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Abstract

We introduce a new generation of depth-first Branch-and-Bounditdgts that explore
the AND/OR search tree using static and dynamic variable orderings fdngayeneral
constraint optimization problems. The virtue of the AND/OR representationeo$elarch
space is that its size may be far smaller than that of a traditional OR représentiich
can translate into significant time savings for search algorithms. The fd¢his @aper is
on linear space search which explores the AND/OR search tree rathehthsearch graph
and therefore make no attempt to cache information. We investigate the piotivermoini-
bucket heuristics within the AND/OR search space, in both static and dynatajass We
focus on two most common optimization problems in graphical models: finding tis¢ Mo
Probable Explanation (MPE) in Bayesian networks and solving Weight®$ Q8CSP). In
extensive empirical evaluations we demonstrate that the new AND/OR Beart:iBound
approach improves considerably over the traditional OR search strateyghow how
various variable ordering schemes impact the performance of the ANDE@RIsscheme.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

1 Introduction

Graphical models such as Bayesian networks or constrainoniet are a widely
used representation framework for reasoning with prolstigiland deterministic
information. These models use graphs to capture conditiodapendencies be-
tween variables, allowing a concise representation of th@Medge as well as
efficient graph-based query processing algorithms. Opétian problems such as
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finding the most likely state of a Bayesian network or findingolutson that vio-
lates the least number of constraints can be defined witigrirdkmmework and they
are typically tackled with eithenferenceor searchalgorithms.

Inference-based algorithms.§, Variable Elimination, Tree Clustering) were al-
ways known to be good at exploiting the independencies cagbty the under-
lying graphical model. They provide worst case time guaasitexponential in
the treewidth of the underlying graph. Unfortunately, angtihnod that is time-
exponential in the treewidth is also space exponentialarttbewidth or separator
width, therefore not practical for models with large treghi

Search-based algorithms.§, depth-first Branch-and-Bound search) traverse the
model’s search space where each path represents a paftihbotution. The linear
structure of such traditional search spaces does not té&independencies repre-
sented in the underlying graphical models and, therefea,ch-based algorithms
may not be nearly as effective as inference-based algasithmsing this informa-
tion and therefore do not accommodate informative perfogaauarantees. This
situation has changed in the past few years with the inttooluof AND/OR search
algorithms for graphical models. In addition, search méshequire only an im-
plicit, generative, specification of the functional retetships (that may be given in
a procedural or functional form) while inference schemeésrofely on an explicit
tabular representation over the (discrete) variablesthese reasons, search-based
algorithms are the only choice available for models witlyéatreewidth and with
implicit representation.

The AND/OR search space for graphical models [1] is a newdxaonk that is sen-
sitive to the independencies in the model, often resultingxiponentially reduced
complexities. Itis guided by pseudo tre¢2,3] that captures independencies in the
graphical model, resulting in a search space exponentthkinlepth of the pseudo
tree, rather than in the number of variables.

In this paper we present a new generation of AND/OR BranchBouwhd algo-
rithms (AOBB) that explore the AND/OR search tree in a depth-first manaoer f
solving optimization problems in graphical models. As iaditional Branch-and-
Bound search, the efficiency of these algorithm depends lgesgd on its guid-
ing heuristic function. A class of partitioning-based hstic functions, based on
the Mini-Bucket approximation [4] and known atatic mini-bucket heuristiosas
shown to be powerful for optimization problems [5] in the t@xt of OR search
spaces. The Mini-Bucket algorithm provides a scheme foraetitrg heuristic in-
formation from the functional specification of the graphiwendel, which is appli-
cable to any graphical model. The accuracy of the Mini-Buelgorithm is con-
trolled by a bounding parameter, callebound, which allows varying degrees of
heuristics accuracy and results in a spectrum of searchithligs that can trade off
heuristic strength and search [5]. We show here how the @mgpated mini-bucket
heuristic as well as any other heuristic information camigeiiporated in AND/OR



search, then we introduclynamic mini-bucket heuristicahich are computed dy-
namically at each node of the search tree.

Since variable orderings can influence dramatically theckeperformance, we
also introduce a collection alynamicAND/OR Branch-and-Bound algorithms
that combine the AND/OR decomposition principle with dynanariable order-
ing heuristics.

We apply the depth-first AND/OR Branch-and-Bound approaciwtm ¢common
optimization problems in graphical models: finding the MBsbbable Explana-
tion (MPE) in Bayesian networks [6] and solving Weighted Coaist Satisfac-
tion Problems (WCSP) [7]. We experiment with both random medeld real-
world benchmarks. Our results show conclusively that theaepth-first AND/OR
Branch-and-Bound algorithms improve dramatically overitraal ones explor-
ing the OR search space, especially when the heuristic &&srare inaccurate
and the algorithms rely primarily on search and cannot ptheeearch space effi-
ciently.

Following preliminary notations and definitions (Section 3ections 3, 4 and 5
provide background on graphical models, on the classic ORdrand-Bound
approach, and the AND/OR representation of the search sBacton 6 presents
our new depth-first AND/OR Branch-and-Bound algorithm. Secfr describes
its extension with dynamic variable ordering heuristiasct®n 8 presents several
general purpose heuristic functions that can guide thekdacusing on the mini-
bucket heuristics. Section 9 is dedicated to an extensiyaraxal evaluation, Sec-
tion 10 overviews related work and Section 11 provides a sami@and concluding
remarks.

2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variablemgavalues on fi-
nite domains and a set of functions defined over these vagaliVe denote vari-
ables by uppercase letters (., X,Y, Z,...), subsets of variables by bold faced
uppercase letters.y., X,Y,Z,...) and values of variables by lower case letters
(e.g., z,y,z2,..). An assignmentX; = zi,...,X,, = z,) can be abbreviated as
r = ((X1,21), ... (X, 2n)) Or & = (21, ..., z,). FOr a subset of variablég, Dy
denotes the Cartesian product of the domains of variabl&s iny andz[Y] are
both used as the projection.of= (x4, ..., z,,) over a subseY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a funcfity scope( f).



2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected graplis defined by a pair
G = {V,E}, whereV = {X,..., X,} is a set of vertices (nodes), arl =
{(Xi, X;)|Xi, X; € V}is aset of edges (arcs). (iX;, X;) € E, we say thatX;
points toX,. The degree of a vertex is the number of incident arcs to iteaeh
vertex X;, pa(X;) or pa;, is the set of vertices pointing t§; in G, while the set
of child vertices ofX;, denoted:h(X;), comprises the variables thaf; points to.
The family ofX;, denotedF;, includesX; and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Amdirectedyraph is defined similarly to a
directed graph, but there is no directionality associatethwine edges.

DEFINITION 2 (induced width) An ordered graplis a pair (G, d) whereG is an
undirected graph, and = X, ..., X,, is an ordering of the nodes. Theidth of

a nodeis the number of the node’s neighbors that precede it in tiderang. The
width of an orderingi is the maximum width over all nodes. Tineluced width
of an ordered graptdenoted byuv*(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first;wiede X; is pro-
cessed, all its preceding neighbors are connected.iftieced widthof a graph,
denoted byv*, is the minimal induced width over all its orderings.

DerINITION 3 (hypergraph) A hypergraphis a pair H = (X,S), whereS =
{S1, ..., S; } is a set of subsets &, called hyperedges.

DEFINITION 4 (tree decomposition) A tree decompositioof a hypergraphH =
(X,S),isatreeT = (V,E), whereV is a set of nodes, also called "clusters”, and
E is a set of edges, together with a labeling functjpthat associates with each
vertexv € V a sety(v) C X satisfying:

(1) For eachsS; € S there exists a vertex € V such thatS; C x(v);
(2) (running intersection property) For eacky; € X, the sef{v € V|X; € x(v)}
induces a connected subtre€lof

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (ixar,|x(v) — 1]). The
treewidthof a hypergraph is the minimum width along all possible treecde-
positions. Thegathwidthis the treewidth over the restricted class of chain decom-
positions.

2.3 AND/OR Search Spaces

An AND/OR state space representation of a problem is a £4lO, S, so) [8].
S is a set of states which can be either OR or AND states (the @tesstepre-



sent alternative ways for solving the problem while the AN&tes often represent
problem decomposition into subproblems, all of which neeld solved)O is a
set of operators. An OR operator transforms an OR state imdthar state, and an
AND operator transforms an AND state into a set of statesrd sea set of goal
statesS, C S and a start node, € S.

The AND/OR state space model induces an explicit AND/ORcegiraph Each
state is a node and child nodes are obtained by applicable &NDR operators.
The search graph includesstart node. The terminal nodes (having no children)
are labeled as@.vED or UNSOLVED.

A solution treeof an AND/OR search grapf¥ is a subtree which: (1) contains the
start nodes; (2) if n in the tree is an OR node then it contains one of its child nodes
in G, and ifn is an AND node it contains all its children @; (3) all its terminal
nodes are SLVED.

3 Graphical Models

Graphical models include constraint networks defined batiats of allowed tu-
ples, directed or undirected probabilistic networks anst c@tworks defined by
cost functions. Each graphical model comes with its speggitimization queries
such as finding a solution of a constraint network that vedahe least number of
constraints, finding the most probable assignment giveresaidence, posed over
probabilistic networks or finding the optimal solution farst networks.

In general, a graphical model is defined by a collection otfiamsF', over a set of
variablesX, conveying probabilistic or deterministic informationh@se structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = (X,D,F,®), where:

(1) X ={Xy,...,, X,,} is a set of variables;

(2) D ={Dq,...,D,} is the set of their respective finite domains of values;

(3) F = {f1,..., f} is a set of real-valued functions, each defined over a subset
of variablesS; C X (i.e., the scope);

4) ®.fi € {IL fi,>; f:} is a combination operator.

The graphical model represents the combination of all itefions:®!_, f;.

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignment= (x4, ..., z,,) is defined by:

c(x) = ®rer f(z[scope(f)])



Given a subset of variablég C X, the cost of a partial assignmenis the combi-
nation of all the functions whose scopes are include¥ jmamelyF, evaluated
at the assigned values. Namelfy) = ® rer,, f(y[scope(f)]). We will often abuse
notation writinge(y) = Qe f () instead.

DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two varididgsppear in the
scope of the same function.

There are various queries (tasks) that can be posed ovdriggamodels. We refer
to all asautomated reasoning problems general, an optimization task is a rea-
soning problem defined as a function from a graphical modalget of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) A constraint optimization prob-
lem (COP)is a pairP = (R, |}x), whereR = (X, D, F, ®) is a graphical model.
If S'is the scope of functiofi € F and|s f € {mazgsf, mingf}. The optimization
problem is to computéx ®!_, f;.

The min/max {) operator is sometimes called ahminationoperator because it
removes the arguments from the input functions’ scopes.

We next elaborate on several popular graphical models aftcaint networks, cost
networks and belief networks which will be the primary foaiishis paper.

3.1 Constraint Networks

Constraint Satisfactioms a framework for formulating real-world problems as a
set of constraints between variables. The task is to find sigrament of values to
variables that does not violate any constraint, or else fwlode that problem is
inconsistent. Such problems are graphically representedties corresponding to
variables and edges corresponding to constraints betwag&bies.

DEFINITION 10 (constraint network) A constraint networks a graphical model
R = (X,D,C,x), whereX = {Xj,..., X,} is a set of variables, associated
with discrete-valued domain® = {D,..., D,}, and a set of constraint€ =
{C4, ...,C,}. Each constraintC; is a pair (5;, R;), whereR; is a relation R; C
Dg, defined on a subset of variablés C X. The relation denotes all compatible
tuples of Dg, allowed by the constraint. The combination operatoiis join, t<.
The primal graph of a constraint network is calleccanstraint graphA solution
is an assignment of values to all variables= (z4,...,z,), z; € D;, such that
VC; € C, zs, € R;. The constraint network represents its set of solutiens(;.
The elimination operator in this casepsojection



(a) Graph coloring problem (b) Constraint graph

Fig. 1. Constraint network.

Example 1 Figure 1(a) shows a graph coloring problem that can be modéled
a constraint network. Given a map of regions, the problem isolor each region
by one of the given color§ed, green, blug, such that neighboring regions have
different colors. The variables of the problem are the regicand each one has
the domain{red,green,blug. The constraints are the relation "different” between
neighboring regions. Figure 1(b) shows the constraint gregoid a solution A =
red, B = blue, C' = green, D = green, E = blue, F' = blue, G = red) is given in
Figure 1(a).

3.2 Cost Networks

An immediate extension of constraint networks eost networksvhere the set of
functions are real-valued cost functions, the combinadioeh elimination operators
aresummatiorandminimization respectively, and the primary constraint optimiza-
tion task is to find a solution with minimum cost.

A special class of COPs which has gained a lot of interest ianegears is the
Weighted Constraint Satisfaction Problem (WCSP). WCSP extdralslassical
CSP formalism withsoft constraintsvhich are represented as integer-valued cost
functions. Formally,

DEFINITION 11 (WCSP) A Weighted Constraint Satisfaction Problem (WC&P)
a graphical modekX, D, F, ") where each of the function$ € F assigns "0”
(no penalty) to allowed tuples and a positive integer penedist to the forbidden
tuples. Namelyf; : Ds, x..x Ds, — N, whereS; = {S;,, ..., S, } is the scope of
the function. The optimization problem is to find a value@ssient to the variables
with minimum penalty cost, namely findijg ®; f; = minx >, fi-

DEFINITION 12 (MAX-CSP) AMAX-CSPis a WCSP with all penalty costs equal
tol. Namelyyf; € F, fi: Ds, x ... x Dg, — {0,1}, whereS; = {S;,, ..., S;, } is
the scope of;.
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Fig. 2. AWCSP instance with cost functioifig( A, B, C), f2(A, B, D) andf3(B, D, E).

Solving a MAX-CSP task can also be interpreted as finding agrasent that vi-
olates the minimum number of constraints (or maximizes tmalrer of satisfied
constraints). Many real-world problems can be formulatea&X-CSP/WCSPs,
including resource allocation problems [9], schedulingj[bioinformatics [11,12],
combinatorial auctions [13,14] or maximum satisfiabilitpiplems [15].

Example 2 Figure 2 shows an example of a Weighted CSP instance with bedalu
variables. The cost functions are given in Figure 2(a). Taki® co indicates an
inconsistent tuple. Figures 2(b) and 2(c) depict the priadl the induced graph
along the orderingd = (A, B,C, D, E, F'), respectively. The induced graph is
obtained by adding the dotted-arcs. It can be shown that timénmail cost solution

is 5 and corresponds to the assignmeat=0,B=1,C=1,D =0,F = 1).

Overview of Related Work on MAX-CSP/WCSP. MAX-CSP and WCSP can
also be formulated using the semi-ring framework introdulog [7]. As an opti-
mization version of constraint satisfaction, MAX-CSP/WCSR-hard. A num-
ber of complete and incomplete algorithms have been deedlégr MAX-CSP
and WCSP, respectively. Stochastic Local Search (SLS) #hgasi such as GSAT
[16,17], developed for Boolean Satisfiability and Constr&atisfaction can be di-
rectly applied to MAX-CSP [18]. Since they are incompleteS&lgorithms cannot
guarantee an optimal solution, but they have been suct¢é@sgitactice on many
classes of SAT and CSP problems. A number of search-basedeterafgorithms,
using partial forward checking [19] for heuristic computat have been developed
[20,21]. The Branch-and-Bound algorithm proposed by [5] usmsnded mini-
bucket inference to compute the guiding heuristic functiare recently, [22—24]
introduced a family of depth-first Branch-and-Bound algenigithat maintain var-
ious levels of directional soft arc-consistency for sopAlWCSPs. The optimization
method, calledBacktracking with Tree Decompositi¢gBTD), developed by [25]
uses a tree decomposition of the graphical model to capterproblem structure
and guide the search more effectively. BTD can also be int&gdras traversing an
AND/OR search graph using substantial caching [1].
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Fig. 3. An example of a belief network.

3.3 Belief Networks

Belief networkg6] provide a formalism for reasoning about partial beliefeler
conditions of uncertainty. They are defined by a directedlacygraph over vertices
representing variables of interest(., the temperature of a device, the gender of
a patient, a feature of an object, the occurrence of an evene) arcs signify the
existence of direct causal influences between linked vimsaduantified by condi-
tional probabilities that are attached to each cluster oéqa-child vertices in the
network.

DEFINITION 13 (belief network) Abelief network (BN)s a graphical modeR =
(X,D,Pg,II), whereX = {Xj,...,X,} is a set of variables over multi-valued
domainsD = {Dy,...,D,}. Given a directed acyclic grapty over X as nodes,
P = {P}, whereP, = { P(X,|pa(X,))} are conditional probability tables (CPTs
for short) associated with each variahl&, andpa(X;) are the parents ok in the
acyclic graphG. A belief network represents a joint probability distrilmrtiover
X, P(x1,...,zn) = [TiL, P(xil7pacx,))- An evidence setis an instantiated subset
of variables.

When formulated as a graphical model, the function®i denote conditional
probability tables and the scopes of these functions aerm@ied by the directed
acyclic graph’z: each functionf; ranges over variabl&; and its parents ig:. The
combination operator is multiplication, namely;, = [[;. The primal graph of a
belief network is called anoral graph It connects any two variables appearing in
the same probability table.

Example 3 An example of a belief network is given in Figure 3(a). Thigdbel
network represents the joint probability distributidh(A, B,C, D, E) = P(A) -
P(B|A) - P(C|A,B) - P(D|A) - P(E|B, D). In this casepa(E) = {B, D},
pa(B) = {A}, pa(A) = 0, ch(A) = {B,C,D}. We see that the moral graph
shown in Figure 3(b) is identical to the graph in Figure 2(bphdatherefore, the
induced width along the ordering = (A, B,C, D, E) is identical. Namely, the
width and induced width of the ordered moral graph is 3.



DEFINITION 14 (most probable explanation) Given a belief network and evidence
e, the Most Probable ExplanatioMPE) task is to find a complete assignment
which agrees with the evidence, and which has the highest pildpabmong all
such assignments. Namely, to find an assignint.., z°) such that:

As a reasoning problem, the MPE task is to find ®; f; = maxx [T, P;.

