Memory Intensive AND/OR Search for
Combinatorial Optimization in Graphical Models

Radu Marinescu, Rina Dechter

Donald Bren School of Information and Computer Science
University of California, Irvine, CA 92697, USA

Abstract

In this paper we explore the impact of caching on search in the contextofetent
framework of AND/OR search in graphical models. Specifically, we exteadiepth-first
AND/OR Branch-and-Bountiree searchalgorithm to explore an AND/OR search graph
by equipping it with an adaptive caching scheme similar to good and no-gaodding.
Furthermore, we presetvest-firstsearch algorithms for traversing the same underlying
AND/OR search graph and compare both depth-first and best-firstagpes empirically.
We focus on two common optimization problems in graphical models: finding thé¢ Mos
Probable Explanation (MPE) in belief networks and solving Weighted CBRZSP). In

an extensive empirical evaluation we demonstrate conclusively the srityssfdthe mem-

ory intensive AND/OR search algorithms on a variety of benchmarks ingudindom
and real-world problem instances.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

1 Introduction

This is the second of two articles describing and evaluatiegpower of AND/OR
search spaces for combinatorial optimization in graphmabels. The first pa-
per focused on extending Branch-and-Bound algorithms taexgl the AND/OR
search tree. The virtue of the AND/OR representation isttiesearch space size
may be far smaller than that of a traditional OR represesmatihich often trans-
lates to significant time savings. In the current paper waav efficiency further
by using more memory, exploring the context minimal AND/Gfush graph.

Email addresses:adum@ cs. uci . edu (Radu Marinescu),
dechter @cs. uci . edu (Rina Dechter).

Preprint submitted to Elsevier April 28, 2008

Graphical models such as belief networks or constraint ordsvare a widely used
representation framework for reasoning with probabdisind deterministic infor-
mation. These models use graphs to capture conditionap@mdkencies between
variables, allowing a concise representation of the kndgdeas well as efficient
graph-based query processing algorithms. Combinatoringation problems
such as finding the most likely state of a belief network orifigca solution that
violates the least number of constraints can be definedmitiis framework and
they are typically tackled with either inference or seargoathms.

Inference-based algorithms.§., Variable Elimination, Tree Clustering) are good
at exploiting the independencies captured by the undeylgraphical model. They
provide superior worst case time guarantees, comparedniolesisearch, as they
are time exponential in the treewidth of the problem’s gregihce those methods
are also space exponential in the treewidth they are notipahfor models with
large treewidth. Search algorithms on the other hand, eafetoff time and space
in a more flexible manner.

Search-based algorithms 4., depth-first Branch-and-Bound, best-first search) tra-
verse the model’s search space where each path represemtisibqp full solution.
In [1-3] we presented the AND/OR search tree for optimizatasks over graph-
ical models and showed how this framework can exploit probtkeecomposition
during Branch-and-Bound search [4]. As is known, the AND/O&ale space can
provide exponential speedups over the traditional OR searthods oblivious to
problem structure: its worst-case size is exponential exgfoduct of the graph
treewidth and the logarithm of the number of variables. Thedd a bound on
the time complexity of any traversal algorithm, yet allowpleration using linear
space. In this paper we explore the added benefit of using spaie, and we show
that by allowing the use of caching on top of AND/OR searchcae have a sig-
nificant additional gain and we can even reach the same was&-time and space
exponential in the treewidth bounds, obeyed by inferengerdhms. The advan-
tage of search with caching, compared with inference, iacilifating pruning due
to determinism, due to the guiding heuristic function and tlhucontext-sensitive
properties. These aspects make the memory demand in seaschdvere than in
inference, in practice.

Specifically, we extend the AND/OR Branch-and-Bound treectealgorithm in-
troduced in [1-3] to explore the context minimal AND/OR s#agraph using a
flexible caching mechanism that can adapt to memory linoitsti The caching
scheme is similar to good and no-good recording used in aexerent schemes
such as Recursive Conditioning [5], Valued Backtracking [6dl &acktracking
with Tree Decompositions [7]. Our contributions beyondsthearlier schemes is
in presenting these ideas in an independent manner usingptien of AND/OR
search spaces, and in our extensive empirical study.

Since best-first search is known to be superior among memtegsive search al-

gorithms [8], we also present a new AND/OR search algorithat explores the
context minimal AND/OR search graph in a best-first mannadéy conditions of

admissibility and monotonicity of the heuristic functidsest-first search is known
to expand the minimal number of nodes, at the expense of asidgional mem-

ory [8]. As we will show, these savings in number of nodes rofienslate into

significant time savings .

Clearly, the efficiency of both depth-first and best-first AR search methods
also depends on the accuracy of the guiding heuristic fancte used the Mini-
Bucket heuristic [9] which is extracted automatically, froine functional specifi-
cation of the graphical model using the Mini-Bucket appraatiion algorithm [10].
Since the accuracy of the Mini-Bucket algorithm is contrdlley a bounding pa-
rameter, called-bound, it allows heuristics having varying degrees of aacyiand
results in a spectrum of search algorithms that can tradeeaffistic computation
and search. Following [1,2], we continue to explore emplhcthe efficiency of
static and dynamic mini-bucket heuristics within the cabbhsed search spaces.

Like in [1-3], we apply the algorithms to finding the Most Pablte Explanation
(MPE) in belief networks [11] and to solving Weighted CSPs|[A2 experiment
with both random models and real-world benchmarks. Ourltesthow conclu-
sively that the memory intensive AND/OR search algorithmpriove dramatically
over competitive approaches, especially when the heuestimates are less ac-
curate and do not prune the search space effectively. We rirate the impact
of caching, the impact of the guiding lower bound strengghwall as the impact
of best-first versus depth-first search regimes. We alssiigate other factors that
impact the performance of any search algorithm such as:\ihdahility of hard
constraints 4.e., determinism), the availability of good initial upper bals) and
the availability of good quality guiding ordering schemeg (, pseudo trees).

Following preliminary notations and definitions (Sectign Sections 3 and 4 pro-
vide background on graphical models and the AND/OR reptasien of the search
space. Sections 5 and 6 present the new depth-first and ts#NID/OR search
algorithms exploring the context minimal AND/OR graph. &t 7 reviews the
mini-bucket heuristics for AND/OR search. In Section 8 wegant an extensive
empirical evaluation of the proposed memory intensivecearethods, while Sec-
tions 9 and 10 provide a summary of related work as well asladimg remarks
and directions of future research. For completeness,@ecH through 4.2 repeat
much of the introductory material from [1]. This paper is&@@ part on [13-15].

2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variablemgavalues on fi-
nite domains and a set of functions defined over these vagaliVe denote vari-
ables by uppercase letters (., X,Y, Z,...), subsets of variables by bold faced
uppercase letters.y., X,Y,Z,...) and values of variables by lower case letters
(e.9.,z,v,z,...). An assignmentX; = xzi,....X,, = x,) can be abbreviated as
= ((X1,21), ..., (Xn,xn)) Orx = (x4, ..., z,). FOr a subset of variablég, Dy
denotes the Cartesian product of the domains of variablas. iny andz[Y] are
both used as the projection.of= (x4, ..., z,,) over a subseY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a funcfitwy scope(f).

2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected grapls defined by a pair
G = {V,E}, whereV = {X;,..., X,} is a set of vertices (nodes), afltl =
{(X;, X;)|X;, X; € V}is a set of edges (arcs). (X;, X;) € E, we say thatX;
points to.X;. The degree of a vertex is the number of incident arcs to iteeh
vertex X;, pa(X;) or pa;, is the set of vertices pointing t&; in GG, while the set
of child vertices ofX;, denoted-h(X;), comprises the variables thaf; points to.
The family ofX;, denotedF;, includesX; and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Amdirectedgraph is defined similarly to a
directed graph, but there is no directionality associatethwine edges.

DEFINITION 2 (induced width) An ordered graplis a pair (G, d) whereG is an
undirected graph, and = Xy, ..., X,, is an ordering of the nodes. Theidth of

a nodeis the number of the node’s neighbors that precede it in tidemng. The
width of an ordering? is the maximum width over all nodes. Timeluced width
of an ordered graptdenoted byv*(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first;wiale X; is pro-
cessed, all its preceding neighbors are connected.ifitieced widthof a graph,
denoted byv*, is the minimal induced width over all its orderings.

DerINITION 3 (hypergraph) A hypergraphis a pair H = (X, S), whereS =
{81, ..., S;} is a set of subsets &, called hyperedges.

DEFINITION 4 (tree decomposition) A tree decompositioof a hypergraphH =
(X,S),isatreeT = (V,E), whereV is a set of nodes, also called "clusters”, and
E is a set of edges, together with a labeling functipthat associates with each
vertexv € V a sety(v) C X satisfying:

(1) For eachsS; € S there exists a vertex € V such thatS; C x(v);
(2) (running intersection property) For eacky; € X, the sef{v € V|X; € x(v)}
induces a connected subtreelaf

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (ieaz,|x(v) — 1|). The
treewidthof a hypergraph is the minimum width along all possible treece-
positions. Theathwidthis the treewidth over the restricted class of chain decom-
positions.

3 Graphical Models

Graphical models include constraint networks defined bagtiats of allowed tu-
ples, directed or undirected probabilistic networks anst cetworks defined by
cost functions. Each graphical model comes with its speoptanization queries
such as finding a solution of a constraint network that vedahe least number of
constraints, finding the most probable assignment giveresanadence, posed over
probabilistic networks or finding the optimal solution farst networks.

In general, a graphical model is defined by a collection otfiamsF, over a set of
variablesX, conveying probabilistic or deterministic informationh@se structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = (X,D,F,®), where:

(1) X ={Xy,..., X, } is asetof variables;

(2) D ={Dy,...,D,} is the set of their respective finite domains of values;

(3) F = {f1,..., f-} is a set of real-valued functions, each defined over a subset
of variablesS; C X (i.e., the scope);

4) ®;f; € {IL fi, > fi} is a combination operator.

The graphical model represents the combination of all itefions:®!_, f;.

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignment= (xy, ..., z,,) is defined by:

c(x) = @ger f (x[scope(f)])

Given a subset of variablés C X, the cost of a partial assignmenis the combi-
nation of all the functions whose scopes are include¥ jmamelyFvy, evaluated
at the assigned values. Namelfy) = ®rer,, f(y[scope(f)]). We will often abuse
notation writingc(y) = ey, f(y) instead.

DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two varididgsppear in the
scope of the same function.

There are various queries (tasks) that can be posed ovdrigagamodels. We refer
to all asautomated reasoning problems general, an optimization task is a rea-
soning problem defined as a function from a graphical modalget of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) A constraint optimization prob-
lemis a pairP = (R,|lx), whereR = (X, D, F,®) is a graphical model. If5

is the scope of functiofi € F thenl|s f € {maxsf, mingf}. The optimization
problem is to computéx ®!_, f;.

The min/max {) operator is sometimes called aiiminationoperator because it
removes the arguments from the input functions’ scopes.

We next elaborate on several popular graphical models cftcaint networks and
belief networks which will be the primary focus of this pafgeee also [1] for
detailed examples of each of these graphical models).

3.1 Constraint Networks

Constraint Satisfactiors a framework for formulating real-world problems as a
set of constraints between variables. The task is to find sigrament of values to
variables that does not violate any constraint, or else telcoe that problem is
inconsistent. Such problems are graphically representedties corresponding to
variables and edges corresponding to constraints betvagebies.

DEFINITION 10 (constraint network) A constraint networks a graphical model
P = (X,D,C,x), whereX = {Xj,...,X,} is a set of variables, associated
with discrete-valued domain® = {D,,...,D,}, and a set of constraint€ =
{C4, ...,C,}. Each constrainiC; is a pair (S;, R;), whereR; is a relation R; C
Dg, defined on a subset of variabl&s C X. The relation denotes all compatible
tuples ofDg, allowed by the constraint. The combination operatoy,is join. The
primal graph of a constraint network is calledenstraint graphA solution is an
assignment of values to all variables= (x4, ..., z,), x; € D;, such thatVC; € C,
xs, € R;. The constraint network represents its set of solutions(;.

3.2 Cost Networks

An immediate extension of constraint networks eost networksvhere the set of
functions are real-valued cost functions, the combineadios elimination operators
aresummatiorandminimization respectively, and the primary constraint optimiza-
tion task is to find a solution with minimum cost.

A special class of COPs which has gained a lot of interest ianmegears is the
Weighted Constraint Satisfaction Problem (WCSP). WCSP extdralslassical
CSP formalism withsoft constraintavhich are represented as integer-valued cost
functions. Formally,

DEFINITION 11 (WCSP) A Weighted Constraint Satisfaction Problem (WC&P)
a cost network X, D, F, 3°) where each of the cost functiofis € F assigns "0”
(no penalty) to allowed tuples and a positive integer penedtst to the forbidden
tuples. Namelyf; : Ds, x ... x Ds, — N, whereS; = {S;,, ..., S;,} is the scope
of the cost function. The optimization problem is to find aleadssignment to the
variables with minimum penalty cost, namely finding ®; f; = minx >, fi.

DEFINITION 12 (MAX-CSP) AMAX-CSPis a WCSP with all penalty costs equal
tol.Namelyyf; € F, fi: Ds, x ...x Ds, — {0,1}, whereS; = {S;,, ..., S;, } is
the scope of;.

Solving a MAX-CSP can also be interpreted as finding an assegihthat violates
the minimum number of constraints (or maximizes the numlbesatisfied con-
straints). Many real-world problems can be formulated asxMaSP/WCSPs, in-
cluding resource allocation problems [16], scheduling,[bibinformatics [18,19],
combinatorial auctions [20,21] or maximum satisfiabilitpplems [22].

3.3 Belief Networks

Belief networkg11] provide a formalism for reasoning about partial bedighder
conditions of uncertainty. They are defined by a directedlacgraph over vertices
representing variables of interest(., the temperature of a device, the gender of
a patient, a feature of an object, the occurrence of an evEn) arcs signify the
existence of direct causal influences between linked vimsaduantified by condi-
tional probabilities that are attached to each cluster oémqia-child vertices in the
network.

DEFINITION 13 (belief network) A belief network (BN)is a graphical modeP =
(X,D,Pg,II), whereX = {Xj,..., X, } is a set of variables over multi-valued
domainsD = {Dy,..., D,}. Given a directed acyclic grapty over X as nodes,
Ps = {P;}, whereP, = { P(X;|pa(X;))} are conditional probability tables (CPTs

for short) associated with each variahl&, andpa(X;) are the parents ok in the
acyclic graphG. A belief network represents a joint probability distrimrtiover
X, P(x1,...,zn) = [TiL; P(xil7pacx,))- An evidence setis an instantiated subset
of variables.

When formulated as a graphical model, the function®# denote conditional
probability tables and the scopes of these functions aerméted by the directed
acyclic graphi: each functionf; ranges over variabl&; and its parents iG:. The
combination operator is multiplication, namety, = [[;. The primal graph of a
belief network is called anoral graph It connects any two variables appearing in
the same probability table.

DEFINITION 14 (most probable explanation) Given a belief network and evidence
e, the Most Probable Explanatio(MPE) task is to find a complete assignment
which agrees with the evidence, and which has the highest pildpabmong all
such assignments. Namely, to find an assignrent.., z°) such that:

As a reasoning problem, the MPE task is to find ®; f; = maxx [T, P;.

4 AND/OR Search Spaces for Graphical Models

4.1 AND/OR Search Trees for Graphical Models

The usual way to do search in graphical models is to inst&ntiariables in turn,
following a static or dynamic variable ordering. In the slegt case, this process
defines a search tree (called here OR search tree), whoss reglesent states in
the state of partial assignments. This search space doeaptote the structure of
the underlying graphical model. To remedy this problem, &DAOR search space
was recently introduced in the context of general grapmadels [4]. It specializes
the AND/OR space introduced in [23] to graphical models. AND/OR search
space is defined using a backbgseudo tre¢24,25].

DEFINITION 15 (pseudo tree, extended graph)siven an undirected grapty =
(V,E), adirected rooted tred = (V, E’) defined on all its nodes is callgtbeudo
treeif any arc of G which is not included irE’ is a back-arc, namely it connects
a node to an ancestor it . Given a pseudo tre& of ¢, theextended grapbf &G
relative to7 is defined a&?” = (V,EUE’).

DEFINITION 16 (AND/OR search tree) Given a graphical modek = (X, D, F),

AND 0]
oRr () (®)
g g

x © ©® ©@ ©® O 6 O 6

Vv « PEOOOOOOOOOOD® OO
p—@)—) ano [o][1][o][1][o] 2] o] [1] [o]| 2} (ol [1][o] 2] o] [2] [o]] (o] [1] o] [2][o] [1] o] 2] o] 2] o] [x] [o] [2]

(c)
Fig. 1. AND/OR search tree for graphical models.

its primal graphG and a backbone pseudo tréeof GG, the associated AND/OR
search tree, denotefl; (R), has alternating levels of AND and OR nodes. The OR
nodes are labeled; and correspond to the variables. The AND nodes are labeled
(X, z;) (or simplyz;) and correspond to value assignments in the domains of the
variables. The structure of the AND/OR search tree is basetherunderlying
backbone pseudo treg. The root of the AND/OR search tree is an OR node la-
beled with the root of . A path from the root of the search trée (R) to a noden

is denoted byr,,. If n is labeledX; or x; the path will be denoted, (X;) or 7, (z;),
respectively. The assignment sequence alongpatienotedisgn(r,), is the set

of value assignments associated with the AND nodes atpng

CLSgTL(’]Tn(XZ)) = {(Xl, le’l>, <X2, 122'2>, ceey <Xi_1, Qﬁ'i_1>}
asgn(mp(z;)) = {(X1, 21), (Xo, xa), ..., (Xi, x:) }

The set of variables associated with OR nodes along the patls denoted by
var(m,): var(m,(X3)) = { X1, ..., Xi_1}, var(m,(z;)) = { Xy, ..., X;}. The parent-
child relationship between nodes in the search space areetkéia follows:

(1) An OR noden, labeled byX; has a child AND node labeledX;, x;) iff
(X, z;) is consistent witlusgn ().

(2) An AND nodey, labeled by(X}, z;) has a child OR node labeled iff Y is a
child of X; in the backbone pseudo tr§e Each OR arc, emanating from an
OR to an AND node is associated with a weight to be defined shortly.

Clearly, if a noden is labeledX; (OR node) orr; (AND node)par(m,) is the set
of variables mentioned on the path from the roo&tan the backbone pseudo tree,
denoted byathr(X;).

Semantically, the OR states in the AND/OR search tree reptedternative ways
of solving a problem, whereas the AND states represent @nolillecomposition
into independent subproblems, all of which need to be solved

DEFINITION 17 (solution tree) A solution treeof an AND/OR search treg(R)

is an AND/OR subtre&' such that:

(1) It contains the root 067 (R), s;

(2) If a non-terminal AND node € S7(R) is in T then all of its children are in
T

(3) If a non-terminal OR node € S7(R) is in T then exactly one of its children
isinT;

(4) Allits leaf (terminal) nodes are consistent.

Example 1 Figure 1(a) shows the primal graph of cost network with 6 bi-ealu
variablesA, B, C, D, E and F', and 9 binary cost functions. Figure 1(b) displays
a pseudo tree together with the back-arcs (dotted lines)urgidL(c) shows the
AND/OR search tree based on the pseudo tree. A solution suistt@ghlighted.
Notice that once variabled and B are instantiated, the search space below the
AND node(B, 0) decomposes into two independent subproblems, one thatésiroo
at C' and one that is rooted aft’, respectively.

The virtue of an AND/OR search tree representation is tisaside may be far
smaller than the traditional OR search tree.

THEOREM 1 (size of AND/OR search trees [4])Given a graphical modeR and
a backbone pseudo trég, its AND/OR search treS7(R) is sound and complete,
and its size i$)(l- k™) wherem is the depth of the pseudo trédyounds its number
of leaves, and bounds the domain size.

Given atree decompositioof the primal grapltz havingn nodes, whose treewidth
is w*, there exists a pseudo trgeof G whose depthyn, satisfiesm < w* - logn
[26,27]. Therefore,

THEOREMZ ([4]) A graphical model that has a treewidth* has an AND/OR
search tree whose size @(n - k¥ °9"), wherek bounds the domain size and
is the number of variables.

The arcs in the AND/OR trees are associated with weightsaiteatlefined based
on the graphical model’s functions and combination operdie next define arc
weights for any graphical model using the notiorbatkets of functions

DEFINITION 18 (buckets relative to a pseudo tree)Given a graphical modeR =
(X,D,F) and a backbone pseudo trég, the bucket ofX; relative to 7", de-

noted Br(Xj;), is the set of functions whose scopes confgjrand are included
in pathr(X;), which is the set of variables from the rootXq in 7. Namely,

Br(X;) ={f € F|X; € scope(f), scope(f) C pathr(X;)}

10

f(A,B)
f(A,C)
f(A,B,E)

f(B,C,D
(8.C.D) f(A=0,B=0)

f(A=0,C=0)+
f(8=0,C=0,D=0)

f(A=0,C=1)+ f(A=0,C=0)+
f(8=0,C=1,D=0) f(B=0,C=0,D=1)

f(A=0,C=1)+
f(8=0,C=1,D=1)

Fig. 2. Arc weights for cost networks.

For simplicity and without loss of generality we considethie remainder a graph-
ical modelR = (X, D, F) for which the combination and elimination operators
aresummatiorandminimization respectively.

DEFINITION 19 (OR-to-AND weights) Given an AND/OR search treger (R), of
a graphical modeR, the weightu,, .,y (X;, z;) (or simplyw(X;, z;)) of arc(n, m),
whereX; labelsn andzx; labelsm, is thecombinatiorof all the functions inB+(X;)
assigned by values along,. Formally,

0 ,if Br(X;) =10

Y reny(x,) flasgn(my)[scope(f)]) , otherwise

DEFINITION 20 (cost of a solution tree)Given a weighted AND/OR search tree
S7(R), of a graphical modeR, and given a solution tre& having OR-to-AND
set of arcsures(T'), the cost off" is defined byf (1) = > cqyes(r) w(e).

We definef(7,,) the cost of a solution tree rooted at nodeThenf(7,,) can be
computed recursively, as follows:

1. If T,, consists only of a terminal AND nodgthenf(7,,) = 0.

2. If n is an OR node having an AND child in 7,,, then f(T,,) = w(n,m) +
f(T,.), whereT,, is the solution subtree df, that is rooted atn.

3. If n is an AND node having OR childrem,, ..., m; in T,, then f(T},) =
¥ f(T..), whereT,,. is the solution subtree @, rooted atm;.

Example 2 Figure 2 shows the primal graph of a cost network, a pseudo hae t

11

drives its weighted AND/OR search tree, and a portion of the ANDgearch tree
with appropriate weights on the arcs expressed symbolidallyis case the bucket
of £ contains the functioryf (A, B, E), the bucket of” contains two functions
f(A,C) and f(B,C, D) and the bucket o3 contains the functiorf(A, B). We
see indeed that the weights on the arcs from the OR hbieany of its AND value
assignments include only the instantiated functfgrl, B, F), while the weights
on the arcs connecting' to its AND child nodes are the sum of the two functions in
its bucket instantiated appropriately. Notice that the lmislofA and D are empty
and therefore the weights associated with the respectivesaels

With each node: of the search tree we can associate a value which stands for
the answer to the particular query restricted to the subpnolbelown [4].

DEFINITION 21 (value function) Given an optimization proble® = (R, min)
over a graphical modeR = (X, D, F,>"), thevalue functionof a noden in the
AND/OR search tre€7(R) is the optimal cost to the subproblem below

The value of a node can be computed recursively, as followsitfor terminal
AND nodes andx for terminal OR nodes, respectively. The value of an interna
OR node is obtained byombining (summingj)he value of each AND child node
with the weight on its incoming arc and theptimize (minimize)over all AND
children. The value of an internal AND node is tbembination (summation)f
values of its OR children. Formally, #ucc(n) denotes the children of the node

in the AND/OR search tree, then:

0 ,if n = (X,x) is aterminal AND node
00 ,if n = X isaterminal OR node
v(n) =
> mesuce(n) V(1) ,if n = (X, x)isan AND node
MmNy, sucem) (W(n, m) +v(m)) , if n = X isan OR node

(1)

If n is the root of S7(R), thenwv(n) is the minimal cost solution to the initial
problem. Alternatively, the value(n) can also be interpreted as the minimum of
the costs of the solution trees rootediaT herefore, search algorithms that traverse
the AND/OR search space can compute the value of the root yietting the
answer to the problem. It can be immediately inferred froradrems 1 and 2 that:

THEOREM 3 (complexity [4]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is tige: - k™), wherek bounds

the domain size andh is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidth) there there exists a
pseudo treg for which the time complexity 9 (n - k¥ 9m),

12

4.2 AND/OR Branch-and-Bound Search on AND/OR Trees

In [1-3] we introduced a new generation of linear space BrarahBound search
algorithms that exploit the underlying structure of thepdriaal model by travers-
ing in a depth-first manner an AND/OR search tree associaitdtie graphical
model. During search, the algorithm maintains the cost efaést solution found
so far, which is an upper bound on the minimal cost solution. In addition, each
noden in the search tree is also associated with a static heufustation~(n) that
underestimates the minimal cost solutiefm) to the subproblem below, and it
can be either pre-compiled or computed during search. Threrpartial solution
being pursued is represented by a partial solution fed;he algorithm then com-
putes a heuristic lower bounding estim#@td”) on the optimal cost extension &f
to a complete solution tree and prunes the search space tiedawurrent tip node
if f(T") > ub.

The efficiency of this algorithm depends heavily on its gugdheuristic function.

Subsequently, in [1,2] we investigated the power of a h&argeneration scheme
based on the Mini-Bucket approximation [10], in both statid @ynamic setups.
Since the Mini-Bucket algorithm is controlled by a boundiraggmeter, it allows

heuristics having varying degrees of accuracy and resulésspectrum of search
algorithms that can trade off heuristic computation anddea

We evaluated empirically the AND/OR Branch-and-Bound algoni with mini-
bucket heuristics for probabilistic and deterministicioptation tasks [1,2]. The
results showed conclusively that the scheme improves dreaiig over the tradi-
tional OR approaches. In many cases, the differences nuailrerdes visited as
well as running time added up to several orders of magnitude.

In the following subsection we overview the notion of AND/GRarchgraphfor
general graphical models, which was presented in [4].

4.3 AND/OR Search Graphs for Graphical Models

It is often the case that a search space that is a tree can becgmaph if identical
nodes are merged, because identical nodes root identiaedhssubspaces, and
correspond to identical reasoning subproblems. Any tweeadHat root identical
weighted can benergedreducing the size of the search space. Some of these nodes
can be identified based on graph-basedtexts

First, we present the notion ofduced width of a pseudo tree Gf[4] which is nec-

essary for bounding the size of the AND/OR search graphs.ailete by, rs(7)
a linear DFS ordering of a treg.

13

DEFINITION 22 (induced width of a pseudo tree)The induced width of7 rela-
tive to a pseudo tre&, wr(G), is the induced width alondprs(7) ordering of
the extended graph df relative to7, denoted?”.

