
Memory Intensive AND/OR Search for
Combinatorial Optimization in Graphical Models

Radu Marinescua,∗,1, Rina Dechterb

aCork Constraint Computation Centre, University College Cork, Ireland
bDonald Bren School of Information and Computer Science, University ofCalifornia,

Irvine, CA 92697, USA

Abstract

In this paper we explore the impact of caching during search in the contextof the recent
framework of AND/OR search in graphical models. Specifically, we extendthe depth-first
AND/OR Branch-and-Boundtree searchalgorithm to explore an AND/ORsearch graph
by equipping it with an adaptive caching scheme similar to good and no-good recording.
Furthermore, we presentbest-firstsearch algorithms for traversing the same underlying
AND/OR search graph and compare both algorithms empirically. We focus on two com-
mon optimization problems in graphical models: finding the Most Probable Explanation
(MPE) in belief networks and solving Weighted CSPs (WCSP). In an extensive empirical
evaluation we demonstrate conclusively the superiority of the memory intensive AND/OR
search algorithms on a variety of benchmarks.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

1 Introduction

This is the second of two articles describing and evaluatingthe power of AND/OR
search spaces for combinatorial optimization in graphicalmodels. The first paper
[1] focused on extending Branch-and-Bound algorithms to AND/OR search spaces
which have no cycles, namely to AND/OR search trees. The virtue of the AND/OR

∗ Corresponding author.
Email addresses:r.marinescu@4c.ucc.ie (Radu Marinescu),

dechter@ics.uci.edu (Rina Dechter).
1 This work was done while at the University of California, Irvine.

Preprint submitted to Elsevier December 8, 2009

representation is that the search space size may be far smaller than that of a tradi-
tional OR representation which often translates to significant time savings. In the
current paper we improve efficiency further by using more memory, exploring what
we refer to as the context minimal AND/OR search graph.

Specifically, we extend the AND/OR Branch-and-Bound tree search algorithm in-
troduced in [1–3] to explore the context minimal AND/OR search graph using a
flexible caching mechanism that can adapt to memory limitations. The caching
scheme is similar to good and no-good recording [4,5] which were used in sev-
eral recent schemes such as Recursive Conditioning [6], Valued Backtracking [7]
and Backtracking with Tree Decompositions [8]. Our contributions beyond those
schemes is in presenting these ideas in an independent manner using the notion of
AND/OR search spaces and extending optimization techniques to this framework.
Finally, we carried out an extensive empirical study on which we report.

Clearly, the AND/OR search space can be explored by any traversal algorithm.
So we next investigated the other most common search approach which is Best-
First search. Best-First search is known to be superior amongmemory intensive
search algorithms [9]. We therefore present a new AND/OR search algorithm that
explores the context minimal AND/OR search graph in a best-first manner. Under
conditions of admissibility and monotonicity of the heuristic function, best-first
search is known to expand the minimal number of nodes, at the expense of using
additional memory [9]. We will show that these savings in number of nodes often
translate into significant time savings.

The efficiency of both depth-first and best-first AND/OR search methods also de-
pends on the accuracy of the guiding heuristic function. We used the Mini-Bucket
heuristic [10] which is extracted from the functional specification of the graphi-
cal model using the Mini-Bucket approximation algorithm [11]. These heuristics
were explored in [1] in the context of AND/OR search trees. Following [1,2], we
continue to explore empirically the efficiency of static anddynamic mini-bucket
heuristics within the cache-based search spaces.

As in our earlier work [1–3], we apply the algorithms to finding the Most Prob-
able Explanation (MPE) in belief networks [12] and to solving Weighted CSPs
[13]. Our results show conclusively that the memory intensive AND/OR search al-
gorithms improve dramatically over competitive approaches, especially when the
heuristic estimates are less accurate and do not prune the search space effectively.
We demonstrate the impact of caching, the impact of the strength of the guiding
evaluation function, as well as the impact of best-first versus depth-first search
regimes. We also investigate other factors that impact the performance of any search
algorithm such as: the availability of hard constraints (i.e., determinism), the avail-
ability of good initial upper bounds, and the availability of good ordering schemes
(e.g., pseudo trees).

2

The paper is organized as follows. Sections 2 and 3 provide background on graph-
ical models and on the AND/OR search spaces. Sections 4 and 5 present the new
depth-first and best-first AND/OR search algorithms exploring the context minimal
AND/OR graph. Section 6 reviews the mini-bucket heuristicsfor AND/OR search.
In Section 7 we present an extensive empirical evaluation ofthe proposed memory
intensive search methods, while Section 8 provides concluding remarks and direc-
tions of future research. The relevant related work is discussed in detail in [1]. This
paper is based in part on [14–16].

2 Background

2.1 Preliminaries

A reasoning problem is defined in terms of a set of variables taking values on fi-
nite domains and a set of functions defined over these variables. We denote vari-
ables by uppercase letters (e.g., X, Y, Z, ...), subsets of variables by bold faced
uppercase letters (e.g., X,Y,Z, ...) and values of variables by lower case letters
(e.g.,x, y, z, ...). An assignment(X1 = x1, ..., Xn = xn) can be abbreviated as
x = (〈X1, x1〉, ..., 〈Xn, xn〉) or x = (x1, ..., xn). For a subset of variablesY, DY

denotes the Cartesian product of the domains of variables inY. xY andx[Y] are
both used as the projection ofx = (x1, ..., xn) over a subsetY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a functionf by scope(f).

DEFINITION 1 (directed, undirected graphs) Adirected graphis defined by a pair
G = {V,E}, whereV = {X1, ..., Xn} is a set of vertices (nodes), andE =
{(Xi, Xj)|Xi, Xj ∈ V } is a set of edges (arcs). If(Xi, Xj) ∈ E, we say thatXi

points toXj. The degree of a vertex is the number of incident arcs to it. For each
vertexXi, pa(Xi) or pai, is the set of vertices pointing toXi in G, while the set
of child vertices ofXi, denotedch(Xi), comprises the variables thatXi points to.
The family ofXi, denotedFi, includesXi and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Anundirectedgraph is defined similarly to a
directed graph, but there is no directionality associated with the edges.

DEFINITION 2 (induced graph, induced width) Theinduced graphof a graphG
relative to an orderingd of its nodes, denotedG∗(d), is obtained as follows: nodes
are processed from last to first; when nodeX is processed, all its preceding neigh-
bors are connected. A new edge that is added to the graph by this procedure is
called aninduced edge. Given a graph and an ordering of its nodes, thewidth of
a node is the number of edges connecting it to nodes lower in theordering. The
induced width(or treewidth) of a graph, denotedw∗(d), is the maximum width of
nodes in the induced graph.

3

2.2 Graphical Models

A graphical model is defined by a collection of functionsF, over a set of vari-
ablesX, conveying probabilistic or deterministic information, whose structure is
captured by a graph. We used the formalism presented in [17].

DEFINITION 3 (graphical model, primal graph) A graphical modelis a 4-tuple
R = 〈X,D,F,⊗〉, where: 1.X = {X1, ..., Xn} is a set of variables; 2.D =
{D1, ..., Dn} is a set of finite domains of values; 3.F = {f1, ..., fr} is a set of real
valued functions, each defined over a subset of variablesSi ⊆ X (i.e., the scope);
4.⊗ifi ∈ {

∏

i fi,
∑

i fi} is a combination operator. The graphical model represents
the combination of all its functions, namely⊗r

i=1fi. When the combination operator
is irrelevant we denoteR by 〈X,D,F〉. Theprimal graphof a graphical model is
an undirected graph that has the variables as its vertices and edges connecting any
two variables that appear in the scope of the same function.

There are various queries (tasks) that can be posed over graphical models. We refer
to all asautomated reasoning problems. In general, an optimization task is a rea-
soning problem defined as a function from a graphical model toa set of elements,
most commonly, the real numbers.

DEFINITION 4 (constraint optimization problem) Aconstraint optimization prob-
lem is a pair P = 〈R,⇓X〉, whereR = 〈X,D,F,⊗〉 is a graphical model. IfS
is the scope of functionf ∈ F then⇓S f ∈ {maxSf,minSf}. The optimization
problem is to compute⇓X ⊗r

i=1fi. The min/max (⇓) operator is called anelimina-
tion operator because it removes the arguments from the input functions’ scopes.

For a detailed description and examples of graphical modelssuch as constraint
networks, cost networks and belief networks we refer the reader to [17,18,1].

3 AND/OR Search Spaces for Graphical Models

The usual way to do search in graphical models is to instantiate variables in turn,
following a static or dynamic variable ordering. In the simplest case, this process
defines a search tree (called here OR search tree), whose nodes represent states in
the state of partial assignments. This search space does notcapture the structure of
the underlying graphical model. To remedy this problem, an AND/OR search space
was recently introduced in the context of general graphicalmodels [18]. It spe-
cializes the AND/OR space introduced in [19] to graphical models. The AND/OR
search space is defined using a backbonepseudo tree[20,5]. In subsections 3.1
and 3.2 we will give a brief overview of searching the AND/OR search trees by
Branch-and-Bound, which was presented in detail in [1].

4

DEFINITION 5 (pseudo tree, extended graph)Given an undirected graphG =
(V,E), a directed rooted treeT = (V,E′) defined on all its nodes is calledpseudo
tree if any arc ofG which is not included inE′ is a back-arc, namely it connects
a node to an ancestor inT . The arcs inE′ may not all be included inE. Given
a pseudo treeT of G, theextended graphof G relative toT is defined asGT =
(V,E ∪ E

′).

As in [1], we consider in the remainder of the paper an optimization problemP =
〈R,min〉 over a graphical modelR = 〈X,D,F,

∑

〉 for which the combination
and elimination operators aresummationandminimization, respectively.

3.1 AND/OR Search Trees for Graphical Models

In this subsection we overview briefly the AND/OR search treefor graphical mod-
els which was introduced in [18,1]. Given a graphical modelR = 〈X,D,F〉, its
primal graphG and a pseudo treeT of G, the associated AND/OR search tree,
denotedST (R), has alternating levels of OR and AND nodes. The OR nodes are
labeledXi and correspond to the variables. The AND nodes are labeled〈Xi, xi〉
and correspond to the values in the domains of the variables.The structure of the
AND/OR search tree is based on the underlying pseudo tree. The root ofST (R) is
an OR node labeled with the root ofT . The children of an OR nodeXi are AND
nodes labeled with assignments〈Xi, xi〉. The children of an AND node〈Xi, xi〉 are
OR nodes labeled with the children of variableXi in the pseudo treeT . A path from
the root of the search treeST (R) to a noden is denoted byπn. The assignment se-
quence alongπn, denotedasgn(πn), is the set of value assignments associated with
the AND nodes alongπn (see Fig. 1 in [1] for an example of an AND/OR tree).

A solution treeof an AND/OR search treeST (R) is an AND/OR subtreeT such
that: 1) it contains the roots of ST (R); 2) if a non-terminal AND noden ∈ ST (R)
is in T then all of its children are inT ; 3) if a non-terminal OR noden ∈ ST (R)
is in T then exactly one of its children is inT ; 4) all its leaf (terminal) nodes are
consistent.

Based on earlier work [18], it can be shown that given a graphical modelR and
a pseudo treeT , the size of the AND/OR search treeST (R) is O(n · km) where
m is the depth of the pseudo tree,n is the number of variables, andk bounds the
domain size. Moreover, a graphical model that has treewidthw∗ has an AND/OR
search tree whose size isO(n · kw∗·log n).

The arcs from nodesXi to 〈Xi, xi〉 in an AND/OR search tree are annotated by
weightsderived from the cost functions inF.

DEFINITION 6 (arc weight) Theweightw(n,m)(Xi, xi) (or simplyw(n,m)) of the
arc (n,m), whereXi labelsn and〈Xi, xi〉 labelsm, is thecombination(i.e., sum)

5

of all the functions whose scope includesXi and is fully assigned along the path
from the root tom, evaluated at the values along the path.

With each noden of the weighted AND/OR search tree we can associate avalue
v(n) which stands for the optimal solution cost of the subproblembelown, con-
ditioned on the assignment on the path leading to it [18,1]. It was shown thatv(n)
obeys the following recursive definition:

DEFINITION 7 (node value) Thevaluev(n) of a noden in a weighted AND/OR
tree is defined recursively as follows (wheresucc(n) are the children ofn):

v(n) =







































0 , if n = 〈X, x〉 is a terminal AND node

∞ , if n = X is a terminal OR node
∑

m∈succ(n) v(m) , if n = 〈X, x〉 is an AND node

minm∈succ(n)(w(n,m) + v(m)) , if n = X is an OR node
(1)

Clearly, the value of the root nodes is the minimal cost solution to the initial prob-
lem, namelyv(s) = minX

∑r
i=1 fi(X).

3.2 AND/OR Branch-and-Bound Search on AND/OR Trees

In [1–3] we introduced a new generation of linear space Branch-and-Bound search
algorithms that exploit the underlying structure of the graphical model by travers-
ing in a depth-first manner an AND/OR search tree associated with the graphical
model. During search, the algorithm maintains the cost of the best solution found
so far, which is an upper boundub on the minimal cost solution. In addition, each
noden in the search tree is also associated with a static heuristicfunctionh(n) that
underestimates the minimal cost solutionv(n) to the subproblem belown, and it
can be either pre-compiled or computed during search. The current partial solution
being pursued is represented by a partial solution tree,T ′. Given the currentT ′, the
algorithm then computes a heuristic lower bounding estimatef(T ′) on the optimal
extension ofT ′ to a complete solution tree and, iff(T ′) ≥ ub, it prunes the search
space below the current tip node.

The efficiency of the algorithm depends heavily on its guiding heuristic function.
In [1,2] we investigated the power of a heuristic generationscheme based on the
Mini-Bucket approximation [11], in both static and dynamic setups. Since the Mini-
Bucket algorithm is controlled by a bounding parameter, it allows heuristics having
varying degrees of accuracy and results in a spectrum of search algorithms that can
trade off heuristic computation and search.

6

We evaluated empirically the AND/OR Branch-and-Bound algorithm with the mini-
bucket heuristics for probabilistic and deterministic optimization tasks [1,2]. The
results showed conclusively that the scheme improves dramatically over the tra-
ditional OR approaches, in many cases yielding several orders of magnitude im-
provements in time and size of the search space explored.

