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Abstract

In this paper we explore the impact of caching during search in the cooitéxé recent
framework of AND/OR search in graphical models. Specifically, we exteadlepth-first
AND/OR Branch-and-Bountree searchalgorithm to explore an AND/ORearch graph

by equipping it with an adaptive caching scheme similar to good and no-goodding.
Furthermore, we presetiest-firstsearch algorithms for traversing the same underlying
AND/OR search graph and compare both algorithms empirically. We focus @icdm-
mon optimization problems in graphical models: finding the Most Probable Exjiten
(MPE) in belief networks and solving Weighted CSPs (WCSP). In an extepmpirical
evaluation we demonstrate conclusively the superiority of the memory ineeAsID/OR
search algorithms on a variety of benchmarks.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

1 Introduction

This is the second of two articles describing and evalughegower of AND/OR
search spaces for combinatorial optimization in graphweadlels. The first paper
[1] focused on extending Branch-and-Bound algorithms to ADIRSearch spaces
which have no cycles, namely to AND/OR search trees. Thae/of the AND/OR
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representation is that the search space size may be faresriah that of a tradi-
tional OR representation which often translates to sigmifidcime savings. In the
current paper we improve efficiency further by using more mgmexploring what
we refer to as the context minimal AND/OR search graph.

Specifically, we extend the AND/OR Branch-and-Bound treectealgorithm in-

troduced in [1-3] to explore the context minimal AND/OR s#agraph using a
flexible caching mechanism that can adapt to memory linoitati The caching
scheme is similar to good and no-good recording [4,5] whigmeaused in sev-
eral recent schemes such as Recursive Conditioning [6], ¥aBaektracking [7]

and Backtracking with Tree Decompositions [8]. Our conthitmos beyond those
schemes is in presenting these ideas in an independent masing the notion of
AND/OR search spaces and extending optimization techsitp¢his framework.
Finally, we carried out an extensive empirical study on \Whie@ report.

Clearly, the AND/OR search space can be explored by any salvaigorithm.
So we next investigated the other most common search apgpmaich is Best-
First search. Best-First search is known to be superior amuoggory intensive
search algorithms [9]. We therefore present a new AND/ORcbealgorithm that
explores the context minimal AND/OR search graph in a best+anner. Under
conditions of admissibility and monotonicity of the hetidsfunction, best-first
search is known to expand the minimal number of nodes, at{pense of using
additional memory [9]. We will show that these savings in in@mof nodes often
translate into significant time savings.

The efficiency of both depth-first and best-first AND/OR skarethods also de-
pends on the accuracy of the guiding heuristic function. é&duthe Mini-Bucket
heuristic [10] which is extracted from the functional sgieation of the graphi-
cal model using the Mini-Bucket approximation algorithm J.[1These heuristics
were explored in [1] in the context of AND/OR search treedldwing [1,2], we
continue to explore empirically the efficiency of static ahghamic mini-bucket
heuristics within the cache-based search spaces.

As in our earlier work [1-3], we apply the algorithms to fingithe Most Prob-
able Explanation (MPE) in belief networks [12] and to sotyiweighted CSPs
[13]. Our results show conclusively that the memory intea&iND/OR search al-
gorithms improve dramatically over competitive approa;tespecially when the
heuristic estimates are less accurate and do not prunedhehsspace effectively.
We demonstrate the impact of caching, the impact of the gtiheof the guiding
evaluation function, as well as the impact of best-first werdepth-first search
regimes. We also investigate other factors that impactén@®pnance of any search
algorithm such as: the availability of hard constraints.{ determinism), the avail-
ability of good initial upper bounds, and the availabiliiygmod ordering schemes
(e.g., pseudo trees).



The paper is organized as follows. Sections 2 and 3 providigoaund on graph-
ical models and on the AND/OR search spaces. Sections 4 arekém the new
depth-first and best-first AND/OR search algorithms explpthe context minimal

AND/OR graph. Section 6 reviews the mini-bucket heuristicsAND/OR search.

In Section 7 we present an extensive empirical evaluatidgheproposed memory
intensive search methods, while Section 8 provides coimgjugmarks and direc-
tions of future research. The relevant related work is dised in detail in [1]. This

paper is based in part on [14-16].

2 Background

2.1 Preliminaries

A reasoning problem is defined in terms of a set of variablksmdavalues on fi-
nite domains and a set of functions defined over these vagaliVe denote vari-
ables by uppercase letters (., X,Y, Z,...), subsets of variables by bold faced
uppercase letterg (., X,Y,Z,...) and values of variables by lower case letters
(e.g.,x,y,z...). An assignmentX; = zi,...,X,, = x,) can be abbreviated as
x = ((Xy,21), ..., (Xp, ) OF z = (x4, ..., x,). FOr a subset of variablég, Dy
denotes the Cartesian product of the domains of variablas. iny andz[Y] are
both used as the projection.of= (x4, ..., z,,) over a subseY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a funcfitwy scope( f).

DEFINITION 1 (directed, undirected graphs) Adirected grapls defined by a pair
G = {V,E}, whereV = {X;,..., X,} is a set of vertices (nodes), afltl =
{(X;, X;)|X;, X; € V}is a set of edges (arcs). (i;, X;) € E, we say thatX;
points to.X ;. The degree of a vertex is the number of incident arcs to iteaeh
vertex X;, pa(X;) or pa;, is the set of vertices pointing t&; in GG, while the set
of child vertices ofX;, denoted-h(X;), comprises the variables thaf; points to.
The family ofX;, denotedF;, includesX; and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Amdirectedgraph is defined similarly to a
directed graph, but there is no directionality associatethwine edges.

DEFINITION 2 (induced graph, induced width) Theinduced graptof a graphG
relative to an ordering/ of its nodes, denoted*(d), is obtained as follows: nodes
are processed from last to first; when nolids processed, all its preceding neigh-
bors are connected. A new edge that is added to the graph bypthcedure is
called aninduced edgeGiven a graph and an ordering of its nodes, thiglth of

a node is the number of edges connecting it to nodes lower iorttering. The
induced width(or treewidth of a graph, denoted*(d), is the maximum width of
nodes in the induced graph.



2.2 Graphical Models

A graphical model is defined by a collection of functioRs over a set of vari-
ablesX, conveying probabilistic or deterministic informationhese structure is
captured by a graph. We used the formalism presented in [17].

DEeFINITION 3 (graphical model, primal graph) A graphical models a 4-tuple

R = (X,D,F,®), where: 1.X = {Xj,..., X,,} is a set of variables; 2D =
{Dz, ..., D, } is a set of finite domains of values;B.= { fi, ..., f.} is a set of real
valued functions, each defined over a subset of variabjlgs X (i.e., the scope);
4.®;f; € {IL fi,>; [:} is a combination operator. The graphical model represents
the combination of all its functions, namely_, f;. When the combination operator
is irrelevant we denot® by (X, D, F). Theprimal graphof a graphical model is
an undirected graph that has the variables as its verticasedges connecting any
two variables that appear in the scope of the same function.

There are various queries (tasks) that can be posed ovdrigagamodels. We refer
to all asautomated reasoning problems general, an optimization task is a rea-
soning problem defined as a function from a graphical modalget of elements,
most commonly, the real numbers.

DEFINITION 4 (constraint optimization problem) A constraint optimization prob-
lemis a pair? = (R, |x), whereR = (X, D, F,®) is a graphical model. IfS

is the scope of functiofi € F thenl|ls f € {maxsf, mingf}. The optimization
problem is to computéx ®;_, f;. The min/max/{() operator is called arelimina-
tion operator because it removes the arguments from the inpatiturs’ scopes.

For a detailed description and examples of graphical mosigtfr as constraint
networks, cost networks and belief networks we refer thdeeto [17,18,1].

3 AND/OR Search Spaces for Graphical Models

The usual way to do search in graphical models is to instanwariables in turn,
following a static or dynamic variable ordering. In the slegt case, this process
defines a search tree (called here OR search tree), whoss reglesent states in
the state of partial assignments. This search space doeaptotre the structure of
the underlying graphical model. To remedy this problem, &IDAOR search space
was recently introduced in the context of general graphicatlels [18]. It spe-
cializes the AND/OR space introduced in [19] to graphicabels. The AND/OR
search space is defined using a backbpseudo tred20,5]. In subsections 3.1
and 3.2 we will give a brief overview of searching the AND/O&arch trees by
Branch-and-Bound, which was presented in detail in [1].



DEFINITION 5 (pseudo tree, extended graph)Given an undirected graplty =
(V,E), adirected rooted treg = (V,E’) defined on all its nodes is callggseudo
treeif any arc of G which is not included irE’ is a back-arc, namely it connects
a node to an ancestor iff. The arcs inE’ may not all be included ifE. Given
a pseudo treg of GG, the extended grapbf G relative to7 is defined agi” =
(V,EUE).

As in [1], we consider in the remainder of the paper an optitidn problemP =
(R,min) over a graphical modek = (X, D, F,>") for which the combination
and elimination operators asemmatiorandminimization respectively.

3.1 AND/OR Search Trees for Graphical Models

In this subsection we overview briefly the AND/OR search toegyraphical mod-

els which was introduced in [18,1]. Given a graphical moRek (X, D, F), its
primal graphG and a pseudo treg of G, the associated AND/OR search tree,
denotedS7(R), has alternating levels of OR and AND nodes. The OR nodes are
labeled X; and correspond to the variables. The AND nodes are labeledr;)

and correspond to the values in the domains of the variablesstructure of the
AND/OR search tree is based on the underlying pseudo treerddt of S+ (R) is

an OR node labeled with the root @f. The children of an OR nod&,; are AND
nodes labeled with assignmenifs;, x;). The children of an AND nodéX;, x;) are

OR nodes labeled with the children of variablein the pseudo tre® . A path from

the root of the search tre®-(R) to a noder is denoted byr,,. The assignment se-
quence along,,, denotedisgn(m, ), is the set of value assignments associated with
the AND nodes along,, (see Fig. 1 in [1] for an example of an AND/OR tree).

A solution treeof an AND/OR search tre8(R) is an AND/OR subtred” such
that: 1) it contains the roetof S+ (R); 2) if a non-terminal AND node € S+ (R)

is in T then all of its children are ifl’; 3) if a non-terminal OR node € S+ (R)

is in T' then exactly one of its children is ifi; 4) all its leaf (terminal) nodes are
consistent.

Based on earlier work [18], it can be shown that given a grapmeodelR and
a pseudo tred’, the size of the AND/OR search trég-(R) is O(n - k™) where
m is the depth of the pseudo treejs the number of variables, arkdbounds the
domain size. Moreover, a graphical model that has treewidthas an AND/OR
search tree whose sizeG@§n - k¥ 18",

The arcs from node<X; to (X;, x;) in an AND/OR search tree are annotated by
weightsderived from the cost functions .

DEFINITION 6 (arc weight) Theweightw, ,.,)(X;, x;) (or simplyw(n,m)) of the
arc (n, m), whereX; labelsn and (X;, ;) labelsm, is thecombination(i.e., sum



of all the functions whose scope includ€sand is fully assigned along the path
from the root tom, evaluated at the values along the path.

With each node: of the weighted AND/OR search tree we can associatelae
v(n) which stands for the optimal solution cost of the subprobbetow ., con-
ditioned on the assignment on the path leading to it [18t1}als shown that(n)
obeys the following recursive definition:

DEFINITION 7 (node value) Thevaluev(n) of a noden in a weighted AND/OR
tree is defined recursively as follows (whete:c(n) are the children of.):

0 ,if n = (X,x) is aterminal AND node
00 ,If n = X isaterminal OR node
v(n) =
> mesuce(n) V(1) ,if n = (X, x)isan AND node
MmNy, sucem) (W(n, m) +v(m)) , if n =X is an OR node

(1)

Clearly, the value of the root nodds the minimal cost solution to the initial prob-
lem, namelyv(s) = minx >/, fi(X).

3.2 AND/OR Branch-and-Bound Search on AND/OR Trees

In [1-3] we introduced a new generation of linear space BramahBound search
algorithms that exploit the underlying structure of thepdriaal model by travers-
ing in a depth-first manner an AND/OR search tree associatédtiae graphical
model. During search, the algorithm maintains the cost efist solution found
so far, which is an upper bound on the minimal cost solution. In addition, each
noden in the search tree is also associated with a static heufustation(n) that
underestimates the minimal cost solutiam) to the subproblem below, and it
can be either pre-compiled or computed during search. Thempartial solution
being pursued is represented by a partial solution fféeGiven the current”, the
algorithm then computes a heuristic lower bounding esenfiét”) on the optimal
extension ofl” to a complete solution tree and,fif7") > ub, it prunes the search
space below the current tip node.

The efficiency of the algorithm depends heavily on its gugdmeuristic function.
In [1,2] we investigated the power of a heuristic generasoneme based on the
Mini-Bucket approximation [11], in both static and dynamatigs. Since the Mini-
Bucket algorithm is controlled by a bounding parameter]ives heuristics having
varying degrees of accuracy and results in a spectrum ofls@sgorithms that can
trade off heuristic computation and search.



We evaluated empirically the AND/OR Branch-and-Bound athomiwith the mini-
bucket heuristics for probabilistic and deterministicioptation tasks [1,2]. The
results showed conclusively that the scheme improves dieaiig over the tra-
ditional OR approaches, in many cases yielding severalr®mfemagnitude im-
provements in time and size of the search space explored.

In the following subsection we overview the notion of AND/@Rarchgraph for
general graphical models, which was presented in [18].

3.3 AND/OR Search Graphs for Graphical Models

It is often the case that a search space that is a tree can bexgmaph if iden-
tical nodes that root identical search subspaces and wbichspond to identical
reasoning subproblems are identified. Any two identicalesathn benerged thus
reducing the size of the search space. Some of these nodes tdentified based
on graph-basedontexts

First, we present the notion @fiduced width of a pseudo tred a graphG [18]
which is necessary for bounding the size of the AND/OR segraphs. We denote
by dprs(7T) alinear DFS ordering of a treg.