We now provide definitions which allow identifying nodestthan be merged. The
idea is to find a minimal set of variable assignments from tireenit path that will
always root the same conditioned subproblem, regardleigeadissignments that
are not included in this minimal set. Since the path for an ©&exX; and an AND
node(X;, x;) differ by the assignment oX; to z; (Definition 16), the minimal set
of assignments that we want to identify will be different f&f and for (X, z;).
The following definitions distinguish between two types ohtext-based caching
which may vyield into two different schemes. The differencyseem a bit subtle.
In these definitions, ancestors and descendants are wbate® the pseudo tree
7T, while connection is with respect to the primal gragh

DEFINITION 23 (parents) Given a primal graphz and a pseudo tre@ of a rea-
soning problenP, theparentsof an OR nodeX;, denoted byua; or pay,, are the
ancestors ofX; that have connections ¥ to .X; or to descendants of;.

DEFINITION 24 (parent-separators) Given a primal graphz and a pseudo tree
7 of a reasoning problerf?, the parent-separatoisf X; (or of (X, z;)), denoted
by pas; or pasy,, are formed byX; and its ancestors that have connectiong-ito
descendants of;.

It follows from these definitions that the parentsXf, pa;, separate in the primal
graphG (and also in the extended gragh and in the induced extended graph
G77) the ancestors ak; from its descendants. Similarly, the parent-separatdrs se
of X;, pas;, separate the ancestors.f from its descendants. It is also easy to see
that each variablé; and its parentpa; form a clique in the induced graphi” .

The following proposition establishes the relation betwee andpas;.

PROPOSITIONL ([4]) (1) If Y is the single child ofX in 7, thenpasx = pay. (2)
If X has childrenYy, ..., Y}, in 7, thenpasx = U pay;.

THEOREM4 (context based merge [4])GivenG7", let ,,, and 7, be any two
partial paths in an AND/OR search graph, ending with two nodgsndn..

(1) If ny andn, are AND nodes annotated By;, z;) and
asgn(ﬂm)[paSXi] = asgn(ﬂm)[pasxi]
then the AND/OR search subtrees rootedibgndn, are identical.asgn(m,,)[pasx,]

is called theAND context of n;.
(2) If n; andn, are OR nodes annotated By; and

asgn(mn,)[pax;] = asgn(m,)[pax;]

14

(8)
Fatat

S S————— S\
AND [0] 1] 4] o]
xr@® @® & E®H © O
“~)

AND

AND

OR

AND

(c) OR contexts (d) Context minimal AND/OR graph (OR merge)

Fig. 3. AND/OR search graph for graphical models

then the AND/OR search subtrees rootea.pgndn, are identical.asgn(m,,) [pax,]
is called theOR context of n;.

DEFINITION 25 (context minimal AND/OR search graph) The AND/OR search
graph of R based on the backbone pseudo tfe¢hat is closed under the context-
based merge operator is callebntext minimal AND/OR search gramd is de-

noted byC7(R).

We should note that we can in general merge nodes based b@&NbDrand OR

contexts. However, Proposition 1 shows that doing just dninem renders the
other unnecessary (up to some some small constant faatabisl paper we will

use AND context based merging.

THEOREMS (complexity [4]) Given a graphical modeR, its primal graphG,
and a pseudo tre€ having induced widthv = w7 (G), the size of the context
minimal AND/OR search graph based 6nCr(R), isO(n - k"), wherek bounds
the domain size.

Example 3 Consider the example given in Figure 3(a). The AND contextadi e

node in the pseudo tree is given in square brackets. Thextamiaimal AND/OR
search graph (based on AND merging) is given in Figure 3(B)silze is far smaller

15

than that of the AND/OR search tree from Figure 1(c) (16 vs. BiDAodes).

Similarly, Figure 3(d) shows the context minimal AND/OR grapked on the OR
contexts given in Figure 3(c). Its size is larger than thatred AND based graph
(38 vs. 16 AND nodes) in this case.

4.4 Finding Good Pseudo Trees

The performance of any AND/OR search algorithm is influenicedvily by the
quality of the pseudo tree. In [1-3] we described two heigsgor generating small
induced width/depth pseudo trees. Thm-fill heuristic extracts the pseudo tree by
a depth-first traversal of the induced graph obtained by afithielimination or-
dering [28]. Thehypergraph partitioningheuristic constructs the pseudo tree by
recursively decomposing the dual hypergraph associatittie graphical model
[5]. We observed in [1-3] that the min-fill heuristic usuatjgnerates lower width
trees, whereas the hypergraph heuristic produces muchesmeapth trees. There-
fore, the hypergraph based pseudo trees appear to be fevévalkree search al-
gorithms, while the min-fill pseudo trees, which minimize gontext size, may be
more appropriate for graph search algorithms. Both hecsistan randomize their
tie breaking rule, yielding varying qualities of the gertethpseudo trees. In the
experimental section we provide an extensive evaluatitaildey the impact of the
pseudo tree quality on the AND/OR search algorithms.

5 AND/OR Branch-and-Bound with Caching

Traversing AND/OR search spaces by depth-first Branch-anci@or by best-
first search algorithms was described as early as [23,28)30¢ context of gen-
eral search spaces. In the following two sections we rethsitnecessary defini-
tions needed to describe the algorithms such as the notipartél solution trees
[23] to represent sets of solution trees, the exact evalnats well as the heuristic
evaluation function of a partial solution tree. We will thertroduce two classes
of memory intensive search algorithms that explore theecdamhinimal AND/OR
search graph of graphical models in eithedepth-firstor best-firstmanner for
finding optimal solution trees. The algorithms extend trgoathm presented in
[1-3] for exploring AND/OR search trees to exploring AND/@Rarch graphs us-
ing a flexible context-based caching scheme that can adaipé tcurrent memory
limitations.

DEFINITION 26 (partial solution tree) A partial solution tred” of a context min-
imal AND/OR search grapb's is a subtree which: (1) contains the root noglef
Cr; (2)if nin T" is an OR node then it contains one of its AND child nodeSn
and ifn is an AND node it contains all its OR childrend@?-. A node inZ” is called

16

atip node if it has no children iff”. A tip node is either @erminalnode (if it has
no children inC'7), or anon-terminaihode (if it has children irC'7).

A partial solution tree can be extended (possibly in sewgeagis) to a full solution
tree. It representsriension(1”), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes @eninal inCr is a
solution tree. We next define the exact evaluation functianartial solution tree,
and will then derive the notion of a lower bound for it.

DEFINITION 27 (exact evaluation function of a partial solution tree) The exact
evaluation functiory*(7") of a partial solution tre€l” is the minimum of the costs
of all solution trees represented @y, namely:

ATy =min{f(T) | T € extension(T")}

We definef*(7)) the exact evaluation function of a partial solution tree texb at
noden. Thenf*(7) can be computed recursively, as follows:

1. If T) consists of a single node thenf*(7)) = v(n).

2. Ifnis an OR node having the AND chitd in 77, thenf*(T") = w(n,m) +
f*(T!,), whereT! is the partial solution subtree @f that is rooted atn.

3. If n is an AND node having OR childremn,, ...,m; in T}, then f*(T)) =
Y f7(T),,), whereTy, is the partial solution subtree &f, rooted atm;.

Clearly, we are interested to find tife(7”) of a partial solution tre@” rooted at
the roots. If each non-terminal tip node of 7" is assigned a heuristic lower bound
estimateh(n) of v(n), then it induces a heuristic lower bound evaluation funrctio
on the minimal cost of”, as follows.

DEFINITION 28 (heuristic evaluation function of a partial solution tree) Given a
node-based heuristic functidrim) which is a lower bound on the minimal cost be-
low any noden, namelyi(m) < v(m), and given a partial solution tre€’ rooted

at noden in the context minimal AND/OR search graph, thetree-based heuristic
evaluation functiory (7)) of T}, is defined recursively by:

1. If T} consists of a single node thenf (7)) = h(n).

2. If nis an OR node having the AND chitd in 7, thenf(T)) = w(n,m) +
f(T!.), whereT! is the partial solution subtree @ that is rooted atmn.

3. If n is an AND node having OR childrem,, ..., m; in T/, then f(T)) =
Y f(T,.), whereT?, is the partial solution subtree &, rooted atm;.

During search we maintain an upper boutrids) on the optimal solution(s) as
well as the heuristic evaluation function of the currentipasolution treef (7"),
and we can prune the search space by comparing these twonegasis common
in Branch-and-Bound search. Namely/fifl”) > ub(s), then searching below the
current tip node of 7" is guaranteed not to reduaé(s) and therefore, the search

17

O W O~NOUDWNE

[y

Algorithm 1 : AOBB- C. AND/OR Branch-and-Bound Graph Search

Input: An optimization problen = (X, D, F, Z, min), pseudo-tred rooted atX;, parent separator setas;

(AND-context) for every variable;, heuristic functiorh(n).
Output: Minimal cost solution and an optimal solution assignment.

v(s) « 00; ST(s) «— 0; OPEN « {s} /1 Initialize search stack
Initialize cache tables with entries "NULL”" /1 Initialize cache tables

while OPEN # () do

n «— top(OPEN); removen from OPEN

if nis an OR node, labeled’; then

foreachz; € D; do
create an AND node’, labeled(X;, ;)
v(n') «— 0; ST(n') — 0

succ(n) «— succ(n) U {n'}

Ise ifn is an AND node, labeledX;, z;) then
cached — false; deadend — false

if Cache(asgn(mn)[pas;]) # NULL then

0]

ST(n) «— Cache(asg(mn)[pasi]).assignment; /1 Retrieve optimal

foreach OR ancestorn of n do
b — eval Parti al Sol utionTree(TV,)
if {b > v(m) then
deadend «— true
break
if deadend == false and cached == false then
foreach X; € childrens(X;) do
create an OR node’ labeledX ;
v(n') « o0; ST(n') — 0
succ(n) < succ(n) U {n'}

else ifdeadend == true then
L suce(p) «— suce(p) — {n}

while succ(n) == 0 do
if nis an OR node, labeled’; then
if X; == X1 then

else ifn is an AND node, labeledX;, z;) then

Cache(asgn(mn)|pasi]).assignment — ST(n); /| Save opti mal
if v(p) > (w(p,n) + v(n)) then

removen from succ(p)
n<p

/1 EXPAND

w(n,n’) — ZfeBT(XI_) flasgn(my)) /| Compute the OR-to-AND arc wei ght

v(n) « Cache(asgn(my)[pas;]).value /1l Retrieve val ue

assi gnnment

| cached « true /1 No need to expand bel ow

Add succ(n) ontop of OPEN /1 PROPAGATE

L return (v(n), ST(n)) /] Search is conplete

v(p) — v(p) +v(n) /1 Update AND node val ue (summation)
| ST(p) « ST(p) U ST (n) /1 Update solution tree bel ow AND node

Cache(asgn(my)[pas;]).value «— v(n) /1 Save AND node val ue in cache

assi gnment

v(p) — w(p,n) + v(n) /1 Update OR node val ue (m nim zation)
ST(p) « ST(n) U{(Xi,x:)} /1 Update solution tree bel ow OR node

space below can be pruned.

We considered so far the case when the best solution foundrss maintained
at the root node of the search tree. It is also possible totaiaithe current best
solutions for all the OR nodes along the active path betwkerip nodet of 7"
ands. Then, if f(T)) > ub(m), wherem is an OR ancestor afin 77 andT is
the subtree of” rooted atm, it is also safe to prune the search space beldihis

18

Algorithm 2 : Recursive computation of the heuristic evaluation functio

function: eval Par ti al Sol uti onTree(T})
Input: Partial solution subtre®), rooted at nodex.
Output: Heuristic evaluation functiorf (T7,).

1

©Coo~N O ar~rWN

if succ(n) == 0 then
| return h(n)
else
if n is an AND noddhen
L letmy, ..., my, be the OR children of in T/,

return 25:1 eval PartialSolutionTree(T},.)
else ifn is an OR nodé¢hen

let m be the AND child ofn in T},
return w(n, m) + eval PartialSolutionTree(T},)

provides an efficient mechanism to discover that the segatesbelow a node can
be pruned more quickly. For illustration, see also Sectiom[&].

The depth-firstAND/OR Branch-and-Boundlgorithm, ACBB- C, for searching
AND/OR graphs for graphical models, is described by Aldoritl. It interleaves a
forward expansion step of the current partial solution {(E€PAND) with a back-
ward propagation stedPROPAGATE) that updates the node values. This part is
identical to the tree-based variant [1] and we describerg far completeness.

The context based caching uses table representation. ElmvadableX;, a table
is reserved in memory for each possible assignment to ienpaeparator sets;
(i.e., AND context). During search, each table entry records thtér@l solution
(both the cost and an optimal solution tree) to the subproldelow the corre-
sponding AND node. Initially, each entry has a predefinede/ah our casé&lULL.
The fringe of the search is maintained by a stack calB&N. The current node
is denoted byn, its parent byp, and the current path by,. The children of the
current node are denoted bycc(n).

Each node: in the search graph maintains its current valGe), which is updated
based on the values of its children. For OR nodes, the curtentis an upper
bound on the optimal solution cost below nitially, v(n) is set toco if n is OR,
ando if n is AND, respectively. A data structur$l’(n) maintains the actual best
solution tree found in the subgraph rooted:afhe node based heuristic function
h(n) of v(n) is assumed to be available to the algorithm, either retddwem a
cache or computed during search.

Since we use AND caching, before expanding the current AN@emny its cache
table is checked (line 13). If the same context was encoedtbefore, it is re-
trieved from the cache, andicc(n) is set to the empty set, which will trigger the
PROPAGATE step. The algorithm also computes the heuristic evaludtination
for every partial solution subtree rooted at the OR ancssibr. along the path
from the root (lines 17-21). The search belaews terminated if, for some OR
ancestom, f(T!) > v(m), wherev(m) is the current upper bound on the opti-
mal cost belown. The recursive computation ¢gf7) based on Definition 28 is

19

described in Algorithm 2 (we give it here for completeness).

If a node is not found in cache, it is expanded in the usual Wapending on
whether it is an AND or OR node (lines 5-28)nlis an OR node, labeled;, then
its successors are AND nodes represented by the vaJuevariableX;’s domain
(lines 5-10). Each OR-to-AND arc is associated with the agppaite weight (see
Definition 19). Similarly, ifn is an AND node, labeledX;, x;), then its successors
are OR nodes labeled by the child variablesofin 7 (lines 22—26). There are no
weights associated with AND-to-OR arcs.

The node values are updated by BROPAGATE step (lines 30-43). It is triggered
when a node value has an empty set of descendants (note #etlasuccessor is
evaluated, it is removed from the set of successors in line®its means that all
its children have been evaluated, and their final values laeady determined. If
the current node is the root, then the search terminatesteihlue and an optimal
solution tree (line 33). Iz is an OR node, then its paremis an AND node, and
p updates its current valugp) by summation with the value of (line 34). An
AND noden propagates its value to its parenin a similar way, by minimization
(lines 36—-41). It also saves in cache the value and optinhatigo subtree below it
(lines 37-38). Finally, the current noaes set to its parent (line 43), because
was completely evaluated. Each node in the search grapmedsads the current
best assignment to the variables of the subproblem bel&@pécifically, ifn is an
AND node, thenST'(n) is the union of the optimal trees propagated frois1 OR
children (line 35). Alternatively, if» is an OR node and’ is its AND child such
thatn' = argmingcsucen)(w(n, m)+v(m)), thenST'(n) is obtained from the label
of n” combined with the optimal solution tree bela(line 41). Search continues
either with apropagationstep (if conditions are met) or with aaxpansiorstep.
Clearly,

THEOREM 6 (complexity) AOBB- Ctraversing the context minimal AND/OR search
graph relative to a pseudo treg is sound and complete. Its time and space com-
plexity isO(n-k*"), wherew* is the induced width of the pseudo tree adnldounds

the domain size.

Since the space required B¥BB- Ccan sometimes be prohibitive, we next present
two caching schemes that can adapt to the memory limitatidrmey use a parame-
ter calledcache boundor simply j-bound) to control the amount of memory used
for storing unifiable nodes.

5.1 Naive Caching

The first scheme, callathive cachingand denoted hereafter B¥OBB- C(j), stores
nodes at the variables whose context size is smaller thamual ¢o the cache
boundj. It is easy to see that whenequals the induced width of the pseudo tree

20

(c) AND/OR search graph

Fig. 4. lllustration of naive caching used BYBB- C(2) .

the algorithm explores the context minimal AND/OR graphfulhcaching.

As we mentioned earlier, a straightforward way of implenrepthe caching scheme

21

Fig. 5. lllustration of adaptive caching used AgBB- AC(2) .

is to have a&ache tabldor each variableX,, recording the context. Specifically, lets
assume that the context &f, is context(Xy) = { X1, ..., Xx } and|context(Xy)| <

j. A cache table entry corresponds to a particular instaotigt,, ..., ;. } of the
variables incontext(X}) and records the minimal cost solution to the subproblem
rooted at the AND node labeléXy, xy).

However, some tables might never get cache hits. Tead-cache§s,4] appear
at nodes that have only one incoming ak@BB- C(;) needs to record only nodes
that are likely to have additional incoming arcs, and thexs#es can be determined
by inspecting the pseudo tree. For example, if the conteatrafde includes that of
its parent, then there is no need to store anything for thae neecause it would be
definitely a dead-cache.

Example 4 Figure 4(c) displays the AND/OR search graph obtained witmtnee
caching schem@OBB- C(2) , relative to the pseudo tree given in Figure 4(b).
Notice that there is no need to create cache tables for vaeghl and B, because
their AND contexts include those of their respective paramtthe pseudo tree,
namelycontext(A) C context(H) and context(H) C context(B), respectively.
Moreover,AOBB- C(2) does not cache any of the AND nodes corresponding to

22

variable C' because its corresponding cache table, which is defined omi&bles
(e.g., A, B and(), cannot be stored in memory.

5.2 Adaptive Caching

The second scheme, calledaptive cachingand denoted byAOBB- AC(), is in-
spired by the AND/OR cutset conditioning scheme and wasdxpgtored in [31].
It extends the naive scheme by allowing caching even at nedlkesontexts larger
than the given cache bound, baseddjusted contexts

Specifically, consider the nod&; in the pseudo tred with contexrt(X;) =
{X1,..., X}, wherek > j. During search, when variablgsy, ..., X;_,} are in-
stantiated, they can be viewed as part of a cutset. The protdeted by.X)_;

can be solved in isolation, like a subproblem in the cutskése, after variables
Xi, ..., Xy—; are assigned their current values in all the functions. imshbprob-
lem, conditioned on the valu€sy, ..., z;—;}, context(Xy) = {Xip—ji1, ... Xi}

(we call this theadjusted contexof X,), so it can be cached withijtbounded
space. However, wheOBB- AC(j) retracts to variableX;_; or above, the cache
table for variableX, needs to be purged, and will be used again when a new sub-
problem rooted afX;_;; is solved. This caching scheme requires only a linear
increase in additional memory, compared to the n&@BB- C(;), but it has the
potential of exponential time savings, as shown in [31].

Example 5 Figure 5 shows the AND/OR graph traversed using the adapticieicg
schemeAOBB- AC(2) . In contrast to the naive scheme displayed in Figure 4,
AOBB- AC(2) caches the AND level corresponding to varialilebased on its
adjusted context. The adjusted AND context’a$ {C, B} and a flag is installed

at variable 4, indicating that the cache table must be purged whengvierinstan-
tiated to a different value.

6 Best-First AND/OR Search

We now direct our attention to laest-firstcontrol strategy for traversing the con-
text minimal AND/OR graph. The best-first search algorittsesisimilar amounts
of memory as the depth-first AND/OR Branch-and-Bound with &athing and
therefore the comparison is warranted.

Best-first search expands the nodes in order of their heugséluation function.

Its main virtue is that it never expands nodes whose costyerakthe optimal

one, unlike depth-first search algorithms, and therefosa®rior among memory
intensive algorithms employing the same heuristic evalndtinction [8].

23

1
2

©O©oO~NOO UL W

20

21
22
23
24
25

26
27

29
30
31

32
33

34
35
36
37

38
39

40

Algorithm 3 : ACBF- C: Best-First AND/OR Graph Search

Input: An optimization problen = (X, D, F, Z, min), pseudo tred rooted atX, parent separator setas;
(AND-context) for every variable;, heuristic functiorh(n).
Output: Minimal cost solution and an optimal solution assignment.
v(s) — h(s); Chr — {s}; /1 Initialize
while s is not labeledSOLV ED do
S—{shT —{}; /1l Create the marked PST
while S # @ do
n <t op(.S) ; removen from S
T —T' U{n}
let L be the set of marked successors:of
if L # 0 then
| addZ ontop ofS

let n be any nonterminal tip node of the marked (rooted ats) /'l EXPAND
if nis an OR node, labeled’; then
foreachz; € D; do
letn’ be the AND node irC”- having context equal tpas;
if n' == NULL then

create an AND node’ labeled{X;, ;)

v(n') < h(n')

wn,n') =3 o p) Flasgn(mn)

if n/ is TERMINALthen

| labeln’ as SOLVED

suce(n) « suce(n) U {n'}
else ifn is an AND node, labeledX;, z;) then
foreach X; € childreny(X;) do
create an OR node’ labeledX ;
v(n') « h(n’)

succ(n) «— succ(n) U {n'}

Ch — Cl U {succ(n)}
S —{n} /1 REVI SE
while S # 0 do
letm be a node irf such thatm has no descendants @ still in S; removem from S
if m is an AND node, labeledX;, z;) then
U(m) - ZmJ- Esucc(m) U(mj)
mark all arcs to the successors
labelm as SOLVED if all its children are labeled SOLVED

else ifm is an OR node, labele&; then
U(m) = min’m_j E€suce(m) (w(m,mj) + U(mj))
mark the arc through which this minimum is achieved
| labelm as SOLVED if the marked successor is labeled SOLVED

if m changes its valuer m is labeled SOLVEDhen
L add toS all those parents af: such thatn is one of their successors through a marked arc.

return v(s) /1 Search term nates

The best-first AND/OR searchlgorithm, denoted byAOBF- C, that traverses the
context minimal AND/OR search graph is described in Aldont3. It specializes
Nilsson’sAC" algorithm [23] to AND/OR search spaces for graphical modeid
interleaves forward expansion of the best partial solutiea EXPAND) with a cost
revision stepREVI SE) that updates node values, as detailed in [23]. The explicat
AND/OR search graph is maintained by a data structure calfedhe current node
isn, s is the root of the search graph and the current best partigico subtree is
denoted byl”. The children of the current node are denotedtoye(n).

24

First, a top-down, graph-growing operation finds the bestiglasolution tree by
tracing down through the marked arcs of the explicit AND/Gfarsh graphC’-
(lines 3-9). These previously computed marks indicate theeat best partial so-
lution tree from each node ifi’-. Before the algorithm terminates, the best partial
solution tree,T”, does not yet have all of its leaf nodes terminal. One of it3-no
terminal leaf nodesw is then expanded by generating its successors, depending on
whether it is an OR or an AND node.fis an OR node, labeled;, then its suc-
cessors are AND nodes represented by the valpygsvariable X;’s domain (lines
11-20). Notice that when expanding an OR node, the algoritbes not generate
AND children that are already present in the explicit seapaphC’, but rather
links to them. All these identical AND nodes @t are easily recognized based on
their contexts. Each OR-to-AND arc is associated with the@muate weight (see
Definition 19). Similarly, ifn is an AND node, labeledX;, z;), then its successors
are OR nodes labeled by the child variablesXgfin 7 (lines 21-25). There are
no weights associated with AND-to-OR arcs. Moreover, aisgarunderestimate
h(n') of v(n’) is assigned to each afs successors’ € succ(n).

The second operation AOBF- Cis a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (lines 27-39). It aims at updating tlauation function of any
subtree that might be affected, and marks the best oneingtarith the node just
expandedh, the procedure revises its valug:), using the newly computed values
of its successors, and marks the outgoing arcs on the estirhatt path to termi-
nal nodes. This revised value is then propagated upwartieigraph. The revised
valuewv(n) is an updated lower bound on the cost of an optimal solutidhésub-
problem rooted at. If we assume the monotone restriction/grcost revisions can
only be costincreases [32,23]. Therefore, not all ancesieed have cost revisions,
but only those ancestors having best partial solution tceesaining descendants
with revised values (lines 38—39). During the bottom-up skOBF- C labels an
AND node asSOLVED if all of its OR child nodes are solved, and labels an OR
node asSOLVED if its marked AND child is also solved. The algorithm terntes
with the optimal solution when the root nodés labeledSOL VED.

If h(n) < v(n), the exact cost at, for all nodes, and if. satisfies the monotone
restriction, then the algorithrAOBF- C will terminates in an optimal solution tree
[32,23]. The optimal solution tree can be obtained by trgciawn froms through
the marked connectors at termination and its optimal casgis to the value(s)
of s at termination. It is possible to show that since the alpaniexplores every
node in the context minimal graph just once, we get:

THEOREM7 (complexity) The best-first AND/OR search algorithm traversing the
context minimal AND/OR graph has time and space complexiiofk*"), where
w* is the induced width of the pseudo tree @nldounds the domain size.

AOBB versus AOBF. We highlight next the main differences between depth-first
AND/OR Branch-and-Bound¥0BB- C) and best-first AND/OR searcAQBF- C)

25

traversing the context minimal AND/OR search graph.

First, AOBF- C with the same heuristic function a0BB- C is likely to expand
the smallest number of nodes [8], but empirically this delsean how quickly
AOBB- Cwill find an optimal solution. Secondl3OBB- C can use far less memory
by avoiding dead-caches for exampdey(, when the search graph is a tree), while
AOBF- Chas to keep the explicated search graph in memory. TAR@BB- Ccan be
used as an anytime scheme, namely whenever interruptealgtivéhm outputs the
best solution found so far, unlikOBF- C which outputs a complete solution upon
completion only. All the above points show that the relaterit of best-first versus
depth-first over context minimal AND/OR search spaces cebeaetermined by
theory [8] and empirical evaluation is essential.

7 Overview of the Mini-Bucket Lower Bound Heuristics for AND/OR Search

The effectiveness of both depth-first AND/OR Branch-and-Bband best-first
AND/OR search algorithms greatly depends on the qualithefheuristic evalu-
ation functions. Naturally, more accurate heuristic eatgs may yield a smaller
search space, however at a much higher computational dostefbre, the right
trade-off between the computational overhead at each nudiéha pruning power
exhibited during search may be hard to predict. The primaryistic that we used
in our experiments is the Mini-Bucket heuristic, which wegaeted in [1,2]. For
completeness sake, we review it briefly next.

Mini-Bucket Elimination (MBE(7)) [10] is an approximation algorithm designed
to avoid the high time and space complexityBiicket Elimination(BE) [33], by
partitioning large buckets into smaller subsets, cathéni-bucketseach containing
at most; (calledi-bound) distinct variables. The mini-buckets are then essed
separately. The algorithm outputs not only a bound on thangptsolution cost,
but also a collection of augmented buckets, which form theesfar the heuristics
generated. The complexity is time and spatexp(i)). Both Bucket and Mini-
Bucket Elimination can also be viewed as message passingl&awes to root
along abucket tred34].