In the following subsection we overview the notion of AND/ORsearchgraph for
general graphical models, which was presented in [18].

3.3 AND/OR Search Graphs for Graphical Models

It is often the case that a search space that is a tree can become a graph if iden-
tical nodes that root identical search subspaces and which correspond to identical
reasoning subproblems are identified. Any two identical nodes can bemerged, thus
reducing the size of the search space. Some of these nodes canbe identified based
on graph-basedcontexts.

First, we present the notion ofinduced width of a pseudo treeof a graphG [18]
which is necessary for bounding the size of the AND/OR searchgraphs. We denote
by dDFS(T) a linear DFS ordering of a treeT .

DEFINITION 8 (induced width of a pseudo tree)Given a graphG, the induced
width of G relative to a pseudo treeT , wT (G), is the induced width along the
dDFS(T) ordering ofGT , the extended graph ofG relative toT .

We next provide definitions which allow identifying nodes that can be merged. The
idea is to determine a minimal set of predecessor variables toXi, whose assignment
completely determines the subproblem belowXi along the current path. Since a
path to an OR nodeXi and to an AND node〈Xi, xi〉 differs by the assignment
xi to Xi, these minimal assignments that we seek can differ. Indeed,the following
definitions distinguish between two types of context-basedcaching which are quite
subtle. In these definitions, ancestors and descendants arewith respect to the pseudo
treeT , while the connectivity is with respect to the primal graphG.

DEFINITION 9 (parents) Given a primal graphG and a pseudo treeT of a rea-
soning problemP, theparentsof an OR nodeXi, denoted bypai or paXi

, are the
ancestors ofXi which are connected toXi or to descendants ofXi in G.

DEFINITION 10 (parent-separators) Given a primal graphG and a pseudo tree
T of a reasoning problemP, theparent-separatorsof Xi (or of 〈Xi, xi〉), denoted
by pasi or pasXi

, are formed byXi and its ancestors that are connected inG to
descendants ofXi (not only toXi).

It follows from these definitions that the parents ofXi, pai, separate in the primal

7

A

D

B

EC

F

[A]

[AB]

[BC]

[D] [F]

[AE]

(a) AND contexts

AOR

0AND

BOR

0AND

OR E

OR F F

AND
0 1

AND 0 1

C

D D

0 1

0 1

1

EC

D D

0 1

1

B

0

E

F F

0 1

C

1

EC

(b) Context minimal AND/OR graph (AND merge)

A

D

B

EC

F

[]

[A]

[AB]

[BC] [AE]

[AB]

(c) OR contexts

AOR

0AND

BOR

0AND

OR E

OR

AND

AND 0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

0 1

1

E

0 1

C

0 1

(d) Context minimal AND/OR graph (OR merge)

Fig. 1. AND/OR search graph for graphical models.

graphG (and also in the extended graphGT and in the induced extended graph
GT

∗

) the ancestors ofXi from its descendants. Similarly, the parent-separators set
of Xi, pasi, separate the ancestors ofXi from its descendants. It is also easy to see
that each variableXi and its parentspai form a clique in the induced graphGT

∗

.
As was shown in [18], there exists the following relation betweenpai andpasi: (1)
if Y is the single child ofX in T , thenpasX = paY ; (2) if X has childrenY1, ..., Yk

in T , thenpasX = ∪k
i=1paYi

.

THEOREM 1 (context based merge [18])GivenGT
∗

, let πn1 andπn2 be any two
paths in an AND/OR search graph, ending with two nodes,n1 andn2.

(1) If n1 and n2 are AND nodes labeled by〈Xi, xi〉 and asgn(πn1)[pasXi
] =

asgn(πn2)[pasXi
] then the AND/OR search subtrees rooted byn1 andn2 are

identical. Theasgn(πni
)[pasXi

] is called theAND context of ni.
(2) If n1 andn2 are OR nodes labeled byXi andasgn(πn1)[paXi

] = asgn(πn2)[paXi
]

then the AND/OR search subtrees rooted byn1 and n2 are identical. The
asgn(πni

)[paXi
] is called theOR context of ni.

DEFINITION 11 (context minimal AND/OR search graph [18]) The AND/OR search
graph ofR based on the backbone pseudo treeT that is closed under the context-
based merge operator is called thecontext minimal AND/OR search graphand is

8

denoted byCT (R).

We should note that we can in general merge nodes based both onAND and OR
contexts. However, it was shown in [18] that doing just one ofthem renders the
other unnecessary (namely, yielding a small constant factor only). In this paper we
will use AND context based merging.

THEOREM 2 (size of context minimal AND/OR search graphs [18])Given a graph-
ical modelR, its primal graphG, and a pseudo treeT having induced width
w∗ = wT (G), the size of the context minimal AND/OR search graph based on
T , CT (R), isO(n · kw∗

), wherek bounds the domain size.

Example 1 Consider the example given in Fig. 1 which is based on Example 1 from
[1]. The AND contexts of each node in the pseudo tree is given insquare brackets
in Fig. 1(a). The context minimal AND/OR search graph (based on AND merging)
is given in Fig. 1(b). Its size is far smaller than that of the AND/OR search tree from
Fig. 1 in [1] (16 vs. 54 AND nodes). Similarly, Fig. 1(d) shows the context minimal
AND/OR graph based on the OR contexts given in Fig. 1(c). Its size is larger than
that of the AND based graph (38 vs. 16 AND nodes) in this case. Consider for
example variableC with AND-context{B,C} from Fig. 1(a). In Fig. 1 from [1],
the search subtrees below any appearance of(B = 0, C = 0) (i.e., corresponding
to the subproblems below the AND nodes labeled〈C, 0〉 along the paths containing
the assignmentsB = 0 andC = 0, respectively) are all identical, and therefore
can be merged, as shown in the search graph from Fig. 1(b).

4 AND/OR Branch-and-Bound with Caching

Traversing AND/OR search spaces by depth-first Branch-and-Bound or by best-
first search algorithms was described as early as [19,21,22]in the context of gen-
eral search spaces. In the following two sections we revisitthe definitions needed
to describe the algorithms. We will then introduce two classes of memory inten-
sive search algorithms that explore the context minimal AND/OR search graph of
graphical models, in either adepth-firstor best-firstmanner, for finding optimal
solution trees. The algorithms extend those presented in [1] for exploring AND/OR
search trees to algorithms exploring AND/OR search graphs.

DEFINITION 12 (partial solution tree) A partial solution treeT ′ of a context min-
imal AND/OR search graphCT (R) is a subtree which: (1) contains the root nodes

of CT (R); (2) if n in T ′ is an OR node then it contains one of its AND child nodes
in CT (R), and ifn is an AND node it contains all its OR children inCT (R). A node
in T ′ is called atip node if it has no children inT ′. A tip node is either aterminal
node (if it has no children inCT (R)), or a non-terminalnode (if it has children in
CT (R)).

9

A partial solution tree representsextension(T ′), the set of all full solution trees
which can extend it. A partial solution tree whose all tip nodes are terminal in
CT (R) is a solution tree.

In general, Branch-and-Bound algorithms are guided by a lowerbound heuristic
function. The extension of heuristic evaluation functionsto subtrees in an AND/OR
search space for graphical models was elaborated in [1]. We briefly introduce here
the main elements and refer the reader for further details tothe earlier references.

Heuristic Lower Bounds on Partial Solution Trees.We start with the notions of
exact heuristic evaluation functions of a partial solutiontree [1,2], which will be
used to guide the AND/OR Branch-and-Bound.

Theexact evaluation functionf ∗(T ′) of a partial solution treeT ′ is the minimum
of the costs of all solution trees extendingT ′, namely:f ∗(T ′) = min{f(T) | T ∈
extension(T ′)}. If f ∗(T ′n) is the exact evaluation function of a partial solution tree
rooted at noden, thenf ∗(T ′n) can be computed recursively, as follows:

1. If T ′n consists of a single noden thenf ∗(T ′n) = v(n).
2. If n is an OR node having the AND childm in T ′n, thenf ∗(T ′n) = w(n,m) +

f ∗(T ′m).
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf ∗(T ′n) =

∑k
i=1 f

∗(T ′mi
).

If each non-terminal tip nodem of T ′ is assigned a heuristic lower bound estimate
h(m) of v(m), then it induces a heuristic evaluation function on the minimal cost
extension ofT ′. Given a partial solution treeT ′n rooted atn in the AND/OR graph
CT (R), the tree-based heuristic evaluation functionf(T ′n), is defined recursively
by:

1. If T ′n consists of a single noden, thenf(T ′n) = h(n).
2. If n is an OR node having the AND childm in T ′n, thenf(T ′n) = w(n,m) +

f(T ′m).
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf(T ′n) =

∑k
i=1 f(T

′
mi
).

Clearly, by definition,f(T ′n) ≤ f ∗(T ′n), and ifn is the root of the context minimal
AND/OR search graph, thenf(T ′) ≤ f ∗(T ′) [1].

During search, the algorithm maintains both an upper boundub(s) on the optimal
solutionv(s) as well as the heuristic evaluation functionf(T ′) of the current partial
solution treeT ′ being explored, and wheneverf(T ′) ≥ ub(s), searching below the
current tip nodet of T ′ is guaranteed not to yield a better solution cost thanub(s)
and therefore, search belowt can be terminated.

10

Algorithm 1 : AOBB-C: AND/OR Branch-and-Bound Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

,min〉, pseudo-treeT rooted atX1, parent separator setspasi
(AND-context) for every variableXi, heuristic functionh(n).

Output : Minimal cost solution and an optimal solution assignment.
create an OR nodes labeledX1 // Create and initialize the root node1
v(s)←∞; ST (s)← ∅; OPEN ← {s}2
Initialize cache tables with entries ”NULL” // Initialize cache tables3
while OPEN 6= ∅ do4

n← top(OPEN); removen fromOPEN // EXPAND5
if n is an OR node, labeledXi then6

foreachxi ∈ Di do7
create an AND noden′, labeled〈Xi, xi〉8
v(n′)← 0; ST (n′)← ∅9
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight10

succ(n)← succ(n) ∪ {n′}11

else ifn is an AND node, labeled〈Xi, xi〉 then12
cached← false; deadend← false13
if Cache(asgn(πn)[pasi]) 6= NULL then14

v(n)← Cache(asgn(πn)[pasi]).value // Retrieve value15
ST (n)← Cache(asg(πn)[pasi]).assignment; // Retrieve optimal assignment16
cached← true // No need to expand below17

foreachOR ancestorm of n do18
f(T ′

m)← evalPartialSolutionTree(T ′
m)19

if f(T ′
m) ≥ v(m) then20
deadend← true21
break22

if deadend == false and cached == false then23
foreachXj ∈ childrenT (Xi) do24

create an OR noden′ labeledXj25
v(n′)←∞; ST (n′)← ∅26
succ(n)← succ(n) ∪ {n′}27

else ifdeadend == true then28
succ(p)← succ(p)− {n}29

Add succ(n) on top ofOPEN // PROPAGATE30
while succ(n) == ∅ do31

if n is an OR node, labeledXi then32
if Xi == X1 then33

return (v(n), ST (n)) // Search is complete34

v(p)← v(p) + v(n) // Update AND node value (summation)35
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node36

else ifn is an AND node, labeled〈Xi, xi〉 then37
Cache(asgn(πn)[pasi]).value← v(n) // Save AND node value in cache38
Cache(asgn(πn)[pasi]).assignment← ST (n); // Save optimal assignment39
if v(p) > (w(p, n) + v(n)) then40

v(p)← w(p, n) + v(n) // Update OR node value (minimization)41
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node42

removen from succ(p)43
n← p44

In [1] we also showed that the pruning test can be sped up if we associate upper
bounds with internal nodes as well. Specifically, ifm is an OR ancestor oft in T ′

andT ′m is the subtree ofT ′ rooted atm, then it is also safe to prune the search tree
belowt, if f(T ′m) ≥ ub(m). For illustration, see also Section 6 in [1].

11

Algorithm 2 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n, h(n))
Input : Partial solution subtreeT ′

n rooted at noden, heuristic functionh(n).
Output : Heuristic evaluation functionf(T ′

n).
if succ(n) == ∅ then1

return h(n)2
else3

if n is an AND nodethen4
letm1, ...,mk be the OR children ofn in T ′

n5

return
∑k

i=1
evalPartialSolutionTree(T ′

mi
, h(mi))6

else ifn is an OR nodethen7
letm be the AND child ofn in T ′

n8
return w(n,m) + evalPartialSolutionTree(T ′

m, h(mi))9

The Depth-First AND/OR Branch-and-Bound algorithm,AOBB-C, for search-
ing AND/OR graphs for graphical models, is described by Algorithm 1. It inter-
leaves a forward expansion step of the current partial solution tree (EXPAND) with
a backward propagation step (PROPAGATE) that updates the node values. This part
is identical to the tree-based variant [1] and we describe ithere for completeness.

The context-based caching uses a table representation. Foreach variableXi, a table
is reserved in memory for each possible assignment to its parent-separator setpasi
(i.e., AND context). During search, each table entry records the optimal solution
(both the cost and an optimal solution tree) to the subproblem below the corre-
sponding AND node. Initially, each entry has a predefined value, in our caseNULL.
The fringe of the search is maintained by a stack calledOPEN. The current node
is denoted byn, its parent byp, and the current path byπn. The children of the
current node are denoted bysucc(n).

Each noden in the search graph maintains its current valuev(n), which is updated
based on the values of its children. For OR nodes, the currentv(n) is an upper
bound on the optimal solution cost belown. Initially, v(n) is set to∞ if n is OR,
and0 if n is AND, respectively. A data structureST (n) maintains the actual best
solution tree found in the subgraph rooted atn. The node based heuristic function
h(n) of v(n) is assumed to be available to the algorithm, either retrieved from a
cache or computed during search.

