation, like a subproblem in the cutset scheme, after variables
X1, ..., Xk−j are assigned their current values in all the functions. In this subprob-
lem, conditioned on the values{x1, ..., xk−j}, context(Xk) = {Xk−j+1, ..., Xk}
(we call this theadjusted contextof Xk), so it can be cached withinj-bounded
space. However, whenAOBB-AC(j) retracts to variableXk−j or above, the cache
table for variableXk needs to be purged, and will be used again when a new sub-
problem rooted atXk−j+1 is solved. This caching scheme requires only a linear
increase in additional memory, compared to the naiveAOBB-C(j), but it has the
potential of exponential time savings, as shown in [31].

Example 5 Figure 5 shows the AND/OR graph traversed using the adaptive caching
schemeAOBB-AC(2). In contrast to the naive scheme displayed in Figure 4,
AOBB-AC(2) caches the AND level corresponding to variableC based on its
adjusted context. The adjusted AND context ofC is {C,B} and a flag is installed
at variableA, indicating that the cache table must be purged wheneverA is instan-
tiated to a different value.

6 Best-First AND/OR Search

We now direct our attention to abest-firstcontrol strategy for traversing the con-
text minimal AND/OR graph. The best-first search algorithm uses similar amounts
of memory as the depth-first AND/OR Branch-and-Bound with fullcaching and
therefore the comparison is warranted.

Best-first search expands the nodes in order of their heuristic evaluation function.
Its main virtue is that it never expands nodes whose cost is beyond the optimal
one, unlike depth-first search algorithms, and therefore issuperior among memory
intensive algorithms employing the same heuristic evaluation function [8].
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Algorithm 3 : AOBF-C: Best-First AND/OR Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo treeT rooted atX1, parent separator setspasi

(AND-context) for every variableXi, heuristic functionh(n).
Output : Minimal cost solution and an optimal solution assignment.
v(s)← h(s); C′

T
← {s}; // Initialize1

while s is not labeledSOLV ED do2
S ← {s}; T ′ ← {}; // Create the marked PST3
while S 6= ∅ do4

n← top(S); removen from S5
T ′ ← T ′ ∪ {n}6
let L be the set of marked successors ofn7
if L 6= ∅ then8

addL on top ofS9

let n be any nonterminal tip node of the markedT ′ (rooted ats) // EXPAND10
if n is an OR node, labeledXi then11

foreachxi ∈ Di do12
let n′ be the AND node inC′

T
having context equal topasi13

if n′ == NULL then14
create an AND noden′ labeled〈Xi, xi〉15
v(n′)← h(n′)16
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn))17

if n′ is TERMINALthen18
labeln′ as SOLVED19

succ(n)← succ(n) ∪ {n′}20

else ifn is an AND node, labeled〈Xi, xi〉 then21
foreachXj ∈ childrenT (Xi) do22

create an OR noden′ labeledXj23
v(n′)← h(n′)24
succ(n)← succ(n) ∪ {n′}25

C′
T
← C′

T
∪ {succ(n)}26

S ← {n} // REVISE27
while S 6= ∅ do28

let m be a node inS such thatm has no descendants inC′
T

still in S; removem from S29
if m is an AND node, labeled〈Xi, xi〉 then30

v(m)←
∑

mj∈succ(m)
v(mj)31

mark all arcs to the successors32
labelm as SOLVED if all its children are labeled SOLVED33

else ifm is an OR node, labeledXi then34
v(m) = minmj∈succ(m)(w(m,mj) + v(mj))35
mark the arc through which this minimum is achieved36
labelm as SOLVED if the marked successor is labeled SOLVED37

if m changes its valueor m is labeled SOLVEDthen38
add toS all those parents ofm such thatm is one of their successors through a marked arc.39

return v(s) // Search terminates40

The best-first AND/OR searchalgorithm, denoted byAOBF-C, that traverses the
context minimal AND/OR search graph is described in Algorithm 3. It specializes
Nilsson’sAO∗ algorithm [23] to AND/OR search spaces for graphical modelsand
interleaves forward expansion of the best partial solutiontree (EXPAND) with a cost
revision step (REVISE) that updates node values, as detailed in [23]. The explicated
AND/OR search graph is maintained by a data structure calledC ′T , the current node
is n, s is the root of the search graph and the current best partial solution subtree is
denoted byT ′. The children of the current node are denoted bysucc(n).
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First, a top-down, graph-growing operation finds the best partial solution tree by
tracing down through the marked arcs of the explicit AND/OR search graphC ′T
(lines 3–9). These previously computed marks indicate the current best partial so-
lution tree from each node inC ′T . Before the algorithm terminates, the best partial
solution tree,T ′, does not yet have all of its leaf nodes terminal. One of its non-
terminal leaf nodesn is then expanded by generating its successors, depending on
whether it is an OR or an AND node. Ifn is an OR node, labeledXi, then its suc-
cessors are AND nodes represented by the valuesxi in variableXi’s domain (lines
11–20). Notice that when expanding an OR node, the algorithmdoes not generate
AND children that are already present in the explicit searchgraphC ′T , but rather
links to them. All these identical AND nodes inC ′T are easily recognized based on
their contexts. Each OR-to-AND arc is associated with the appropriate weight (see
Definition 19). Similarly, ifn is an AND node, labeled〈Xi, xi〉, then its successors
are OR nodes labeled by the child variables ofXi in T (lines 21–25). There are
no weights associated with AND-to-OR arcs. Moreover, a heuristic underestimate
h(n′) of v(n′) is assigned to each ofn’s successorsn′ ∈ succ(n).

The second operation inAOBF-C is a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (lines 27–39). It aims at updating the evaluation function of any
subtree that might be affected, and marks the best one. Starting with the node just
expandedn, the procedure revises its valuev(n), using the newly computed values
of its successors, and marks the outgoing arcs on the estimated best path to termi-
nal nodes. This revised value is then propagated upwards in the graph. The revised
valuev(n) is an updated lower bound on the cost of an optimal solution tothe sub-
problem rooted atn. If we assume the monotone restriction onh, cost revisions can
only be cost increases [32,23]. Therefore, not all ancestors need have cost revisions,
but only those ancestors having best partial solution treescontaining descendants
with revised values (lines 38–39). During the bottom-up step, AOBF-C labels an
AND node asSOLVED if all of its OR child nodes are solved, and labels an OR
node asSOLVED if its marked AND child is also solved. The algorithm terminates
with the optimal solution when the root nodes is labeledSOLVED.

If h(n) ≤ v(n), the exact cost atn, for all nodes, and ifh satisfies the monotone
restriction, then the algorithmAOBF-C will terminates in an optimal solution tree
[32,23]. The optimal solution tree can be obtained by tracing down froms through
the marked connectors at termination and its optimal cost isequal to the valuev(s)
of s at termination. It is possible to show that since the algorithm explores every
node in the context minimal graph just once, we get:

THEOREM 7 (complexity) The best-first AND/OR search algorithm traversing the
context minimal AND/OR graph has time and space complexity ofO(n·kw∗

), where
w∗ is the induced width of the pseudo tree andk bounds the domain size.

AOBB versus AOBF. We highlight next the main differences between depth-first
AND/OR Branch-and-Bound (AOBB-C) and best-first AND/OR search (AOBF-C)
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traversing the context minimal AND/OR search graph.

First, AOBF-C with the same heuristic function asAOBB-C is likely to expand
the smallest number of nodes [8], but empirically this depends on how quickly
AOBB-C will find an optimal solution. Secondly,AOBB-C can use far less memory
by avoiding dead-caches for example (e.g., when the search graph is a tree), while
AOBF-C has to keep the explicated search graph in memory. Third,AOBB-C can be
used as an anytime scheme, namely whenever interrupted, thealgorithm outputs the
best solution found so far, unlikeAOBF-C which outputs a complete solution upon
completion only. All the above points show that the relativemerit of best-first versus
depth-first over context minimal AND/OR search spaces cannot be determined by
theory [8] and empirical evaluation is essential.

7 Overview of the Mini-Bucket Lower Bound Heuristics for AND/OR Search

The effectiveness of both depth-first AND/OR Branch-and-Bound and best-first
AND/OR search algorithms greatly depends on the quality of the heuristic evalu-
ation functions. Naturally, more accurate heuristic estimates may yield a smaller
search space, however at a much higher computational cost. Therefore, the right
trade-off between the computational overhead at each node and the pruning power
exhibited during search may be hard to predict. The primary heuristic that we used
in our experiments is the Mini-Bucket heuristic, which we presented in [1,2]. For
completeness sake, we review it briefly next.

Mini-Bucket Elimination (MBE(i)) [10] is an approximation algorithm designed
to avoid the high time and space complexity ofBucket Elimination(BE) [33], by
partitioning large buckets into smaller subsets, calledmini-buckets, each containing
at mosti (calledi-bound) distinct variables. The mini-buckets are then processed
separately. The algorithm outputs not only a bound on the optimal solution cost,
but also a collection of augmented buckets, which form the basis for the heuristics
generated. The complexity is time and spaceO(exp(i)). Both Bucket and Mini-
Bucket Elimination can also be viewed as message passing fromleaves to root
along abucket tree[34].

Static Mini-Bucket Heuristics. In [1,2] we showed that the intermediate functions
generated by MBE(i) can be used to compute a heuristic function that underes-
timates the minimal cost solution to the current subproblem. Specifically, given
an ordered set of augmented buckets{B(X1), ..., B(Xn)} generated by MBE(i)
along the bucket treeT (which is also a pseudo tree [4]), and given a noden in
the AND/OR search tree, thestatic mini-bucket heuristicfunction h(n) is com-
puted as follows: (1) ifn is an AND node labeled〈Xp, xp〉, thenh(n) is the sum
of all intermediate functions that were generated in buckets corresponding to the
descendents ofXp in T and reside in bucketB(Xp) or the buckets correspond-
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ing to the ancestors ofXp in T ; (2) if n is an OR node labeled byXp, then
h(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn labeled with
valuexp of Xp.

Dynamic Mini-Bucket Heuristics. It is also possible to generate the mini-bucket
heuristic information dynamically, during search. The idea is to compute MBE(i)
conditioned on the current partial assignment [1,2]. Specifically, given a bucket
treeT , with buckets{B(X1), ..., B(Xn)}, a noden in the AND/OR search tree
and given the current partial assignmentasgn(πn) along the path ton, thedynamic
mini-bucket heuristicfunction h(n) is computed as follows: (1) ifn is an AND
node labeled〈Xp, xp〉, thenh(n) is the sum of the intermediate functions that re-
side in bucketB(Xp) and were generated by MBE(i), conditioned onasgn(πn), in
the buckets corresponding to the descendants ofXp in T ; (2) if n is an OR node
labeledXp, thenh(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn
labeled with valuexp of Xp. Given ani-bound, the dynamic mini-bucket heuristic
implies a much higher computational overhead compared withthe static version.
However, the bounds generated dynamically may be far more accurate since some
of the variables are assigned and will therefore yield smaller functions and less
partitioning.

8 Experimental Results

In [1,2] we evaluated empirically AND/OR search algorithmsfor AND/OR trees
only. We now extend this evaluation to algorithms exploringthe context minimal
AND/OR search graphs just described. As in [1,2], we have conducted a number of
experiments on two common optimization problems classes ingraphical models:
finding the Most Probable Explanation in Bayesian networks and solving Weighted
CSPs. We implemented our algorithms in C++ and ran all experiments on a 2.4GHz
single-core Pentium IV with 2GB of RAM, running Windows XP.

8.1 Overview and Methodology

Algorithms. We evaluated the following classes of memory intensive AND/OR
search algorithms guided by mini-bucket heuristics:

• Depth-first AND/OR Branch-and-Bound search algorithms with full caching, us-
ing static and dynamic mini-bucket heuristics, denoted byAOBB-C+SMB(i)
andAOBB-C+DMB(i), respectively.

• Best-first AND/OR search algorithms using static and dynamicmini-bucket heuris-
tics, denoted byAOBF-C+SMB(i) andAOBF-C+DMB(i), respectively.
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Table 1
Detailed outline of the experimental evaluation for Bayesian networks.

static mini-buckets dynamic mini-buckets min-fill vs. nave vs. constraint

BB-C+SMB(i) BB-C+DMB(i) hypergraph adaptive propagation SamIam Superlink

Benchmarks AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching

AOBF-C+SMB(i) AOBF-C+DMB(i)

main

Coding
√ √

- - -
√

-

Grids
√ √ √ √ √ √

-

Linkage
√

-
√ √

-
√ √

appendix

ISCAS’89
√ √ √ √ √ √

-

UAI’06 Dataset
√

-
√

- -
√

-

We compare these algorithms with those searching the AND/ORtree (without
caching) guided by the mini-bucket heuristics, denoted byAOBB+SMB(i) and
AOBB+DMB(i), introduced in [1,2]. In addition, we also ran the traditional OR
Branch-and-Bound search algorithms with full caching, denoted byBB-C+SMB(i)
andBB-C+DMB(i), respectively. In all cases, the parameteri represents the mini-
bucketi-bound and controls the accuracy of the heuristic.

Throughout our empirical evaluation we will address the following questions that
govern the performance of the proposed algorithms:

1 The impact of graph versus tree AND/OR Branch-and-Bound search.
2 The impact of best-first versus depth-first AND/OR search.
3 The impact of the mini-bucketi-bound.
4 The impact of the cache boundj on naive and adaptive caching.
5 The impact of the pseudo tree quality on AND/OR search.
6 The impact of determinism present in the network.
7 The impact of non-trivial initial upper bounds.

Since the pre-compiled mini-bucket heuristics require a static variable ordering,
the corresponding OR and AND/OR search algorithms used the variable ordering
derived from a depth-first traversal of the guiding pseudo tree. We note however that
AOBB-C+SMB(i) andAOBB-C+DMB(i) support a restricted form of dynamic
variable and value ordering. Namely, there is a dynamic internal ordering of the
successors of the node just expanded, before placing them onto the search stack.
Specifically, in line 29 of Algorithm 1, if the current noden is AND, then the
independent subproblems rooted by its OR children can be solved in decreasing
order of their corresponding heuristic estimates (variable ordering). Alternatively,
if n is OR, then its AND children corresponding to domain values can also be sorted
in decreasing order of their heuristic estimates (value ordering).

Bayesian Networks.For the MPE task, we tested the performance of the depth-
first AND/OR Branch-and-Bound and best-first AND/OR search algorithms on the
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Table 2
Detailed outline of the experimental evaluation for Weighted CSPs.

static mini-buckets dynamic mini-buckets min-fill vs. nave vs. AOEDAC

BB-C+SMB(i) BB-C+DMB(i) hypergraph adaptive AOEDAC+PVO toolbar

Benchmarks AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching DVO+AOEDAC toolbar-BTD

AOBF-C+SMB(i) AOBF-C+DMB(i) AOEDAC+DSO

main

SPOT5
√ √ √ √ √ √

ISCAS’89
√ √ √ √ √ √

Mastermind
√

-
√ √ √ √

following types of problems: random coding networks, grid networks, Bayesian
networks derived from the ISCAS’89 digital circuits benchmark, genetic linkage
analysis networks, and a subset of networks from the UAI’06 Inference Evaluation
Dataset. We report here some of the results and place the restin the Appendix.

The detailed outline of the experimental evaluation for Bayesian networks is given
in Table 1. We also consider an extension of the AND/OR Branch-and-Bound with
caching that exploits the determinism present in the Bayesian network by constraint
propagation.

For reference, we also compared with the SAM IAM version 2.3.2 software pack-
age1 . SAM IAM is a public implementation of Recursive Conditioning [5] which
can also be viewed as an AND/OR search algorithm. It uses a context-based caching
mechanism similar to our scheme. This version of recursive conditioning also ex-
plores a context minimal AND/OR search graph [4] and therefore its space com-
plexity is exponential in the treewidth. Note that when we use mini-bucket heuris-
tics with high values ofi, we use space exponential ini for the heuristic calculation
and storing, in addition to the space required for caching.

Weighted CSPs.For WCSPs we evaluated the performance of the AND/OR search
algorithms on the following types of problems: scheduling problems from the SPOT5
benchmark, networks derived from the ISCAS’89 digital circuits and instances of
the popular game of Mastermind. The outline of the experimental evaluation for
WCSPs is detailed in Table 2.