DEFINITION 8 (induced width of a pseudo tree)Given a graphG, the induced
width of G relative to a pseudo tre§, wr(G), is the induced width along the
dprs(T) ordering of G7, the extended graph ¢ relative to 7.

We next provide definitions which allow identifying nodeatlean be merged. The
idea is to determine a minimal set of predecessor variabl&s, whose assignment
completely determines the subproblem bel&walong the current path. Since a
path to an OR node&; and to an AND nod€ X;, z;) differs by the assignment
x; to X;, these minimal assignments that we seek can differ. Indbedpllowing
definitions distinguish between two types of context-bassxdhing which are quite
subtle. In these definitions, ancestors and descendamsthmrespect to the pseudo
tree7, while the connectivity is with respect to the primal graph

DEFINITION 9 (parents) Given a primal graph and a pseudo treg of a rea-
soning problenP, the parentsof an OR nodeX;, denoted byua; or pay,, are the
ancestors of; which are connected td&; or to descendants of; in G.

DEFINITION 10 (parent-separators) Given a primal graphz and a pseudo tree
T of a reasoning problerfP, the parent-separatof X; (or of (X;, z;)), denoted
by pas; or pasx,, are formed byX; and its ancestors that are connectedGnto
descendants of; (not only toX;).

It follows from these definitions that the parentsXf, pa;, separate in the primal
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Fig. 1. AND/OR search graph for graphical models.

graphG (and also in the extended gragh’ and in the induced extended graph
G7") the ancestors ak; from its descendants. Similarly, the parent-separatdrs se
of X;, pas;, separate the ancestors.of from its descendants. It is also easy to see
that each variablé; and its parentpa; form a clique in the induced graphi’ .

As was shown in [18], there exists the following relationvibeenpa; andpas;: (1)

if Y is the single child ofX in T, thenpasx = pay; (2) if X has childrert, ..., Y,

in 7, thenpasx = UX_ pay;.

THEOREM 1 (context based merge [18])GivenG7", let ,,, andr,, be any two
paths in an AND/OR search graph, ending with two nodegndn..

(1) If n; and ny are AND nodes labeled byX;, z;) and asgn(m,,)[pasx,| =
asgn(m,,)[pasx,] then the AND/OR search subtrees rootedipyandn, are
identical. Theusgn(m,,)[pasx,] is called theAND context of n;.

(2) Ifny andn, are OR nodes labeled by; andasgn(m,, ) [pax,] = asgn(m,,)[pax,]
then the AND/OR search subtrees rootedryyand n, are identical. The
asgn(m,,; )[pax,] is called theOR context of n;.

DEFINITION 11 (context minimal AND/OR search graph [18]) The AND/OR search
graph of R based on the backbone pseudo tfe¢hat is closed under the context-
based merge operator is called thentext minimal AND/OR search gragmd is



denoted by’ 7 (R).

We should note that we can in general merge nodes based b&NbDBrand OR
contexts. However, it was shown in [18] that doing just onehafm renders the
other unnecessary (namely, yielding a small constantifacty). In this paper we
will use AND context based merging.

THEOREM 2 (size of context minimal AND/OR search graphs [18])Given a graph-
ical model R, its primal graphG, and a pseudo tred having induced width

w* = wy(G), the size of the context minimal AND/OR search graph based on
T,Cr(R),isO(n - k¥"), wherek bounds the domain size.

Example 1 Consider the example given in Fig. 1 which is based on Exampderi f
[1]. The AND contexts of each node in the pseudo tree is givequiare brackets
in Fig. 1(a). The context minimal AND/OR search graph (basedND merging)
is given in Fig. 1(b). Its size is far smaller than that of tHe[&YOR search tree from
Fig. 1in[1] (16 vs. 54 AND nodes). Similarly, Fig. 1(d) shows ttontext minimal
AND/OR graph based on the OR contexts given in Fig. 1(c). tsisilarger than
that of the AND based graph (38 vs. 16 AND nodes) in this case.i@n®r
example variable” with AND-contexf{ B, C'} from Fig. 1(a). In Fig. 1 from [1],
the search subtrees below any appearancet= 0,C = 0) (i.e., corresponding
to the subproblems below the AND nodes lab&&d)) along the paths containing
the assignment8 = 0 andC' = 0, respectively) are all identical, and therefore
can be merged, as shown in the search graph from Fig. 1(b).

4 AND/OR Branch-and-Bound with Caching

Traversing AND/OR search spaces by depth-first Branch-anti@@r by best-
first search algorithms was described as early as [19,2in2Bg context of gen-
eral search spaces. In the following two sections we rethsitdefinitions needed
to describe the algorithms. We will then introduce two odssef memory inten-
sive search algorithms that explore the context minimal ADIR search graph of
graphical models, in either depth-firstor best-firstmanner, for finding optimal
solution trees. The algorithms extend those presented fof&xploring AND/OR
search trees to algorithms exploring AND/OR search graphs.

DEFINITION 12 (partial solution tree) A partial solution tred” of a context min-
imal AND/OR search grapt'7-(R) is a subtree which: (1) contains the root node

of C+(R); (2) if ninT" is an OR node then it contains one of its AND child nodes
in C7(R), and ifn is an AND node it contains all its OR childrend-(R ). A node

in 7" is called atip node if it has no children iff”. A tip node is either @aerminal
node (if it has no children il'7(R)), or a non-terminalnode (if it has children in
Cr(R)).



A partial solution tree representstension(1”), the set of all full solution trees
which can extend it. A partial solution tree whose all tip esdare terminal in
Cr(R) is a solution tree.

In general, Branch-and-Bound algorithms are guided by a Id®eend heuristic
function. The extension of heuristic evaluation functitmsubtrees in an AND/OR
search space for graphical models was elaborated in [1].rfi&8ybintroduce here
the main elements and refer the reader for further detatlsat@arlier references.

Heuristic Lower Bounds on Partial Solution Trees.We start with the notions of
exact heuristic evaluation functions of a partial soluticee [1,2], which will be
used to guide the AND/OR Branch-and-Bound.

The exact evaluation functiori*(7”) of a partial solution tre€” is the minimum

of the costs of all solution trees extendifiy namely:f*(T") = min{f(T) | T €
extension(T")}. If f*(T) is the exact evaluation function of a partial solution tree
rooted at node, then f*(7) can be computed recursively, as follows:

1. If T} consists of a single nodethen f*(7)) = v(n).

2. If nis an OR node having the AND chiled in 7/, thenf*(T}) = w(n,m) +
S (1)

3. If n is an AND node having OR childrem, ..., m; in T}, then f*(T)) =
it [1(T,)-

If each non-terminal tip node: of 7" is assigned a heuristic lower bound estimate
h(m) of v(m), then it induces a heuristic evaluation function on the matdicost
extension ofl”. Given a partial solution tre€’ rooted at: in the AND/OR graph
Cr(R), thetree-based heuristic evaluation functigit7”), is defined recursively
by:

1. If T) consists of a single node thenf (7)) = h(n).

2. If nis an OR node having the AND child in 77, thenf(T)) = w(n,m) +
f(TL,).

3. If n is an AND node having OR childrem,, ...,m; in T}, then f(T}) =

S f(T).

Clearly, by definitionf (7)) < f*(7}), and ifn is the root of the context minimal
AND/OR search graph, thef(T") < f*(7") [1].

During search, the algorithm maintains both an upper bauisl) on the optimal
solutionu(s) as well as the heuristic evaluation functiffi”) of the current partial
solution treel” being explored, and whenevg(T”) > ub(s), searching below the
current tip node of 7" is guaranteed not to yield a better solution cost th&(s)
and therefore, search belawan be terminated.

10



©CoOoO~NOUWNPE

30
31
32

34

35
36

37

39
40
41
42

43
44

Algorithm 1 : AOBB- C. AND/OR Branch-and-Bound Graph Search

Input: An optimization problen = (X, D, F, Z, min), pseudo-tred rooted atX;, parent separator setas;
(AND-context) for every variable;, heuristic functiorh(n).
Output: Minimal cost solution and an optimal solution assignment.

create an OR nodelabeled X /| Create and initialize the root node
v(s) < 00; ST(s) < 0; OPEN <« {s}
Initialize cache tables with entries "NULL” /1 Initialize cache tables
while OPEN # () do

n < top(OPEN); removen from OPEN /1 EXPAND

if nis an OR node, labeled’; then
foreachz; € D; do
create an AND node’, labeled(X;, z;)
v(n') < 0; ST(n') «+ 0
w(n,n’) + ZJ.EBT(X%) flasgn(my)) /1 Conpute the OR-to-AND arc wei ght
suce(n) < suce(n) U {n'}

else ifn is an AND node, labeledX;, z;) then

cached < false; deadend + false

if Cache(asgn(my)[pas;]) # NULL then
v(n) < Cache(asgn(my)[pas;]).value /1 Retrieve val ue
ST (n) < Cache(asg(mn)[pas;]).assignment; /1 Retrieve optinal assignnent
cached < true /1 No need to expand bel ow

foreach OR ancestorn of n do

f(T},) < eval Partial Sol utionTree(T},)
if £(T7,) > v(m)then

deadend <— true

break

if deadend == false and cached == false then
foreach X; € childrens(X;) do
create an OR node’ labeledX;

v(n') + oco; ST(n') «+ 0
suce(n) + suce(n) U {n'}
else ifdeadend == true then
L suce(p) « succ(p) — {n}
Add suce(n) on top of OPEN /1 PROPAGATE
while succ(n) == 0 do
if n is an OR node, labeled’; then
if X; == X then
L return (v(n), ST(n)) /1l Search is conplete
v(p) < v(p) + v(n) /1 Update AND node val ue (summation)
ST(p) + ST(p) U ST (n) /1 Update solution tree bel ow AND node
else ifn is an AND node, labeledX;, =;) then
Cache(asgn(my)[pas;]).value < v(n) /1 Save AND node val ue in cache
Cache(asgn(my)[pas;]).assignment « ST (n); /1 Save optimal assignnment
if v(p) > (w(p,n) + v(n)) then
v(p) + w(p,n) + v(n) /1 Update OR node val ue (mnim zation)
ST(p) < ST(n) U {(Xi,z;)} /1 Update solution tree bel ow OR node

removen from succ(p)
n<p

In [1] we also showed that the pruning test can be sped up ifssecate upper
bounds with internal nodes as well. Specificallyyifis an OR ancestor afin 7’

and7] is the subtree of” rooted atn, then it is also safe to prune the search tree

belowt, if f(7),) > ub(m). For illustration, see also Section 6 in [1].

11



Algorithm 2 : Recursive computation of the heuristic evaluation functio

function: eval Parti al Sol utionTree(T),, h(n))
Input: Partial solution subtre®), rooted at node:, heuristic function.(n).
Output: Heuristic evaluation functiorf (T7,).

1

©Coo~N O ar~rWN

if succ(n) == 0 then
| return h(n)
else
if n is an AND noddhen
L letmy, ..., my, be the OR children of in T/,

return 25:1 eval PartialSolutionTree(Ty,  , h(m;))
else ifn is an OR nodé¢hen

let m be the AND child ofn in T7,
return w(n,m) + eval Partial SolutionTree(T},, h(m;))

The Depth-First AND/OR Branch-and-Bound algorithm, AOBB- C, for search-
ing AND/OR graphs for graphical models, is described by Alpon 1. It inter-
leaves a forward expansion step of the current partial isolitee EXPAND) with

a backward propagation stedpROPAGATE) that updates the node values. This part
is identical to the tree-based variant [1] and we describeri¢ for completeness.

The context-based caching uses a table representatioea€lowvariableX;, a table
is reserved in memory for each possible assignment to ienpaeparator sets;
(i.e., AND context). During search, each table entry records {iteral solution
(both the cost and an optimal solution tree) to the subproldelow the corre-
sponding AND node. Initially, each entry has a predefinede/ah our cas@&ULL.
The fringe of the search is maintained by a stack callB&N. The current node
is denoted byh, its parent byp, and the current path by,. The children of the
current node are denoted bycc(n).

Each node: in the search graph maintains its current valGe), which is updated
based on the values of its children. For OR nodes, the curtentis an upper
bound on the optimal solution cost below nitially, v(n) is set tooo if n is OR,
ando if n is AND, respectively. A data structur!'(n) maintains the actual best
solution tree found in the subgraph rootechai he node based heuristic function
h(n) of v(n) is assumed to be available to the algorithm, either retddvem a
cache or computed during search.

Since we use AND caching, before expanding the current AN@emng its cache
table is checked (line 14). If the same context was encoedtbefore, it is re-
trieved from the cache, andicc(n) is set to the empty set, which will trigger the
PROPAGATE step. The algorithm also computes the heuristic evaludtioation
for every partial solution subtree rooted at the OR ancestbr. along the path
from the root (lines 18-22). The search belows terminated if, for some OR an-
cestorm, f(T!) > v(m), wherev(m) is the current upper bound on the optimal
cost belowm. The recursive computation ¢{7,) is described in Algorithm 2.

If a node is not found in cache, it is expanded in the usual Wapending on
whether it is an AND or OR node (lines 6-29)./ifis an OR node, labeled’;,

12



then its successors are AND nodes represented by the vgluregariableX;’s do-
main (lines 6—-11). Each OR-to-AND arc is associated with figg@priate weight.
Similarly, if n is an AND node, labeledX;, x;), then its successors are OR nodes
labeled by the child variables of; in 7 (lines 23-27). There are no weights asso-
ciated with AND-to-OR arcs.