Since we use AND caching, before expanding the current AND noden, its cache
table is checked (line 14). If the same context was encountered before, it is re-
trieved from the cache, andsucc(n) is set to the empty set, which will trigger the
PROPAGATE step. The algorithm also computes the heuristic evaluationfunction
for every partial solution subtree rooted at the OR ancestors of n along the path
from the root (lines 18–22). The search belown is terminated if, for some OR an-
cestorm, f(T ′m) ≥ v(m), wherev(m) is the current upper bound on the optimal
cost belowm. The recursive computation off(T ′m) is described in Algorithm 2.

If a node is not found in cache, it is expanded in the usual way,depending on
whether it is an AND or OR node (lines 6–29). Ifn is an OR node, labeledXi,

12

then its successors are AND nodes represented by the valuesxi in variableXi’s do-
main (lines 6–11). Each OR-to-AND arc is associated with the appropriate weight.
Similarly, if n is an AND node, labeled〈Xi, xi〉, then its successors are OR nodes
labeled by the child variables ofXi in T (lines 23–27). There are no weights asso-
ciated with AND-to-OR arcs.

The node values are updated by thePROPAGATE step (lines 31–44). It is triggered
when a node value has an empty set of descendants (note that aseach successor is
evaluated, it is removed from the set of successors in line 43). This means that all
its children have been evaluated, and their final values are already determined. If
the current node is the root, then the search terminates withits value and an optimal
solution tree (line 34). Ifn is an OR node, then its parentp is an AND node, and
p updates its current valuev(p) by summation with the value ofn (line 35). An
AND noden propagates its value to its parentp in a similar way, by minimization
(lines 37–42). It also saves in cache the value and optimal solution subtree below it
(lines 38–39). Finally, the current noden is set to its parentp (line 44), becausen
was completely evaluated. Each node in the search graph alsorecords the current
best assignment to the variables of the subproblem below it.Specifically, ifn is an
AND node, thenST (n) is the union of the optimal trees propagated fromn’s OR
children (line 36). Alternatively, ifn is an OR node andn′ is its AND child such
thatn′ = argminm∈succ(n)(w(n,m)+v(m)), thenST (n) is obtained from the label
of n′ combined with the optimal solution tree belown′ (line 42). Search continues
either with apropagationstep (if conditions are met) or with anexpansionstep.
Clearly, since the size of the context minimal AND/OR search graph is bounded
exponentially by the induced width of the primal graph, it follows that:

THEOREM 3 (complexity) AOBB-C traversing the context minimal AND/OR search
graph relative to a pseudo treeT is sound and complete. Its time and space com-
plexity isO(n ·kw∗

), wherew∗ is the induced width of the pseudo tree andk bounds
the domain size.

The space required byAOBB-C can sometimes be prohibitive. We next present two
caching schemes that can adapt to the memory limitations. They use a parameter
calledcache bound(or simplyj-bound) to control the amount of memory used for
storing identical nodes.

4.1 Naive Caching

The first scheme, callednaive cachingand denoted byAOBB-C(j), stores nodes at
the variables whose context size is smaller than or equal to the cache boundj. It is
easy to see that, whenj equals the induced width of the pseudo tree, the algorithm
explores the context minimal AND/OR graph via full caching.

As we mentioned earlier, a straightforward way of implementing the caching scheme

13

A

D

B E

C

F G

H

(a) Primal graph

A

D

B

EC

F G

H

[ABC]

[A]

[AH]

[AHB]

[E]

[AD]

[G][F]

(b) Pseudo tree

Fig. 2. An example of a primal graph and its pseudo tree.

B

0

EC

D D

0 1

1

EC

D D

0 1

B

0

EC

1

EC

A

0 1

H

0 1

B

0

EC

1

EC

B

0

EC

1

EC

H

0 1

D D

0 1

D D

0 1

0 1

0 1

D D

0 1

D D

0 1

D D

0 1

D D

0 1

0 10 1 0 1

GF GF GF GF

0 1 0 1

Fig. 3. Illustration of naive caching used byAOBB-C(2) on the problem from Fig. 2.

is to have acache tablefor each variableXk recording the context. Specifically, lets
assume that the context ofXk is context(Xk) = {X1, ..., Xk} and|context(Xk)| ≤
j. A cache table entry corresponds to a particular instantiation {x1, ..., xk} of the
variables incontext(Xk) and records the minimal cost solution to the subproblem
rooted at the AND node labeled〈Xk, xk〉.

However, some tables might never get cache hits. Thesedead-caches[6,18] appear
at nodes that have only one incoming arc in the context minimal graph.AOBB-C(j)
needs to record only nodes that are likely to have additionalincoming arcs, and
some of these nodes can be determined by inspecting the pseudo tree (for example,
when the context of a node does not include that of its parent).

Example 2 Figure 3 displays the AND/OR search graph obtained with the naive
caching schemeAOBB-C(2), relative to the pseudo tree given in Figure 2(b). No-
tice that there is no need to create cache tables for variablesH andB, because their
AND contexts include those of their respective parents in thepseudo tree, namely

14

B

0

EC

D D

0 1

1

EC

D D

0 1

B

0

EC

1

EC

A

0 1

H

0 1

B

0

EC

D D

0 1

1

EC

D D

0 1

B

0

EC

1

EC

H

0 1

0 1

0 1 0 1

GF GF GF GF

0 1 0 1

Fig. 4. Illustration of adaptive caching used byAOBB-AC(2) on the problem from Fig. 2.

context(A) ⊆ context(H) ⊆ context(B), respectively. Moreover,AOBB-C(2)
does not cache any of the AND nodes corresponding to variableC because its cor-
responding cache table, which is defined on 3 variables (e.g., A, B andC), cannot
be stored in memory.

4.2 Adaptive Caching

The second scheme, calledadaptive cachingand denoted byAOBB-AC(j), is in-
spired by the AND/OR cutset conditioning scheme and was firstexplored in [23].
It extends the naive scheme by allowing caching even at nodeswith contexts larger
than the given cache bound, based onadjusted contexts.

Specifically, consider the nodeXk in the pseudo treeT with context(Xk) =
{X1, ..., Xk}, wherek > j. During search, when variables{X1, ..., Xk−j} are in-
stantiated, they can be viewed as part of a cutset. The problem rooted byXk−j+1

can be solved in isolation, like a subproblem in the cutset scheme, after variables
X1, ..., Xk−j are assigned their current values in all the functions. In this subprob-
lem, conditioned on the values{x1, ..., xk−j}, context(Xk) = {Xk−j+1, ..., Xk}
(we call this theadjusted contextof Xk), so it can be cached withinj-bounded
space. However, whenAOBB-AC(j) retracts to variableXk−j or above, the cache
table for variableXk needs to be purged, and will be used again when a new sub-
problem rooted atXk−j+1 is solved. This caching scheme requires only a linear
increase in additional memory, compared to the naiveAOBB-C(j), but it has the
potential of exponential time savings, as shown in [23].

Example 3 Figure 4 shows the AND/OR graph traversed using the adaptive caching

15

schemeAOBB-AC(2). In contrast to the naive scheme displayed in Figure 3,
AOBB-AC(2) caches the AND level corresponding to variableC based on its
adjusted context. The adjusted AND context ofC is {C,B} and a flag is installed
at variableA, indicating that the cache table must be purged wheneverA is instan-
tiated to a different value.

5 Best-First AND/OR Search

We now direct our attention to abest-firstcontrol strategy for traversing the con-
text minimal AND/OR graph. The best-first search algorithm uses similar amounts
of memory as the depth-first AND/OR Branch-and-Bound with fullcaching and
therefore the comparison is warranted.

Best-first search expands the nodes in order of their heuristic evaluation function.
Its main virtue is that it never expands nodes whose cost is beyond the optimal
one, unlike depth-first search algorithms, and therefore issuperior among memory
intensive algorithms employing the same heuristic evaluation function [9].

Best-First AND/OR search, denoted byAOBF-C, that traverses the context mini-
mal AND/OR search graph is described in Algorithm 3. It specializes Nilsson’sAO∗

algorithm [19] to AND/OR search spaces for graphical modelsand interleaves for-
ward expansion of the best partial solution tree (EXPAND) with a cost revision step
(REVISE) that updates node values, as detailed in [19]. The explicated AND/OR
search graph is maintained by a data structure calledC ′T , the current node isn, s is
the root of the search graph and the current best partial solution subtree is denoted
by T ′. The children of the current node are denoted bysucc(n).

First, a top-down, graph-growing operation finds the best partial solution tree by
tracing down through the marked arcs of the explicit AND/OR search graphC ′T
(lines 4–10). These previously computed marks indicate thecurrent best partial
solution tree from each node inC ′T . Before the algorithm terminates, the best partial
solution tree,T ′, does not yet have all of its leaf nodes terminal. One of its non-
terminal leaf nodesn is then expanded by generating its successors, depending on
whether it is an OR or an AND node. Ifn is an OR node, labeledXi, then its
successors are AND nodes represented by the valuesxi in variableXi’s domain
(lines 12–21). Notice that when expanding an OR node, the algorithm does not
generate AND children that are already present in the explicit search graphC ′T , but
rather links to them. All these identical AND nodes inC ′T are easily recognized
based on their contexts. Each OR-to-AND arc is associated with the appropriate
weight (see Definition 6). Similarly, ifn is an AND node, labeled〈Xi, xi〉, then
its successors are OR nodes labeled by the child variables ofXi in T (lines 22–
26). There are no weights associated with AND-to-OR arcs. Moreover, a heuristic
underestimateh(n′) of v(n′) is assigned to each ofn’s successorsn′ ∈ succ(n).

16

Algorithm 3 : AOBF-C: Best-First AND/OR Graph Search
Input : An optimization problemP = 〈X,D,F,

∑

,min〉, pseudo treeT rooted atX1, parent separator setspasi
(AND-context) for every variableXi, heuristic functionh(n).

Output : Minimal cost solution and an optimal solution assignment.
create an OR nodes labeledX1 // Initialize1
v(s)← h(s); C′

T
← {s}2

while s is not labeledSOLV ED do3
S ← {s}; T ′ ← {}; // Create the marked partial solution tree4
while S 6= ∅ do5

n← top(S); removen fromS6
T ′ ← T ′ ∪ {n}7
letL be the set of marked successors ofn8
if L 6= ∅ then9

addL on top ofS10

let n be any nonterminal tip node of the markedT ′ (rooted ats) // EXPAND11
if n is an OR node, labeledXi then12

foreachxi ∈ Di do13
let n′ be the AND node inC′

T
having context equal topasi14

if n′ == NULL then15
create an AND noden′ labeled〈Xi, xi〉16
v(n′)← h(n′)17
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn))18

if n′ is TERMINALthen19
labeln′ as SOLVED20

succ(n)← succ(n) ∪ {n′}21

else ifn is an AND node, labeled〈Xi, xi〉 then22
foreachXj ∈ childrenT (Xi) do23

create an OR noden′ labeledXj24
v(n′)← h(n′)25
succ(n)← succ(n) ∪ {n′}26

C′
T
← C′

T
∪ {succ(n)}27

S ← {n} // REVISE28
while S 6= ∅ do29

letm be a node inS such thatm has no descendants inC′
T

still in S; removem fromS30
if m is an AND node, labeled〈Xi, xi〉 then31

v(m)←
∑

mj∈succ(m)
v(mj)32

mark all arcs to the successors33
labelm as SOLVED if all its children are labeled SOLVED34

else ifm is an OR node, labeledXi then35
v(m) = minmj∈succ(m)(w(m,mj)

+ v(mj))36
mark the arc through which this minimum is achieved37
labelm as SOLVED if the marked successor is labeled SOLVED38

if m changes its valueor m is labeled SOLVEDthen39
add toS all those parents ofm such thatm is one of their successors through a marked arc.40

return v(s) // Search terminates41

The second operation inAOBF-C is a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (lines 28–40). It aims at updating the evaluation function of any
subtree that might be affected, and marks the best one. Starting with the node just
expandedn, the procedure revises its valuev(n), using the newly computed values
of its successors, and marks the outgoing arcs on the estimated best path to termi-
nal nodes. This revised value is then propagated upwards in the graph. The revised
valuev(n) is an updated lower bound on the cost of an optimal solution tothe sub-
problem rooted atn. If we assume the monotone restriction onh, cost revisions can

17

only be cost increases [24,19]. Therefore, not all ancestors need have cost revisions,
but only those ancestors having best partial solution treescontaining descendants
with revised values (lines 39–40). During the bottom-up step, AOBF-C labels an
AND node asSOLVED if all of its OR child nodes are solved, and labels an OR
node asSOLVED if its marked AND child is also solved. The algorithm terminates
with the optimal solution when the root nodes is labeledSOLVED.

If h(n) ≤ v(n), the exact cost atn, for all nodes, and ifh satisfies the monotone
restriction, then algorithmAOBF-C will terminate with an optimal solution tree
[24,19]. The optimal solution tree can be obtained by tracing down froms through
the marked connectors at termination and its optimal cost isequal to the valuev(s)
of s at termination. Since the algorithm explores every node in the context minimal
graph just once, it is the case that:

THEOREM 4 (complexity) The best-first AND/OR search algorithm traversing the
context minimal AND/OR graph has time and space complexity ofO(n·kw∗

), where
w∗ is the induced width of the pseudo tree andk bounds the domain size.

AOBB versus AOBF. We highlight next the main differences between depth-first
AND/OR Branch-and-Bound (AOBB-C) and best-first AND/OR search (AOBF-C)
traversing the context minimal AND/OR search graph.

First, AOBF-C with the same heuristic function asAOBB-C is likely to expand
the smallest number of nodes [9], but empirically this depends on how quickly
AOBB-C will find an optimal solution that it will use as upper bound. Secondly,
AOBB-C can use far less memory by avoiding dead-caches for example (e.g., when
the search graph is a tree), whileAOBF-C has to keep the explicated search graph
in memory. Third,AOBB-C can be used as an anytime scheme, namely whenever
interrupted, the algorithm outputs the best solution foundso far, unlikeAOBF-C
which outputs a complete solution upon termination only. All the above points
show that the relative merit of best-first versus depth-firstover context minimal
AND/OR search spaces cannot be determined by sheer theory [9] and therefore
empirical evaluation is essential.