For reference, we also report results obtained with the state-of-the-art solvers called
toolbar [35] andtoolbar-BTD [36] 2 .toolbar is an OR Branch-and-Bound
algorithm that maintains during search a form of soft local consistency called Ex-
istential Directional Arc Consistency (EDAC).toolbar-BTD extends theBack-
tracking with Tree Decomposition(BTD) algorithm [7] and computes the guiding
heuristic information as well by enforcing EDAC during search. It can be shown

1 Available at http://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5 pro-
vided with the package.
2 Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
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that BTD explores a context minimal AND/OR search graph, relative to a pseudo
tree corresponding to the given tree decomposition [4]. In addition, we also com-
pare with the depth-first AND/OR Branch-and-Bound tree searchalgorithms with
EDAC heuristics and dynamic variable orderings described in [1,3]:AOEDAC+PVO
using partial variable orderings,DVO+AOEDAC using full dynamic variable order-
ing, andAOEDAC+DSO using dynamic separator orderings, respectively. For a de-
tailed description of these ordering heuristics and their evaluation, see [1,3].

The dynamic variable ordering heuristic used by the OR and AND/OR Branch-and-
Bound algorithms with EDAC heuristics was themin-dom/ddegheuristic, which
selects the variable with the smallest ratio of the domain size divided by the future
degree. Ties were broken lexicographically.

Measures of Performance.We report the CPU time in seconds and the number of
nodes visited, required for proving optimality. We specifythe number of variables
(n), number of evidence variables (e), maximum domain size (k), the depth of the
pseudo trees (h) and the induced width of the graphs (w∗) obtained for the test in-
stances. When evidence is asserted in the network,w∗ andh are computed after the
evidence nodes were removed from the graph. We also report the time required by
the Mini-Bucket algorithm MBE(i) to pre-compile the heuristic information. The
pseudo trees that guide the AND/OR search algorithms were generated using the
min-fill and hypergraph partitioning heuristics (see Section 4.4). In our experiments
we ran the min-fill heuristic just once and broke the ties lexicographically. The best
performance points are highlighted. In each table, ”-” denotes that the respective
algorithm exceeded the time limit. Similarly, ”out” indicates that the 2GB memory
limit was exceeded.

8.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in [1,2] demonstrateded conclusivelythat the AND/OR Branch-
and-Boundtreesearch algorithms with static mini-bucket heuristics werethe best
performing algorithms on this domain. The diference between AOBB+SMB(i) and
the OR tree search counterpartBB+SMB(i) was more pronounced at relatively
smalli-bounds (corresponding to relatively weak heuristic estimates) and amounted
to 2 orders of magnitude in terms of both running time and sizeof the search
space explored. For largeri-bounds, when the heuristic estimates are strong enough
to prune the search space substantially, the diference between AND/OR and OR
Branch-and-Bound decreased. We also showed thatAOBB+SMB(i) was in many
cases able to outperform dramatically the current state-of-the-art solvers for be-
lief networks such as SAM IAM and SUPERLINK (for genetic linkage analysis). The
AND/OR Branch-and-Bound with dynamic mini-bucket heuristicsAOBB+DMB(i)
proved competitive only for relatively smalli-bounds due to computational over-
head issues. In this section we extend the empirical evaluation to memory intensive
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depth-first and best-first AND/OR search algorithms.

8.2.1 Coding Networks

We experimented with random coding networks from the class of linear block
codes. They can be represented as 4-layer belief networks withK nodes in each
layer (i.e., the number of input bits). The second and third layers correspond to
input information bits and parity check bits, respectively. Each parity check bit
represents an XOR function of the input bits. The first and last layers correspond
to transmitted information and parity check bits, respectively. Input information
and parity check nodes are binary, while the output nodes arereal-valued. Given
a number of input bitsK, number of parentsP for each XOR bit, and channel
noise varianceσ2, a coding network structure is generated by randomly picking
parents for each XOR node. Then we simulate an input signal byassuming a uni-
form random distribution of information bits, compute the corresponding values of
the parity check bits, and generate an assignment to the output nodes by adding
Gaussian noise to each information and parity check bit. Thedecoding algorithm
takes as input the coding network and the observed real-valued output assignment
and recovers the original input bit-vector by computing an MPE assignment.

Table 3 shows the results for solving two classes of random coding networks with
K = 64 andK = 128 input bits, using static and dynamic mini-bucket heuristics.
The number of parents for each XOR bit wasP = 4 and we chose the channel
noise varianceσ2 ∈ {0.22, 0.36}. For each value combination of the parameters
we generated 20 random instances. The guiding pseudo trees were generated using
the min-fill heuristic. The top four horizontal blocks show the results for static mini-
bucket heuristics, while the bottom four ones correspond todynamic mini-buckets
heuristics. The columns are indexed by the mini-bucketi-bound, which we varied
between 4 and 20.

Tree vs. graph AOBB.When comparing the tree versus the graph search AND/OR
Branch-and-Bound algorithms we see thatAOBB-C+SMB(i) is slightly better than
AOBB+SMB(i). We observe a similar picture when using dynamic mini-buckets as
well. This indicates that, on this domain, most of the cache entries were actually
dead, namely the context minimal AND/OR graph was very closeto a tree. No-
tice that SAM IAM was not able to solve any of these problem instances due to the
memory limit.

AOBF vs. AOBB. When comparing the best-first versus the depth-first algorithms
using static mini-bucket heuristics, we see thatAOBF-C+SMB(i) is better than
AOBB-C+SMB(i) for relatively smalli-bounds (i.e., i ∈ {4, 8}) which gener-
ate relatively weak heuristic estimates. For instance, on class 〈K = 64, σ2 =
0.22〉, best-first searchAOBF-C+SMB(4) is 4 orders of magnitude faster than
AOBB-C+SMB(4). As thei-bound increases and the heuristics become more ac-
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Table 3
CPU time and nodes visited for solvingrandom coding networks usingstatic and dy-
namic mini-bucket heuristicsas well as min-fill based pseudo trees. Time limit 5 minutes.
The top four horizontal blocks show the results for static mini-bucket heuristics, while the
bottom four blocks show the dynamic mini-bucket heuristics.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=4 i=8 i=12 i=16 i=20

time nodes time nodes time nodes time nodes time nodes

0.02 0.02 0.07 0.68 8.33

- - 16.55 174,205 0.09 148 0.72 130 8.36 130

(64, 128) (27, 40) out 287.10 5,052,010 6.58 119,289 0.08 152 0.68 129 8.34 129

σ2 = 0.22 250.81 3,600,530 4.25 63,171 0.08 147 0.71 129 8.41 129

0.04 157 0.04 129 0.09 128 0.72 128 8.45 128

0.02 0.02 0.07 0.68 8.32

- - 76.38 807,319 0.99 10,688 0.81 1,189 8.41 158

(64, 128) (27, 40) out 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160

σ2 = 0.36 250.32 3,907,000 35.52 518,125 0.79 12,236 0.81 1,850 8.39 148

3.94 17,801 0.15 829 0.12 363 0.72 162 8.41 133

0.05 0.06 0.18 1.80 25.65

- - 256.23 1,766,930 30.57 213,184 3.30 11,073 25.88 1,656

(128, 256) (53, 71) out - - 229.02 3,227,110 16.67 206,004 3.51 22,644 25.87 3,081

σ2 = 0.22 - - 218.58 2,206,490 11.75 116,977 3.03 12,880 25.72 2,109

0.14 375 0.11 266 0.23 262 1.90 257 25.01 258

0.05 0.06 0.18 1.80 25.39

- - - - 264.57 1,732,960 202.84 1,426,730 97.98 603,342

(128, 256) (53, 71) out - - 291.61 4,309,160 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120

σ2 = 0.36 - - 290.12 2,951,230 235.08 2,312,080 178.90 1,816,940 100.32 781,438

out 66.98 260,350 19.18 88,692 7.23 26,499 28.01 18,357

BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

SamIam AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(K, N) (w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=4 i=8 i=12 i=16 i=20

time nodes time nodes time nodes time nodes time nodes

22.46 9,331 0.41 183 1.41 130 12.80 130 122.67 130

(64, 128) (27, 40) out 23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129

σ2 = 0.22 21.26 13,971 0.34 176 1.36 129 12.62 129 120.81 129

0.19 129 0.37 128 2.15 128 19.98 128 192.66 128

46.66 18,781 5.12 1,204 5.58 432 15.47 162 123.57 144

(64, 128) (27, 40) out 48.71 44,734 5.17 1,864 5.53 512 15.53 164 122.90 144

σ2 = 0.36 44.20 29,191 4.91 1,323 5.41 399 15.33 155 122.27 138

1.96 446 0.82 160 2.71 132 20.50 128 191.08 128

195.84 39,109 48.49 3,684 17.48 482 130.41 379 - -

(128, 256) (53, 71) out 195.82 121,822 48.17 9,391 17.15 500 129.38 388 - -

σ2 = 0.22 193.30 68,571 48.06 5,241 16.88 420 128.23 355 - -

0.75 260 1.58 256 11.18 256 131.50 256 - -

288.97 62,749 229.55 19,776 234.08 4,402 276.95 804 - -

(128, 256) (53, 71) out 289.09 223,938 229.91 46,768 233.96 7,947 276.31 953 - -

σ2 = 0.36 288.79 121,278 229.09 27,362 233.72 4,662 276.87 649 - -

202.41 16,041 70.68 2,260 163.78 709 282.36 136 - -
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Fig. 6. Comparison of the impact of static and dynamic mini-bucket heuristics for solving
the random coding networks with parameters(K = 64, σ2 = 0.36) from Table 3. We
show the CPU time in seconds (top) and the number of nodes visited (bottom).

curate, the difference between Branch-and-Bound and best-first search decreases,
because Branch-and-Bound finds close to optimal solutions fast, and therefore will
not explore solutions whose cost is below the optimum, like best-first search. When
looking at the algorithms using dynamic mini-bucket heuristics, we notice that
AOBF-C+DMB(i) is again far better thanAOBB-C+DMB(i) for smalleri-bounds.

Static vs. dynamic mini-bucket heuristics.When comparing the static versus dy-
namic mini-bucket heuristic we see that the latter is competitive only for relatively
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small i-bounds (i.e., i ∈ {4, 8}). At higher levels of thei-bound, the accuracy of
the dynamic heuristic does not outweigh its computational overhead.

Figure 6 plots the average running time and number of nodes visited, as a func-
tion of the mini-bucketi-bound, on the random coding networks with parameters
(K = 64, σ2 = 0.36) (i.e., corresponding to the second and fifth horizontal blocks
in Table 3). It shows explicitly how the performance of the algorithms changes
with the mini-bucket strength for both heuristics. Focusing for example on best-first
search, we see thati-bound of 4 is most cost effective for dynamic mini-buckets,
while i-bound of 10 yields best performance for static mini-buckets. We also see
clearly that the dynamic mini-bucket heuristic is more accurate yielding smaller
search spaces. It also demonstrates that the dynamic mini-bucket heuristics are cost
effective at relatively smalli-bounds, whereas the pre-compiled version is more
powerful for largeri-bounds.

We addressed so far the impact of tree versus graph AND/OR search, the impact
of the mini-bucketi-bound and best-first versus depth-first search regimes. In the
remainder we will also investigate the impact of the level ofcaching, the impact
of pseudo tree quality, the impact of determinism present inthe network, as well
as the anytime behavior of AND/OR Branch-and-Bound and the impact of good
initial bounds.

8.2.2 Random Grid Networks

In random grid networks, the nodes are arranged in anN ×N square and each CPT
is generated uniformly randomly. We experimented with problem instances initially
developed by [37] for the task of weighted model counting. For these problemsN
ranges between 10 and 38, and, for each instance,90% of the CPTs are determinis-
tic, namely they contain only 0 and 1 probability entries. All variables are bi-valued.

Tables 4 and 5 show detailed results for experiments with 8 grids of increasing dif-
ficulty, using static and dynamic mini-bucket heuristics. The columns are indexed
by the mini-bucketi-bound. We varied the mini-bucketi-bound between 8 and 16
for the first 3 grids, and between 12 and 20 for the remaining ones. For each in-
stance we ran a single MPE query withe nodes picked randomly and instantiated
as evidence. The guiding pseudo trees were generated using the min-fill heuristic.

Tree vs. graph AOBB.First, we observe thatAOBB-C+SMB(i) using full caching
improves significantly over the tree version of the algorithm, especially for rela-
tively smalli-bounds which generate relatively weak heuristic estimates. For exam-
ple, on the90-16-1 grid,AOBB-C+SMB(8) is 3 times faster thanAOBB+SMB(8)
and explores a search space 5 times smaller. Notice also the significant additional
reduction produced by the best-first search algorithmAOBF-C+SMB(8). While
overallAOBF-C+SMB(i) is superior toAOBB-C+SMB(i) with the samei-bound,
the best performance on this network is obtained byAOBB-C+SMB(16). The al-
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Table 4
CPU time and nodes visited for solvinggrid networks usingstatic mini-bucket heuristics
and min-fill based pseudo trees. Time limit 1 hour. Top part of the table showsresults for
i-bounds between 8 and 16, while the bottom part showsi-bounds between 12 and 20.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

0.02 0.03 0.03 0.06 0.06

90-10-1 0.23 3,297 0.06 373 0.05 102 0.06 102 0.06 102

(13, 39) 0.13 0.33 8,080 0.11 2,052 0.05 101 0.06 101 0.06 101

(100, 0) 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101

0.27 2,012 0.11 661 0.05 100 0.06 100 0.06 100

0.03 0.03 0.08 0.14 0.44

90-14-1 126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450

(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938

(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 0.23 1,361 0.53 1,210

3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857

0.05 0.05 0.11 0.31 0.63

90-16-1 - - - - 40.05 345,255 2.38 16,942 1.23 5,327

(24, 82) 147.19 666.68 10,104,350 173.49 2,600,690 14.36 193,440 2.97 39,825 2.08 23,421

(256, 0) 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 0.95 4,810

25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

0.28 0.64 1.69 4.60 19.14

90-24-1 - - - - - - - - - -

(33, 111) out - - 2338.67 24,117,151 1548.09 18,238,983 138.67 1,413,764 146.85 1,308,009

(576, 20) - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291

0.33 0.72 2.14 7.09 22.02

90-26-1 - - - - 395.67 1,635,447 - - 67.09 277,685

(36, 113) out 311.89 2,903,489 369.49 3,205,257 8.42 59,055 22.99 165,182 22.56 5,777

(676, 40) 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435

0.47 0.98 2.77 7.98 30.44

90-30-1 - - - - - - - - - -

(43, 150) out 1131.07 9,445,224 386.27 3,324,942 350.28 3,039,966 149.69 1,358,569 97.09 485,300

(900, 60) 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800

0.63 1.25 3.72 11.66 40.00

90-34-1 - - - - - - - - - -

(45, 153) out - - - - - - - - 478.10 1,549,829

(1154, 80) - - - - - - - - 369.36 823,604

out out 243.63 596,978 270.88 667,013 71.19 67,611

0.78 1.67 4.20 12.36 43.69

90-38-1 - - - - - - - - - -

(47, 163) out 2032.33 6,835,745 - - 807.38 2,850,393 568.69 2,079,146 369.31 1,038,065

(1444, 120) 969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856
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Table 5
CPU time and nodes visited for solvinggrid networks using dynamic mini-bucket
heuristics and min-fill based pseudo trees. Time limit 1 hour. Top part of the table shows
results fori-bounds between 8 and 16, while the bottom part showsi-bounds between 12
and 20.

min-fill pseudo tree

grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102

(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101

(100, 0) 0.28 235 0.25 170 0.23 101 0.28 101 0.30 101

0.39 135 0.36 115 0.36 100 0.41 100 0.41 100

90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199

(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199

(196, 0) 46.94 7,641 22.72 1,996 4.67 281 7.20 211 10.19 199

54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199

90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262

(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260

(256, 0) 382.78 44,949 245.50 11,855 65.41 1,430 48.61 525 24.52 260

194.08 11,453 252.99 6,622 94.88 1,061 75.41 413 38.46 258

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

90-24-1 - - - - 2586.38 3,243 1724.68 700 2368.83 601

(33, 111) - - - - 1367.38 2,739 1979.42 1,228 1696.56 598

(576, 20) - - - - 781.21 1,058 1211.99 788 1693.00 598

3456.77 11,818 1834.71 2,728 1153.48 855 1871.03 759 2573.08 591

90-26-1 - - - - - - - - - -

(36, 113) - - - - 1514.18 2,545 2889.49 1,191 - -

(676, 40) 2801.39 35,640 2593.74 10,216 892.88 1,178 1698.70 861 2647.60 687

1262.76 5,392 1737.01 2,585 1347.54 1,049 2587.10 828 - -

90-30-1 - - - - - - - - - -

(43, 150) - - - - - - - - - -

(900, 60) - - - - - - - - - -

- - - - - - - - - -

90-34-1 - - - - - - - - - -

(45, 153) - - - - - - - - - -

(1154, 80) - - - - - - - - - -

- - - - - - - - - -

90-38-1 - - - - - - - - - -

(47, 163) - - - - - - - - - -

(1444, 120) - - - - - - - - - -

- - - - - - - - - -

gorithm is 2 times faster than the cache-lessAOBB+SMB(16), and 155 times faster
than SAM IAM , respectively. When looking at the algorithms using dynamicmini-
bucket heuristics (Table 5) we observe a similar pattern, namely the graph search
AND/OR Branch-and-Bound algorithm improves sometimes significantly over the
tree search one. For instance, on the90-24-1 grid,AOBB-C+DMB(16) is about
2 times faster thanAOBB+DMB(16). Notice also that the AND/OR algorithms
with dynamic mini-buckets could not solve the last 3 test instances due to ex-
ceeding the time limit. The OR Branch-and-Bound search algorithms with caching
BB-C+SMB(i) (resp.BB-C+DMB(i)) are inferior to the AND/OR Branch-and-
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Fig. 7. Comparison of the impact of static and dynamic mini-bucket heuristics for solving
the90-14-1 grid network from Tables 4 and 5, respectively. We show the CPU time in
seconds (top) and the number of nodes visited (bottom).