The MPE task appears in applications such as diagnosiscabduand explana-
tion. For example, given data on clinical findings, MPE castplate on a patient’s
probable affliction. In decoding, the task is to identify thest likely input mes-
sage transmitted over a noisy channel given the observguitbiResearchers in
natural language consider the understanding of text toistooffinding the most
likely facts (in internal representation) that explain théstence of the given text.
In computer vision and image understanding, researcharaifate the problem in
terms of finding the most likely set of objects that explaia ittmage.

Overview of Related Work on MPE. It is known that solving the MPE task is NP-
hard [26]. Complete algorithms use either the cycle cutsgtrigue (also called
conditioning) [6], the join-tree-clustering techniqué&’[28], or the bucket elimina-
tion scheme [29]. However, these methods work well only éf tietwork is sparse
enough to allow small cutsets or small clusters. The conifglexalgorithms based
on the cycle cutset idea is time exponential in the cutsetlsiz require only linear
space. The complexity of join-tree-clustering and bucketiaation algorithms are
both time and space exponential in the cluster size thatethainduced-width of
the network’s moral graph. Following Pearl’s stochastmidation algorithms [6],
the suitability of Stochastic Local Search (SLS) algorighfor MPE was studied
in the context of medical diagnosis applications [30] andemecently in [31-33].
Best-First search algorithms were proposed [34] as well garigthms based on
linear programming [35]. Some extensions are also availtlthe task of finding
the k£ most-likely explanations [36,37]. Recently, [5,38] intumeéd a collection of
depth-first Branch-and-Bound algorithms that use boundedl@nte, in particular
the Mini-Bucket approximation [4], for computing the guidiheuristic function.

In the next section we present some of these known approach&kich we build
in this paper.
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4 Search and Inference for Combinatorial Optimization

4.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying algorithmic framework for dynamic pro-
gramming algorithms applicable to probabilistic and diarstic reasoning [29].

The input to a bucket elimination algorithm is an optimieatproblem, namely a
collection of cost functions or relations. Given a variabtdering, the algorithm
partitions the functions into buckets, each associateld avitingle variable. A func-
tion is placed in the bucket of its argument that appearstat¢he ordering. The al-
gorithm has two phases. During the first, top-down phaseoigsses each bucket,
from last to first by a variable elimination procedure thahpoites a new function
which is placed in a lower bucket. The variable eliminationgedure computes
the combination of all functions and eliminates the buakeériable. During the
second, bottom-up phase, the algorithm constructs a enlbiy assigning a value
to each variable along the ordering, consulting the fumsticreated during the top-
down phase. It can be shown that:

THEOREM 1 (complexity of BE [29]) The time and space complexity of BE ap-
plied along orderd is O(r - kK" *Y) andO(n - k*") respectively, where* is the
induced width of the primal graph along the orderidgr is the number of func-
tions,n is the number of variables andbounds the domain size.

Bucket Elimination can be viewed as message passing fronedetavroot along

a bucket tree [39]. Le{ B(X;), ..., B(X,)} denote a set of buckets, one for each
variable, along an ordering = (X3, ..., X,,). A bucket treeof R has buckets as
its nodes. BuckeB(X) is connected to buckdg(Y") if the function generated in
bucketB(X) by BE is placed inB(Y'). The variables oB(X ), are those appearing
in the scopes of any of its new and old functions. Therefare, bucket tree, every
vertex B(X) other than the root, has one parent veri&¥") and possibly several
child verticesB(Z), ..., B(Z;).

Mini-Bucket Elimination(MBE) is an approximation designed to avoid the space
and time problem of full bucket elimination [4] by partitiog large buckets into
smaller subsets, calleahini-bucketswhich are processed independently. Here is
the rationale. Consider an optimization problem over a gcgbimodel(X, D, F)
with summationand minimizationas the combination and elimination operators,
respectively. Let,, ..., h; be the functions in bucke®(X,) of variableX,,. When

BE processes3(X,,), it computes the function?: h» = miny, Y°I_, h;, where
scope(h?) = UL_,S; — {X,}. The Mini-Bucketalgorithm, on the other hand, cre-
ates a partition)’ = {Qq, ..., @} where the mini-buckeg), contains the func-
tions hy,, ..., hy,. The approximation processes each mini-bucket sepayr#tele-
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fore computingg? = >/_; minx, Y;_, ly,. Clearly, ¢* is a lower bound ork?,
namelyg? < h? (for maximization,g? is an upper bound). Therefore, the bound
computed in each bucket yields an overall bound on the cofteofolution. An
upper bound (resp. lower bound for maximization problenas) be obtained by
the cost of the assignment computed when going forward, thanirst bucket to
the last, consulting the generated functions.

The quality of the bound depends on the degree of partitgpmito mini-buckets.
Given a bounding parameteér(called herei-bound), the algorithm creates an
partitioning, where each mini-bucket includes no more theariables. Algorithm
MBE(i) is parameterized by thisbound. It outputs not only a lower bound on
the cost of the optimal solution and an assignment, but &lsaollection of the
augmented buckets. By comparing the bound computed by EB&(he cost of
the assignment output by MBE( we can always have an interval bound on the
error for that given instance.

The complexity of the algorithm is time and spa@é:zp(i)) wherei < n. It can
be viewed as solving by bucket elimination a simplified peoblthat is sparser
[5]. When thei-bound is large enough.é., i > w*), the Mini-Bucket algorithm
coincides with full bucket elimination on the original ptem. In summary,

THEOREM 2 (complexity of MBE(z) [4]) Algorithm MBE() generates an inter-
val bound of the optimal solution, and its time and space dexity areO(r - k*)
andO(r - k=) respectively, where is the number of functions aridbounds the
domain size.

4.2 Branch-and-Bound Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization peatfs in graphical mod-
els follow aBranch-and-Boundgchema [40]. These algorithms perform a depth-
first traversal on the search tree defined by the problem,ennézrnal nodes rep-
resent partial assignments and leaf nodes stand for caeness. Throughout the
search, the algorithm maintains a global bound on the cogteobptimal solu-
tion, which corresponds to the cost of the best full variatdtantiation found thus
far. At each node, the algorithm computes a heuristic eséirobthe best solution
extending the current partial assignment and prunes tlpecage subtree if the
heuristic estimate is not better than the current globahddthat is - not greater
for maximization problems, not smaller for minimizatioroptems).

The algorithm requires only a limited amount of memory and ba used as an
anytime scheme, namely whenever interrupted, Branch-anmkdBoutputs the best
solution found so far.

The effectiveness of Branch-and-Bound depends on the qudlite heuristic
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function. A heuristic function that is accurate, but not kawd to compute, is desir-
able. The most common class of Branch-and-Bound algorithrssieeeloped for
integer programming where the heuristic function is geteer@y solving a linear
relaxation of the problem via the simplex algorithm [4144],

In the past few years [5] showed that the intermediate fonstigenerated by
MBE(i) can be used to create a heuristic function that providespéimistic es-
timate of the best cost extension of any partial variablegassent, and therefore
can guide Branch-and-Bound search. Since these heuristies/agying strengths
depending on the Mini-Bucke&tbound, they allow a controlled tradeoff between
pre-processing (for heuristics generation) and searcé .fdllowing shows how a
heuristic evaluation function can be extracted from thefioms generated by the
Mini-Bucket algorithm.

DEFINITION 15 (mini-bucket heuristic evaluation function [5]) Given an ordered
set of augmented bucket®(X,), ..., B(X,), ..., B(X,)} generated by the Mini-
Bucket algorithm MBE] along the ordering! = (Xj, ..., X,, ..., X,,), and given
a partial assignment? = (z1, ..., x,), the heuristic evaluation functiofi(z?) =
g(z?) + h(zP) is defined follows:

1. g(2%) = (Zjenix..x,) fi) (@) is the combination of all the input functions
that are fully instantiated along the current path, whe?€X;..X,) denotes
the buckets3(.X;) throughB(X,,) in the orderingd;

2. Themini-bucket heuristidunctionh(z?) is defined as the sum of all the inter-
mediate functionﬁ"j that satisfy the following properties:

e They are generated in bucke®& X, ) throughB(X,,),
e They reside in bucket8(.X;) throughB(X,).

Kask and Dechter showed [5] that for any partial assignm#@nt (x, ..., z,,) of
the firstp variables in the ordering, the evaluation functitx?) = g(z*) + h(z?)
is admissibleandmonotonid8].

Branch-and-Boundjuided by theMini-Bucket heuristicss denoted by BBMBX{).
The algorithm was introduced for a static variable ordeang has a space com-
plexity dominated by the pre-processing step which is egptal in the:-bound
[5]. BBMB(7) was evaluated extensively for probabilistic and deterstim opti-
mization tasks. The results showed conclusively that therse overcomes par-
tially the memory explosion of bucket elimination allowiaggradual tradeoff of
space for time, and of time for accuracy when used as an agwiimeme.

Subsequently, [43,38] explored the feasibility of genappartition-based heuris-
tics during search, rather than in a pre-processing maiiihes. allows dynamic
variable and value ordering, a feature that can have tremenienpact on search.
The dynamic generation of these heuristics is facilitateMmi-Bucket-Tree Elim-
ination, MBTE(), a partition-based approximation defined over clustesgi{43].
MBTE(7) outputs multiple (lower or upper) bounds for each possialeable and
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value extension at once, which is much faster than running (ABEtimes, once
for each variable.

The resultingBranch-and-Bound with Mini-Bucket-Tree heuristjd8,38], called
BBBT(:), applies the MBTE{) heuristic computation at each node of the search
tree. Clearly, the algorithm has a higher time overhead coedpaith BBMB(;)

for the same-bound, which computes the mini-buckets once. It is expbtalkeim
thei-bound multiplied by the number of nodes visited, but it camng the search
space much more effectively. Experimental results on gitisic and determinis-

tic graphical models showed that the power of BBBT$ more pronounced over
BBMB(7) at relatively smali-bounds, which is significant because smdlbunds
require restricted space.

5 AND/OR Search Trees for Graphical Models

In this section we overview the AND/OR search space for gegpimodels, which
forms the core of our work in this paper.

The usual way to do search in graphical models is to instentiariables in turn,
following a static/dynamic variable ordering. In the siext case, this process de-
fines a search tree (called here OR search tree), whose stis represent partial
variable assignments. Since this search space does nate#pe structure of the
underlying graphical model an AND/OR search space recamttigduced for gen-
eral graphical models [1] can be used instead. The AND/ORkespace is defined
using a backbonpseudo tre¢2,3].

DEFINITION 16 (pseudo tree, extended graph)Given an undirected grapty =
(V,E), adirected rooted treg = (V, E’) defined on all its nodes is callgtbeudo
treeif any arc of G which is not included &’ is a back-arc, namely it connects
a node to an ancestor ifi. Given a pseudo treg of ¢, theextended grapbf G
relative to7 is defined a&:” = (V,E U E') (see Example 4 ahead).

We next define the notion of AND/OR search tree for a grapmuzdel.

DEFINITION 17 (AND/OR search tree [1]) Given a graphical modéR = (X, D, F),
its primal graphG and a backbone pseudo tr@eof GG, the associated AND/OR
search tree, denotefl; (R ), has alternating levels of AND and OR nodes. The OR
nodes are labeled’; and correspond to the variables. The AND nodes are labeled
(X, z;) (or simplyz;) and correspond to value assignments in the domains of the
variables. The structure of the AND/OR search tree is basetherunderlying
backbone pseudo treg. The root of the AND/OR search tree is an OR node la-
beled with the root of . A path from the root of the search trég (R ) to a noden

is denoted byr,,. If n is labeledX; or x; the path will be denoted, (X;) or 7, (z;),
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Fig. 4. AND/OR search spaces for graphical models.

respectively. The assignment sequence alongpatenotedisgn(r,), is the set
of value assignments associated with the AND nodes atpng

asgn(wn(Xz)) = {(Xl, le’l>, <X2, 122'2>, ceey <Xi_1, in_1>}
asgn(m,(x;)) = {(X1, 21), (Xo, x2), ..., (X, ) }

The set of variables associated with OR nodes along the paitls denoted by
var(m,): var(m,(X3)) = { X1, ..., Xi_1 }, var(m,(z;)) = { Xy, ..., X;}. The parent-
child relationship between nodes in the search space areeatkéia follows:

(1) An OR nodep, labeled byX; has a child AND node labeledX;, ;) iff
(X, x;) is consistent witlusgn(r,,), relative to the hard constraints.

(2) An AND nodey, labeled by(X;, z;) has a child OR node labeled iff Y is a
child of X; in the backbone pseudo trée Each OR arc, emanating from an
OR to an AND node is associated with a weight to be defined shortly.

Semantically, the OR states in the AND/OR search tree reptedternative ways
of solving a problem, whereas the AND states represent @noldlecomposition
into independent subproblems, conditioned on the assighat®ve them, all of
which need to be solved.

Following the general definition of a solution tree for ANDRQearch graphs [8]
we have here that:

DEFINITION 18 (solution tree) A solution treeof an AND/OR search tre€7(R)
is an AND/OR subtre&' such that:

(1) It contains the root 067 (R), s;

(2) If a non-terminal AND node € S7(R) is inT then all of its children are in
T

(3) Ifanon-terminal OR node € S7(R) is in T' then exactly one of its children
isinT;

(4) Allits leaf (terminal) nodes are consistent.
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Example 4 Figure 4(a) shows the primal graph of cost network with 6 bi-ealu
variablesA, B, C', D, E and F', and 9 binary cost functions. Figure 4(b) displays
a pseudo tree together with the back-arcs (dotted lines)urgigi(c) shows the
AND/OR search tree based on the pseudo tree. A solution theghiBghted. Notice
that once variables! and B are instantiated, the search space below the AND node
(B, 0) decomposes into two independent subproblems, one thattedratC' and

one that is rooted at’, respectively.

The virtue of an AND/OR search tree representation is tlsaside may be far
smaller than the traditional OR search tree. It was shown tha

THEOREM 3 (size of AND/OR search trees [1])Given a graphical modeR and
a backbone pseudo trég, its AND/OR search tre87(R) is sound and complete,
and its size i$)(l- k™) wherem is the depth of the pseudo trédyounds its number
of leaves, and bounds the domain size.

Given atree decompositioof the primal grapttz havingn nodes, whose treewidth
is w*, it is known there exists a pseudo tréeof G whose depthm, satisfies:
m < w* - logn [44,45]. Therefore,

THEOREM4 ([1]) A graphical model that has a treewidth* has an AND/OR
search tree whose size @(n - k¥ °9"), wherek bounds the domain size and
is the number of variables.

The arcs in the AND/OR trees are associated with weightsaiteatlefined based
on the graphical model’s functions and the combination ajper We next define
arc weights for any graphical model using the notiohatkets of functions

DEFINITION 19 (buckets relative to a pseudo tree)Given a graphical modéR =
(X,D,F) and a backbone pseudo trée, the bucket ofX; relative to 7, de-
noted Br(Xj,), is the set of functions whose scopes confgjrand are included
in path7(X;), which is the set of variables from the rootxq in 7. Namely,

Br(Xi) = {f € F|X; € scope([), scope(f) C pathr(X;)}

For simplicity and without loss of generality we consideltiie remainder of the
paper a graphical mod@& = (X, D, F') for which the combination and elimination
operators areummatiorandminimization respectively.

DEFINITION 20 (OR-to-AND weights) Given an AND/OR search treger(R), of
a graphical modeR, the weightw,, ..., (X, z;) (or simplyw(X;, x;)) of arc (n, m),
whereX; labelsn andzx; labelsm, is thecombinatiorof all the functions inBr(X;)
assigned by values along,,. Formally,
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f(8=0,C=1,D=1)

Fig. 5. Arc weights for a cost network with 5 variables and 4 cost funstion

0  if BA(X,) =10
Y renyr(x:) flasgn(my)) , otherwise

DEFINITION 21 (cost of a solution tree)Given a weighted AND/OR search tree
S7(R), of a graphical modeiR, and given a solution tre& having OR-to-AND
set of arcsurcs(T'), the cost ofl" is defined byf (T') = Yccares(r) w(e).

Let 7}, be the subtree df rooted at node: in T'. The costf(7") can be computed
recursively, as follows:

1. If T,, consists only of a terminal AND nodgthenf(T,) = 0.

2. If T,, is rooted at an OR node having an AND childin T,,, then f(T,,) =
w(n,m) + f(T,).

3. If T,, is rooted at an AND node having OR children, ..., m; in T,,, then
f(Tn) = Zf:l f(Tml)

Example 5 Figure 5 shows the primal graph of a cost network with functions
{f(A,B), f(A,C), f(A,B,E), f(B,C, D)}, apseudo tree that drives its weighted
AND/OR search tree, and a portion of the AND/OR search tree wbrapri-

ate weights on the arcs expressed symbolically. In this deséucket o con-
tains the functiory (A, B, E'), the bucket of” contains two functiong (A, C') and
f(B,C, D) and the bucket oB contains the functiorf(A, B). We see indeed that
the weights on the arcs from the OR nadé¢o any of its AND value assignments
include only the instantiated functiof{ A, B, E'), while the weights on the arcs
connecting’' to its AND child nodes are the sum of the two functions in its éuck
instantiated appropriately. Notice that the bucketsidnd D are empty and there-
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fore the weights associated with the respective arc$are

With each node: of the search tree we can associate a valug which stands for
the answer to the particular query restricted to the subpnolbelown [1].