The node values are updated by BROPAGATE step (lines 31-44). It is triggered
when a node value has an empty set of descendants (note getlasuccessor is
evaluated, it is removed from the set of successors in line®8s means that all
its children have been evaluated, and their final values laeady determined. If
the current node is the root, then the search terminatestewhlue and an optimal
solution tree (line 34). I is an OR node, then its paremis an AND node, and
p updates its current valugp) by summation with the value of (line 35). An
AND noden propagates its value to its paregnin a similar way, by minimization
(lines 37—-42). It also saves in cache the value and optinhaigo subtree below it
(lines 38-39). Finally, the current nodes set to its parent (line 44), because
was completely evaluated. Each node in the search grapmeadeads the current
best assignment to the variables of the subproblem bel@pécifically, ifn is an
AND node, thenST'(n) is the union of the optimal trees propagated frois1OR
children (line 36). Alternatively, if2 is an OR node and’ is its AND child such
thatn' = argminm,csucem) (w(n, m)+v(m)), thenST(n) is obtained from the label
of n’ combined with the optimal solution tree bela(line 42). Search continues
either with apropagationstep (if conditions are met) or with aaxpansiorstep.
Clearly, since the size of the context minimal AND/OR searddpg is bounded
exponentially by the induced width of the primal graph, itdass that:

THEOREM 3 (complexity) AOBB- Ctraversing the context minimal AND/OR search
graph relative to a pseudo treg is sound and complete. Its time and space com-
plexity isO(n-k*"), wherew* is the induced width of the pseudo tree @nabounds

the domain size.

The space required BYOBB- C can sometimes be prohibitive. We next present two
caching schemes that can adapt to the memory limitationsy Tlke a parameter
calledcache boundor simply j-bound) to control the amount of memory used for
storing identical nodes.

4.1 Naive Caching

The first scheme, callethive cachingand denoted byAOBB- C(5), stores nodes at
the variables whose context size is smaller than or equaktadche boungdl. It is
easy to see that, wherequals the induced width of the pseudo tree, the algorithm
explores the context minimal AND/OR graph via full caching.

As we mentioned earlier, a straightforward way of implenrepthe caching scheme
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(a) Primal graph (b) Pseudo tree

Fig. 2. An example of a primal graph and its pseudo tree.

Fig. 3. lllustration of naive caching used BYBB- C( 2) on the problem from Fig. 2.

is to have aache tabldor each variableX,, recording the context. Specifically, lets
assume that the context & is context(Xy) = { X1, ..., Xi } and|context(Xy)| <

j. A cache table entry corresponds to a particular instaotidt,, ..., 2, } of the
variables incontext(X}) and records the minimal cost solution to the subproblem
rooted at the AND node labeleX}, xy).

However, some tables might never get cache hits. Tead-cachefs,18] appear
at nodes that have only one incoming arc in the context mirgnagoh.AOBB- C(7)
needs to record only nodes that are likely to have additior@ming arcs, and
some of these nodes can be determined by inspecting theggeedfor example,
when the context of a node does not include that of its parent)

Example 2 Figure 3 displays the AND/OR search graph obtained with theeai
caching schema&OBB- C( 2) , relative to the pseudo tree given in Figure 2(b). No-
tice that there is no need to create cache tables for vareBl@nd B, because their
AND contexts include those of their respective parents irpeido tree, namely
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Fig. 4. lllustration of adaptive caching used AgBB- AC( 2) on the problem from Fig. 2.

context(A) C context(H) C context(B), respectively. MoreoveAOBB- C( 2)
does not cache any of the AND nodes corresponding to var@liecause its cor-
responding cache table, which is defined on 3 variabtes,(A, B and(C), cannot
be stored in memory.

4.2 Adaptive Caching

The second scheme, calledaptive cachingand denoted byAOBB- AC(), is in-
spired by the AND/OR cutset conditioning scheme and wasdxptored in [23].
It extends the naive scheme by allowing caching even at neidle£ontexts larger
than the given cache bound, baseddjusted contexts

Specifically, consider the nod&; in the pseudo treg with context(X;) =
{Xi,...,Xx}, wherek > j. During search, when variablgs(, ..., X;_,} are in-
stantiated, they can be viewed as part of a cutset. The protaeted by.X;_,.,

can be solved in isolation, like a subproblem in the cutskést, after variables
Xy, ..., Xy—; are assigned their current values in all the functions. ismgbbprob-
lem, conditioned on the valugs:y, ..., z;—; }, context(Xy) = {Xp—js1, ..., Xk}

(we call this theadjusted contexof X}), so it can be cached withijrbounded
space. However, whefOBB- AC(j) retracts to variableX;_; or above, the cache
table for variableX, needs to be purged, and will be used again when a new sub-
problem rooted afX;,_;; is solved. This caching scheme requires only a linear
increase in additional memory, compared to the n&@BB- C(;), but it has the
potential of exponential time savings, as shown in [23].

Example 3 Figure 4 shows the AND/OR graph traversed using the adapticiicg
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schemeAOBB- AC( 2) . In contrast to the naive scheme displayed in Figure 3,
AOBB- AC(2) caches the AND level corresponding to varialilebased on its
adjusted context. The adjusted AND context’a$ {C, B} and a flag is installed

at variable 4, indicating that the cache table must be purged whengverinstan-
tiated to a different value.

5 Best-First AND/OR Search

We now direct our attention to laest-firstcontrol strategy for traversing the con-
text minimal AND/OR graph. The best-first search algorithgasisimilar amounts
of memory as the depth-first AND/OR Branch-and-Bound with éathing and
therefore the comparison is warranted.

Best-first search expands the nodes in order of their heugséluation function.
Its main virtue is that it never expands nodes whose costyserakethe optimal
one, unlike depth-first search algorithms, and therefose®rior among memory
intensive algorithms employing the same heuristic evaadtinction [9].

Best-First AND/OR search denoted byAOBF- C, that traverses the context mini-
mal AND/OR search graph is described in Algorithm 3. It spézes Nilsson’A0*
algorithm [19] to AND/OR search spaces for graphical models interleaves for-
ward expansion of the best partial solution trEXPAND) with a cost revision step
(REVI SE) that updates node values, as detailed in [19]. The explicAND/OR
search graph is maintained by a data structure célledhe current node is, s is
the root of the search graph and the current best partialieolsubtree is denoted
by T”. The children of the current node are denoteditogt:(n).

First, a top-down, graph-growing operation finds the bestiglasolution tree by
tracing down through the marked arcs of the explicit AND/Gdarsh graphC?-
(lines 4-10). These previously computed marks indicatectireent best partial
solution tree from each node @f-. Before the algorithm terminates, the best partial
solution tree,T”, does not yet have all of its leaf nodes terminal. One of it3-no
terminal leaf nodes is then expanded by generating its successors, depending on
whether it is an OR or an AND node. #f is an OR node, labeled;, then its
successors are AND nodes represented by the valugsvariable X;'s domain
(lines 12-21). Notice that when expanding an OR node, therighgn does not
generate AND children that are already present in the ekpkerch grapld’’-, but
rather links to them. All these identical AND nodesdl- are easily recognized
based on their contexts. Each OR-to-AND arc is associatdu twé appropriate
weight (see Definition 6). Similarly, if. is an AND node, labeledX;, z;), then

its successors are OR nodes labeled by the child variablés of 7 (lines 22—
26). There are no weights associated with AND-to-OR arcsedeer, a heuristic
underestimaté(n’) of v(n’) is assigned to each afs successors’ € succ(n).
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Algorithm 3 : ACBF- C: Best-First AND/OR Graph Search

Input: An optimization problen = (X, D, F, Z, min), pseudo tred rooted atX, parent separator setas;
(AND-context) for every variable;, heuristic functiorh(n).
Output: Minimal cost solution and an optimal solution assignment.
create an OR nodelabeledX /Il Initialize
v(s) « h(s); C’%r + {s}
while s is not labeledSOLV ED do
S+ {shT « {} /| Create the marked partial solution tree
while S # () do
n <t op( S) ; removen from S
T «+ T'U{n}
let L be the set of marked successors:of
if L # 0 then
| addZ ontop ofS

let n be any nonterminal tip node of the marked (rooted ats) /'l EXPAND
if nis an OR node, labeled’; then
foreachz; € D; do
letn’ be the AND node irC”- having context equal tpas;
if n/ == NULL then

create an AND node’ labeled{X;, x;)

v(n') < h(n’)

w(n,n’) < ZfeBT(Xi) flasgn(mn))

if n/ is TERMINALthen

| labeln’ as SOLVED

suce(n) « suce(n) U {n'}
else ifn is an AND node, labeledX;, z;) then
foreach X; € childrent(X;) do

create an OR node’ labeledX;

v(n') < h(n')

suce(n) < suce(n) U {n'}

Cl + C- U {succ(n)}
S+ {n} /1 REVI SE
while S # () do
let m be a node ir5 such thatn has no descendants@‘lT still in S; removem from S
if m is an AND node, labeledX;, =;) then
U(m) = Z”m,j Esuce(m) U(mj)
mark all arcs to the successors
| labelm as SOLVED if all its children are labeled SOLVED

else ifm is an OR node, labeled’; then
U(m) = minm,j €suce(m) (w(m,7nj) + U(mj))
mark the arc through which this minimum is achieved
labelm as SOLVED if the marked successor is labeled SOLVED

if m changes its valuer m is labeled SOLVEDRhen
L add toS all those parents af: such thatn is one of their successors through a marked arc.

return v(s) /] Search term nates

The second operation AOBF- Cis a bottom-up, cost revision, arc marking, SOLVE-
labeling procedure (lines 28-40). It aims at updating tleuation function of any
subtree that might be affected, and marks the best oneirgtarith the node just
expandedh, the procedure revises its valug:), using the newly computed values
of its successors, and marks the outgoing arcs on the estirbatt path to termi-
nal nodes. This revised value is then propagated upwartieigraph. The revised
valuewv(n) is an updated lower bound on the cost of an optimal solutidghdésub-
problem rooted at. If we assume the monotone restriction/grcost revisions can
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only be costincreases [24,19]. Therefore, not all ancesteed have cost revisions,
but only those ancestors having best partial solution tceesaining descendants
with revised values (lines 39—40). During the bottom-upp sfOBF- C labels an
AND node asSOLVED if all of its OR child nodes are solved, and labels an OR
node asSOLVED if its marked AND child is also solved. The algorithm ternties
with the optimal solution when the root nodés labeledSOL VED.

If h(n) < v(n), the exact cost at, for all nodes, and if: satisfies the monotone
restriction, then algorithnAOBF- C will terminate with an optimal solution tree
[24,19]. The optimal solution tree can be obtained by trgciawn froms through
the marked connectors at termination and its optimal casgisl to the value(s)
of s at termination. Since the algorithm explores every nodaécbntext minimal
graph just once, it is the case that:

THEOREM4 (complexity) The best-first AND/OR search algorithm traversing the
context minimal AND/OR graph has time and space complexiyfofi*"), where
w* is the induced width of the pseudo tree @nldounds the domain size.

AOBB versus AOBF. We highlight next the main differences between depth-first
AND/OR Branch-and-Bound¥0OBB- C) and best-first AND/OR searcAQBF- C)
traversing the context minimal AND/OR search graph.

First, AOBF- C with the same heuristic function a0BB- C is likely to expand
the smallest number of nodes [9], but empirically this delsean how quickly
AOBB- C will find an optimal solution that it will use as upper boundcsndly,
AOBB- Ccan use far less memory by avoiding dead-caches for examplewhen

the search graph is a tree), whA@BF- C has to keep the explicated search graph
in memory. Third AOBB- C can be used as an anytime scheme, namely whenever
interrupted, the algorithm outputs the best solution fosadar, unlikeAOBF- C
which outputs a complete solution upon termination only. tAe above points
show that the relative merit of best-first versus depth-tixstr context minimal
AND/OR search spaces cannot be determined by sheer theloandOtherefore
empirical evaluation is essential.

6 Overview of the Mini-Bucket Lower Bound Heuristics for AND/OR Search

The effectiveness of both depth-first AND/OR Branch-and-Bband best-first
AND/OR search algorithms greatly depends on the qualityhefheuristic eval-
uation functions. The primary heuristic that we used in aypegiments is the
Mini-Bucket heuristic, which we presented in [1,2]. For cdaetpness, we review
it briefly next.

Mini-Bucket Elimination (MBE(7)) [11] is an approximation algorithm designed
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to avoid the high time and space complexityBiicket Elimination BE) [25], by

partitioning large buckets into smaller subsets, cathéai-bucketseach containing
at most; (calledi-bound) distinct variables. The mini-buckets are then @ssed
separately. The algorithm outputs not only a bound on thenabtsolution cost,
but also a collection of augmented buckets, which form theesfar the heuristics
generated. The complexity is time and spatexp(i)). Both Bucket and Mini-
Bucket Elimination can also be viewed as message passing léawes to root
along abucket tred17].

Static Mini-Bucket Heuristics. In [1,2,10] we showed that the intermediate func-
tions generated by MBEY can be used to compute a heuristic function that under-
estimates the minimal cost solution to the current subprablSpecifically, given
an ordered set of augmented buckt$( X;), ..., B(X,,)} generated by MBEJ
along the bucket treg (which is also a pseudo tree [18]), and given a nade
in the AND/OR search tree, ttstatic mini-bucket heuristitunction h(n) is com-
puted as follows: (1) if» is an AND node labeledX,, z,), thenh(n) is the sum
of all intermediate functions that were generated in bucketresponding to the
descendents ok, in 7 and reside in buckeB(X,) or the buckets correspond-
ing to the ancestors ok, in 7, (2) if n is an OR node labeled by, then
h(n) = min,,(w(n,m) + h(m)), wherem is the AND child ofn labeled with
valuez, of X,,.

Dynamic Mini-Bucket Heuristics. It is also possible to generate the mini-bucket
heuristic information dynamically, during search. Theadde to compute MBE]
conditioned on the current partial assignment [1,2]. Sedly, given a bucket
tree 7, with buckets{ B(X}), ..., B(X,)}, a noden in the AND/OR search tree
and given the current partial assignmesgn (7, ) along the path ta, thedynamic
mini-bucket heuristidunction h(n) is computed as follows: (1) if. is an AND
node labeled X,, x,), thenh(n) is the sum of the intermediate functions that re-
side in bucket3(X,) and were generated by MB#&(conditioned orusgn(m,), in
the buckets corresponding to the descendants,oih 7; (2) if » is an OR node
labeledX,, thenh(n) = min,,(w(n, m) + h(m)), wherem is the AND child ofn
labeled with valuer, of X,,. Given ani-bound, the dynamic mini-bucket heuristic
implies a much higher computational overhead compared thélstatic version.
However, the bounds generated dynamically may be far mangraie since some
of the variables are assigned and will therefore yield sendlinctions and less
partitioning.