Bound graph search, especially on the harder instances (e.g., 90-30-1).

AOBF vs. AOBB. When comparing further the best-first and depth-first search al-
gorithms, we see again the superiority ofAOBF-C+SMB(i) overAOBB-C+SMB(i),
especially for relatively weak heuristic estimates (see also Figure 7). For example,
on the90-38-1 grid, one of the hardest instances, best-first search with the small-
est reportedi-bound (i = 12) is 9 times faster thanAOBB-C+SMB(12) and visits
15 times less nodes. The difference between best-first and depth-first search is not
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Fig. 8. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with static
mini-bucket heuristics ongrid networks. Shown is the CPU time in seconds.

too prominent when using dynamic mini-bucket heuristics, perhaps because these
heuristics are far more accurate than the pre-compiled onesyielding a small enough
search space.

Static vs. dynamic mini-bucket heuristics.When comparing the static versus dy-
namic mini-bucket heuristics, we see as before, that the former are more powerful
for relatively largei-bounds, whereas the latter are cost effective only for relatively
smalli-bounds. Figure 7 shows the CPU time and size of the search space explored,
as a function of the mini-bucketi-bound, on the90-14-1 grid from Tables 4 and
5, respectively. Focusing onAOBB-C+SMB(i), for example, we see that its run-
ning time, as a function ofi, forms a U-shaped curve. At first (i = 4) it is high,
then as thei-bound increases the total time decreases (wheni = 14 the time is
0.23), but then asi increases further the time starts to increase again becausethe
pre-processing time of the mini-bucket heuristic outweighs the search time. The
same behavior can be observed in the case of dynamic mini-buckets as well.

Impact of the level of caching.Figure 8 compares the naive (AOBB-C+SMB(i,j))
and adaptive (AOBB-AC+SMB(i,j)) caching schemes, in terms of CPU time, on
4 grid networks from Table 4. In each test case we chose a relatively small mini-
bucketi-bound and varied the cache boundj (the X axis) from 2 to 20. We see
that adaptive caching improves significantly over the naivescheme especially for
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Fig. 9. Min-fill versus ypergraph partitioning heuristics. CPU time in seconds for solving
grid networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right side). The
header of each plot records the average induced width (w∗) and pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the inducedwidth and
pseudo tree depth for the min-fill heuristic.
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Fig. 10. Memory usage byAOBB-C+SMB(i) andAOBF-C+SMB(i) ongrid networks.

relatively smallj-bounds. This may be important because smallj-bounds mean re-
stricted space. At largej-bounds the two schemes are identical and approach the
full-caching scheme.

Impact of the pseudo tree.Since the hypergraph partitioning heuristic uses a non-
deterministic algorithm, the runtime of the AND/OR search algorithms guided by
the resulting pseudo trees may vary significantly from one run to the next. In Fig-
ure 9 we display the running time distribution ofAOBB-C+SMB(i) (left side of
the figure) andAOBF-C+SMB(i) (right side of the figure) using hypergraph based
pseudo trees. For each reportedi-bound, the corresponding data point and error bar
represent the average as well as the minimum and maximum running times obtained
over 20 independent runs. We also record the average inducedwidth and depth ob-
tained for the hypergraph pseudo trees (see the header of each plot in Figure 9).
We see that the hypergraph based pseudo trees, which have farsmaller depths, are
sometimes able to improve the performance ofAOBB-C+SMB(i), especially for
relatively smalli-bounds (e.g., 90-24-1). For largeri-bounds, the pre-compiled
mini-bucket heuristic benefits from the small induced widths obtained with the
min-fill ordering. Therefore,AOBB-C+SMB(i) using min-fill based pseudo trees
is generally faster. We also see that on averageAOBF-C+SMB(i) is faster when
it is guided by min-fill rather than hypergraph based pseudo trees. This verifies
our hypothesis that memory intensive algorithms exploringthe AND/OR graph are
more sensitive to the context size (which is smaller for min-fill orderings), rather
than the depth of the pseudo tree.

Memory usage of AND/OR graph search.Figure 10 displays the memory usage
of AOBB-C+SMB(i) andAOBF-C+SMB(i) on grids90-30-1 and90-38-1,
respectively. We see that the memory requirements of the depth-first algorithm are
significantly smaller than those of best-first search. This is becauseAOBF-C+SMB(i)
has to keep in memory the entire search space, unlikeAOBB-C+SMB(i)which can
save space by avoiding dead-caches for example. Moreover, the nodes cached by
AOBB-C+SMB(i) require far less memory because they only record the optimal
solution cost below them, whereas the nodes cached byAOBF-C+SMB(i) must
store, in addition, the lists of their children in the searchgraph. For these reasons,
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Fig. 11. A fragment of a belief network used in genetic linkage analysis.

we were able throughout the evaluation to run full caching with depth-first search.

8.2.3 Genetic Linkage Analysis

In human genetic linkage analysis [38], thehaplotypeis the sequence of alleles
at different loci inherited by an individual from one parent, and the two haplotypes
(maternal and paternal) of an individual constitute this individual’sgenotype. When
genotypes are measured by standard procedures, the result is a list of unordered
pairs of alleles, one pair for each locus. Themaximum likelihood haplotypeproblem
consists of finding a joint haplotype configuration for all members of the pedigree
which maximizes the probability of data.

The pedigree data can be represented as a belief network withthree types of random
variables:genetic locivariables which represent the genotypes of the individualsin
the pedigree (two genetic loci variables per individual perlocus, one for the paternal
allele and one for the maternal allele),phenotypevariables, andselectorvariables
which are auxiliary variables used to represent the gene flowin the pedigree. Fig-
ure 11 shows a fragment of a network that describes parents-child interactions in
a simple 2-loci analysis. The genetic loci variables of individual i at locusj are
denoted byLi,jp andLi,jm. VariablesXi,j, Si,jp andSi,jm denote the phenotype
variable, the paternal selector variable and the maternal selector variable of indi-
vidual i at locusj, respectively. The conditional probability tables that correspond
to the selector variables are parameterized by therecombination ratioθ [39]. The
remaining tables contain only deterministic information.It can be shown that given
the pedigree data, the haplotyping problem is equivalent tocomputing the Most
Probable Explanation (MPE) of the corresponding belief network (for more details
consult [39,40]).
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Table 6
CPU time and nodes visited for solvinggenetic linkage networksusing static mini-
bucket heuristics. Time limit 3 hours. Top part of the table shows results fori-bounds
between 6 and 14, while the bottom part showsi-bounds between 10 and 18.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

0.05 0.05 0.11 0.31 0.97

ped1 - - - - 1.14 7,997 0.73 3,911 1.31 2,704

(15, 61) 5.44 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156

(299, 5) 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119

0.12 0.45 5.38 60.97 out

ped38 - - - - - - - -

(17, 59) out 28.36 - - 8120.58 85,367,022 - - 3040.60 35,394,461

(582, 5) 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976

out 134.41 348,723 216.94 583,401 103.17 242,429

0.11 0.74 5.38 37.19 out

ped50 - - - - - - - -

(18, 58) out - - - - - 476.77 5,566,578 104.00 748,792

(479, 5) 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

0.42 2.33 11.33 274.75 out

ped23 - - - - 76.11 339,125 270.22 74,261

(27, 71) out 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308

(310, 5) 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613

out 15.33 58,180 14.36 12,987 out

0.67 5.16 21.53 58.59 out

ped37 - - - - - - - -

(21, 61) out 64.17 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

(1032, 5) 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

Tables 6 and 7 display the results obtained for 12 hard linkage analysis networks3

(we show 5 networks in Table 6 and 7 networks in Table 7). We report only on
search guided by static mini-bucket heuristics. The dynamic mini-bucket heuristics
performed very poorly on this domain because of their prohibitively high compu-
tational overhead at largei-bounds. For comparison, we include results obtained
with SUPERLINK 1.6. SUPERLINK is currently one the most efficient solvers for
genetic linkage analysis, is dedicated to this domain, usesa combination of vari-
able elimination and conditioning, and takes advantage of the determinism in the
network.

Tree versus graph AOBB.We observe thatAOBB-C+SMB(i) improves signifi-
cantly overAOBB+SMB(i), especially for relatively smalli-bounds for which the
heuristic estimates are less accurate. Onped37, for example,AOBB-C+SMB(10)

3 http://bioinfo.cs.technion.ac.il/superlink/
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Table 7
CPU time and nodes visited for solvinggenetic linkage networks. Time limit 3 hours.
Shown here are 7 linkage networks in addition to the 5 networks from Table 6.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree SamIam Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

0.51 1.42 4.59 12.87 19.30

ped18 - - - - - - - - 1515.43 1,388,791

(21, 119) 157.05 139.06 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689

(1184, 5) - - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972

out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027

1.42 5.11 37.53 410.96 out

ped20 - - - - - - - -

(24, 66) out 14.72 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195

(388, 5) 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646

out out out out

0.34 0.89 3.20 10.46 33.42

ped25 - - - - - - - - - -

(34, 89) out - - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541

(994, 5) - - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 236.88 1,529,180

out out out out out

0.42 0.83 1.78 5.75 21.30

ped30 - - - - - - - - - -

(23, 118) out 13095.83 - - - - - - 214.10 1,379,131 91.92 685,661

(1016, 5) 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436 30.48 66,144

out out out 30.39 72,798 27.94 18,795

0.58 2.31 7.84 33.44 112.83

ped33 - - - - - - - - - -

(37, 165) out - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215

(581, 5) 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 1373.90 10,570,695

out 140.61 407,387 out 74.86 134,068 out

0.52 2.32 8.41 33.15 81.27

ped39 - - - - - - - - - -

(23, 94) out 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280

(1272, 5) - - - - 968.03 7,880,928 61.20 313,496 93.19 83,714

out out 68.52 218,925 41.69 79,356 87.63 14,479

4.20 31.33 96.28 out out

ped42 - - - - - -

(25, 76) out 561.31 - - - - - -

(448, 5) - - - - 2364.67 22,595,247

out out 133.19 93,831

is 7 times faster thanAOBB+SMB(10) and expands about 14 times fewer nodes. As
thei-bound increases the diference betweenAOBB-C+SMB(i) andAOBB+SMB(i)
decreases, as we saw before. Notice that the OR Branch-and-Bound with caching
BB-C+SMB(i) was able to solve only 3 out of the 12 test instances (e.g., ped1,
ped23, ped18). The performance of SAM IAM was very poor and it was able to
solve only 2 instances, namelyped1 andped18.

AOBB vs. AOBF. As before, the overall best performing algorithm on this dataset
is best-firstAOBF-C+SMB(i), outperforming its competitors on 8 out of the 12
test cases. Onped42, for instance,AOBF-C+SMB(16) is 18 times faster than
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Fig. 12. CPU time and nodes visited for solving theped50 linkage network.

the depth-first Branch-and-BoundAOBB-C+SMB(16) and explores a search space
240 times smaller. In some test cases (e.g., ped1, ped23, ped30) the best-first
search algorithm was up to 3 orders of magnitude faster than SUPERLINK. Figure
12 displays the CPU time and number of nodes explored, as a function of the mini-
bucketi-bound, for theped50 instance. In this case,AOBB+SMB(i) could not
solve the problem instance fori ∈ {6, 8}, due to exceeding the time limit.

Impact of the pseudo tree.Figure 13 plots the running time distribution of the
depth-first and best-first search algorithmsAOBB-C+SMB(i) (left side of the fig-
ure) andAOBF-C+SMB(i) (right side of the figure), guided by hypergraph based
pseudo trees, over 20 independent runs. We see that both algorithms perform much
better when guided by hypergraph based pseudo trees, especially on harder in-
stances. For instance, on theped33 network,AOBB-C+SMB(16) using a hyper-
graph based pseudo tree was able to outperformAOBB-C+SMB(16) guided by a
min-fill tree by almost 2 orders of magnitude. Similarly,AOBF-C+SMB(i) with
hypergraph trees was able to solve the problem instance across all i-bounds, un-
like AOBB-C+SMB(i) with a min-fill tree which succeded only fori ∈ {14, 18}.
Notice that the induced width of this problem along the min-fill order is very large
(w∗ = 37) which causes the mini-bucket heuristics to be relatively weak as well as
a large number of dead caches.

Table 8 displays the results obtained for 6 additional linkage analysis networks us-
ing hypergraph partitioning based pseudo trees. We selected the hypergraph tree
having the smallest depth over 100 independent runs. To the best of our knowl-
edge, these networks were never before solved for the maximum likelihood hap-
lotype task. We see that the hypergraph pseudo trees offer the overall best perfor-
mance as well. This can be explained by the large induced width which in this
case renders most of the cache entries dead (see for instancethat the difference
betweenAOBB+SMB(i) andAOBB-C+SMB(i) is not too prominent). Therefore,
the AND/OR graph explored effectively is very close to a treeand the dominant
factor that impacts the search performance is then the depthof the guiding pseudo
tree, which is far smaller for hypergraph trees compared with min-fill based ones.
Notice also that best-first search could not solve any of these networks due to mem-
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Fig. 13. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
genetic linkage networkswith AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree depth
(h) obtained with the hypergraph partitioning heuristic. We also show the induced width and
pseudo tree depth for the min-fill heuristic.
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Table 8
Impact of the pseudo tree quality ongenetic linkage networks. Time limit 24 hours. We
show results for the hypergraph partitioning heuristic (left side) and the min-fill heuristic
(right side).

hypergraph pseudo tree min-fill pseuso tree

MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam (w*, h) AOBB+SMB(i) AOBB+SMB(i) (w*, h) AOBB+SMB(i) AOBB+SMB(i)

(n, d) Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=20 i=22 i=20 i=22

time nodes time nodes time nodes time nodes

ped7 25.26 164.49 117.03 out

(868, 4) out - - - - - -

- (36, 60) 88571.68 1,807,878,340 9395.17 195,845,851 (32, 133) - -

30504.84 285,084,124 3005.66 27,761,219 - -

out out out

ped9 67.93 300.06 76.31 out

(936, 7) out - - - - - -

- (35, 58) 11483.89 231,301,374 3982.69 72,844,362 (27, 130) 1515.50 15,825,340

8922.81 117,328,162 3292.30 40,251,723 1163.09 12,444,961

out out out

ped19 59.31 150.38 out out

(693, 5) out - - - -

- (35, 53) 98941.75 1,519,213,924 12530.00 174,000,317 (24, 122)

45075.31 466,748,365 8321.42 90,665,870

out out

ped34 42.21 209.51 out out

(923, 4) out - - - -

- (34, 60) 70504.72 1,453,705,377 13598.50 294,637,173 (32, 127)

67647.42 1,293,350,829 11719.28 220,199,927

out out

ped41 35.41 111.24 out out

(886, 5) out - - - -

- (36, 61) 6669.50 84,506,068 531.40 4,990,995 (33, 128)

3891.86 31,731,270 380.01 2,318,544

out out

ped44 32.92 140.81 57.88 344.68

(644, 4) out - - - - - - - -

- (31, 52) 8388.18 196,823,840 401.84 7,648,962 (26, 73) 127.42 1,114,641 385.47 668,737

3597.12 62,385,573 204.96 1,355,595 95.09 752,970 366.18 447,514

out out out out

ory issues. The AND/OR Branch-and-Bound algorithms with min-fill based pseudo
trees could only solve 2 of the test instances (e.g., ped9 andped44). This is be-
cause the induced width of these problem instances was smallenough and the mini-
bucket heuristics were relatively accurate to prune the search space substantially,
thus overcomming the increase in pseudo tree depth. One thing that these experi-
ments demonstrate is that the selection of the pseudo tree can have an enormous
impact if thei-bound is not large enough.