DEFINITION 22 (node value) Given an optimization problef® = (R, min) over
a graphical modeRR = (X, D, F, }"), thevalueof a noden in the AND/OR search
tree S7(R) is the optimal cost to the subproblem belaw

The value of a node can be computed recursively, as followsitfor terminal
AND nodes andx for terminal OR nodes, respectively. The value of an interna
OR node is obtained byombining (summingjhe value of each AND child node
with the weight on its incoming arc and theptimize (minimize)over all AND
children. The value of an internal AND node is tbembination (summation)f
values of its OR children. Formally, #ucc(n) denotes the children of the node

in the AND/OR search tree, then:

0 ,if n = (X,x) is aterminal AND node
00 ,If n = X isaterminal OR node
v(n) =
> mesuce(n) V(1) ,if n = (X, x)isan AND node
MmNy, sucem) (W(n, m) +v(m)) , if n =X isan OR node

(1)

If n is the root of Sy (R), thenv(n) is the minimal cost solution to the initial
problem. Alternatively, the value(n) can also be interpreted as the minimum of
the costs of the solution trees rootedval herefore, search algorithms that traverse
the AND/OR search space can compute the value of the root yietting the
answer to the problem. It can be immediately inferred froradrems 3 and 4 that:

THEOREMS (complexity [1]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is tiMe: - k™), wherek bounds

the domain size anah is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidth there there exists a
pseudo tred for which the time complexity 9 (n - k¥ 9m),

6 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the papkictvis an AND/OR
Branch-and-Bound algorithm for AND/OR search spaces for lgcap models.
Traversing AND/OR search spaces by best-first algorithndepth-first Branch-
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(a) Pseudo tree

(A=0, B=0, C=0, D=0) (A=0,B=0,C=0,D=1)  (A=0,B=1,C=0,D=0)  (A=0, B=1, C=0, D=1)

(d) Solution trees represented BY. extension(T")
Fig. 6. A partial solution tree and possible extensions to solution trees.

and-Bound was described as early as [8,46,47]. Here we ddeg¢ talgorithms
to graphical models. We will revisit next the notion of paltsolution trees [8] to
represent sets of solution trees which will be used in oucrigson.

DEFINITION 23 (partial solution tree) A partial solution tre€/” of an AND/OR
search treeSt is a subtree which: (1) contains the root nodef Sr; (2) if nin T’
is an OR node then it contains at most one of its AND child noulés-j and ifn
is an AND node then it contains all its OR childrenSa or it has no child nodes.
A node inT” is called atip node if it has no children iff”. A tip node is either a
terminalnode (if it has no children i¥7), or anon-terminahode (if it has children
in S’]’)

A partial solution tree can be extended (possibly in sewgegis) to a full solution
tree. It representsrtension(T”), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes teninal in 57 is a
solution tree.

Example 6 Figure 6(c) shows a partial solution tre€’ of the AND/OR search
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Algorithm 1: AC. Depth-first AND/OR tree search

Input: An optimization problen = (X, D, F, Z, min), pseudo-tre€ rooted atX;.
Output: Minimal cost solution tdP and an optimal solution tree.

v(s) « 00; ST(s) « 0; OPEN « {s} /1 Initialize the root node
while OPEN # () do
n <« top(OPEN); removen from OPEN /1 EXPAND

suce(n) «— 0
if nis an OR node, labeled’; then
foreachz; € D; do
create an AND node’ labeled by(X;, z;)
v(n') «— 0; ST(n') — 0
w(n,n’) — ZfeBT(Xi) flasgn(my)) /1 Conpute the OR-to-AND arc wei ght
suce(n) «— suce(n) U {n'}
Ise ifn is an AND node, labeledX;, z;) then

foreach X; € childrens(X;) do
L create an OR node’ labeled byX

]

v(n') « oo0; ST(n') «— 0
succ(n) < succ(n) U {n'}
Add succ(n) ontop of OPEN
/1 PROPAGATE
while succ(n) == 0 do
let p be the parent o,
if nis an OR node, labele&; then

if X; == X then
L return (v(n), ST(n)) /] Search term nates
v(p) < v(p) + v(n) /1 Update AND val ue
| ST(p) « ST(p) U ST (n) /'l Update solution tree bel ow AND node

else ifn is an AND node, labeledX;, z;) then

if v(p) > (w(p,n) + v(n)) then
v(p) — w(p,n) + v(n) /1 Update OR val ue
ST(p) «— ST (n) U {(Xi,z;)} /1 Update solution tree bel ow OR node

removen from succ(p)
n<«<—p

tree of Figure 6(b) relative to the pseudo tree displayed iguFe 6(a). The set
of solution trees represented [y is given in Figure 6(d) and corresponds to the
following assignmentstA = 0,B = 0,C = 0,D = 0), (A =0,B = 0,C =
0,D=1),(A=0,B=1,C=0,D=0)and(A=0,B=1,C=0,D =1).

Brute-force Depth-First AND/OR Tree Search.A simple depth-first search algo-
rithm, calledAQ, that traverses the AND/OR search tree is described in Algar

1. The algorithm maintains the current partial solutionngeéxplored and will
compute the value of each node (see Definition 22) in a degghrfianner. The
value of the root node is the optimal cost. The algorithm a¢tarns the optimal
solution tree. It interleaves a forward expansion of theenirpartial solution tree
(EXPAND) with a cost revision stepPROPAGATE) that updates the node values.
The search stack is maintained by @EN list, » denotes the current node and
p its parent in the search tree. Each nad@ the search tree maintains its current
valuewv(n), which is updated based on the values of its children. For Gdes, the
currentv(n) is an upper bound on the optimal solution cost betownitially, v(n)

is set toocco if n is OR, and0 if n is AND, respectively. A data structur€7'(n)
maintains the actual best solution found in the subtree of
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EXPAND selects a tip node of the current partial solution tree and expands it
by generating its successors.rfis an OR node, labeled’;, then its successors
are AND nodes represented by the valugsn variable X;'s domain (lines 5-
10). Each OR-to-AND arc is associated with the appropriatghitg¢see Definition
20). Similarly, if n is an AND node, labeledX;, x;), then its successors are OR
nodes labeled by the child variablesXfin 7 (lines 11-15). There are no weights
associated with AND-to-OR arcs.

PROPAGATE propagates node values bottom up in the search tree. Iggetad
when a node has an empty set of descendants (note that asueaebsor is eval-
uated, it is removed from the set of successors in line 28js Trteans that all
its children have been evaluated, and their final values laeady determined. If
the current node is the root, then the search terminatesitsittalue and an opti-
mal solution tree (line 21). I is an OR node, then its paremis an AND node,
andp updates its current valugp) by summation with the value of (line 22).
An AND noden propagates its value to its paregnin a similar way, by mini-
mization (lines 25-27). Finally, the current nodas set to its parenp (line 29),
because: was completely evaluated. Each node in the search treeeadsads the
current best assignment to the variables of the subprobédawtit and when the
algorithm terminates it contains an optimal solution tr8pecifically, ifn is an
AND node, thenST'(n) is the union of the optimal solution trees propagated from
n’s OR children (line 23). Ifn is an OR node and’ is its AND child such that
n' = argminmesucem)(w(n, m) + v(m)), thenST(n) is obtained from the label
of n” combined with the optimal solution tree bela(line 27). Search continues
either with apropagationstep (if conditions are met) or with axpansiorstep.

Heuristic Lower Bounds on Partial Solution Trees.A regular OR Branch-and-
Bound algorithm traverses the space of partial assignmemtsiepth-first manner
and discards any partial assignment that cannot lead toaisupolution than the
current best one found so far. This is normally achieved bgguan evaluation
function that underestimates (for minimization tasks)lbst possible extension of
the current partial path. Thus, when the estimated lowentocalled also heuristic
evaluation function, is higher than the best current sotutupper bound), search
terminates below this path.

We will now extend the brute-foro&Oalgorithm into a Branch-and-Bound scheme,
guided by a lower bound heuristic evaluation function. fattwe first define the
exact evaluation function of a partial solution tree, antl thien derive the notion
of a lower bound for it. Like in OR search, we assume a givenibgcievaluation
function h(n) associated with each nodein the AND/OR search tree such that
h(n) < h*(n), whereh*(n) is the best cost extension of the subproblem below
(namely,h*(n) = v(n)). We callh(n) anode-based heuristic function

DEFINITION 24 (exact evaluation function of a partial solution tree) The exact
evaluation functiory*(7") of a partial solution tre€l” is the minimum of the costs
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of all solution trees represented [y, namely:

ATy =min{f(T) | T € extension(T")}

We definef*(7)) the exact evaluation function of a partial solution tree texb at
noden. Thenf*(7) can be computed recursively, as follows:

1. If T/ consists of a single node thenf*(7T)) = v(n).

2. Ifnis an OR node having the AND chitd in 7/, thenf*(T) = w(n,m) +
f*(T},), whereT! is the partial solution subtree @f that is rooted atn.

3. If n is an AND node having OR children,, ...,m;, in T}, then f*(7)) =
S, f(T},.), whereT}, is the partial solution subtree &f, rooted atm;.

Clearly, we are interested to find thfé(7") of a partial solution tre@” rooted at
the roots. If each non-terminal tip node of 7” is assigned a heuristic lower bound
estimatei(n) of v(n), then itinduces a heuristic evaluation function on the madi
cost extension of”, as follows.

DEFINITION 25 (heuristic evaluation function of a partial solution tree) Given a
node-based heuristic functidr{m) which is a lower bound on the optimal cost be-
low any noden, namelyi(m) < v(m), and given a partial solution tre€’ rooted
at noden in the AND/OR search tregr, thetree-based heuristic evaluation func-
tion f(7)) of T!, is defined recursively by:
1. If T} consists of a single nodethenf(7)) = h(n).
2. Ifnis an OR node having the AND chitd in 7}, thenf (7)) = w(n,m) +
f(T),), whereT] is the partial solution subtree &f’ that is rooted atn.
3. If n is an AND node having OR childrem,, ..., m, in T}, then f(T") =
SF, f(Ty,.), whereT?, is the partial solution subtree & rooted atm;.

ProposITIONL Clearly, by definitionf (7)) < f*(T)). If n is the root of the
AND/OR search tree, thef(T") < f*(17).

Example 7 Consider the cost network with bi-valued variablesB, C, D, E and
F in Figure 7(a). The cost functiong (A, B,C), f2(A, B, F) and f3(B, D, E)
are given in Figure 7(b). A partially explored AND/OR searcketrelative to the
pseudo tree from Figure 7(a) is displayed in Figure 7(c). Therent partial solu-
tion tree7” is highlighted. It contains the noded;, (A,0), B, (B, 1), C, (C,0), D,
(D,0) andF'. The nodes labeled [y, 0) and byF are non-terminal tip nodes and
their corresponding heuristic estimates a&r§D,0)) = 4 andh(F') = 5, respec-
tively. The node labeled [y, 0) is a terminal tip node of’. The subtree rooted at
(B,0) along the path(A, (A,0), B, (B, 0)) is fully explored, yielding the current
best solution cost found so far equaldoWe assume that the search is currently
at the tip node labeled byD, 0) of 7”. The heuristic evaluation function @f is
computed recursively as follows:
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Fig. 7. Cost of a partial solution tree.
F(T) =w(A,0) + f(T{a0))
=w(A,0) + f(Tp)
=w(A,0) +w(B,1) + f(T¢) + f(Th) + f(Tp)
=w(A,0) +w(B,1) +w(C,0) + f(Tigg) +w(D,0) + f(T{pg) + h(F)
=w(A,0) + w(B,1) + w(C,0) + 0+ w(D,0) + h((D,0)) + h(F)
=0+04+3+0+0+4+5
=12

Notice that if the pseudo tre€ is a chain, then a partial tré€ is also a chain
and corresponds to the partial assignmeht= (x4, ..., z,). In this casef(1")
is equivalent to the classical definition of the heuristialaation function ofz?.
Namely, f(T") is the sum of the cost of the partial solutiafi, ¢(z?), and the
heuristic estimate of the optimal cost extensior®dfo a complete solution.
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Fig. 8. lllustration of the pruning mechanism.

During search we maintain an upper bourids) on the optimal solution(s) as
well as the heuristic evaluation function of the currenttipasolution treef (77),
and we can prune the search space by comparing these twonesasis common
in Branch-and-Bound search. Namelyfifl”) > ub(s), then searching below the
current tip node of 7" is guaranteed not to redueé(s) and therefore, the search
space below can be pruned.

Example 8 For illustration, consider again the partially explored ANDR search
tree from Example 7 (see Figure 7(c)). In this case, the eurpest solution found
after exploring the subtree belol, 0), which ends the patti, (A, 0), B, (B,0)),

is 9. Since we computefl{7”) = 12 for the current partial solution tree highlighted
in Figure 7(c), then exploring the subtree rooted(&t, 0), which is the current tip
node, cannot yield a better solution and search can be pruned

Up until now we considered the case when the best solutiomdf@o far is main-
tained at the root node of the search tree. It is also posibtaintain the current
best solutions for all the OR nodes along the active path éxtvthe tip node of
T"ands. Then, if (1)) > ub(m), wherem is an OR ancestor gfin 7" and7}, is
the subtree of” rooted atm, it is also safe to prune the search tree betowhis
provides an efficient mechanism to discover that the seqatesbelow a node can
be pruned more quickly.

Example 9 Consider the partially explored weighted AND/OR search treléigna
ure 8, relative to the pseudo tree from Figure 7(a). The aurpartial solution tree
T is highlighted. It contains the nodes, (A,1), B, (B, 1), C, (C,0), D, (D, 1)
and F'. The nodes labeled D, 1) and byF' are non-terminal tip nodes and their
corresponding heuristic estimates dr¢(D, 1)) = 4 andh(F') = 5, respectively.
The subtrees rooted at the AND nodes lab€lgdo0), (B,0) and (D, 0) are fully
evaluated, and therefore the current upper bounds of the Gdes labeled4, B
and D, along the active path, areb(A) = 12, ub(B) = 10 and ub(D) = 5,
respectively. Moreover, the heuristic evaluation funasiof the partial solution
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Algorithm 2 : ACBB: Depth-first AND/OR Branch-and-Bound search

Input: An optimization problen = (X, D, F, ) ", min), pseudo-tred rooted atX, heuristic functior(r).
Output: Minimal cost solution tdP and an optimal solution tree.

1 v(s) < 00; ST(s) « 0; OPEN « {s} /1 Initialize the root node
2 while OPEN # () do
3 n <« top(OPEN); removen from OPEN /1 EXPAND
4 suce(n) «— 0
5 if n is an OR node, labeled’; then
6 foreachz; € D; do
7 create an AND node’ labeled by(X;, z;)
8 v(n') «— 0; ST(n') — 0
9 w(n,n’) — ZfeBT(Xi) flasgn(my)) /1 Conpute the OR-to-AND arc wei ght
10 suce(n) «— suce(n) U {n'}
11 else ifn is an AND node, labeledX;, z;) then
12 deadend — false
13 foreach OR ancestorn of n do
14 f(T’.) < eval Partial Sol uti onTree(T},)
15 if £(T7},) > v(m) then
16 deadend «— true /1 Pruning the subtree bel ow the current tip node
17 L break
18 if deadend == false then
19 foreach X; € childrens(X;) do
20 create an OR node’ labeled byX;
21 v(n') «— o0; ST(n') — 0
22 succ(n) < succ(n) U {n'}
23 else
24 p < parent (n)
25 suce(p) «— succ(p) — {n}
26 Add succ(n) ontop of OPEN
/1 PROPAGATE
27 while succ(n) == 0 do
28 let p be the parent of
29 if nis an OR node, labele&; then
30 if X; == X3 then
31 L return (v(n), ST(n)) /] Search term nates
32 v(p) < v(p) + v(n) /1 Update AND val ue
33 ST(p) — ST(p) U ST (n) /] Update solution tree bel ow AND node
34 if n is an AND node, labeledX;, z;) then
35 if v(p) > (w(p,n) + v(n)) then
36 v(p) — w(p,n) + v(n) /1l Update OR val ue
37 ST (p) — ST (n) U{(X;,z:)} /1 Update solution tree bel ow OR node
38 removen from succ(p)
39 n<«—p

subtrees rooted at the OR nodes along the current path carotmpuated recur-
sively based on Definition 25, nameflyT",) = 13, f(T;) = 12 and f(T},) = 4,
respectively. Notice that while we could prune the subtreevibélo, 1) because
f(T%) > ub(A), we could discover this pruning earlier by looking at nadenly,
becausef (1) > ub(B). Therefore, the partial solution tré€), need not be con-
sulted in this case.

Depth-First AND/OR Branch-and-Bound Tree Search.The AND/OR Branch-

and-Boundalgorithm,AOBB, for searching AND/OR trees for graphical models, is
described by Algorithm 2. LIk&Q, it interleaves a forward expansion of the cur-
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Algorithm 3: Recursive computation of the heuristic evaluation functio

function: eval Par ti al Sol uti onTree(T})
Input: Partial solution subtre®), rooted at nodex.
Output: Return heuristic evaluation functiof(77},).
1 if succ(n) == D then
2 if n is an AND nodehen
3 | retun O

4 else

5 | return h(n)
6

7

8

else
if n is an AND nodehen
L letmy, ..., my, be the OR children of

return Zle eval PartialSolutionTree(Ty,.)

10 else ifn is an OR nodé¢hen
11 let m be the AND child ofm
return w(n, m) + eval Partial SolutionTree(T},)

rent partial solution tree with a backward propagation stey updates the nodes
upper-bounds of values. The fringe of the search is maietaby a stack called
OPEN, the current node is, its parenp, and the current path,. As before,ST'(n)
accumulates the current best solution tree beloWwhe node-based heuristic func-
tion h(n) of v(n) is assumed to be available to the algorithm, either retddsem

a cache or computed during search.

Before expanding the current AND nodg labeled(X;, x;), the algorithm com-
putes the heuristic evaluation function for every part@luson subtree rooted at
the OR ancestors of along the path from the root (lines 11-17). The search below
n is terminated if, for some OR ancestar, f(7)) > v(m), wherev(m) is the
current best upper bound on the optimal cost betewl he recursive computation

of f(T)) based on Definition 25 is described in Algorithm 3. Noticeoalsat for

any OR noder, labeledX; in the search treej(n) is trivially initialized to oo and

is updated in line 36.

The node values are updated by the propagation step, in tia way (lines 24—
40): OR nodes by minimization, while AND nodes by summatibime search ter-
minates when the root node is evaluated in line 32.

THEOREM®6 The time complexity of the depth-first AND/OR Branch-andrlou
algorithm (AOBB) is O(n - k™), wherem is the depth of the pseudo trdebounds
the domain size and is the number of variables, and it can use linear space.

Proof. The time complexity follows immediately from the size of tA&ID/OR
search tree explored (see Theorem 3). Since only the cypeetial solution tree
needs to be stored in memory, the algorithm can operateeaiispace
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7 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search strategylgdepends on the
guality of the heuristic evaluation function. Naturallypre accurate heuristic esti-
mates may yield a smaller search space, possibly at a mubkriegmputational
cost for computing the lower bound heuristic function. Tight tradeoff between
the computational overhead and the pruning power exhiblitethg search may be
hard to predict. One of the primary heuristics we used is th@-Bucket heuristic
introduced in [5] for OR search spaces. In the following satiens we discuss its
extension to AND/OR search spaces. We also extend the looaistency based
lower bound developed in [22—24] to AND/OR search spaces Bihese heuris-
tic functions were used in our experiments.