7 Experimental Results

In [1,2] we evaluated empirically AND/OR search algorithfos AND/OR trees
only. We now extend this evaluation to algorithms preseirtékdis paper exploring
the context minimal AND/OR search graphs. Asin [1,2], weeheanducted a num-

19



ber of experiments on the two common optimization problelasses in graphical
models: finding the Most Probable Explanation in Bayesiawois and solving
Weighted CSPs. We implemented our algorithms in C++ and ragxakriments
on a 2.4GHz Pentium IV with 2GB of RAM, running Windows XP.

7.1 Overview and Methodology

Algorithms  We evaluated the following classes of memory intensive ADIR/
search algorithms:

e Depth-first AND/OR Branch-and-Bound search algorithms withdaching, us-
ing static and dynamic mini-bucket heuristics, denotedABB- C+SVB( 1)
andAOBB- C+DMB( 7) , respectively.

e Best-first AND/OR search algorithms using static and dynamig-bucket heuris-
tics, denoted byAOBF- C+SMVB( i) andACBF- C+DVB( ) , respectively.

We compare these algorithms with those traversing the ANRDg@arch tree (with-
out caching), denoted bAOBB+SMB( i) andAOBB+DVB( i) , introduced in [1,2].

In addition, we also ran the traditional OR Branch-and-Bousarsh algorithms
with full caching, denoted by8B- C+SMB( /) and BB- C+DVB( i) , respectively.

In all cases, the parametérepresents the mini-buckétbound and controls the
accuracy of the heuristic.

Throughout our empirical evaluation we will address thdofwing aspects that
govern the performance of the proposed algorithms:

The impact of graph versus tree on AND/OR Branch-and-Bouactke
The impact of best-first versus depth-first AND/OR seargimmes.

The impact of the mini-bucketbound.

The impact of the cache bounan naive and adaptive caching.

The impact of the pseudo tree quality on AND/OR search.

The impact of determinism present in the network.

The impact of non-trivial initial upper bounds.

~No o~ WNBRE

MPE Task for Bayesian Networks We tested the performance of the depth-
first AND/OR Branch-and-Bound and best-first AND/OR searclatlgms on the
following types of problems: random coding networks, grid networks, Bayesian
networks derived from the ISCAS’89 digital circuits benchikyayenetic linkage
analysis networks and Bayesian networks used in the UAI'@&&é&mce Evaluation
contest. We report here in detail the results obtained fiorrggtworks and genetic

2 Available online ahttp://graphmod.ics.uci.edu/group/Repository

20



linkage analysis networks only, but we summarize the resér the entire set of
benchmarks, and refer the reader to [26,27] for additioatdits.

In our experiments, we also consider an extension of the AN®DBranch-and-
Bound with caching that exploits the determinism presenténBayesian network
by constraint propagation. For reference, we also compaithdhe SAmIAM ver-
sion 2.3.2 software package SAMIAM contains an implementation of Recursive
Conditioning [6] which can also be viewed as an AND/OR sealgbrahm. It uses

a context-based caching mechanism similar to our schems vé&hsion of recur-
sive conditioning also explores a context minimal AND/ORrsé graph [18] and
therefore its space complexity is exponential in the treéwiNote that when we
use mini-bucket heuristics with high valuesipfve use space exponential:ifor
the heuristic calculation and storing, in addition to thaaprequired for caching.

Weighted CSPs We evaluated the algorithms on: scheduling problems fram th
SPOT5 benchmark, networks derived from the ISCAS’89 digitaduits and in-
stances of the popular game of Mastermind. We report hesletresults for
SPOTS5 problem instances and Mastermind game instances/algiso provide a
summary of the results obtained on the other types of prakland refer the reader
to [26,27] for the full results.

For reference, we also report results obtained with the sththe-art solvers called
t ool bar [28]andt ool bar - BTD[29]*.t ool bar is an OR Branch-and-Bound
algorithm that maintains during search a form of soft loaaisistency called Ex-
istential Directional Arc Consistency (EDAQ)ool bar - BTD extends théack-
tracking with Tree DecompositiofBTD) algorithm [8] and computes the guiding
heuristic information as well by enforcing EDAC during sdarlt can be shown
that BTD explores a context minimal AND/OR search graph tredao a pseudo
tree corresponding to the given tree decomposition. Intiafgiwe also com-
pare with the depth-first AND/OR Branch-and-Bound tree sealgbrithms with
EDAC heuristics and with variable orderings such ASEDAC+PVO using par-
tial variable orderingsPVO+ACEDAC using full dynamic variable ordering, and
ACEDAC+DSO using dynamic separator orderings, respectively. For ailddtde-
scription of these ordering heuristics and their evalumtsee [1,3].

The dynamic variable ordering heuristic used by the OR an®/&MR Branch-and-
Bound algorithms with EDAC heuristics was th@n-dom/ddedheuristic, which
selects the variable with the smallest ratio of the domaia divided by the future
degree. Ties were broken lexicographically.

3 Available at http://reasoning.cs.ucla.edu/samiam. We useddaheht ool 1.5 pro-
vided with the package.
4 Available at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Soft CSP
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Measures of Performance In all our experiments we report the CPU time in
seconds and the number of nodes visited for solving the pnatl We also specify
the problems’ parameters such as the number of variab)esiimber of evidence
variables ¢), maximum domain sizek}, the induced width«(*) and depth £) of
the pseudo trees. When evidence is asserted in the netwoakdh are computed
after the evidence nodes were removed from the graph. Wergswt the time
required by the Mini-Bucket algorithm MBE)(to pre-compile the heuristic infor-
mation. The pseudo trees that guide the AND/OR search #igusiwere generated
using the min-fill and hypergraph partitioning heuristiesdribed in [1,6]. In our
experiments we ran the min-fill heuristic just once and brbleeties lexicograph-
ically. The best performance points are highlighted. Irheable, "-” denotes that
the respective algorithm exceeded the time limit. Simylddut” indicates that the
2GB memory limit was exceeded.

7.2 Results for Empirical Evaluation of Bayesian Networks

Our results reported in [1] demonstrated conclusively thatAND/OR Branch-
and-Boundree search algorithms with static mini-bucket heuristics wibie best
performing algorithms on this domain when compared witlitranal OR search
algorithms. The difference betwe&®BB+SMB( i) and the OR tree search coun-
terpartBB+SMB( 7) was more pronounced at relatively smatlounds (correspond-
ing to relatively weak heuristic estimates) and amountetivim orders of mag-
nitude in terms of both running time and size of the searcltesgxplored. For
largeri-bounds, when the heuristic estimates are strong enoughine phe search
space substantially, the difference between AND/OR and G&@r-and-Bound
tree search decreased. We also showedABBB+SMB( /) was in many cases able
to outperform dramatically the current state-of-the-aivears for belief networks
such as 8MIAM and SUPERLINK (for genetic linkage analysis). The AND/OR
Branch-and-Bound with dynamic mini-bucket heurist’SBB+DIVB( i) proved
competitive only for relatively smal-bounds due to the computational overhead.
In this section we extend the empirical evaluation to menmoignsive depth-first
and best-first AND/OR search algorithms.

7.2.1 Grid Networks

In random grid networks, the nodes are arranged ivanN square and each CPT
is generated uniformly randomly. We experimented with pebinstances initially
developed by [30] for the task of weighted model counting. these problems’
ranges between 10 and 38, and, for each instaii¢e,of the CPTs are determin-
istic, namely they contain only 0 and 1 probability entriadl.the variables are
bi-valued.
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Table 1

CPU time in seconds and nodes visited for sohgnig networks usingstatic mini-bucket
heuristics and min-fill based pseudo trees. Time limit 1 hour. The two horizontal blotcks o
the table show different ranges of the mini-buckébunds.

min-fill pseudo tree

MBE(i) MBE(i) MBE(j) MBE(i) MBE(i)
grid Samlam BB-C+SMB(i) BB-C+SMB(j) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(j)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMBJ(i) AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMBJ(i) AOBB-C+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=8 i=10 i=12 i=14 i=16
time time nodes time nodes time nodes time nodes time nodes
0.02 0.03 0.06 0.06
90-10-1 0.23 3,297 0.06 373 102 0.06 102 0.06 102
(13, 39) 0.13 0.33 8,080 0.11 2,052 101 0.06 101 0.06 101
(100, 0) 0.14 2,638 0.06 819 101 0.06 101 0.06 101
0.27 2,012 0.11 661 100 0.06 100 0.06 100
0.03 0.03 0.08 0.14 0.44
90-14-1 126.69 1,233,891 121.00 1,317,992 1.52 16,547 0.42 2,770 0.61 1,450
(22, 66) 11.97 8.00 130,619 6.59 100,696 1.06 17,479 0.33 3,321 0.61 2,938
(196, 0) 4.22 55,120 3.66 48,513 0.45 5,585 1,361 0.53 1,210
3.20 18,796 2.70 15,764 0.55 2,899 0.30 898 0.63 857
0.05 0.05 0.11 0.31 0.63
90-16-1 - - - - 40.05 345,255 2.38 16,942 1.23 5,327
(24,82) 147.19 666.68 10,104,350 173.49 2,600,690 14.36 193,440 2.97 39,825 2.08 23,421
(256, 0) 209.60 2,695,249 35.45 441,364 423 50,481 1.19 11,029 4,810
25.70 126,861 10.59 54,796 4.47 22,993 1.42 6,015 1.22 3,067
MBE(i) MBE(i) MBE(j) MBE(i) MBE(i)
grid Samlam BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB(j)
(w*, h) AOBB-C+SMB(j) AOBB-C+SMB(i) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time time nodes time nodes time nodes time nodes time nodes
0.28 0.64 1.69 4.60 19.14
90-24-1 - - - - - - - - - -
(33, 111) out - - 2338.67 24,117,151| 1548.09 18,238,983| 138.67 1,413,764 146.85 1,308,009
(576, 20) - - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
out 21.94 75,637 10.59 33,770 5,144 23.80 17,291
0.33 0.72 2.14 7.09 22.02
90-26-1 - - - - 395.67 1,635,447 - - 67.09 277,685
(36, 113) out 311.89 2,903,489 369.49 3,205,257 8.42 59,055 22.99 165,182 22.56 5,777
(676, 40) 146.97 878,874| 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
19.06 65,271 24.39 79,619 7,190 8.05 3,777 22.44 1,435
0.47 0.98 2.77 7.98 30.44
90-30-1 - - - - - - - - - -
(43, 150) out | 1131.07 9,445,224 386.27 3,324,942 350.28 3,039,966 149.69 1,358,569 97.09 485,300
(900, 60) 652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715
158.97 534,385 46.73 157,187 47.27 154,496 [ﬁ’ 45,201 57.97 100,800
0.63 1.25 3.72 11.66 40.00
90-34-1 - - - - - - - - - -
(45, 153) out - - - - - - - - 478.10 1,549,829
(1154, 80) - - - - - - - - 369.36 823,604
out out 243.63 596,978 270.88 667,013 m 67,611
0.78 1.67 4.20 12.36 43.69
90-38-1 - - - - - - - - - -
(47, 163) out 2032.33 6,835,745 - - 807.38 2,850,393| 568.69 2,079,146 369.31 1,038,065
(1444, 120) 969.02 2,623,971| 1753.10 3,794,053| 203.67 614,868 165.45 488,873| 113.06 214,919
101.69 174,786 103.80 146,237 54.00 95,511 m 78,431 73.10 59,856
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Table 2

CPU time in seconds and nodes visited for solvimigl networks usingdynamic mini-
bucket heuristics and min-fill based pseudo trees. Time limit 1 hour. The two horizontal
blocks of the table show different ranges of the mini-buekiebunds. Grid instance30-
30-1, 90-34-1and90-38-1could not be solved within the time limit.

min-fill pseudo tree
grid BB-C+DMB(j) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(j) BB-C+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB() | AOBB-C+DMB(i)
(n, e) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i) AOBF-C+DMB(i)
i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes
90-10-1 0.66 303 0.47 197 0.33 102 0.41 102 0.38 102
(13, 39) 0.31 344 0.28 241 0.25 101 0.30 101 0.28 101
(100, 0) 0.28 235 0.25 170 101 0.28 101 0.30 101
0.39 135 0.36 115 0.36 100 0.41 100 0.41 100
90-14-1 128.92 16,176 37.34 2,590 7.44 340 8.61 211 11.72 199
(22, 66) 56.66 31,476 23.61 4,137 4.69 397 7.25 211 10.19 199
(196, 0) 46.94 7,641 22.72 1,996 281 7.20 211 10.19 199
54.09 4,007 12.84 462 6.83 221 11.94 211 16.05 199
90-16-1 639.91 42,786 388.47 12,563 112.44 1,913 103.14 1,017 39.16 262
(24, 82) 975.58 462,180 296.76 47,121 70.81 3,227 50.36 719 25.03 260
(256, 0) 382.78 44,949 245.50 11,855 65.41 1,430 48.61 525 260
194.08 11,453 | 252.99 6,622 94.88 1,061 75.41 413 38.46 258
grid BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB(i)
AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(i)
(w*, h) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i) AOBB-C+DMB(i)
(n, e) AOBF-C+DMB(j) AOBF-C+DMB(j) AOBF-C+DMB(i) AOBF-C+DMB(i) | AOBF-C+DMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
90-24-1 2586.38 3,243 | 1724.68 700 | 2368.83 601
(33, 111) 1367.38 2,739 1979.42 1,228 | 1696.56 598
(576, 20) - - - - 1,058 1211.99 788 | 1693.00 598
3456.77 11,818 1834.71 2,728 | 1153.48 855 | 1871.03 759 | 2573.08 591
90-26-1 - - -
(36, 113) 1514.18 2,545| 2889.49 1,191
(676, 40) 2801.39 35,640 | 2593.74 10,216 1,178 1698.70 861 | 2647.60 687
1262.76 5,392 | 1737.01 2,585| 1347.54 1,049 | 2587.10 828

Tables 1 and 2 show detailed results for experiments withd® @f increasing diffi-
culty, using static and dynamic mini-bucket heuristicse Tblumns are indexed by
the mini-bucketi-bound. Each table is organized into two horizontal bloéesh
corresponding to a different range ©bound values. For each instance we ran a
single MPE query witle nodes picked randomly and instantiated as evidence. The
guiding pseudo trees were generated using the min-fill bgeuri

Tree vs. graph AOBB.First, we observe thaOBB- C+SMB( 7) using full caching
improves significantly over the tree version of the algonthespecially for rela-
tively smalli-bounds which generate relatively weak heuristic estimdter ex-
ample, on th@®0- 16- 1 grid in Table 1,A0CBB- C+SMB( 8) is 3 times faster than
AOBB+SMB( 8) and explores a search space 5 times smaller. Notice alsmthie s
icant additional reduction produced by the best-first dealgorithmAOBF- C+SMB( 8) .
While overallAOBF- C+SMB( 7) is superior tcAOBB- C+SMB( i) with the same-
bound, the best performance on this network is obtaineA@BB- C+SMB( 16) .
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grid network 90-14-1 grid network 90-14-1
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Fig. 5. Comparison of the impact of static and dynamic mini-bucket heuristicsviare
the CPU time in seconds (a) and the number of nodes visited (b) 080th&4- 1 grid
network from Tables 1 and 2, respectively.