Static Mini-Bucket Heuristics. In [1,2] we showed that the intermediate functions
generated by MBE] can be used to compute a heuristic function that underes-
timates the minimal cost solution to the current subprobl&pecifically, given

an ordered set of augmented buckét(X,), ..., B(X,,)} generated by MBEJ
along the bucket tre@ (which is also a pseudo tree [4]), and given a nad@

the AND/OR search tree, thetatic mini-bucket heuristiéunction i(n) is com-
puted as follows: (1) if» is an AND node labeledX,, z,), thenh(n) is the sum

of all intermediate functions that were generated in buigketresponding to the
descendents ok, in 7 and reside in buckeB(X,) or the buckets correspond-

26

ing to the ancestors ok, in 7; (2) if n is an OR node labeled by, then
h(n) = min,,(w(n,m) + h(m)), wherem is the AND child ofn labeled with
valuez, of X,,.

Dynamic Mini-Bucket Heuristics. It is also possible to generate the mini-bucket
heuristic information dynamically, during search. Theade to compute MBE]
conditioned on the current partial assignment [1,2]. Smadly, given a bucket
tree 7, with buckets{ B(X}), ..., B(X,)}, a noden in the AND/OR search tree
and given the current partial assignmesgn(r,,) along the path ta, thedynamic
mini-bucket heuristidunction h(n) is computed as follows: (1) if. is an AND
node labeled X, x,), thenh(n) is the sum of the intermediate functions that re-
side in bucket3(.X,) and were generated by MB#(conditioned orusgn(m,,), in
the buckets corresponding to the descendants,oh 7; (2) if n is an OR node
labeledX,, thenh(n) = min,,(w(n, m) + h(m)), wherem is the AND child ofn
labeled with valuer,, of X,,. Given ani-bound, the dynamic mini-bucket heuristic
implies a much higher computational overhead compared théhstatic version.
However, the bounds generated dynamically may be far mangraie since some
of the variables are assigned and will therefore yield sendlinctions and less
partitioning.

8 Experimental Results

In [1,2] we evaluated empirically AND/OR search algorithfos AND/OR trees

only. We now extend this evaluation to algorithms explorihg context minimal

AND/OR search graphs just described. As in [1,2], we havelaoted a number of
experiments on two common optimization problems classegaphical models:
finding the Most Probable Explanation in Bayesian networkbsaiving Weighted
CSPs. We implemented our algorithms in C++ and ran all expetisran a 2.4GHz
single-core Pentium IV with 2GB of RAM, running Windows XP.

8.1 Overview and Methodology

Algorithms. We evaluated the following classes of memory intensive ADIR/
search algorithms guided by mini-bucket heuristics:

e Depth-first AND/OR Branch-and-Bound search algorithms withdaching, us-
ing static and dynamic mini-bucket heuristics, denotedABB- C+SMB()
andAOBB- C+DVB(i) , respectively.

e Best-first AND/OR search algorithms using static and dynamins-bucket heuris-
tics, denoted byAOBF- C+SMB(i) andAOBF- C+DMB(7) , respectively.

27

Table 1
Detailed outline of the experimental evaluation for Bayesian networks.

static mini-buckets| dynamic mini-buckets| min-fill vs. nave vs. | constraint
BB-C+SMB(i) BB-C+DMB(i) hypergraph | adaptive | propagation| Samlam | Superlink

Benchmarks AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching

AOBF-C+SMB(j) AOBF-C+DMB(i)

main
Coding 4 v - - - v
Grids v v v v v v -
Linkage v - v Vv - Vv v
appendix

ISCAS’'89 v Vv Vv Vv v Vv
UAI'06 Dataset 4 - Vv - - v

We compare these algorithms with those searching the ANDH@®& (without
caching) guided by the mini-bucket heuristics, denotedABB+SMB(;) and
AOBB+DIVB(7) , introduced in [1,2]. In addition, we also ran the tradiabi©OR
Branch-and-Bound search algorithms with full caching, dedblyBB- C+SMB(7)
andBB- C+DMVB() , respectively. In all cases, the paramétegpresents the mini-
bucketi-bound and controls the accuracy of the heuristic.

Throughout our empirical evaluation we will address thdofeing questions that
govern the performance of the proposed algorithms:

The impact of graph versus tree AND/OR Branch-and-Boundkear
The impact of best-first versus depth-first AND/OR search.

The impact of the mini-bucketbound.

The impact of the cache bourdn naive and adaptive caching.

The impact of the pseudo tree quality on AND/OR search.

The impact of determinism present in the network.

The impact of non-trivial initial upper bounds.

~No o~ wWNBRE

Since the pre-compiled mini-bucket heuristics requireadistvariable ordering,
the corresponding OR and AND/OR search algorithms usedahabte ordering
derived from a depth-first traversal of the guiding pseuede.t¥We note however that
AOBB- C+SMVB(i) and AOBB- C+DIVB(i) support a restricted form of dynamic
variable and value ordering. Namely, there is a dynamiamateordering of the
successors of the node just expanded, before placing thértlon search stack.
Specifically, in line 29 of Algorithm 1, if the current nodeis AND, then the
independent subproblems rooted by its OR children can beedoh decreasing
order of their corresponding heuristic estimates (vaeaibering). Alternatively,
if nis OR, then its AND children corresponding to domain valuesatao be sorted
in decreasing order of their heuristic estimates (valuemnd).

Bayesian Networks.For the MPE task, we tested the performance of the depth-
first AND/OR Branch-and-Bound and best-first AND/OR searchatlgms on the

28

Table 2
Detailed outline of the experimental evaluation for Weighted CSPs.

static mini-buckets| dynamic mini-buckets| min-fill vs. nave vs. AOEDAC
BB-C+SMB(i) BB-C+DMB(i) hypergraph | adaptive | AOEDAC+PVO toolbar

Benchmarks| AOBB-C+SMB(i) AOBB-C+DMB(i) pseudo trees caching | DVO+AOEDAC | toolbar-BTD

AOBF-C+SMB() AOBF-C+DMB(i) AOEDAC+DSO

main

SPOT5 v v v v v v
ISCAS'89 Vv v v v v v
Mastermind VA - v v v V4

following types of problems: random coding networks, gretworks, Bayesian
networks derived from the ISCAS’89 digital circuits benchikyagenetic linkage
analysis networks, and a subset of networks from the UAIf@érence Evaluation
Dataset. We report here some of the results and place thia test Appendix.

The detailed outline of the experimental evaluation for Bage networks is given
in Table 1. We also consider an extension of the AND/OR Braamui-Bound with

caching that exploits the determinism present in the Bagesawork by constraint
propagation.

For reference, we also compared with theM3AM version 2.3.2 software pack-
age'. SAMIAM is a public implementation of Recursive Conditioning [5] whic
can also be viewed as an AND/OR search algorithm. It usestaxtelbased caching
mechanism similar to our scheme. This version of recursivalitioning also ex-

plores a context minimal AND/OR search graph [4] and theeefts space com-
plexity is exponential in the treewidth. Note that when we asni-bucket heuris-

tics with high values of, we use space exponentiakifor the heuristic calculation
and storing, in addition to the space required for caching.

Weighted CSPsFor WCSPs we evaluated the performance of the AND/OR search
algorithms on the following types of problems: schedulingiglems from the SPOT5
benchmark, networks derived from the ISCAS’89 digital citeand instances of
the popular game of Mastermind. The outline of the expertaiezvaluation for
WCSPs is detailed in Table 2.

For reference, we also report results obtained with the-stathe-art solvers called
t ool bar [35]andt ool bar - BTD[36]2.t ool bar is an OR Branch-and-Bound
algorithm that maintains during search a form of soft locaisistency called Ex-
istential Directional Arc Consistency (EDAQ)ool bar - BTD extends théack-
tracking with Tree DecompositiofBTD) algorithm [7] and computes the guiding
heuristic information as well by enforcing EDAC during sdarlt can be shown

L Available at http://reasoning.cs.ucla.edu/samiam. We usetiaheht ool 1.5 pro-
vided with the package.
2 Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

29

that BTD explores a context minimal AND/OR search graph tredao a pseudo
tree corresponding to the given tree decomposition [4].dditeon, we also com-
pare with the depth-first AND/OR Branch-and-Bound tree sealgbrithms with
EDAC heuristics and dynamic variable orderings describgl,B]: ACEDAC+PVO
using partial variable orderingp/O+AOEDAC using full dynamic variable order-
ing, andACEDAC+DSOusing dynamic separator orderings, respectively. For a de-
tailed description of these ordering heuristics and thatweation, see [1,3].

The dynamic variable ordering heuristic used by the OR an®&MR Branch-and-
Bound algorithms with EDAC heuristics was th@n-dom/ddedheuristic, which
selects the variable with the smallest ratio of the domaa divided by the future
degree. Ties were broken lexicographically.

Measures of PerformanceWe report the CPU time in seconds and the number of
nodes visited, required for proving optimality. We spechg number of variables
(n), number of evidence variables)(maximum domain sizekj, the depth of the
pseudo treesh) and the induced width of the graphs*(obtained for the test in-
stances. When evidence is asserted in the networkndh are computed after the
evidence nodes were removed from the graph. We also reotittle required by
the Mini-Bucket algorithm MBE{) to pre-compile the heuristic information. The
pseudo trees that guide the AND/OR search algorithms werergted using the
min-fill and hypergraph partitioning heuristics (see Sat#.4). In our experiments
we ran the min-fill heuristic just once and broke the tiesdegraphically. The best
performance points are highlighted. In each table, "-” deadhat the respective
algorithm exceeded the time limit. Similarly, "out” inditess that the 2GB memory
limit was exceeded.

8.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in [1,2] demonstrateded conclusivelithe AND/OR Branch-
and-Boundree search algorithms with static mini-bucket heuristics wibe best
performing algorithms on this domain. The diference betw&@BB+SMB(;) and
the OR tree search counterp&®B+SMB(:) was more pronounced at relatively
smalli-bounds (corresponding to relatively weak heuristic estés) and amounted
to 2 orders of magnitude in terms of both running time and sizéhe search
space explored. For largebounds, when the heuristic estimates are strong enough
to prune the search space substantially, the diferenceebat®ND/OR and OR
Branch-and-Bound decreased. We also showedAGBB+SMB(i) was in many
cases able to outperform dramatically the current statbefart solvers for be-
lief networks such as®vlAM and SUPERLINK (for genetic linkage analysis). The
AND/OR Branch-and-Bound with dynamic mini-bucket heuristBB+DIVB(7)
proved competitive only for relatively smaHbounds due to computational over-
head issues. In this section we extend the empirical evatut memory intensive

30

depth-first and best-first AND/OR search algorithms.

8.2.1 Coding Networks

We experimented with random coding networks from the cldsbnear block
codes They can be represented as 4-layer belief networks Withodes in each
layer (.e., the number of input bits). The second and third layers spoad to
input information bits and parity check bits, respectivéiach parity check bit
represents an XOR function of the input bits. The first antlllagers correspond
to transmitted information and parity check bits, respetyi Input information
and parity check nodes are binary, while the output nodesealevalued. Given
a number of input bitd<, number of parent$ for each XOR bit, and channel
noise variancer?, a coding network structure is generated by randomly pickin
parents for each XOR node. Then we simulate an input signasbyming a uni-
form random distribution of information bits, compute tl@responding values of
the parity check bits, and generate an assignment to theitonggles by adding
Gaussian noise to each information and parity check bit. ddeading algorithm
takes as input the coding network and the observed reagdautput assignment
and recovers the original input bit-vector by computing arB/assignment.

Table 3 shows the results for solving two classes of randaimganetworks with

K = 64 and K = 128 input bits, using static and dynamic mini-bucket heursstic
The number of parents for each XOR bit wBs= 4 and we chose the channel
noise variancer®> € {0.22,0.36}. For each value combination of the parameters
we generated 20 random instances. The guiding pseudo teregy@nerated using
the min-fill heuristic. The top four horizontal blocks shdvetresults for static mini-
bucket heuristics, while the bottom four ones corresporaiyt@amic mini-buckets
heuristics. The columns are indexed by the mini-bueksdund, which we varied
between 4 and 20.

Tree vs. graph AOBB.When comparing the tree versus the graph search AND/OR
Branch-and-Bound algorithms we see th@BB- C+SMB(i) is slightly better than
AOBB+SMB(i) . We observe a similar picture when using dynamic mini-btske

well. This indicates that, on this domain, most of the caaheies were actually
dead, namely the context minimal AND/OR graph was very ctose tree. No-

tice that \MIAM was not able to solve any of these problem instances due to the
memory limit.

AOBF vs. AOBB. When comparing the best-first versus the depth-first algosth
using static mini-bucket heuristics, we see tAGBF- C+SMB(i) is better than
ACBB- C+SMB(¢) for relatively smalli-bounds {.e., i € {4,8}) which gener-

ate relatively weak heuristic estimates. For instance, laps¢ K = 64,0% =
0.22), best-first searciAOBF- C+SMB(4) is 4 orders of magnitude faster than
AOBB- C+SMB(4) . As thei-bound increases and the heuristics become more ac-

31

Table 3

CPU time and nodes visited for solvimgndom coding networks usingstatic and dy-
namic mini-bucket heuristicsas well as min-fill based pseudo trees. Time limit 5 minutes.
The top four horizontal blocks show the results for static mini-bucketisiges, while the
bottom four blocks show the dynamic mini-bucket heuristics.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(K, N) (w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(j) AOBF-C+SMB(j) AOBF-C+SMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33
- - 16.55 174,205 0.09 148 0.72 130 8.36 130
(64, 128) (27, 40) out 287.10 5,052,010 6.58 119,289 0.08 152 0.68 129 8.34 129
o2 =0.22 250.81 3,600,530 4.25 63,171 0.08 147 0.71 129 8.41 129
157 120 | 0.09 128 | 072 128 | 845 128
0.02 0.02 0.07 0.68 8.32
- - 76.38 807,319 0.99 10,688 0.81 1,189 8.41 158
(64, 128) (27, 40) out 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160
o2 =0.36 250.32 3,907,000 35.52 518,125 0.79 12,236 0.81 1,850 8.39 148
3.94 17,801 0.15 829 n 363 0.72 162 8.41 133
0.05 0.06 0.18 1.80 25.65
- - 256.23 1,766,930 30.57 213,184 3.30 11,073 25.88 1,656
(128, 256) (53, 71) out - - 229.02 3,227,110 16.67 206,004 3.51 22,644 25.87 3,081
0?2 =0.22 - - 218.58 2,206,490| 11.75 116,977 3.03 12,880 25.72 2,109
0.14 375 266 0.23 262 1.90 257 25.01 258
0.05 0.06 0.18 1.80 25.39
- - - - 264.57 1,732,960| 202.84 1,426,730 97.98 603,342
(128, 256) (53,71) out - - 291.61 4,309,160| 240.74 3,409,580| 188.44 2,617,880 110.89 1,137,120
o2 =0.36 - - 290.12 2,951,230 235.08 2,312,080 178.90 1,816,940| 100.32 781,438
out 66.98 260,350 19.18 88,692 26,499 28.01 18,357
BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
Samlam AOBB+DMB(j) AOBB+DMB(j) AOBB-+DMB(i) AOBB+DMB(j) AOBB+DMB(j)
(K, N) (w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
AOBF-C+DMB(i) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
22.46 9,331 0.41 183 141 130 12.80 130 | 122.67 130
(64, 128) (27, 40) out 23.62 20,008 0.35 185 1.37 129 12.77 129 | 121.12 129
02 =0.22 21.26 13,971 0.34 176 1.36 129 12.62 129 | 120.81 129
129 0.37 128 2.15 128 19.98 128 | 192.66 128
46.66 18,781 5.12 1,204 5.58 432 15.47 162 | 123.57 144
(64, 128) (27, 40) out 48.71 44,734 5.17 1,864 5.53 512 15.53 164 | 122.90 144
o2 =0.36 44.20 29,191 4.91 1,323 5.41 399 15.33 155 | 122.27 138
1.96 446 160 271 132 20.50 128 | 191.08 128
195.84 39,109 48.49 3,684 17.48 482 | 130.41 379 - -
(128, 256) (53,71) out 195.82 121,822 48.17 9,391 17.15 500 | 129.38 388 - -
02 =0.22 193.30 68,571 48.06 5,241 16.88 420 | 128.23 355 - -
260 1.58 256 11.18 256 | 131.50 256 - -
62,749 | 229.55 19,776 | 234.08 4,402 | 276.95 804 - -
(128, 256) (53, 71) out 289.09 223,938 | 229.91 46,768 | 233.96 7,947 | 276.31 953 - -
o2 =0.36 288.79 121,278 | 229.09 27,362 | 233.72 4,662 | 276.87 649 - -
202.41 16,041 W] 2,260 163.78 709 | 282.36 136 - -

32

random coding networks
(K=64, 5°=0.36) [minfill: w*=27, h=40]

1000 5
3 ——e—— AOBB+SMB(i)
rrrrrrrr O AOBB+DMB(i)
——-¥-—— AOBB-C+SMB(i)
100 4 ——A-—--- AOBB-C+DMB(i) /E
N — % — AOBF-C+SMB() e
Q AOBF-C+DMB(i) ,B/
':\)
5 103 :x ,/E?
) E “
b3 :
[0}
£ a
= 14 .
1 P
0.1 \.\ —~
] - "
0.01 . . . ; ; ; . . .
2 4 6 8 10 12 14 16 18 20 22
i-bound
random coding networks
. (K=64, cz=0.36) [minfill: w*=27, h=40]
] ——e—— AOBB+SMB(i)
S [oRRE AOBB+DMB(i)
107 3 ———v-—— AOBB-C+SMB()
—-—A-—-- AOBB-C+DMB(i)
. 1 — @ — AOBF-C+SMB(j)
AOBF-C+DMB(i)
» 105 3
3 E
o
o <4
S 104 4
103 E
102 5
107 . . . ; ; ; . . .
2 4 6 8 10 12 14 16 18 20 22

i-bound

Fig. 6. Comparison of the impact of static and dynamic mini-bucket heuristicsofeing
the random coding networks with parameter§ K = 64, 0% = 0.36) from Table 3. We
show the CPU time in seconds (top) and the number of nodes visited (bottom).

curate, the difference between Branch-and-Bound and bsstséarch decreases,
because Branch-and-Bound finds close to optimal solutionsaiad therefore will
not explore solutions whose cost is below the optimum, lést4irst search. When
looking at the algorithms using dynamic mini-bucket hetioss we notice that
AOBF- C+DIVB(7) is again far better thaAOBB- C+DVB() for smalleri-bounds.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dy-
namic mini-bucket heuristic we see that the latter is cortipetonly for relatively

33

smalli-bounds {.e., i € {4,8}). At higher levels of the-bound, the accuracy of
the dynamic heuristic does not outweigh its computationatioead.

Figure 6 plots the average running time and number of nodeted| as a func-
tion of the mini-bucket-bound, on the random coding networks with parameters
(K = 64,0% = 0.36) (i.e., corresponding to the second and fifth horizontal blocks
in Table 3). It shows explicitly how the performance of thgalthms changes
with the mini-bucket strength for both heuristics. Focgdor example on best-first
search, we see thatbound of 4 is most cost effective for dynamic mini-buckets,
while i-bound of 10 yields best performance for static mini-busk®¥e also see
clearly that the dynamic mini-bucket heuristic is more aatel yielding smaller
search spaces. It also demonstrates that the dynamic otkebheuristics are cost
effective at relatively small-bounds, whereas the pre-compiled version is more
powerful for largeri-bounds.

We addressed so far the impact of tree versus graph AND/ORIsalae impact
of the mini-bucketi-bound and best-first versus depth-first search regimeseln t
remainder we will also investigate the impact of the levetathing, the impact
of pseudo tree quality, the impact of determinism presenbhénetwork, as well
as the anytime behavior of AND/OR Branch-and-Bound and theaahpf good
initial bounds.

8.2.2 Random Grid Networks

In random grid networks, the nodes are arranged ivan/N square and each CPT
is generated uniformly randomly. We experimented with pFohinstances initially
developed by [37] for the task of weighted model counting.these problems/
ranges between 10 and 38, and, for each inst&xi¢e of the CPTs are determinis-
tic, namely they contain only O and 1 probability entried.\alriables are bi-valued.

Tables 4 and 5 show detailed results for experiments withd® gif increasing dif-
ficulty, using static and dynamic mini-bucket heuristickeTcolumns are indexed
by the mini-bucket-bound. We varied the mini-buckétbound between 8 and 16
for the first 3 grids, and between 12 and 20 for the remainirgsoRor each in-
stance we ran a single MPE query witthodes picked randomly and instantiated
as evidence. The guiding pseudo trees were generated bhsing-fill heuristic.

Tree vs. graph AOBB.First, we observe thaOBB- C+SMB(7) using full caching
improves significantly over the tree version of the algonthespecially for rela-
tively smalli-bounds which generate relatively weak heuristic estimdter exam-
ple, onthe90- 16- 1 grid, AOBB- C+SMB(8) is 3 times faster thaAOBB+SMB(8)
and explores a search space 5 times smaller. Notice alsagttiécant additional
reduction produced by the best-first search algorithtBF- C+SMVB(8) . While
overallAOBF- C+SMB(i) is superior tcAOBB- C+SMB(7) with the sameé-bound,
the best performance on this network is obtainedAdBB- C+SMB(16) . The al-

34

Table 4

CPU time and nodes visited for solviggd networks usingstatic mini-bucket heuristics
and min-fill based pseudo trees. Time limit 1 hour. Top part of the table shesudts for
i-bounds between 8 and 16, while the bottom part shisla@unds between 12 and 20.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
grid Samlam BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.02 0.03 0.03 0.06 0.06
90-10-1 0.23 3,297 0.06 373 102 0.06 102 0.06 102
(13, 39) 0.13 0.33 8,080 0.11 2,052 101 0.06 101 0.06 101
(100, 0) 0.14 2,638 0.06 819 101 0.06 101 0.06 101
0.27 2,012 0.11 661 100 0.06 100 0.06 100
0.03 0.03 0.14 0.44
90-14-1 126.69 1,233,891| 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450
(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938
(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 1,361 0.53 1,210
3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857
0.05 0.05 0.11 0.31 0.63
90-16-1 - - - - 40.05 345,255 2.38 16,942 1.23 5,327
(24, 82) 147.19 666.68 10,104,350| 173.49 2,600,690 14.36 193,440 2.97 39,825 2.08 23,421
(256, 0) 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 4,810
25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
0.28 0.64 1.69 4.60 19.14
90-24-1 - - - - - - - - - -
(33, 111) out - - 2338.67 24,117,151 1548.09 18,238,983 138.67 1,413,764| 146.85 1,308,009
(576, 20) - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
out 21.94 75,637 10.59 33,770 5,144 23.80 17,291
0.33 0.72 2.14 7.09 22.02
90-26-1 - - - - 395.67 1,635,447 - - 67.09 277,685
(36, 113) out 311.89 2,903,489 369.49 3,205,257 8.42 59,055 22.99 165,182 22.56 5,777
(676, 40) 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
19.06 65,271 24.39 79,619 7,190 8.05 3,777 22.44 1,435
0.47 0.98 7.98 30.44
90-30-1 - - - - - - - - - -
(43, 150) out 1131.07 9,445,224 386.27 3,324,942 350.28 3,039,966 149.69 1,358,569 97.09 485,300
(900, 60) 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715
158.97 534,385 46.73 157,187 47.27 154,496 m 45,201 57.97 100,800
0.63 1.25 3.72 11.66 40.00
90-34-1 - - - - - - - - - -
(45, 153) out - - - - - - - - 478.10 1,549,829
(1154, 80) - - - - - - - - 369.36 823,604
out out 243.63 596,978| 270.88 667,013| [7L.19] 67,611
0.78 1.67 4.20 12.36 43.69
90-38-1 - - - - - - - - - -
(47, 163) out | 2032.33 6,835,745 - - 807.38 2,850,393| 568.69 2,079,146 369.31 1,038,065
(1444, 120) 969.02 2,623,971| 1753.10 3,794,053| 203.67 614,868| 165.45 488,873| 113.06 214,919
101.69 174,786| 103.80 146,237 54.00 95,511 [m 78,431 73.10 59,856

35

Table 5

CPU time and nodes visited for solvingrid networks using dynamic mini-bucket
heuristics and min-fill based pseudo trees. Time limit 1 hour. Top part of the table shows
results fori-bounds between 8 and 16, while the bottom part shelsunds between 12
and 20.

min-fill pseudo tree
grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) | AOBB-C+DMB(i)
(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(j) AOBF-C+DMB() | AOBF-C+DMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102
(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101
(100, 0) 0.28 235 0.25 170 101 0.28 101 0.30 101
0.39 135 0.36 115 0.36 100 0.41 100 0.41 100
90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199
(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199
(196, 0) 46.94 7,641 22.72 1,996 281 7.20 211 10.19 199
54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199
90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262
(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260
(256, 0) 382.78 44,949 24550 11,855 65.41 1,430 48.61 525 260
194.08 11,453 252.99 6,622 94.88 1,061 75.41 413 38.46 258
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
90-24-1 2586.38 3,243 | 1724.68 700 | 2368.83 601
(33,111) 1367.38 2,739 | 1979.42 1,228 | 1696.56 598
(576, 20) - - - - 1,058 | 1211.99 788 | 1693.00 598
3456.77 11,818 1834.71 2,728 1153.48 855 | 1871.03 759 | 2573.08 591
90-26-1 - - - -
(36, 113) - - - - 1514.18 2,545| 2889.49 1,191 -
(676, 40) 2801.39 35,640| 2593.74 10,216 1,178 | 1698.70 861 | 2647.60 687
1262.76 5,392| 1737.01 2,585 1347.54 1,049 | 2587.10 828
90-30-1
(43, 150)
(900, 60)
90-34-1
(45, 153)
(1154, 80)
90-38-1
(47, 163)
(1444, 120)

gorithm is 2 times faster than the cache-la€BB+SMB(16) , and 155 times faster
than S\MIAM, respectively. When looking at the algorithms using dynammiici-
bucket heuristics (Table 5) we observe a similar pattermetathe graph search
AND/OR Branch-and-Bound algorithm improves sometimes §icamtly over the
tree search one. For instance, on 9 24- 1 grid, ACBB- C+DVB(16) is about
2 times faster thar\OBB+DMB(16) . Notice also that the AND/OR algorithms
with dynamic mini-buckets could not solve the last 3 testanses due to ex-
ceeding the time limit. The OR Branch-and-Bound search algos with caching
BB- C+SMB(i) (resp.BB- C+DMB(7)) are inferior to the AND/OR Branch-and-

36

time (sec)

nodes

grid network 90-14-1
[minfill: w*=22, h=66]

1000 3

AOBB+SMB(i)
AOBB+DMB(i)

———¥-—— AOBB-C+SMB(j)
BN ——A-—-- AOBB-C+DMB(j)
Be. 0 — —m — AOBF-C+SMB(i)
N lg —-—O—-— AOBF-C+DMB(i)
\Z:; ,D
b
\ . /,/D/._/'
\ ~ o .
AR N Ta
v
S|
RSN

i-bound

grid network 90-14-1
[minfill: w*=22, h=66]

20

107 3

——@—— AOBB+SMB(i)

rrrrrrrr O~ AOBB+DMB(j)
——-¥-—— AOBB-C+SMB(i
N —-—A-—-- AOBB-C+DMB(i
N — —& — AOBF-C+SMB(i
\‘ — —O—— AOBF-C+DMB(i

)
)
)
)

i-bound

37

20

Fig. 7. Comparison of the impact of static and dynamic mini-bucket heuristicsofeing
the90- 14- 1 grid network from Tables 4 and 5, respectively. We show the CPU time in
seconds (top) and the number of nodes visited (bottom).