7.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figurga®g(b), respec-
tively, and consider also the variable orderihg- (A, B,C, D, E, F,G) and the
bucket and mini-buckets configuration in the output as diggd in Figures 9(c) and
9(d), respectively (see Sections 4.1 and 4.2 for more dgtdibr clarity, we dis-
play the execution of the bucket and mini-bucket eliminatdong the bucket tree
corresponding to the given elimination ordering. The butfee is also a pseudo
tree [1]. The functions denoted on the arcs are those messagéfrom a bucket
node to its parent in the tree.

Let us assume, without loss of generality, that variablles\d B have been instan-
tiated during search. Lét"(a, b, ¢) be the minimal cost solution of the subproblem
rooted at node” in the pseudo tree, conditioned ¢4 = a, B = b,C = ¢). In
the AND/OR search tree, this is represented by the subprotdeted at the AND
node labeledC, ¢), ending the path A, (A, a), B, (B,b), C, (C, ¢) }. By definition,

h*(a,b,¢) = mina.(f(c,e) + f(be) + fla,d) + f(c,d) + f(b,d))  (2)

Notice that we restrict ourselves to the subproblem oveinlbes D and £ only.
Therefore, we obtain:

h*(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d) + min.(f(c,e) + f(b,e)))
= ming(f(a,d) + f(c,d) + f(b,d)) + min.(f(c,e) + f(b,e))
= hP(a,b,c) + (b, c)
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Fig. 9. Static mini-bucket heuristics for= 3.

where,

hP(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d))
RE (b, ¢) = min.(f(c,e) + f(b,e))
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Notice that the functiona”(a, b, ¢) andh” (b, ¢) are produced by the bucket elimi-
nation algorithm shown in Figure 9(c). Specifically, thedtion h?(a, b, c), gener-
ated in bucket oD by bucket elimination, is the result of a minimization ogera
over variableD. In practice, however, this function may be too hard to commps

it requires processing a function on four variables. It camdplaced by a partition-
based approximatiore(g., the minimization is split into two parts). This yields a
lower bound approximation, denoted by, b, c), namely:

h*(a,b,c) = ming(f(a,d) + f(c,d) + f(b,d)) + (b, c)
> mingf(a,d) +ming(f(c,d) + f(b,d)) + h¥(b, )
= hP(a) 4+ P (b, c) + hF(b, )
2 h(a,b,c)

where,

hP(a) = mingf(a, d)
hP(c,b) = ming(f(c,d) + f(b,d))

The functionsh?(a) and h” (b, c) are the ones computed by the Mini-Bucket al-
gorithm MBE@), shown in Figure 9(d). Therefore, the functibfu, b, ¢) can be
constructed during search from the pre-compiled mini-btgkyielding a lower
bound on the minimal cost of the respective subproblem.

For OR nodes, such as labeled byC, ending the pat{ A, (A, a), B, (B, b),C},
h(n) can be obtained by minimizing over the values D the sum between
the weightw(n, m) and the heuristic estimatgm) below the AND childm of n.
Namely,h(n) = min,(w(n, m) + h(m)).

In summary, similarly to [5], we can show that the mini-buckeuristic associ-
ated with any node in the AND/OR search tree can be obtaired fhe the pre-
compiled mini-bucket functions.

DEFINITION 26 (static mini-bucket heuristic) Given an ordered set of augmented
buckety B(X,), ..., B(X,,)} generated by the Mini-Bucket algorithm MBEglong
the bucket tre€, and given a node in the AND/OR search tree, tlgatic mini-
bucket heuristidunctioni(n) is computed as follows:

(1) If nis an AND node, labeled byX,, z,,), then:

h(n) = > hj

hre{B(Xp)UB(X}..X7)}

Namely, it is the sum of the intermediate functibfmhat satisfy the following
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Fig. 10. AND/OR versus OR static mini-bucket heuristicsifer 3.

two properties:
e They are generated in bucke® X}, ), whereX, is any descendant df, in
the bucket tred’,
e They reside in bucke?(X,) or the bucket3(X)..X!) = {B(X}), ..., B(X])}
that correspond to the ancestof&(}, ..., X7} of X, in 7.
(2) Ifnis an OR node, labeled by, then:

h(n) = ming,(w(n,m) + h(m))
wherem is the AND child of: labeled with valuer, of X,,.

Example 10 Figure 9(d) shows the bucket tree for the cost network in Fi§(eg
together with the intermediate functions generated by MBEI@g the ordering
d = (A, B,C,D, E, F,G). The static mini-bucket functiol(a’, v, ¢') associated
with the AND node labele@”, ¢’) ending the pathA = o', B =V,C = ¢) in the
AND/OR search tree is by definitidria’, ', ') = hP(a’) + WP (, V") + hE (Y, ).
The intermediate functiorig” (¢, v') andh® (¥, ') are generated in buckefs and
E, respectively, and reside in buckét The functiomh?(a’) is also generated in
bucketD, but it resides in bucket, which is an ancestor af' in the bucket tree.

We see that the computation of the static mini-bucket heard a noden in the
AND/OR search tree is identical to the OR case (see Definitl)n except that it
only considers the intermediate functions generated bytlo&ets corresponding
to the current conditioned subproblem rooted at

Example 11 For example, consider again the cost network in Figure 9(&)ufes
10(a) (which repeats Figure 9(d)) and 10(b) show the comghalezket structure ob-
tained by MBES) along the given elimination ordet= (A, B,C, D, E, F, G), for

the AND/OR and OR spaces, respectively. The static miniebbekiristic function
underestimating the minimal cost extension of the parsaignmentA = o/, B =
V,C = ) inthe OR search spacefga’,b', ') = hP(a') +hP(c, b ) +hE (V' , )+
hE(V',a"). Namely, it involves the extra functiér (¢, ') which was generated in
bucketF and resides in buckd®, as shown in Figure 10(b). This is because, in the
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OR space, variableg’ and GG are part of the subproblem rooted ét, unlike the
AND/OR search space.

7.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristiormation dynamically
during search, as we show next. The idea is to compute M)B&(ditioned on the
current partial assignment.

DEFINITION 27 (dynamic mini-bucket heuristics) Given a bucket tre@ with buck-
ets{B(X), ..., B(X,)}, anoden in the AND/OR search tree and given the current
partial assignmentsgn(m,) along the path to:, thedynamic mini-bucket heuris-
tic functionh(n) is computed as follows:

(1) If nis an AND node labeled byX,, z,), then:
h(n)= > ht

h¥€B(Xp)

Namely, it is the sum of the intermediate functidnjsthat reside in bucket

B(X,) and were generated by MB#( conditioned orusgn(m,), in buckets

B(X,) throughB(X{), where{X, ..., X/} are the descendants 4f, in 7.
(2) Ifnis an OR node labeled by, then:

h(n) = ming,(w(n,m) + h(m))
wherem is the AND child of: labeled with valuer, of X,,.

Given ani-bound, the dynamic mini-bucket heuristic implies a muajhler com-
putational effort compared with the static version. Howgtlge bounds generated
dynamically may be far more accurate since some of the \agalre assigned and
will therefore yield smaller functions and less partitiogi More importantly, the
dynamic mini-bucket heuristic can be used with dynamicalae ordering heuris-
tics, unlike the pre-compiled one, which restricts seapdietconducted in an order
that respects a static pseudo tree structure.

Example 12 Figure 11 shows the bucket tree structure corresponding ¢obth
nary cost network instance displayed in Figure 9(a), along ¢limination order-
ing (A, B,C, D, E, F,G). The dynamic mini-bucket heuristic estimate’, t', ¢’)

of the AND node labeled”, ') ending the pat{ A, (A, a'), B, (B, V), C,(C,)}

is computed by MBB] on the subproblem represented by the bucketnd £,
conditioned on the partial assignmet = o/, B = ¥/, C = /). Namely, MBEY)
processes buckef3 and E' by eliminating the respective variables, and generates
two new functionsh” (¢’) and h®(¢’), as illustrated in Figure 11. These new func-
tions are in fact constants since variablés B andC' are assigned in the scopes of
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the input functions that constitute the conditioned subfem: f(a’, D), f(
f(d,D), f(V,E) and f(c, E), respectively. Thereforé(a’,t/,c') = hP
h¥() and it equals the exaét*(a’, V', ¢) in this case.

v, D),
() +

7.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for gujddranch-and-Bound
search for solving binary Weighted CSPs is based on expipiitical consistency
algorithms for cost functions. In the next section we ovemwthe basic principles
behind these types of heuristics and discuss their extensiAND/OR trees.

7.3.1 Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistencyhenrtitial problem pro-
vides in polynomial time aequivalentproblem defining the same cost distribution
on complete assignments, with possible smaller domains2R

Assume a binary Weighted CSR = (X, D, C), whereX = {X;,..., X, } and

D = {Dy,...,D,} are the variables and their corresponding domaihis the set

of binary and unary cost functions (or soft constraints).ifaby soft constraint
Ci;j(X;, X;) € C (or Cy; in short) isC;;(X;, X;) : D; x D; — N. A unary soft
constraintC;(X;) € C (or C; in short) isC;(X;) : D; — N. We assume the ex-
istence of a unary constrai6t (.X;) for every variable, and a zero-arity constraint,
denoted byCy. If no such constraints are defined, we can always define dummy
ones, as’;(z;) = 0, Va; € D; or Cy = 0. We denote byr, the maximum allowed
cost e.g., T = ). The cost of a tuple = (x4, ..., z,,), denoted byost(zx), is
defined by:
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cost(z) = Y Cij(zli,j]) + > Cx,(z[i]) + Cy

CijEC CiEC

For completeness, we define next some local consistenci®€iaP, in particular
node arc anddirectional arc consistengyas in [22,23]. We assume that the set of
variablesX is totally ordered. We note that there are several strorged konsis-
tencies which were defined in recent years, sudulhdirectional arc consistency
(FDAC) [22,23] orexistential directional arc consisten¢izDAC) [24].

DEFINITION 28 (soft node consistency [22,23]let R = (X, D, C) be a binary
WCSP.(X}, x;) is star node consistentNC™) if Cy + C;(z;) < T. Variable X; is
NC* if: i) all its values are NC* and ii) there exists a valug; € D, such that
Ci(z;) = 0. Valuez; is a supportfor variable X;. R is NC* if every variable is
NC*.

DEFINITION 29 (soft arc consistency [22,23]Let R = (X,D,C) be a binary
WCSP(X;, z;) is arc consistent (AC) with respect to constrain(.X;, X;) if there
exists a valuer; € D, such thatC;;(x;, z;) = 0. Valuex; is called asupportfor
the valuer;. Variable X; is AC if all its values are AC wrt. every binary constraint
affecting X;. R is AC* if every variable is AC andv C"*.

DEFINITION 30 (soft directional arc consistency [22,23]LetR = (X, D, C) be

a binary WCSP(X;, x;) is directional arc consistent (DAC) with respect to con-
straint C;;(X;, X;), ¢ < j, if there exists a value; € D; such thatC;;(z;, ;) +
Cj(z;) = 0. Valuez; is called afull supportof z;. Variable X, is DAC is all its
values are DAC wrt. every;; (X;, X;), i < j. R is DAC™ if every variable is DAC
and NC*.

For our purpose, we point out that enforcing such local &tescies is done by
the repeated application of atomic operations caled equivalence preserving
transformations[48]. This process may increase the value(gf and the unary
costsC;(z;) associated with domain values. The zero-arity cost funetipdefines

a strong lower boundwvhich can be exploited by Branch-and-Bound algorithms
while the updated’;(x;) can inform variable and value orderings [22—24].

If we consider two cost functionS;;(X;, X;), defined over variableX,; and X},
andC;(X;), defined over variabl&;, a valuex; € D; and a costy, we can addv

to C;(z;) and subtractx from everyC;;(x;, z;) for all z; € D;. Simple arithmetics
shows that the global cost distribution is unchanged whoktscmay have moved
from the binary to the unary level (if > 0, this is called grojection) or from the
unary to the binary level (i& < 0, this is called arextensioh In these operations,
any cost abové’, the maximum allowed cost, can be considered as infiniteand i
thus unaffected by subtraction. If no negative cost appeaalsf all costs abovée

are set tol, the remaining problem is always a valid and equivalent WCS&E. T
same mechanism, at the unary level, can be used to move oastshfeC;(X;) to
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(a) WCSP (b) NC* (c) DAC* (d) AC*

Fig. 12. Four equivalent WCSPs (for = 4) [22].

Cy. Finally, any value a such that;(z;) + Cy is equal toT can be deleted. For a
detailed description of these operations, we refer theeretad22—24].

Example 13 Figure 12(a) shows a WCSP with a sets of cd8ts.., 4] and with

T = 4. The network has three variablés = { XY, 7}, each with valuega, b}.
There are 2 binary constraintS' (X, Z), C(Y, Z) and two non-trivial unary con-
straintsC'(X') andC(Z). Unary costs are depicted inside their domain value. Bi-
nary costs are depicted as labeled edges connecting thesmwnding pair of val-
ues. Zero costs are not shown. Initiallyy is set to 0. One optimal solution is
(X =b,Y =0b,7Z =), with cost 2.

The problem in Figure 12(a) is ndYC* sinceZ has no support. To enforcd¥C*
we must force a support for by projectingC(Z) onto Cy. The resulting prob-
lem in Figure 12(b) isNC* but not AC*. To enforceAC", it suffices to enforce
a support for(Y,a) and (Z, a), as follows: we projecCy (Y, Z) over (Y, a) by
adding 1 toCy () and subtracting 1 fron€'y 4 (a, a) andCy »(a, b), and similarly
projectCx (X, Z) over(Z, a). Consequently, we get problem 12(d) whichA{s*.
Observe also that problem 12(b) is nbtAC* for order (X, Y, Z) since(Y, a) has
no full support onZ. Problem 12(c) is an equivale® AC* problem.

7.3.2 Extension of Local Consistency to AND/OR Search Spaces

As mentioned earlier, the zero-arity constraifptwhich is obtained by enforcing
local consistency, can be used as a heuristic function tegBranch-and-Bound
search. The extension of this heuristic to AND/OR searcleepé fairly straight-
forward and is similar to the extension of the mini-bucketifigics from OR to
AND/OR spaces. Considét,, the subproblem rooted at the AND nodglabeled
(X;,z;), in the AND/OR search tree defined by a pseudo feelhe heuristic
functionh(n) underestimating(n) is the zero-arity cost functiofij resulted from
enforcing soft arc consistency ovey, only, subject to the current partial instanti-
ation of the variables along the path from the root of thede#ee. Note thab,

is defined by the variables and cost functions correspondirtige subtree rooted
atX; in 7. If nis an OR node labeled; thenk(n) is computed in the usual way,
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namelyh(n) = min,,(w(n,m) + h(m)), wherem is the AND child ofrn, labeled
with valuez; of X;. Notice that in this case the weights associated with the @R-t
AND arcs are computed now relative to the equivalent sudprmolyesulted from
enforcing arc consistency.

There is a strong relation between directional arc consigtand mini-buckets. It
was shown in [22] that given a WCSP with = oo, and a variable ordering, the
lower bound induced by mini-buckets involving at most 2 abkes is the same as
the lower bound induced kyj; after the problem is made directional arc consistent.
However, the mini-bucket computation provides only a loweund while DAC
enforcing provides both a lower bound and a directional arwsistent equivalent
problem. All the work done to compute the lower bound is cegatun this problem
which offers the opportunity to perform incremental updaiéthe lower bound.

8 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introdliceSection 6 as-
sumed a static variable ordering determined by the undeylgseudo tree of the
primal graph. In classical CSPs, dynamic variable ordesrigiown to have a sig-
nificant impact on the size of the search space explored Y¥dl). known variable
ordering heuristics, such asin-domain[49], min-dom/dded50], brelaz[51] and
min-dom/wded52,53] were shown to improve dramatically the performante
systematic search algorithms. In this section we discuse strategies that allow
dynamic variable orderings in AND/OR search.

We distinguish two classes of variable ordering heuristics

(1) Graphbased heuristics(g., pseudo tree) that try to maximize problem de-
composition, and

(2) Semantiebased heuristics:(g., min-domain) that aim at shrinking the search
space, based on context and current value assignment.

These two approaches are orthogonal, namely we can use tre@smary guide
and break ties based on the other. We present three schemembining these
heuristics. For simplicity and without loss of generalitg sonsider thenin-domain
as our semantic variable ordering heuristic. It selectsiéxt variable to instantiate
as the one having the smallest current domain among thetantraed (future)
variables. Clearly, it can be replaced by any other heuristic
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Fig. 13. Full dynamic variable ordering for AND/OR Branch-and-Bogedrch.

8.1 Partial Variable Ordering (PVO)

The first approach, calleAND/OR Branch-and-Bound with Partial Variable Or-
deringand denoted bpOBB+PVOuses the static graph-based decomposition given
by a pseudo tree with a dynamic semantic ordering heurigptied over chain por-
tions of the pseudo tree. It is an adaptation of the orderegiktics developed in
[54,55] which were used for solving large-scale SAT problestances.

Consider the pseudo tree from Figure 4(a) inducing the fatigwariable groups

(or chains):{A, B}, {C, D} and{E, F'}, respectively. This implies that variables
{A, B} should be considered befof€’, D} and {E, F'}. The variables in each
group can be dynamically ordered based on a second, indepemelristic. Notice
that once variable§A, B} are instantiated, the problem decomposes into indepen-
dent components that can be solved separately.

AOBB+PVO can be derived from Algorithm 2 with some simple modificasion
As usual, the algorithm traverses an AND/OR search tree iepdhdfirst manner,
guided by a pre-computed pseudo tEEeWhen the current AND node, labeled
(X;, z;) is expanded in the forward step (line 9), the algorithm gatesrits OR suc-
cessor, labeled by ;, based on the semantic variable ordering heuristic (life 12
Specifically, the OR node, labeledX; corresponds to the uninstantiated variable
with the smallest current domain in the current pseudo theenc If there are no
uninstantiated variables left in the current chain, namvalyable X; was instanti-
ated last, then the OR successors afre labeled by the variables with the smallest
domain from the variable chains rooted Ky in 7.
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8.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable ordsrioglledAND/OR Branch-
and-Bound with Full Dynamic Variable Orderingnd denoted bypvVO+AOBB,
gives priority to the dynamic semantic variable orderingristic and applies static
problem decomposition as a secondary principle duringcbedihis idea was also
explored in [56] for model counting, and more recently in][f weighted model
counting.