The algorithm is two times faster than the cache-lk&BB+SMB( 16) , and 155
times faster than 8 1AM, respectively. When looking at the algorithms using dy-
namic mini-bucket heuristics (Table 2) we observe a sinpktern, namely the
graph search AND/OR Branch-and-Bound algorithm improvesetiones signifi-
cantly over the tree search one. For instance, 08@he&4- 1 grid, AOBB- C+DVB( 16)
is about two times faster tha#&\OBB+DMB( 16) . Notice also that the AND/OR
algorithms with dynamic mini-buckets could not solve thetl& test instances
due to exceeding the time limit. The OR Branch-and-Bound &ealgorithms
with cachingBB- C+SMB( i) (resp.BB- C+DMVB( ¢) ) are inferior to the AND/OR
Branch-and-Bound graph search, especially on the hardanitest ¢.¢., 90- 30- 1).

AOBF vs. AOBB. When comparing further the best-first and depth-first sedrch a
gorithms, we see again the superiorityA@BF- C+SMB( i) overAOBB- C+SMB( 7) ,
especially for relatively weak heuristic estimates (see &ligure 5). For example,
on the90- 38- 1 grid, one of the hardest instances, best-first search wethkrtiall-
est reported-bound ¢ = 12) is 9 times faster thaAOBB- C+SVB( 12) and visits

15 times less nodes. The difference between best-first gutti-fiest search is not
too prominent when using dynamic mini-bucket heuristieshpps because these
heuristics are far more accurate than the pre-compiledyakng a small enough
search space.

Static vs. dynamic mini-bucket heuristics When comparing the static versus dy-
namic mini-bucket heuristics, we see as before, that thedoare more powerful
for relatively largei-bounds, whereas the latter are cost effective only fotively
smalli-bounds. Figures 5(a) and 5(b) plot the CPU time and size (fghech space
explored, as a function of the mini-buckebound, on thé&0- 14- 1 grid from Ta-
bles 1 and 2, respectively. FocusingA@BB- C+SMB( i) , for example, we see that
its running time, as a function af forms a U-shaped curve. At first € 4) it is
high, then as thé-bound increases the total time decreases (wheri4 the time

is 0.23), but then asincreases further the time starts to increase again betagise
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Fig. 6. Naive versus adaptive caching schemes for AND/OR BrandkBaund with static
mini-bucket heuristics ogrid networks. Shown is the CPU time in seconds.
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Fig. 7. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdar solving
grid networks with AOBB- C+SMB( i) (left) and AOBF- C+SMB( i) (right). The header
of each plot records the average induced widtf)(and pseudo tree depth (h) obtained
with the hypergraph partitioning heuristic. We also show the induced widthpaaddo
tree depth for the min-fill heuristic.

pre-processing time of the mini-bucket heuristic outwsigifie search time. The
same behavior can be observed in the case of dynamic miketsias well.

Impact of the caching level.Figure 6 compares the naiva@B- C+SMB( 4, j) )
and adaptive AOBB- AC+SMB( 7, 7) ) caching schemes, in terms of CPU time, on
two grid networks from Table 1. In each test case we chosetively small mini-
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Fig. 8. Memory usage byOBB- C+SMB( i) andAOBF- C+SMB( i) ongrid networks.

bucketi-bound and varied the cache boupdthe X axis) from 2 to 20. We see
that adaptive caching improves significantly over the nasieeme especially for
relatively smallj-bounds. This may be important because smdlbunds mean
restricted space. For largebounds the two schemes are identical and approach
full caching.

Impact of the pseudo tree Since the hypergraph partitioning heuristic uses a non-
deterministic algorithm, the runtime of the AND/OR seardhoathms guided
by the resulting pseudo trees may vary significantly from ane to the next.
In Figure 7 we display the running time distribution AOBB- C+SVB( i) (left
side of the figure) andOBF- C+SMB( i) (right side of the figure) using hyper-
graph based pseudo trees on grifs 24- 1 and 90- 26- 1, respectively. For
each reported-bound (the X axis), the corresponding data point and ereor b
represent the average as well as the minimum and maximuningitimes ob-
tained over 20 independent runs. We also record the averalyeed width and
depth obtained for the hypergraph pseudo trees (see theheh@ach plot in
Figure 7). We see that the hypergraph based pseudo tread) hdae far smaller
depths, are sometimes able to improve the performané©BB- C+SVB( ) , es-
pecially for relatively small-bounds ¢.¢., 90- 24- 1). For largeri-bounds, the
pre-compiled mini-bucket heuristic benefits from the snadluced widths ob-
tained with the min-fill ordering. Therefora0OBB- C+SMB( ) using min-fill based
pseudo trees is generally faster (see the different Y sdale)lso see that on av-
erageACBF- C+SMB( @) is faster when it is guided by min-fill rather than hyper-
graph based pseudo trees. This verifies our hypothesis #rabny intensive algo-
rithms exploring the AND/OR graph are more sensitive to thetext size (which
is smaller for min-fill orderings), rather than the depth loé {pseudo tree. These
results were typical to other instances as well.

Memory usage of AND/OR graph searchFigure 8 displays the memory usage
of AOBB- C+SMB(7) and AOBF- C+SMB( i) on grids90- 30- 1 and90- 38-1,
respectively. We see that the memory requirements of thitndept algorithm are
significantly smaller than those of best-first search. Thimeicaus@OBF- C+SMB( )
has to keep in memory the entire search space, uAllgB- C+SMB( i) which can
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Table 3

CPU time and nodes visited for solvirgenetic linkage networksusing static mini-
bucket heuristics. Time limit 3 hours. Top part of the table shows results #drounds
between 6 and 14, while the bottom part shaevi®unds between 10 and 18.

min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
pedigree | Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes | time nodes
0.05 0.05 0.11 0.31 0.97
pedl - - - - 1.14 7,997 0.73 3911 | 131 2,704
(15, 61) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 | 1.89 15,156
(299, 5) 5.44 4.19 69,751 217 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494
1.30 7,314 2.17 13,784 1,177 0.87 4,016 | 1.54 3,119
0.12 0.45 5.38 60.97 out
ped38
(17, 59) 8120.58 85,367,022 3040.60 35,394,461
(582, 5) out 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672| 272.69 1,412,976
out 134.41 348,723 216.94 583,401 103.17 242,429
0.11 0.74 5.38 37.19 out
ped50
(18, 58) 476.77 5,566,578 104.00 748,792
(479, 5) out 4140.29 28,201,843| 2493.75 15,729,294 66.66 403,234 52.11 110,302
78.53 204,886 36.03 104,289 [T75] 25,507 38.52 5,766
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
pedigree | Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Samlam AOBB+SMB(i) AOBB-+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB-+SMB(i)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes | time nodes
0.42 2.33 11.33 274.75 out
ped23 76.11 339,125 270.22 74,261
(27,71) 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308
(310, 5) out 193.78 1,726,897 74,672 13.33 23,557 274.00 62,613
out 15.33 58,180 14.36 12,987 out
0.67 5.16 21.53 58.59 out
ped37
(21,61) 64.17 273.39 3,191,218| 1682.09 25,729,009 1096.79 15,598,863| 128.16 953,061
(1032, 5) out 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
[29.16] 72,868 | 3841 102,011 95.27 223398| 62,97 12,296

save space by avoiding dead-caches for example. Moretrenddes cached by
AOBB- C+SMB( ) require far less memory because they only record the optimal
solution cost below them, whereas the nodes cachedldBF- C+SMVB( i) must
store, in addition, the lists of their children in the seagcaph. For these reasons,
we were able throughout the evaluation to run full cachinipdepth-first search.

7.2.2 Genetic Linkage Analysis

In human genetic linkage analysis [31], thaplotypeis the sequence of alleles
at different loci inherited by an individual from one pareahd the two haplo-
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Table 4

CPU time in seconds and nodes visited for soljiegetic linkage networksusingstatic
mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
pedigree | Superlink BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
Samlam AOBB+SMB(j) AOBB+SMB(j) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(j)
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
0.51 1.42 4.59 12.87 19.30
pedl18 1515.43 1,388,791
(21, 119) 139.06 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689
(1184, 5) 157.05 406.88 3,567,729 52.91 397,934 23.83 118,869 20.60 2,972
out 127.41 542,156 42.19 171,039 m 53,961 19.91 2,027
1.42 5.11 37.53 410.96 out
ped20
(24, 66) 3793.31 54,941,659 1293.76 18,449,393| 1259.05 17,810,674 1080.05 9,151,195
(388, 5) out 1983.00 18,615,009| 635.74 6,424,477 512.16 4,814,751 681.97 2,654,646
out out out out
0.34 0.89 3.20 10.46 33.42
ped25
(34, 89) 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541
(994, 5) out 1644.67 12,631,406 865.83 6,676,835 249.47 1,789,094 1,529,180
out out out out out
0.42 0.83 1.78 5.75 21.30
ped30
(23,118) 13095.83 - - - - 214.10 1,379,131 91.92 685,661
(1016, 5) out 10212.70 93,233,570 8858.22 82,552,957 34.19 193,436 30.48 66,144
out out out 30.39 72,798 | [27.94] 18,795
0.58 231 7.84 33.44 112.83
ped33 - - - - - - - - - -
(37, 165) 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988| 159.50 1,647,488 2956.47 35,903,215
(581, 5) out 1426.99 11,349,475 307.39 2,504,020 1823.43 14,925,943 86.17 453,987 | 1373.90 10,570,695
out 140.61 407,387 out [74.86] 134,068 out
0.52 2.32 8.41 33.15 81.27
ped39
(23,94) 322.14 4041.56 52,804,044| 386.13 2,171,470 141.23 407,280
(1272, 5) out 968.03 7,880,928 61.20 313,496 93.19 83,714
out out 68.52 218,925 | [41.69] 79,356 87.63 14,479
4.20 31.33 96.28 out out
ped42
(25, 76) 561.31
(448, 5) out 2364.67 22,595,247
out out [133.19 93,831

types (maternal and paternal) of an individual constithige individual’sgenotype
When genotypes are measured by standard procedures, titeigeslist of un-
ordered pairs of alleles, one pair for each locus. aximum likelihood haplo-
typeproblem consists of finding a joint haplotype configurationdll members of
the pedigree which maximizes the probability of data. It barshown that given
the pedigree data, the haplotyping problem is equivalemotoputing the most
probable explanation of a Bayesian network that represkatgddigree [32,33].
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Tables 3 and 4 display the results obtained for 12 hard liakamlysis networks.
We report only on search guided by static mini-bucket héagsThe dynamic
mini-bucket heuristics performed very poorly on this domiagcause of their pro-
hibitively high computational overhead at largbounds. For comparison, we in-
clude results obtained withUERLINK 1.6. SUPERLINK is currently one the most
efficient solvers for genetic linkage analysis, is dediddte this domain, uses a
combination of variable elimination and conditioning, @alles advantage of the
determinism in the network.

Tree versus graph AOBB.We observe thahOBB- C+SMB( i) improves signifi-
cantly overAOBB+SMB( 7) , especially for relatively smaitbounds for which the
heuristic estimates are less accuratep@d?25, for example AOBB- C+SMVB( 18)

is 15 times faster thaAOBB+SMB( 18) and expands about 20 times fewer nodes.
As thei-bound increases the difference betwa@BB- C+SMB( i) andAOBB+SMB( )
decreases, as we saw before. Notice that the OR Branch-anwiBath caching
BB- C+SMB( 7) and S\MIAM were able to solve only one instaneey(, ped18).

AOBB vs. AOBF. The overall best performing algorithm on this dataset ig-bes
first AOBF- C+SMB( 7) , outperforming its competitors on 5 out of the 7 test cases.
On ped42, for instance AOBF- C+SMB( 16) is 18 times faster than the depth-
first Branch-and-BoundOBB- C+SMB( 16) and explores a search space 240 times
smaller. In some test casesq., ped30) the best-first search algorithm was up to
3 orders of magnitude faster thawS=RLINK.