Bound graph search, especially on the harder instarcgs40- 30- 1).

AOBF vs. AOBB. When comparing further the best-first and depth-first sedrch a
gorithms, we see again the superiorityA@BF- C+SMB(i) overAOBB- C+SMB(7) ,
especially for relatively weak heuristic estimates (sse &ligure 7). For example,
on the90- 38- 1 grid, one of the hardest instances, best-first search wetkrtiall-
est reported-bound ¢ = 12) is 9 times faster thaAOBB- C+SVB(12) and visits

15 times less nodes. The difference between best-first gutti-fiest search is not

90-24-1 grid network 90-26-1 grid network

[minfill: w*=33, h=111] [minfill: w*=36, h=113]
100 280
Q—:\—.—.—.—.—.—.—.—. 260 —_— e
90 4 \ o -
O-—_
N\ SO) 240 ‘\\O\\f
\ v X
. O~ 220 N ~_
80 - AN N N O~ _
= \ \ —~ 200 . ~q
© w \ S N N
F3 N @ N
» ~ \ » A4 0
; 70 1 V. o} - ; 180 \ ~
£ \\ . £ \\ Q
= - = 160 \
A N \
N w N\
60 ¥ a N N
. ~ 140 4 ~ -
~_ < o
o o
v - -
T vV 120 4 ~_ <
50 1 —e— AOBB+SMB(18) —@— AOBB+SMB(14) vy ©
—O- AOBB-C+SMB(18,]) 100] —©O— AOBB-C+sMB(14,) v v
—¥ - AOBB-AC+SMB(18,)) —-v— AOBB-AC+SMB(14,j)
40 T T 80

j-bound j-bound
90-30-1 grid network 90-38-1 grid network

[minfill: w*=43, h=150] [minfill: w*=47, h=163]

110 400

007 O wo{ @T=8_ O ¢ ¢ ¢ e

S~y > ~O-—— 0.
v S -
901 AN N ~o.
AN 300 x o_
N - \ N
—~ N N —~ \ ~
S 80 V\ \\ 9 \\ L,L\
w N) ~
& ~ ©- o S °
E 70 \\ © £ N o)
= © - N o
h N 200 .
60 A N \\
I A=Y N
N N Y- _
50] —®— AOBB+SMB(18) Y \D 150 1 —@— AOBB+SMB(16) v
—O— AOBB-C+SMB(18,)) v~ v —O~ AOBB-C+SMB(16,)) eSS
—-¥— AOBB-AC+SMB(18,)) —¥- AOBB-AC+SMB(16,) v
40 T T T T T T T T T T 100 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound

Fig. 8. Naive versus adaptive caching schemes for AND/OR BrandFBaund with static
mini-bucket heuristics ogrid networks. Shown is the CPU time in seconds.

too prominent when using dynamic mini-bucket heuristieshpps because these
heuristics are far more accurate than the pre-compiledyaktng a small enough
search space.

Static vs. dynamic mini-bucket heuristics. When comparing the static versus dy-
namic mini-bucket heuristics, we see as before, that thedoare more powerful
for relatively largei-bounds, whereas the latter are cost effective only fotively
smalli-bounds. Figure 7 shows the CPU time and size of the search sgplored,
as a function of the mini-bucketbound, on th&0- 14- 1 grid from Tables 4 and
5, respectively. Focusing oROBB- C+SMB(i) , for example, we see that its run-
ning time, as a function of, forms a U-shaped curve. At first & 4) it is high,
then as the-bound increases the total time decreases (when14 the time is
0.23), but then as increases further the time starts to increase again bethaese
pre-processing time of the mini-bucket heuristic outwsigfiie search time. The
same behavior can be observed in the case of dynamic miketsias well.

Impact of the level of caching Figure 8 compares the naive@B- C+SMVB(i, j))
and adaptiveAOBB- AC+SMB(i, j)) caching schemes, in terms of CPU time, on
4 grid networks from Table 4. In each test case we chose avediasmall mini-
bucketi-bound and varied the cache boupdthe X axis) from 2 to 20. We see
that adaptive caching improves significantly over the nasleeme especially for

38

90-14-1 - AOBB-C+SMB(i) 90-14-1 - AOBF-C+SMB(i)
[hypergraph: w*=23, h=37] [minfill: w*=22, h=66] [hypergraph: w*=23, h=37] [minfill: w*=22, h=66]

100 100
—— hypergraph —8— hypergraph
—O— minfill —O— minfill
10 10 4
° o
@ @
2 K
o o
£ £
14 14
0.1 0.1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
90-16-1 - AOBB-C+SMB(i) 90-16-1 - AOBF-C+SMB(i)
1000 [hypergraph: w*=26, h=43] [minfill: w*=24, h=82] 1000 [hypergraph: w*=26, h=43] [minfill: w*=24, h=82]
—e— hypergraph —e— hypergraph
—O— minfill —O0— minfill
100 o 100
S Iy
) @
@)
= 104 = 10
o o
£ £
N
14 Noo—0——0-=0" .
0.1 T T T T T 0.1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
90-24-1 - AOBB-C+SMB(i) 90-24-1 - AOBF-C+SMB(i)
10000 [hypergraph: w*=36, h=59] [minfill: w*=33, h=111] 1000 [hypergraph: w*=36, h=59] [minfill: w*=33, h=111]
—e— hypergraph —@— hypergraph
—0— minfill —O— minfill
1000 4 100 4
o o
8 &
o °
£ £
100 10 4
10 1
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound
90-26-1 - AOBB-C+SMB(i) 90-26-1 - AOBF-C+SMB(i)
10000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113] 1000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113]
—e— hypergraph —®— hypergraph
—O— minfill —0O— minfill
1000
100
S °
@ I3
))
~ 100 § =
o o
£ £
10 4
10 4
1 1
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound

Fig. 9. Min-fill versus ypergraph partitioning heuristics. CPU time in sesdnd solving
grid networks with AOBB- C+SVB(¢) (left side) andAOBF- C+SMB(i) (right side). The
header of each plot records the average induced width &nd pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the induizkd and
pseudo tree depth for the min-fill heuristic.

39

90-30-1 grid network 90-38-1 grid network
[minfill: w*=43, h=150] [minfill: w*=47, h=163]

—8— AOBB-C+SMB() —8— AOBB-C+SMB(j)
O AOBF-C+SMB(j) o ° O AOBF-C+SMB()
100 4 o
© (o]
o

o]

(MB)

memory usage (MB)

memory usage

0.001 T T T T T 0.01

Fig. 10. Memory usage b4OBB- C+SMB(i) andAOBF- C+SMB(¢) ongrid networks.

relatively smallj-bounds. This may be important because smiyalbunds mean re-
stricted space. At larg¢-bounds the two schemes are identical and approach the
full-caching scheme.

Impact of the pseudo tree Since the hypergraph partitioning heuristic uses a non-
deterministic algorithm, the runtime of the AND/OR seartdpathms guided by
the resulting pseudo trees may vary significantly from ometouthe next. In Fig-
ure 9 we display the running time distribution A0BB- C+SVB(i) (left side of

the figure) andhOBF- C+SMB(i) (right side of the figure) using hypergraph based
pseudo trees. For each reporidabund, the corresponding data point and error bar
represent the average as well as the minimum and maximunmgitimes obtained
over 20 independent runs. We also record the average induidédand depth ob-
tained for the hypergraph pseudo trees (see the header lofpéztan Figure 9).
We see that the hypergraph based pseudo trees, which haradfer depths, are
sometimes able to improve the performanceA@BB- C+SMB(i) , especially for
relatively smalli-bounds ¢€.g., 90- 24- 1). For largeri-bounds, the pre-compiled
mini-bucket heuristic benefits from the small induced widtibtained with the
min-fill ordering. ThereforeAOBB- C+SMB() using min-fill based pseudo trees
is generally faster. We also see that on averda@BF- C+SMVB(i) is faster when

it is guided by min-fill rather than hypergraph based pseudest This verifies
our hypothesis that memory intensive algorithms explotiedAND/OR graph are
more sensitive to the context size (which is smaller for fillrerderings), rather
than the depth of the pseudo tree.

Memory usage of AND/OR graph searchFigure 10 displays the memory usage
of AOBB- C+SMB(7) and AOBF- C+SMB(i) on grids90- 30- 1 and90- 38- 1,
respectively. We see that the memory requirements of thihdept algorithm are
significantly smaller than those of best-first search. Thimeicaus@OBF- C+SVB()
has to keep in memory the entire search space, uAllBB- C+SMVB(i) which can
save space by avoiding dead-caches for example. Moretréenddes cached by
AOBB- C+SMB(i) require far less memory because they only record the optimal
solution cost below them, whereas the nodes cachefldBF- C+SVB(i) must
store, in addition, the lists of their children in the seagcaph. For these reasons,

40

Fig. 11. A fragment of a belief network used in genetic linkage analysis.

we were able throughout the evaluation to run full cachinipdepth-first search.

8.2.3 Genetic Linkage Analysis

In human genetic linkage analysis [38], thaplotypeis the sequence of alleles
at different loci inherited by an individual from one parestd the two haplotypes
(maternal and paternal) of an individual constitute théividual’s genotypeWhen
genotypes are measured by standard procedures, the geaulist of unordered
pairs of alleles, one pair for each locus. Thaximum likelihood haplotyg&oblem
consists of finding a joint haplotype configuration for allmizers of the pedigree
which maximizes the probability of data.

The pedigree data can be represented as a belief networiwetintypes of random
variablesgenetic locivariables which represent the genotypes of the individinals
the pedigree (two genetic loci variables per individuallpeus, one for the paternal
allele and one for the maternal allelejenotypevariables, andelectorvariables
which are auxiliary variables used to represent the geneifidive pedigree. Fig-
ure 11 shows a fragment of a network that describes paréiitsinteractions in
a simple 2-loci analysis. The genetic loci variables of widlial 7 at locus; are
denoted byL; ;, and L, ;,,,. VariablesX; ;, S, ;, and S, ;, denote the phenotype
variable, the paternal selector variable and the mateslat®r variable of indi-
vidual: at locusj, respectively. The conditional probability tables thatrespond
to the selector variables are parameterized by¢hembination ratic? [39]. The
remaining tables contain only deterministic informatitircan be shown that given
the pedigree data, the haplotyping problem is equivalemotaputing the Most
Probable Explanation (MPE) of the corresponding beliefvogk (for more details
consult [39,40]).

41

Table 6

CPU time and nodes visited for solvirgenetic linkage networksusing static mini-
bucket heuristics. Time limit 3 hours. Top part of the table shows results #drounds
between 6 and 14, while the bottom part shaevi®unds between 10 and 18.

min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree | Samlam | Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(j) AOBF-C+SMB(i) AOBF-C+SMB(j)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes | time nodes

0.05 0.05 0.11 0.31 0.97
pedl - - - - 1.14 7,997 0.73 3911 | 131 2,704
(15, 61) 5.44 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 | 1.89 15,156
(299, 5) 4.19 69,751 217 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494

1.30 7,314 2.17 13,784 1,177 0.87 4,016 | 1.54 3,119

0.12 0.45 5.38 60.97 out
ped38 - - - -
(17, 59) out 8120.58 85,367,022 3040.60 35,394,461
(582, 5) 5946.44 34,828,046 1554.65 8,986,648| 2046.95 11,868,672| 272.69 1,412,976

out 134.41 348,723 216.94 583,401 103.17 242,429

0.11 0.74 5.38 37.19 out
ped50
(18, 58) out 476.77 5,566,578 104.00 748,792
(479, 5) 4140.29 28,201,843| 2493.75 15,729,294 66.66 403,234 52.11 110,302

78.53 204,886 36.03 104,289 m 25,507 38.52 5,766
i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes | time nodes

0.42 2.33 11.33 274.75 out
ped23 76.11 339,125 270.22 74,261
(27,71) out 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308
(310, 5) 193.78 1,726,897 74,672 13.33 23,557 274.00 62,613

out 15.33 58,180 14.36 12,987 out

0.67 5.16 21.53 58.59 out
ped37
(21,61) out 64.17 273.39 3,191,218| 1682.09 25,729,009| 1096.79 15,598,863| 128.16 953,061
(1032, 5) 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

[29.16] 72,868 | 38.41 102,011| 95.27 223398| 62,97 12,296

Tables 6 and 7 display the results obtained for 12 hard liakaglysis networks

(we show 5 networks in Table 6 and 7 networks in Table 7). Wentepnly on
search guided by static mini-bucket heuristics. The dyeamni-bucket heuristics
performed very poorly on this domain because of their prtiédy high compu-
tational overhead at largebounds. For comparison, we include results obtained
with SUPERLINK 1.6. SUPERLINK is currently one the most efficient solvers for
genetic linkage analysis, is dedicated to this domain, asssmbination of vari-
able elimination and conditioning, and takes advantagéefdeterminism in the

network.

Tree versus graph AOBB.We observe thahOBB- C+SMB(i) improves signifi-
cantly overAOBB+SMB(7) , especially for relatively smaitbounds for which the
heuristic estimates are less accuratep@d37, for example AOBB- C+SMB(10)

3 http://bioinfo.cs.technion.ac.il/superlink/

42

Table 7

CPU time and nodes visited for solvigenetic linkage networks Time limit 3 hours.
Shown here are 7 linkage networks in addition to the 5 networks from Table 6

min-fill pseudo tree
MBE(i) MBE(i) MBE(j) MBE(i) MBE(i)
pedigree | Samlam | Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
0.51 1.42 4.59 12.87 19.30
ped18 - - - - - - 1515.43 1,388,791
(21, 119) 157.05 139.06 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184, 5) 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972
out 127.41 542,156 42.19 171,039 m 53,961 19.91 2,027
1.42 5.11 37.53 410.96 out
ped20
(24, 66) out 3793.31 54,941,659 1293.76 18,449,393| 1259.05 17,810,674 1080.05 9,151,195
(388, 5) 1983.00 18,615,009| 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646
out out out out
0.34 0.89 3.20 10.46 33.42
ped25 - - - - - -
(34, 89) out 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541
(994, 5) 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 1,529,180
out out out out out
0.42 0.83 1.78 5.75 21.30
ped30
(23,118) out 13095.83 - - - - 214.10 1,379,131 91.92 685,661
(1016, 5) 10212.70 93,233,570| 8858.22 82,552,957 34.19 193,436 30.48 66,144
out out out 30.39 72,798 | [27.94] 18,795
0.58 231 7.84 33.44 112.83
ped33 - - - - - - - - - -
(37, 165) out 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988| 159.50 1,647,488 2956.47 35,903,215
(581, 5) 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 | 1373.90 10,570,695
out 140.61 407,387 out [74.86] 134,068 out
0.52 2.32 8.41 33.15 81.27
ped39 - - - - - -
(23,94) out 322.14 4041.56 52,804,044| 386.13 2,171,470 141.23 407,280
(1272, 5) 968.03 7,880,928 61.20 313,496 93.19 83,714
out out 68.52 218,925 | [41.69] 79,356 87.63 14,479
4.20 31.33 96.28 out out
ped42
(25, 76) out 561.31
(448, 5) - 2364.67 22,595,247
out out [133.19] 93,831

is 7 times faster thaAOBB+SMB(10) and expands about 14 times fewer nodes. As

thei-bound increases the diference betwAe€BB- C+SMB(i) andAOBB+SMB(1)

decreases, as we saw before. Notice that the OR Branch-antiBath caching

BB- C+SMB(i) was able to solve only 3 out of the 12 test instanees (pedl,

ped23, ped18). The performance of &IAM was very poor and it was able to
solve only 2 instances, namghedl andped18.

AOBB vs. AOBF. As before, the overall best performing algorithm on thisadat
is best-firstAOBF- C+SMB(i) , outperforming its competitors on 8 out of the 12
test cases. Oped42, for instance AOBF- C+SVB(16) is 18 times faster than

43

ped50 linkage network ped50 linkage network

[minfill: w*=18, h=58] [minfill: w*=18, h=50]
10000 10°

—e— AOBB+SMB(i) —e— AOBB+SMB(i)
O~ AOBB-C+SMB(i) o O~ AOBB-C+SMB(i)
o, —¥— AOBF-C+SMB(i) o —w¥— AOBF-C+SMB(i)

s \
o J

100 4

)
odes
3
o

time (sec
|

!

!

Fig. 12. CPU time and nodes visited for solving ed50 linkage network.

the depth-first Branch-and-BoudsDBB- C+SMB(16) and explores a search space
240 times smaller. In some test caseg.(pedl, ped23, ped30) the best-first
search algorithm was up to 3 orders of magnitude faster thaeSLINK. Figure
12 displays the CPU time and number of nodes explored, as &adaraf the mini-
bucketi-bound, for theped50 instance. In this casédOBB+SMB(i) could not
solve the problem instance foe {6, 8}, due to exceeding the time limit.

Impact of the pseudo tree.Figure 13 plots the running time distribution of the
depth-first and best-first search algorithAGBB- C+SMB(i) (left side of the fig-
ure) andAOBF- C+SMB(i) (right side of the figure), guided by hypergraph based
pseudo trees, over 20 independent runs. We see that botittatg® perform much
better when guided by hypergraph based pseudo trees, abperi harder in-
stances. For instance, on thed33 network,AOBB- C+SMB(16) using a hyper-
graph based pseudo tree was able to outperfa@®B- C+SMB(16) guided by a
min-fill tree by almost 2 orders of magnitude. SimilaryOBF- C+SVB() with
hypergraph trees was able to solve the problem instancessaatb-bounds, un-
like AOBB- C+SMB(i) with a min-fill tree which succeded only fare {14, 18}.
Notice that the induced width of this problem along the milefider is very large
(w* = 37) which causes the mini-bucket heuristics to be relativedyakvas well as
a large number of dead caches.

Table 8 displays the results obtained for 6 additional Iggkanalysis networks us-
ing hypergraph partitioning based pseudo trees. We sel¢otzhypergraph tree
having the smallest depth over 100 independent runs. Toekeds our knowl-
edge, these networks were never before solved for the maxilikelihood hap-
lotype task. We see that the hypergraph pseudo trees offavitrall best perfor-
mance as well. This can be explained by the large inducechwidiich in this
case renders most of the cache entries dead (see for ingtaatche difference
betweenAOBB+SMB(i) andAOBB- C+SMB() is not too prominent). Therefore,
the AND/OR graph explored effectively is very close to a teeel the dominant
factor that impacts the search performance is then the adpiie guiding pseudo
tree, which is far smaller for hypergraph trees comparet wiin-fill based ones.
Notice also that best-first search could not solve any okthesworks due to mem-

44

ped1 - AOBB-C+SMB(i) ped1 - AOBF-C+SMB(i)

10000 [hypergraph: w*=19, h=31] [minfill: w*=15, h=61] 1000 [hypergraph: w*=19, h=31] [minfill: w*=15, h=61]
—@— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 o
100
< 100+ =
@ @
) 2
= = 10
o @
£ £
= 10 4 =
14
14
0.1 0.1
4 6 8 10 12 14 16 4 6 8 10 12 14 16
i-bound i-bound
ped23 - AOBB-C+SMB(i) ped23 - AOBF-C+SMB(i)
10000 [hypergraph: w*=24, h=38] [minfill: w*=27, h=71] 1000 [hypergraph: w*=24, h=38] [minfill: w*=27, h=71]
—@— hypergraph —@— hypergraph
—0O— minfill —O— minfill
1000
100
° °
) @
@ @
= 100 § =
o o
£ £
10 4
10 4
1 1
8 10 12 14 16 18 20 8 10 12 14 16 18 20
i-bound i-bound
ped30 - AOBB-C+SMB(i) ped30 - AOBF-C+SMB(i)
10000 [hypergraph: w*=26, h=51] [minfill: w*=23, h=118] 1000 [hypergraph: w*=26, h=51] [minfill: w*=23, h=118]
—— hypergraph —@— hypergraph
—O0— minfill —O— minfill
1000 -
o o
4 3
= = 100 q
o °
£ £
100
10 10
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound
ped33 - AOBB-C+SMB(i) ped33 - AOBF-C+SMB(i)
10000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165] 1000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165]
—@— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 o
S °
@ I3
))
e ~ 100
o o
£ £
100
10 1o
10 12 14 16 18 20 22 10 12 14 16 18 20 22
i-bound i-bound

Fig. 13. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solving
genetic linkage networkswith AOBB- C+SMB(i) (left side) andACBF- C+SMB(7) (right
side). The header of each plot records the average induced witltaiid pseudo tree depth
(h) obtained with the hypergraph partitioning heuristic. We also show the@tthwidth and
pseudo tree depth for the min-fill heuristic.

45

Table 8

Impact of the pseudo tree quality genetic linkage networks Time limit 24 hours. We
show results for the hypergraph partitioning heuristic (left side) and thefithiveuristic

(right side).
hypergraph pseudo tree min-fill pseuso tree
MBE() MBE() MBE() MBE(i)
BB-C+SMB(i) BB-C+SMBJ(i) BB-C+SMB()) BB-C+SMB(j)
pedigree Samlam (w*, h) AOBB+SMB(i) AOBB+SMB(i) (w*, h) AOBB+SMB(i) AOBB+SMB(i)
(n, d) Superlink AOBB-C+SMB(i) AOBB-C+SMB()) AOBB-C+SMB()) AOBB-C+SMB(i)
AOBF-C+SMB(i) AOBF-C+SMBY(i) AOBF-C+SMBY(i) AOBF-C+SMB(i)
i=20 i=22 i=20 i=22
time nodes time nodes time nodes time nodes
ped7 25.26 164.49 117.03 out
(868, 4) out - - - -
(36,60) | 88571.68 1,807,878,340 939517 195845851/ (32,133)
30504.84 285,084,124 27,761,219
out out out
ped9 67.93 300.06 76.31 out
(936, 7) out - - - - - -
(35,58) | 11483.89 231,301,374 3982.69 72,844,362|| (27,130) | 151550 15,825,340
892281 117,328,162 40,251,723 12,444,961
out out out
ped19 59.31 150.38 out out
(693, 5) out
(35,53) | 98941.75 1519,213,924 12530.00 174,000,317 (24,122)
45075.31 466,748,365 90,665,870
out out
ped34 42.21 209.51 out out
(923, 4) out - - - -
(34,60) | 70504.72 1,453,705377 13598.50 294,637,173 (32,127)
67647.42 1,293,350,829 220,199,927
out out
ped41 35.41 111.24 out out
(886, 5) out
(36,61) | 6669.50 84,506,068 531.40 4,990,995 (33, 128)
3891.86 31,731,270 2,318,544
out out
pedd4 32.92 140.81 57.88 344.68
(644, 4) out - - - - - - - -
(31,52) | 8388.18 196,823,840 401.84 7,648,962|| (26,73) 127.42 1114,641| 38547 668,737
3597.12 62,385,573 1,355,595 752,970 | 366.18 447514
out out out out

ory issues. The AND/OR Branch-and-Bound algorithms with fililrased pseudo
trees could only solve 2 of the test instanceg.(ped9 andped44). This is be-

cause the induced width of these problem instances was snmlgh and the mini-
bucket heuristics were relatively accurate to prune theckespace substantially,
thus overcomming the increase in pseudo tree depth. Ong tihan these experi-
ments demonstrate is that the selection of the pseudo treba&e an enormous
impact if thei-bound is not large enough.

Impact of the level of caching.Figure 14 displays the CPU time for solving 4
linkage analysis networks from Tables 6 and 7 ushaBB- C+SMB(i, j) (naive
caching) andAOBB- AC+SMB(¢, j) (adaptive caching), respectively. In each test
case we varied the cache boundthe X axis) from 2 to 20, and fixed the mini-
bucketi-bound to a relatively small value. We see again that adam@aching is

46

ped1 linkage network ped23 linkage network

[minfill: w*=15, h=61] [minfill: w*=27, h=71]
35 22
30 20 e—e 9o o o o o o o o
Q
\
25 \
\ 18
A \
g 2 \oR 3 N
n \ \\) N —O-_
by \ “ o e Y O \r\
E 15 \ ~ E N N
£ ® ~o = N N
~ Q AN °
~ N 14 ~
10 y~o AS On_
v~ N \\ O~ ~
\Q: . . v (XW'"’O"’”—O
5] —® AOBB:SMB(6) i i s 2] —e— AOBB+SMB(12) SNV Y
—O- AOBB-C+SMB(6,)) —0O- AOBB-C+SMB(12,))
—v~ AOBB-AC+SMB(6.) —v-- AOBB-AC+SMB(12,))
0 T T T T T T T T 10 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound
ped38 linkage network ped50 linkage network
[minfill: w*=17, h=59] [minfill: w*=18, h=58]
3500 600
] oo o o o o o o o o —e—o o+ oo &+ o
3000 500
2500 4
o-—
%--0 400
—~ So_ > a — LN
o 2000 4 v ° ~
3 \ N 5 \\O\
e \ N =~ 300
° AN
® \ 0 ® AN
E 1500] \ \ £ N\ o
\ \ \ el
\ \ 200 N
1000 - \ \
~_ \ N
\ v \
\ ~
s00] —® AOBBYSMB(12) NN 100 { —8— AOBB+SMB(10) N
—O-- AOBB-C+SMB(12,j) \Q— O~ AOBB-C+SMB(10,)) %»,,—)o—ﬂap’:gp),—v:{@
—v-- AOBB-AC+SMB(12,)) Tre—e—9—e—9 —¥-- AOBB-AC+SMB(10,j)
0 T T T T T T T T T T 0 T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22

j-bound j-bound

Fig. 14. Naive versus adaptive caching schemes for AND/OR BrandhBound with
static mini-bucket heuristics ggenetic linkage networks Shown is CPU time in seconds.

more powerful than the naive scheme especially, for redbtigmall j-bounds,
which require restricted space. As tixound increases, the two schemes approach
gradually full caching.

In the Appendix we provide additional empirical results oaetworks from the
UAI'06 Dataset (Section A.1) and circuit diagnosis netwso(section A.2). In the
following two subsections we look at the anytime behaviahefalgorithms and at
the impact of determinism.