For illustration, consider the cost network with 8 variaflel, B,C, D, E, F, G, H},
13 binary cost functions, and the domains given in Figur@), & follows:D 4 =
{O, 1}, Dp = {O, 1,2}, andDC =Dp=Dgp=Dp=Dg=Dy = {O, 1,2,3},
respectively. Each of the cost functiofi§A, B) and f(A, E') assigns amo cost
to two of their corresponding tuples, whereas the remaidibhdunctions do not
contain such tuples.

During search, variables are instantiated in min-domadieioiHowever, after each
variable assignment we test for problem decomposition ahd ghe remaining
subproblems independently. Figure 13(b) shows the patd)/OR search tree
obtained after several variable instantiations basedemih-degree ordering heuris-
tic. Notice that, depending on the order in which the vagaldre instantiated, the
primal graph may decompose into independent comportegteer or deeperin
the search tree. For instance, after instantiatintp 0, the values{1,2} can be
removed from the domain dB, because the corresponding tuples have sost
the cost functiory (A, B) (see Figure 13(a)). ThereforB,is the next variable to be
instantiated, at which point the problem decomposes irtependent components,
as shown in Figure 13(b). Similarly, whehis instantiated to 1, valugd), 1} can
also be removed from the domain Bf because of the cost functigitA, £). Then,
variable F, having 2 values left in its domain, is selected next in tha-gdomain
order, followed byB with domain size 3.

DVO+AOBB can be expressed by modifying Algorithm 2 as follows. It amgtates
the variables dynamically using the min-domain orderingristic while maintain-
ing the current graph structure. Specifically, after theenirAND noden, labeled
(X;, x;), is expandedDVO+AOBB tentatively removes from the primal graph all
nodes corresponding to the instantiated variables togeilietheir incoming arcs.
If disconnected components are detected, their corresppedbproblems are then
solved separately and the results combined in an AND/OR eraimthis case a
variable selection may yield a significant impact on tigitgrthe search space,
yet, it may not yield a good decomposition for the remainingjybem.
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8.3 Dynamic Separator Ordering (DSO)

The third approachAND/OR Branch-and-Bound with Dynamic Separator Order-
ing (AOBB+DS0O), exploits constraint propagation which can be used foradyio
graph-based decomposition with a dynamic semantic variatalering, giving pri-
ority to the first. At each AND node we apply a lookahead procedoping to
detect singleton variables.€., with only one feasible value left in their domains).
When the value of a variable is known, it can be removed fronttreesponding
subproblem, yielding a stronger decomposition of the siinepl primal graph.

AOBB+DSO defined on top of Algorithm 2 creates and maintains a sepatatd
the current primal graph. A graph separator can be compusied the hypergraph
partitioning method presented in [55]. The next variablehesen dynamically
from S by the min-domain ordering heuristic unflis fully instantiated and the
current problem decomposes into several independentahllepns, which are then
solved separately. The separator of each component issdré@am a simplified
subgraph resulted from previous constraint propagatiepssand it may differ for
different value assignments. Clearly, if no singleton Jalea are discovered by the
lookahead steps this approach is computationally iddrit@sOBB+PVO, although

it may have a higher overhead due to the dynamic generatitirecfeparators.

9 Experimental Results

We have conducted a number of experiments on two common izgtiion problem
classes in graphical models: finding the Most Probable Ewgtian in Bayesian
networks and solving Weighted CSPs. We implemented ourighges in C++ and
carried out all experiments on a 1.8GHz dual-core Athlonéh ®GB of RAM
running Ubuntu Linux 7.04.

9.1 Overview and Methodology

Bayesian Networks For the MPE task, we tested the performance of the AND/OR
Branch-and-Bound algorithms on the following types of pratderandom Bayesian
networks, random coding networks, grid networks, Bayeseworks derived from
the ISCAS’89 digital circuit benchmark, genetic linkage lsgss networks, net-
works from the Bayesian Network Repository, and Bayesian né&svivom the
UAI'06 Inference Evaluation Dataset. We report here sontb@fesults and place
the rest in the Appendix.

The detailed outline of the experimental evaluation for Bage networks is given
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Table 1
Detailed outline of the experimental evaluation for Bayesian networks.

static mini-buckets| dynamic mini-buckets| min-fill vs.
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph | constraint | Samlam | Superlink
AOBB+SMB(i) AOBB+DMB(j) pseudo trees propagation
main
Random BN v Vv Vv
Coding v v v - v
Grids v v v v v -
Linkage v v Vv v v
appendix
ISCAS'89 v Vv Vv Vv Vv
UAI'06 Dataset v v - v
BN Repository 4 Vv - - Vv

in Table 1. We evaluated the two classes of depth-first ANDBB&hch-and-Bound
search algorithms, guided by the static and dynamic miokétheuristics, denoted
by AOBB+SMB( i) andAOBB+DIVB( 7) , respectively. We compare these algorithms
against traditional depth-first OR Branch-and-Bound alparg with static and dy-
namic mini-bucket heuristics introduced in [5,38], denbtyy BB+SMB( i) and
BB+DMB( @) , respectively, which were among the best-performing cetegearch
algorithms for this domain at the time. The parametapresents the mini-bucket
i-bound and controls the accuracy of the heuristic. The psénabs that guide
AND/OR search algorithms were generated using the min#dllaypergraph par-
titioning heuristics, described later in this section. Vi&@aconsider an extension
of the AND/OR Branch-and-Bound that exploits the determinm®sent in the
Bayesian network by constraint propagation.

Since the pre-compiled mini-bucket heuristics requireaticstvariable ordering,
the corresponding OR and AND/OR search algorithms usedahable ordering
as well derived from a depth-first traversal of the guidingymo tree. When we
applied dynamic variable orderings with dynamic mini-beickeuristics we ob-
served that the computational overhead was prohibitiayd compared with the
static variable ordering setup. We therefore do not repase. \WWe note however
that theAOBB+SMB( i) and AOBB+DMB( i) algorithms support a restricted form
of dynamic variable and value ordering. Namely, there isrzadyic internal order-
ing of the successors of the node just expanded, beforengl#fedm onto the search
stack. Specifically, in line 26 of Algorithm 2, if the curremdden is AND, then the
independent subproblems rooted by its OR children can vedah decreasing or-
der of their corresponding heuristic estimates (varialbteong). Alternatively, if
n is OR, then its AND children corresponding to domain valuesalao be sorted
in decreasing order of their heuristic estimates (valueand).

We compared our algorithms with then@1AmM version 2.3.2 software package

1 Available at http://reasoning.cs.ucla.edu/samiam. We usetiaheht ool 1.5 pro-
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Table 2
Detailed outline of the experimental evaluation for Weighted CSPs.

static mini-buckets| dynamic mini-buckets| min-fill vs. EDAC heuristics
Benchmarks BB+SMB(i) BB+DMB(i) hypergraph BBEDAC toolbar
AOBB+SMB(i) AOBB+DMB(i) pseudo tree§ AOEDAC, PVO, DVO, DSO
main
SPOT5 v v v v v
ISCAS'89 v Vv i Vv Vv
Mastermind v - Vv vV Vv
CELAR Vv Vv

SamIAM is a public implementation of Recursive Conditioning [58] ahican
also be viewed as an AND/OR search algorithm. The algoritseswa context-
based caching mechanism that records the optimal solutithe cubproblems and
retrieves the saved values when the same subproblems ate¢eed again during
search. This version of recursive conditioning traversemdext minimal AND/OR
search graph [1], rather than a tree, and its space complexaxponential in the
treewidth. Note that when we use mini-bucket heuristichwiigh values ofi,

we use space exponentialitfior the heuristic calculation and storing. Our search
regime however does not consume any additional space.

Weighted CSPsFor WCSPs we evaluated the performance of the AND/OR Branch-
and-Bound algorithms on: random binary WCSPs, schedulinglgarabfrom the
SPOT5 benchmark, networks derived from the ISCAS’89 digitalits, radio link
frequency assignment problems and instances of the Mastgame.

The outline of the experimental evaluation for Weighted CSRietailed in Table
2. In addition to the mini-bucket heuristics, we also coasia heuristic evaluation
function that is computed by maintaining Existential Dtrecal Arc-Consistency
(EDAC) [24]. AOBB with this heuristic is calledAOEDAC. We also consider the
extension ofACEDAC that incorporates dynamic variable orderings heuristes d
scribed earlier yieldingAOEDAC+PVO (partial variable ordering - Section 8.1),
DVO+ACEDAC (full dynamic variable ordering - Section 8.2) aA@EDAC+DSO
(dynamic separator ordering - Section 8.3). For comparis@nreport results ob-
tained with our implementation of the classic OR Branch-Bodnd with EDAC,
denoted here bBBEDAC.

For reference, we also rarool bar 2, an OR Branch-and-Bound that maintains
EDAC during search and uses dynamic variable orderingsl bar was intro-
duced in [24] and is currently one of the best performingai®vor binary WCSPs.

The semantic-based dynamic variable ordering heurisgd by both the OR and
AND/OR Branch-and-Bound algorithms with EDAC based hewssivas thenin-

vided with the package.
2 Available at: http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/Soft CSP
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dom/ddedheuristic, which selects the variable with the smallesoraftthe current
domain size divided by the future degree. Ties were brokdndgraphically.

Measures of Performanceln all our experiments we report the average CPU time
in seconds and the number of nodes visited, required foripgoeptimality. We
also specify the number of variables)( number of evidence variables){ max-
imum domain sizeK), number of functionsd), maximum arity of the functions
(r), the depth of the pseudo trek) (@and the induced width of the graph), for
each problem instance. When evidence is asserted in the tketwoand/ are
computed after the evidence nodes are removed from the .giéhlso report the
time required by the Mini-Bucket algorithm MBE(to pre-compile the heuristic
information. The best performance points are highlightadceach table, "-” de-
notes that the respective algorithm exceeded the time. IBmtilarly, "out” stands
for exceeding the 2GB memory limit.

9.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search dlgos is influ-
enced by the quality of the guiding pseudo tree. Finding thmemal depth/induced
width pseudo tree is a hard problem [2,44,3]. We describe¢ mex heuristics for
generating pseudo trees with relatively small depthséedwidths which we used
in our experiments.

Min-Fill Heuristic.  Min-Fill [59] is one of the best and most widely used heuris-
tics for creating small induced width elimination orders édrdering is generated
by placing the variable with the smallddt set (:.c., number of induced edges that
need be added to fully connect the neighbors of a node) arnthefethe ordering,
connecting all of its neighbors and then removing the véegiflom the graph. The
process continues until all variables have been eliminated

Once an elimination order is given, the pseudo tree can baa&tl as a depth-first
traversal of the min-fill induced graph, starting with theiahle that initiated the
ordering, always preferring as successor of a node theesbddjacent node in the
induced graph. An ordering uniquely determines a pseudo Trieis approach was
first used by [3].

To improve orderings, we can run the min-fill ordering sel/#énaes by randomiz-
ing the tie breaking. In our experiments, we ran the min-glliiistic just once and
broke the ties lexicographically.

Hypergraph Decomposition Heuristic. An alternative heuristic for generating
a low height balanced pseudo tree is based on the recursieeng@sition of the
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Table 3
Bayesian Networks Repository (left); SPOT5 benchmarks (right).

Network | hypergraph min-fill Network | hypergraph min-fill
width depth| width depth width depth| width depth

barley 7 13 7 23 || spot5 47 152 | 39 204
diabetes| 7 16 4 77 || spot28 108 138 | 79 199
link 21 40 15 53 || spot29 16 23 14 42
mildew 5 9 4 13 || spot42 36 48 33 87
muninl 12 17 12 29 || spot54 12 16 11 33
munin2 9 16 9 32 || spot404 | 19 26 19 42
munin3 9 15 9 30 || spot408 | 47 52 35 97
munin4 9 18 9 30 || spot503| 11 20 9 39
water 11 16 10 15 || spot505| 29 42 23 74
pigs 11 20 11 26 || spot507| 70 122 59 160

dual hypergraph associated with the graphical model.

DEFINITION 31 (dual hypergraph) Thedual hypergrapbf a graphical modeR =
(X,D,F),isapairH(R) = (V,E), where each function i is a vertexv; € V
and each variable iX is an edges; € E connecting all the functions (vertices) in
which it appears.

DEFINITION 32 (hypergraph separators) Given a dual hypergrapit = (V,E)
of a graphical model, dypergraph separator decompositiera triple (H, S, «)
where:

(1) S C E, and the removal of separatesH into k£ disconnected components
(subgraphs);
(2) ais arelation over the size of the disjoint subgraphs (i.alahce factor).

It is well known that the problem of finding the minimal sizepeygraph separa-
tor is hard. However heuristic approaches were developedtbe years. A good
approach is packaged ilVeTi S3.

We will use this software as a basis for our pseudo tree gaoer&ollowing [58],
generating a pseudo tree for R usinghMeTi S is fairly straightforward. The
vertices of the hypergraph are partitioned into two baldrceughly equal-sized)
parts, denoted b¥;.;; andH,,,,. respectively, while minimizing the number of
hyperedges across. A small number of crossing edges ttasisito a small number

3 Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
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of variables shared between the two sets of functibfis, and,,,. are then each
recursively partitioned in the same fashion, until theytaona single vertex. The
result of this process is a tree of hypergraph separatorshvdain be shown to also
be a pseudo tree of the original model where each separatesponds to a subset
of variables chained together.

Since the hypergraph partitioning heuristic uses a noardehistic algorithmde.,
hMeTi S), the depth and induced width of the resulting pseudo tregvagy sig-
nificantly from one run to the next. In our experiments we pitkhe pseudo tree
with the smallest depth out of 10 independent runs.

In Table3 we illustrate the induced width and depth of thaigsdree obtained with
the hypergraph and min-fill heuristics for 10 belief netwsofkom the Bayesian
Networks Repository and 10 constraint networks derived from the SPOT5 bench-
mark [10]. From this and the experiments presented in thaireer of this section,
we observe that the min-fill heuristic generates lower irdinidth pseudo trees,
while the hypergraph heuristic produces much smaller dpp#udo trees. There-
fore, perhaps the hypergraph based pseudo trees appearfaeobable for tree
search algorithms guided by heuristics that are not seediithe treewidthd.g.,
local consistency based heuristics), while the min-fillyzketrees, which minimize
the treewidth, are more appropriate for search algorithimsse guiding heuristic
is sensitive to the treewidtle (7., mini-bucket heuristics).

9.3 Results for Empirical Evaluation of Bayesian Networks

9.3.1 Random Bayesian Networks

The random Bayesian networks were generated using paratetérc, p), where

n is the number of variableg; is the domain size; is the number of conditional
probability tables (CPTs) andis the number of parents in each CPT. The struc-
ture of the network is created by randomly pickingariables out of» and, for
each, randomly picking parents from their preceding variables, relative to some
ordering. The remaining — ¢ variables are calletbot nodes. The entries of each
probability table are generated randomly using a uniforstrithution, and the table

is then normalized.

Table 4 shows detailed results for solving a class of randelefimetworks using
min-fill and hypergraph partitioning based pseudo trees. ddlumns are indexed

by the mini-bucketi-bound. For each domain size we generated 20 random in-
stances and in each test case 10 variables were chosen randomly as evidence.