6 Overview of the Mini-Bucket Lower Bound Heuristics for AND/OR Search

The effectiveness of both depth-first AND/OR Branch-and-Bound and best-first
AND/OR search algorithms greatly depends on the quality of the heuristic eval-
uation functions. The primary heuristic that we used in our experiments is the
Mini-Bucket heuristic, which we presented in [1,2]. For completeness, we review
it briefly next.

Mini-Bucket Elimination (MBE(i)) [11] is an approximation algorithm designed

18

to avoid the high time and space complexity ofBucket Elimination(BE) [25], by
partitioning large buckets into smaller subsets, calledmini-buckets, each containing
at mosti (calledi-bound) distinct variables. The mini-buckets are then processed
separately. The algorithm outputs not only a bound on the optimal solution cost,
but also a collection of augmented buckets, which form the basis for the heuristics
generated. The complexity is time and spaceO(exp(i)). Both Bucket and Mini-
Bucket Elimination can also be viewed as message passing fromleaves to root
along abucket tree[17].

Static Mini-Bucket Heuristics. In [1,2,10] we showed that the intermediate func-
tions generated by MBE(i) can be used to compute a heuristic function that under-
estimates the minimal cost solution to the current subproblem. Specifically, given
an ordered set of augmented buckets{B(X1), ..., B(Xn)} generated by MBE(i)
along the bucket treeT (which is also a pseudo tree [18]), and given a noden

in the AND/OR search tree, thestatic mini-bucket heuristicfunctionh(n) is com-
puted as follows: (1) ifn is an AND node labeled〈Xp, xp〉, thenh(n) is the sum
of all intermediate functions that were generated in buckets corresponding to the
descendents ofXp in T and reside in bucketB(Xp) or the buckets correspond-
ing to the ancestors ofXp in T ; (2) if n is an OR node labeled byXp, then
h(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn labeled with
valuexp of Xp.

Dynamic Mini-Bucket Heuristics. It is also possible to generate the mini-bucket
heuristic information dynamically, during search. The idea is to compute MBE(i)
conditioned on the current partial assignment [1,2]. Specifically, given a bucket
treeT , with buckets{B(X1), ..., B(Xn)}, a noden in the AND/OR search tree
and given the current partial assignmentasgn(πn) along the path ton, thedynamic
mini-bucket heuristicfunction h(n) is computed as follows: (1) ifn is an AND
node labeled〈Xp, xp〉, thenh(n) is the sum of the intermediate functions that re-
side in bucketB(Xp) and were generated by MBE(i), conditioned onasgn(πn), in
the buckets corresponding to the descendants ofXp in T ; (2) if n is an OR node
labeledXp, thenh(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn
labeled with valuexp of Xp. Given ani-bound, the dynamic mini-bucket heuristic
implies a much higher computational overhead compared withthe static version.
However, the bounds generated dynamically may be far more accurate since some
of the variables are assigned and will therefore yield smaller functions and less
partitioning.

7 Experimental Results

In [1,2] we evaluated empirically AND/OR search algorithmsfor AND/OR trees
only. We now extend this evaluation to algorithms presentedin this paper exploring
the context minimal AND/OR search graphs. As in [1,2], we have conducted a num-

19

ber of experiments on the two common optimization problems classes in graphical
models: finding the Most Probable Explanation in Bayesian networks and solving
Weighted CSPs. We implemented our algorithms in C++ and ran allexperiments
on a 2.4GHz Pentium IV with 2GB of RAM, running Windows XP.

7.1 Overview and Methodology

Algorithms We evaluated the following classes of memory intensive AND/OR
search algorithms:

• Depth-first AND/OR Branch-and-Bound search algorithms with full caching, us-
ing static and dynamic mini-bucket heuristics, denoted byAOBB-C+SMB(i)
andAOBB-C+DMB(i), respectively.

• Best-first AND/OR search algorithms using static and dynamicmini-bucket heuris-
tics, denoted byAOBF-C+SMB(i) andAOBF-C+DMB(i), respectively.

We compare these algorithms with those traversing the AND/OR search tree (with-
out caching), denoted byAOBB+SMB(i) andAOBB+DMB(i), introduced in [1,2].
In addition, we also ran the traditional OR Branch-and-Bound search algorithms
with full caching, denoted byBB-C+SMB(i) andBB-C+DMB(i), respectively.
In all cases, the parameteri represents the mini-bucketi-bound and controls the
accuracy of the heuristic.

Throughout our empirical evaluation we will address the following aspects that
govern the performance of the proposed algorithms:

1 The impact of graph versus tree on AND/OR Branch-and-Bound search.
2 The impact of best-first versus depth-first AND/OR search regimes.
3 The impact of the mini-bucketi-bound.
4 The impact of the cache boundj on naive and adaptive caching.
5 The impact of the pseudo tree quality on AND/OR search.
6 The impact of determinism present in the network.
7 The impact of non-trivial initial upper bounds.

MPE Task for Bayesian Networks We tested the performance of the depth-
first AND/OR Branch-and-Bound and best-first AND/OR search algorithms on the
following types of problems2 : random coding networks, grid networks, Bayesian
networks derived from the ISCAS’89 digital circuits benchmark, genetic linkage
analysis networks and Bayesian networks used in the UAI’06 Inference Evaluation
contest. We report here in detail the results obtained for grid networks and genetic

2 Available online athttp://graphmod.ics.uci.edu/group/Repository

20

linkage analysis networks only, but we summarize the results over the entire set of
benchmarks, and refer the reader to [26,27] for additional details.

In our experiments, we also consider an extension of the AND/OR Branch-and-
Bound with caching that exploits the determinism present in the Bayesian network
by constraint propagation. For reference, we also comparedwith the SAM IAM ver-
sion 2.3.2 software package3 . SAM IAM contains an implementation of Recursive
Conditioning [6] which can also be viewed as an AND/OR search algorithm. It uses
a context-based caching mechanism similar to our scheme. This version of recur-
sive conditioning also explores a context minimal AND/OR search graph [18] and
therefore its space complexity is exponential in the treewidth. Note that when we
use mini-bucket heuristics with high values ofi, we use space exponential ini for
the heuristic calculation and storing, in addition to the space required for caching.

Weighted CSPs We evaluated the algorithms on: scheduling problems from the
SPOT5 benchmark, networks derived from the ISCAS’89 digitalcircuits and in-
stances of the popular game of Mastermind. We report here detailed results for
SPOT5 problem instances and Mastermind game instances only. We also provide a
summary of the results obtained on the other types of problems, and refer the reader
to [26,27] for the full results.

For reference, we also report results obtained with the state-of-the-art solvers called
toolbar [28] andtoolbar-BTD [29] 4 .toolbar is an OR Branch-and-Bound
algorithm that maintains during search a form of soft local consistency called Ex-
istential Directional Arc Consistency (EDAC).toolbar-BTD extends theBack-
tracking with Tree Decomposition(BTD) algorithm [8] and computes the guiding
heuristic information as well by enforcing EDAC during search. It can be shown
that BTD explores a context minimal AND/OR search graph, relative to a pseudo
tree corresponding to the given tree decomposition. In addition, we also com-
pare with the depth-first AND/OR Branch-and-Bound tree searchalgorithms with
EDAC heuristics and with variable orderings such as:AOEDAC+PVO using par-
tial variable orderings,DVO+AOEDAC using full dynamic variable ordering, and
AOEDAC+DSO using dynamic separator orderings, respectively. For a detailed de-
scription of these ordering heuristics and their evaluation, see [1,3].

The dynamic variable ordering heuristic used by the OR and AND/OR Branch-and-
Bound algorithms with EDAC heuristics was themin-dom/ddegheuristic, which
selects the variable with the smallest ratio of the domain size divided by the future
degree. Ties were broken lexicographically.

3 Available at http://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5 pro-
vided with the package.
4 Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

21

Measures of Performance In all our experiments we report the CPU time in
seconds and the number of nodes visited for solving the problems. We also specify
the problems’ parameters such as the number of variables (n), number of evidence
variables (e), maximum domain size (k), the induced width (w∗) and depth (h) of
the pseudo trees. When evidence is asserted in the network,w∗ andh are computed
after the evidence nodes were removed from the graph. We alsoreport the time
required by the Mini-Bucket algorithm MBE(i) to pre-compile the heuristic infor-
mation. The pseudo trees that guide the AND/OR search algorithms were generated
using the min-fill and hypergraph partitioning heuristics described in [1,6]. In our
experiments we ran the min-fill heuristic just once and brokethe ties lexicograph-
ically. The best performance points are highlighted. In each table, ”-” denotes that
the respective algorithm exceeded the time limit. Similarly, ”out” indicates that the
2GB memory limit was exceeded.

7.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in [1] demonstrated conclusively thatthe AND/OR Branch-
and-Boundtreesearch algorithms with static mini-bucket heuristics werethe best
performing algorithms on this domain when compared with traditional OR search
algorithms. The difference betweenAOBB+SMB(i) and the OR tree search coun-
terpartBB+SMB(i)was more pronounced at relatively smalli-bounds (correspond-
ing to relatively weak heuristic estimates) and amounted totwo orders of mag-
nitude in terms of both running time and size of the search space explored. For
largeri-bounds, when the heuristic estimates are strong enough to prune the search
space substantially, the difference between AND/OR and OR Branch-and-Bound
tree search decreased. We also showed thatAOBB+SMB(i) was in many cases able
to outperform dramatically the current state-of-the-art solvers for belief networks
such as SAM IAM and SUPERLINK (for genetic linkage analysis). The AND/OR
Branch-and-Bound with dynamic mini-bucket heuristicsAOBB+DMB(i) proved
competitive only for relatively smalli-bounds due to the computational overhead.
In this section we extend the empirical evaluation to memoryintensive depth-first
and best-first AND/OR search algorithms.

7.2.1 Grid Networks

In random grid networks, the nodes are arranged in anN×N square and each CPT
is generated uniformly randomly. We experimented with problem instances initially
developed by [30] for the task of weighted model counting. For these problemsN
ranges between 10 and 38, and, for each instance,90% of the CPTs are determin-
istic, namely they contain only 0 and 1 probability entries.All the variables are
bi-valued.

22

Table 1
CPU time in seconds and nodes visited for solvinggrid networks usingstatic mini-bucket
heuristicsand min-fill based pseudo trees. Time limit 1 hour. The two horizontal blocks of
the table show different ranges of the mini-bucketi-bounds.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=8 i=10 i=12 i=14 i=16

time time nodes time nodes time nodes time nodes time nodes

0.02 0.03 0.03 0.06 0.06

90-10-1 0.23 3,297 0.06 373 0.05 102 0.06 102 0.06 102

(13, 39) 0.13 0.33 8,080 0.11 2,052 0.05 101 0.06 101 0.06 101

(100, 0) 0.14 2,638 0.06 819 0.05 101 0.06 101 0.06 101

0.27 2,012 0.11 661 0.05 100 0.06 100 0.06 100

0.03 0.03 0.08 0.14 0.44

90-14-1 126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450

(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938

(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 0.23 1,361 0.53 1,210

3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857

0.05 0.05 0.11 0.31 0.63

90-16-1 - - - - 40.05 345,255 2.38 16,942 1.23 5,327

(24, 82) 147.19 666.68 10,104,350 173.49 2,600,690 14.36 193,440 2.97 39,825 2.08 23,421

(256, 0) 209.60 2,695,249 35.45 441,364 4.23 50,481 1.19 11,029 0.95 4,810

25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid SamIam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time time nodes time nodes time nodes time nodes time nodes

0.28 0.64 1.69 4.60 19.14

90-24-1 - - - - - - - - - -

(33, 111) out - - 2338.67 24,117,151 1548.09 18,238,983 138.67 1,413,764 146.85 1,308,009

(576, 20) - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291

0.33 0.72 2.14 7.09 22.02

90-26-1 - - - - 395.67 1,635,447 - - 67.09 277,685

(36, 113) out 311.89 2,903,489 369.49 3,205,257 8.42 59,055 22.99 165,182 22.56 5,777

(676, 40) 146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435

0.47 0.98 2.77 7.98 30.44

90-30-1 - - - - - - - - - -

(43, 150) out 1131.07 9,445,224 386.27 3,324,942 350.28 3,039,966 149.69 1,358,569 97.09 485,300

(900, 60) 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800

0.63 1.25 3.72 11.66 40.00

90-34-1 - - - - - - - - - -

(45, 153) out - - - - - - - - 478.10 1,549,829

(1154, 80) - - - - - - - - 369.36 823,604

out out 243.63 596,978 270.88 667,013 71.19 67,611

0.78 1.67 4.20 12.36 43.69

90-38-1 - - - - - - - - - -

(47, 163) out 2032.33 6,835,745 - - 807.38 2,850,393 568.69 2,079,146 369.31 1,038,065

(1444, 120) 969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

23

Table 2
CPU time in seconds and nodes visited for solvinggrid networks usingdynamic mini-
bucket heuristicsand min-fill based pseudo trees. Time limit 1 hour. The two horizontal
blocks of the table show different ranges of the mini-bucketi-bounds. Grid instances90-
30-1, 90-34-1and90-38-1could not be solved within the time limit.

min-fill pseudo tree

grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes

90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102

(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101

(100, 0) 0.28 235 0.25 170 0.23 101 0.28 101 0.30 101

0.39 135 0.36 115 0.36 100 0.41 100 0.41 100

90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199

(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199

(196, 0) 46.94 7,641 22.72 1,996 4.67 281 7.20 211 10.19 199

54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199

90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262

(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260

(256, 0) 382.78 44,949 245.50 11,855 65.41 1,430 48.61 525 24.52 260

194.08 11,453 252.99 6,622 94.88 1,061 75.41 413 38.46 258

grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

90-24-1 - - - - 2586.38 3,243 1724.68 700 2368.83 601

(33, 111) - - - - 1367.38 2,739 1979.42 1,228 1696.56 598

(576, 20) - - - - 781.21 1,058 1211.99 788 1693.00 598

3456.77 11,818 1834.71 2,728 1153.48 855 1871.03 759 2573.08 591

90-26-1 - - - - - - - - - -

(36, 113) - - - - 1514.18 2,545 2889.49 1,191 - -

(676, 40) 2801.39 35,640 2593.74 10,216 892.88 1,178 1698.70 861 2647.60 687

1262.76 5,392 1737.01 2,585 1347.54 1,049 2587.10 828 - -

Tables 1 and 2 show detailed results for experiments with 8 grids of increasing diffi-
culty, using static and dynamic mini-bucket heuristics. The columns are indexed by
the mini-bucketi-bound. Each table is organized into two horizontal blocks,each
corresponding to a different range ofi-bound values. For each instance we ran a
single MPE query withe nodes picked randomly and instantiated as evidence. The
guiding pseudo trees were generated using the min-fill heuristic.