8.2.4 The Anytime Behavior of AND/OR Branch-and-Bound $&eand the Im-
pact of Good Initial Bounds

As mentioned earlier, the virtue of AND/OR Branch-and-Bouedrsh is that, un-
like best-first AND/OR search, it is an anytime algorithm.niNgy, whenever in-
terrupted AOBB- C outputs the best solution found far, which yields a lowerrzbu
on the most probable explanation. On the other hAQBF- C outputs a complete
solution only upon termination. In this section we evaludie anytime behavior
of AOBB- C+SMB(i) . We compare it against the state-of-the-art local search al
gorithm for Bayesian MPE, calle@uided Local Searc(iGLS) first introduced in
[41], and improved more recently by [42].

a7

ped25 - graph search and static mini-buckets (i=20)

-140

-160

-180

————— AOBB-C+GLS+SMB(20)
AOBB-C+SMB(20)
777777 BB-C+GLS+SMB(20)

- BB-C+SMB(20)
— — — AOBF-C+SMB(20)

-200

log(probability)
\
\
\

-240

-260 o ——————— s

280 7 T T T T
0 10 20 30 40 50 60

seconds

ped37 - graph search and static mini-buckets (i=10)

-140

l

-150 o

[

| ———— AOBB-C+GLS+SMB(10)
[AOBB-C+SMB(10)

| 777777 BB-C+GLS+SMB(10)

’ — . —+—-- BB-C+SMB(10)

| — — — AOBF-C+SMB(10)
l
|

log(probability)
3
o

-190 - -

»200 t+-sr—-—"7—"+-"+—"+—"""r—"+—"+—"—""+17—"——Tr—————
0 10 20 30 40 50 60

seconds

Fig. 15. Anytime behavior oAOBB- C+SMB(i) onped25 andped37 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

GLS [43] is a penalty-based meta-heuristic, which worksumynaenting the objec-
tive function of a local search algorithm.§. hill climbing) with penalties, to help
guide them out of local minima. GLS has been shown to be saftdana solving
a number of practical real life problems, such as the tragedialesman problem,
radio link frequency assignment problem and vehicle rautitwas also applied to
solving the MPE in belief networks [41,42] as well as weighkAX-SAT prob-
lems [44].

The AND/OR Branch-and-Bound algorithms assumed a triviglahiower bound
(i.e., 0), which effectively guarantees that the MPE will be computeowever
it provides limited pruning. We therefore extend&@BB- C+SMB(i) to exploit

48

ped42 - graph search with static mini-buckets (i=16)

-80
-85
e
>
£ -90 A
5 ———— AOBB-C+GLS+SMB(16)
o AOBB-C+SMB(16)
s 1 < e BB-C+GLS+SMB(16)
> -95 A —-—--—-- BB-C+SMB(16)
o — — — AOBF-C+SMB(16)
-100 - - Y — ——
-106 —4V——— 77— 77 T T T T T T T T T
0 10 20 30 40 50 60
seconds
50 ped50 - graph search with static mini-buckets (i=12)
I
-65 - e
L
— |
> [
£ .70 - o
3 / [
3 j
3 o I
e | |
o 75 A :
2 | I
l —_— AOBB-C+GLS+SMB(12)
80 4 I | AOBB-C+SMB(12)
777777 BB-C+GLS+SMB(12)
——--—--- BB-C+SMB(12)
_ AOBF-C+SMB(12)
B e o T e e e L e e T B e e e e N B s e
0 10 20 30 40 50 60
seconds

Fig. 16. Anytime behavior oAOBB- C+SMB(i) onped42 andped50 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

a non-trivial initial lower bound computed by GLS. The aligom is denoted by
AOBB- C+GL.S+SMB() . For reference, we also ran the OR version of the algo-

rithm, denoted byBB- C+GLS+SVB(1)

Figures 15 and 16 display the search trace of the OR and ANRI@&Rithms on 4
genetic linkage networks presented earlier. We chose thebucketi-bound that
offered the best performance in Tables 6 and 7, respectaptyshow the first 50
seconds of the search. We ran GLS for a fixed number of flips e&/é&mt including
the GLS lower bound improves performance throughout. Ithaie test case, the
initial lower bound was in fact the optimal solution (we didtiplot the GLS run-
ning time because it was less than 1 second). Theref@BB- C+G.S+SMB(7)

49

Table 9

CPU time and nodes visited for solvirgenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limdg

min-fill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
pedigree Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) GLS | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes | time nodes
- - - - 1.14 7,997 0.73 3,911 | 1.31 2,704
pedl 5.44 | 8943.68 59,627,660/ 1367.98 9,013,771 3.84 1,798 4.05 2,524 | 475 2,077
(15, 61) 54.73 4.19 69,751 217 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494
(299, 5) 0.31 3.01 46,663 2.10 29,877 3,138 0.33 6,092 | 0.92 4,350
1.30 7,314 217 13,784 0.26 1,177 0.87 4,016 | 1.54 3,119
out
ped38 out
(17,59) 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976
(582, 5) 7.05 | 4410.70 32,599,034/ 780.46 4,487,470| 1650.05 9,844,485| 226.44 1,366,242
out 134.41 348,723 216.94 583,401 103.17 242,429
out
ped50 out - - - - - - 52.95 83,025
(18, 58) 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302
(479, 5) 5.30* 3177.43 24,209,840 1610.33 13,299,343 67.85 400,698 32.67 15,865
78.53 204,886 36.03 104,289 | [12.75] 25507 | 3852 5,766
i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes | time nodes
76.11 339,125 270.22 74,261 out
ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412
(27, 71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613
(310, 5) 3.94 196.68 1,720,633 73,082 10.58 20,329 274.26 60,424
out 15.33 58,180 14.36 12,987 out
- - - - out
ped37 out - 2073.12 10,612,906 - - 3386.01 16,382,262
(21,61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
(1032, 5) 8.97* 141,867 26.97 254,219 82.08 604,239 52.32 23,572
29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

andBB- C+A.S+SMB(i) were able to output the optimal solution quite early in the
search, unlikédOBB- C+SMB(i) andBB- C+SMB(i) . For instance, on theed50
network, AOBB- C+G.S+SMB(12) and BB- C+GLS+SMB(12) found the opti-
mal solution within the first second of searéxOBB- C+SVB(12) , on the other
hand, finds the optimal solution after 8 seconds, wheB8a<_+SMB(12) reaches

a flat (suboptimal) region after 18 seconds. In this cASBF- C+SMB(12) finds
the optimal solution after 25 seconds.

Tables 9 and 10 compare the OR and AND/OR search algoriththsawd without

an initial lower bound, as complete algorithms. AlgorithA@BB- C+E.S+SMVB()
andBB- C+GLS+SMB(i) do notinclude the GLS time, because GLS can be tuned
independently for each problem instance to minimize it g time, so we report

its time separately (as before, GLS ran for a fixed number @s)fliThe "*” by the
GLS running time indicates that it found the optimal solntio the respective prob-
lem instance. We see thBB- C+G_S+SMB(i) and AOBB- C+G.S+SMB(i) are
sometimes able to improve significantly o8- C+SVB(;) andAOBB- C+SMVB(7) ,

50

Table 10

CPU time and nodes visited for solvirgenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limdg

min-fill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
pedigree Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMBJ(i)
(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
1515.43 1,388,791
pedl18 157.05 1672.15 1,389,831
(21, 119) 139.06 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972
(1184, 5) 10.16 10780.40 107,804,665 170.14 1,824,835 37.64 396,961 11.66 118,170 2,720
out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027
out
ped20 out
(24, 66) 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646
(388, 5) 4.22 2079.43 18,611,778| 667.66 6,419,317 567.20 4,812,068| 682.03 2,653,400
out out out out
ped25 out -
(34, 89) 1644.67 12,631,406| 865.83 6,676,835 249.47 1,789,094 1,529,180
(994, 5) 11.03* 1644.87 12,631,282 864.09 6,676,061 245.79 1,788,621 239.08 1,529,588
out out out out out
ped30 out
(23,118) 13095.83 | 10212.70 93,233,570| 8858.22 82,552,957 34.19 193,436 30.48 66,144
(1016, 5) 11.00 | 10620.20 93,030,080, 9296.01 82,552,786 32.16 193,419 66,128
out out out 30.39 72,798 27.94 18,795
ped33 out
(37, 165) 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 | 1373.90 10,570,695
(581, 5) 6.86* 1550.76 11,528,022| 320.06 2,434,582 1970.72 15,124,932 80.61 453,446 1518.24 10,970,922
out 14061 407,387 out [74.86] 134,068 out
ped39 out
(23,94) 322.14 968.03 7,880,928 61.20 313,496 93.19 83,714
(1272, 5) 10.97* 518.04 6,473,615 59.14 313,340 81.24 61,291
out out 68.52 218,925 | [41.69] 79,356 87.63 14,479
out out
ped42 out
(25, 76) 561.31 2364.67 22,595,247
(448, 5) 4.25* 385.26 3,078,657
out out [133.19] 93,831

especially at relatively smalkbounds. For example, on theed37 linkage in-
stance AOBB- C+GLS+SMB(12) achieves almost an order of magnitude speedup
overAOBB- C+SMB(12) . Similarly, BB- C+GLS+SMB(12) finds the optimal so-
lution to ped37 in about 35 minutes, where&B- C+SMB(12) exceeds the 3
hour time limit.

In the Appendix we provide additional empirical results mytame behavior and
impact of initial good lower bounds, over grid networks an&l'06 networks (Sec-

tion A.3).

51

Table 11

CPU time and nodes visited for solvimgterministic grid networks with static mini-
bucket heuristics. Number of flips for GLS was set to 100,000. Time limit X.hou

min-fill pseudo tree
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
Samlam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(w*, h) GLS | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB()) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
90-24-1 out | 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294 69.53 386,785
(33,111) 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868
(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 6,891 23.87 39,175
out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291
146.97 878,874| 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
90-26-1 out 32.67 230,030 53.11 360,612 11,620 11.95 40,075 22.02 1,858
(36, 113) 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310 22.00 1,894
(676, 40) 0.56 15.09 104,775 32.85 219,037 10,932 8.06 8,128 24.42 1,658
19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435
652.15 3,882,300| 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715
90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,004
(43, 150) 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,540
(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 52,260 40.52 72,053
158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800
369.36 823,604
90-34-1 out 132.84 271,609
(45, 153) 1096.14 5,569,276 1772.51 5,516,888 294.11 630,406
(1154, 80) 131 550.55 2,944,055 651.04 2,614,171 124.16 238,333
out out 243.63 596,978| 270.88 667,013| [71.19] 67,611
969.02 2,623,971| 1753.10 3,794,053| 203.67 614,868| 165.45 488,873| 113.06 214,919
90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473 85.74 142,589
(47, 163) 854.61 2,498,702| 1822.71 3,792,826| 212.63 647,089 164.43 484,815 109.77 211,740
(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072 85.50 140,581
101.69 174,786 103.80 146,237 [m 95,511 53.44 78,431 73.10 59,856

8.2.5 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model exqbesh hard constraints
and general cost functions, it is beneficial to exploit theapatational power of the
constraints explicitly via constraint propagation [45}:480r Bayesian networks,
the hard constraints are represented by the zero prolyahiptes of the CPTs.
We note that the use of constraint propagation via direatioesolution [49] or

generalized arc consistency has been explored in [458]eicontext of variable

elimination algorithms where the constraints are alsoaex¢d based on the zero

probabilities in the network. The approach we take for hiagdhe determinism in
Bayesian networks is based onit resolutionfor Boolean Satisfiability (SAT). The
idea of using unit resolution during search for Bayesian néta/was first explored
in [47]. A detailed description of the CNF encoding based anzéro probability
tuples is provided in [1].

We evaluated the AND/OR Branch-and-Bound algorithm withictaiini-bucket
heuristics on selected classes of Bayesian networks cargaieterministic con-

52

ditional probability tablesi(e., zero probability tuples). The algorithm, denoted by
AOBB- C+SAT+SMB() exploits the determinism present in the networks by ap-
plying unit resolution over the CNF encoding of the zero-ptaibty tuples, at each
node in the search tree. We used a unit resolution schemkasimithe one em-
ployed byzChaf f , a the state-of-the-art SAT solver introduced by [50]. Waoal
consider the extension callg’DBB- C+SAT+G.S+SMB(i) which uses GLS to
compute the initial lower bound, in addition to the constt@ropagation scheme.

Table 11 shows the results for 5 deterministic grid netwdr&m Section 8.2.2.
These networks have a high degree of determinism encodbdimGPTs. Specifi-
cally, 90% of the probability tables are deterministic, aming only 0 and 1 prob-
ability tuples. We observe thatOBB- C+SAT+SMB() improves significantly over
AOBB- C+SMB(7) , especially at relatively smadtbounds. On gri®0- 30- 1, for
example AOBB- C+SAT+SMB(12) is 6 times faster thaAOBB- C+SMB(12) . As
thei-bound increases and the search space is pruned more&ffgdine differ-
ence betweeAOBB- C+SMB(i) and AOBB- C+SAT+SMB(i) decreases because
the heuristics are strong enough to cut the search spacéicsigtly. The mini-
bucket heuristic already does some level of constraintggapon. When looking
at the impact of the initial lower bound ofOBB- C+SAT+SMB(i) we see that
AOBB- C+SAT+GLS+SMB(7)) is sometimes able to improve even more. For ex-
ample, on theéd0- 34- 1 grid, AOBB- C+SAT+G.S+SMB(16) finds the optimal
solution in about 9 minutes (550.55 seconds) whefg&BRB- C+SAT+SMVB(16)
exceeds the 1 hour time limit.

In the Appendix we provide additional empirical results ba impact of determin-
ism over circuit diagnosis networks (Section A.4). Next weveto the class of
Weighted CSPs.

8.3 Results for Empirical Evaluation of Weighted CSPs

In [1,2] we showed that the best performance on this domasakgained by the
AND/OR Branch-and-Bounttee search algorithm with static mini-bucket heuris-
tics, at relatively largé-bounds, especially on non-binary WCSPs with relatively
small domain sizese(g., SPOT5 networks, ISCAS’89 circuits, Mastermind game
instances)AOBB+SMB(i) dominated all its competitors, including the classic OR
Branch-and-BoundB+SMB(i) as well as the OR and AND/OR algorithms that
enforce EDAC during search, namdlypol bar and theACEDAC family of al-
gorithms AOCEDAC+PVO, DVO+ACEDAC and ACEDACHDSO, respectively). The
AND/OR Branch-and-Bound with dynamic mini-bucket heursiBB+DVB(7)

was shown to be competitive only for relatively smabounds. In this section we
extend the evaluation to memory intensive depth-first arst-faest search.

53

Table 12

CPU time in seconds and number of nodes visited for solvingSIR®T5 benchmarks
usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar
spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC
(n, k, c) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOEDAC+DSO
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.05 0.33 21.66 150.99 4.56 218,846
29 6313.73 50,150,302 22.30 2,322 151.02 445 984
(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 151.02 481 545.43 7,837,447
(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 149.55 265 0.81 8,698
6.42 36,396 2.23 12,801 0.47 757 21.77 96 152.69 85 11.36 92,970
0.11 0.17 0.56 28.83 22358 -
42b 2159.26 9,5698,763| 145.77 684,109 224.11 3,426 9553.06 249,053,196
(18, 62) 1842.32 9,606,846 134.39 689,402 228.66 4,189 -
(191, 4, 1341) 1804.76 9,410,729| 116.98 584,838| 226.58 2,335 -
35.42 118,085 29.11 106,648 m 82,611 38.91 43,127 227.55 1,475 6825.40 27,698,614
0.02 0.03 0.11 1.24 1.24 0.31 21,939
54 664.48 5,715,457 2.06 17,787 0.38 2,289 1.27 236 1.27 236 0.18 779
(11, 33) 113.19 1,106,598 1.59 17,757 0.39 3,616 1.27 329 1.39 329 9.11 90,495
(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 1.24 120 0.06 688
0.41 2,714 631 0.16 312 0.69 68 1.41 68 0.75 6,614
0.01 0.02 0.09 1.11 3.97 151.11 6,215,135
404 4336.37 32,723,215 1981.90 15,263,175 5.09 139,968
(29, 42) 430.99 3,969,398| 151.99 1,373,846 14.83 144,535 1.44 3,273 4.11 367 152.81 1,984,747
(100, 4, 710) 174.09 1,396,321 51.88 529,002 2.55 23,565 1.16 598 411 232 12.09 88,079
1.45 7,251 1.20 6,399 5,140 1.22 576 4.27 184 1.74 14,844
0.01 0.09 0.33 8.37 35.39 -
408b - -
(24,59) 715.35 4,784,407 128.38 567,407 -
(201, 4, 1847) 7507.10 54,826,929 75.08 408,619 48.00 61,986 -
208.41 185,935 52.53 175,366 44.99 145,901 [ﬁ] 39,238 39.36 14,768 747.71 2,134,472
0.02 0.05 0.14 0.41 0.41 -
503 0.50 566 0.49 566 0.65 18,800
(9, 39) 435.26 5,102,299 421.10 4,990,898 0.44 641 0.44 641 -
(144, 4, 639) 189.39 2,442,998 291.72 4,050,474 0.42 256 0.42 256 10005.00 44,495,545
5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 144 53.72 231,480
0.05 0.11 0.66 47.19 365.69 -
505b - 33.62 1,119,538
(16, 98) 395.49 143,371 -
(240, 1721) - 1180.48 8,905,473| 375.57 16,020 -
51.86 149,928 42.73 144,723 [m 111,223 54.09 31,692 375.52 5,758 -

8.3.1 Earth Observing Satellites

SPOTS5 benchmark contains a collection of large real scireglproblems for the
daily management of Earth observing satellites [17]. Traylwe easily formulated
as WCSPs with binary and ternary constraints, as describdddh [

Tables 12 and 13 show detailed results on experiments witR@TS networks
using min-fill pseudo trees, as well as static and dynamid-inket heuristics.
The networks42b, 408b and505b are sub-networks of the original ones and
contain only binary constraints.

54

Table 13
CPU time in seconds and number of nodes visited for solvingSIR®T5 benchmarks
usingdynamic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree
spot5 BB-C+DMB() BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB() BB-C+DMB()
AOBB+DMB(j) AOBB+DMB()) AOBB+DMB()) AOBB+DMB()) AOBB+DMB(j)
(w, h) AOBB-C+DMB(i) AOBB-C+DMB() | AOBB-C+DMB() | AOBB-C+DMB() | AOBB-C+DMB()
(n, k, ©) AOBF-C+DMB(j) AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB()
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
29 4424 11637| 12572 9417| 54.86 354 | 627.30 320 | 1647.82 320
(14, 42) 6524 14438| 5292 11,850 | 121.83 364 | 627.29 330 | 1644.02 330
(83, 4, 476) 56.58 6017 | 5306 4638 12217 170 | 636.16 136 | 1794.60 136
942 21.83 537 | 3883 114 | 308.71 83| 983.80 83
42b -
(18, 62)
(191, 4, 1341) - - -
(145562 101,453 - - - - | 6002.69 212 - -
54 886.51 118219| 32.59 938 | 2497 236 | 32081 236 | 32115 236
(11, 33) 20214 69,362 2673 2,188 | 2219 329 | 27181 329 | 27155 329
(68, 4, 283) 8427 15214 8.80 357 | 10.86 120 | 137.39 120| 137.75 120
4.16 1,056 163 5.95 68 | 77.78 68 | 78.19 68
404 - 489525 78,692| 3450.31 3,008| 473.81 165
(19, 42) 24036 156,338 257.20 39,144 199.67 5612| 563.02 1,327| 287.53 395
(100, 4, 710) 6552 20457| 9883 6152| 99.78 952 | 320.49 286 | 171.02 155
[23.41] 4928 | 6580 2946 | 10130 847 | 351.37 201 | 217.45 106
408b -
(24,59)
(201, 4, 1847) - - - -
[655.41 70,655 | 2447.91 69,434 - - - -
503 - 246.65 566 | 246.65 566
(9, 39) 64.95 641 | 64.95 641
(144, 4, 639) - - - - - - 49.95 256 | 49.95 256
78.69 9143 | 32409 8175| 102540 5984| [25.14] 144 | [25.14] 144
505b - -
(16, 98)
(240, 1721) -
[681.40 33,969 | 2766.08 28,157| 3653.66 12,455

Tree vs. graph AOBB. We notice again the benefit of using caching within depth-
first AND/OR Branch-and-Bound search. As usual, the diffeesni running time
and number of nodes visited, betwes@BB- C+SMB(i) andAOBB+SMB(i) are
more prominent at relatively smaHbounds. For example, on tH&®8b network,
AOBB- C+SVB(12) outperformsAOBB+SMB(12) by 1 order of magnitude in
terms of both running time and size of the search space eqléis we saw before
for Bayesian networks, the impact of caching when using dyoamini-bucket
heuristics (Table 13) is not that pronounced as in the staise, acrossbounds.
Notice thatt ool bar andDVO+ACEDAC (rightmost column in Table 12) are able
to solve relatively efficiently only the first 3 test instascén the other hand,
t ool bar - BTDfails only on the408b instance and is overall quite competitive.

AOBB vs. AOBF. When comparing the best-first against the depth-first AND/OR
search algorithms we observe again here A&@RBF- C+SMB(i) improves signifi-
cantly (up to several orders of magnitude) in terms of both @Rig and number

of nodes visited, especially for relatively smabounds. For example, ds05b,

955

SPOTS5 404 network
[minfill: w*=19, h=42]

105 -
] ——e—— AOBB+SMB(j)
4 e O AOBB+DMB(|)
10¢ 4 ———y—— AOBB-C+SMB(i)
E — —A—- AOBB-C+DMB(i)
] — - — AOBF-C+SMB()
105 4 — —O—— AOBF-C+DMB(i)
)
(0]
2]
= 102 5
[0} E
£
101 -
100 3
10-1 T AL B T T T L L L AL B T T T L T
0 2 4 6 8 10 12 14 16
i-bound
SPOT5 404 network
108 [minfill: w*=19, h=42]
——e—— AOBB+SMB(i)
. 1 @& O AOBB+DMB(|)
107 5 ———%—— AOBB-C+SMB()
v _ —..—A-—-- AOBB-C+DMB(j)
106 . a = — B — AOBF-C+SMB()
= AOBF-C+DMB(i)
AL N
o
» 1053 \. -
(0] .
o)
3] \A\
S 104 4 _ -
E e == g \
3 —o N~
10° 4§ < 1
R N 1
102 4§
10° T T T T L L L —T
0 2 4 6 8 10 12 14 16

i-bound

Fig. 17. Comparison of the impact of static and dynamic mini-bucket heuristitsed 04
SPOTS5 network from Tables 12 and 13. We show CPU time (top) and number of nodes
(bottom).

one of the hardest instancé)BF- C+SMB(8) finds the optimal solution in less
than 30 seconds, whereA6BB- C+SVB(8) exceeds the 3 hour time limit.

Static vs. dynamic mini-bucket heuristics.Figure 17 displays the running time
and number of nodes, as a function of the mini-buckebund, on the404 net-
work (i.e., corresponding to the fourth horizontal block from Tabl@sahd 13,
respectively). We see that the power of the dynamic minkbtibeuristics is again
more prominent for small-bounds ¢.g., i = 2), for depth-first search. At larger

56

spot 29 - AOBB-C+SMB(i) spot 29 - AOBF-C+SMB(i)

1000 [hypergraph: w*=15, h=23] [minfill: w*=14, h=42] 1000 [hypergraph: w*=15, h=23] [minfill: w*=14, h=42]
—e— hypergraph —e— hypergraph
—O— minfil —O— minfill
100 100
) I
b3 2
= 104 = 10
o o
£ E
14 1
01 0.1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
i-bound i-bound
spot 54 - AOBB-C+SMB(i) spot 54 - AOBF-C+SMB(i)
100 [hypergraph: w*=12, h=16] [minfill: w*=11, h=33] 100 [hypergraph: w*=12, h=16] [minfill: w*=11, h=33]
—@— hypergraph —e— hypergraph
—O— minfill —O— minfill
10 4
10 4
° °
I3 I3
2 a
e = 1
o o
13 £
14
0.1 4
0.1 0.01
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
i-bound i-bound
spot 404 - AOBB-C+SMB(i) spot 404 - AOBF-C+SMB(i)
1000 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42] 100 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42]
—®— hypergraph —e— hypergraph
—O— minfill —O— minfill
100
10 §
0 0
) 3 0
:}’ 10 4 :)’ 7
E £ o
= = oy s
14 O\\o—{x\ /ﬂ
o _-©
4 e}
0.1 T 0.1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
i-bound i-bound
spot 503 - AOBB-C+SMB(i) spot 503 - AOBF-C+SMB(i)
10000 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39] 100 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39]
—®— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 4
10 4
< 100 4 =
I3 @
KA K
o o
£ £
= 10 4 =
14
14
0.1 T T T T T T 0.1
2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
i-bound i-bound

Fig. 18. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solving
SPOT5 networks wittAOBB- C+SVB(i) (left side) andAOBF- C+SMB(¢) (right side).
The header of each plot records the average induced wigthand pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the induizkd and
pseudo tree depth for the min-fill heuristic.

57

1-bounds, the static mini-bucket heuristics are cost affeckor instance, the dif-
ference in running time betwee&OBB- C+SVB(10) andAOBB- C+DIVB(10) is
about 2 orders of magnitude. Notice that in this ca&@BF- C+SNVB(i) outper-
forms AOBF- C+DMB(i) across all reporteétbounds.

Impact of the pseudo tree.In Figure 18 we show the running time distribution of
the algorithms using hypergraph based pseudo trees, oved@pendent runs. We
see again that the hypergraph based pseudo trees are semakila to improve the
performance of Branch-and-Bound search, especially fotivelg smalli-bounds
(e.g., 404, 503) for which the heuristic estimates are less accurate. Fsirfiret
search however, the min-fill pseudo trees offer the overst performance.

8.3.2 ISCAS’89 Benchmark Circuits

ISCAS’89 circuits are a common benchmark used in formal wattiion and diag-
nosis. For our purpose, we converted each of these cirotitginon-binary WCSP
instance by removing flip-flops and buffers in a standard wesating hard con-
straints for gates and uniform unary cost functions for tepihe penalty costs
were distributed uniformly randomly between 1 and 10, aswmlesd in [1].

Tables 14 and 15 report the results for experiments with riiits using static and
dynamic mini-bucket heuristics, as well as min-fill basedyuo trees.

Tree vs. graph AOBB.When comparing the tree versus the graph AND/OR Branch-
and-Bound search algorithms, we see again the same benefdtohg when using
pre-compiled mini-bucket heuristics.§., sees 1238 circuit). As before, the difer-
ence between the tree and graph AND/OR algorithms is not tomipent when
using dynamic mini-bucket heuristics (Table 15). The paniance oft ool bar

that is designed specifically for the WCSP domain was very padhs dataset
and it was not able to solve the any of the problem instancésmihe 1 hour
time limit. On the other hand,ool bar - BTD, which traverses an AND/OR search
graph, is more competitive on this dataset and solves 6 atedfO test instances.

AOBB vs. AOBF. When comparing the depth-first versus the best-first AND/OR
search algorithms (Tables 14 and 15), we see agaimibBiE- C+SMB(i) outper-
forms significantlyAOBB- C+SMB(i) , especially for relatively smaitbounds. For
instance, on the 1196 circuit, AOBF- C+SMB(10) is 2 orders of magnitude faster
thanAOBB- C+SVB(10) . A similar behavior can be observed when using dynamic
mini-bucket heuristics. For example, on te&@238 circuit, AOBF- C+DVB(8)
outperformsAOBB- C+DMVB(8) by one order of magnitude in terms of both run-
ning time and size of the search space explored. OvéY@Bf- C+SMB(i) is the
best performing algorithm on this dataset.

Static vs. dynamic mini-bucket heuristics.Figure 19 plots the performance as a
function of the mini-bucket-bound, on th& 880 network from Tables 14 and 15.