We observe thafOBB+SMB( i) is better tharBB+SMB( i) at relatively smalli-

4 Available at: http://www.cs.huiji.ac.il/labs/compbio/Repository
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Table 4

CPU time in seconds and number of nodes explored for solwamglom belief net-

works with n =

100 nodes,p = 2 parents per CPT; = 90 CPTs and domain sizes

k € {2,3,4,5}. Each test case had= 10 variables chosen randomly as evidence. The
time limits are 180 seconds far € {2,3} and 300 seconds fdr € {4,5}, respectively.
Pseudo trees generated by min-fill and hypergraph heuristics.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
k | (w*,h BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j)
i=2 i=4 i=6 i=8 i=10 i=12
time nodes time nodes time nodes time nodes time nodes time nodes
0.43 043 0.44 043 0.45
17486 2,109,890 89.33 1,088,420 38.19 488,197 3.28 41,539 12,918 1.06 15,021
2 | (14,25) 12.23 308,536 1.01 25,706 0.70 17,124 0.17 4,273 1,666 1,103
25.86 62,466 313 10,737 275 10,289 271 10,653 11,570 259 10,153
3.07 11,023 0.50 1,365 0.24 635 0.15 489 450 0.18 347
0.43 043 0.44 0.47 212
- - - - 12200 1,061,530 37.44 344,128 67,299 3.55 21,341
3 | (14,25) - - 100.47 1,950,280 4054 722,818 19.78 384,609 39,318 13,957
163.72 208,945 31.09 24,603 23.00 19,753 2350 19,293 17,787 44.43 18,994
137.61 357,485 24.93 34,127 16.17 6,283 16.40 1,613 702 34.96 478
0.50 0.50 0.52 0.80 39.22
- - - - 25101 1,724,330 | 107.49 742,803 137,357 4314 42,869
4 (14, 25) - - 283.61 4,585,420 188.38 2,922,760 85.19 1,326,610 23.38 303,695 41.27 51,276
- - 162.86 48281 | 157.93 31,620 | 170.88 28,508 218.89 27,731 | 32348 13,235
- - 155.49 85,964 146.72 7,891 161.38 1,367 211.84 697 317.11 218
0.49 0.49 0.58 220 3318
- - - - 298.49 1,645,150 174.05 998,579 572,171
5 | (14,25) - - - - 267.68 3,804,650 | 18549 2,540,320 12726 1,218,160
- - 277.68 51,702 288.91 42,167 293.88 38,522 - -
- - 270.10 69,453 | 282.30 5623 | 291.07 1,054 - -
hypergraph pseudo tree
0.43 0.43 0.44 0.43 0.44
17894 2,076,390 | 143.48 1739470 | 121.20  1,495580 67.72 858,691 24.85 319,742 99,539
2 (14, 20) 18.87 453,372 237 44,796 0.83 9,181 0.73 7,135 0.54 2,415 1,242
120.80 203,392 8.83 15,798 3.65 9,299 347 9,134 341 9,013 9,163
3.64 11,524 0.85 899 0.63 480 0.58 363 0.60 336 294
043 043 0.44 047 0.69
- - - - - - 172.16 1,508,000 119.81 1,066,200 717,941
3 | (14, 20) 17835 3965780 | 137.11 2,558,520 67.95 1,078,460 14.27 198,026 5.10 68,847 13,396
- - 67.56 53,725 29.66 24,415 21.68 20,004 29.79 19,347 17,425
129.58 490,813 16.66 9,164 10.57 1,409 8.39 640 16.64 469 349
0.50 0.50 0.52 0.80 3.93
- - - - - - - - 24382 1685500 | 157.19 848,755
4 (14, 20) - - 284.29 4,679,600 176.11 2,478,050 89.32 1,196,610 409,701 41.73 30,918
- - 167.98 52,789 | 14118 32,760 | 164.00 30,774 21391 31,316 | 300.53 13,787
287.64 666,192 | 142.71 18,706 | 125.39 2,834 | 139.73 785 196.69 502 | 303.70 195
0.49 0.49 0.58 220 3318
- - - - - - - - 295.99 1,524,180
5 | (14, 20) - - - - 257.71 2955420 | 152.83 1,365,200 586,760
- - 287.11 59,292 | 289.47 40,179 - - - -
- - 254.74 30,200 253.84 1,933 279.00 645 - -
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random belief networks random belief networks
(n=100, k=3, p=2, ¢=90) [minfill: w*=14, h=25] : (n=100, k=3, p=2, c=90) [minfill: w*=14, h=25]

—e— BB+SMB()) —e— BB+SMB()
—O— AOBB+SMB(j) ~~ —-O— AOBB+SMB(j)
—v— BB+DMB(i) —v— BB+DMB(j)

—-A— AOBB+DMB(i) 10° 5 —-£4— AOBB+DMB(i)

i-bound i-bound

Fig. 14. Comparison of the impact of static and dynamic mini-bucket heuristicnolom
belief networks with parameter$n = 100, k = 3,p = 2, ¢ = 90) from Table 4.

bounds {.e., i € {2,4,6}) when the heuristic is weak. This demonstrates the ben-
efit of AND/OR over classical OR search when the heuristiovedes are rela-
tively weak and the algorithms rely primarily on search eatthan on pruning via
the heuristic evaluation function. As thiédbound increases (., ¢ > 8) and the
heuristic estimates become strong enough to cut the seaacke substantially, the
difference between the AND/OR and OR Branch-and-Bound dsesea

When focusing on dynamic mini-bucket heuristics, we obs#ratAOBB+DIVB( 7)

is better thaBB+DIVB( ¢) at relatively smalf-bounds, but the difference is not that
prominent as in the static case. This is probably because theuristics are far
more accurate compared with the pre-compiled version amddkings in number
of nodes caused by traversing the AND/OR search tree do anaglate into addi-
tional time savings. When comparing the static and dynanmmé-bucket heuristics,
we see that the latter is competitive only for relatively 8mdoounds, because of
the high overhead of the dynamic mini-bucket. This may baiS@ant because
smalli-bounds usually require restricted space. At higher leskteei-bound the
accuracy of the dynamic mini-bucket heuristic does not eigvits overhead.

In some exceptional cases the OR Branch-and-Bound explonest feodes than
the AND/OR counterpart. For example, on problem class dysga in the third hor-
izontal block of Table 4, the search space explored®gB+DVB( 4) was almost
two times larger that that explored BB+DVB( 4) . Similarly, AOBB+SMB( 8) ex-
panded almost two times more nodes tB&+SMB( 8) on this problem class. This
can be explained by the internal dynamic ordering used by ANDBranch-and-
Bound to solve independent subproblems rooted at the ANDswdthe search
tree, which did not pay off in this case. We also see that eveaghBB+SMB( 7)
(resp.BB+DIVB( 7) ) traversed a smaller search space tA@BB+SNVB( i) (resp.
AOBB+DMB( i) ), the runtime of the AND/OR algorithms was actually betéris
is because the computational overhead of the mini-bucketidtes was much
smaller for AND/OR search than for OR search, and, therefbeeAND/OR algo-
rithms were able to overcome the increase in size of the lsspace.
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Figure 14 plots the running time and number of nodes visifed@BB+SMB( )
and AOBB+DVB( i) (resp.BB+SMB(i) and BB+DMB( ) ) as a function of the
mini-bucketi-bound for solving the random belief networks with paramete =
100,k = 3,p = 2,¢ = 90) (i.e., corresponding to the second horizontal block from
Table 4). It shows explicitly how the performance of Brancit-8ound changes
with the mini-bucket strength for both types of heuristidfe see thai-bound of
6 is most cost effective for dynamic mini-buckets, whilbound of 12 yields best
performance for static mini-buckets. We see clearly thatdymamic mini-bucket
heuristic is more accurate yielding smaller search spdicalso demonstrates that
the dynamic mini-bucket heuristics are cost effective alsfrbounds, whereas the
pre-compiled version is more powerful for largdoounds. This behavior is typical
for all instances presented in the subsequent sections.

When comparing the min-fill versus hypergraph heuristicsgiemerating pseudo
trees, we observe that the hypergraph based pseudo treesrhaller depths. How-
ever, min-fill trees appear to be favorabledoBB+SMB( 7) . This may be explained
by the fact that pre-compiling the mini-bucket heuristiowgsa min-fill based elim-
ination ordering tends to generate more accurate estinfadeAOBB+DMVB( i) the
picture is sometimes reversed, but not in a significant way.

9.3.2 Random Coding Networks

We experimented with random coding networks from the claa@ar block codes
[60—62]. They can be represented as 4-layer belief netwaitks X' nodes in each
layer (.e., the number of input bits). The second and third layers spad to in-
put information bits and parity check bits respectivelyclEparity check bit repre-
sents an XOR function of the input bits. The first and lastiagerrespond to trans-
mitted information and parity check bits respectively.uhmformation and parity
check nodes are binary, while the output nodes are reaédlaldiven a number of
input bits K, number of parent® for each XOR bit, and channel noise variance
o2, a coding network structure is generated by randomly pickiarents for each
XOR node. Then we simulate an input signal by assuming a imifandom dis-
tribution of information bits, compute the correspondiradues of the parity check
bits, and generate an assignment to the output nodes byga@dinssian noise to
each information and parity check bit. The decoding alpamitakes as input the
coding network and the observed real-valued output asgghand recovers the
original input bit-vector by computing an MPE assignment.

Table 5 displays the results using min-fill and hypergrapseldgpseudo trees for
solving a classes of random coding networks with= 128 input bits. The number

of parents for each XOR bit waB = 4 and we chose the channel noise variance
o? € {0.22,0.36}. For each value combination of the parameters we generéted 2
random instances.
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Table 5

CPU time and nodes visited for solvingndom coding networkswith 128 bits, 4 parents
per XOR bit and channel noise varianeé € {0.22,0.36}. Time limit 5 minutes. The
pseudo trees were generated by the min-fill and hypergraph heuristics.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.05 0.06 0.18 1.80 25.65
257.42 1,581,950 52.69 345,028 353 12,513 25.75 2,065
(128, 256) (53,71) - - 229.02 3,227,110 16.67 206,004 22,644 25.87 3,081
o2 =0.22 196.64 41,359 48.80 4,178 17.86 726 130.95 588
195.82 121,822 48.17 9,391 17.15 500 129.38 388
0.05 0.06 0.18 1.80 25.39
- - | 27120 1717770 | 21188 1452980 508,738
(128, 256) (53, 71) 291.61 4,309,160 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120
o2 =0.36 289.06 65,591 230.23 22,617 234.33 6,857 276.40 1,957
289.09 223,938 229.91 46,768 233.96 7,947 276.31 953
hypergraph pseudo tree
0.73 0.74 0.86 249 27.13
285.82 1,765,300 184.90 1,264,890 94.43 677,488 3172 36,604
(128, 256) (53, 63) - - | 23891 3070670 | 12501 1,252,930 3812 404,160 1,658
0?2 =0.22 277.94 133,702 152.10 21,264 27.63 942 90.89 376 -
282.15 126,614 84.82 6,358 73.46 1,307 166.75 409
0.73 0.74 0.86 251 25.95
296.69 1,948,930 285.70 2,009,240 210.16 1,360,710
(128, 256) (53, 63) 296.02 3,583,930 251.96 2,969,470 1,340,740
o2 =0.36 287.30 32,456 269.73 5,269 292.08 2,308 -
261.00 58,212 269.14 4,614 282.24 823

We see thafOBB+SMB( i) andAOBB+DMVB( i) are slightly faster thaBB+SVB( 7)
and BB+D\VB( i) , respectively, only for relatively smailtbounds. In several test
cases, however, the search space explored by the AND/ORthaige was larger
than the corresponding OR space. For instance, on the pnotiess witho? =
0.36 shown in the second horizontal block of TableA&BB+SMB( 12) expanded
almost 2 times more nodes thB8+SMB( 12) . This was caused again by the in-
ternal dynamic variable ordering used by the AND/OR aldponis. We also see that
the overhead of the mini-bucket heuristic was smaller irAN®/OR than the OR
case, which paid off in some test cases.

When looking at the impact of the min-fill versus the hyperpréjased pseudo
trees we see that, even though the hypergraph trees wetevatralhan the min-

fill ones, the mini-bucket heuristics generated relativenio-fill orderings were
more accurate than those corresponding to hypergraphtigairig based orderings.

In some cases this translated into significant time saviRgs.example, on the
problem class withr? = 0.22, the min-fill pseudo tree causes an 8-fold speedup
over the hypergraph tree, f&OBB+SMB( 12) . A similar behavior can be observed
for dynamic mini-bucket heuristics, as well.
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Fig. 15. Comparison of the impact of static and dynamic mini-bucket heuristicaalom
coding networkswith parameter$ K = 128, 02 = 0.22) from Table 5.

Figure 15 plots the running time and number of nodes visiteA@BB+SMVB( 7)
and AOBB+DMB( ) (resp.BB+SMB( i) and BB+DMB( i) ), for solving the cod-
ing networks with parameterds’ = 128,02 = 0.22) (i.e., corresponding to the
first horizontal block from Table 5). We see that as#®und increases, the mini-
bucket heuristics become more accurate and the perfornsBcanch-and-Bound
improves. For examplésbound of 14 yields the best performanceA@BB+SMB( i) ,
whereasAnOBB+DMVB( i ) achieves the best performance at 12. For even larger
i-bounds however, the overhead of both the pre-compiled gndrdic heuristics
deteriorates the performance of the algorithms. The dyoarmi-bucket heuristics
are better for relatively smaidtbounds, whereas relatively largebounds are cost
effective for the pre-compiled heuristics.

9.3.3 Grid Networks

In random grid networks, the nodes are arranged ivan/NV square and each CPT
is generated uniformly at random. We experimented with lgrobnstances having
bi-valued variables that were initially developed in [68] the task of weighted
model counting. For these problerysranges between 10 and 38, and, for each in-
stance90% of the CPTs are deterministic (having only 0 and 1 probabditiries).

Table 6 displays the results for experiments with 8 gridsnafeasing difficulty,
using min-fill based pseudo trees. For each test instanceawe rsingle MPE
guery withe evidence variables picked randomly. We see again the sujigrof
AOBB+SMB( i) over the OR counterpart, especially on the harder instarfe®s
example, on th@&0- 30- 1 grid, ACBB+SMB( 20) finds the MPE in about 87 sec-
onds, whereaBB+SMB( 20) exceeds the 1 hour time limit. The AND/OR Branch-
and-Bound algorithms with dynamic mini-bucket heuristisswell asSanl amare
able to solve relatively efficiently only the first 3 test iastes.

Figure 16 plots the running time and number of nodes visiteA®BB+SVB( 1)
andACBB+DMB( i) (resp.BB+SMB( i) andBB+DMB( i) ), for solving thed0- 14- 1
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Table 6

CPU time in seconds and nodes visited for solvinigl networks. Time limit 1 hour.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
e BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=8 i=10 i=12 i=14 i=16 i=18
time time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.02 0.04 0.07 0.07 0.08
90-10-1 0.12 3,348 424 0.05 153 0.07 153 0.08 153 0.09 153
(13, 39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101 0.08 101
(100, 0) 0.87 543 0.57 250 0.48 153 054 153 0.54 153 054 153
0.34 344 0.33 241 0.32 101 0.39 101 0.39 101 0.39 101
0.02 0.04 0.11 0.22 0.72 271
90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 0.54 5,035 0.90 2,826 2.78 1,075
(22, 66) 11.97 4.27 130,619 344 100,696 0.61 17,479 3321 0.81 2,938 2.80 3,386
(196, 0) 149.44 16,415 52.34 2,894 12.46 537 13.71 211 19.22 199 38.05 198
65.74 31,476 3357 4,137 7.50 397 12.00 211 17.65 199 36.87 198
0.03 0.05 0.14 0.46 4.36
90-16-1 - - - - 23.74 347,479 1.85 18,855 6,098 453 1,894
(24, 82) 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 23,421 455 5,842
(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 414 181.71 414
1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 260 109.76 260
i=10 i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes time nodes
0.14 0.33 0.89 2.69 7.61 31.26
90-24-1 - - - - - - - - - - - -
(33,111) - - - - - 1500.66 24,117,151 921.96 18,238,983 1,413,764 111.46 1,308,009
(576, 20) - - - - - - - - - - - -
- - - - - - 1367.38 2,739 1979.42 1,228 2637.71 598
0.16 0.37 1.02 3.39 11.74 36.16
90-26-1 - - - - - - 324.30 2,234,558 - - 70.53 327,859
(36, 113) - 1533.11 17,899,574 206.93 2,903,489 242.37 3,205,257 59,055 21.48 165,182 36.49 5777
(676, 40) - - - - - - - - - - - -
1852.27 177,661 - - - - 1514.18 2,545 2889.49 1,191 - -
0.25 0.53 1.35 4.36 13.34 50.53
90-30-1 - - - - - - - - - - - -
(43, 150) - - - 742.51 9,445,224 239.08 3,324,942 215.56 3,039,966 101.10 1,358,569 485,300
(900, 60) - - - - - - - - - - - -
0.33 0.66 1.60 535 18.42 62.17
90-34-1 - - - - - - - - - - - -
(45, 153) - - - - - - - - - - - 1,549,829
(1154, 80) - - - - - - : - : : - -
041 0.82 2.16 6.43 20.46 72.10
90-38-1 - - - - - - - - - - - -
(47,163) - - - 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146
(1444, 120) - - - - - - - - - - - -

grid network ¢.e.,

corresponding to the second horizontal block from Table 6)
Focusing onAOBB+SMB( i) (resp.BB+SMB( i) ) we see that its running time, as

a function of, forms a U-shaped curve. At first & 4) it is high, then as the
i-bound increases the total time decreases (whea 10 the time is 3.44 for
AOBB+SMB(10) and 71.98 forBB+SMB( 10) , respectively), but then asin-
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Fig. 16. Comparison of the impact of static and dynamic mini-bucket heuristidhe
90- 14- 1 grid network from Table 6.

creases further the time starts to increase again. The ssima@ibr can be observed
in the case oAOBB+DIVB( i) (resp.BB+DMB( 7)) as well.

Figure 17 displays the runtime distribution AOBB+SMB( ) using hypergraph
based pseudo trees for 4 grid networks. For each repoftedind, the corre-
sponding data point and error bar show the average as weleasinimum and
maximum runtime obtained over 20 independent runs of theriigm with a 30
minute time limit. We also record the average induced widttl depth obtained
for the hypergraph pseudo trees (see the header of eacimptagure 17). As ob-
served earlier, the hypergraph based pseudo trees arécsigtly shallower com-
pared with the min-fill ones, and in some cases they are ablapgoove perfor-
mance dramatically, especially at relatively smallounds. For example, on the
grid 90- 24- 1, AOBB+SMB( 14) guided by a hypergraph pseudo tree is about
2 orders of magnitude faster th&®©BB+SMB( 14) using a min-fill pseudo tree.
At largeri-bounds, the pre-compiled mini-bucket heuristic benefamfthe small
induced width which normally is obtained with the min-filldaring. Therefore
AOBB+SMB( 7) using min-fill based trees is generally faster t#®BB+SVB( 7)
guided by hypergraph based treeg(, 90- 26- 1).

9.3.4 Genetic Linkage Analysis

In human genetic linkage analysis [64], thaplotypeis the sequence of alleles
at different loci inherited by an individual from one parestd the two haplotypes
(maternal and paternal) of an individual constitute thdividual’s genotypeWhen
genotypes are measured by standard procedures, the geaulist of unordered
pairs of alleles, one pair for each locus. Thaximum likelihood haplotyg&oblem
consists of finding a joint haplotype configuration for allmizers of the pedigree
which maximizes the probability of data.

The pedigree data can be represented as a belief networttwethtypes of random
variablesgenetic locivariables which represent the genotypes of the individnals
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Fig. 17. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
CPU time in seconds for solvirgyid networks with AOBB+SMB( 7) .