Impact of the level of caching.Figure 14 displays the CPU time for solving 4
linkage analysis networks from Tables 6 and 7 usingAOBB-C+SMB(i,j) (naive
caching) andAOBB-AC+SMB(i,j) (adaptive caching), respectively. In each test
case we varied the cache boundj (the X axis) from 2 to 20, and fixed the mini-
bucketi-bound to a relatively small value. We see again that adaptive caching is
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Fig. 14. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics ongenetic linkage networks. Shown is CPU time in seconds.

more powerful than the naive scheme especially, for relatively small j-bounds,
which require restricted space. As thej-bound increases, the two schemes approach
gradually full caching.

In the Appendix we provide additional empirical results over networks from the
UAI’06 Dataset (Section A.1) and circuit diagnosis networks (Section A.2). In the
following two subsections we look at the anytime behavior ofthe algorithms and at
the impact of determinism.

8.2.4 The Anytime Behavior of AND/OR Branch-and-Bound Search and the Im-
pact of Good Initial Bounds

As mentioned earlier, the virtue of AND/OR Branch-and-Bound search is that, un-
like best-first AND/OR search, it is an anytime algorithm. Namely, whenever in-
terrupted,AOBB-C outputs the best solution found far, which yields a lower bound
on the most probable explanation. On the other hand,AOBF-C outputs a complete
solution only upon termination. In this section we evaluatethe anytime behavior
of AOBB-C+SMB(i). We compare it against the state-of-the-art local search al-
gorithm for Bayesian MPE, calledGuided Local Search(GLS) first introduced in
[41], and improved more recently by [42].
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Fig. 15. Anytime behavior ofAOBB-C+SMB(i) onped25 andped37 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

GLS [43] is a penalty-based meta-heuristic, which works by augmenting the objec-
tive function of a local search algorithm (e.g. hill climbing) with penalties, to help
guide them out of local minima. GLS has been shown to be successful in solving
a number of practical real life problems, such as the traveling salesman problem,
radio link frequency assignment problem and vehicle routing. It was also applied to
solving the MPE in belief networks [41,42] as well as weighted MAX-SAT prob-
lems [44].

The AND/OR Branch-and-Bound algorithms assumed a trivial initial lower bound
(i.e., 0), which effectively guarantees that the MPE will be computed, however
it provides limited pruning. We therefore extendedAOBB-C+SMB(i) to exploit
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Fig. 16. Anytime behavior ofAOBB-C+SMB(i) onped42 andped50 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

a non-trivial initial lower bound computed by GLS. The algorithm is denoted by
AOBB-C+GLS+SMB(i). For reference, we also ran the OR version of the algo-
rithm, denoted byBB-C+GLS+SMB(i)

Figures 15 and 16 display the search trace of the OR and AND/ORalgorithms on 4
genetic linkage networks presented earlier. We chose the mini-bucketi-bound that
offered the best performance in Tables 6 and 7, respectively, and show the first 50
seconds of the search. We ran GLS for a fixed number of flips. We see that including
the GLS lower bound improves performance throughout. In allthese test case, the
initial lower bound was in fact the optimal solution (we did not plot the GLS run-
ning time because it was less than 1 second). Therefore,AOBB-C+GLS+SMB(i)
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Table 9
CPU time and nodes visited for solvinggenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limit 3 hours.

min-fill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

- - - - 1.14 7,997 0.73 3,911 1.31 2,704

ped1 5.44 8943.68 59,627,660 1367.98 9,013,771 3.84 1,798 4.05 2,524 4.75 2,077

(15, 61) 54.73 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494

(299, 5) 0.31 3.01 46,663 2.10 29,877 0.13 3,138 0.33 6,092 0.92 4,350

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119

- - - - - - - - out

ped38 out - - - - - - - -

(17, 59) 28.36 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976

(582, 5) 7.05 4410.70 32,599,034 780.46 4,487,470 1650.05 9,844,485 226.44 1,366,242

out 134.41 348,723 216.94 583,401 103.17 242,429

- - - - - - - - out

ped50 out - - - - - - 52.95 83,025

(18, 58) - 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302

(479, 5) 5.30* 3177.43 24,209,840 1610.33 13,299,343 67.85 400,698 32.67 15,865

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

- - - - 76.11 339,125 270.22 74,261 out

ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412

(27, 71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613

(310, 5) 3.94 196.68 1,720,633 7.56 73,082 10.58 20,329 274.26 60,424

out 15.33 58,180 14.36 12,987 out

- - - - - - - - out

ped37 out - - 2073.12 10,612,906 - - 3386.01 16,382,262

(21, 61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

(1032, 5) 8.97* 16.36 141,867 26.97 254,219 82.08 604,239 52.32 23,572

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

andBB-C+GLS+SMB(i)were able to output the optimal solution quite early in the
search, unlikeAOBB-C+SMB(i) andBB-C+SMB(i). For instance, on theped50
network,AOBB-C+GLS+SMB(12) andBB-C+GLS+SMB(12) found the opti-
mal solution within the first second of search.AOBB-C+SMB(12), on the other
hand, finds the optimal solution after 8 seconds, whereasBB-C+SMB(12) reaches
a flat (suboptimal) region after 18 seconds. In this case,AOBF-C+SMB(12) finds
the optimal solution after 25 seconds.

Tables 9 and 10 compare the OR and AND/OR search algorithms with and without
an initial lower bound, as complete algorithms. AlgorithmsAOBB-C+GLS+SMB(i)
andBB-C+GLS+SMB(i) do not include the GLS time, because GLS can be tuned
independently for each problem instance to minimize its running time, so we report
its time separately (as before, GLS ran for a fixed number of flips). The ”*” by the
GLS running time indicates that it found the optimal solution to the respective prob-
lem instance. We see thatBB-C+GLS+SMB(i) andAOBB-C+GLS+SMB(i) are
sometimes able to improve significantly overBB-C+SMB(i) andAOBB-C+SMB(i),
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Table 10
CPU time and nodes visited for solvinggenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limit 3 hours.

min-fill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

- - - - - - - - 1515.43 1,388,791

ped18 157.05 - - - - - - - - 1672.15 1,389,831

(21, 119) 139.06 - - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972

(1184, 5) 10.16 10780.40 107,804,665 170.14 1,824,835 37.64 396,961 11.66 118,170 10.58 2,720

out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027

- - - - - - - - out

ped20 out - - - - - - - -

(24, 66) 14.72 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646

(388, 5) 4.22 2079.43 18,611,778 667.66 6,419,317 567.20 4,812,068 682.03 2,653,400

out out out out

- - - - - - - - - -

ped25 out - - - - - - - - - -

(34, 89) - - - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 236.88 1,529,180

(994, 5) 11.03* - - 1644.87 12,631,282 864.09 6,676,061 245.79 1,788,621 239.08 1,529,588

out out out out out

- - - - - - - - - -

ped30 out - - - - - - - - - -

(23, 118) 13095.83 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436 30.48 66,144

(1016, 5) 11.00 10620.20 93,030,080 9296.01 82,552,786 - - 32.16 193,419 22.25 66,128

out out out 30.39 72,798 27.94 18,795

- - - - - - - - - -

ped33 out - - - - - - - - - -

(37, 165) - 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 1373.90 10,570,695

(581, 5) 6.86* 1550.76 11,528,022 320.06 2,434,582 1970.72 15,124,932 80.61 453,446 1518.24 10,970,922

out 140.61 407,387 out 74.86 134,068 out

- - - - - - - - - -

ped39 out - - - - - - - - - -

(23, 94) 322.14 - - - - 968.03 7,880,928 61.20 313,496 93.19 83,714

(1272, 5) 10.97* - - - - 518.04 6,473,615 59.14 313,340 81.24 61,291

out out 68.52 218,925 41.69 79,356 87.63 14,479

- - - - - - out out

ped42 out - - - - - -

(25, 76) 561.31 - - - - 2364.67 22,595,247

(448, 5) 4.25* - - - - 385.26 3,078,657

out out 133.19 93,831

especially at relatively smalli-bounds. For example, on theped37 linkage in-
stance,AOBB-C+GLS+SMB(12) achieves almost an order of magnitude speedup
overAOBB-C+SMB(12). Similarly,BB-C+GLS+SMB(12) finds the optimal so-
lution to ped37 in about 35 minutes, whereasBB-C+SMB(12) exceeds the 3
hour time limit.

In the Appendix we provide additional empirical results on anytime behavior and
impact of initial good lower bounds, over grid networks and UAI’06 networks (Sec-
tion A.3).

51



Table 11
CPU time and nodes visited for solvingdeterministic grid networks with static mini-
bucket heuristics. Number of flips for GLS was set to 100,000. Time limit 1 hour.

min-fill pseudo tree

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)

grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(w*, h) GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

90-24-1 out 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294 69.53 386,785

(33, 111) - - 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868

(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 5.45 6,891 23.87 39,175

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291

146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

90-26-1 out 32.67 230,030 53.11 360,612 3.58 11,620 11.95 40,075 22.02 1,858

(36, 113) 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310 22.00 1,894

(676, 40) 0.56 15.09 104,775 32.85 219,037 3.58 10,932 8.06 8,128 24.42 1,658

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435

652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,004

(43, 150) 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,540

(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 15.50 52,260 40.52 72,053

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800

- - - - - - - - 369.36 823,604

90-34-1 out - - - - - - - - 132.84 271,609

(45, 153) - - - - 1096.14 5,569,276 1772.51 5,516,888 294.11 630,406

(1154, 80) 1.31 - - - - 550.55 2,944,055 651.04 2,614,171 124.16 238,333

out out 243.63 596,978 270.88 667,013 71.19 67,611

969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473 85.74 142,589

(47, 163) 854.61 2,498,702 1822.71 3,792,826 212.63 647,089 164.43 484,815 109.77 211,740

(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072 85.50 140,581

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

8.2.5 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints
and general cost functions, it is beneficial to exploit the computational power of the
constraints explicitly via constraint propagation [45–48]. For Bayesian networks,
the hard constraints are represented by the zero probability tuples of the CPTs.
We note that the use of constraint propagation via directional resolution [49] or
generalized arc consistency has been explored in [45,46], in the context of variable
elimination algorithms where the constraints are also extracted based on the zero
probabilities in the network. The approach we take for handling the determinism in
Bayesian networks is based onunit resolutionfor Boolean Satisfiability (SAT). The
idea of using unit resolution during search for Bayesian networks was first explored
in [47]. A detailed description of the CNF encoding based on the zero probability
tuples is provided in [1].

We evaluated the AND/OR Branch-and-Bound algorithm with static mini-bucket
heuristics on selected classes of Bayesian networks containing deterministic con-
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ditional probability tables (i.e., zero probability tuples). The algorithm, denoted by
AOBB-C+SAT+SMB(i) exploits the determinism present in the networks by ap-
plying unit resolution over the CNF encoding of the zero-probability tuples, at each
node in the search tree. We used a unit resolution scheme similar to the one em-
ployed byzChaff, a the state-of-the-art SAT solver introduced by [50]. We also
consider the extension calledAOBB-C+SAT+GLS+SMB(i) which uses GLS to
compute the initial lower bound, in addition to the constraint propagation scheme.

Table 11 shows the results for 5 deterministic grid networksfrom Section 8.2.2.
These networks have a high degree of determinism encoded in their CPTs. Specifi-
cally, 90% of the probability tables are deterministic, containing only 0 and 1 prob-
ability tuples. We observe thatAOBB-C+SAT+SMB(i) improves significantly over
AOBB-C+SMB(i), especially at relatively smalli-bounds. On grid90-30-1, for
example,AOBB-C+SAT+SMB(12) is 6 times faster thanAOBB-C+SMB(12). As
the i-bound increases and the search space is pruned more effectively, the differ-
ence betweenAOBB-C+SMB(i) andAOBB-C+SAT+SMB(i) decreases because
the heuristics are strong enough to cut the search space significantly. The mini-
bucket heuristic already does some level of constraint propagation. When looking
at the impact of the initial lower bound onAOBB-C+SAT+SMB(i) we see that
AOBB-C+SAT+GLS+SMB(i) is sometimes able to improve even more. For ex-
ample, on the90-34-1 grid, AOBB-C+SAT+GLS+SMB(16) finds the optimal
solution in about 9 minutes (550.55 seconds) whereasAOBB-C+SAT+SMB(16)
exceeds the 1 hour time limit.

In the Appendix we provide additional empirical results on the impact of determin-
ism over circuit diagnosis networks (Section A.4). Next we move to the class of
Weighted CSPs.

8.3 Results for Empirical Evaluation of Weighted CSPs

In [1,2] we showed that the best performance on this domain was obtained by the
AND/OR Branch-and-Boundtreesearch algorithm with static mini-bucket heuris-
tics, at relatively largei-bounds, especially on non-binary WCSPs with relatively
small domain sizes (e.g., SPOT5 networks, ISCAS’89 circuits, Mastermind game
instances).AOBB+SMB(i) dominated all its competitors, including the classic OR
Branch-and-BoundBB+SMB(i) as well as the OR and AND/OR algorithms that
enforce EDAC during search, namelytoolbar and theAOEDAC family of al-
gorithms (AOEDAC+PVO, DVO+AOEDAC andAOEDAC+DSO, respectively). The
AND/OR Branch-and-Bound with dynamic mini-bucket heuristicsAOBB+DMB(i)
was shown to be competitive only for relatively smalli-bounds. In this section we
extend the evaluation to memory intensive depth-first and best-first search.

53



Table 12
CPU time in seconds and number of nodes visited for solving theSPOT5 benchmarks,
usingstatic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar

spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC

(n, k, c) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOEDAC+DSO

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.05 0.33 21.66 150.99 4.56 218,846

29 - - - - 6313.73 50,150,302 22.30 2,322 151.02 445 0.35 984

(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 151.02 481 545.43 7,837,447

(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 149.55 265 0.81 8,698

6.42 36,396 2.23 12,801 0.47 757 21.77 96 152.69 85 11.36 92,970

0.11 0.17 0.56 28.83 223.58 - -

42b - - - - 2159.26 9,598,763 145.77 684,109 224.11 3,426 9553.06 249,053,196

(18, 62) - - - - 1842.32 9,606,846 134.39 689,402 228.66 4,189 - -

(191, 4, 1341) - - - - 1804.76 9,410,729 116.98 584,838 226.58 2,335 - -

35.42 118,085 29.11 106,648 20.80 82,611 38.91 43,127 227.55 1,475 6825.40 27,698,614

0.02 0.03 0.11 1.24 1.24 0.31 21,939

54 664.48 5,715,457 2.06 17,787 0.38 2,289 1.27 236 1.27 236 0.18 779

(11, 33) 113.19 1,106,598 1.59 17,757 0.39 3,616 1.27 329 1.39 329 9.11 90,495

(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 1.24 120 0.06 688

0.41 2,714 0.11 631 0.16 312 0.69 68 1.41 68 0.75 6,614

0.01 0.02 0.09 1.11 3.97 151.11 6,215,135

404 - - - - - - 4336.37 32,723,215 1981.90 15,263,175 5.09 139,968

(19, 42) 430.99 3,969,398 151.99 1,373,846 14.83 144,535 1.44 3,273 4.11 367 152.81 1,984,747

(100, 4, 710) 174.09 1,396,321 51.88 529,002 2.55 23,565 1.16 598 4.11 232 12.09 88,079

1.45 7,251 1.20 6,399 1.02 5,140 1.22 576 4.27 184 1.74 14,844

0.01 0.09 0.33 8.37 35.39 - -

408b - - - - - - - - - - - -

(24, 59) - - - - - - 715.35 4,784,407 128.38 567,407 - -

(201, 4, 1847) - - - - 7507.10 54,826,929 75.08 408,619 48.00 61,986 - -

208.41 185,935 52.53 175,366 44.99 145,901 16.97 39,238 39.36 14,768 747.71 2,134,472

0.02 0.05 0.14 0.41 0.41 - -

503 - - - - - - 0.50 566 0.49 566 0.65 18,800

(9, 39) - - 435.26 5,102,299 421.10 4,990,898 0.44 641 0.44 641 - -

(144, 4, 639) - - 189.39 2,442,998 291.72 4,050,474 0.42 256 0.42 256 10005.00 44,495,545

5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 0.42 144 53.72 231,480

0.05 0.11 0.66 47.19 365.69 - -

505b - - - - - - - - - - 33.62 1,119,538

(16, 98) - - - - - - - - 395.49 143,371 - -

(240, 1721) - - - - - - 1180.48 8,905,473 375.57 16,020 - -

51.86 149,928 42.73 144,723 29.25 111,223 54.09 31,692 375.52 5,758 - -

8.3.1 Earth Observing Satellites

SPOT5 benchmark contains a collection of large real scheduling problems for the
daily management of Earth observing satellites [17]. They can be easily formulated
as WCSPs with binary and ternary constraints, as described in [1,3].