58

Table 14

CPU time in seconds and number of nodes visited for soN8@AS’89 circuits, using
static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
iscas AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(j)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
0.08 0.09 0.14 0.22 0.59
c432 - - - - 9.266 52,778 9.172 52,240 1.203 1,738 - -
(27, 45) 2010.53 23,355,897| 148.39 1,713,265 5.94 76,346 5.84 75,420 0.70 1,958 - -
(432,2) 422.08 2,945,230 40.91 337,574 6,254 0.89 6,010 0.64 914
39.33 196,892 0.52 2,154 1,007 0.38 847 0.67 445
0.08 0.08 0.28 0.67
c499 - - - - 4,495 6.20 35,314 1.62 3,350 - -
(23, 55) 96.46 1,265,425 39.65 526,517 18,851 37.26 486,656 2.16 22,065 | 100.96 1,203,734
(499, 2) 19.28 99,906 7.36 40,285 2,401 5.83 34,708 1.10 3,260
3.91 14,049 2.45 8,816 1,032 2.52 8,755 1.11 1,936
0.16 0.19 0.45 1.05
c880 - - - - - - - - 1173.93 4,792,550 - -
(27, 67) 1698.08 19,992,512 1316.73 15,247,946/ 505.75 5,835,825 1134.61 13,568,696/ 245.06 2,837,010 - -
(881, 2) 100.66 516,056 91.66 446,893 31.06 169,138 59.35 316,124 14.78 78,268
1.36 4,454 0.91 2,792 2,231 1.19 2,862 1.44 1,589
0.02 0.03 0.14 0.31
s386 0.33 2,015 0.33 2,281 1,734 0.31 1,191 0.47 1,191 - -
(29, 44) 0.14 2,073 0.33 4,867 2,699 0.22 1,420 0.37 1,420 0.19 738
172,2) 0.06 592 0.17 1,334 755 0.16 446 0.33 446
187 0.08 304 203 0.16 172 0.33 172
0.13 0.17 0.73 2.20
s935 - - - - - - - - - - - -
(66,101) | 2559.30 21,438,706 342.80 3,074,516 - - 41.34 348,699 7.86 51,441 151 11,368
(441, 2) 1285.07 6,623,608 143.53 763,933 - - 22.28 128,372 4.80 15,010
6.16 25,493 1.22 4,087 3,319 1.22 2,216 2.42 883
0.16 0.19 0.94 2.99
s1196 - - - - - - - - - - - -
(54,97) - - 1347.95 12,392,442 - - 1949.37 15,775,180, 384.20 3,318,953| 376.35 1,276,514
(562, 2) 3347.38 13,554,137| 503.30 2,425,152| 2299.72 11,488,366 734.66 3,524,780 149.81 793,417
22.67 72,075 9,336 13.02 40,210 7.27 21,989 3.56 2,090
0.16 0.38 0.92 3.20
51238 - - - - - - - - - - - -
(59, 94) - - - - 1722.53 18,302,873 1394.86 14,213,319 38.08 360,788 - -
(541, 2) 1897.37 8,386,634 1682.99 7,431,223| 281.05 1,350,933 248.27 1,220,658 12.64 59,635
34.09 137,960 29.41 111,205 12.31 53,095 6.64 26,101 7,142
0.12 0.14 0.17 0.31 0.69
s1423 - - - - - - - - 4.58 7,382 - -
(19, 44) 71.63 648,520 25.58 228,634 7.56 68,102 7.92 70,043 10.03 87,483 - -
(749, 2) 7.61 37,244 2.75 11,423 1.48 7,164 1.39 5,868 1.34 3,787
1.16 3,873 0.70 2,193 1,683 0.69 1,663 1.00 1,317
0.16 0.24 1.05 3.45
$1488 - - - - 23,620 13.75 25,420 13.64 16,834 - -
(47, 67) 6.67 50,613 46.83 430,141 4.00 29,729 5.19 33,827 5.20 17,904 1.80 9,315
(667, 2) 3.33 15,998 13.14 45,560 222 9,337 311 10,640 4.00 3,378
778 0.41 724 0.56 688 1.22 710 3.61 710
0.19 0.25 0.45 1.16 3.58
51494 - - 191.36 366,822 52.47 140,792 19.86 44,190 20.23 38,034 - -
(48, 69) 132.62 833,720 17.70 455,131| 376.65 3,207,718 15.49 83,318 18.47 124,765 241 12,122
(661, 2) 62.87 127,934 17,279 27.64 80,895 6.92 23,131 9.02 20,004
1.44 5,694 1,472 0.95 2,311 1.50 1,476 3.81 985

Table 15
CPU time in seconds and number of nodes visited for soN8@AS’89 circuits, using
dynamic mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.

min-fill pseudo tree
BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
iscas AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, d) AOBF-C+DMB(i) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(j)
i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes
c432 403.44 33,506 | 191.69 14,303 13.56 1,026 8.86 627 25.53 1,014
(27, 45) 45.59 34,904 25.83 16,482 6.94 1,070 4.55 692 18.44 1,067
(432,2) 35.19 3,861 20.69 2,302 6.69 860 4.53 627 18.38 773
448 2.28 444 3.02 434 4.92 432 16.64 440
c499 40.99 3,502 31.85 3,102 9.91 987 42.66 2,848 64.72 1,664
(23, 55) 26.13 13,529 14.44 6,101 4.33 1,002 25.91 3,353 55.08 1,736
(499, 2) 24.44 2,485 13.42 1,726 4.28 742 25.25 1,251 56.14 963
931 2.25 579 3.73 541 9.08 499 26.76 509
c880 - - - - 547.35 18,112 648.52 19,546 851.63 17,125
(27, 67) 1078.04 796,699| 762.16 569,471 85.64 32,748 170.55 36,187 411.42 20,357
(881, 2) 786.49 31,788 | 560.80 16,546 68.36 2,486 153.36 2,736 391.47 2,405
8.77 1,378 9.94 1,304 956 16.83 958 43.94 894
s386 2.58 1,191 291 1,191 341 1,191 4.28 1,191 5.97 1,191
(19, 44) 0.81 1,420 1.14 1,420 1.61 1,420 2.52 1,420 4.19 1,420
172,2) 0.69 446 1.02 446 1.53 446 2.44 446 4.05 446
172 0.50 172 0.86 172 1.53 172 2.89 172
s935 49.27 6,217 | 264.99 9,028 301.39 7,842 957.57 8,080 685.65 6,389
(66, 101) 18.27 7,400 | 234.47 10,250 267.02 9,164 915.57 11,164 653.32 8,377
(441, 2) 16.55 1,568 | 228.71 3,682 263.58 2,279 903.12 2,528 637.05 1,527
479 23.87 553 27.19 454 140.51 490 243.98 441
s1196 233.39 18,040 | 335.50 15,525 670.04 13,677 | 1362.32 11,939 | 2938.12 10,988
(54, 97) 61.64 21,849 | 114.16 17,524 246.02 15,443 921.08 13,687 | 2556.58 12,419
(562, 2) 50.80 3,787 97.53 3,160 217.97 2,888 857.35 2,772 | 2393.16 2,413
688 11.58 586 32.11 635 102.45 632 320.50 584

51238 784.04 34,905 | 521.27 15,685 | 1395.39 17,852 | 2021.31 11,264 - -

(59, 94) 266.45 39,493 | 188.83 21,252 566.96 20,945 913.24 13,857 - -

(541, 2) 242.16 8,792 | 174.80 4,265 544.35 4,511 887.65 3,078 - -
[18.69] 827 | 2247 666 | 57.59 501 | 192.10 632 | 1109.43 706
51423 - - 71.39 3,629 134.36 8,132 62.39 3,045 87.06 3,815
(19, 44) 38.36 26,772 35.02 17,801 36.19 19,719 22.27 3,513 36.83 4,323
(749, 2) 28.97 3,078 28.64 2,492 30.31 2,361 22.08 1,477 36.19 1,456
1,191 6.25 1,141 9.48 1,126 12.39 762 23.30 754
51488 146.03 14,365 | 139.83 12,475 181.58 12,748 306.35 12,748 730.54 12,748
(47, 67) 20.64 15,064 31.34 13,279 67.78 13,762 193.88 13,762 617.33 13,762
(667, 2) 18.33 2,824 29.20 2,634 65.34 2,576 190.94 2,576 614.10 2,576
670 5.61 668 13.80 667 41.81 667 141.00 667
s1494 276.49 23,931 | 267.91 21,032 246.30 14,898 228.83 9,465 841.61 9,498
(48, 69) 71.52 25,104 84.92 22,082 112.49 15,698 151.00 9,706 761.02 9,913
(661, 2) 66.25 4,794 78.97 4,018 110.36 3,059 149.30 2,386 753.68 1,959
10.42 758 679 20.38 667 58.75 666 189.33 665

Focusing for example 0AOBF- C+SMB(i) we notice again the U-shaped curve
formed by the running time.

Impact of the level of caching.Figure 20 displays the CPU time, as a function of
the cache boungd on 4 ISCAS’89 networks from Tables 14 usidgBB- C+SMB(4,

j) (naive caching) and\OBB- AC+SMB(i, j) (adaptive caching), respectively.
The spectrum of results is similar to what we observed befdanely, adaptive

60

ISCAS'89 c880 network
[minfill: w*=27, h=67]

105 5
3 ——@—— AOBB+SMB(i)
........ Q-+ AOBB+DMB(i)
. ——-v-—— AOBB-C+SMB(i)
10% 4 — —A— - AOBB-C+DMB(i)
] — —® — AOBF-C+SMB(i
1 s AOBF-C+DMB(i)
3 N
10 E AT N
] \
n
o 107 3 \:
€
= 1 o) - 4
1 \\‘/ S
107 4 \ P
5 N AT R ~v
L . _a
\Y e
100 5
. - S -
10-1 L L L L L L e e e L L B L
2 4 6 8 10 12 14 16 18 20
i-bound
ISCAS'89 c880 network
100 [minfill: w*=27, h=67]
——e— AOBB+SMB(j)
. 4 dieeees O AOBB+DMB(|)
107 3 ——-¥-—— AOBB-C+SMB(i)
3 — —A-—-- AOBB-C+DMB(i)
108 4 — —® — AOBF-C+SMB(j)
3 — —0O—— AOBF-C+DMB(i)
107 4 6\\
I
» 1 B N
[0}
T 10 + .
° 3 SRRy
] . RN ,//‘\
05] Ao T ~_
\ o v~
1 A\“ [SEREEIREES O -~
o] - /../ \A O eeeeene \M
& '~
] =N n =y = =g a
100 5 ~——" "0 -5 5 5 -
102 A
2 4 6 8 10 12 14 16 18 20
i-bound

Fig. 19. Comparison of the impact of static and dynamic mini-bucket heuristidhe
c880 ISCAS’'89 network from Tables 14 and 15. We show CPU time (top) and number
of nodes (bottom).

caching is more powerful than naive caching at smajl@ounds. As the cache
bound increases, the two schemes approach gradually @ilrga Notice that in-
stanced.196 and1488 have induced widths far larger than the maximum reported
j-bound, and therefore the caching schemes will becomeitdémthen; is closer

to the induced width.

Impact of the pseudo tree.The running time distribution over 20 independent
runs ofACBB- C+SMB(i) andAOBF- C+SMB(i) , using hypergraph based pseudo

61

ISCAS'89 circuit c432 ISCAS'89 circuit c880

[minfill: w*=27, h=45] [minfill: w*=27, h=67]
160 1400
—_—
e e o o o o o o o o
140 a 1200 5
N
N
120 0, 1000
\
A \\ —®— AOBB+SMB(10) \
S 100 \\ \ —O— AOBB-C+SMB(10,)) S 800] Y —— AOBB+SMB(10)
@ \ Q —¥— AOBB-AC+SMB(10,)) 3 —O— AOBB-C+SMB(10,)
2 \ AN ® X \ —-v— AOBB-AC+SMB(10,))
E 80 3 X € 600 \ N
= \ Q = \
\ \ o}
LS \ \ ~
~ \ \ N
60 N \ 400 \ o -
~o
V\\ b——o— ——O0-——0-— o ° \k\ °
~
40 B e e A A 200 AN O-—aL
ey
20 0 T
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound
ISCAS'89 circuit s1196 ISCAS'89 circuit s1488
[minfill: w*=54, h=97] [minfill: w*=47, h=67]
1400 50
——9o —9o 9o 9o 9o 0o o 0o o
——9o—9o 9o 0o 0o 0o o 0o o
45
o
1200 4 * RN
N AN
\]
N 40 \b
SN —— AOBB+SMB(10) o —@— AOBB+SMB(10)
1000 | A o-__ —O— AOBB-C+SMB(10,) 351 <5 —O— AOBB-C+SMB(10,)
R \\ a_ —-¥— AOBB-AC+SMB(10,)) S V\ ~ vy AOBB-AC+SMB(10,)
& \ N 2 30 \ s
o \ No. o \ SN
E AN O~ £ \ N
800 N AL 25 \ AN
A S ~ \ o
-~ O _ ~
v ~~0-—-0 A8 O
~ 20 N e o
600 o AN
Yy v _
T 15 Yy
M M e e e 4
400 10 T
0 2 4 6 8 10 12 14 16 18 20 22 0 2 4 6 8 10 12 14 16 18 20 22
j-bound j-bound

Fig. 20. Naive versus adaptive caching schemes for AND/OR BrandhBound with
static mini-bucket heuristics dSCAS’89 circuits. Shown is CPU time in seconds.

trees, is displayed in Figure 21. We observe again that, nmescases, the hyper-
graph trees are able to improve significantly the perforraai®ranch-and-Bound
as well as best-first search ., c880, s1238).

8.3.3 Mastermind Game Instances

Each of the Mastermind networks is a ground instance of dioak Bayesian
network that models differing sizes of the popular game o$tdamind. These net-
works were produced by therfMULA Systent and used in experimental results
from [51]. For our purpose, we converted these networkseqtavalent WCSP in-
stances by taking the negative log probability of each damthl probability table
entry. The resulting WCSP instances are quite large with tiebeu of bi-valued
variablesn ranging between 1220 and 3692, and containingnary and ternary
constraints.

Table 16 shows the results for experiments with 6 game instanf increasing
difficulty. The performance of the AND/OR algorithms withrédgmic mini-buckets
was quite poor in this case due to prohibitively high compaiel overhead at
largei-bounds and is therefore not shown.

4 http:/lwww.cs.auc.dk/jaeger/Primula

62

c499 - AOBB-C+SMB(i) c499 - AOBF-C+SMB(i)
[hypergraph: w*=24, h=35] [minfill: w*=23, h=45] [hypergraph: w*=24, h=35] [minfill: w*=23, h=45]

10000 1000
—@— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 o
100
< 100+ =
@ @
) 2
= = 10
o @
£ £
= 10 4 =
14
14
0.1 : 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
c880 - AOBB-C+SMB(i) c880 - AOBF-C+SMB(i)
10000 [hypergraph: w*=27, h=45] [minfill: w*=27, h=67] 1000 [hypergraph: w*=27, h=45] [minfill: w*=27, h=67]
—e— hypergraph —®— hypergraph
—O— minfill —O— minfill
1000
100
5 1004 5
) @
@ @
-~ ~ 10
o o
£ £
= 10 4 =
14
14
0.1 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
s1238 - AOBB-C+SMB(i) $1238 - AOBF-C+SMB(i)
10000 [hypergraph: w*=58, h=75] [minfill: w*=59, h=94] 1000 [hypergraph: w*=58, h=75] [minfill: w*=59, h=94]
—@— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 100
o o
4 3
= 100 § = 10
o °
£ £
10 4 1
1 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound
s1488 - AOBB-C+SMB(i) s1488 - AOBF-C+SMB(i)
10000 [hypergraph: w*=45, h=57] [minfill: w*=47, h=67] 100 [hypergraph: w*=45, h=57] [minfill: w*=47, h=67]
—e— hypergraph —@— hypergraph
—O— minfill —O— minfill
1000 §
10 4
° Iy
I3 @
))
~ 100 =
o o
£ £
14
10 4
1 0.1
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
i-bound i-bound

Fig. 21. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solv-
ing ISCAS’89 networks with AOBB- C+SIVB(¢) (left side) andAOBF- C+SMB(i) (right
side). The header of each plot records the average induced widjha6d pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also shevintuced
width and pseudo tree depth for the min-fill heuristic.

63

Table 16

CPU time and number of nodes visited for solvifgastermind game instances us-

ing static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.
t ool bar andt ool bar - BTD were not able to solve any of the test instances within
the time limit. The top part of the table shows the resultsifbounds between 8 and 18,
while the bottom part showisbounds between 12 and 22.

min-fill pseudo trees
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
n, rk) i=8 i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes time nodes
0.30 0.34 0.44 0.80 2.00 531
mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980
(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153
(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031
1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220
0.75 0.83 1.02 1.75 4.38 15.77
mm-03-08-04
(33,87) 92.64 150,642 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870
(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376
10.53 9,693 10.88 9,143 10.06 8,925 2,928 9.08 4,855 19.52 4,266
0.34 0.41 0.51 0.91 2.44 7.83
mm-04-08-03 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881
(26,72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570
(1418, 3,2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444
1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450
i=12 i=14 i=16 i=18 i=20 i=22
time nodes time nodes time nodes time nodes time nodes time nodes
1.36 2.08 4.86 16.53 65.19 246.45
mm-04-08-04
(39, 103) 494.50 744,993 | 270.60 447,464 | 506.74 798,507 80.86 107,463 206.58 242,865 280.07 62,964
(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 | 253.25 11,650
38.55 33,069 29.19 26,729 44.95 38,989 [m] 3,957 74.67 8,716 | 250.00 3,491
2.34 8.52 8.31 24.94 84.52 out
mm-03-08-05
(41, 111) 1084.48 1,122,008 1283.04 1,185,327
(3692, 3, 2) - - 117.39 55,033 282.35 86,588
out out 47307 199,725| [36.99] 8,297 | 131.88 21,950
1.64 3.09 7.55 21.08 77.81 out
mm-10-08-03
(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112
(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362
3,705 8.16 4,501 11.17 3,622 24.67 3,619 81.52 3,573

Tree vs. graph AOBB.We see again that using caching improves considerably the
performance of AND/OR Branch-and-Bound searely.(seenm 03- 08- 05).

We also note that ool bar andt ool bar - BTD were not able to solve any of
these instances within the time limit.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR search,
we see thatAOBF- C+SMVB(¢) offers the overall best performance on this do-
main as well. On them 03- 08- 05 instance, for exampl&OBF- C+SMVB(18)

is about 3 times faster tha#\OBB- C+SMB(18) and about 30 times faster than

64

mastermind mm-03-08-04

mastermind mm-04-08-04
[minfill: w*=33, h=87] [minfill: w*=39, h=103]
70 350
90— 9o 9o 0o 0o oo
o
‘& Q
60 \\\ 300
\Q \
Ad A3
50 \\ 250 o N
Y\ —&— AOBB+SMB(10) N\
S \\\\ —O— AOBB-C+SMB(10,)) S ‘\ \ @~ AOBB+SMB(16)
8 A\ —v¥— AOBB-AC+SMB(10,)) & \) —O- AOBB-C+SMB(16,))
< 40 W\ = 200 o —¥- AOBB-AC+SMB(16,))
£ VO H [N
= Tl = (RN
\ S \\ AN
30 O-——q 150 4
o k«\ A o (
- X
A N AN >~
N v \
20 \L‘*‘jg;:***&)-é«eu 100 v \
v—_ - — _
i e]
10 T T 50 T T
0 5 10 15 20 25 0 5 10 15 20 25
j-bound j-bound
mastermind mm-03-08-05 mastermind mm-10-08-03
[minfill: w*=41, h=111] [minfill: w*=51, h=132]
1200 120
1000 4 0] & O ® ¢ o o 9o 9o o o
=2 N
N
N Y-
800 A Q 80 4 -~O. —@— AOBB+SMB(12)
vy AN —&— AOBB+SMB(18) K\ ~o._ —O— AOBB-C+SMB(12,j)
<o \ \Q —O— AOBB-C+SMB(18,j) < \ o —¥— AOBB-AC+SMB(12,))
3 \ ~o —¥— AOBB-AC+SMB(18,) o \ N
~ 600 o ~ 60 o
P \ o ° AN ~o-
E \ A £ N TO0-=0-—-0o_
= \\ \ = “x ~o
400 4 \ \ 40 4 N
\ \ \,
\ \ AS
\ \ N
200 - \ \ 20
v__ \ M St
V¥ -9 T
0 : 0 T
0 5 10 15 20 25 0 5 10 15 20 25
j-bound j-bound

Fig. 22. Naive versus adaptive caching schemes for AND/OR BrandhBound with
static mini-bucket heuristics ddastermind networks. Shown is CPU time in seconds.

ACBB+SMVB(18) .

Impact of the level of caching.Figure 22 illustrates the CPU time, as a function
of the cache boung, on 4 problem instances from Table 16. We notice again the
superiority of adaptive caching at relatively smalbounds.

Impact of the pseudo tree.The running time distribution oAOBB- C+SIMVB()

and AOBF- C+SMB(i) guided by hypergraph pseudo trees over 20 independent
runs is displayed in Figure 23. The hypergraph trees are taowe® able to im-
prove slightly the performance of AND/OR Branch-and-Boundghatively small

i-bounds ¢.g., mm 04- 08- 04). For best-first search however, the min-fill based
pseudo trees offer the best performance.

Memory usage of AND/OR graph searchln Figure 24 we show again the signif-

icant memory requirements of best-first AND/OR search cospavith those of
the depth-first AND/OR Branch-and-Bound search with full ¢gagh

65

mm-03-08-03 - AOBB-C+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57]

100
—e— nhypergraph
—O— minfill
10 4
I
8
o
£
14
0.1 T
6 8 10 12 14 16 18 20
i-bound
mm-04-08-03 - AOBB-C+SMB(i)
100 [hypergraph: w*=22, h=35] [minfill: w*=26, h=72]
—8— hypergraph
—O— minfill
10 4
I
8
£
E [
Q 50—~
14 N, -
v
0.1 T
6 8 10 12 14 16 18 20
i-bound
mm-04-08-04 - AOBB-C+SMB(i)
10000 [hypergraph: w*=30, h=43] [minfill: w*=39, h=103]
—&— hypergraph
—O— minfill
1000
I
@
o
-~ 100 4
o
£
10 4
1 T T T T T T
10 12 14 16 18 20 22 24
i-bound
mm-10-08-03 - AOBB-C+SMB(i)
10000 [hypergraph: w*=41, h=55] [minfill: w*=51, h=132]
—@— hypergraph
—O— minfill
1000
S
@
)
=~ 1004
o
£
10 4
1 T
10 12 14 16 18 20 22 24
i-bound

mm-03-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57]

—&— hypergra
—O— minfill

ph

i-bound

mm-04-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=22, h=35] [minfill: w*=26, h=72]

20

—@— hypergraph

—O— minfill

i-bound

mm-04-08-04 - AOBF-C+SMB(i)
[hypergraph: w*=30, h=43] [minfill: w*=39, h=103]

20

—e— hypergraph

—O— minfill

i-bound

mm-10-08-03 - AOBF-C+SMB(i)
[hypergraph: w*=41, h=55] [minfill: w*=51, h=132]

100
10 4
o
o
A
°
£
1
0.1
6
100
10 4
S
o
2
o
£
1
0.1
6
10000
1000 4
0
I3
<
°
£
100 3
10
10
1000
100
°
@
A
©
£
10 4
1

—@— hypergraph
—O— minfill

12 14 16 18 20 22

i-bound

24

Fig. 23. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solving
Mastermind networks with AOBB- C+SMVB(i) (left side) andAOBF- C+SMB() (right
side). The header of each plot records the average induced widjhafd pseudo tree

depth (h) obtained with the hypergraph partitioning heuristic. We also shevinttuced
width and pseudo tree depth for the min-fill heuristic.

66

mm-03-08-05 Mastermind network mm-04-08-04 Mastermind network
[minfill: w*=41, h=111] [minfill: w*=30, h=43]

—&— AOBB-C+SMB(i) —@— AOBB-C+SMB(i)
O AOBF-C+SMB(i) O AOBF-C+SMB(i)

Fig. 24. Memory usage of th&OBB- C+SMB(i) andAOBF- C+SMB(7) algorithms on the
Mastermind networks from Table 16.

9 Related Work

The idea of exploiting structural properties of the problenorder to enhance the
performance of search algorithms in constraint satisfadgs not new. Freuder and
Quinn [24] introduced the concept of pseudo tree arrangeofenconstraint graph
as a way of capturing independencies between subsets ablesi Subsequently,
pseudo tree searcts conducted over a pseudo tree arrangement of the problem
which allows the detection of independent subproblemsatesolved separately.

More recently, [52] extended pseudo tree search [24] tarop#tion tasks in or-
der to boost the Russian Doll search [53] for solving Weight&Ps. Dechter’s
graph-based back-jumping algorithm [54] uses a depth{IDBEiS) spanning tree
to extract knowledge about dependencies in the graph. Thennof DFS-based
search was also used by [55] for a distributed constrairgfaation algorithm. Ba-
yardo and Miranker [25] reformulated the pseudo tree seagirithm in terms of
back-jumping and showed that the depth of a pseudo-treagamnaent is always
within a logarithmic factor off the induced width of the ghap

Recursive ConditioningRC) [5] is based on the divide and conquer paradigm.
Rather than instantiating variables to obtain a tree stradtonetwork like the cycle
cutset scheme, RC instantiates variables with the purposesaking the network
into independent subproblems, on which it can recurse ubegame technique.
The computation is driven by a data-structure catlege which is a full binary
tree, the leaves of which correspond to the network CPTsnlbeashown that RC
explores an AND/OR space [4]. A pseudo tree can be generededthe static
ordering of RC dictated by the dtree. This ensures that wiesn@C splits the
problem into independent subproblems, the same happeine AND/OR space.

Backtracking with Tree-DecompositidBTD) [7] is a memory intensive method

for solving constraint satisfaction and optimization gesbs which combines search
techniques with the notion of tree decomposition. This mhig@proach can be

67

viewed as searching an AND/OR search space whose backbeudqsee is de-
fined by and structured along the tree decomposition. Whaefimet in [7] as
structural goods, that is parts of the search space thatdweatl be visited again
as soon as their consistency (or optimal value) is knowrrgsponds precisely to
the decomposition of the AND/OR space at the level of AND rspaehich root
independent subproblems.

Value Elimination[6] is a recently developed algorithm for Bayesian inferente
was already explained in [6] that, under static variableeard), there is a strong
relation between Value Elimination and Variable Elimioati Given a static order-
ing d for Value Elimination, it can be shown that it actually treses an AND/OR

space [4]. The pseudo tree underlying the AND/OR searchgrapersal by Value

Elimination can be constructed as the bucket tree in redetdgowever, the traver-
sal of the AND/OR space will be controlled ldyadvancing the frontier in a hybrid
depth or breadth first manner.