Tree vs. graph AOBB.First, we observe thatAOBB-C+SMB(i) using full caching
improves significantly over the tree version of the algorithm, especially for rela-
tively small i-bounds which generate relatively weak heuristic estimates. For ex-
ample, on the90-16-1 grid in Table 1,AOBB-C+SMB(8) is 3 times faster than
AOBB+SMB(8) and explores a search space 5 times smaller. Notice also the signif-
icant additional reduction produced by the best-first search algorithmAOBF-C+SMB(8).
While overallAOBF-C+SMB(i) is superior toAOBB-C+SMB(i) with the samei-
bound, the best performance on this network is obtained byAOBB-C+SMB(16).

24

(a) CPU time in seconds (b) Nodes visited

Fig. 5. Comparison of the impact of static and dynamic mini-bucket heuristics. Shown are
the CPU time in seconds (a) and the number of nodes visited (b) on the90-14-1 grid
network from Tables 1 and 2, respectively.

The algorithm is two times faster than the cache-lessAOBB+SMB(16), and 155
times faster than SAM IAM , respectively. When looking at the algorithms using dy-
namic mini-bucket heuristics (Table 2) we observe a similarpattern, namely the
graph search AND/OR Branch-and-Bound algorithm improves sometimes signifi-
cantly over the tree search one. For instance, on the90-24-1 grid,AOBB-C+DMB(16)
is about two times faster thanAOBB+DMB(16). Notice also that the AND/OR
algorithms with dynamic mini-buckets could not solve the last 3 test instances
due to exceeding the time limit. The OR Branch-and-Bound search algorithms
with cachingBB-C+SMB(i) (resp.BB-C+DMB(i)) are inferior to the AND/OR
Branch-and-Bound graph search, especially on the harder instances (e.g.,90-30-1).

AOBF vs. AOBB. When comparing further the best-first and depth-first search al-
gorithms, we see again the superiority ofAOBF-C+SMB(i) overAOBB-C+SMB(i),
especially for relatively weak heuristic estimates (see also Figure 5). For example,
on the90-38-1 grid, one of the hardest instances, best-first search with the small-
est reportedi-bound (i = 12) is 9 times faster thanAOBB-C+SMB(12) and visits
15 times less nodes. The difference between best-first and depth-first search is not
too prominent when using dynamic mini-bucket heuristics, perhaps because these
heuristics are far more accurate than the pre-compiled onesyielding a small enough
search space.

Static vs. dynamic mini-bucket heuristics.When comparing the static versus dy-
namic mini-bucket heuristics, we see as before, that the former are more powerful
for relatively largei-bounds, whereas the latter are cost effective only for relatively
smalli-bounds. Figures 5(a) and 5(b) plot the CPU time and size of thesearch space
explored, as a function of the mini-bucketi-bound, on the90-14-1 grid from Ta-
bles 1 and 2, respectively. Focusing onAOBB-C+SMB(i), for example, we see that
its running time, as a function ofi, forms a U-shaped curve. At first (i = 4) it is
high, then as thei-bound increases the total time decreases (wheni = 14 the time
is 0.23), but then asi increases further the time starts to increase again becausethe

25

Fig. 6. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with static
mini-bucket heuristics ongrid networks. Shown is the CPU time in seconds.

Fig. 7. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
grid networks with AOBB-C+SMB(i) (left) andAOBF-C+SMB(i) (right). The header
of each plot records the average induced width (w∗) and pseudo tree depth (h) obtained
with the hypergraph partitioning heuristic. We also show the induced width andpseudo
tree depth for the min-fill heuristic.

pre-processing time of the mini-bucket heuristic outweighs the search time. The
same behavior can be observed in the case of dynamic mini-buckets as well.

Impact of the caching level.Figure 6 compares the naive (AOBB-C+SMB(i,j))
and adaptive (AOBB-AC+SMB(i,j)) caching schemes, in terms of CPU time, on
two grid networks from Table 1. In each test case we chose a relatively small mini-

26

Fig. 8. Memory usage byAOBB-C+SMB(i) andAOBF-C+SMB(i) ongrid networks.

bucketi-bound and varied the cache boundj (the X axis) from 2 to 20. We see
that adaptive caching improves significantly over the naivescheme especially for
relatively smallj-bounds. This may be important because smallj-bounds mean
restricted space. For largej-bounds the two schemes are identical and approach
full caching.

Impact of the pseudo tree.Since the hypergraph partitioning heuristic uses a non-
deterministic algorithm, the runtime of the AND/OR search algorithms guided
by the resulting pseudo trees may vary significantly from onerun to the next.
In Figure 7 we display the running time distribution ofAOBB-C+SMB(i) (left
side of the figure) andAOBF-C+SMB(i) (right side of the figure) using hyper-
graph based pseudo trees on grids90-24-1 and 90-26-1, respectively. For
each reportedi-bound (the X axis), the corresponding data point and error bar
represent the average as well as the minimum and maximum running times ob-
tained over 20 independent runs. We also record the average induced width and
depth obtained for the hypergraph pseudo trees (see the header of each plot in
Figure 7). We see that the hypergraph based pseudo trees, which have far smaller
depths, are sometimes able to improve the performance ofAOBB-C+SMB(i), es-
pecially for relatively smalli-bounds (e.g., 90-24-1). For largeri-bounds, the
pre-compiled mini-bucket heuristic benefits from the smallinduced widths ob-
tained with the min-fill ordering. Therefore,AOBB-C+SMB(i) using min-fill based
pseudo trees is generally faster (see the different Y scale). We also see that on av-
erageAOBF-C+SMB(i) is faster when it is guided by min-fill rather than hyper-
graph based pseudo trees. This verifies our hypothesis that memory intensive algo-
rithms exploring the AND/OR graph are more sensitive to the context size (which
is smaller for min-fill orderings), rather than the depth of the pseudo tree. These
results were typical to other instances as well.

Memory usage of AND/OR graph search.Figure 8 displays the memory usage
of AOBB-C+SMB(i) andAOBF-C+SMB(i) on grids90-30-1 and90-38-1,
respectively. We see that the memory requirements of the depth-first algorithm are
significantly smaller than those of best-first search. This is becauseAOBF-C+SMB(i)
has to keep in memory the entire search space, unlikeAOBB-C+SMB(i)which can

27

Table 3
CPU time and nodes visited for solvinggenetic linkage networksusing static mini-
bucket heuristics. Time limit 3 hours. Top part of the table shows results fori-bounds
between 6 and 14, while the bottom part showsi-bounds between 10 and 18.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

0.05 0.05 0.11 0.31 0.97

ped1 - - - - 1.14 7,997 0.73 3,911 1.31 2,704

(15, 61) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156

(299, 5) 5.44 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119

0.12 0.45 5.38 60.97 out

ped38 - - - - - - - -

(17, 59) 28.36 - - 8120.58 85,367,022 - - 3040.60 35,394,461

(582, 5) out 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976

out 134.41 348,723 216.94 583,401 103.17 242,429

0.11 0.74 5.38 37.19 out

ped50 - - - - - - - -

(18, 58) - - - - - 476.77 5,566,578 104.00 748,792

(479, 5) out 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

0.42 2.33 11.33 274.75 out

ped23 - - - - 76.11 339,125 270.22 74,261

(27, 71) 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308

(310, 5) out 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613

out 15.33 58,180 14.36 12,987 out

0.67 5.16 21.53 58.59 out

ped37 - - - - - - - -

(21, 61) 64.17 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

(1032, 5) out 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

save space by avoiding dead-caches for example. Moreover, the nodes cached by
AOBB-C+SMB(i) require far less memory because they only record the optimal
solution cost below them, whereas the nodes cached byAOBF-C+SMB(i) must
store, in addition, the lists of their children in the searchgraph. For these reasons,
we were able throughout the evaluation to run full caching with depth-first search.

7.2.2 Genetic Linkage Analysis

In human genetic linkage analysis [31], thehaplotypeis the sequence of alleles
at different loci inherited by an individual from one parent, and the two haplo-

28

Table 4
CPU time in seconds and nodes visited for solvinggenetic linkage networksusingstatic
mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

0.51 1.42 4.59 12.87 19.30

ped18 - - - - - - - - 1515.43 1,388,791

(21, 119) 139.06 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689

(1184, 5) 157.05 - - 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972

out 127.41 542,156 42.19 171,039 19.85 53,961 19.91 2,027

1.42 5.11 37.53 410.96 out

ped20 - - - - - - - -

(24, 66) 14.72 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195

(388, 5) out 1983.00 18,615,009 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646

out out out out

0.34 0.89 3.20 10.46 33.42

ped25 - - - - - - - - - -

(34, 89) - - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541

(994, 5) out - - 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 236.88 1,529,180

out out out out out

0.42 0.83 1.78 5.75 21.30

ped30 - - - - - - - - - -

(23, 118) 13095.83 - - - - - - 214.10 1,379,131 91.92 685,661

(1016, 5) out 10212.70 93,233,570 8858.22 82,552,957 - - 34.19 193,436 30.48 66,144

out out out 30.39 72,798 27.94 18,795

0.58 2.31 7.84 33.44 112.83

ped33 - - - - - - - - - -

(37, 165) - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215

(581, 5) out 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 1373.90 10,570,695

out 140.61 407,387 out 74.86 134,068 out

0.52 2.32 8.41 33.15 81.27

ped39 - - - - - - - - - -

(23, 94) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280

(1272, 5) out - - - - 968.03 7,880,928 61.20 313,496 93.19 83,714

out out 68.52 218,925 41.69 79,356 87.63 14,479

4.20 31.33 96.28 out out

ped42 - - - - - -

(25, 76) 561.31 - - - - - -

(448, 5) out - - - - 2364.67 22,595,247

out out 133.19 93,831

types (maternal and paternal) of an individual constitute this individual’sgenotype.
When genotypes are measured by standard procedures, the result is a list of un-
ordered pairs of alleles, one pair for each locus. Themaximum likelihood haplo-
typeproblem consists of finding a joint haplotype configuration for all members of
the pedigree which maximizes the probability of data. It canbe shown that given
the pedigree data, the haplotyping problem is equivalent tocomputing the most
probable explanation of a Bayesian network that represents the pedigree [32,33].

29

Tables 3 and 4 display the results obtained for 12 hard linkage analysis networks5 .
We report only on search guided by static mini-bucket heuristics. The dynamic
mini-bucket heuristics performed very poorly on this domain because of their pro-
hibitively high computational overhead at largei-bounds. For comparison, we in-
clude results obtained with SUPERLINK 1.6. SUPERLINK is currently one the most
efficient solvers for genetic linkage analysis, is dedicated to this domain, uses a
combination of variable elimination and conditioning, andtakes advantage of the
determinism in the network.

Tree versus graph AOBB.We observe thatAOBB-C+SMB(i) improves signifi-
cantly overAOBB+SMB(i), especially for relatively smalli-bounds for which the
heuristic estimates are less accurate. Onped25, for example,AOBB-C+SMB(18)
is 15 times faster thanAOBB+SMB(18) and expands about 20 times fewer nodes.
As thei-bound increases the difference betweenAOBB-C+SMB(i) andAOBB+SMB(i)
decreases, as we saw before. Notice that the OR Branch-and-Bound with caching
BB-C+SMB(i) and SAM IAM were able to solve only one instance (e.g., ped18).

AOBB vs. AOBF. The overall best performing algorithm on this dataset is best-
first AOBF-C+SMB(i), outperforming its competitors on 5 out of the 7 test cases.
On ped42, for instance,AOBF-C+SMB(16) is 18 times faster than the depth-
first Branch-and-BoundAOBB-C+SMB(16) and explores a search space 240 times
smaller. In some test cases (e.g., ped30) the best-first search algorithm was up to
3 orders of magnitude faster than SUPERLINK.

Impact of the pseudo tree.Figure 9 plots the running time distribution of depth-
first AOBB-C+SMB(i) (left side of the figure) and best-firstAOBF-C+SMB(i)
(right side of the figure), guided by hypergraph based pseudotrees, over 20 in-
dependent runs on theped1 andped33 networks, respectively. In this case, we
see that both algorithms perform much better when guided by hypergraph based
pseudo trees, especially on harder instances. For instance, on theped33 network,
AOBB-C+SMB(16) using a hypergraph based pseudo tree was able to outperform
AOBB-C+SMB(16) guided by a min-fill tree by almost two orders of magnitude.
Similarly, AOBF-C+SMB(i) with hypergraph trees was able to solve the problem
instance across alli-bounds, unlikeAOBB-C+SMB(i) with a min-fill tree which
succeeded only fori ∈ {14, 18}. Notice that the induced width of this problem
along the min-fill order is very large (w∗ = 37) which causes the mini-bucket
heuristics to be relatively weak and implies a large number of dead caches. The
results on other problem instances displayed a similar pattern.

Table 5 displays the results obtained for 6 additional linkage analysis networks us-
ing hypergraph partitioning based pseudo trees and the min-fill ones. We selected
the hypergraph tree having the smallest depth over 100 independent runs. To the
best of our knowledge, these networks were never before solved for the maximum

5 http://bioinfo.cs.technion.ac.il/superlink/

30

Fig. 9. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
genetic linkage networkswith AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree depth
(h) obtained with the hypergraph partitioning heuristic. We also show the induced width and
pseudo tree depth for the min-fill heuristic.