Tables 12 and 13 show detailed results on experiments with 7 SPOT5 networks
using min-fill pseudo trees, as well as static and dynamic mini-bucket heuristics.
The networks42b, 408b and505b are sub-networks of the original ones and
contain only binary constraints.
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Table 13
CPU time in seconds and number of nodes visited for solving theSPOT5 benchmarks,
usingdynamic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

spot5 BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, k, c) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

29 44.24 11,637 125.72 9,417 54.86 354 627.30 320 1647.82 320

(14, 42) 65.24 14,438 52.92 11,850 121.83 364 627.29 330 1644.02 330

(83, 4, 476) 56.58 6,017 53.06 4,638 122.17 170 636.16 136 1794.60 136

7.25 942 21.83 537 38.83 114 308.71 83 983.80 83

42b - - - - - - - - - -

(18, 62) - - - - - - - - - -

(191, 4, 1341) - - - - - - - - - -

1455.62 101,453 - - - - 6002.69 212 - -

54 886.51 118,219 32.59 938 24.97 236 320.81 236 321.15 236

(11, 33) 202.14 69,362 26.73 2,188 22.19 329 271.81 329 271.55 329

(68, 4, 283) 84.27 15,214 8.80 357 10.86 120 137.39 120 137.75 120

4.16 1,056 3.66 163 5.95 68 77.78 68 78.19 68

404 - - - - 4895.25 78,692 3459.31 3,008 473.81 165

(19, 42) 240.36 156,338 257.20 39,144 199.67 5,612 563.02 1,327 287.53 395

(100, 4, 710) 65.52 20,457 98.83 6,152 99.78 952 320.49 286 171.02 155

23.41 4,928 65.80 2,946 101.30 847 351.37 291 217.45 106

408b - - - - - - - - - -

(24, 59) - - - - - - - - - -

(201, 4, 1847) - - - - - - - - - -

655.41 70,655 2447.91 69,434 - - - - - -

503 - - - - - - 246.65 566 246.65 566

(9, 39) - - - - - - 64.95 641 64.95 641

(144, 4, 639) - - - - - - 49.95 256 49.95 256

78.69 9,143 324.09 8,175 1025.40 5,984 25.14 144 25.14 144

505b - - - - - - - - - -

(16, 98) - - - - - - - - - -

(240, 1721) - - - - - - - - - -

681.40 33,969 2766.08 28,157 3653.66 12,455 - - - -

Tree vs. graph AOBB.We notice again the benefit of using caching within depth-
first AND/OR Branch-and-Bound search. As usual, the differences in running time
and number of nodes visited, betweenAOBB-C+SMB(i) andAOBB+SMB(i) are
more prominent at relatively smalli-bounds. For example, on the408b network,
AOBB-C+SMB(12) outperformsAOBB+SMB(12) by 1 order of magnitude in
terms of both running time and size of the search space explored. As we saw before
for Bayesian networks, the impact of caching when using dynamic mini-bucket
heuristics (Table 13) is not that pronounced as in the staticcase, acrossi-bounds.
Notice thattoolbar andDVO+AOEDAC (rightmost column in Table 12) are able
to solve relatively efficiently only the first 3 test instances. On the other hand,
toolbar-BTD fails only on the408b instance and is overall quite competitive.

AOBB vs. AOBF. When comparing the best-first against the depth-first AND/OR
search algorithms we observe again here thatAOBF-C+SMB(i) improves signifi-
cantly (up to several orders of magnitude) in terms of both CPUtime and number
of nodes visited, especially for relatively smalli-bounds. For example, on505b,
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Fig. 17. Comparison of the impact of static and dynamic mini-bucket heuristics on the404
SPOT5 network from Tables 12 and 13. We show CPU time (top) and number of nodes
(bottom).

one of the hardest instances,AOBF-C+SMB(8) finds the optimal solution in less
than 30 seconds, whereasAOBB-C+SMB(8) exceeds the 3 hour time limit.

Static vs. dynamic mini-bucket heuristics.Figure 17 displays the running time
and number of nodes, as a function of the mini-bucketi-bound, on the404 net-
work (i.e., corresponding to the fourth horizontal block from Tables 12 and 13,
respectively). We see that the power of the dynamic mini-bucket heuristics is again
more prominent for smalli-bounds (e.g., i = 2), for depth-first search. At larger

56



Fig. 18. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
SPOT5 networks withAOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right side).
The header of each plot records the average induced width (w∗) and pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the inducedwidth and
pseudo tree depth for the min-fill heuristic.
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i-bounds, the static mini-bucket heuristics are cost effective. For instance, the dif-
ference in running time betweenAOBB-C+SMB(10) andAOBB-C+DMB(10) is
about 2 orders of magnitude. Notice that in this case,AOBF-C+SMB(i) outper-
formsAOBF-C+DMB(i) across all reportedi-bounds.

Impact of the pseudo tree.In Figure 18 we show the running time distribution of
the algorithms using hypergraph based pseudo trees, over 20independent runs. We
see again that the hypergraph based pseudo trees are sometimes able to improve the
performance of Branch-and-Bound search, especially for relatively smalli-bounds
(e.g., 404, 503) for which the heuristic estimates are less accurate. For best-first
search however, the min-fill pseudo trees offer the overall best performance.

8.3.2 ISCAS’89 Benchmark Circuits

ISCAS’89 circuits are a common benchmark used in formal verification and diag-
nosis. For our purpose, we converted each of these circuits into a non-binary WCSP
instance by removing flip-flops and buffers in a standard way,creating hard con-
straints for gates and uniform unary cost functions for inputs. The penalty costs
were distributed uniformly randomly between 1 and 10, as described in [1].

Tables 14 and 15 report the results for experiments with 10 circuits using static and
dynamic mini-bucket heuristics, as well as min-fill based pseudo trees.

Tree vs. graph AOBB.When comparing the tree versus the graph AND/OR Branch-
and-Bound search algorithms, we see again the same benefit of caching when using
pre-compiled mini-bucket heuristics (e.g., sees1238 circuit). As before, the difer-
ence between the tree and graph AND/OR algorithms is not too prominent when
using dynamic mini-bucket heuristics (Table 15). The performance oftoolbar
that is designed specifically for the WCSP domain was very poor on this dataset
and it was not able to solve the any of the problem instances within the 1 hour
time limit. On the other hand,toolbar-BTD, which traverses an AND/OR search
graph, is more competitive on this dataset and solves 6 out ofthe 10 test instances.

AOBB vs. AOBF. When comparing the depth-first versus the best-first AND/OR
search algorithms (Tables 14 and 15), we see again thatAOBF-C+SMB(i) outper-
forms significantlyAOBB-C+SMB(i), especially for relatively smalli-bounds. For
instance, on thes1196 circuit,AOBF-C+SMB(10) is 2 orders of magnitude faster
thanAOBB-C+SMB(10). A similar behavior can be observed when using dynamic
mini-bucket heuristics. For example, on thes1238 circuit, AOBF-C+DMB(8)
outperformsAOBB-C+DMB(8) by one order of magnitude in terms of both run-
ning time and size of the search space explored. Overall,AOBF-C+SMB(i) is the
best performing algorithm on this dataset.

Static vs. dynamic mini-bucket heuristics.Figure 19 plots the performance as a
function of the mini-bucketi-bound, on thec880 network from Tables 14 and 15.
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Table 14
CPU time in seconds and number of nodes visited for solvingISCAS’89 circuits, using
static mini-bucket heuristicsand min-fill based pseudo trees. Time limit 1 hour.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD

iscas AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

0.08 0.09 0.14 0.22 0.59

c432 - - - - 9.266 52,778 9.172 52,240 1.203 1,738 - -

(27, 45) 2010.53 23,355,897 148.39 1,713,265 5.94 76,346 5.84 75,420 0.70 1,958 - -

(432, 2) 422.08 2,945,230 40.91 337,574 0.89 6,254 0.89 6,010 0.64 914

39.33 196,892 0.52 2,154 0.31 1,007 0.38 847 0.67 445

0.08 0.08 0.14 0.28 0.67

c499 - - - - 1.53 4,495 6.20 35,314 1.62 3,350 - -

(23, 55) 96.46 1,265,425 39.65 526,517 1.42 18,851 37.26 486,656 2.16 22,065 100.96 1,203,734

(499, 2) 19.28 99,906 7.36 40,285 0.47 2,401 5.83 34,708 1.10 3,260

3.91 14,049 2.45 8,816 0.34 1,032 2.52 8,755 1.11 1,936

0.16 0.19 0.22 0.45 1.05

c880 - - - - - - - - 1173.93 4,792,550 - -

(27, 67) 1698.08 19,992,512 1316.73 15,247,946 505.75 5,835,825 1134.61 13,568,696 245.06 2,837,010 - -

(881, 2) 100.66 516,056 91.66 446,893 31.06 169,138 59.35 316,124 14.78 78,268

1.36 4,454 0.91 2,792 0.81 2,231 1.19 2,862 1.44 1,589

0.02 0.03 0.06 0.14 0.31

s386 0.33 2,015 0.33 2,281 0.30 1,734 0.31 1,191 0.47 1,191 - -

(19, 44) 0.14 2,073 0.33 4,867 0.22 2,699 0.22 1,420 0.37 1,420 0.19 738

(172, 2) 0.06 592 0.17 1,334 0.12 755 0.16 446 0.33 446

0.05 187 0.08 304 0.08 203 0.16 172 0.33 172

0.13 0.17 0.30 0.73 2.20

s935 - - - - - - - - - - - -

(66, 101) 2559.30 21,438,706 342.80 3,074,516 - - 41.34 348,699 7.86 51,441 1.51 11,368

(441, 2) 1285.07 6,623,608 143.53 763,933 - - 22.28 128,372 4.80 15,010

6.16 25,493 1.22 4,087 1.19 3,319 1.22 2,216 2.42 883

0.16 0.19 0.38 0.94 2.99

s1196 - - - - - - - - - - - -

(54, 97) - - 1347.95 12,392,442 - - 1949.37 15,775,180 384.20 3,318,953 376.35 1,276,514

(562, 2) 3347.38 13,554,137 503.30 2,425,152 2299.72 11,488,366 734.66 3,524,780 149.81 793,417

22.67 72,075 2.89 9,336 13.02 40,210 7.27 21,989 3.56 2,090

0.16 0.22 0.38 0.92 3.20

s1238 - - - - - - - - - - - -

(59, 94) - - - - 1722.53 18,302,873 1394.86 14,213,319 38.08 360,788 - -

(541, 2) 1897.37 8,386,634 1682.99 7,431,223 281.05 1,350,933 248.27 1,220,658 12.64 59,635

34.09 137,960 29.41 111,205 12.31 53,095 6.64 26,101 4.63 7,142

0.12 0.14 0.17 0.31 0.69

s1423 - - - - - - - - 4.58 7,382 - -

(19, 44) 71.63 648,520 25.58 228,634 7.56 68,102 7.92 70,043 10.03 87,483 - -

(749, 2) 7.61 37,244 2.75 11,423 1.48 7,164 1.39 5,868 1.34 3,787

1.16 3,873 0.70 2,193 0.53 1,683 0.69 1,663 1.00 1,317

0.16 0.24 0.41 1.05 3.45

s1488 - - - - 10.75 23,620 13.75 25,420 13.64 16,834 - -

(47, 67) 6.67 50,613 46.83 430,141 4.00 29,729 5.19 33,827 5.20 17,904 1.80 9,315

(667, 2) 3.33 15,998 13.14 45,560 2.22 9,337 3.11 10,640 4.00 3,378

0.36 778 0.41 724 0.56 688 1.22 710 3.61 710

0.19 0.25 0.45 1.16 3.58

s1494 - - 191.36 366,822 52.47 140,792 19.86 44,190 20.23 38,034 - -

(48, 69) 132.62 833,720 17.70 455,131 376.65 3,207,718 15.49 83,318 18.47 124,765 2.41 12,122

(661, 2) 62.87 127,934 5.64 17,279 27.64 80,895 6.92 23,131 9.02 20,004

1.44 5,694 0.59 1,472 0.95 2,311 1.50 1,476 3.81 985
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Table 15
CPU time in seconds and number of nodes visited for solvingISCAS’89 circuits, using
dynamic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 1 hour.

min-fill pseudo tree

BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

iscas AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, d) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

c432 403.44 33,506 191.69 14,303 13.56 1,026 8.86 627 25.53 1,014

(27, 45) 45.59 34,904 25.83 16,482 6.94 1,070 4.55 692 18.44 1,067

(432, 2) 35.19 3,861 20.69 2,302 6.69 860 4.53 627 18.38 773

1.53 448 2.28 444 3.02 434 4.92 432 16.64 440

c499 40.99 3,502 31.85 3,102 9.91 987 42.66 2,848 64.72 1,664

(23, 55) 26.13 13,529 14.44 6,101 4.33 1,002 25.91 3,353 55.08 1,736

(499, 2) 24.44 2,485 13.42 1,726 4.28 742 25.25 1,251 56.14 963

1.39 931 2.25 579 3.73 541 9.08 499 26.76 509

c880 - - - - 547.35 18,112 648.52 19,546 851.63 17,125

(27, 67) 1078.04 796,699 762.16 569,471 85.64 32,748 170.55 36,187 411.42 20,357

(881, 2) 786.49 31,788 560.80 16,546 68.36 2,486 153.36 2,736 391.47 2,405

8.77 1,378 9.94 1,304 7.28 956 16.83 958 43.94 894

s386 2.58 1,191 2.91 1,191 3.41 1,191 4.28 1,191 5.97 1,191

(19, 44) 0.81 1,420 1.14 1,420 1.61 1,420 2.52 1,420 4.19 1,420

(172, 2) 0.69 446 1.02 446 1.53 446 2.44 446 4.05 446

0.30 172 0.50 172 0.86 172 1.53 172 2.89 172

s935 49.27 6,217 264.99 9,028 301.39 7,842 957.57 8,080 685.65 6,389

(66, 101) 18.27 7,400 234.47 10,250 267.02 9,164 915.57 11,164 653.32 8,377

(441, 2) 16.55 1,568 228.71 3,682 263.58 2,279 903.12 2,528 637.05 1,527

5.47 479 23.87 553 27.19 454 140.51 490 243.98 441

s1196 233.39 18,040 335.50 15,525 670.04 13,677 1362.32 11,939 2938.12 10,988

(54, 97) 61.64 21,849 114.16 17,524 246.02 15,443 921.08 13,687 2556.58 12,419

(562, 2) 50.80 3,787 97.53 3,160 217.97 2,888 857.35 2,772 2393.16 2,413

6.80 688 11.58 586 32.11 635 102.45 632 320.50 584

s1238 784.04 34,905 521.27 15,685 1395.39 17,852 2021.31 11,264 - -

(59, 94) 266.45 39,493 188.83 21,252 566.96 20,945 913.24 13,857 - -

(541, 2) 242.16 8,792 174.80 4,265 544.35 4,511 887.65 3,078 - -

18.69 827 22.47 666 57.59 591 192.10 632 1109.43 706

s1423 - - 71.39 3,629 134.36 8,132 62.39 3,045 87.06 3,815

(19, 44) 38.36 26,772 35.02 17,801 36.19 19,719 22.27 3,513 36.83 4,323

(749, 2) 28.97 3,078 28.64 2,492 30.31 2,361 22.08 1,477 36.19 1,456

5.97 1,191 6.25 1,141 9.48 1,126 12.39 762 23.30 754

s1488 146.03 14,365 139.83 12,475 181.58 12,748 306.35 12,748 730.54 12,748

(47, 67) 20.64 15,064 31.34 13,279 67.78 13,762 193.88 13,762 617.33 13,762

(667, 2) 18.33 2,824 29.20 2,634 65.34 2,576 190.94 2,576 614.10 2,576

2.86 670 5.61 668 13.80 667 41.81 667 141.00 667

s1494 276.49 23,931 267.91 21,032 246.30 14,898 228.83 9,465 841.61 9,498

(48, 69) 71.52 25,104 84.92 22,082 112.49 15,698 151.00 9,706 761.02 9,913

(661, 2) 66.25 4,794 78.97 4,018 110.36 3,059 149.30 2,386 753.68 1,959

10.42 758 9.88 679 20.38 667 58.75 666 189.33 665

Focusing for example onAOBF-C+SMB(i) we notice again the U-shaped curve
formed by the running time.