10 Summary and Conclusion

The paper continues to investigate the impact of the AND/@&ch spaces per-
spective to solving general constraint optimization peofs in graphical models.
In contrast to the traditional OR space, the AND/OR sear@tesps sensitive to
problem decomposition. The size of the AND/OR search treebeabounded ex-
ponentially by the depth of its guiding pseudo tree. Thisliegpexponential time
savings for any linear space search algorithms travereim@ND/OR search tree,
in particular AND/OR Branch-and-Bound search, as we showgt-H8]. Specif-
ically, if the graphical model has treewidth*, the depth of the pseudo tree is
O(w* - logn). The AND/OR search tree can be extended into a graph by merg-
ing identical subtrees using graph information only. Tree sf the context min-
imal AND/OR search graph is exponential in the treewidthlevitihe size of the
context minimal OR search graph is exponential in the pattiwiSince for some
graphs the difference between treewidth and pathwidthastantial ¢.¢., balanced
pseudo trees) the AND/OR representation implies subslditie and space sav-
ings for memory intensive algorithms traversing the AND/@®Bph. Searching the
AND/OR search graph can be implemented by goods cachinggisearch.

We therefore extended the AND/OR Branch-and-Bound algorithtraversing an
AND/OR search graph rather than an AND/OR search tree byppg it with an
efficient caching mechanism. We investigated two flexibletert-based caching
schemes that can adapt to the current memory restrictionse $est-first search
strategies are known to be superior to depth-first ones wremary is utilized,
we also introduced a best-first AND/OR search algorithmtifaaerses the context
minimal AND/OR search graph.

68

All these algorithms can be guided by any heuristic functie investigated ex-
tensively the mini-bucket heuristics introduced earl8rdnd shown to be effective
in the context of OR search trees [9]. The mini-bucket héiaasan be either pre-
compiled (static mini-buckets) or generated dynamicalisiri search at each node
in the search space (dynamic mini-buckets). They are pdesired by the Mini-
Bucketi-bound which allows for a controllable trade-off betweenimic strength
and computational overhead.

We focused our empirical evaluation on two common optinniraproblems in
graphical models: finding the MPE in Bayesian networks andisgpMWCSPs. Our
results demonstrated conclusively that the depth-firstiesd-first memory inten-
sive AND/OR search algorithms guided by mini-bucket hdiagsimprove dra-
matically over traditional memory intensive OR search a$f a&over AND/OR
Branch-and-Bound algorithms without caching. We summarezé the most im-
portant aspects reflecting the better performance of ANDg@Rh search, such as
the impact of the level of cachin, the mini-buckebound, constraint propagation,
informed initial upper bounds and the quality of the guidpsgudo trees.

e Impact of the level of caching.We proposed two parameterized context-based
caching schemes that can adapt to the memory limitations.rBive caching
records contexts with size smaller or equal to the cachedgufhe adaptive
caching saves also nodes whose context size is beydrabed on adjusted con-
texts. Our results showed that for smalbounds, adaptive caching is more pow-
erfull than the naive scheme.§., grid networks from Figure 8, genetic linkage
networks from Figure 14, ISCAS’89 circuits from Figure 20)s Aore space
becomes available and thebound increases, the two schemes gradually ap-
proach full caching. The savings in number of nodes due tbingcare more
pronounced at relatively smaHlbounds of the mini-bucket heuristics. When the
heuristics are strong enough to prune the search spacestialty (i.c., large
1-bounds), the context minimal graph traversed by AND/OR Bhaand-Bound
is very close to a tree and the effect of caching is diminished

¢ Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket hewsstiith relatively large
1-bounds are cost effective.(., genetic linkage analysis networks from Tables
6 and 7, Mastermind game instances from Table 16). Howelvdreispace is
severly restricted, the dynamic mini-bucket heuristigsespy to be the preferred
choice, especially for relatively smaHlbounds €.g., ISCAS’89 networks from
Tables 14). This is because these heuristics are far motgadedor the same
1-bound than the pre-compiled version.

e Impact of determinism. When the graphical model contains both determinis-
tic information (hard constraints) as well as general costfions, we demon-
strated that it is beneficial to exploit the computationalpoof the constraints
via constraint propagation. Our experiments on selecteskek of deterministic
Bayesian networks showed that enforcing unit resolutiom theeCNF encoding
of the determinism present in the network was able in somesdasrender the

69

search space almost backtrack-freg.(ISCAS’89 networks from Table A.8).
This caused in some cases a tremendous reduction in runmaddr the cor-
responding AND/OR Branch-and-Bound algorithmg;(, see for example the
s953 network from Table A.8).

e Impact of good initial upper bounds. The AND/OR Branch-and-Bound algo-
rithm assumed a trivial initial upper bound (resp. initiaver bound for max-
imization tasks). We incorporated a more informed uppembofresp. lower
bound for maximization), obtained by first solving the iaitproblem via local
search. Our results showed that in some cases it causesentteaqus speed-up
over the initial approach (see for example the grid netwoskif Table A.5, and
the ISCAS’89 networks from Table A.8).

e Impact of pseudo tree quality. The performance of the depth-first and best-first
memory intensive AND/OR search algorithms is influencedificantly by the
guality of the guiding pseudo tree. We investigated two istias for generating
small induced width/depth pseudo trees. The min-fill bassdido trees usually
have smaller induced width but significantly larger depthereas the hyper-
graph partitioning heuristic produces much smaller depbhs but with larger
induced widths. Our experiments demonstrated that whemtheed width is
small enough, which is typically the case for min-fill basesktydo trees, the
strength of the mini-bucket heuristics compiled along ¢haslerings determines
the performance of the AND/OR search algorithmg.(SPOT5 networks from
Figure 18). However, when the graph is highly connected rétetively large
induced width causes the AND/OR algorithms to traverse achespace that
is very close to a tree and, therefore, the hypergraph janitig based pseudo
trees, which have far smaller depths than the min-fill bagexs pimprove per-
formance substantially(g., genetic linkage networks from Figure 13 and Table
8). This is because for tree search the depth of the pseusimters more than
the induced width.

Our best-first and depth-first AND/OR graph search appraaldae room for fu-
ture improvements, which are likely to make it more efficienpractice ACBF- C
may be improved in a variety of ways to render it more pratiicapecial situa-
tions. First, rather than recompute a new estimated besalpsolution tree after
every node expansion, it is possible instead to expand oneoeg leaf nodes and
some number of their descendants all at once, and then reterap estimated
best partial solution tree. This strategy can reduce thepatetional overhead of
frequent bottom-up operations but incurs the risk that snote expansions may
not be on the best solution tree.

As mentioned earlier, the space requiredA@BF- C can be enormous, due to the
fact that all nodes generated by the algorithm have to bedspwier to termina-
tion. Therefore, a memory bounding strategy may also be fasentext minimal
AND/OR graphs, as previously suggested in [23,29,56,5%7Employ it, the algo-
rithm periodically reclaims needed storage space by digogrsome portions of
the explicated AND/OR search graph. For example, it is jpbsg$D determine a

70

few of those partial solution trees within the entire seayaph having théargest
estimated costs. These can be discarded periodically, tivighrisk of discarding
one that might turn out to be the top of an optimal solutioe.tre

Acknowledgments

This work was partially supported by the NSF grants |IS-@#%5and 11S-0412854,
the MURI ONR award N00014-00-1-0617 and the NIH grant RO1-HAJ®-02.

References

[1] R. Marinescu and R. Dechter. And/or branch-and-bound kefanccombinatorial
optimization in graphical. Technical Report. University of California, Irvine
(submitted) 2008.

[2] R. Marinescu and R. Dechter. And/or branch-and-bound faplical models. In
International Joint Conference on Atrtificial Intelligence (IJCAPages 224-229,
2005.

[3] R.Marinescu and R. Dechter. Dynamic orderings for and/or bramx-bound search
in graphical models. liEuropean Conference on Artificial Intelligence (ECAlages
138-142, 2006.

[4] R. Dechter and R. Mateescu. And/or search spaces for graphadels. Artificial
Intelligence 171(1):73-106, 2007.

[5] A. Darwiche. Recursive conditioningprtificial Intelligence 126(1-2):5-41, 2001.

[6] F. Bacchus, S. Dalmao, and T. Pittasi. Value elimination: Bayesian imfer@ia
backtracking search. lncertainty in Artificial Intelligence (UAI)pages 20-28,
2003.

[7] P. Jegou and C. Terrioux. Decomposition and good recordingdieing max-csps.
In European Conference on Artificial Intelligence (ECAIxges 196—200, 2004.

[8] R. Dechter and J. Pearl. Generalized best-first search strategiate optimality of
a*. Journal of the ACM32(3):505-536, 1985.

[9] K. Kask and R. Dechter. A general scheme for automatic generafigearch
heuristics from specification dependencidstificial Intelligence 129(1-2):91-131,
2001.

[10] Rina Dechter and Irina Rish. Mini-buckets: A general scheme ppraimating
inference.Journal of the ACM50(2):107-153, 2003.

[11] J. Pearl.Probabilistic Reasoning in Intelligent Systenvorgan-Kaufmann, 1988.

71

[12] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraintng and
optimization.Journal of the ACM44(2):309-315, 1997.

[13] R. Marinescu and R. Dechter. Memory intensive branch-anohthosearch for
graphical models. INational Conference on Artificial Intelligence (AAAP0O6.

[14] R. Marinescu and R. Dechter. Best-first and/or search foptical models. In
National Conference on Artificial Intelligence (AAAPages 1171-1176, 2007.

[15] R. Marinescu and R. Dechter. Best-first and/or search for prosiable explanations.
In Uncertainty in Artificial Intelligence (UAI)2007.

[16] B. Cabon, S. de Givry, L. Lobjois, T. Schiex, and J. Warnd®adio link frequency
assignmentConstraints 4(1):79-89, 1999.

[17] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satelléeagement.
Constraints 4(3):293—-299, 1999.

[18] S. de Givry, I. Palhiere, Z. Vitezica, and T. Schiex. Mendeliaroredetection
in complex pedigree using weighted constraint satisfaction techniqueslCLIR
Workshop on Constraint Based Methods for Bioinforma2€95.

[19] P. Thbault, S. de Givry, T. Schiex, and C. Gaspin. Combining tcaim$é processing
and pattern matching to describe and locate structured motifs in genomic seguen
In Fifth IJCAI-05 Workshop on Modelling and Solving Problems with Constraints
2005.

[20] T. Sandholm. An algorithm for optimal winner determination in combinatorial
auctions. Ininternational Joint Conference on Atrtificial Intelligence (IJCAbages
542-547, 1999.

[21] Rina DechterConstraint ProcessingMIT Press, 2003.

[22] S. de Givry, J. Larrosa, and T. Schiex. Solving max-sat ashteicsp. IrPrinciples
and Practice of Constraint Programming (CR)ages 363-376, 2003.

[23] Nils J. Nilsson.Principles of Artificial IntelligenceTioga, 1980.

[24] E. Freuder and M. Quinn. Taking advantage of stable sets ofblasidn constraint
satisfaction problems. Imnternational Joint Conference on Artificial Intelligence
(IJCAI), pages 1076-1078, 1985.

[25] R. Bayardo and D. Miranker. On the space-time trade-off in soldagstraint
satisfaction problems. linternational Joint Conference on Atrtificial Intelligence
(IJCAI), pages 558-562, 1995.

[26] H. Bodlaender and J. Gilbert. Approximating treewidth, pathwidth and mimimu
elimination tree-heightTechnical Report, Utrecht Universijt§991.

[27] R. Bayardo and D. Miranker. A complexity analysis of space-lbolearning
algorithms for the constraint satisfaction problemNitional Conference on Artificial
Intelligence (AAAl)pages 298-304, 1996.

72

[28] U. Kjzeaerulff. Triangulation of graph-based algorithms giving small total space
Technical Report, University of Aalborg, Denmat©90.

[29] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Welsey, 1984.

[30] L. Kanal and V. KumarSearch in artificial intelligenceSpringer-Verlag., 1988.

[31] R. Mateescu and R. Dechter. And/or cutset conditioning. Inkernational Joint
Conference on Artificial Intelligence (IJCAPages 230-235, 2005.

[32] A. Martelli and U. Montanari. Additive and/or graphs. International Joint
Conference on Atrtificial Intelligence (IJCApages 1-11, 1973.

[33] R. Dechter. Bucket elimination: A unifying framework for reasoningrtificial
Intelligence 113(1-2):41-85, 1999.

[34] J. Larrosa K. Kask, R. Dechter and A. Dechter. Unifying clustee decompositions
for reasoning in graphical modelArtificial Intelligence 166(1-2):165-193, 2005.

[35] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential@nsistency: getting
closer to full arc consistency in weighted csps.Irdternational Joint Conference in
Artificial Intelligence (IJCAI) pages 84—89, 2005.

[36] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decompositod soft local
consistency in weighted csp. Neational Conference on Artificial Intelligence (AAAI)
2006.

[37] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks lightasl model
counting. InNational Conference of Artificial Intelligence (AAAPages 475482,
2005.

[38] Jurg Ott. Analysis of Human Genetic Linkag&he Johns Hopkins University Press,
1999.

[39] M. Fishelson and D. Geiger. Exact genetic linkage computationsfuergl pedigrees.
In International Conference on Intelligent Systems for Molecular BiologiMB%
pages 189-198, 2002.

[40] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihoodlbging for
general pedigreesduman Heredity59(1):41-60, 2005.

[41] J. Park. Using weighted max-sat engines to solve mpeNaitional Conference of
Artificial Intelligence (AAAI) pages 682—-687, 2002.

[42] F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local seformpe solving.
In International Joint Conference on Artificial Intelligence (IJCAbages 169-174,
2005.

[43] C. Voudouris. Guided local search for combinatorial optimizatiotbfgnms. Technical
report, PhD Thesis. University of Essex, 1997.

[44] P. Mills and E. Tsang. Guided local search for solving sat and hieiymax-sat
problems.Journal of Automated Reasoning (JAR3(1-2):205 — 223, 2000.

73

[45] R. Dechter and D. Larkin. Hybrid processing of beliefs and trangs. InUncertainty
in Artificial Intelligence (UAI) pages 112-119, 2001.

[46] D. Larkin and R. Dechter. Bayesian inference in the presenaetrminism. In
Artificial Intelligence and Statistics (AISTAT003.

[47] D. Allen and A. Darwiche. New advances in inference using r&Eearconditioning.
In Uncertainty in Artificial Intelligence (UAl)pages 2-10, 2003.

[48] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistiworks. In
Uncertainty in Artificial Intelligence (UAl)pages 120-129, 2004.

[49] 1. Rish and R. Dechter. Resolution vs. search: two strategiesator Journal of
Automated Reasoning4(1-2):225-275, 2000.

[50] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. @h&ngineering an
efficient sat solver. IiDesign Automation Conference (DAQPO1.

[51] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Isé&y@ networks
for exact inferencelnternational Journal of Approximate Reasonjrf(1-2):4-20,
2006.

[52] J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-trezhseith soft constraints. In
European Conference on Artificial Intelligence (ECAdxges 131-135, 2002.

[53] M. Lemaitre G. Verfaillie and T. Schiex. Russian doll search for isgjvconstraint
optimization problems. INational Conference on Atrtificial Intelligence (AAAI)
pages 298-304, 1996.

[54] R. Dechter. Enhancement schemes for constraint processaogjuBnping, learning
and cutset decompositioivrtificial Intelligence 41(3):273-312, 1990.

[55] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed teist
satisfaction. Irinternational Joint Conference on Atrtificial Intelligence (1JCAdages
318-324, 1991.

[56] P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar. isfieusearch in restricted
memory.Artificial Intelligence 41(2):197-221, 1989.

[57] R. Korf. Linear-space best-first seardhrtificial Intelligence 62(1):41-78, 1993.

74

Table A.1

CPU time and nodes visited for solvitgAl'06 networks

. Time limit 30 minutes.

minfill pseudo tree
MBE() MBE() MBE() MBE() MBE()
bn Samlam BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB() BB-C+SMB(j)
AOBB+SMB(i) AOBB+SMBE() AOBB+SMBE() AOBB+SMB(j) AOBB+SMBE(i)
(w, h) AOBB-C+SMB(j) AOBB-C+SMB()) AOBB-C+SMB()) AOBB-C+SMB(j) AOBB-C+SMB())
(n, k) AOBF-C+SMBY(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMBY(i) AOBF-C+SMB(i)
=17 i=18 =19 =20 i=21
time nodes time nodes time nodes time nodes time nodes
5.53 10.31 17.45 38.36 62.11
BN.31 - - - - - - - - -
(46, 160) out | 1026.73 4,741,037| 139490 7,895,304 664.27 3,988,933| 680.61 4,293,760| 131.17 380,470
(1156, 2) 41133 1445200 48647 2,131,977| 209.80 831,431| 210.81 889,782 8161 94,507
140.41 293445| 12623 292,293| 85.69 142,650 | 86.00 114,046 | [73.14] 25,392
7.39 13.34 24.38 46.08 81.72
BN_33 - - - - - - - - -
(43,163) 140415 3540778 293.85 685246| 61855 1,441,245| 41008 1,018,353| 197.08 360,880
(1444, 2) 429.02 982,130| 125.78 210,552| 236.42 408,855| 160.61 256,191| 120.33 89,308
75.92 142,932 | [41.14] 41,865 | 58.14 61,064 | 73.20 49,760 95.16 22,256
7.61 12.86 24.50 40.33 64.63
BN_35 - - - - - - - - -
(41, 168) 464.44 1755561| 548.11 1,954,720 316.78 1,108,708| 199.67 663,784| 226.10 622,551
(1444, 2) 42.95 126,215| 107.17 243533| 8159 151,632 56.11 65657 | 78.27 58,973
[29.77] 29,837 | 3658 34,987 | 43.28 28,088 | 51.28 15953 | 76.28 18,048
7.25 13.58 22,61 44.14 87.30
BN_37 - - - - - - - - -
(45, 159) 126.85 428643 97.03 298,477 79.75 183,016 | 65.74 89,948 | 121.39 168,957
(1444, 2) 26.42 55571 | 20.19 33,475 | 25.45 14,703 | 4561 8,815 94.55 16,400
[15.83 15399 | 19.47 11,046 | 26.55 6,621 | 46.84 4315| 90.66 5,610
6.86 13.13 25.58 44.06 75.49
BN_39 - - - - - - - - -
(48, 162) 1202.01 3,366,427
(1444, 2) 116165 2,615,679| 1370.21 3,448,072 507.18 1,499,020| 403.07 1,043,378| 22074 518,011
117.03 340362| 247.08 725738 13144 316,862| 112.27 213676| [111.20 127,872
6.97 11.98 21.09 36.44 65.75
BN_41 - - - - - - - - -
(49, 164) 188.60 486,844| 151.80 364,363| 83.39 168,340 | 109.92 195,506| 12358 162,274
(1444, 2) 56.72 119,737| 47.30 77,653 | 33.81 32,774| 50.81 38467 | 76.42 31,763
23.50 42,795 | [22.05] 20,485 | 27.22 12,030 | 43.38 16,549 7161 11,648

A Experiments - Bayesian Networks
A.1 UAI'06 Evaluation Dataset

The UAI 2006 Evaluation Datasetcontains a collection of random as well as real-
world belief networks that were used during the first UAI 200frence Evalua-
tion contest.

Tables A.1 and A.2 show the results for experiments with lfsvakks from the
repository. InstanceBN_31 throughBN_41 are random grid networks with deter-
ministic CPTs, while instanceBN_126 throughBN_134 represent random cod-

5 http://ssli.ee.washington.edu/bilmes/uai0O6InferenceEvaluation

75

Table A.2
CPU time and nodes visited for solvityfAlI’06 networks. Time limit 30 minutes.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
bn Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(j)
(n, k) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(j) AOBF-C+SMB(j) AOBF-C+SMB(i)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
3.27 6.69 11.63 23.42 47.84
BN_126 301.56 2,085,673| 823.32 6,662,948| 512.27 3,189,855 55.16 257,866 54.39 70,027
(54, 70) - 363.05 4,459,174 953.71 10,991,861 118.58 1,333,266 52.24 386,490 57.74 150,391
(512, 2) 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056
[ﬁ] 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
3.42 6.66 14.59 26.66 47.66
BN_127 - - - - - - - - 130.27 631,093
(57,74) out - - - - - - - - 155.09 1,384,957
(512, 2) - - - - - - - - 128.94 860,026
[ﬁ] 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
3.81 7.58 13.64 28.30 49.02
BN.128 4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147
(48,73) out 4.13 5,587 7.47 1,712 14.89 18,734 29.05 625 49.39 5,823
(512, 2) 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203
883 7.75 925 13.78 808 28.39 478 49.13 575
5.58 12.67 27.81 50.60
BN.129 - - - - 176.24 1,603,304| 1337.90 11,794,805 257.42 1,855,134
(52, 68) out 865.99 11,469,012 - - 194.91 1,999,591 - - 259.83 2,542,057
(512, 2) 573.74 5,730,592 - - 167.14 1,688,675/ 1388.01 13,437,762 219.09 1,747,613
out 194.56 922,831 out m 537,371 246.39 910,769
6.50 10.95 26.31 46.44
BN_130 182,120 - - 869.44 7,310,190 - - 57.06 109,669
(54, 67) out 348,660 - - 1015.05 10,905,151 - - 60.91 205,010
(512, 2) 239,771 - - 863.15 8,414,475 - - 58.94 147,085
115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
6.59 11.20 21.88 39.70
BN.131 137,631 39.02 323,431 | 1149.74 10,230,128 47.25 228,703 - -
(48,72) out 296,576 55.20 677,149 - - 66.63 673,358 - -
(512, 2) 176,456 41.63 396,234 | 1254.88 12,395,143 50.42 303,818 - -
116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
5.59 10.50 25.56 45.77
BN.132 - - - - - - 756.69 6,584,446 4,819,402
(49,71) out - - - - - - 912.40 10,251,600 823.40 10,207,347
(512, 2) - - - - - - 778.22 7,456,812 643.96 6,037,908
out out out out out
3.61 7.03 13.20 27.50 52.69
BN.133 - - 104,521 31.28 171,645 127.32 929,016 55.33 30,699
(54,71) out - - 19.38 169,574 35.58 272,258 168.17 1,859,117 56.22 71,195
(512, 2) - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483
59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
3.38 6.34 12.09 27.08 54.35
BN_134 - - - - - - - - - -
(52, 70) out - - - - - - - - - -
(512, 2) - - - - - R - - - -
out [ﬁ’ 373,081 out 96.19 377,064 97.59 214,591

76

BN_35 - AOBB-C+SMB(i) BN_35 - AOBF-C+SMB(i)

10000 [hypergraph: w*=46, h=78] [minfill: w*=41, h=168] 1000 [hypergraph: w*=46, h=78] [minfill: w*=41, h=168]
—e— hypergraph —®— hypergraph
—O— minfill —-O— minfill
1000 -
o)
@ @
) 2
= = 100 q
o @
£ £
100
10 10
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
i-bound i-bound
BN_37 - AOBB-C+SMB(i) BN_37 - AOBF-C+SMB(i)
1000 [hypergraph: w*=43, h=78] [minfill: w*=45, h=159] 1000 [hypergraph: w*=43, h=78] [minfill: w*=45, h=159]
—e— hypergraph —@— hypergraph
—O— minfill —0— minfill
100 o 100
S Iy
) @
A KA
o o
£ £
10 4 10 4
1 1
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
i-bound i-bound
BN_131 - AOBB-C+SMB(i) BN_131 - AOBF-C+SMB(i)
10000 [hypergraph: w*=51, h=60] [minfill: w*=48, h=72] 1000 [hypergraph: w*=51, h=60] [minfill: w*=48, h=72]
—®— hypergraph
—-O— minfill
1000
100
))
4 3
~ 100 § =
o °
£ £
10 4
10 A
—&— hypergraph
—O— minfill
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
i-bound i-bound
BN_133 - AOBB-C+SMB(i) BN_133 - AOBF-C+SMB(i)
10000 [hypergraph: w*=54, h=63] [minfill: w*=54, h=71] 1000 [hypergraph: w*=54, h=63] [minfill: w*=54, h=71]
—@— hypergraph
—O— minfill
1000 o
S °
@ I3
))
= ~ 100
o o
£ £
100
&/ —@— hypergraph
—O— minfill
10 1o
15 16 17 18 19 20 21 22 23 15 16 17 18 19 20 21 22 23
i-bound i-bound

Fig. A.1. Min-fill versus hypergraph partitioning heuristics. CPU time in selsdfor solv-
ing UAI'06 networks with AOBB- C+SVB(i) (left side) andACBF- C+SMB(7)) (right
side). The header of each plot records the average induced widjha6d pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also shevintuced
width and pseudo tree depth for the min-fill heuristic.

e

ing networks with 128 input bits, 4 parents per XOR bit andrecte variance

o? = 0.40. We report only on the Branch-and-Bound and best-first sedrch a
gorithms using static mini-bucket heuristics. The dynamiai-bucket heuristics
were not competitive due to their much higher computationathead at relatively
largei-bounds. The guiding pseudo trees were generated in tresusasg the min-

fill heuristic.

We notice again the superiority 80BB- C+SVB(i) compared with the tree ver-
sion of the algorithmAOBB+SIVB(1) , at relatively smalk-bounds where both al-
gorithms rely primarily on search rather than on pruningj aspecially on the
first set of grid networkse(g., BN_31, ...,BN.41). For instance, on thBN_35 net-
work, AOBB- C+SMB(16) finds the most probable explanation 10 times faster than
AOBB+SMB(16) exploring a search space 14 times smaller. This is in cdritvas
what we observe on the second set of coding netwerks BN_126, ...,BN_133),
whereAOBB- C+SVB(7) is only slightly better that\OBB+SMB(i) across the re-
portedi-bounds. This is because the AND/OR graph explored effelgtivas very
close to a tree due to the substantial pruning caused by thigbncket heuristics.

Overall, best-first AND/OR search offers the best perforoeaon this domain and
the difference in running time as well as size of the searelcesexplored is up to
several orders of magnitude, compared to the Branch-andeBalgorithms. For
example, on th&N_131 network,AOBF- C+SMB(16) finds the optimal solution
in less than 20 seconds, whereas ba@BB+SMVB(16) andAOBB- C+SMB(16)
exceed the 30 minute time bound.

Figure A.1 plots the running time distribution AOBB- C+SMB(i) andACBF- C+SMB(1)
using hypergraph partitioning based pseudo trees, ovend@pendent runs. We
see that the hypergraph trees are sometimes able to impgreveetformance of
AOBB- C+SMB() , especially at smaltbounds ¢.¢., BN.133). For best-first search,
the min-fill trees usually offer the best performance (exoeyBN_ 131, where the
hypergraph trees are superior acrés®unds).

A.2 ISCAS’89 Benchmark Circuits

ISCAS’89 circuits® are a common benchmark used in formal verification and di-
agnosis. For our purpose, we converted each of these siintita belief network

by removing flip-flops and buffers in a standard way, creadimpterministic con-
ditional probabilistic tables for each gate and puttingammn distributions on the
input signals.