Fig. 10. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics ongenetic linkage networks. Shown is CPU time in seconds.

likelihood haplotype task. We see that the hypergraph pseudo trees offer the over-
all best performance as well. This can be explained by the large induced width
which in this case renders most of the cache entries dead (seefor instance that the
difference betweenAOBB+SMB(i) andAOBB-C+SMB(i) is not too prominent).
Therefore, the AND/OR graph explored effectively is very close to a tree and the
dominant factor that impacts the search performance is thenthe depth of the guiding

31

Table 5
Impact of the pseudo tree quality ongenetic linkage networks. Time limit 24 hours. We
show results for the hypergraph partitioning heuristic (left) and the min-fill heuristic (right).

hypergraph pseudo tree min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam (w*, h) AOBB+SMB(i) AOBB+SMB(i) (w*, h) AOBB+SMB(i) AOBB+SMB(i)

(n, d) Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=20 i=22 i=20 i=22

time nodes time nodes time nodes time nodes

ped7 25.26 164.49 117.03 out

(868, 4) out - - - - - -

- (36, 60) 88571.68 1,807,878,340 9395.17 195,845,851 (32, 133) - -

30504.84 285,084,124 3005.66 27,761,219 - -

out out out

ped9 67.93 300.06 76.31 out

(936, 7) out - - - - - -

- (35, 58) 11483.89 231,301,374 3982.69 72,844,362 (27, 130) 1515.50 15,825,340

8922.81 117,328,162 3292.30 40,251,723 1163.09 12,444,961

out out out

ped19 59.31 150.38 out out

(693, 5) out - - - -

- (35, 53) 98941.75 1,519,213,924 12530.00 174,000,317 (24, 122)

45075.31 466,748,365 8321.42 90,665,870

out out

ped34 42.21 209.51 out out

(923, 4) out - - - -

- (34, 60) 70504.72 1,453,705,377 13598.50 294,637,173 (32, 127)

67647.42 1,293,350,829 11719.28 220,199,927

out out

ped41 35.41 111.24 out out

(886, 5) out - - - -

- (36, 61) 6669.50 84,506,068 531.40 4,990,995 (33, 128)

3891.86 31,731,270 380.01 2,318,544

out out

ped44 32.92 140.81 57.88 344.68

(644, 4) out - - - - - - - -

- (31, 52) 8388.18 196,823,840 401.84 7,648,962 (26, 73) 127.42 1,114,641 385.47 668,737

3597.12 62,385,573 204.96 1,355,595 95.09 752,970 366.18 447,514

out out out out

pseudo tree, which is far smaller for hypergraph trees compared with min-fill based
ones. Notice also that best-first search could not solve any of these networks due to
memory issues. The AND/OR Branch-and-Bound algorithms with min-fill based
pseudo trees could only solve two of the test instances (e.g., ped9 andped44)
whose induced widths were small enough. These experiments demonstrate that the
selection of the pseudo tree can have an enormous impact, especially if thei-bound
that can be afforded is not large enough.

Impact of the caching level.Figure 10 plots the CPU time, as a function of
the cache boundj, for two linkage networks usingAOBB-C+SMB(i,j) (naive
caching) andAOBB-AC+SMB(i,j) (adaptive caching), respectively. In each test
case we varied the cache boundj (the X axis) from 2 to 20, and fixed the mini-
bucketi-bound to a relatively small value. We see again that adaptive caching is
more powerful than the naive scheme especially, for relatively small j-bounds,

32

Fig. 11. Anytime behavior ofAOBB-C+SMB(i) onped42 andped50 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

which require restricted space. As thej-bound increases, the two schemes approach
gradually full caching.

7.2.3 The Anytime Behavior of AND/OR Branch-and-Bound Search and the Im-
pact of Good Initial Bounds

As mentioned earlier, the virtue of AND/OR Branch-and-Bound search is that, un-
like best-first AND/OR search, it is an anytime algorithm. Namely, whenever in-
terrupted,AOBB-C outputs the best solution found far, which yields a lower bound
on the most probable explanation. On the other hand,AOBF-C outputs a complete
solution only upon termination. In this section we evaluatethe anytime behavior
of AOBB-C+SMB(i). We compare it against the state-of-the-art local search al-
gorithm for Bayesian MPE, calledGuided Local Search(GLS) first introduced in
[34], and improved more recently by [35].

GLS [36] is a penalty-based meta-heuristic, which works by augmenting the objec-
tive function of a local search algorithm (e.g. hill climbing) with penalties, to help
guide them out of local minima. GLS has been shown to be successful in solving
a number of practical real life problems, such as the traveling salesman problem,
radio link frequency assignment problem and vehicle routing. It was also applied
to the MPE task [34,35] as well as weighted MAX-SAT problems [37].

In addition to comparing against GLS, we also considered a hybrid of AOBB with
GLS, as follows. The AND/OR Branch-and-Bound algorithms assumed a trivial
initial lower bound (i.e., 0), which effectively guarantees that the MPE will be com-
puted, however it provides limited pruning. We therefore extendedAOBB-C+SMB(i)
to exploit a non-trivial initial lower bound computed by GLS. The algorithm is de-
noted byAOBB-C+GLS+SMB(i). For comparison, we also ran the OR version of
the algorithm, denoted byBB-C+GLS+SMB(i)

Figure 11 displays the search trace of the OR and AND/OR algorithms on two ge-
netic linkage networks presented earlier in Tables 3 and 4, respectively. We chose

33

Table 6
CPU time and nodes visited for solvinggenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limit 3 hours.

min-fill pseudo tree

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

pedigree SamIam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)

Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) GLS AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

- - - - 1.14 7,997 0.73 3,911 1.31 2,704

ped1 5.44 8943.68 59,627,660 1367.98 9,013,771 3.84 1,798 4.05 2,524 4.75 2,077

(15, 61) 54.73 4.19 69,751 2.17 33,908 0.39 4,576 0.65 6,306 1.36 4,494

(299, 5) 0.31 3.01 46,663 2.10 29,877 0.13 3,138 0.33 6,092 0.92 4,350

1.30 7,314 2.17 13,784 0.26 1,177 0.87 4,016 1.54 3,119

- - - - - - - - out

ped38 out - - - - - - - -

(17, 59) 28.36 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976

(582, 5) 7.05 4410.70 32,599,034 780.46 4,487,470 1650.05 9,844,485 226.44 1,366,242

out 134.41 348,723 216.94 583,401 103.17 242,429

- - - - - - - - out

ped50 out - - - - - - 52.95 83,025

(18, 58) - 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302

(479, 5) 5.30* 3177.43 24,209,840 1610.33 13,299,343 67.85 400,698 32.67 15,865

78.53 204,886 36.03 104,289 12.75 25,507 38.52 5,766

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

- - - - 76.11 339,125 270.22 74,261 out

ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412

(27, 71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613

(310, 5) 3.94 196.68 1,720,633 7.56 73,082 10.58 20,329 274.26 60,424

out 15.33 58,180 14.36 12,987 out

- - - - - - - - out

ped37 out - - 2073.12 10,612,906 - - 3386.01 16,382,262

(21, 61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239

(1032, 5) 8.97* 16.36 141,867 26.97 254,219 82.08 604,239 52.32 23,572

29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

the mini-bucketi-bound that offered the best performance and show the first 50
seconds of the search. We ran GLS for a fixed number of flips. We see that includ-
ing the GLS lower bound in AND/OR Branch-and-Bound improves performance
throughout. In all these test cases, the initial lower boundwas in fact the optimal
solution (we did not plot the GLS running time because it was less than 1 sec-
ond). Therefore,AOBB-C+GLS+SMB(i) andBB-C+GLS+SMB(i) were able to
output the optimal solution quite early in the search, unlikeAOBB-C+SMB(i) and
BB-C+SMB(i). For instance, on theped50 network,AOBB-C+GLS+SMB(12)
andBB-C+GLS+SMB(12) found the optimal solution within the first second of
search.AOBB-C+SMB(12), on the other hand, finds the optimal solution after 8
seconds, whereasBB-C+SMB(12) reaches a flat (suboptimal) region after 18 sec-
onds. In this case,AOBF-C+SMB(12) finds the optimal solution after 25 seconds.
The same behavior was observed on other instances as well.

Table 6 compares the OR and AND/OR search algorithms with andwithout an ini-
tial lower bound, as complete algorithms. AlgorithmsAOBB-C+GLS+SMB(i) and

34

Table 7
CPU time and nodes visited for solvingdeterministic grid networks with static mini-
bucket heuristics. Number of flips for GLS was set to 100,000. Time limit 1 hour.

min-fill pseudo tree

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

SamIam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)

grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)

(w*, h) GLS AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i) AOBB-C+SAT+GLS+SMB(i)

(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291

90-24-1 out 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294 69.53 386,785

(33, 111) - - 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868

(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 5.45 6,891 23.87 39,175

out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291

146.97 878,874 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242

90-26-1 out 32.67 230,030 53.11 360,612 3.58 11,620 11.95 40,075 22.02 1,858

(36, 113) 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310 22.00 1,894

(676, 40) 0.56 15.09 104,775 32.85 219,037 3.58 10,932 8.06 8,128 24.42 1,658

19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435

652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715

90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,004

(43, 150) 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,540

(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 15.50 52,260 40.52 72,053

158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800

- - - - - - - - 369.36 823,604

90-34-1 out - - - - - - - - 132.84 271,609

(45, 153) - - - - 1096.14 5,569,276 1772.51 5,516,888 294.11 630,406

(1154, 80) 1.31 - - - - 550.55 2,944,055 651.04 2,614,171 124.16 238,333

out out 243.63 596,978 270.88 667,013 71.19 67,611

969.02 2,623,971 1753.10 3,794,053 203.67 614,868 165.45 488,873 113.06 214,919

90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473 85.74 142,589

(47, 163) 854.61 2,498,702 1822.71 3,792,826 212.63 647,089 164.43 484,815 109.77 211,740

(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072 85.50 140,581

101.69 174,786 103.80 146,237 54.00 95,511 53.44 78,431 73.10 59,856

BB-C+GLS+SMB(i) do not include the GLS time, because GLS can be tuned in-
dependently for each problem instance to minimize its running time, so we report its
time separately (as before, GLS ran for a fixed number of flips). The ”*” by the GLS
running time indicates that it found the optimal solution tothe respective problem
instance. We see thatBB-C+GLS+SMB(i) andAOBB-C+GLS+SMB(i) are some-
times able to improve significantly overBB-C+SMB(i) andAOBB-C+SMB(i),
especially at relatively smalli-bounds. For example, on theped37 linkage in-
stance,AOBB-C+GLS+SMB(12) achieves almost an order of magnitude speedup
overAOBB-C+SMB(12). Similarly,BB-C+GLS+SMB(12) finds the optimal so-
lution to ped37 in about 35 minutes, whereasBB-C+SMB(12) exceeds the 3
hour time limit.

7.2.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints
and general cost functions, it is beneficial to exploit the computational power of the

35

constraints explicitly via constraint propagation [38–41]. For Bayesian networks,
the hard constraints are represented by the zero probability tuples of the CPTs.
We note that the use of constraint propagation via directional resolution [42] or
generalized arc consistency has been explored in [38,39], in the context of variable
elimination algorithms where the constraints are also extracted based on the zero
probabilities in the network. The approach we take for handling the determinism in
Bayesian networks is based onunit resolutionfor Boolean Satisfiability (SAT). The
idea of using unit resolution during search for Bayesian networks was first explored
in [40]. One common way which we used for encoding hard constraints as a CNF
formula is thedirect encoding[43].

We evaluated the AND/OR Branch-and-Bound algorithm with static mini-bucket
heuristics on selected classes of Bayesian networks containing zero probability tu-
ples. The algorithm, denoted byAOBB-C+SAT+SMB(i) exploits the determinism
present in the networks by applying unit resolution over theCNF encoding of the
zero-probability tuples, at each node in the search tree. Weused a unit resolution
scheme similar to the one employed byzChaff, a state-of-the-art SAT solver in-
troduced by [44]. We also consider the extension calledAOBB-C+SAT+GLS+SMB(i)
which uses GLS to compute the initial lower bound, in addition to the constraint
propagation scheme.

Table 7 shows the results for 5 deterministic grid networks presented earlier. We ob-
serve thatAOBB-C+SAT+SMB(i) improves significantly overAOBB-C+SMB(i),
especially at relatively smalli-bounds. On grid90-30-1,AOBB-C+SAT+SMB(12)
is 6 times faster thanAOBB-C+SMB(12). As thei-bound increases and the search
space is pruned more effectively, the difference betweenAOBB-C+SMB(i) and
AOBB-C+SAT+SMB(i) decreases because the heuristics are strong enough to cut
the search space significantly and it already does some levelof constraint propaga-
tion. When focusing on the impact of the initial lower bound onAOBB-C+SAT+SMB(i)
through algorithmAOBB-C+SAT+GLS+SMB(i) we see that the latter is some-
times able to improve even more. On the90-34-1 grid,AOBB-C+SAT+GLS+SMB(16)
finds the optimal solution in about 9 minutes whereasAOBB-C+SAT+SMB(16)
exceeds the 1 hour time limit. We should note that best-first search does not employ
a constraint propagation scheme.

7.2.5 Summary of Empirical Results on Bayesian Networks

Our extensive empirical evaluation on Bayesian networks demonstrated conclu-
sively that the memory intensive AND/OR search algorithms guided by static mini-
bucket heuristics were the best performing algorithms overall. The difference be-
tweenAOBB-C+SMB(i) and the cache-lessAOBB+SMB(i)was more pronounced
at relatively smalli-bounds which correspond to relatively weak heuristic estimates
(e.g., ISCAS’89 networks, grid networks, genetic linkage analysis, instances from
the UAI’06 Inference Evaluation contest). For largeri-bounds, when the heuristic

36

estimates are stronger, the difference between graph search AOBB-C+SMB(i) and
tree searchAOBB+SMB(i) decreased. Best-first searchAOBF-C+SMB(i) offered
the best performance amongst the memory intensive AND/OR algorithms. We
showed that in many casesAOBF-C+SMB(i) was able to outperform dramatically
the current state-of-the-art solver for Bayesian networks such as SAM IAM and SU-
PERLINK (for genetic linkage analysis). However, on very large problem instances,
AOBF-C+SMB(i)was outperformed by the depth-firstAOBB-C+SMB(i) because
of its prohibitive memory requirements. With dynamic mini-bucket heuristics both
AOBB-C+DMB(i) andAOBF-C+DMB(i) proved competitive only for relatively
small i-bounds, due to computational overhead. We also evaluated the impact of
determinism and good initial lower bounds on depth-first AND/OR Branch-and-
Bound search, over grid networks, ISCAS’89 networks, geneticlinkage analysis
networks and instances from the UAI’06 Inference Evaluation dataset. These em-
pirical results, also available in [27,26], showed that applying unit resolution and
starting the search with a good initial lower bound caused significant savings on
those benchmark networks.