Impact of the pseudo tree.Figure 9 plots the running time distribution of depth-
first AOBB- C+SMB( i) (left side of the figure) and best-fir&tOBF- C+SIVB( )
(right side of the figure), guided by hypergraph based psereds, over 20 in-
dependent runs on tied1 andped33 networks, respectively. In this case, we
see that both algorithms perform much better when guidedypergraph based
pseudo trees, especially on harder instances. For instant¢beped33 network,
AOBB- C+SMVB( 16) using a hypergraph based pseudo tree was able to outperform
AOBB- C+SMVB( 16) guided by a min-fill tree by almost two orders of magnitude.
Similarly, AOBF- C+SMB( ) with hypergraph trees was able to solve the problem
instance across altbounds, unlikeAOBB- C+SMB( ) with a min-fill tree which
succeeded only for € {14,18}. Notice that the induced width of this problem
along the min-fill order is very largeu( = 37) which causes the mini-bucket
heuristics to be relatively weak and implies a large humifedead caches. The
results on other problem instances displayed a similaepatt

Table 5 displays the results obtained for 6 additional Igg&analysis networks us-
ing hypergraph partitioning based pseudo trees and thdilinimes. We selected

the hypergraph tree having the smallest depth over 100 extemt runs. To the
best of our knowledge, these networks were never beforeddbr the maximum

5 http://bioinfo.cs.technion.ac.il/superlink/
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Fig. 9. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdar solving
genetic linkage networkswith AOBB- C+SMB( i) (left side) andACBF- C+SMB( 7) (right
side). The header of each plot records the average induced witltaiid pseudo tree depth
(h) obtained with the hypergraph partitioning heuristic. We also show the@tthwidth and

pseudo tree depth for the min-fill heuristic.
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Fig. 10. Naive versus adaptive caching schemes for AND/OR BrandhBound with
static mini-bucket heuristics agenetic linkage networks Shown is CPU time in seconds.

likelihood haplotype task. We see that the hypergraph pséees offer the over-
all best performance as well. This can be explained by thgelarduced width
which in this case renders most of the cache entries deadqfseestance that the
difference betweeAOBB+SMB( 1) and AOBB- C+SMB( 7) is not too prominent).
Therefore, the AND/OR graph explored effectively is vergsd to a tree and the
dominant factor that impacts the search performance isttteethepth of the guiding

31



Table 5

Impact of the pseudo tree quality genetic linkage networks Time limit 24 hours. We
show results for the hypergraph partitioning heuristic (left) and the mindfilkistic (right).

hypergraph pseudo tree min-fill pseudo tree
MBE() MBE() MBE() MBE()
BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB(j) BB-C+SMB())
pedigree | Samlam || (w*, h) AOBB+SMBY() AOBB+SMB(j) w*, h) AOBB+SMB(i) AOBB+SMB()
(n, d) Superlink AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(j) AOBB-C+SMB(j)
AOBF-C+SMBY(i) AOBF-C+SMB(i) AOBF-C+SMB() AOBF-C+SMBJ()
i=20 i=22 i=20 i=22
time nodes time nodes time nodes time nodes
ped7 25.26 164.49 117.03 out
(868, 4) out - - - -
(36,60) | 88571.68  1,807,878,34] 939517 195,845,851 (32,133)
30504.84 285,084,124 27,761,219
out out out
ped9 67.93 300.06 76.31 out
(936, 7) out
(35,58) | 11483.89 231,301,374 398260 72,844,362 (27,130) | 151550 15825340
892281 117,328,162 40,251,723 12,444,961
out out out
ped19 59.31 150.38 out out
(693, 5) out - - - -
(35.53) | 9894175 1519213924 12530.00 174,000,317 (24,122)
4507531 466,748,365 90,665,870
out out
ped34 42.21 209.51 out out
(923, 4) out
(34,60) | 7050472 1453705377 13598.50  294,637,173| (32,127)
67647.42  1,293,350,829 220,199,927
out out
ped41 35.41 111.24 out out
(886, 5) out - - - -
(36,61) | 6669.50 84,506,068 531.40 4,990,995|| (33, 128)
3891.86 31,731,270 2,318,544
out out
ped44 32.92 140.81 57.88 344.68
(644, 4) out - - - - - - -
(31,52) | 838818 196,823,840 401.84 7,648,962|| (26,73) 12742 1114641| 38547 668,737
3597.12 62,385,573 1,355,595 752,970 | 366.18 447,514
out out out out

pseudo tree, which is far smaller for hypergraph trees coedpaith min-fill based
ones. Notice also that best-first search could not solve tnese networks due to
memory issues. The AND/OR Branch-and-Bound algorithms with-fit based
pseudo trees could only solve two of the test instanegs, (ped9 andped44)
whose induced widths were small enough. These experimentsmuktrate that the
selection of the pseudo tree can have an enormous impaetiakypif the:-bound
that can be afforded is not large enough.

Impact of the caching level. Figure 10 plots the CPU time, as a function of
the cache bound, for two linkage networks usingOBB- C+SMB( 7, j) (naive
caching) andAOBB- AC+SMB( ¢, j) (adaptive caching), respectively. In each test
case we varied the cache boundthe X axis) from 2 to 20, and fixed the mini-
bucketi-bound to a relatively small value. We see again that adai@ching is
more powerful than the naive scheme especially, for redbtigmall j-bounds,
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Fig. 11. Anytime behavior oAOBB- C+SMB( i) onped42 andped50 linkage networks.
Number of flips for GLS is 50,000. GLS running time is less than 1 second.

which require restricted space. As thound increases, the two schemes approach
gradually full caching.

7.2.3 The Anytime Behavior of AND/OR Branch-and-Bound &eard the Im-
pact of Good Initial Bounds

As mentioned earlier, the virtue of AND/OR Branch-and-Bouedrsh is that, un-
like best-first AND/OR search, it is an anytime algorithm.niNgdy, whenever in-
terrupted AOBB- C outputs the best solution found far, which yields a lowerrzbu
on the most probable explanation. On the other hAQBF- C outputs a complete
solution only upon termination. In this section we evaludie anytime behavior
of AOBB- C+SMB( ) . We compare it against the state-of-the-art local search al
gorithm for Bayesian MPE, calle@Guided Local SearcfGLS) first introduced in
[34], and improved more recently by [35].

GLS [36] is a penalty-based meta-heuristic, which worksumynaenting the objec-
tive function of a local search algorithm.§. hill climbing) with penalties, to help
guide them out of local minima. GLS has been shown to be ssftden solving
a number of practical real life problems, such as the trageialesman problem,
radio link frequency assignment problem and vehicle rautibhwas also applied
to the MPE task [34,35] as well as weighted MAX-SAT proble@s][

In addition to comparing against GLS, we also consideredbaithyf ACBB with
GLS, as follows. The AND/OR Branch-and-Bound algorithms as=ai a trivial
initial lower bound {.e., 0), which effectively guarantees that the MPE will be com-
puted, however it provides limited pruning. We thereforeeadedAOBB- C+SVB( 1)

to exploit a non-trivial initial lower bound computed by GLEhe algorithm is de-
noted byAOBB- C+GLS+SMB( i) . For comparison, we also ran the OR version of
the algorithm, denoted b§B- C+G.S+SMB( 7)

Figure 11 displays the search trace of the OR and AND/OR #igos on two ge-
netic linkage networks presented earlier in Tables 3 andshactively. We chose
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Table 6
CPU time and nodes visited for solvirgenetic linkage analysis networkswith static
mini-bucket heuristics. Number of flips for GLS was set to 250,000. Time limdg

min-fill pseudo tree
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
pedigree Samlam BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i) BB-C+GLS+SMB(i)
Superlink AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) GLS | AOBB-C+GLS+SMB() | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB(i) | AOBB-C+GLS+SMB()) | AOBB-C+GLS+SMB(i)
(n, d) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes | time nodes
- - - - 1.14 7,997 0.73 3,911 | 1.31 2,704
pedl 5.44 | 8943.68 59,627,660/ 1367.98 9,013,771 3.84 1,798 4.05 2,524 | 475 2,077
(15, 61) 54.73 4.19 69,751 217 33,908 0.39 4,576 0.65 6,306 | 1.36 4,494
(299, 5) 0.31 3.01 46,663 2.10 29,877 3,138 0.33 6,092 | 0.92 4,350
1.30 7,314 217 13,784 0.26 1,177 0.87 4,016 | 1.54 3,119
out
ped38 out - - - - - - - -
(17,59) 5946.44 34,828,046 1554.65 8,986,648 2046.95 11,868,672 272.69 1,412,976
(582, 5) 7.05 | 4410.70 32,599,034/ 780.46 4,487,470| 1650.05 9,844,485| 226.44 1,366,242
out 134.41 348,723 216.94 583,401 103.17 242,429
out
ped50 out - - - - - - 52.95 83,025
(18, 58) - 4140.29 28,201,843 2493.75 15,729,294 66.66 403,234 52.11 110,302
(479, 5) 5.30* 3177.43 24,209,840 1610.33 13,299,343 67.85 400,698 32.67 15,865
78.53 204,886  36.03 104,289 | [12.75] 25507 | 3852 5,766
i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes | time nodes
76.11 339,125 270.22 74,261 out
ped23 out 8556.84 39,184,112 6640.68 28,790,468 15.27 23,947 270.25 55,412
(27, 71) 9146.19 193.78 1,726,897 10.06 74,672 13.33 23,557 274.00 62,613
(310, 5) 3.94 196.68 1,720,633 73,082 10.58 20,329 274.26 60,424
out 15.33 58,180 14.36 12,987 out
- - - - out
ped37 out - - 2073.12 10,612,906 - - 3386.01 16,382,262
(21, 61) 64.17 39.16 222,747 488.34 4,925,737 301.78 2,798,044 67.83 82,239
(1032, 5) 8.97* 141,867 26.97 254,219 82.08 604,239 52.32 23,572
29.16 72,868 38.41 102,011 95.27 223,398 62.97 12,296

the mini-bucketi-bound that offered the best performance and show the first 50
seconds of the search. We ran GLS for a fixed number of flips.e&d¢reat includ-
ing the GLS lower bound in AND/OR Branch-and-Bound improvesqgrenance
throughout. In all these test cases, the initial lower bowad in fact the optimal
solution (we did not plot the GLS running time because it wessIthan 1 sec-
ond). ThereforeAOBB- C+GLS+SMB( :) andBB- C+G.S+SMB( i) were able to
output the optimal solution quite early in the search, w@hKBB- C+SMVB( ;) and
BB- C+SMB( ) . For instance, on thped50 network, AOBB- C+GLS+SMB( 12)
andBB- C+G_S+SMB( 12) found the optimal solution within the first second of
search AOBB- C+SMB( 12) , on the other hand, finds the optimal solution after 8
seconds, where®B- C+SMB( 12) reaches a flat (suboptimal) region after 18 sec-
onds. In this casOBF- C+SMB( 12) finds the optimal solution after 25 seconds.
The same behavior was observed on other instances as well.

Table 6 compares the OR and AND/OR search algorithms withwatidut an ini-
tial lower bound, as complete algorithms. Algorith&@BB- C+G.S+SMB( i) and
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Table 7
CPU time and nodes visited for solvimgterministic grid networks with static mini-
bucket heuristics. Number of flips for GLS was set to 100,000. Time limit X.hou

min-fill pseudo tree

AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
Samlam AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i) AOBB-C+SAT+SMB(i)
grid AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i) AOBB-C+GLS+SMB(i)
(w*, h) GLS | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB()) | AOBB-C+SAT+GLS+SMB(i) | AOBB-C+SAT+GLS+SMB(i)
(n, e) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(j)
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
- - 1273.09 9,047,518 596.27 4,923,760 70.42 473,675 74.99 412,291
90-24-1 out | 687.96 4,823,044 202.05 1,564,800 172.31 1,370,222 55.52 401,294 69.53 386,785
(33,111) - - 66.20 425,585 20.16 93,911 11.17 7,850 28.16 27,868
(576, 20) 0.53 473.64 3,181,352 19.09 131,546 8.41 49,054 6,891 23.87 39,175
out 21.94 75,637 10.59 33,770 6.06 5,144 23.80 17,291
146.97 878,874| 152.80 962,484 4.36 15,632 12.92 46,489 22.13 2,242
90-26-1 out 32.67 230,030 53.11 360,612 11,620 11.95 40,075 22.02 1,858
(36, 113) 36.94 252,380 87.02 559,518 4.17 14,580 7.86 6,310 22.00 1,894
(676, 40) 0.56 15.09 104,775 32.85 219,037 10,932 8.06 8,128 24.42 1,658
19.06 65,271 24.39 79,619 4.27 7,190 8.05 3,777 22.44 1,435
652.15 3,882,300 165.74 1,070,823 155.20 956,837 40.14 212,963 59.28 174,715
90-30-1 out 117.25 771,233 66.66 453,095 50.94 341,670 30.69 168,928 42.86 88,004
(43, 150) 263.32 1,498,756 74.95 446,498 68.16 376,916 23.88 95,136 53.92 148,540
(900, 60) 0.72 89.94 561,397 38.92 247,271 28.67 176,330 52,260 40.52 72,053
158.97 534,385 46.73 157,187 47.27 154,496 21.06 45,201 57.97 100,800
369.36 823,604
90-34-1 out - - - - - - - - 132.84 271,609
(45, 153) - - - - 1096.14 5,569,276 1772.51 5,516,888 294.11 630,406
(1154, 80) 131 = - - - 550.55 2,944,055 651.04 2,614,171 124.16 238,333
out out 243.63 596,978| 270.88 667,013| [71.19] 67,611
969.02 2,623,971| 1753.10 3,794,053| 203.67 614,868| 165.45 488,873| 113.06 214,919
90-38-1 out 141.89 577,763 204.69 593,809 86.16 319,185 102.03 312,473 85.74 142,589
(47, 163) 854.61 2,498,702| 1822.71 3,792,826| 212.63 647,089 164.43 484,815 109.77 211,740
(1444, 120) 1.11 138.44 573,923 204.68 597,751 96.27 339,729 98.21 311,072 85.50 140,581
101.69 174,786 103.80 146,237 [m 95,511 53.44 78,431 73.10 59,856

BB- C+G.S+SMB( 7) do not include the GLS time, because GLS can be tuned in-
dependently for each problem instance to minimize its nugtime, so we report its
time separately (as before, GLS ran for a fixed number of flips "*” by the GLS
running time indicates that it found the optimal solutiorthe respective problem
instance. We see thBB- C+GQ.S+SMB( i) andAOBB- C+GL.S+SMB( i) are some-
times able to improve significantly ov@&B- C+SVB( /) and AOBB- C+SMVB( 1) ,
especially at relatively smallbounds. For example, on thmed37 linkage in-
stance AOBB- C+GLS+SMB( 12) achieves almost an order of magnitude speedup
overAOBB- C+SMB( 12) . Similarly, BB- C+G_S+SMB( 12) finds the optimal so-
lution to ped37 in about 35 minutes, where&B- C+SMB( 12) exceeds the 3
hour time limit.