Impact of the level of caching.Figure 20 displays the CPU time, as a function of
the cache boundj, on 4 ISCAS’89 networks from Tables 14 usingAOBB-C+SMB(i,
j) (naive caching) andAOBB-AC+SMB(i,j) (adaptive caching), respectively.
The spectrum of results is similar to what we observed before. Namely, adaptive
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Fig. 19. Comparison of the impact of static and dynamic mini-bucket heuristics on the
c880 ISCAS’89 network from Tables 14 and 15. We show CPU time (top) and number
of nodes (bottom).

caching is more powerful than naive caching at smallerj bounds. As the cache
bound increases, the two schemes approach gradually full caching. Notice that in-
stances1196 and1488 have induced widths far larger than the maximum reported
j-bound, and therefore the caching schemes will become identical whenj is closer
to the induced width.

Impact of the pseudo tree.The running time distribution over 20 independent
runs ofAOBB-C+SMB(i) andAOBF-C+SMB(i), using hypergraph based pseudo
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Fig. 20. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics onISCAS’89 circuits. Shown is CPU time in seconds.

trees, is displayed in Figure 21. We observe again that, in some cases, the hyper-
graph trees are able to improve significantly the performance of Branch-and-Bound
as well as best-first search (e.g., c880, s1238).

8.3.3 Mastermind Game Instances

Each of the Mastermind networks is a ground instance of a relational Bayesian
network that models differing sizes of the popular game of Mastermind. These net-
works were produced by the PRIMULA System4 and used in experimental results
from [51]. For our purpose, we converted these networks intoequivalent WCSP in-
stances by taking the negative log probability of each conditional probability table
entry. The resulting WCSP instances are quite large with the number of bi-valued
variablesn ranging between 1220 and 3692, and containingn unary and ternary
constraints.

Table 16 shows the results for experiments with 6 game instances of increasing
difficulty. The performance of the AND/OR algorithms with dynamic mini-buckets
was quite poor in this case due to prohibitively high computational overhead at
largei-bounds and is therefore not shown.

4 http://www.cs.auc.dk/jaeger/Primula
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Fig. 21. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solv-
ing ISCAS’89 networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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Table 16
CPU time and number of nodes visited for solvingMastermind game instances, us-
ing static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.
toolbar andtoolbar-BTD were not able to solve any of the test instances within
the time limit. The top part of the table shows the results fori-bounds between 8 and 18,
while the bottom part showsi-bounds between 12 and 22.

min-fill pseudo trees

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

(n, r, k) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes

0.30 0.34 0.44 0.80 2.00 5.31

mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980

(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153

(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031

0.72 1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220

0.75 0.83 1.02 1.75 4.38 15.77

mm-03-08-04 - - - - - - - - - - - -

(33, 87) 92.64 150,642 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870

(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376

10.53 9,693 10.88 9,143 10.06 8,925 3.89 2,928 9.08 4,855 19.52 4,266

0.34 0.41 0.51 0.91 2.44 7.83

mm-04-08-03 - - 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881

(26, 72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570

(1418, 3, 2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444

0.94 1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450

i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes

1.36 2.08 4.86 16.53 65.19 246.45

mm-04-08-04 - - - - - - - - - - - -

(39, 103) 494.50 744,993 270.60 447,464 506.74 798,507 80.86 107,463 206.58 242,865 280.07 62,964

(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 253.25 11,650

38.55 33,069 29.19 26,729 44.95 38,989 20.64 3,957 74.67 8,716 250.00 3,491

2.34 8.52 8.31 24.94 84.52 out

mm-03-08-05 - - - - - - - - - -

(41, 111) - - - - - - 1084.48 1,122,008 1283.04 1,185,327

(3692, 3, 2) - - - - - - 117.39 55,033 282.35 86,588

out out 473.07 199,725 36.99 8,297 131.88 21,950

1.64 3.09 7.55 21.08 77.81 out

mm-10-08-03 - - - - - - - - - -

(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112

(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362

4.80 3,705 8.16 4,501 11.17 3,622 24.67 3,619 81.52 3,573

Tree vs. graph AOBB.We see again that using caching improves considerably the
performance of AND/OR Branch-and-Bound search (e.g., seemm-03-08-05).
We also note thattoolbar andtoolbar-BTD were not able to solve any of
these instances within the time limit.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR search,
we see thatAOBF-C+SMB(i) offers the overall best performance on this do-
main as well. On themm-03-08-05 instance, for example,AOBF-C+SMB(18)
is about 3 times faster thanAOBB-C+SMB(18) and about 30 times faster than
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Fig. 22. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics onMastermind networks. Shown is CPU time in seconds.

AOBB+SMB(18).

Impact of the level of caching.Figure 22 illustrates the CPU time, as a function
of the cache boundj, on 4 problem instances from Table 16. We notice again the
superiority of adaptive caching at relatively smallj-bounds.

Impact of the pseudo tree.The running time distribution ofAOBB-C+SMB(i)
andAOBF-C+SMB(i) guided by hypergraph pseudo trees over 20 independent
runs is displayed in Figure 23. The hypergraph trees are sometimes able to im-
prove slightly the performance of AND/OR Branch-and-Bound, at relatively small
i-bounds (e.g., mm-04-08-04). For best-first search however, the min-fill based
pseudo trees offer the best performance.

Memory usage of AND/OR graph search.In Figure 24 we show again the signif-
icant memory requirements of best-first AND/OR search compared with those of
the depth-first AND/OR Branch-and-Bound search with full caching.
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Fig. 23. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
Mastermind networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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Fig. 24. Memory usage of theAOBB-C+SMB(i) andAOBF-C+SMB(i) algorithms on the
Mastermind networks from Table 16.

9 Related Work

The idea of exploiting structural properties of the problemin order to enhance the
performance of search algorithms in constraint satisfaction is not new. Freuder and
Quinn [24] introduced the concept of pseudo tree arrangement of a constraint graph
as a way of capturing independencies between subsets of variables. Subsequently,
pseudo tree searchis conducted over a pseudo tree arrangement of the problem
which allows the detection of independent subproblems thatare solved separately.

More recently, [52] extended pseudo tree search [24] to optimization tasks in or-
der to boost the Russian Doll search [53] for solving WeightedCSPs. Dechter’s
graph-based back-jumping algorithm [54] uses a depth-first(DFS) spanning tree
to extract knowledge about dependencies in the graph. The notion of DFS-based
search was also used by [55] for a distributed constraint satisfaction algorithm. Ba-
yardo and Miranker [25] reformulated the pseudo tree searchalgorithm in terms of
back-jumping and showed that the depth of a pseudo-tree arrangement is always
within a logarithmic factor off the induced width of the graph.

Recursive Conditioning(RC) [5] is based on the divide and conquer paradigm.
Rather than instantiating variables to obtain a tree structured network like the cycle
cutset scheme, RC instantiates variables with the purpose ofbreaking the network
into independent subproblems, on which it can recurse usingthe same technique.
The computation is driven by a data-structure calleddtree, which is a full binary
tree, the leaves of which correspond to the network CPTs. It can be shown that RC
explores an AND/OR space [4]. A pseudo tree can be generated from the static
ordering of RC dictated by the dtree. This ensures that whenever RC splits the
problem into independent subproblems, the same happens in the AND/OR space.

Backtracking with Tree-Decomposition(BTD) [7] is a memory intensive method
for solving constraint satisfaction and optimization problems which combines search
techniques with the notion of tree decomposition. This mixed approach can be
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viewed as searching an AND/OR search space whose backbone pseudo tree is de-
fined by and structured along the tree decomposition. What is defined in [7] as
structural goods, that is parts of the search space that would not be visited again
as soon as their consistency (or optimal value) is known, corresponds precisely to
the decomposition of the AND/OR space at the level of AND nodes, which root
independent subproblems.

Value Elimination[6] is a recently developed algorithm for Bayesian inference. It
was already explained in [6] that, under static variable ordering, there is a strong
relation between Value Elimination and Variable Elimination. Given a static order-
ing d for Value Elimination, it can be shown that it actually traverses an AND/OR
space [4]. The pseudo tree underlying the AND/OR search graph traversal by Value
Elimination can be constructed as the bucket tree in reversedd. However, the traver-
sal of the AND/OR space will be controlled byd, advancing the frontier in a hybrid
depth or breadth first manner.

10 Summary and Conclusion

The paper continues to investigate the impact of the AND/OR search spaces per-
spective to solving general constraint optimization problems in graphical models.
In contrast to the traditional OR space, the AND/OR search space is sensitive to
problem decomposition. The size of the AND/OR search tree can be bounded ex-
ponentially by the depth of its guiding pseudo tree. This implies exponential time
savings for any linear space search algorithms traversing the AND/OR search tree,
in particular AND/OR Branch-and-Bound search, as we showed in[1–3]. Specif-
ically, if the graphical model has treewidthw∗, the depth of the pseudo tree is
O(w∗ · logn). The AND/OR search tree can be extended into a graph by merg-
ing identical subtrees using graph information only. The size of the context min-
imal AND/OR search graph is exponential in the treewidth while the size of the
context minimal OR search graph is exponential in the pathwidth. Since for some
graphs the difference between treewidth and pathwidth is substantial (e.g., balanced
pseudo trees) the AND/OR representation implies substantial time and space sav-
ings for memory intensive algorithms traversing the AND/ORgraph. Searching the
AND/OR search graph can be implemented by goods caching during search.

We therefore extended the AND/OR Branch-and-Bound algorithmto traversing an
AND/OR search graph rather than an AND/OR search tree by equipping it with an
efficient caching mechanism. We investigated two flexible context-based caching
schemes that can adapt to the current memory restrictions. Since best-first search
strategies are known to be superior to depth-first ones when memory is utilized,
we also introduced a best-first AND/OR search algorithm thattraverses the context
minimal AND/OR search graph.
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All these algorithms can be guided by any heuristic function. We investigated ex-
tensively the mini-bucket heuristics introduced earlier [9] and shown to be effective
in the context of OR search trees [9]. The mini-bucket heuristics can be either pre-
compiled (static mini-buckets) or generated dynamically during search at each node
in the search space (dynamic mini-buckets). They are parameterized by the Mini-
Bucketi-bound which allows for a controllable trade-off between heuristic strength
and computational overhead.

We focused our empirical evaluation on two common optimization problems in
graphical models: finding the MPE in Bayesian networks and solving WCSPs. Our
results demonstrated conclusively that the depth-first andbest-first memory inten-
sive AND/OR search algorithms guided by mini-bucket heuristics improve dra-
matically over traditional memory intensive OR search as well as over AND/OR
Branch-and-Bound algorithms without caching. We summarize next the most im-
portant aspects reflecting the better performance of AND/ORgraph search, such as
the impact of the level of cachin, the mini-bucketi-bound, constraint propagation,
informed initial upper bounds and the quality of the guidingpseudo trees.

• Impact of the level of caching.We proposed two parameterized context-based
caching schemes that can adapt to the memory limitations. The naive caching
records contexts with size smaller or equal to the cache bound j. The adaptive
caching saves also nodes whose context size is beyondj, based on adjusted con-
texts. Our results showed that for smallj-bounds, adaptive caching is more pow-
erfull than the naive scheme (e.g., grid networks from Figure 8, genetic linkage
networks from Figure 14, ISCAS’89 circuits from Figure 20). As more space
becomes available and thej-bound increases, the two schemes gradually ap-
proach full caching. The savings in number of nodes due to caching are more
pronounced at relatively smalli-bounds of the mini-bucket heuristics. When the
heuristics are strong enough to prune the search space substantially (i.e., large
i-bounds), the context minimal graph traversed by AND/OR Branch-and-Bound
is very close to a tree and the effect of caching is diminished.

• Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket heuristics with relatively large
i-bounds are cost effective (e.g., genetic linkage analysis networks from Tables
6 and 7, Mastermind game instances from Table 16). However, if the space is
severly restricted, the dynamic mini-bucket heuristics appear to be the preferred
choice, especially for relatively smalli-bounds (e.g., ISCAS’89 networks from
Tables 14). This is because these heuristics are far more accurate for the same
i-bound than the pre-compiled version.

• Impact of determinism. When the graphical model contains both determinis-
tic information (hard constraints) as well as general cost functions, we demon-
strated that it is beneficial to exploit the computational power of the constraints
via constraint propagation. Our experiments on selected classes of deterministic
Bayesian networks showed that enforcing unit resolution over the CNF encoding
of the determinism present in the network was able in some cases to render the
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search space almost backtrack-free (e.g., ISCAS’89 networks from Table A.8).
This caused in some cases a tremendous reduction in running time for the cor-
responding AND/OR Branch-and-Bound algorithms (e.g., see for example the
s953 network from Table A.8).

• Impact of good initial upper bounds. The AND/OR Branch-and-Bound algo-
rithm assumed a trivial initial upper bound (resp. initial lower bound for max-
imization tasks). We incorporated a more informed upper bound (resp. lower
bound for maximization), obtained by first solving the initial problem via local
search. Our results showed that in some cases it causes a tremendeous speed-up
over the initial approach (see for example the grid network from Table A.5, and
the ISCAS’89 networks from Table A.8).

• Impact of pseudo tree quality.The performance of the depth-first and best-first
memory intensive AND/OR search algorithms is influenced significantly by the
quality of the guiding pseudo tree. We investigated two heuristics for generating
small induced width/depth pseudo trees. The min-fill based pseudo trees usually
have smaller induced width but significantly larger depth, whereas the hyper-
graph partitioning heuristic produces much smaller depth trees but with larger
induced widths. Our experiments demonstrated that when theinduced width is
small enough, which is typically the case for min-fill based pseudo trees, the
strength of the mini-bucket heuristics compiled along these orderings determines
the performance of the AND/OR search algorithms (e.g., SPOT5 networks from
Figure 18). However, when the graph is highly connected, therelatively large
induced width causes the AND/OR algorithms to traverse a search space that
is very close to a tree and, therefore, the hypergraph partitioning based pseudo
trees, which have far smaller depths than the min-fill based ones, improve per-
formance substantially (e.g., genetic linkage networks from Figure 13 and Table
8). This is because for tree search the depth of the pseudo tree matters more than
the induced width.

Our best-first and depth-first AND/OR graph search approaches leave room for fu-
ture improvements, which are likely to make it more efficientin practice.AOBF-C
may be improved in a variety of ways to render it more practical in special situa-
tions. First, rather than recompute a new estimated best partial solution tree after
every node expansion, it is possible instead to expand one ormore leaf nodes and
some number of their descendants all at once, and then recompute an estimated
best partial solution tree. This strategy can reduce the computational overhead of
frequent bottom-up operations but incurs the risk that somenode expansions may
not be on the best solution tree.