7.3 Results for Empirical Evaluation of Weighted CSPs

Let us first recap the results obtained for Weighted CSPs with our various cache-less
algorithms [1]. We showed that the best performance on Weighted CSPs was ob-
tained by the AND/OR Branch-and-Boundtreesearch algorithm with static mini-
bucket heuristics, at relatively largei-bounds, especially for non-binary WCSPs
with relatively small domain sizes (e.g., SPOT5 networks, ISCAS’89 circuits, Mas-
termind game instances). The cache-lessAOBB+SMB(i) dominated all its com-
petitors, including the classic OR Branch-and-BoundBB+SMB(i) as well as the
OR and AND/OR algorithms that enforce EDAC during search, namelytoolbar
and theAOEDAC family of algorithms, such asAOEDAC+PVO, DVO+AOEDAC and
AOEDAC+DSO, respectively [1]. The AND/OR Branch-and-Bound with dynamic
mini-bucket heuristicsAOBB+DMB(i) was shown to be competitive only for rela-
tively smalli-bounds.

In this section we extend the evaluation to memory intensivedepth-first and best-
first search.

7.3.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scheduling problems for the
daily management of Earth observing satellites [45]. They can be easily formulated
as WCSPs with binary and ternary constraints, as described in [1,3].

Tables 8 and 9 show detailed results on experiments with 7 SPOT5 networks using
min-fill pseudo trees, as well as static and dynamic mini-bucket heuristics. The

37

Table 8
CPU time in seconds and number of nodes visited for solving theSPOT5 benchmarks,
usingstatic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar

spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO

(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC

(n, k, c) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOEDAC+DSO

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.05 0.33 21.66 150.99 4.56 218,846

29 - - - - 6313.73 50,150,302 22.30 2,322 151.02 445 0.35 984

(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 151.02 481 545.43 7,837,447

(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 149.55 265 0.81 8,698

6.42 36,396 2.23 12,801 0.47 757 21.77 96 152.69 85 11.36 92,970

0.11 0.17 0.56 28.83 223.58 - -

42b - - - - 2159.26 9,598,763 145.77 684,109 224.11 3,426 9553.06 249,053,196

(18, 62) - - - - 1842.32 9,606,846 134.39 689,402 228.66 4,189 - -

(191, 4, 1341) - - - - 1804.76 9,410,729 116.98 584,838 226.58 2,335 - -

35.42 118,085 29.11 106,648 20.80 82,611 38.91 43,127 227.55 1,475 6825.40 27,698,614

0.02 0.03 0.11 1.24 1.24 0.31 21,939

54 664.48 5,715,457 2.06 17,787 0.38 2,289 1.27 236 1.27 236 0.18 779

(11, 33) 113.19 1,106,598 1.59 17,757 0.39 3,616 1.27 329 1.39 329 9.11 90,495

(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 1.24 120 0.06 688

0.41 2,714 0.11 631 0.16 312 0.69 68 1.41 68 0.75 6,614

0.01 0.02 0.09 1.11 3.97 151.11 6,215,135

404 - - - - - - 4336.37 32,723,215 1981.90 15,263,175 5.09 139,968

(19, 42) 430.99 3,969,398 151.99 1,373,846 14.83 144,535 1.44 3,273 4.11 367 152.81 1,984,747

(100, 4, 710) 174.09 1,396,321 51.88 529,002 2.55 23,565 1.16 598 4.11 232 12.09 88,079

1.45 7,251 1.20 6,399 1.02 5,140 1.22 576 4.27 184 1.74 14,844

0.01 0.09 0.33 8.37 35.39 - -

408b - - - - - - - - - - - -

(24, 59) - - - - - - 715.35 4,784,407 128.38 567,407 - -

(201, 4, 1847) - - - - 7507.10 54,826,929 75.08 408,619 48.00 61,986 - -

208.41 185,935 52.53 175,366 44.99 145,901 16.97 39,238 39.36 14,768 747.71 2,134,472

0.02 0.05 0.14 0.41 0.41 - -

503 - - - - - - 0.50 566 0.49 566 0.65 18,800

(9, 39) - - 435.26 5,102,299 421.10 4,990,898 0.44 641 0.44 641 - -

(144, 4, 639) - - 189.39 2,442,998 291.72 4,050,474 0.42 256 0.42 256 10005.00 44,495,545

5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 0.42 144 53.72 231,480

0.05 0.11 0.66 47.19 365.69 - -

505b - - - - - - - - - - 33.62 1,119,538

(16, 98) - - - - - - - - 395.49 143,371 - -

(240, 1721) - - - - - - 1180.48 8,905,473 375.57 16,020 - -

51.86 149,928 42.73 144,723 29.25 111,223 54.09 31,692 375.52 5,758 - -

networks42b, 408b and505b are sub-networks of the original ones and contain
only binary constraints.

Tree vs. graph AOBB.As before, the differences in running time and number of
nodes visited, betweenAOBB-C+SMB(i) andAOBB+SMB(i) are more prominent
at relatively smalli-bounds. For example, on the408b network,AOBB-C+SMB(12)
outperformsAOBB+SMB(12) by one order of magnitude. The impact of caching
when using dynamic mini-bucket heuristics (Table 9) is again not that pronounced,
acrossi-bounds. Notice thattoolbar andDVO+AOEDAC (rightmost column in
Table 8) are able to solve relatively efficiently only the first 3 test instances. On the

38

Table 9
CPU time in seconds and number of nodes visited for solving theSPOT5 benchmarks,
usingdynamic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

spot5 BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)

(n, k, c) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

29 44.24 11,637 125.72 9,417 54.86 354 627.30 320 1647.82 320

(14, 42) 65.24 14,438 52.92 11,850 121.83 364 627.29 330 1644.02 330

(83, 4, 476) 56.58 6,017 53.06 4,638 122.17 170 636.16 136 1794.60 136

7.25 942 21.83 537 38.83 114 308.71 83 983.80 83

42b - - - - - - - - - -

(18, 62) - - - - - - - - - -

(191, 4, 1341) - - - - - - - - - -

1455.62 101,453 - - - - 6002.69 212 - -

54 886.51 118,219 32.59 938 24.97 236 320.81 236 321.15 236

(11, 33) 202.14 69,362 26.73 2,188 22.19 329 271.81 329 271.55 329

(68, 4, 283) 84.27 15,214 8.80 357 10.86 120 137.39 120 137.75 120

4.16 1,056 3.66 163 5.95 68 77.78 68 78.19 68

404 - - - - 4895.25 78,692 3459.31 3,008 473.81 165

(19, 42) 240.36 156,338 257.20 39,144 199.67 5,612 563.02 1,327 287.53 395

(100, 4, 710) 65.52 20,457 98.83 6,152 99.78 952 320.49 286 171.02 155

23.41 4,928 65.80 2,946 101.30 847 351.37 291 217.45 106

408b - - - - - - - - - -

(24, 59) - - - - - - - - - -

(201, 4, 1847) - - - - - - - - - -

655.41 70,655 2447.91 69,434 - - - - - -

503 - - - - - - 246.65 566 246.65 566

(9, 39) - - - - - - 64.95 641 64.95 641

(144, 4, 639) - - - - - - 49.95 256 49.95 256

78.69 9,143 324.09 8,175 1025.40 5,984 25.14 144 25.14 144

505b - - - - - - - - - -

(16, 98) - - - - - - - - - -

(240, 1721) - - - - - - - - - -

681.40 33,969 2766.08 28,157 3653.66 12,455 - - - -

other hand,toolbar-BTD fails only on the408b instance and is overall quite
competitive.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR search
we see again thatAOBF-C+SMB(i) improves significantly (up to several orders of
magnitude), especially for relatively smalli-bounds. For example, on505b, one
of the hardest instances,AOBF-C+SMB(8) finds the optimal solution in less than
30 seconds, whereasAOBB-C+SMB(8) exceeds the 3 hour time limit.

Static vs. dynamic mini-bucket heuristics.Figures 12(a) and 12(b) display the
running time and number of nodes, as a function of the mini-bucket i-bound, on
the404 network (i.e., corresponding to the fourth horizontal block from Tables 8
and 9, respectively). We see that the power of the dynamic mini-bucket heuristics
is visible only for depth-first search and only for smalli-bounds (e.g., i = 2). At
largeri-bounds, the static mini-bucket heuristics are cost effective. For instance, the
difference in running time betweenAOBB-C+SMB(10) andAOBB-C+DMB(10)

39

(a) CPU time in seconds (b) Nodes visited

Fig. 12. Comparison of the impact of static and dynamic mini-bucket heuristics.Shown are
the CPU time in seconds (a) and number of nodes visited (b) on the404 SPOT5 network
from Tables 8 and 9, respectively.

Fig. 13. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
SPOT5 networks withAOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right side).
The header of each plot records the average induced width (w∗) and pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the inducedwidth and
pseudo tree depth for the min-fill heuristic.

40

is about 2 orders of magnitude. Notice that in this case,AOBF-C+SMB(i) outper-
formsAOBF-C+DMB(i) across all reportedi-bounds.

Impact of the pseudo tree.In Figure 13 we show the running time distribution of
the algorithms using hypergraph and min-fill based pseudo trees, over 20 indepen-
dent runs, for the404 and503 networks. We see again that the hypergraph based
pseudo trees are sometimes able to improve performance, especially for relatively
small i-bounds for which the heuristic estimates are less accurate. For best-first
search however, the min-fill based pseudo trees offer the best performance.

7.3.2 Mastermind Game Instances

Table 10 shows the results for experiments with 6 networks corresponding to Mas-
termind game instances of increasing difficulty. Each of thenetworks is a ground
instance of a relational Bayesian network that models different sizes of the popular
game of Mastermind. These networks were produced by the PRIMULA System6

and used in experimental results in [46]. For our purpose, weconverted these net-
works into equivalent WCSP instances by taking the negative log probability of
each conditional probability table entry. The table has twohorizontal blocks, each
showing a different range ofi-bounds.

Tree vs. graph AOBB.We see again that using caching improves considerably the
performance of AND/OR Branch-and-Bound search (e.g., seemm-03-08-05).
We also note thattoolbar andtoolbar-BTD were not able to solve any of
these instances within the time limit (the results are not displayed).

AOBB vs. AOBF. We see that the best-first search algorithmAOBF-C+SMB(i) of-
fers the overall best performance on this domain. On themm-03-08-05 instance,
for example,AOBF-C+SMB(18) is about 3 times faster thanAOBB-C+SMB(18)
and about 30 times faster thanAOBB+SMB(18), a further demonstration of the
power of caching.

Impact of the caching level.Figure 14 illustrates the CPU time, as a function of
the cache boundj, on two problem instances from Table 10. We notice again the
superiority of adaptive caching at relatively smallj-bounds.

Impact of the pseudo tree.The running time distribution ofAOBB-C+SMB(i)
andAOBF-C+SMB(i) guided by hypergraph and min-fill based pseudo trees over
20 independent runs of each problem instance is displayed inFigure 15. The hy-
pergraph trees are sometimes able to improve slightly the performance of AND/OR
Branch-and-Bound, at relatively smalli-bounds (e.g., mm-04-08-04). For best-
first search however, the min-fill based pseudo trees offer the best performance. The
results on other instances were similar.

6 http://www.cs.auc.dk/jaeger/Primula

41

Table 10
CPU time and number of nodes visited for solvingMastermind game instances, us-
ing static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.
toolbar andtoolbar-BTD were not able to solve any of the test instances within
the time limit. The top part of the table shows the results fori-bounds between 8 and 18,
while the bottom part showsi-bounds between 12 and 22.

min-fill pseudo trees

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

(n, r, k) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes

0.30 0.34 0.44 0.80 2.00 5.31

mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980

(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153

(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031

0.72 1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220

0.75 0.83 1.02 1.75 4.38 15.77

mm-03-08-04 - - - - - - - - - - - -

(33, 87) 92.64 150,642 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870

(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376

10.53 9,693 10.88 9,143 10.06 8,925 3.89 2,928 9.08 4,855 19.52 4,266

0.34 0.41 0.51 0.91 2.44 7.83

mm-04-08-03 - - 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881

(26, 72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570

(1418, 3, 2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444

0.94 1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)

mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)

(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)

(n,c,k) i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes

1.36 2.08 4.86 16.53 65.19 246.45

mm-04-08-04 - - - - - - - - - - - -

(39, 103) 494.50 744,993 270.60 447,464 506.74 798,507 80.86 107,463 206.58 242,865 280.07 62,964

(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 253.25 11,650

38.55 33,069 29.19 26,729 44.95 38,989 20.64 3,957 74.67 8,716 250.00 3,491

2.34 8.52 8.31 24.94 84.52 out

mm-03-08-05 - - - - - - - - - -

(41, 111) - - - - - - 1084.48 1,122,008 1283.04 1,185,327

(3692, 3, 2) - - - - - - 117.39 55,033 282.35 86,588

out out 473.07 199,725 36.99 8,297 131.88 21,950

1.64 3.09 7.55 21.08 77.81 out

mm-10-08-03 - - - - - - - - - -

(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112

(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362

4.80 3,705 8.16 4,501 11.17 3,622 24.67 3,619 81.52 3,573

Memory usage of AND/OR graph search.In Figure 16 we demonstrate again
the significant memory requirements of best-first AND/OR search compared with
those of the depth-first AND/OR Branch-and-Bound search with full caching on
two problem instances.

42

Fig. 14. Naive versus adaptive caching schemes for AND/OR Branch-and-Bound with
static mini-bucket heuristics onMastermind networks. Shown is CPU time in seconds.