7.2.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model exqbesh hard constraints
and general cost functions, it is beneficial to exploit theapatational power of the
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constraints explicitly via constraint propagation [38}-44or Bayesian networks,
the hard constraints are represented by the zero prolyatuiptes of the CPTs.
We note that the use of constraint propagation via direatioesolution [42] or
generalized arc consistency has been explored in [38y38jeicontext of variable
elimination algorithms where the constraints are alsoaex&d based on the zero
probabilities in the network. The approach we take for hagdhe determinism in
Bayesian networks is based onit resolutionfor Boolean Satisfiability (SAT). The
idea of using unit resolution during search for Bayesian ndta/was first explored
in [40]. One common way which we used for encoding hard caings as a CNF
formula is thedirect encodind43].

We evaluated the AND/OR Branch-and-Bound algorithm withistatini-bucket
heuristics on selected classes of Bayesian networks carmdaiero probability tu-
ples. The algorithm, denoted BYOBB- C+SAT+SMB( 1) exploits the determinism
present in the networks by applying unit resolution over@NF encoding of the
zero-probability tuples, at each node in the search treeusfd a unit resolution
scheme similar to the one employedb@haf f , a state-of-the-art SAT solver in-
troduced by [44]. We also consider the extension call@aB- C+SAT+G.S+SMB( 1)
which uses GLS to compute the initial lower bound, in additio the constraint
propagation scheme.

Table 7 shows the results for 5 deterministic grid networksented earlier. We ob-
serve thaAOBB- C+SAT+SMB( 7) improves significantly oveAOBB- C+SMB( i) ,
especially at relatively smalbounds. On gri®0- 30- 1, AOBB- C+SAT+SMB(12)

is 6 times faster thaAOBB- C+SMB( 12) . As thei-bound increases and the search
space is pruned more effectively, the difference betw&@BB- C+SMB( i) and
AOBB- C+SAT+SMB( ) decreases because the heuristics are strong enough to cut
the search space significantly and it already does somedégehstraint propaga-
tion. When focusing on the impact of the initial lower bounddBB- C+SAT+SMB( )
through algorithmAOBB- C+SAT+GLS+SMB( i) we see that the latter is some-
times able to improve even more. On 8@ 34- 1 grid, AOBB- C+SAT+GLS+SMVB( 16)
finds the optimal solution in about 9 minutes wheré@BB- C+SAT+SNVB( 16)
exceeds the 1 hour time limit. We should note that best-#&&tch does not employ

a constraint propagation scheme.

7.2.5 Summary of Empirical Results on Bayesian Networks

Our extensive empirical evaluation on Bayesian networksahestnated conclu-
sively that the memory intensive AND/OR search algorithmisigd by static mini-

bucket heuristics were the best performing algorithms al.efhe difference be-
tweenAOBB- C+SMB( i) and the cache-leg$OBB+SMB( i) was more pronounced
at relatively smali-bounds which correspond to relatively weak heuristicestes

(e.g., ISCAS’89 networks, grid networks, genetic linkage analysistances from
the UAI'06 Inference Evaluation contest). For largdsounds, when the heuristic
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estimates are stronger, the difference between graphhsg@BB- C+SMVB( i) and
tree searciAOBB+SMB( i) decreased. Best-first sear@BF- C+SMVB( i) offered
the best performance amongst the memory intensive AND/@@rigthms. We
showed that in many cas@©BF- C+SMB( i) was able to outperform dramatically
the current state-of-the-art solver for Bayesian netwoukt ®is 3mIAmM and -
PERLINK (for genetic linkage analysis). However, on very large pgobinstances,
AOBF- C+SMVB( 7) was outperformed by the depth-filkDBB- C+SMB( i) because
of its prohibitive memory requirements. With dynamic mimieket heuristics both
AOBB- C+DMVB( 7) and AOBF- C+DVB( i) proved competitive only for relatively
small :-bounds, due to computational overhead. We also evalubhtedripact of
determinism and good initial lower bounds on depth-first ARNR Branch-and-
Bound search, over grid networks, ISCAS’89 networks, gergtiage analysis
networks and instances from the UAI'06 Inference Evaluatiataset. These em-
pirical results, also available in [27,26], showed thatlgioig unit resolution and
starting the search with a good initial lower bound causegdicant savings on
those benchmark networks.

7.3 Results for Empirical Evaluation of Weighted CSPs

Let us first recap the results obtained for Weighted CSPs with@rious cache-less
algorithms [1]. We showed that the best performance on Weth&ESPs was ob-
tained by the AND/OR Branch-and-Boutr@e search algorithm with static mini-
bucket heuristics, at relatively largebounds, especially for non-binary WCSPs
with relatively small domain sizes.(g., SPOT5 networks, ISCAS’89 circuits, Mas-
termind game instances). The cache-la&8BB+SMB( ;) dominated all its com-
petitors, including the classic OR Branch-and-Boug&#+SMB( ;) as well as the
OR and AND/OR algorithms that enforce EDAC during searcmelstt ool bar
and theAOEDAC family of algorithms, such a8CEDAC+PVO, DVO+ACEDAC and
ACEDAC+DSO, respectively [1]. The AND/OR Branch-and-Bound with dynamic
mini-bucket heuristic&OBB+DIVB( 7) was shown to be competitive only for rela-
tively smalli-bounds.

In this section we extend the evaluation to memory intendefah-first and best-
first search.

7.3.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scireglproblems for the
daily management of Earth observing satellites [45]. Traylwe easily formulated
as WCSPs with binary and ternary constraints, as describdd3h [

Tables 8 and 9 show detailed results on experiments with 7TSP@tworks using
min-fill pseudo trees, as well as static and dynamic minikbuteuristics. The
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Table 8

CPU time in seconds and number of nodes visited for solvingSIR®T5 benchmarks
usingstatic mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) toolbar
spot5 BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) toolbar-BTD
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOEDAC+PVO
(w*, h) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) DVO+AOEDAC
(n, k, c) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOEDAC+DSO
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.05 0.33 21.66 150.99 4.56 218,846
29 - 6313.73 50,150,302 22.30 2,322 151.02 445 984
(14, 42) 8.77 86,058 5.05 45,509 0.66 2,738 22.02 246 151.02 481 545.43 7,837,447
(83, 4, 476) 5.53 48,995 3.66 29,702 0.56 2,267 21.67 110 149.55 265 0.81 8,698
6.42 36,396 2.23 12,801 0.47 757 21.77 96 152.69 85 11.36 92,970
0.11 0.17 0.56 28.83 22358
42b 2159.26 9,5698,763| 145.77 684,109 224.11 3,426 9553.06 249,053,196
(18, 62) 1842.32 9,606,846 134.39 689,402 228.66 4,189
(191, 4, 1341) 1804.76 9,410,729| 116.98 584,838| 226.58 2,335
35.42 118,085 29.11 106,648 m 82,611 38.91 43,127 227.55 1,475 6825.40 27,698,614
0.02 0.03 0.11 1.24 1.24 0.31 21,939
54 664.48 5,715,457 2.06 17,787 0.38 2,289 1.27 236 1.27 236 0.18 779
(11, 33) 113.19 1,106,598 1.59 17,757 0.39 3,616 1.27 329 1.39 329 9.11 90,495
(68, 4, 283) 18.42 198,712 0.23 2,477 0.16 591 1.25 120 1.24 120 688
0.41 2,714 0.11 631 0.16 312 0.69 68 1.41 68 0.75 6,614
0.01 0.02 0.09 1.11 3.97 151.11 6,215,135
404 4336.37 32,723,215 1981.90 15,263,175 5.09 139,968
(29, 42) 430.99 3,969,398| 151.99 1,373,846 14.83 144,535 1.44 3,273 4.11 367 152.81 1,984,747
(100, 4, 710) 174.09 1,396,321 51.88 529,002 2.55 23,565 1.16 598 411 232 12.09 88,079
1.45 7,251 1.20 6,399 5,140 1.22 576 4.27 184 1.74 14,844
0.01 0.09 0.33 8.37 35.39
408b - - - -
(24,59) 715.35 4,784,407 128.38 567,407
(201, 4, 1847) 7507.10 54,826,929 75.08 408,619 48.00 61,986
208.41 185,935 52.53 175,366 44.99 145,901 [ﬁ] 39,238 39.36 14,768 747.71 2,134,472
0.02 0.05 0.14 0.41 0.41 -
503 0.50 566 0.49 566 0.65 18,800
(9, 39) 435.26 5,102,299 421.10 4,990,898 0.44 641 0.44 641
(144, 4, 639) - 189.39 2,442,998 291.72 4,050,474 0.42 256 0.42 256 10005.00 44,495,545
5.28 16,114 1.56 9,929 1.59 9,186 0.42 144 144 53.72 231,480
0.05 0.11 0.66 47.19 365.69
505b 33.62 1,119,538
(16, 98) 395.49 143,371
(240, 1721) - 1180.48 8,905,473| 375.57 16,020
51.86 149,928 42.73 144,723 [m 111,223 54.09 31,692 375.52 5,758

networks42b, 408b and505b are sub-networks of the original ones and contain
only binary constraints.

Tree vs. graph AOBB. As before, the differences in running time and number of
nodes visited, betwee®OBB- C+SMB( i) andAOBB+SMB( i) are more prominent
atrelatively smalt-bounds. For example, on tA@8b network, AOBB- C+SMB( 12)
outperformsAOBB+SMB( 12) by one order of magnitude. The impact of caching
when using dynamic mini-bucket heuristics (Table 9) is agut that pronounced,
acrossi-bounds. Notice that ool bar and DVO+AOEDAC (rightmost column in
Table 8) are able to solve relatively efficiently only thetfBgest instances. On the
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Table 9
CPU time in seconds and number of nodes visited for solvingSIR®T5 benchmarks
usingdynamic mini-bucket heuristicsand min-fill based pseudo trees. Time limit 3 hours.

min-fill pseudo tree
spot5 BB-C+DMB() BB-C+DMB(i) BB-C+DMB(i) BB-C+DMB() BB-C+DMB()
AOBB+DMB(j) AOBB+DMB()) AOBB+DMB()) AOBB+DMB()) AOBB+DMB(j)
(w, h) AOBB-C+DMB(i) AOBB-C+DMB() | AOBB-C+DMB() | AOBB-C+DMB() | AOBB-C+DMB()
(n, k, ©) AOBF-C+DMB(j) AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB() | AOBF-C+DMB()
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
29 4424 11637| 12572  9417| 54.86 354 | 627.30 320 | 1647.82 320
(14, 42) 6524  14438| 5292 11,850 | 121.83 364 | 627.29 330 | 1644.02 330
(83, 4, 476) 56.58 6017 | 5306 4638 12217 170 | 636.16 136 | 1794.60 136
942 21.83 537 | 3883 114 | 308.71 83| 983.80 83
42b -
(18, 62)
(191, 4, 1341) - - -
(145562 101,453 - - - - | 6002.69 212 - -
54 886.51  118219|  32.59 938 | 2497 236 | 32081 236 | 32115 236
(11, 33) 20214 69,362 2673 2,188 | 2219 329 | 27181 329 | 27155 329
(68, 4, 283) 8427 15214 8.80 357 | 10.86 120 | 137.39 120| 137.75 120
4.16 1,056 163 5.95 68 | 77.78 68 | 78.19 68
404 - 489525  78,692| 3450.31  3,008| 473.81 165
(19, 42) 24036 156,338 257.20 39,144 199.67  5612| 563.02  1,327| 287.53 395
(100, 4, 710) 6552  20457| 9883  6152| 99.78 952 | 320.49 286 | 171.02 155
[23.41] 4928 | 6580 2946 | 10130 847 | 351.37 201 | 217.45 106
408b -
(24,59)
(201, 4, 1847) - - - -
[655.41 70,655 | 2447.91 69,434 - - - -
503 - 246.65 566 | 246.65 566
(9, 39) 64.95 641 | 64.95 641
(144, 4, 639) - - - - - - 49.95 256 | 49.95 256
78.69 9143 | 32409  8175| 102540  5984| [25.14] 144 | [25.14] 144
505b - -
(16, 98)
(240, 1721) -
[681.40 33,969 | 2766.08  28,157| 3653.66 12,455

other handt ool bar - BTD fails only on the408b instance and is overall quite
competitive.

AOBB vs. AOBF. When comparing best-first against depth-first AND/OR search
we see again tha®OBF- C+SMB( ) improves significantly (up to several orders of
magnitude), especially for relatively smalbounds. For example, d®05b, one

of the hardest instanceAOBF- C+SMB( 8) finds the optimal solution in less than
30 seconds, where®©BB- C+SMB( 8) exceeds the 3 hour time limit.

Static vs. dynamic mini-bucket heuristics.Figures 12(a) and 12(b) display the
running time and number of nodes, as a function of the mickbti-bound, on
the404 network ¢.e., corresponding to the fourth horizontal block from Tables 8
and 9, respectively). We see that the power of the dynamic-lnicket heuristics

is visible only for depth-first search and only for smabbounds ¢.g., i = 2). At
largeri-bounds, the static mini-bucket heuristics are cost affecFor instance, the
difference in running time betweekOBB- C+SMB( 10) andACBB- C+DVB( 10)
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Fig. 12. Comparison of the impact of static and dynamic mini-bucket heuriSticavn are
the CPU time in seconds (a) and number of nodes visited (b) oAGReSPOTS network

from Tables 8 and 9, respectively.
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Fig. 13. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solving
SPOTS5 networks wittAOBB- C+SMB( i) (left side) andAOBF- C+SMB( i) (right side).
The header of each plot records the average induced widthand pseudo tree depth (h)
obtained with the hypergraph partitioning heuristic. We also show the induizkd and

pseudo tree depth for the min-fill heuristic.
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is about 2 orders of magnitude. Notice that in this ca€dBF- C+SVB( 1) outper-
forms AOBF- C+DMB( 7) across all reportettbounds.