Fig. 18. A fragment of a belief network used in genetic linkage analysis.

the pedigree (two genetic loci variables per individuallpeus, one for the paternal
allele and one for the maternal allelphenotypevariables, angelectorvariables
which are auxiliary variables used to represent the geneifidhve pedigree. Fig-
ure 18 shows a fragment of a network that describes paréiitsinteractions in
a simple 2-loci analysis. The genetic loci variables of witlial 7 at locus; are
denoted byL; ;, and L, ;,,,. VariablesX; ;, S, ;, andS; j,, denote the phenotype
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Table 7
CPU time and nodes visited for solviggnetic linkage networks Time limit 3 hours.

min-fill pseudo tree
MBE() MBE(i) MBE(i) MBE() MBE(i)

pedigree | Superlink | Samlam BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(k) AOBB-+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes
pedl 0.05 0.05 0.11 031 0.97
(299, 5) 54.73 5.44 6.34 37,657 7.33 42,447 8.30 41134
(15, 61) 24.30 416,326 13.17 206,439 24,361 184 25,674 1.89 15,156
ped3s 0.12 0.45 220 60.97 out
(582, 5) out
(17, 59) 812058 85,367,022 304060 35,394,461
peds0 0.11 074 5.38 37.19 out
(479, 5) out -
(18, 58) 476.77 5566578 | [104.00] 748,792

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes
ped23 0.42 233 11.33 274.75 out
(310, 5) 9146.19 out - 3176.72 14,044,797 343.52 358,604
(27,71) 49805 6,623,197 | [15.45 154,676 16.28 67,456 286.11 117,308
ped37 0.67 5.16 2153 58.59 out
(1032, 5) out
(21, 61) 27339 3,191,218 | 168209  25729,009 | 1096.79 15,598,863 128.16 953,061

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes
ped18 051 1.42 459 12.87 19.30
(1184, 5) 139.06 157.05 - -
(21, 119) 2177.81 28,651,103 | 270.96 2,555,078 100.61 682,175 [20.27] 7,689
ped20 1.42 511 37.53 410.96 out
(388, 5) out
(24, 66) 379331 54941659 | 129376 18449393 | 1259.05 17,810,674 | 108005 9,151,195
ped25 0.34 072 227 6.56 29.30
(994, 5) out -
(34,89) 939928 111,301,168 | 3607.82 34306937 | [2965.60 28,326,541
ped30 0.42 0.83 178 575 21.30
(1016,5) | 13095.83 out -
(23, 118) 21410 1379131 [o1.92] 685,661
ped33 058 231 7.84 33.44 112.83
(581, 4) out N
(37, 165) 280461 34,229,495 | 737.96 9114411 | 389698 50,072,988 | [159.50] 1,647,488 295647 35,903,215
ped39 052 232 841 33.15 81.27
(1272, 5) 32214 out - -
(23, 94) 404156 52,804,044 386.13 2171470 | [141.23 407,280
peda2 420 31.33 206.40 out out
(448, 5) out
(25, 76)

variable, the paternal selector variable and the mateeiatt®r variable of indi-
vidual i at locusj, respectively. The conditional probability tables thatrespond
to the selector variables are parameterized by¢hembination ratia? [65]. The
remaining tables contain only deterministic informatitirtan be shown that given
the pedigree data, the haplotyping problem is equivalembtoputing the Most
Probable Explanation (MPE) of the corresponding beliefvoek [65,66].
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Fig. 19. Min-Fill versus Hypergraph partitioning heuristics for pseude ttonstruction.
CPU time in seconds for solvingenetic linkage networkswith AOBB+SMB( i) .

Table 7 shows results with 12 genetic linkage netwérksor comparison, we in-
clude results obtained withUPERLINK 1.6. SUPERLINK [65,66] which is cur-
rently one of the most efficient solvers for genetic linkagalgsis, uses a combi-
nation of variable elimination and conditioning, and takesantage of the deter-
minism in the network. We did not ru&\OBB+DIVB( i) (resp.BB+DIVB( ) ) on this
domain because of its prohibitively high computationalrbead associated with
relatively largei-bounds.

We observe again thaOBB+SMB( i) is the best performing algorithm, outper-
forming its competitors on 8 out of the 12 test networks. Fxangple, on the
ped23 instance AOBB+SMB( 12) is 2 orders of magnitude faster thawr:r-
LINK, whereas &M IAM andBB+SMB( i) exceed the 2GB memory bound and the
3 hour time limit, respectively. Similarly, on thed30 instance AOBB+SMVB( 20)
outperforms SPERLINK with about 2 orders of magnitude, while neithemsl Am

nor BB+SMB( 20) are able to solve the problem instance. Notice thapie42
instance is solved only byU$ERLINK.

Figure 19 displays the runtime distribution A0BB+SMB( i) with hypergraph
based pseudo trees over 20 independent runs, for 4 linkatgnoes. Again, we

° Available at http://bioinfo.cs.technion.ac.il/superlink/. The correspondingfiresteiork
of the pedigree data was extracted using the export feature ofutbEREINK 1.6 program.
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see that the hypergraph partitioning heuristic generadesqo trees having aver-
age depths almost two times smaller than those of the mibddkd ones. There-
fore, using hypergraph based pseudo trees improves soesetignificantly the
performance for relatively smalbounds ¢.g., ped23, ped33).

In the appendix we provide additional empirical resultsr@agling networks (Sec-
tion A.1), circuit diagnosis networks (Section A.2), prei instances from the
Bayesian Networks Repository (Section A.4), and networks fitte UAI'06 Eval-
uation Dataset (Section A.3).

9.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model expbesh hard constraints
and general cost functions, it is beneficial to exploit theapatational power of the
constraints explicitly via constraint propagation [67}#or Bayesian networks,
the hard constraints are represented by the zero prolyabitites of the CPTs. We
note that the use of constraint propagation via directioesdblution [71] or gen-
eralized arc consistency has been explored in [67,68],enctintext of variable
elimination algorithms where the constraints are alsoaexéd based on the zero
probabilities in the Bayesian network. The approach we takééndling the de-
terminism in belief networks is based on the known technigfuenit resolution
for Boolean Satisfiability (SAT). The idea of using unit rega@n during search for
Bayesian networks was first explored in [69]. A detailed deson of the CNF
encoding based on the zero probability tuples in the Bayewamork is provided
in Appendix (Section A.5).

We evaluated the AND/OR Branch-and-Bound algorithms witticstand dynamic
mini-bucket heuristics on selected classes of Bayesianank$ncontaining deter-
ministic conditional probability tables.¢., zero probability tuples). The algorithms
exploit the determinism present in the networks by applyinigresolution over the
CNF encoding of the zero-probability tuples, at each nodeersearch tree. They
are denoted byAOBB+SAT+SMB( i) and AOBB+SAT+DMB( i) , respectively. We
used a unit resolution scheme similar to the one employed@af f , a state-
of-the-art SAT solver introduced by [72]. These experirsemére performed on a
2.4GHz Pentium IV with 2GB of RAM running Windows XP, and thiere the
CPU times reported here may be slower than those in the presextions.

Table 8 shows the results for experiments with the grid neke/fsom Section 9.3.3.
As mentioned earlier, these networks have a high degred@frdmism encoded in
their CPTs. Specifically, 90% of the probability tables aredwainistic, containing
only 0 and 1 probability entries.

We observe thadOBB+SAT+SMB( i) improves significantly oveAOBB+SMVB( i) ,
especially at relatively smallbounds. For example, on tH0- 26- 1 grid in-
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Table 8

CPU time and nodes visited for solvidgterministic grid networks. Time limit 1 hour.

min-fill pseudo tree
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(n,e i=8 i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes time nodes
0.31 8,080 0.11 2,052 101 0.05 101 0.05 101 0.06 101
90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101 0.06 101
(13, 39) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101 0.28 101
(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101 0.47 101
7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938 181 3,386
90-14-1 2.36 45,870 252 46,064 0.66 11,914 3,286 0.61 2,922 178 3,359
(22, 66) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199 21.23 198
(196, 0) 33.03 10,135 16.08 3,270 4.92 396 772 211 10.88 199 21.64 198
646.83 10,104,350 164.02 2,600,690 13.14 193,440 292 39,825 2.08 23,421 292 5,842
90-16-1 121.24 2,209,097 7897 1,416,247 6.99 121,595 225 35,376 22,986 2.84 5,609
(24,82 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260 65.05 260
(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260 64.99 260
i=10 i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes time nodes
2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009
90-24-1 1529.21 18,103,859 2605.56 30,929,553 689.47 9,868,626 738.17 11,100,088 1,282,902 121.67 1,273,738
(33,111) 884.41 2,739 122318 1,228 1634.57 598
(576, 20) 843.79 2,739 1173.48 1,228 1611.74 598
221715 17,899,574 314.88 2,903,489 382.22 3,205,257 842 59,055 2314 165,182 2222 5777
90-26-1 233.94 2,527,496 103.56 1,264,309 167.27 1,805,787 43,798 19.36 150,345 2211 4,935
(36, 113) 1420.21 177,661 938.98 2,545 1701.64 1,191 2638.95 691
(676, 40) 1099.87 171,961 1592.53 108,694 1034.26 12,819 862.38 2,545 1583.37 1,101 2478.19 691
1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300
90-30-1 754.427 7,050,411 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 387,242
(43, 150) _
(900, 60)
462.41 1,549,829
90-34-1 981,831
(45, 153) R
(1154, 80)
2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065
90-38-1 1128.56 5,121,466 410.94 1,972,430 578.54 2,339,244 270.05 1,349,223 27811 1,249,270 702,806
(47, 163) -
(1444, 120)

stance AOBB+SAT+SMB( 10) is 9 times faster tharh\OBB+SMB( 10) . As the
1-bound increases and the search space is pruned moreeffgdine difference
betweenAOBB+SMB( i) and AOBB+SAT+SMB( /) decreases because the heuris-
tics are strong enough to cut the search space significaimgymini-bucket heuris-
tic already does some level of constraint propagation.

When comparing the AND/OR search algorithms with dynamid+bucket heuris-

tics, we see that the difference betwe¥tBB+DVB( i) andAOBB+SAT+DIVB( )

is again more pronounced at relatively smallounds. For more experiments on

deterministic Bayesian networks see Section A.5 in the agipen

Figure 20 displays the CPU time and number of nodes visited, famction of
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Fig. 20. Comparison of the impact of static and dynamic mini-bucket heuristidbe
90- 16- 1 deterministic grid network from Table 8.

the mini-bucket-bound, on th®0- 16- 1 grid network {.e., corresponding to the
third horizontal block from Table 8). We notice again the téysed curve of the
running time for all algorithms.

9.5 Results for Empirical Evaluation of Weighted CSPs

In this section we focus on both mini-bucket and EDAC heiogstvhen problems
are solved in a static variable ordering. We also evaluaertipact of dynamic
variable orderings when using EDAC based heuristics.

9.5.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real sciregipkoblems for the
daily management of Earth observing satellites [10]. Thesblems can be de-
scribed as follows:

e Given a selP of photographs which can be taken the next day from at least on
of the three instruments, w.r.t. the satellite trajectory;

e Given, for each photograph, a weight expressing its impoda

e Given a set of imperative constraints: non overlapping aimdmal transition
time between two successive photographs on the same iresitulmitation on
the instantaneous data flow through the satellite telemetry

e The goalis to find an admissible sub&tof P which maximizes the sum of the
weights of the photographs I when all imperative constraints are satisfied.

They can be casted as WCSPs by:

e Associating a variabl&’; with each photograpp; € P;
e Associating withX; a domainD; to express the different ways of achievipg
and adding td); a special value, calle@jectionvalue, to express the possibility
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Table 9

CPU time and nodes visited for solvi®POT5 networks Time limit 2 hours.

minfill pseudo tree

MBE() MBE() MBE() MBE() MBE(i) AOEDAC
Sspots BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) toolbar
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(n.k ¢ AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.03 0.34 21.72 147.66 613.79 8,997,894
29 - 25.69 5,095 148.27 632 456 218,846
(14, 42) 8.44 86,058 483 45,509 2,738 2174 246 147.69 481
(83, 4, 476) 442 12,007 | 13164 9,713 57.22 541 678.22 507 | 1758.78 507
28.27 14438 | 6591 11,850 53.72 364 630.09 330 | 1675.74 330
0.01 0.11 0.50 28.81 22314
42b 215464 9,655,444 148.11 712,685 228.17 12,255
(18,62) 179076 9,606,846 689,402 223.64 4,189
(191, 4, 1341) .
0.01 0.02 0.09 1.25 1.23 31.34 823,326
54 668.77 6,352,998 298 27,383 059 4,996 1.28 921 152 921 21,939
(11,33) 10599 1,106,598 1.50 17,757 0.34 3,616 1.28 329 127 329
(68, 4, 283) 1150.54 163993 | 5244 2,469 38.63 921 464.58 921 465.35 921
204.11 69362 | 27.27 2,188 21.91 329 266.55 329 265.89 329
0.01 0.02 0.09 1.09 403 25583 3,260,610
404 - - - - - | 400057 32763223 | 1827.05 15265025 | 15111 6215135
(19, 42) 41318 3969398 | 14605 1,373,846 14.08 144,535 3273 4,06 367
(100, 4, 710) - - - - - - - - | 1964.20 2,015
238.97 156,338 | 272.46 39144 | 21517 5,612 565.06 1,327 167.90 220
0.02 0.08 031 8.30 35.22
408b - - - -
(24, 59) 682.12 4,784,407 567,407
(201, 4, 1847) -
0.01 0.03 0.14 0.39 0.39
503 - - - - 122 5,229 1.22 5,229
(9, 39) 41263 5102299 | 39777 4,990,898 641 641
(144, 4, 639) 690.44 5,220 694.86 5,229
64.02 641 64.52 641
0.01 0.01 0.12 48.20 372.27
505b - -
(16, 98) 143,371
(240, 4, 1721) -

of not selecting the photograpiz

e Associating with everyX; an unary constraint forbidding the rejection value,
with a valuation equal to the weight gf;
e Translating as imperative constraints (binary or terndémg) constraints of non
overlapping and minimal transition time between two (oe#)rphotographs on
the same instrument, and of limitation on the instantanelats flow. Each im-
perative constraint is defined over a subset of two or threggginaphs and for
each value combination of its scope variables it assocatgigh penalty cost
(10°) if the corresponding photographs cannot be taken simettasly, on the
same instrument.
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Fig. 21. Comparison of the impact of static and dynamic mini-bucket heuristitise®?9
SPOTS5 instancefrom Table 9.
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Fig. 22. Min-Fill versus Hypergraph partitioning heuristics for pseude tonstruction.
CPU time in seconds for solvingPOT5 networkswith AOBB+SMB( 7) .

The task is to computeninx >/, f;, wherer is the number of unary, binary and
ternary cost functions in the problem.

Table 9 reports the results obtained for experiments witR@Es networks, using
min-fill pseudo trees. We see thaDBB+SMB( i) is the best performing algorithm
on this dataset. The overhead of the dynamic mini-bucketisteas outweighs
search pruning here. For instance, on #t3 network, the difference between
AOBB+SMB(12) andBB+SMB( 12), in terms of runtime and size of the search
space explored, is up to 3 orders of magnitude. The bestmpaaftces on this do-
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main are obtained bpOBB+SMB( i) at relatively largei-bounds which generate
very accurate heuristic estimates. For exam@@BB+SMB( 14) is the only algo-
rithm able to solve th&05b network. ACEDAC andt ool bar were able to solve
relatively efficiently only 3 out of the 7 test instancesy(, 29, 54 and404).

In Figure 21 we plot the running time and number of nodesedidity AOBB+SMB( )
and AOBB+DVB( i) (resp.BB+SMB(i) and BB+DMVB( i) ), as a function of the
i-bound, on the29 SPOT5 network i(e., corresponding to the first horizontal
block from Table 9). In this casAOBB+DMB( i) (resp.BB+DVB( 1)) is inferior
to AOBB+SMB( i) (resp.BB+DIVB( i) ) across all reportedtbounds. We see that
AOBB+SMB( i) achieves the best performancei at 8, whereasAOBB+DVB( )
performs best only at the smallest reportdzbund, namely = 4.

Figure 22 displays the runtime distribution AOBB+SMB( i) guided by hyper-
graph based pseudo trees, over 20 independent runs. Hgpkrgased trees have
far smaller depths than the min-fill ones, and therefore gegnaable to improve
the runtime over min-fill based ones only at relatively smddbunds ¢.g., 404).
On average, however, the min-fill pseudo trees generallg yenore robust per-
formance, especially for largesbounds of the mini-bucket heuristics ., 503).

9.5.2 ISCAS’'89 Benchmark

ISCAS’89 circuits are a common benchmark used in formal wattibon and diag-
nosis. For our purpose, we converted each of these ciroaitginon-binary WCSP
instance by removing flip-flops and buffers in a standard walyaeating for each
gate a cost function that assigns a high penalty cost (1@0®gtforbidden tuples.
For each of the input signals we created, in addition, a unasy function with

penalty costs distributed uniformly at random between 1Hhd

Table 10 shows the results for experiments with 10 circus#ng min-fill pseudo

trees. The EDAC based algorithms performed very poorly endétaset and could
not solve any of the test instances within the 30 minute timé.| This was due to

the relatively large arity of the constraints, with up to Hdiables in their scope.

AOBB+SMB( i) is superior, especially at relatively largbounds. For example,
on thes1238 circuit, AOBB+SMB( 16) finds the optimal solution in about 26
seconds, whered®®B+SMB( 16) as well asAOBB+DVB( 16) andBB+DVB( 16)
exceed the time limit. In this cas&OBB+DVB( i) is competitive at relatively small
i-bounds, which cause a relatively small computational loead. For instance,
AOBB+DIVB( 6) is the best performing algorithm on tls®53 network. It is 18
times faster and expands 14 times fewer nodes BiaDVB( 6) .