As mentioned earlier, the space required byAOBF-C can be enormous, due to the
fact that all nodes generated by the algorithm have to be saved prior to termina-
tion. Therefore, a memory bounding strategy may also be usedfor context minimal
AND/OR graphs, as previously suggested in [23,29,56,57]. To employ it, the algo-
rithm periodically reclaims needed storage space by discarding some portions of
the explicated AND/OR search graph. For example, it is possible to determine a
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few of those partial solution trees within the entire searchgraph having thelargest
estimated costs. These can be discarded periodically, withthe risk of discarding
one that might turn out to be the top of an optimal solution tree.
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Table A.1
CPU time and nodes visited for solvingUAI’06 networks . Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, k) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes

5.53 10.31 17.45 38.36 62.11

BN 31 - - - - - - - - - -

(46, 160) out 1026.73 4,741,037 1394.90 7,895,304 664.27 3,988,933 680.61 4,293,760 131.17 380,470

(1156, 2) 411.33 1,445,200 486.47 2,131,977 209.80 831,431 210.81 889,782 81.61 94,507

140.41 293,445 126.23 292,293 85.69 142,650 86.00 114,046 73.14 25,392

7.39 13.34 24.38 46.08 81.72

BN 33 - - - - - - - - - -

(43, 163) - 1404.15 3,540,778 293.85 685,246 618.55 1,441,245 410.08 1,018,353 197.08 360,880

(1444, 2) 429.02 982,130 125.78 210,552 236.42 408,855 160.61 256,191 120.33 89,308

75.92 142,932 41.14 41,865 58.14 61,064 73.20 49,760 95.16 22,256

7.61 12.86 24.50 40.33 64.63

BN 35 - - - - - - - - - -

(41, 168) - 464.44 1,755,561 548.11 1,954,720 316.78 1,108,708 199.67 663,784 226.10 622,551

(1444, 2) 42.95 126,215 107.17 243,533 81.59 151,632 56.11 65,657 78.27 58,973

29.77 29,837 36.58 34,987 43.28 28,088 51.28 15,953 76.28 18,048

7.25 13.58 22.61 44.14 87.30

BN 37 - - - - - - - - - -

(45, 159) - 126.85 428,643 97.03 298,477 79.75 183,016 65.74 89,948 121.39 168,957

(1444, 2) 26.42 55,571 20.19 33,475 25.45 14,703 45.61 8,815 94.55 16,400

15.83 15,399 19.47 11,046 26.55 6,621 46.84 4,315 90.66 5,610

6.86 13.13 25.58 44.06 75.49

BN 39 - - - - - - - - - -

(48, 162) - - - - - - - - - 1202.01 3,366,427

(1444, 2) 1161.65 2,615,679 1370.21 3,448,072 507.18 1,499,020 403.07 1,043,378 220.74 518,011

117.03 340,362 247.08 725,738 131.44 316,862 112.27 213,676 111.20 127,872

6.97 11.98 21.09 36.44 65.75

BN 41 - - - - - - - - - -

(49, 164) - 188.60 486,844 151.80 364,363 83.39 168,340 109.92 195,506 123.58 162,274

(1444, 2) 56.72 119,737 47.30 77,653 33.81 32,774 50.81 38,467 76.42 31,763

23.50 42,795 22.05 20,485 27.22 12,030 43.38 16,549 71.61 11,648

A Experiments - Bayesian Networks

A.1 UAI’06 Evaluation Dataset

The UAI 2006 Evaluation Dataset5 contains a collection of random as well as real-
world belief networks that were used during the first UAI 2006Inference Evalua-
tion contest.

Tables A.1 and A.2 show the results for experiments with 15 networks from the
repository. InstancesBN 31 throughBN 41 are random grid networks with deter-
ministic CPTs, while instancesBN 126 throughBN 134 represent random cod-

5 http://ssli.ee.washington.edu/bilmes/uai06InferenceEvaluation
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Table A.2
CPU time and nodes visited for solvingUAI’06 networks . Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, k) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes

3.27 6.69 11.63 23.42 47.84

BN 126 301.56 2,085,673 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027

(54, 70) - 363.05 4,459,174 953.71 10,991,861 118.58 1,333,266 52.24 386,490 57.74 150,391

(512, 2) 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056

16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197

3.42 6.66 14.59 26.66 47.66

BN 127 - - - - - - - - 130.27 631,093

(57, 74) out - - - - - - - - 155.09 1,384,957

(512, 2) - - - - - - - - 128.94 860,026

51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007

3.81 7.58 13.64 28.30 49.02

BN 128 4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147

(48, 73) out 4.13 5,587 7.47 1,712 14.89 18,734 29.05 625 49.39 5,823

(512, 2) 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203

3.97 883 7.75 925 13.78 808 28.39 478 49.13 575

3.56 5.58 12.67 27.81 50.60

BN 129 - - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134

(52, 68) out 865.99 11,469,012 - - 194.91 1,999,591 - - 259.83 2,542,057

(512, 2) 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613

out 194.56 922,831 out 132.45 537,371 246.39 910,769

3.03 6.50 10.95 26.31 46.44

BN 130 21.56 182,120 - - 869.44 7,310,190 - - 57.06 109,669

(54, 67) out 28.67 348,660 - - 1015.05 10,905,151 - - 60.91 205,010

(512, 2) 22.49 239,771 - - 863.15 8,414,475 - - 58.94 147,085

27.72 115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771

3.44 6.59 11.20 21.88 39.70

BN 131 17.06 137,631 39.02 323,431 1149.74 10,230,128 47.25 228,703 - -

(48, 72) out 24.36 296,576 55.20 677,149 - - 66.63 673,358 - -

(512, 2) 18.69 176,456 41.63 396,234 1254.88 12,395,143 50.42 303,818 - -

29.03 116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153

2.95 5.59 10.50 25.56 45.77

BN 132 - - - - - - 756.69 6,584,446 578.99 4,819,402

(49, 71) out - - - - - - 912.40 10,251,600 823.40 10,207,347

(512, 2) - - - - - - 778.22 7,456,812 643.96 6,037,908

out out out out out

3.61 7.03 13.20 27.50 52.69

BN 133 - - 16.84 104,521 31.28 171,645 127.32 929,016 55.33 30,699

(54, 71) out - - 19.38 169,574 35.58 272,258 168.17 1,859,117 56.22 71,195

(512, 2) - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483

59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491

3.38 6.34 12.09 27.08 54.35

BN 134 - - - - - - - - - -

(52, 70) out - - - - - - - - - -

(512, 2) - - - - - - - - - -

out 85.77 373,081 out 96.19 377,064 97.59 214,591
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Fig. A.1. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solv-
ing UAI’06 networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.
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ing networks with 128 input bits, 4 parents per XOR bit and channel variance
σ2 = 0.40. We report only on the Branch-and-Bound and best-first search al-
gorithms using static mini-bucket heuristics. The dynamicmini-bucket heuristics
were not competitive due to their much higher computationaloverhead at relatively
largei-bounds. The guiding pseudo trees were generated in this case using the min-
fill heuristic.

We notice again the superiority ofAOBB-C+SMB(i) compared with the tree ver-
sion of the algorithm,AOBB+SMB(i), at relatively smalli-bounds where both al-
gorithms rely primarily on search rather than on pruning, and especially on the
first set of grid networks (e.g., BN 31, ...,BN 41). For instance, on theBN 35 net-
work,AOBB-C+SMB(16) finds the most probable explanation 10 times faster than
AOBB+SMB(16) exploring a search space 14 times smaller. This is in contrast to
what we observe on the second set of coding networks (e.g., BN 126, ...,BN 133),
whereAOBB-C+SMB(i) is only slightly better thanAOBB+SMB(i) across the re-
portedi-bounds. This is because the AND/OR graph explored effectively was very
close to a tree due to the substantial pruning caused by the mini-bucket heuristics.

Overall, best-first AND/OR search offers the best performance on this domain and
the difference in running time as well as size of the search space explored is up to
several orders of magnitude, compared to the Branch-and-Bound algorithms. For
example, on theBN 131 network,AOBF-C+SMB(16) finds the optimal solution
in less than 20 seconds, whereas bothAOBB+SMB(16) andAOBB-C+SMB(16)
exceed the 30 minute time bound.

Figure A.1 plots the running time distribution ofAOBB-C+SMB(i) andAOBF-C+SMB(i)
using hypergraph partitioning based pseudo trees, over 20 independent runs. We
see that the hypergraph trees are sometimes able to improve the performance of
AOBB-C+SMB(i), especially at smalli-bounds (e.g.,BN 133). For best-first search,
the min-fill trees usually offer the best performance (except onBN 131, where the
hypergraph trees are superior acrossi-bounds).

A.2 ISCAS’89 Benchmark Circuits

ISCAS’89 circuits6 are a common benchmark used in formal verification and di-
agnosis. For our purpose, we converted each of these circuits into a belief network
by removing flip-flops and buffers in a standard way, creatinga deterministic con-
ditional probabilistic tables for each gate and putting uniform distributions on the
input signals.

Tables A.3 and A.4 show the results for experiments with 10 circuits, using min-fill
based pseudo trees as well as static and dynamic mini-bucketheuristics. As usual,

6 Available at http://www.fm.vslib.cz/kes/asic/iscas/
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Table A.3
CPU time and nodes visited for solving belief networks derived fromISCAS’89 circuits
with static mini-bucket heuristics and min-fill pseudo trees. Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

iscas89 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

(n, d) i=6 i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

0.06 0.08 0.09 0.14 0.20 0.56

c432 - - - - - - 0.35 432 0.45 432 0.78 432

(27, 45) out - - - - 1154.96 20,751,699 0.16 432 0.24 432 0.59 432

(432, 2) - - - - 182.53 2,316,024 0.16 432 0.24 432 0.58 432

out out 106.27 488,462 0.20 432 0.28 432 0.63 432

0.08 0.09 0.09 0.16 0.30 0.66

c499 0.38 499 0.42 499 0.42 499 0.48 499 0.59 499 1.03 499

(23, 55) 139.89 0.11 499 0.13 499 0.13 499 0.19 499 0.33 499 0.69 499

(499, 2) 0.13 499 0.11 499 0.14 499 0.19 499 0.31 499 0.69 499

0.17 499 0.17 499 0.17 499 0.25 499 0.39 499 0.73 499

0.17 0.16 0.19 0.22 0.44 1.05

c880 - - 1.56 881 1.80 881 1.70 881 1.84 881 2.58 881

(27, 67) out 0.23 884 0.22 881 0.25 881 0.28 881 0.50 881 1.14 881

(880, 2) 0.22 884 0.24 881 0.25 881 0.28 881 0.48 881 1.11 881

0.33 884 0.34 881 0.36 881 0.39 881 0.61 881 1.20 881

0.03 0.03 0.05 0.08 0.16 0.31

s386 0.17 1,358 0.11 677 0.06 172 0.09 172 0.17 172 0.33 172

(19, 44) 3.66 0.05 257 0.05 257 0.05 172 0.08 172 0.16 172 0.33 172

(172, 2) 0.05 207 0.05 207 0.05 172 0.08 172 0.16 172 0.39 172

0.05 194 0.05 194 0.06 172 0.08 172 0.16 172 0.30 172

0.13 0.14 0.17 0.28 0.70 2.14

s953 - - - - - - - - 1170.80 4,031,967 841.72 3,075,116

(66, 101) out 1054.79 9,919,295 23.67 238,780 58.00 549,181 36.06 434,481 2.72 21,499 3.77 19,117

(440, 2) 899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139 2.19 13,039 3.03 8,007

out 41.03 150,598 110.45 408,828 36.50 113,322 4.06 12,256 4.19 7,143

0.14 0.16 0.19 0.34 0.91 2.94

s1196 - - - - - - - - - - - -

(54, 97) out 31.55 316,875 332.14 3,682,077 7.44 77,205 31.39 320,205 26.24 289,873 11.77 99,935

(560, 2) 18.05 104,316 124.53 686,069 3.69 26,847 14.23 94,985 9.47 62,883 6.05 25,262

26.16 77,019 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114 9.17 20,307

0.14 0.16 0.20 0.36 0.86 2.98

s1238 - - - - 398.13 2,078,885 208.45 1,094,713 931.71 4,305,175 51.86 253,706

(59, 94) out 4.45 57,355 14.77 187,499 3.70 47,340 2.28 25,538 2.45 20,689 3.94 13,032

(540, 2) 1.77 12,623 4.95 34,056 1.30 8,476 1.00 5,418 1.42 4,780 3.38 3,364

2.30 5,921 6.61 17,757 1.70 4,298 1.31 2,730 1.69 2,415 3.56 1,673

0.13 0.12 0.14 0.16 0.31 0.66

s1423 - - - - - - 0.98 762 1.19 749 1.55 749

(24, 54) 107.48 0.27 1,986 0.50 5,171 0.53 5,078 0.22 866 0.36 749 0.70 749

(748, 2) 0.22 1,246 0.22 1,256 0.22 1,235 0.22 818 0.36 749 0.70 749

0.31 959 0.31 921 0.31 913 0.31 774 0.44 749 0.80 749

0.14 0.17 0.22 0.39 1.00 3.30

s1488 15.38 92,764 1.69 6,460 3.20 17,410 1.77 6,511 1.94 4,083 3.95 830

(47, 67) out 16.58 135,563 2.20 17,150 3.39 28,420 1.63 12,285 1.64 6,670 3.38 964

(667, 2) 13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516 3.38 784

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124 3.48 749

0.14 0.17 0.22 0.42 1.06 3.36

s1494 10.86 64,629 978.87 3,412,403 222.28 815,708 5.94 36,804 73.35 268,814 4.08 1,874

(48, 69) out 14.75 158,070 47.41 479,498 11.69 118,754 18.74 202,343 3.06 21,530 3.56 2,431

(661, 2) 7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104 3.50 1,750

9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 3.03 6,484 3.72 1,625
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Table A.4
CPU time and nodes visited for solving belief networks derived fromISCAS’89 circuits
with dynamic mini-bucket heuristics and min-fill pseudo trees. Time limit 30 minutes.

minfill pseudo tree

BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

iscas89 AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(w*, h) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