Tables A.3 and A.4 show the results for experiments with i€udts, using min-fill
based pseudo trees as well as static and dynamic mini-bhekeistics. As usual,

6 Available at http://www.fm.vslib.cz/kes/asic/iscas/

78

Table A.3
CPU time and nodes visited for solving belief networks derived fiBRAS’'89 circuits
with static mini-bucket heuristics and min-fill pseudo trees. Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
iscas89 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
0.06 0.08 0.09 0.14 0.20 0.56
c432 - - - - - - 0.35 432 0.45 432 0.78 432
(27, 45) out - - - - 1154.96 20,751,699 432 0.24 432 0.59 432
(432,2) - - - - 182.53 2,316,024 432 0.24 432 0.58 432
out out 106.27 488,462 432 0.28 432 0.63 432
0.09 0.09 0.30 0.66
c499 499 0.42 499 0.42 499 499 0.59 499 1.03 499
(23, 55) 139.89 499 0.13 499 0.13 499 499 0.33 499 0.69 499
(499, 2) 499 0.11 499 0.14 499 499 0.31 499 0.69 499
499 0.17 499 0.17 499 499 0.39 499 0.73 499
0.19 0.44 1.05
c880 - - 881 1.80 881 881 1.84 881 2.58 881
(27, 67) out 884 881 0.25 881 881 0.50 881 1.14 881
(880, 2) 884 881 0.25 881 881 0.48 881 1.11 881
884 881 0.36 881 881 0.61 881 1.20 881
0.05 0.16 0.31
s386 1,358 677 172 172 0.17 172 0.33 172
(29, 44) 3.66 257 257 172 172 0.16 172 0.33 172
172,2) 207 207 172 172 0.16 172 0.39 172
194 194 172 172 0.16 172 0.30 172
0.13 0.70 2.14
s953 - - - - - - - - 1170.80 4,031,967 841.72 3,075,116
(66, 101) out | 1054.79 9,919,295 23.67 238,780 58.00 549,181 | 36.06 434,481 2.72 21,499 3.77 19,117
(440, 2) 899.63 7,715,133 17.99 155,865 48.13 417,924 17.00 132,139 13,039 3.03 8,007
out 41.03 150,598 110.45 408,828 36.50 113,322 4.06 12,256 4.19 7,143
0.14 0.16 0.19 0.34 0.91 2.94
s1196 - - - - - - - - - - - -
(54, 97) out 31.55 316,875 | 332.14 3,682,077 7.44 77,205 31.39 320,205 26.24 289,873 11.77 99,935
(560, 2) 18.05 104,316 | 124.53 686,069 26,847 14.23 94,985 9.47 62,883 6.05 25,262
26.16 77,019 | 158.19 372,129 7.22 23,348 26.97 80,264 17.64 48,114 9.17 20,307
0.14 0.16 0.20 0.36 0.86 2.98
s1238 - - - - 398.13 2,078,885 208.45 1,094,713 931.71 4,305,175| 51.86 253,706
(59, 94) out 4.45 57,355 14.77 187,499 3.70 47,340 2.28 25,538 2.45 20,689 3.94 13,032
(540, 2) 1.77 12,623 4.95 34,056 1.30 8,476 5,418 1.42 4,780 3.38 3,364
2.30 5,921 6.61 17,757 1.70 4,298 1.31 2,730 1.69 2,415 3.56 1,673
0.13 0.12 0.14 0.16 0.31 0.66
s1423 - - - - - - 0.98 762 1.19 749 1.55 749
(24, 54) 107.48 1,986 0.50 5171 0.53 5,078 866 0.36 749 0.70 749
(748, 2) 1,246 1,256 1,235 818 0.36 749 0.70 749
959 0.31 921 913 774 0.44 749 0.80 749
0.17 1.00 3.30
$1488 15.38 92,764 1.69 6,460 3.20 17,410 1.77 6,511 1.94 4,083 3.95 830
(47, 67) out 16.58 135,563 2.20 17,150 3.39 28,420 1.63 12,285 1.64 6,670 3.38 964
(667, 2) 13.22 82,294 5,920 2.50 15,621 1.19 6,024 1.47 3,516 3.38 784
21.75 74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124 3.48 749
0.14 0.17 0.22 0.42 1.06 3.36
51494 10.86 64,629 | 978.87 3,412,403 222.28 815,708 5.94 36,804 73.35 268,814 4.08 1,874
(48, 69) out 14.75 158,070 47.41 479,498 11.69 118,754 18.74 202,343 3.06 21,530 3.56 2,431
(661, 2) 7.30 41,798 19.69 108,768 4.81 27,711 7.00 41,977 8,104 3.50 1,750
9.67 24,849 27.28 65,859 7.86 19,678 11.48 28,793 6,484 3.72 1,625

79

Table A.4

CPU time and nodes visited for solving belief networks derived fiBRAS’'89 circuits

with dynamic mini-bucket heuristics and min-fill pseudo trees. Time limit 30 minutes.

minfill pseudo tree
BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
iscas89 AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(j)
AOBB-C+DMB(i) AOBB-C+DMB(j) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(w*, h) AOBF-C+DMB(i) AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB(i) | AOBF-C+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
c432 - - 159.56 21,215 2.50 432 3.20 432 4.61 432 9.05 432
(27, 45) - - 32.00 39,711 1.02 432 1.69 432 3.06 432 7.64 432
(432, 2) 1161.25 323,359 23.02 4,951 432 1.73 432 3.09 432 7.59 432
1019.19 86,460 26.05 2,342 1.58 432 2.70 432 4.70 432 11.19 432
c499 1.95 499 211 499 252 499 3.77 499 6.67 499 18.00 499
(23, 55) 499 0.73 499 1.14 499 241 499 5.25 499 16.48 499
(499, 2) 499 0.74 499 1.14 499 241 499 5.27 499 16.59 499
499 111 499 1.88 499 3.75 499 8.03 499 24.72 499
c880 881 10.64 881 10.19 881 13.33 881 18.56 881 31.95 881
(27, 67) 881 1.47 881 2.16 881 3.92 881 9.11 881 22.06 881
(880, 2) 881 1.42 881 211 881 3.94 881 9.03 881 22.70 881
881 2.20 881 3.41 881 6.14 881 13.81 881 32.58 881
s386 172 0.28 172 0.39 172 0.59 172 1.05 172 2.00 172
(19, 44) 172 0.17 172 0.28 172 0.52 172 0.97 172 1.89 172
(172, 2) 172 0.17 172 0.30 172 0.52 172 0.97 172 1.87 172
172 0.30 172 0.50 172 0.83 172 1.51 172 2.86 172
s953 2,737 912 46.28 1,009 17.20 467 | 137.08 577 128.41 447
(66, 101) 32.08 2,738 913 45.80 1,010 16.17 468 | 135.61 578 127.72 447
(440, 2) 2,738 913 45.92 1,010 16.14 468 | 136.09 578 127.83 447
2,738 913 73.86 1,010 26.45 468 | 213.59 578 208.19 447
s1196 580 568 37.45 924 88.91 863 | 386.75 1,008 | 876.84 817
(54, 97) 660 568 33.30 924 77.02 863 | 362.32 1,008 881.15 817
(560, 2) 620 568 33.52 924 79.05 863 | 355.10 1,008 | 852.14 817
604 568 63.70 924 | 154.17 857 | 676.68 1,008 | 1653.96 817
51238 5,841 601 | 302.53 17,278 | 36.39 651 76.70 558 215.21 551
(59, 94) 1,089 795 13.16 1,824 26.39 849 59.20 744 188.27 737
(540, 2) 704 619 12.97 996 26.22 667 59.09 571 188.31 564
635 610 21.30 769 44.23 657 97.00 564 306.08 557
51423 751 749 5.67 749 6.66 749 9.09 749 15.83 749
(24, 54) 751 749 1.36 749 2.27 749 4.75 749 11.55 749
(748, 2) 751 749 1.34 749 2.22 749 4.73 749 11.45 749
751 749 2.28 749 3.69 749 7.45 749 17.23 749
51488 670 670 5.81 668 10.64 667 27.50 667 86.81 667
(47, 67) 670 670 3.11 668 7.70 667 24.19 667 83.58 667
(667, 2) 670 670 3.06 668 7.67 667 24.25 667 83.86 667
670 670 5.62 668 13.58 667 41.12 667 139.93 667
51494 814 679 15.16 719 25.03 686 70.19 686 149.49 667
(48, 69) 898 679 12.59 719 22.44 686 68.11 686 146.44 667
(661, 2) 814 679 12.66 719 22.98 686 69.81 686 149.05 667
814 679 17.39 719 30.20 686 88.50 686 195.53 667

for each test instance we generated a single MPE query witnyuevidence. We
see thalAOBB- C+SMB(i) improves ovelAOBB+SMB(i) , especially at relatively
small :-bounds. For instance, on tlsd 196 circuit, AOBB- C+SMB(8) is about

3 times faster tha\OBB+SMB(7) . This is in contrast to what we see when us-
ing dynamic mini-bucket heuristics. Here, there is no raiile difference between
the tree and graph AND/OR Branch-and-Bound, because thengrpower of the
heuristics rendered the search space almost backtragkafeess-bounds. Over-

80

90-24-1 - graph search and static mini-buckets (i=18) 90-30-1 - graph search and static mini-buckets (i=18)

%

—————— AOBB-C+GLS+SMB(18)
AOBB-C+SMB(18)

|

\

—————— | AOBB-C+GLS+SMB(18) :
4] [BB-C+GLS+SMB(18)

I

|

\

[

AOBB-C+SMB(18)
—————— BB-C+GLS+SMB(18)
———=-: BB-C+SMB(18)
— — — | AOBF-C+SMB(18)

——-—-- BB-C+SMB(18)
— — — AOBF-C+SMB(18)

log(probability)
log(probability)

T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

90-34-1 - graph search and static mini-buckets (i=20) 90-38-1 - graph search and static mini-buckets (i=20)

-16

T

-18 | " T
\ - o T

220 1

\

-22 4 '
————— AOBB-C+GLS*SMB(20) |

\

AOBB-C+SMB(20)
204 | == BB-C+GLS+SMB(20)

—-——-- BB-C+SMB(20) ‘
— — — AOBF-C+SMB(20) |

-28 - ' '

\
|
—— AoBB-C+GLS+SMB(20) |
AOBB-C+SMB(20) |

—————— BB-C+GLS+SMB(20)
———-- BB-C+SMB(20) |
— — — AOBF-C+SMB(20) '
\

log(probability)
log(probability)
&
5

226 1

0]
20 [

T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

Fig. A.2. Anytime behavior oAOBB- C+SMB(i) on grid networks. Number of flips for
GLS is 50,000. GLS running time is less than 1 second.

all, the dynamic mini-bucket heuristics were inferior te tborresponding static
ones for largei-bounds, however, smallgrbound dynamic mini-buckets were
sometimes cost-effective.(., s953). Notice that AmIAM is able to solve only
2 out of 10 test instances. MoreovAOBF- C+SVB(i) (resp.AOBF- C+DIVB(i))
was overall inferior toACBB- C+SMVB(i) (resp.AOBB- C+DVB(7)) because of its
computational overhead.

A.3 The Anytime Behavior of AND/OR Branch-and-Bound Seardhlee Impact
of Initial Bounds

Figures A.2 and A.3 show the search trace of the AND/OR BrammahBound
algorithms for solving selected instances of grid netwankd UAI'06 Dataset, re-
spectively. We see again thAOBB- C+GLS+SMB(i) and BB- C+G.S+SMB(7)
take advantage of the quality of the initial lower bound proed by GLS, and find
close to optimal solutions much earlier tha@BB- C+SMB(i) andBB- C+SVB(i) ,
respectively.

Tables A.5, A.6, and A.7 report detailed results A&BB- C+GLS+SMB(i) and
BB- C+GLS+SMB(7) on grid networks and UAI'06 Dataset networks, respectively
We see that the lower bound computed by GLS was in many cases &qthe
optimal solution and therefo®OBB- C+GLS+SMB(1) andBB- C+G.S+SMB(1)

81

BN_31 - graph search and static mini-buckets (i=21) BN_35 - graph search and static mini-buckets (i=17)

-20

22

24]
AOBB-C+SMB(21)

777777 BB-C+GLS+SMB(21)

—-—-—-- BB-C+SMB(21)

— — — AOBF-C+SMB(21)

26 1 ————— AOBB-C+GLS+SMB(17)
AOBB-C+SMB(17)

—————— BB-C+GLS+SMB(17)

—-—-—-- BB-C+SMB(17)

— — — AOBF-C+SMB(17)

log(probability)
log(probability)

i
|
—— AOBB-C+GLS+SMB(21) :
|
|
|
\

28]
| 29

-30 | |

T T T T T T T T T T T T
0 10 20 30 40 50 60 0 10 20 30 40 50 60
seconds seconds

BN_126 - graph search and static mini-buckets (i=16) BN_131 - graph search and static mini-buckets (i=17)

-50

-52

54 3

-60 1 -56 7

s8]
-70 4 I | -60
————— AOBB-C+GLS+GLS(16)
! ' AOBB-C+SMB(16)
/ ‘ —————— BB-C+GLS+SMB(16)
—-—~—-- BB-C+SMB(16)
| — —— Aosr.cesma(ts)

: | 6]

—— AOBB-C+GLS+SMB(17)
62 AOBB-C+SMB(17)
****** BB-C+GLS+SMB(17)
——-—-- BB-C+SMB(17)

— — — AOBF-C+SMB(17)

log(probability)
log(probability)

-80 | 64 4

-90 4 _——— -68 5

70 3

seconds seconds

Fig. A.3. Anytime behavior oAOBB- C+SVB(i) on UAI'06 networks. Number of flips
for GLS is 50,000. GLS running time is less than 1 second.

improved considerably oveOBB- C+SMB(:) andBB- C+SMB(i) , respectively.

A.4 The Impact of Determinism in Bayesian Networks

Table A.8 shows the results for experiments with 5 beliefvogks derived from
ISCAS’89 circuits. We see that constraint propagation vid tgsolution plays
a dramatic role on this domain, rendering the search spacesabacktrack-free
across-bounds. For instance, on te853, AOBB- C+SAT+SMB(6) is 3 orders of
magnitude faster thaAOBB- C+SMB(6) , while ACBF- C+SVB(6) exceeded the
memory limit. When looking at the AND/OR Branch-and-Bound aidpons that
exploit the local search based initial lower bound, nam€gB- C+G.S+SMB(7)
and AOBB- C+SAT+G_S+SMB(i) , we see that they did not expand any nodes.
This is because the lower bound obtained by GLS, which waseptigal solution
in this case, was equal to the mini-bucket upper bound cosaipait the root node.
The best performance on this domain were achieveA@sB- C+SAT+SMB(7)
andAOBB- C+SAT+GLS+SMB(i) , respectively, for the smallest reportetound
(namelyi = 6). Notice also the poor performance oAi®lAM which ran out of
memory on all tests.

82

Table A.5

CPU time and nodes visited for solvimgid networks with static mini-bucket heuristics.
Time limit 1 hour. Number of flips for GLS is 50,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
grid Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(j) BB-C+GLS+SMB(j) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMBJ(i) AOBB-C+SMB(i)
(w*, h) AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
0.23 3,297 0.06 373 102 0.06 102 0.06 102
90-10-1 0.13 0.38 3,272 0.19 289 0.19 0 0.19 0 0.20 0
(16, 26) 0.25* 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101
(100, 0) 0.28 2,580 0.22 789 0 0.20 0 0.19 0
0.27 2,012 0.11 661 100 0.06 100 0.06 100
126.69 1,233,891| 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450
90-14-1 11.97 21.02 217,185 31.64 339,762 0.88 5,892 0.50 1,122 0.78 1,178
(23,37) 0.43* 4.22 55,120 3.66 48,513 0.45 5,585 1,361 0.53 1,210
(196, 0) 3.59 45,023 2.77 32,454 0.66 3,684 0.45 1,067 0.78 1,062
3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857
- - - - 40.05 345,255 2.38 16,942 1.23 5,327
90-16-1 147.19 - - 1163.43 9,106,361 35.72 306,583 1.97 12,104 4,614
(26, 42) 0.49* 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 4,810
(256, 0) 37.28 453,073 8.14 96,962 4.17 46,138 1.44 10,702 4,552
25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 3,067
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
90-24-1 out - - 1773.64 6,065,308 609.65 2,008,431 111.58 263,250 632.68 1,705,699
(36, 61) 0.53 - - 1273.09 9,047,518| 596.27 4,923,760 70.42 473,675 74.99 412,291
(576, 20) 3594.60 24,363,798 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868
out 21.94 75,637 10.59 33,770 5,144 23.80 17,291
- - - - 395.67 1,635,447 - - 67.09 277,685
90-26-1 out - - - - 235.36 922,243 65.39 282,394 41.70 73,616
(35, 64) 0.56 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
(676, 40) 43.64 248,603 85.72 495,039 10.83 14,580 14.47 6,226 28.38 1,466
19.06 65,271 24.39 79,619 7,190 8.05 3,777 22.44 1,435
90-30-1 out - - - - - - - - - -
(38, 68) 0.72 652.15 3,882,300 165.74 1,070,823| 155.20 956,837 40.14 212,963 59.28 174,715
(900, 60) 276.00 1,491,880 84.39 442,754 | 78.81 376,916 31.69 89,045 64.23 148,540
158.97 534,385 46.73 157,187 47.27 154,496 [m’ 45,201 57.97 100,800
90-34-1 out - - - - - - - - - -
(43,79) 1.31 - - - - - - - - 369.36 823,604
(1154, 80) - - - - 980.51 4,943,817 1751.86 5,516,888 315.38 630,406
out out 243.63 596,978 | 270.88 667,013 m 67,611
90-38-1 out - - - - - - - - - -
(47, 86) 1.11 969.02 2,623,971| 1753.10 3,794,053 203.67 614,868 165.45 488,873 | 113.06 214,919
(1444, 120) 819.16 2,450,643| 1806.57 3,804,190| 224.80 607,453| 187.63 482,946 | 138.64 211,562
101.69 174,786 103.80 146,237 54.00 95,511 m 78,431 73.10 59,856

83

Table A.6
CPU time and nodes visited for solvitdAl’06 networks with static mini-bucket heuris-
tics. Time limit 30 minutes. Number of flips for GLS is 500,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
bn Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(j)
(w*, h) AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
BN_31 - - - - - - - - - -
(46, 160) out 411.33 1,445,200 486.47 2,131,977 209.80 831,431 | 210.81 889,782 81.61 94,507
(1156, 2) 9.86* 357.86 1,172,122 375.05 1,573,677| 202.66 775,258 | 187.34 752,284 79.01 56,409
140.41 293,445 126.23 292,293 85.69 142,650 86.00 114,046 [ﬁ] 25,392
BN_33 - - - - - - - - - -
(43, 163) - 429.02 982,130 125.78 210,552| 236.42 408,855 | 160.61 256,191 120.33 89,308
(1444, 2) 12.30* 434.97 980,701 134.47 207,658| 244.72 399,206 | 167.39 245,144 129.35 85,745
75.92 142,932 m 41,865 58.14 61,064 73.20 49,760 95.16 22,256
BN_35 - - - - - - - - - -
(41, 168) - 42.95 126,215 107.17 243,533 81.59 151,632 56.11 65,657 78.27 58,973
(1444, 2) 12.38 49.97 120,205 112.42 224,908 89.85 151,619 66.16 74,585 89.31 71,614
[ﬁ 29,837 36.58 34,987 43.28 28,088 51.28 15,953 76.28 18,048
BN_37 - - - - - - - - - -
(45, 159) - 26.42 55,571 20.19 33,475 25.45 14,703 45.61 8,815 94.55 16,400
(1444, 2) 12.70 29.77 48,211 26.17 31,674 32.11 13,808 49.63 7,774 99.00 19,871
m 15,399 19.47 11,046 26.55 6,621 46.84 4,315 90.66 5,610
BN_39 - - - - - - - - - -
(48, 164) - 1161.65 2,615,679| 1370.21 3,448,072 507.18 1,499,020| 403.07 1,043,378 220.74 518,011
(1444, 2) 12.88 472.36 1,076,698 782.69 2,026,535| 276.27 778,118 | 190.16 436,932 113.67 168,410
117.03 340,362 247.08 725,738| 131.44 316,862 | 112.27 213,676 m 127,872
BN_41 - - - - - - - - - -
(49, 164) - 56.72 119,737 47.30 77,653 33.81 32,774 50.81 38,467 76.42 31,763
(1444, 2) 12.29* 63.16 117,948 52.52 73,947 40.45 30,930 58.53 37,018 86.72 30,487
23.50 42,795 | [22.05| 20,485 | 27.22 12,030 | 43.38 16,549 | 7161 11,648

84

Table A.7
CPU time and nodes visited for solvitgAl'06 networks with static mini-bucket heuris-
tics. Time limit 30 minutes. Number of flips for GLS is 500,000.

minfill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
bn Samlam BB-C+GLS+SMB(j) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
GLS AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=17 i=18 i=19 i=20 i=21
time nodes time nodes time nodes time nodes time nodes
301.56 2,085,673| 823.32 6,662,948 512.27 3,189,855 55.16 257,866 54.39 70,027
BN._126 63,674 15.78 85,215 19.31 76,346 27.69 37,226 51.38 30,317
(54, 70) - 255.27 2,324,776 816.71 8,423,064 92.85 829,994 47.67 244,943 55.27 99,056
(512, 2) 6.08* 10.91 83,227 17.74 117,859 20.66 99,518 28.66 49,175 54.28 42,873
16.22 64,202 25.64 85,148 26.88 76,645 30.95 37,666 54.59 30,197
- - - - - - - - 130.27 631,093
BN_127 238,020 31.02 250,746 36.19 215,054 44.34 166,176 57.52 83,380
(57,74) out - - - - - - - - 128.94 860,026
(512, 2) 5.75* 27.59 282,349 31.11 295,100 38.67 280,166 46.03 214,590 57.47 113,743
51.80 223,327 58.63 251,134 62.75 215,796 64.28 166,741 66.35 84,007
4.14 2,558 7.59 1,266 14.84 10,244 28.31 471 49.13 3,147
BN_128 4.50 854 8.05 694 14.17 778 29.44 461 48.75 551
(48,73) out 4.11 3,636 7.48 1,411 15.00 12,034 28.38 552 49.33 4,203
(512, 2) 5.95* 4.14 1,022 7.91 974 13.92 991 28.75 547 49.64 674
883 7.75 925 13.78 808 28.39 478 49.13 575
- - - - 176.24 1,603,304 1337.90 11,794,805 257.42 1,855,134
BN_129 244.08 2,419,418 150.30 1,408,350 150.56 1,352,916 119.70 923,635 142.14 914,833
(52, 68) out 573.74 5,730,592 - - 167.14 1,688,675 1388.01 13,437,762 219.09 1,747,613
(512, 2) 5.89* 245.08 2,443,843 95.64 961,434 142.55 1,412,079 564,895 138.53 979,046
194.56 922,831 out 537,371 246.39 910,769
182,120 - - 869.44 7,310,190 - - 57.06 109,669
BN_130 114,610 87.28 751,400 41.73 299,845 42.86 158,612 58.53 107,880
(54, 67) out 239,771 - - 863.15 8,414,475 - - 58.94 147,085
(512, 2) 5.87* 15.36 158,150 36.24 364,352 43.25 392,961 43.19 211,380 57.91 144,741
27.72 115,091 68.53 273,987 76.53 299,172 60.55 158,650 69.63 107,771
17.06 137,631 39.02 323,431 | 1149.74 10,230,128 47.25 228,703 - -
BN.131 118,238 26.77 212,338 19.56 82,414 28.69 73,552 51.69 122,085
(48,72) out 18.69 176,456 41.63 396,234 | 1254.88 12,395,143 50.42 303,818 - -
(512, 2) 5.87* 16.70 150,341 28.22 256,361 20.34 101,662 29.16 91,103 54.12 156,925
29.03 116,166 50.13 209,748 28.47 79,689 36.89 73,163 65.74 120,153
- - - - - - 756.69 6,584,446 578.99 4,819,402
BN_132 683.65 5,987,145 429.96 3,750,177 838.83 7,484,051 627.50 5,584,689 392.78 3,296,711
(49, 71) out - - - - - - 778.22 7,456,812 643.96 6,037,908
(512, 2) 5.89* 686.08 6,499,878 439.89 4,252,274 718.66 6,905,710 453.25 4,319,442 3,557,198
out out out out out
- - 104,521 31.28 171,645 127.32 929,016 55.33 30,699
BN_133 29.13 258,988 17.09 102,193 22.77 93,433 36.28 90,006 53.97 17,865
(49,71) out - - 17.19 133,794 31.64 202,954 135.60 1,184,600 55.22 40,483
(512, 2) 5.79* 30.50 329,146 16.50 125,945 22.66 116,553 36.17 112,317 53.92 17,069
59.61 258,891 27.44 98,148 32.91 93,613 45.09 90,337 55.31 13,491
BN_134 105.61 1,029,072 373,641 115.67 1,065,258 60.94 376,402 75.16 213,954
(52, 70) out - - - - - - - - - -
(512, 2) 5.83* 109.97 1,170,028 44.33 439,065 123.91 1,253,376 60.72 401,521 76.38 241,382
out 85.77 373,081 out 96.19 377,064 97.59 214,591

85

Table A.8
CPU time and nodes visited for solving belief networks derived fifSBRAS’89 circuits
using static mini-bucket heuristics. Time limit 30 minutes.

minfill pseudo tree

AOBB-C+SMB(i)

AOBB-C+SMB(i)

AOBB-C+SMB(i)

AOBB-C+SMB(i)

AOBB-C+SMB(i)

Samlam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
iscas89 AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
GLS AOBB-C+SAT+GLS+SMB(j) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMBJ(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
- - - - 182.53 2,316,024 0.16 432 0.24 432
c432 out 374.29 4,336,403| 189.13 2,043,475 1.02 9,512 0.16 432 0.25 432
(27, 45) 0 0.06 0 0.09 0 0.13 0 0.19 0
(432,2) 0.08* 0.06 0 0.08 0 0.09 0 0.13 0 0.20 0
out out 106.27 488,462| 0.20 432 0.28 432
7,715,133 17.99 155,865 48.13 417,924 | 17.00 132,139 2.19 13,039
s953 out 829 0.16 667 0.20 685 0.31 623 0.74 623
(66, 101) 0 0.13 0 0.17 0 0.28 0 0.69 0
(440, 2) 0.05* 0 0.13 0 0.17 0 0.30 0 0.70 0
41.03 150,598 | 110.45 408,828| 36.50 113,322| 4.06 12,256
104,316 | 124.53 686,069 3.69 26,847 | 14.23 94,985 9.47 62,883
s1196 out 565 0.19 565 0.23 565 0.38 565 0.92 565
(54, 97) 0 0.16 0 0.20 0 0.34 0 0.89 0
(560, 2) 0.08* 0 0.14 0 0.20 0 0.34 0 0.87 0
77,019 | 158.19 372,129 7.22 23,348 | 26.97 80,264 | 17.64 48,114
82,294 1.02 5,920 2.50 15,621 1.19 6,024 1.47 3,516
$1488 out 708 0.20 667 0.25 667 0.44 667 1.06 667
(47,67) 0 0.16 0 0.22 0 0.44 0 0.99 0
(667, 2) 0.13* 0 0.16 0 0.20 0 0.47 0 0.99 0
74,658 1.67 5,499 4.22 14,445 1.84 5,372 1.80 3,124
41,798 19.69 108,768 481 27,711 7.00 41,977 2.06 8,104
s1494 out 665 0.22 665 0.27 665 0.45 665 111 665
(48, 69) 0 0.17 0 0.22 0 0.41 0 1.09 0
(661, 2) 0.11* 0 0.17 0 0.22 0 0.42 0 1.22 0
24,849 27.28 65,859 7.86 19,678 | 11.48 28,793 3.03 6,484

86