Fig. 15. Min-fill versus hypergraph partitioning heuristics. CPU time in seconds for solving
Mastermind networks with AOBB-C+SMB(i) (left side) andAOBF-C+SMB(i) (right
side). The header of each plot records the average induced width (w∗) and pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also show the induced
width and pseudo tree depth for the min-fill heuristic.

7.3.3 Summary of Empirical Results on Weighted CSPs

Our extensive empirical evaluation on WCSPs demonstrated that the best perfor-
mance on this domain was obtained by best-first AND/OR searchwith static mini-
bucket heuristics, for largei-bounds, especially on non-binary WCSPs with rela-
tively small domain sizes (e.g., Mastermind game instances, ISCAS’89 networks,

43

Fig. 16. Memory usage of theAOBB-C+SMB(i) andAOBF-C+SMB(i) algorithms on two
Mastermind networks from Table 10.

instances from the SPOT5 benchmark).AOBF-C+SMB(i) dominated all its com-
petitors, including the depth-firstAOBB-C+SMB(i) as well as OR and AND/OR
algorithms that enforce EDAC during search, namelytoolbar, toolbar-BTD
and theAOEDAC family of algorithms. Best-first AND/OR search with dynamic
mini-bucket heuristicsAOBF-C+DMB(i) was competitive only for relatively small
i-bounds (e.g., ISCAS’89 networks [26,27]). We also observed that the depth-
first AND/OR Branch-and-Bound with caching and static mini-bucket heuristics
AOBB-C+SMB(i) improved considerably over the cache-less version of the algo-
rithm, namelyAOBB+SMB(i). For dynamic mini-bucket heuristics, the difference
betweenAOBB-C+DMB(i) andAOBB+DMB(i) was less prominent.

8 Summary and Conclusion

The paper extends the study of the impact of AND/OR search in graphical models
from linear space search of the AND/OR tree to cache-based search of the AND/OR
graph. In contrast to the traditional OR space, the AND/OR search space is sensi-
tive to problem decomposition yielding the AND/OR search tree which can be
bounded exponentially by the depth of its guiding pseudo tree. Specifically, if the
graphical model has treewidthw∗, the size of the AND/OR search tree is bounded
byO(kw∗ logn) [2,18,1]. By recognizing identical subtrees, the AND/OR search tree
can be extended into a graph yielding the context minimal AND/OR search graph
whose size is exponential in the treewidth. The size of the context minimal OR
search graph is exponential in the pathwidth. Since for somegraphs the difference
between treewidth and pathwidth is substantial (e.g., balanced pseudo trees) the
AND/OR representation implies substantial time and space savings for memory
intensive algorithms traversing the AND/OR graph.

In this paper we extended the AND/OR Branch-and-Bound algorithm to traversing
an AND/OR search graph by equipping it with an efficient caching mechanism. We
investigated two flexible context-based caching schemes that can adapt to memory

44

restrictions. Since best-first search strategies are knownto be superior to depth-
first ones when memory is utilized, we also introduced a best-first AND/OR search
algorithm that traverses the same context minimal AND/OR search graph.

All these algorithms can be guided by any heuristic function. We investigated exten-
sively the mini-bucket heuristics introduced earlier [10]and shown to be effective
in the context of the traditional OR search trees [10]. The mini-bucket heuristics
can be either pre-compiled (static mini-buckets) or generated dynamically during
search at each node in the search space (dynamic mini-buckets). They are parame-
terized by ani-bound which allows to control trade-off between heuristicstrength
and computational overhead.

We focused our empirical evaluation on two common optimization problems in
graphical models: finding the MPE in Bayesian networks and solving combinato-
rial problems expressed as Weighted CSPs. Our results showedconclusively that
the depth-first and best-first memory intensive AND/OR search algorithms guided
by mini-bucket heuristics improve dramatically over traditional memory intensive
OR search as well as over AND/OR search without caching. We summarize next
the most important aspects reflecting the better performance of AND/OR graph
search, such as the impact of the level of caching, the mini-bucket i-bound, con-
straint propagation, informed initial upper bounds and thequality of the guiding
pseudo trees.

• Impact of the caching level.We proposed two parameterized context-based
caching schemes that can adapt to the memory limitations. The naive caching
records contexts with size smaller or equal to a cache boundj, while the adap-
tive caching saves also nodes whose context size is beyondj, based on adjusted
contexts. Our results showed that for smallj-bounds, adaptive caching is more
powerful than the naive scheme (e.g., grid networks from Figure 6, genetic link-
age networks from Figure 10). As more space becomes available and as thej-
bound increases, the two schemes gradually approach full caching. The savings
in number of nodes due to both caching schemes are more pronounced at rel-
atively small i-bounds of the mini-bucket heuristics. When the heuristics are
strong enough to prune the search space substantially (i.e., largei-bounds), the
context minimal graph traversed by AND/OR Branch-and-Bound is very close
to a tree and the effect of caching is reduced.

• Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket heuristics with relatively large
i-bounds are cost effective (e.g., genetic linkage analysis networks from Tables
3 and 4, Mastermind game instances from Table 10). However, if the space is
severely restricted, dynamic mini-bucket heuristics appear to be the preferred
choice, especially for relatively smalli-bounds. These heuristics are far more
accurate for the samei-bound than the pre-compiled ones.

• Impact of determinism. When the graphical model contains both determinis-
tic information (hard constraints) as well as general cost functions, we demon-

45

strated that it is beneficial to exploit the computational power of the constraints
via constraint propagation. Our experiments on selected classes of deterministic
Bayesian networks showed that enforcing unit resolution over the CNF encod-
ing of the determinism present in the network yielded a tremendous reduction in
running time (e.g., deterministic grid networks from Table 7).

• Impact of good initial upper bounds. The AND/OR Branch-and-Bound algo-
rithm assumed a trivial initial upper bound (resp. initial lower bound for max-
imization tasks). We incorporated a more informed upper bound (resp. lower
bound for maximization), obtained by first solving the initial problem via local
search. Our results showed a tremendous speed-up in some cases (see for exam-
ple the grid network from Table 7).

• Impact of pseudo tree quality. The performance of the depth-first and best-
first memory intensive AND/OR search algorithms is influenced significantly
by the quality of the guiding pseudo tree. We investigated two heuristics for
generating small induced width and/or depth pseudo trees. The min-fill based
pseudo trees usually have smaller induced width but significantly larger depth,
whereas the hypergraph partitioning heuristic produces much smaller depth trees
but yields larger induced widths. Our experiments demonstrated that when the
induced width is small enough, which is more typical for min-fill based pseudo
trees, the strength of the mini-bucket heuristics compiledalong these orderings
determines the performance of the AND/OR search algorithms(e.g., SPOT5 net-
works from Figure 13). However, when the graph is highly connected, the rela-
tively large induced width causes the AND/OR algorithms to traverse a search
space that is very close to a tree and, therefore, the hypergraph partitioning based
pseudo trees, which tend to have smaller depths, improve performance substan-
tially (e.g., genetic linkage networks from Figure 9 and Table 5).

Our depth-first and best-first AND/OR graph search approaches leave room for fu-
ture improvements, which are likely to make them more efficient in practice. The
space required byAOBB-C andAOBF-C can be enormous, due to the fact that all
nodes generated by the algorithms have to be stored in memory. Therefore, mem-
ory bounding strategies can be used for context minimal AND/OR graphs, as previ-
ously suggested in [19,21,47,48]. Alternatively, we can extend the AND/OR graph
search algorithms to greatly expand the amount of availablememory by utilizing
external disk storage, as described in [49,50].

Acknowledgments

This work was partially supported by the NSF grants IIS-0086529 and IIS-0412854,
the MURI ONR award N00014-00-1-0617, the NIH grant R01-HG004175-02, the
Marie Curie Transfer of Knowledge grant MTKD-CT-2006-042563and by an IRC-
SET post-doctoral fellowship.

46

References

[1] R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Technical report, University of California, Irvine,
2008.

[2] R. Marinescu and R. Dechter. AND/OR branch-and-bound for graphical models.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 224–229,
2005.

[3] R. Marinescu and R. Dechter. Dynamic orderings for AND/OR branch-and-bound
search in graphical models. InEuropean Conference on Artificial Intelligence (ECAI),
pages 138–142, 2006.

[4] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning
and cutset decomposition.Artificial Intelligence, 41(3):273–312, 1990.

[5] R. Bayardo and D. Miranker. On the space-time trade-off in solving constraint
satisfaction problems. InInternational Joint Conference on Artificial Intelligence
(IJCAI), pages 558–562, 1995.

[6] A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.

[7] F. Bacchus, S. Dalmao, and T. Pittasi. Value Elimination: Bayesian inference via
backtracking search. InUncertainty in Artificial Intelligence (UAI), pages 20–28,
2003.

[8] P. Jegou and C. Terrioux. Decomposition and good recording for solving Max-CSPs.
In European Conference on Artificial Intelligence (ECAI), pages 196–200, 2004.

[9] R. Dechter and J. Pearl. Generalized best-first search strategiesand the optimality of
A*. Journal of the ACM, 32(3):505–536, 1985.

[10] K. Kask and R. Dechter. A general scheme for automatic generationof search
heuristics from specification dependencies.Artificial Intelligence, 129(1-2):91–131,
2001.

[11] R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating inference.
Journal of the ACM, 50(2):107–153, 2003.

[12] J. Pearl.Probabilistic Reasoning in Intelligent Systems.Morgan-Kaufmann, 1988.

[13] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and
optimization.Journal of the ACM, 44(2):309–315, 1997.

[14] R. Marinescu and R. Dechter. Memory intensive branch-and-bound search for
graphical models. InNational Conference on Artificial Intelligence (AAAI), 2006.

[15] R. Marinescu and R. Dechter. Best-first AND/OR search for graphical models. In
National Conference on Artificial Intelligence (AAAI), pages 1171–1176, 2007.

[16] R. Marinescu and R. Dechter. Best-first AND/OR search for mostprobable
explanations. InUncertainty in Artificial Intelligence (UAI), 2007.

47

[17] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying cluster-tree decompositions
for reasoning in graphical models.Artificial Intelligence, 166(1–2):165–193, 2005.

[18] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.Artificial
Intelligence, 171(1):73–106, 2007.

[19] Nils J. Nilsson.Principles of Artificial Intelligence.Tioga, 1980.

[20] E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint
satisfaction problems. InInternational Joint Conference on Artificial Intelligence
(IJCAI), pages 1076–1078, 1985.

[21] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Welsey, 1984.

[22] L. Kanal and V. Kumar.Search in artificial intelligence.Springer-Verlag., 1988.

[23] R. Mateescu and R. Dechter. AND/OR cutset conditioning. InInternational Joint
Conference on Artificial Intelligence (IJCAI), pages 230–235, 2005.

[24] A. Martelli and U. Montanari. Additive AND/OR graphs. InInternational Joint
Conference on Artificial Intelligence (IJCAI), pages 1–11, 1973.

[25] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

[26] R. Marinescu. AND/OR Search Strategies for Combinatorial Optimization in
Graphical Models. PhD thesis, University of California, Irvine, 2008.

[27] R. Marinescu and R. Dechter. Memory intensive AND/OR search for combinatorial
optimization in graphical models. Technical report, University of California, Irvine,
2008.

[28] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting
closer to full arc consistency in weighted CSPs. InInternational Joint Conference in
Artificial Intelligence (IJCAI), pages 84–89, 2005.

[29] S. de Givry, T. Schiex, and G. Verfaillie. Exploiting tree decomposition and soft
local consistency in weighted CSP. InNational Conference on Artificial Intelligence
(AAAI), 2006.

[30] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model
counting. InNational Conference of Artificial Intelligence (AAAI), pages 475–482,
2005.

[31] Jurg Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press,
1999.

[32] M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.
In International Conference on Intelligent Systems for Molecular Biology (ISMB),
pages 189–198, 2002.

[33] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for
general pedigrees.Human Heredity, 59(1):41–60, 2005.

48

[34] J. Park. Using weighted Max-SAT engines to solve MPE. InNational Conference of
Artificial Intelligence (AAAI), pages 682–687, 2002.

[35] F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local search for MPE solving.
In International Joint Conference on Artificial Intelligence (IJCAI), pages 169–174,
2005.

[36] C. Voudouris. Guided local search for combinatorial optimization problems. Technical
report, PhD Thesis. University of Essex, 1997.

[37] P. Mills and E. Tsang. Guided local search for solving SAT and weighted MAX-SAT
problems.Journal of Automated Reasoning (JAR), 24(1-2):205 – 223, 2000.

[38] R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. InUncertainty
in Artificial Intelligence (UAI), pages 112–119, 2001.

[39] D. Larkin and R. Dechter. Bayesian inference in the presence ofdeterminism. In
Artificial Intelligence and Statistics (AISTAT), 2003.

[40] D. Allen and A. Darwiche. New advances in inference using recursive conditioning.
In Uncertainty in Artificial Intelligence (UAI), pages 2–10, 2003.

[41] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks. In
Uncertainty in Artificial Intelligence (UAI), pages 120–129, 2004.

[42] I. Rish and R. Dechter. Resolution vs. search: two strategies for SAT. Journal of
Automated Reasoning, 24(1-2):225–275, 2000.

[43] T. Walsh. SAT vs CSP. InPrinciples and Practice of Constraint Programming (CP),
pages 441–456, 2000.

[44] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. InDesign Automation Conference (DAC), 2001.

[45] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellitemanagement.
Constraints, 4(3):293–299, 1999.

[46] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Bayesian networks
for exact inference.International Journal of Approximate Reasoning, 42(1–2):4–20,
2006.

[47] P. Chakrabati, S. Ghose, A. Acharya, and S. de Sarkar. Heuristic search in restricted
memory.Artificial Intelligence, 41(2):197–221, 1989.

[48] R. Korf. Linear-space best-first search.Artificial Intelligence, 62(1):41–78, 1993.

[49] R. Zhou and E. Hansen. Structured duplicate detection in external-memory graph
search. InNational Conference on Artificial Intelligence (AAAI-04), pages 683–689,
2004.

[50] R. Zhou and E. Hansen. External-memory pattern databases using structured duplicate
detection. InNational Conference on Artificial Intelligence (AAAI-05), pages 1398–
1405, 2004.

49