Impact of the pseudo tree.In Figure 13 we show the running time distribution of
the algorithms using hypergraph and min-fill based psewgksirover 20 indepen-
dent runs, for th&d04 and503 networks. We see again that the hypergraph based
pseudo trees are sometimes able to improve performancss;iaky for relatively
small i-bounds for which the heuristic estimates are less accufatebest-first
search however, the min-fill based pseudo trees offer thigplee®rmance.

7.3.2 Mastermind Game Instances

Table 10 shows the results for experiments with 6 networksesponding to Mas-
termind game instances of increasing difficulty. Each ofrtewvorks is a ground
instance of a relational Bayesian network that models diffesizes of the popular
game of Mastermind. These networks were produced by thetBLA Systen?
and used in experimental results in [46]. For our purposecoveerted these net-
works into equivalent WCSP instances by taking the negatigeptobability of
each conditional probability table entry. The table has hedzontal blocks, each
showing a different range efbounds.

Tree vs. graph AOBB.We see again that using caching improves considerably the
performance of AND/OR Branch-and-Bound searely.( seemm 03- 08- 05).

We also note that ool bar andt ool bar - BTD were not able to solve any of
these instances within the time limit (the results are ngpldiyed).

AOBB vs. AOBF. We see that the best-first search algorith@BF- C+SMB( i) of-
fers the overall best performance on this domain. Omihne03- 08- 05 instance,
for example AOBF- C+SMB( 18) is about 3 times faster thakOBB- C+SMB( 18)
and about 30 times faster th&©BB+SMB( 18) , a further demonstration of the
power of caching.

Impact of the caching level.Figure 14 illustrates the CPU time, as a function of
the cache boung, on two problem instances from Table 10. We notice again the
superiority of adaptive caching at relatively smalbounds.

Impact of the pseudo tree.The running time distribution oAOBB- C+SMVB( )
andAOBF- C+SMB( ) guided by hypergraph and min-fill based pseudo trees over
20 independent runs of each problem instance is display&tgure 15. The hy-
pergraph trees are sometimes able to improve slightly tfenpeance of AND/OR
Branch-and-Bound, at relatively smalbounds §.g., mm 04- 08- 04). For best-
first search however, the min-fill based pseudo trees oféebdist performance. The
results on other instances were similar.

6 http://www.cs.auc.dk/jaeger/Primula
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Table 10

CPU time and number of nodes visited for solvifgastermind game instances us-

ing static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.
t ool bar andt ool bar - BTD were not able to solve any of the test instances within
the time limit. The top part of the table shows the resultsifbounds between 8 and 18,
while the bottom part showisbounds between 12 and 22.

min-fill pseudo trees
MBE(i) MBE(i) MBE(i) MBE() MBE(i) MBE(i)
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(j)
mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n,r, k) i=8 i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes time nodes
0.30 0.34 0.44 0.80 2.00 5.31
mm-03-08-03 59.14 49,376 19.39 9,576 51.83 41,282 8.42 3,377 9.17 3,068 12.80 2,980
(20, 57) 1.58 10,396 1.64 7,075 1.50 6,349 1.38 3,830 2.53 3,420 5.73 3,153
(1220, 3, 2) 1.05 2,770 1.22 3,299 1.14 3,010 1.22 2,273 2.39 2,114 5.56 2,031
1,366 1.14 2,196 1.22 2,202 1.20 1,311 2.36 1,247 5.66 1,220
0.75 0.83 1.02 1.75 4.38 15.77
mm-03-08-04 -
(33,87) 92.64 150,642 110.45 193,805 64.13 71,622 17.17 31,177 36.14 63,669 22.38 13,870
(2288, 3, 2) 21.50 20,460 34.75 28,631 15.94 14,101 9.56 8,747 16.03 11,971 19.45 5,376
10.53 9,693 10.88 9,143 10.06 8,925 2,928 9.08 4,855 19.52 4,266
0.34 0.41 0.51 0.91 2.44 7.83
mm-04-08-03 981.26 726,162 51.42 32,948 32.53 16,633 29.19 14,151 28.11 9,881
(26,72) 15.64 68,929 6.02 26,111 8.06 34,445 5.05 17,255 6.09 15,443 10.16 10,570
(1418, 3, 2) 3.85 7,439 1.63 3,872 2.49 5,367 2.75 4,778 4.44 4,824 9.06 3,444
1,578 0.94 1,475 1.05 1,472 1.42 1,462 2.95 1,453 8.36 1,450
MBE(i) MBE(i) MBE(i) MBE() MBE(i) MBE(i)
BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i) BB-C+SMB(i)
mastermind AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(j) AOBB+SMB()) AOBB+SMB(i) AOBB+SMB(j)
AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i) AOBB-C+SMB(i)
(w*, h) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i) AOBF-C+SMB(i)
(n,c,k) i=12 i=14 i=16 i=18 i=20 i=22
time nodes time nodes time nodes time nodes time nodes time nodes
1.36 2.08 4.86 16.53 65.19 246.45
mm-04-08-04 -
(39, 103) 494.50 744,993 | 270.60 447,464 | 506.74 798,507 80.86 107,463 206.58 242,865| 280.07 62,964
(2616, 3, 2) 114.02 82,070 66.84 61,328 93.50 79,555 30.80 13,924 91.08 28,648 | 253.25 11,650
38.55 33,069 29.19 26,729 44.95 38,989 [m 3,957 74.67 8,716 | 250.00 3,491
2.34 8.52 8.31 24.94 84.52 out
mm-03-08-05 -
(41, 111) 1084.48 1,122,008 1283.04 1,185,327
(3692, 3, 2) 117.39 55,033 282.35 86,588
out out 47307 199,725| [36.99] 8,297 | 131.88 21,950
1.64 3.09 7.55 21.08 77.81 out
mm-10-08-03 -
(51, 132) 161.35 290,594 99.09 326,662 89.06 151,128 84.16 127,130 144.03 133,112
(2606, 3, 2) 19.86 14,518 19.47 14,739 22.34 13,557 29.80 9,388 89.75 12,362
3,705 8.16 4,501 11.17 3,622 24.67 3,619 81.52 3,573

Memory usage of AND/OR graph searchln Figure 16 we demonstrate again
the significant memory requirements of best-first AND/ORrcle@ompared with
those of the depth-first AND/OR Branch-and-Bound search withctaching on
two problem instances.
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Fig. 14. Naive versus adaptive caching schemes for AND/OR BrandkhBound with
static mini-bucket heuristics ddastermind networks. Shown is CPU time in seconds.
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Fig. 15. Min-fill versus hypergraph partitioning heuristics. CPU time in sdsdor solving
Mastermind networks with AOBB- C+SMVB( ¢) (left side) andAOBF- C+SMB( i) (right
side). The header of each plot records the average induced widjhafid pseudo tree
depth (h) obtained with the hypergraph partitioning heuristic. We also shevinttuced

width and pseudo tree depth for the min-fill heuristic.

7.3.3 Summary of Empirical Results on Weighted CSPs

Our extensive empirical evaluation on WCSPs demonstratédhbabest perfor-
mance on this domain was obtained by best-first AND/OR seaitthstatic mini-
bucket heuristics, for largebounds, especially on non-binary WCSPs with rela-
tively small domain sizese(g., Mastermind game instances, ISCAS’89 networks,
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Fig. 16. Memory usage of th&0BB- C+SMB( i) andACOBF- C+SMB( ¢) algorithms on two
Mastermind networks from Table 10.

instances from the SPOT5 benchmaw(}BF- C+SVB( i) dominated all its com-
petitors, including the depth-firé&§OBB- C+S\VB( i) as well as OR and AND/OR
algorithms that enforce EDAC during search, namedpl| bar , t ool bar - BTD
and theACEDAC family of algorithms. Best-first AND/OR search with dynamic
mini-bucket heuristic&OBF- C+DIVB( i) was competitive only for relatively small
1-bounds ¢.g., ISCAS’89 networks [26,27]). We also observed that the depth
first AND/OR Branch-and-Bound with caching and static mincket heuristics
AOBB- C+SMB( ) improved considerably over the cache-less version of the-al
rithm, namelyAOBB+SMB( 7) . For dynamic mini-bucket heuristics, the difference
betweemAOBB- C+DIVB( i) andACBB+DIVB( :) was less prominent.

8 Summary and Conclusion

The paper extends the study of the impact of AND/OR searcinaptgcal models
from linear space search of the AND/OR tree to cache-basedisef the AND/OR
graph. In contrast to the traditional OR space, the AND/O&despace is sensi-
tive to problem decomposition yielding the AND/OR searatetwhich can be
bounded exponentially by the depth of its guiding pseude. tBpecifically, if the
graphical model has treewidth*, the size of the AND/OR search tree is bounded
by O(k*"°e™) [2,18,1]. By recognizing identical subtrees, the AND/ORrehdree
can be extended into a graph yielding the context minimal AD® search graph
whose size is exponential in the treewidth. The size of th@ecd minimal OR
search graph is exponential in the pathwidth. Since for spraphs the difference
between treewidth and pathwidth is substantiay.( balanced pseudo trees) the
AND/OR representation implies substantial time and spastngs for memory
intensive algorithms traversing the AND/OR graph.

In this paper we extended the AND/OR Branch-and-Bound algorib traversing
an AND/OR search graph by equipping it with an efficient caghmechanism. We
investigated two flexible context-based caching schensscdn adapt to memory
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restrictions. Since best-first search strategies are krtowre superior to depth-
first ones when memory is utilized, we also introduced a bestAND/OR search
algorithm that traverses the same context minimal AND/O&degraph.

All these algorithms can be guided by any heuristic functiba investigated exten-
sively the mini-bucket heuristics introduced earlier [0 shown to be effective
in the context of the traditional OR search trees [10]. Thai+hucket heuristics
can be either pre-compiled (static mini-buckets) or geteerdynamically during
search at each node in the search space (dynamic mini-Bickbey are parame-
terized by an-bound which allows to control trade-off between heuristrength
and computational overhead.

We focused our empirical evaluation on two common optinndzaproblems in
graphical models: finding the MPE in Bayesian networks andisglcombinato-
rial problems expressed as Weighted CSPs. Our results shoometusively that
the depth-first and best-first memory intensive AND/OR deaitgorithms guided
by mini-bucket heuristics improve dramatically over ttamhal memory intensive
OR search as well as over AND/OR search without caching. Wensarize next
the most important aspects reflecting the better performafAND/OR graph
search, such as the impact of the level of caching, the nuokéti-bound, con-
straint propagation, informed initial upper bounds anddhality of the guiding
pseudo trees.

e Impact of the caching level.We proposed two parameterized context-based
caching schemes that can adapt to the memory limitations.nBive caching
records contexts with size smaller or equal to a cache bguwnthile the adap-
tive caching saves also nodes whose context size is beydrased on adjusted
contexts. Our results showed that for smyablounds, adaptive caching is more
powerful than the naive scheme., grid networks from Figure 6, genetic link-
age networks from Figure 10). As more space becomes awaitadnl as the-
bound increases, the two schemes gradually approach @ilirga The savings
in number of nodes due to both caching schemes are more proedwat rel-
atively smalli-bounds of the mini-bucket heuristics. When the heuristies a
strong enough to prune the search space substantiallylérgei-bounds), the
context minimal graph traversed by AND/OR Branch-and-Boundery close
to a tree and the effect of caching is reduced.

¢ Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket hewsstiith relatively large
1-bounds are cost effective.(., genetic linkage analysis networks from Tables
3 and 4, Mastermind game instances from Table 10). Howevtreispace is
severely restricted, dynamic mini-bucket heuristics apge be the preferred
choice, especially for relatively smalbounds. These heuristics are far more
accurate for the samebound than the pre-compiled ones.

e Impact of determinism. When the graphical model contains both determinis-
tic information (hard constraints) as well as general costfions, we demon-
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strated that it is beneficial to exploit the computationalpoof the constraints
via constraint propagation. Our experiments on select@sbek of deterministic
Bayesian networks showed that enforcing unit resolution twe CNF encod-

ing of the determinism present in the network yielded a tresho@s reduction in

running time ¢.g., deterministic grid networks from Table 7).

e Impact of good initial upper bounds. The AND/OR Branch-and-Bound algo-
rithm assumed a trivial initial upper bound (resp. initiavier bound for max-
imization tasks). We incorporated a more informed uppembofresp. lower
bound for maximization), obtained by first solving the iaitproblem via local
search. Our results showed a tremendous speed-up in soae(sas for exam-
ple the grid network from Table 7).

e Impact of pseudo tree quality. The performance of the depth-first and best-
first memory intensive AND/OR search algorithms is influehsggnificantly
by the quality of the guiding pseudo tree. We investigated heuristics for
generating small induced width and/or depth pseudo treles.min-fill based
pseudo trees usually have smaller induced width but sigmifig larger depth,
whereas the hypergraph partitioning heuristic produceshrsmaller depth trees
but yields larger induced widths. Our experiments demaitedr that when the
induced width is small enough, which is more typical for rfilnbased pseudo
trees, the strength of the mini-bucket heuristics compalieehg these orderings
determines the performance of the AND/OR search algoriflams SPOT5 net-
works from Figure 13). However, when the graph is highly @mstad, the rela-
tively large induced width causes the AND/OR algorithmsrawvérse a search
space that is very close to a tree and, therefore, the hygg@rgrartitioning based
pseudo trees, which tend to have smaller depths, improyerpgance substan-
tially (e.g., genetic linkage networks from Figure 9 and Table 5).

Our depth-first and best-first AND/OR graph search appraaldae room for fu-
ture improvements, which are likely to make them more efficie practice. The
space required bpOBB- C and AOBF- C can be enormous, due to the fact that all
nodes generated by the algorithms have to be stored in meifoeyefore, mem-
ory bounding strategies can be used for context minimal AD®graphs, as previ-
ously suggested in [19,21,47,48]. Alternatively, we careed the AND/OR graph
search algorithms to greatly expand the amount of availat@mory by utilizing
external disk storage, as described in [49,50].
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