(n, d) i=6 i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

c432 - - 159.56 21,215 2.50 432 3.20 432 4.61 432 9.05 432

(27, 45) - - 32.00 39,711 1.02 432 1.69 432 3.06 432 7.64 432

(432, 2) 1161.25 323,359 23.02 4,951 1.00 432 1.73 432 3.09 432 7.59 432

1019.19 86,460 26.05 2,342 1.58 432 2.70 432 4.70 432 11.19 432

c499 1.95 499 2.11 499 2.52 499 3.77 499 6.67 499 18.00 499

(23, 55) 0.58 499 0.73 499 1.14 499 2.41 499 5.25 499 16.48 499

(499, 2) 0.58 499 0.74 499 1.14 499 2.41 499 5.27 499 16.59 499

0.83 499 1.11 499 1.88 499 3.75 499 8.03 499 24.72 499

c880 8.30 881 10.64 881 10.19 881 13.33 881 18.56 881 31.95 881

(27, 67) 1.25 881 1.47 881 2.16 881 3.92 881 9.11 881 22.06 881

(880, 2) 1.20 881 1.42 881 2.11 881 3.94 881 9.03 881 22.70 881

1.74 881 2.20 881 3.41 881 6.14 881 13.81 881 32.58 881

s386 0.22 172 0.28 172 0.39 172 0.59 172 1.05 172 2.00 172

(19, 44) 0.13 172 0.17 172 0.28 172 0.52 172 0.97 172 1.89 172

(172, 2) 0.11 172 0.17 172 0.30 172 0.52 172 0.97 172 1.87 172

0.18 172 0.30 172 0.50 172 0.83 172 1.51 172 2.86 172

s953 33.02 2,737 16.75 912 46.28 1,009 17.20 467 137.08 577 128.41 447

(66, 101) 32.08 2,738 15.95 913 45.80 1,010 16.17 468 135.61 578 127.72 447

(440, 2) 32.23 2,738 15.98 913 45.92 1,010 16.14 468 136.09 578 127.83 447

54.72 2,738 25.22 913 73.86 1,010 26.45 468 213.59 578 208.19 447

s1196 3.75 580 4.81 568 37.45 924 88.91 863 386.75 1,008 876.84 817

(54, 97) 1.56 660 2.45 568 33.30 924 77.02 863 362.32 1,008 881.15 817

(560, 2) 1.55 620 2.44 568 33.52 924 79.05 863 355.10 1,008 852.14 817

2.53 604 4.03 568 63.70 924 154.17 857 676.68 1,008 1653.96 817

s1238 43.56 5,841 6.77 601 302.53 17,278 36.39 651 76.70 558 215.21 551

(59, 94) 2.61 1,089 3.70 795 13.16 1,824 26.39 849 59.20 744 188.27 737

(540, 2) 2.52 704 3.63 619 12.97 996 26.22 667 59.09 571 188.31 564

4.00 635 6.17 610 21.30 769 44.23 657 97.00 564 306.08 557

s1423 5.05 751 5.27 749 5.67 749 6.66 749 9.09 749 15.83 749

(24, 54) 0.88 751 0.97 749 1.36 749 2.27 749 4.75 749 11.55 749

(748, 2) 0.83 751 0.95 749 1.34 749 2.22 749 4.73 749 11.45 749

1.24 751 1.56 749 2.28 749 3.69 749 7.45 749 17.23 749

s1488 4.34 670 4.39 670 5.81 668 10.64 667 27.50 667 86.81 667

(47, 67) 1.13 670 1.67 670 3.11 668 7.70 667 24.19 667 83.58 667

(667, 2) 1.13 670 1.64 670 3.06 668 7.67 667 24.25 667 83.86 667

1.89 670 2.95 670 5.62 668 13.58 667 41.12 667 139.93 667

s1494 7.80 814 5.61 679 15.16 719 25.03 686 70.19 686 149.49 667

(48, 69) 7.53 898 2.95 679 12.59 719 22.44 686 68.11 686 146.44 667

(661, 2) 5.06 814 2.97 679 12.66 719 22.98 686 69.81 686 149.05 667

8.00 814 4.50 679 17.39 719 30.20 686 88.50 686 195.53 667

for each test instance we generated a single MPE query without any evidence. We
see thatAOBB-C+SMB(i) improves overAOBB+SMB(i), especially at relatively
small i-bounds. For instance, on thes1196 circuit, AOBB-C+SMB(8) is about
3 times faster thanAOBB+SMB(i). This is in contrast to what we see when us-
ing dynamic mini-bucket heuristics. Here, there is no noticable difference between
the tree and graph AND/OR Branch-and-Bound, because the pruning power of the
heuristics rendered the search space almost backtrack free, acrossi-bounds. Over-
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Fig. A.2. Anytime behavior ofAOBB-C+SMB(i) on grid networks. Number of flips for
GLS is 50,000. GLS running time is less than 1 second.

all, the dynamic mini-bucket heuristics were inferior to the corresponding static
ones for largei-bounds, however, smalleri-bound dynamic mini-buckets were
sometimes cost-effective (e.g., s953). Notice that SAM IAM is able to solve only
2 out of 10 test instances. Moreover,AOBF-C+SMB(i) (resp.AOBF-C+DMB(i))
was overall inferior toAOBB-C+SMB(i) (resp.AOBB-C+DMB(i)) because of its
computational overhead.

A.3 The Anytime Behavior of AND/OR Branch-and-Bound Search and the Impact
of Initial Bounds

Figures A.2 and A.3 show the search trace of the AND/OR Branch-and-Bound
algorithms for solving selected instances of grid networksand UAI’06 Dataset, re-
spectively. We see again thatAOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i)
take advantage of the quality of the initial lower bound produced by GLS, and find
close to optimal solutions much earlier thanAOBB-C+SMB(i) andBB-C+SMB(i),
respectively.

Tables A.5, A.6, and A.7 report detailed results forAOBB-C+GLS+SMB(i) and
BB-C+GLS+SMB(i) on grid networks and UAI’06 Dataset networks, respectively.
We see that the lower bound computed by GLS was in many cases equal to the
optimal solution and thereforeAOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i)
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Fig. A.3. Anytime behavior ofAOBB-C+SMB(i) on UAI’06 networks . Number of flips
for GLS is 50,000. GLS running time is less than 1 second.

improved considerably overAOBB-C+SMB(i) andBB-C+SMB(i), respectively.

A.4 The Impact of Determinism in Bayesian Networks

Table A.8 shows the results for experiments with 5 belief networks derived from
ISCAS’89 circuits. We see that constraint propagation via unit resolution plays
a dramatic role on this domain, rendering the search space almost backtrack-free
acrossi-bounds. For instance, on thes953,AOBB-C+SAT+SMB(6) is 3 orders of
magnitude faster thanAOBB-C+SMB(6), whileAOBF-C+SMB(6) exceeded the
memory limit. When looking at the AND/OR Branch-and-Bound algorithms that
exploit the local search based initial lower bound, namelyAOBB-C+GLS+SMB(i)
andAOBB-C+SAT+GLS+SMB(i), we see that they did not expand any nodes.
This is because the lower bound obtained by GLS, which was theoptimal solution
in this case, was equal to the mini-bucket upper bound computed at the root node.
The best performance on this domain were achieved byAOBB-C+SAT+SMB(i)
andAOBB-C+SAT+GLS+SMB(i), respectively, for the smallest reportedi-bound
(namelyi = 6). Notice also the poor performance of SAM IAM which ran out of
memory on all tests.

82



Table A.5
CPU time and nodes visited for solvinggrid networks with static mini-bucket heuristics.
Time limit 1 hour. Number of flips for GLS is 50,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

grid SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

0.23 3,297 0.06 373 0.05 102 0.06 102 0.06 102

90-10-1 0.13 0.38 3,272 0.19 289 0.19 0 0.19 0 0.20 0

(16, 26) 0.25* 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101

(100, 0) 0.28 2,580 0.22 789 0.19 0 0.20 0 0.19 0

0.27 2,012 0.11 661 0.05 100 0.06 100 0.06 100

126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450

90-14-1 11.97 21.02 217,185 31.64 339,762 0.88 5,892 0.50 1,122 0.78 1,178

(23, 37) 0.43* 4.22 55,120 3.66 48,513 0.45 5,585 0.23 1,361 0.53 1,210

(196, 0) 3.59 45,023 2.77 32,454 0.66 3,684 0.45 1,067 0.78 1,062

3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857

- - - - 40.05 345,255 2.38 16,942 1.23 5,327

90-16-1 147.19 - - 1163.43 9,106,361 35.72 306,583 1.97 12,104 1.42 4,614

(26, 42) 0.49* 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 0.95 4,810

(256, 0) 37.28 453,073 8.14 96,962 4.17 46,138 1.44 10,702 1.23 4,552

25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

- - - - - - - - - -

90-24-1 out - - 1773.64 6,065,308 609.65 2,008,431 111.58 263,250 632.68 1,705,699

(36, 61) 0.53 - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

(576, 20) 3594.60 24,363,798 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291

- - - - 395.67 1,635,447 - - 67.09 277,685

90-26-1 out - - - - 235.36 922,243 65.39 282,394 41.70 73,616

(35, 64) 0.56 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

(676, 40) 43.64 248,603 85.72 495,039 10.83 14,580 14.47 6,226 28.38 1,466

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435

- - - - - - - - - -

90-30-1 out - - - - - - - - - -

(38, 68) 0.72 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

(900, 60) 276.00 1,491,880 84.39 442,754 78.81 376,916 31.69 89,045 64.23 148,540

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800

- - - - - - - - - -

90-34-1 out - - - - - - - - - -

(43, 79) 1.31 - - - - - - - - 369.36 823,604

(1154, 80) - - - - 980.51 4,943,817 1751.86 5,516,888 315.38 630,406

out out 243.63 596,978 270.88 667,013 71.19 67,611

- - - - - - - - - -

90-38-1 out - - - - - - - - - -

(47, 86) 1.11 969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

(1444, 120) 819.16 2,450,643 1806.57 3,804,190 224.80 607,453 187.63 482,946 138.64 211,562

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856
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Table A.6
CPU time and nodes visited for solvingUAI’06 networks with static mini-bucket heuris-
tics. Time limit 30 minutes. Number of flips for GLS is 500,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

bn SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes

- - - - - - - - - -

BN 31 - - - - - - - - - -

(46, 160) out 411.33 1,445,200 486.47 2,131,977 209.80 831,431 210.81 889,782 81.61 94,507

(1156, 2) 9.86* 357.86 1,172,122 375.05 1,573,677 202.66 775,258 187.34 752,284 79.01 56,409

140.41 293,445 126.23 292,293 85.69 142,650 86.00 114,046 73.14 25,392

- - - - - - - - - -

BN 33 - - - - - - - - - -

(43, 163) - 429.02 982,130 125.78 210,552 236.42 408,855 160.61 256,191 120.33 89,308

(1444, 2) 12.30* 434.97 980,701 134.47 207,658 244.72 399,206 167.39 245,144 129.35 85,745

75.92 142,932 41.14 41,865 58.14 61,064 73.20 49,760 95.16 22,256

- - - - - - - - - -

BN 35 - - - - - - - - - -

(41, 168) - 42.95 126,215 107.17 243,533 81.59 151,632 56.11 65,657 78.27 58,973

(1444, 2) 12.38 49.97 120,205 112.42 224,908 89.85 151,619 66.16 74,585 89.31 71,614

29.77 29,837 36.58 34,987 43.28 28,088 51.28 15,953 76.28 18,048

- - - - - - - - - -

BN 37 - - - - - - - - - -

(45, 159) - 26.42 55,571 20.19 33,475 25.45 14,703 45.61 8,815 94.55 16,400

(1444, 2) 12.70 29.77 48,211 26.17 31,674 32.11 13,808 49.63 7,774 99.00 19,871

15.83 15,399 19.47 11,046 26.55 6,621 46.84 4,315 90.66 5,610

- - - - - - - - - -

BN 39 - - - - - - - - - -

(48, 164) - 1161.65 2,615,679 1370.21 3,448,072 507.18 1,499,020 403.07 1,043,378 220.74 518,011

(1444, 2) 12.88 472.36 1,076,698 782.69 2,026,535 276.27 778,118 190.16 436,932 113.67 168,410

117.03 340,362 247.08 725,738 131.44 316,862 112.27 213,676 111.20 127,872

- - - - - - - - - -

BN 41 - - - - - - - - - -

(49, 164) - 56.72 119,737 47.30 77,653 33.81 32,774 50.81 38,467 76.42 31,763

(1444, 2) 12.29* 63.16 117,948 52.52 73,947 40.45 30,930 58.53 37,018 86.72 30,487

23.50 42,795 22.05 20,485 27.22 12,030 43.38 16,549 71.61 11,648
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Table A.7
CPU time and nodes visited for solvingUAI’06 networks with static mini-bucket heuris-
tics. Time limit 30 minutes. Number of flips for GLS is 500,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

bn SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes

301.56 2,085,673 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027

BN 126 9.83 63,674 15.78 85,215 19.31 76,346 27.69 37,226 51.38 30,317

(54, 70) - 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056

(512, 2) 6.08* 10.91 83,227 17.74 117,859 20.66 99,518 28.66 49,175 54.28 42,873

16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197

- - - - - - - - 130.27 631,093

BN 127 26.44 238,020 31.02 250,746 36.19 215,054 44.34 166,176 57.52 83,380

(57, 74) out - - - - - - - - 128.94 860,026

(512, 2) 5.75* 27.59 282,349 31.11 295,100 38.67 280,166 46.03 214,590 57.47 113,743

51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007

4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147

BN 128 4.50 854 8.05 694 14.17 778 29.44 461 48.75 551

(48, 73) out 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203

(512, 2) 5.95* 4.14 1,022 7.91 974 13.92 991 28.75 547 49.64 674

3.97 883 7.75 925 13.78 808 28.39 478 49.13 575

- - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134

BN 129 244.08 2,419,418 150.30 1,408,350 150.56 1,352,916 119.70 923,635 142.14 914,833

(52, 68) out 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613

(512, 2) 5.89* 245.08 2,443,843 95.64 961,434 142.55 1,412,079 76.16 564,895 138.53 979,046

out 194.56 922,831 out 132.45 537,371 246.39 910,769

21.56 182,120 - - 869.44 7,310,190 - - 57.06 109,669

BN 130 14.55 114,610 87.28 751,400 41.73 299,845 42.86 158,612 58.53 107,880

(54, 67) out 22.49 239,771 - - 863.15 8,414,475 - - 58.94 147,085

(512, 2) 5.87* 15.36 158,150 36.24 364,352 43.25 392,961 43.19 211,380 57.91 144,741

27.72 115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771

17.06 137,631 39.02 323,431 1149.74 10,230,128 47.25 228,703 - -

BN 131 15.42 118,238 26.77 212,338 19.56 82,414 28.69 73,552 51.69 122,085

(48, 72) out 18.69 176,456 41.63 396,234 1254.88 12,395,143 50.42 303,818 - -

(512, 2) 5.87* 16.70 150,341 28.22 256,361 20.34 101,662 29.16 91,103 54.12 156,925

29.03 116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153

- - - - - - 756.69 6,584,446 578.99 4,819,402

BN 132 683.65 5,987,145 429.96 3,750,177 838.83 7,484,051 627.50 5,584,689 392.78 3,296,711

(49, 71) out - - - - - - 778.22 7,456,812 643.96 6,037,908

(512, 2) 5.89* 686.08 6,499,878 439.89 4,252,274 718.66 6,905,710 453.25 4,319,442 387.02 3,557,198

out out out out out

- - 16.84 104,521 31.28 171,645 127.32 929,016 55.33 30,699

BN 133 29.13 258,988 17.09 102,193 22.77 93,433 36.28 90,006 53.97 17,865

(49, 71) out - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483

(512, 2) 5.79* 30.50 329,146 16.50 125,945 22.66 116,553 36.17 112,317 53.92 17,069

59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491

- - - - - - - - - -

BN 134 105.61 1,029,072 43.16 373,641 115.67 1,065,258 60.94 376,402 75.16 213,954

(52, 70) out - - - - - - - - - -

(512, 2) 5.83* 109.97 1,170,028 44.33 439,065 123.91 1,253,376 60.72 401,521 76.38 241,382

out 85.77 373,081 out 96.19 377,064 97.59 214,591
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Table A.8
CPU time and nodes visited for solving belief networks derived fromISCAS’89 circuits
using static mini-bucket heuristics. Time limit 30 minutes.

minfill pseudo tree

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)

iscas89 AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)

(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

(n, d) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

- - - - 182.53 2,316,024 0.16 432 0.24 432

c432 out 374.29 4,336,403 189.13 2,043,475 1.02 9,512 0.16 432 0.25 432

(27, 45) 0.05 0 0.06 0 0.09 0 0.13 0 0.19 0

(432, 2) 0.08* 0.06 0 0.08 0 0.09 0 0.13 0 0.20 0

out out 106.27 488,462 0.20 432 0.28 432

899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139 2.19 13,039

s953 out 0.19 829 0.16 667 0.20 685 0.31 623 0.74 623

(66, 101) 0.12 0 0.13 0 0.17 0 0.28 0 0.69 0

(440, 2) 0.05* 0.13 0 0.13 0 0.17 0 0.30 0 0.70 0

out 41.03 150,598 110.45 408,828 36.50 113,322 4.06 12,256

18.05 104,316 124.53 686,069 3.69 26,847 14.23 94,985 9.47 62,883

s1196 out 0.19 565 0.19 565 0.23 565 0.38 565 0.92 565

(54, 97) 0.14 0 0.16 0 0.20 0 0.34 0 0.89 0

(560, 2) 0.08* 0.13 0 0.14 0 0.20 0 0.34 0 0.87 0

26.16 77,019 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114

13.22 82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516

s1488 out 0.20 708 0.20 667 0.25 667 0.44 667 1.06 667

(47, 67) 0.14 0 0.16 0 0.22 0 0.44 0 0.99 0

(667, 2) 0.13* 0.13 0 0.16 0 0.20 0 0.47 0 0.99 0

21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124

7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 2.06 8,104

s1494 out 0.20 665 0.22 665 0.27 665 0.45 665 1.11 665

(48, 69) 0.16 0 0.17 0 0.22 0 0.41 0 1.09 0

(661, 2) 0.11* 0.16 0 0.17 0 0.22 0 0.42 0 1.22 0

9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 3.03 6,484
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