In Figure 23 we show the running time and size of the searcbespaplored by

AOBB+SMB( i) and AOBB+DMVB(:) (resp.BB+SMB(:) and BB+DMB( i) ), as a
function of thei-bound, on thes1494 ISCAS’89 circuit ¢.e., corresponding to
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Table 10

CPU time and nodes visited for solvil§CAS’89 circuits. Time limit 1 hour. ACEDAC

andt ool bar were not able to solve any of the test instances within the time limit.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, k) i=6 i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
0.06 0.07 0.09 0.14 0.27 0.89
c432 - - - - - - 13.27 103,088 1329 102,546 6.79 34,671
(27, 45) - - 1373.07 23,355,897 96.29 1,713,265 3.85 76,346 3.89 75,420 1,958
(432,2) - - 104.57 35,073 770.42 107,126 485.61 70,401 125.95 35,502 122.09 35,609
- - 3.04 1,578 39.65 34,904 26.26 16,482 9.17 1,070 6.67 692
0.03 0.04 0.05 0.14 0.36 0.99
c499 - - - - - - 53,171 9.62 63,177 5.80 24,397
(23,55) 4.72 117,563 61.48 1,265,425 25.15 526,517 18,851 24.18 486,656 1.80 22,065
(499, 2) 56.49 29,664 141.89 78,830 110.56 56,256 65.42 40,123 132.20 56,002 203.74 76,832
3.87 10,147 2331 13,529 15.67 6,101 571 1,002 37.34 3,353 87.99 1,736
0.06 0.07 0.10 0.16 0.49 1.48
c880 - - - - - - - - - - 816.47 4,953,611
(27,67) 2284.65 39,448,762 957.25 19,992,512 737.90 15,247,946 275,51 5,835,825 607.43 13,568,696 137.31 2,837,010
(880, 2) 2463.80 321,585 - - - - 2461.68 270,166 3532.50 410,360 2817.47 238,297
[m 40,057 809.53 796,699 709.79 569,471 101.88 32,748 232.97 36,187 625.50 20,357
0.01 0.03 0.06 0.19 0.46
s386 3.26 31,903 5,118 0.50 5,655 0.51 5,108 0.61 4,543 0.86 4,543
(19, 44) 0.12 3,705 2,073 0.19 4,867 0.14 2,699 0.22 1,420 0.49 1,420
172, 2) 292 4,543 3.14 4,543 3.67 4,543 4.46 4,543 5.92 4,543 8.64 4,543
0.42 1,420 0.65 1,420 117 1,420 1.98 1,420 344 1,420 6.13 1,420
0.06 0.07 0.13 031 1.00 3.35
s953 - - - - - - - - - - - -
(66, 101) - - 1734.71 21,438,706 225.16 3,074,516 - - 28.40 348,699 7.14 51,441
(440, 2) 110.11 100,180 125.49 103,086 394.09 107,405 466.71 106,825 1412.68 107,063 1094.88 103,383
6,885 17.49 7,400 277.03 10,250 350.17 9,164 1294.39 11,164 984.06 8,377
0.08 0.15 0.37 127 451
s1196 - - - - - - - - - - - -
(54, 97) - - - - 920.11 12,392,442 3146.04 34,576,509 1281.38 15,775,180 269.73 3,318,953
(560, 21) 828.59 217,500 1126.06 216,777 2147.95 207,317 - - - - - -
39.22 26,501 62.99 21,849 147.88 17,524 355.39 15,443 1443.72 13,687 - -
0.06 0.09 0.15 041 125 472
51238 - - - - - - - - - - - -
(59, 94) 2245.60 32,501,292 - - - - 1061.12 18,302,873 821.55 14,213,319 360,788
(540, 2) 2744.88 294,977 1661.09 141,562 1708.45 103,045 - - - - - -
142.51 44,980 288.25 39,493 250.61 21,252 844.40 20,945 1449.22 13,857 - -
0.04 0.05 0.08 0.12 0.33 0.94
s1423 - - - - - - - - - - 167.07 448,044
(24, 54) 25.97 309,520 51.60 648,520 18.23 228,634 68,102 5.50 70,043 7.62 87,483
(748, 2) - - - - 2056.98 566,007 1969.46 539,925 2056.07 565,423 2156.59 579,511
57.03 52,996 27.67 26,772 3198 17,801 38.85 19,719 3192 3,513 56.80 4,323
0.06 0.09 0.17 0.45 150 543
$1488 - - - - - - 20.49 58,330 21.56 58,859 2359 50,080
(47, 67) 1076.11 13,244,002 4.79 50,613 32.33 430,141 29,729 4.28 33,827 6.63 17,904
(667, 2) 192,51 48,822 204.68 49,417 221.85 49,547 286.90 50,803 495.13 50,803 1205.42 50,803
11.58 15,025 18.02 15,064 35.61 13,279 94.05 13,762 304.60 13,762 1022.09 13,762
0.08 0.10 0.18 0.50 157 5.66
51494 3483.40 11,667,673 94.08 362,002 1600.16 5,437,947 396.38 1,544,960 22.78 66,745 26.81 68,848
(48, 69) 345,91 3,076,992 91.55 833,720 43.87 455,131 343.58 3,207,718 83,318 17.01 124,765
(661, 2) 233.36 55,236 279.75 59,161 270.84 53,969 350.23 53,067 391.96 47,139 1431.41 48,119
41.40 21,156 64.60 21,743 77.64 18,671 162.70 15,699 232.34 9,706 1260.97 9,913
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Fig. 23. Comparison of the impact of static and dynamic mini-bucket heuristidhe
$1494 ISCAS’89 circuitfrom Table 10.

the last horizontal block from Table 10). We see that the pawehe dynamic
mini-bucket heuristics is again more prominent for rekdfvsmalli-bounds. At
largeri-bounds, the static mini-bucket heuristics are cost affechamely the dif-
ference in running time betweeROBB+SMB(:) and AOBB+DVB( i) (resp. be-
tweenBB+SMB( i) andBB+DMB( 7)) is about two orders of magnitude in favor of
the former.

Figure 24 depicts the runtime distributionAOBB+SMB( 7) guided by hypergraph
based pseudo trees on the instance99, ¢880, s1238 ands1488, respec-
tively. In some cases(g., s1238), using hypergraph pseudo trees improves the
runtime up to one order of magnitude, compared with min-fiks.

9.5.3 Mastermind Games

Each of these networks is a ground instance of a relationaé8ay network that
models differing sizes of the popular game of MastermincesEnnetworks were
produced by the RiIMULA Systenf and used in experimental results from [73].
For our purpose, we converted these networks into equivs#&SP instances by
taking the negative log probability of each conditionallmability table entry and
rounding it to the nearest integer. The resulting WCSP ins®@ce quite large
with the number of bi-valued variables ranging between 1220 and 3692, and
containingn unary and ternary cost functions.

Table 11 shows the results for experiments with 6 game ins&anf increasing
difficulty, using min-fill based pseudo trees. As befok&€BB+SMB( ) offers the
overall best performance. For exam@eBB+SMB( 10) solves therm 04- 08- 03
instance in about 3 seconds, wherB&s-SMB( 10) exceeds the 1 hour time limit.
We did not report results with dynamic mini-bucket heucstbecause of the pro-
hibitively large computational overhead associated wafatively largei-bounds.
We also note that the EDAC based algorithms were not ablelve smy of these

6 http://www.cs.auc.dk/jaeger/Primula
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Fig. 24. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
CPU time in seconds for solvinCAS’89 networks with ACBB+SMB( 1) .

instances within the alloted time bound (not shown in théejab

In Figure 25 we display the runtime distribution AOBB+SMB( i) guided by hy-
pergraph based pseudo trees over 20 independent runs, ést thstances. The
spectrum of results is similar to what we observed earlier.

9.6 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variabteeongs on AND/OR
Branch-and-Bound search guided by local consistency (EDAGgd&euristics.
We did not use dynamic variable orderings with dynamic rbinéket heuristics
because of the prohibitively large computational overhead

SPOT5 Benchmark. Table 12 shows the results for experiments with the 7
SPOTS5 networks described in Section 9.5.1. We see thabkaaadering can have

a tremendous impact on performan8@EDAC+DSOis the best performing among
the EDAC based algorithms, and is able to solve 6 out of 7 tegainces. The
second best algorithm in this categoryD§O+ACEDAC which solves relatively
efficiently 3 test networks. This demonstrates the benefitsiig variable order-
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Table 11

CPU time and nodes visited for solvilgastermind game instancesTime limit 1 hour.
ACEDAC andt ool bar did not solve any of the test instances within the time limit.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=8 i=10 i=12 i=14 i=16 i=18
(nr,k) time nodes time nodes time nodes time nodes time nodes time nodes
mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99
(20, 57) - - - - 897.87 873,606 946.84 915,095 738.13 720,764
(1220, 3,2) 1.16 10,369 7,075 0.93 6,349 123 3,830 311 3,420 8.25 3,153
mm-03-08-04 0.48 0.60 0.89 2.08 6.45 2515
(33,87) - - - - - - - - - - - -
(2288, 3,2) 72.37 150,642 66.69 193,805 36.22 71,622 m 31,177 25.16 63,669 29.27 13,870
mm-04-08-03 0.21 0.27 0.48 1.06 354 1252
(26, 72) - - 1609.86 1,315,415 1603.71 1,175,430 1157.09 901,309 1924.02 1,451,854
(1418, 3,2) 8.20 68,929 26,111 4.23 34,445 310 17,255 529 15,443 13.71 10,570

i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes
mm-04-08-04 119 2.35 6.85 26.47 106.37 395.57
(39, 103) R
(2616, 3,2) 324.06 744,993 166.67 447,464 310.06 798,507 [ﬁ] 107,463 192.39 242,865 414.54 62,964
mm-03-08-05 214 454 11.82 39.01 134.46 497.45
(41,112) _
(3692, 3, 2) w 1,122,008 | 116222 1185327 | 120065 1,372,324
mm-10-08-03 148 3.78 11.39 34.53 127.55 593.25
(51, 132) - - - - - - - - - - -
(2606, 3, 2) 109.50 290,594 128.29 326,662 w 151,128 74.14 127,130 169.84 133,112 623.83 79,724

ing heuristics within AND/OR Branch-and-Bound search. We alsserve that the
best performance points highlighted in Table 12 are infeiwothose from Table
9 corresponding t&\OBB+SMB( i) . For example, on thé2b network, the differ-
ence in runtime and size of the search space explored bet\@ga+SVB( 12)

and ACEDAC+DSO is up to one order of magnitude in favor of the former. Simi-
larly, the505b network could not be solved by any of the EDAC based algothm
whereasAOBB+SMB( 14) finds the optimal solution in about 6 minutes. Notice
thatt ool bar is much better thaBBEDAC in all test cases. This can be explained
by a more careful and optimized implementation of EDAC whiglavailable in

t ool bar.

In Figure 26 we show the runtime distribution AOEDAC+PVO with hypergraph
pseudo trees on 20 independent runs. In this case, theetiffetbetween the min-
filland the hypergraph case is dramatic, resulting in uptediorders of magnitude
in favor of the latter.

CELAR Benchmark. Radio Link Frequency Assignment Problem (RLFAP) is
a communication problem where the goal is to assign freqasnc a set of radio
links in such a way that all links may operate together withmticeable interfer-
ences [9]. It can be naturally casted as a binary WCSP wherefedmtiden tuple
has an associated penalty cost.
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Fig. 25. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
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CPU time in seconds for solvingastermind networks with AOBB+SIMB( 7) .

Table 12
CPU time and nodes visited for solvil®POT5 benchmarkswith EDAC heuristics and

dynamic variable orderings. Time limit 2 hours.

minfill pseudo tree
spot5 | n | w toolbar | BBEDAC | AOEDAC | AOEDAC+PVO | DVO+AOEDAC | AOEDAC+DSO
c h
29 6 | 7 time 456 109.66 613.79 545.43 1136
57 | 8 | nodes | 218846 710122 | 8,997,894 7,837,447 8,698 92,970
42b 14 | 9 time 6825.4)
75 | 9 | nodes - 27,698,614
54 14 | 9 | ftime 031 0.97 3134 911 0.75
75 | 9 | nodes 21,939 8,270 823,326 90,495 688 6,614
404 6 | 10 | time 15111 2232.89 255.83 152.81 12.09
89 | 12 | nodes | 6215135 | 7598995 | 3,260,610 1,984,747 88,079 14,844
408b | 18 | 10 | time 747.71]
106 | 13 | nodes 2,134,472
503 | 22 | 11 | ftime
131 15 nodes 231,480
505b | 16 | 9 time
70 10 nodes

Table 13 shows detailed results for experiments Wb AR6 and CELAR7 sub-

instances. We considered only the OR and AND/OR algorithsite EDAC heuris-
tics. The performance of the mini-bucket based algorithras guite poor on this
domain, due to the very low quality of the heuristic estirsatsulted from approx-

imating subproblems with very large domains (up to 44 values
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Fig. 26. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
CPU time in seconds for solvifgPOT5 networkswith ACEDAC+PVQ.

We observe thatool bar is the overall best performing algorithm on this dataset.
One reason is thdt is close ton, so the AND/OR search is close to OR search.
When looking at the AND/OR algorithms we notice tiMO+ACEDAC offers the
best performance. On average, the speedups cauded@yACOBB over the other
algorithms are as follows: 1.9x ové&OEDAC, 1.6x overACEDAC+PVO and 2.5x
over BBEDAC. Furthermore ACEDAC+DSO performs similarly toACEDAC+PVO
indicating that the quality of the dynamic problem deconifpms is comparable to
the static one.

10 Related Work

The idea of exploiting structural properties of the problenorder to enhance the
performance of search algorithms in constraint satisfaas not new. Freuder and
Quinn [2] introduced the concept of pseudo tree arrangewfeamtonstraint graph
as a way of capturing independencies between subsets ablesi Subsequently,
pseudo tree seard] is conducted over a pseudo tree arrangement of the proble
which allows the detection of independent subproblemsareatolved separately.
More recently, [74] extended pseudo tree search [2] to apéition tasks in order
to boost the Russian Doll search [20] for solving Weighted C&Rs AND/OR
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Table 13
CPU time and nodes visited for solvi@@ELAR6 andCELAR7 sub-instances with EDAC
heuristics and dynamic variable orderings. Time limit 10 hours.

minfill pseudo tree
celar no|ow toolbar | BBEDAC | AOEDAC | AOEDAC+PVO | DVO+AOEDAC | AOEDAC+DSO
c h
celar6-sub0 16 7 time 0.88 120 0.79 0.82 0.67
57 | 8 | nodes 8,952 2,985 2,901 1,565 2,652 1,633
celar6-subl 14 | 9 | time 488.58 5079.28 6693.33 4972.42 4961.16 4999.17
75 | 9 | nodes | 752149 | 6381472 | 5558900 4,376,510 4,420,050 4,326,480
celarb-subl-24 | 14 | 9 | time [47.80] 269.88 319.20 25111 24855 252,65
75 | 9 | nodes | 1028814 716,746 512,419 446,808 440,238 440,857
celar6-sub2 16 | 10 | time 1887.40 6579.99 | 23896.83 12026.15 6097.33 11323.30
89 | 12 | nodes | 30223624 | 10941839 | 21,750,156 8,380,049 6,700,589 5,584,139
celar6-sub3 18 | 10 | time 4376.37 | 1468660 | 32439.00 28251.70 11131.00 28407.40
106 | 13 | nodes | 61,700,735 | 63304285 | 39,352,900 32,467,100 28,803,649 32,451,800
celar6-subd-20 | 22 | 11 | time 167155 27751 415,02 268,57 413.48
131 | 15 | nodes 167,960 | 8,970,211 522,981 952,804 893,609 1,256,102
celar7-sub0 16 | 9 | time 111 456 6.20 5.00 464 471
70 | 10 | nodes 6,898 9,146 10,248 10,198 9,151 9,761
celar7-subl 14 | 9 | time [23.86] 188.11 470.36 239.20 189.15 24541
75 | 9 | nodes 134,404 501,145 589,117 329,236 372,790 318,351
celar7-sub1-20 | 14 | 9 | time 0.67 3.49 14.09 3.56 330 333
75 | 9 | nodes 10438 18,959 27,805 15,860 15,637 14,351
celar7-sub2 16 | 10 | time 627.97 4822.89 7850.10 5424.98 4727.30 5545.80
89 | 11 | nodes | 1833808 | 4026263 | 7,644,780 3,454,750 3,326,511 2,654,120
celar7-sub3 18 10 time 6944.9§
106 | 13 | nodes | 14,754,723
celar7-subd-22 | 22 | 11 | time 360447 | 2388220 |  26210.05 7958.44 23166.40
129 | 15 | nodes | 6391923 | 23700235 | 34,941,835 11,533,163 23,674,049 3,429,708

Branch-and-Bound algorithm is also related to the BranchBmaihd method pro-
posed by [47] for acyclic AND/OR graphs and game trees.

Dechter’s graph-based back-jumping algorithm [75] usesprdfirst (DFS) span-
ning tree to extract knowledge about dependencies in thghgrBhe notion of

DFS-based search was also used by [76] for a distributedreamissatisfaction al-

gorithm. Bayardo and Miranker [3] reformulated the pseude search algorithm
in terms of back-jumping and showed that the depth of a psénedocarrangement
is always within a logarithmic factor off the induced widthtbe graph.

Recursive ConditioningRC) [58] is based on the divide and conquer paradigm.
Rather than instantiating variables to obtain a tree stradtonetwork like the cycle
cutset scheme, RC instantiates variables with the purposesaking the network
into independent subproblems, on which it can recurse ubagame technique.
The computation is driven by a data-structure catléee which is a full binary
tree, the leaves of which correspond to the network CPTsnlbeashown that RC
explores an AND/OR space [1]. A pseudo tree can be generededthe static
ordering of RC dictated by the dtree. This ensures that wiesn@C splits the
problem into independent subproblems, the same happeine AND/OR space.

Backtracking with Tree-DecompositigBTD) [25] is a memory intensive method
for solving constraint satisfaction (or optimization) plems which combines search

66



techniques with the notion of tree decomposition. This mhiapproach can in fact
be viewed as searching an AND/OR search space whose bacgbeundo tree is
defined by and structured along the tree decomposition. VElasfined in [25] as
structural goods, that is parts of the search space thatdwetl be visited again
as soon as their consistency (or optimal value) is knownegsponds precisely to
the decomposition of the AND/OR space at the level of AND rspedich root in-
dependent subproblems. The BTD algorithm is not linear spagses substantial
caching and may be exponential in the induced width.

11 Summary and Conclusion

The paper investigates the impact of AND/OR search spaespégeive on solving
general constraint optimization problems in graphical eledin contrast to the
traditional OR search, the new AND/OR search is sensitiggtbblem’s structure.
The linear space AND/OR tree search algorithms can be expiatig better (and
never worse) than the linear space OR tree search algori®pesifically, the size
of the AND/OR search tree is exponential in the depth of thdigg pseudo tree
rather than the number of variables, as in the OR case.

We introduced a general AND/OR Branch-and-Bound algorithan ¢xplores the
AND/OR search tree in a depth-first manner. It can be guidedryy heuristic
function. We investigated extensively the mini-bucket riwtic and showed that
it can prune the search space very effectively. The minkbubeuristics can be
either pre-compiled (static mini-buckets) or generatedadhyically at each node
in the search tree (dynamic mini-buckets). They are paramzed by the Mini-
Bucketi-bound which allows for a controllable trade-off betweenisic strength
and computational overhead. In conjunction with the mingiet heuristics we also
explored the effectiveness of another class of heuristietdoounds that is based on
exploiting local consistency algorithms for cost funcspim the context of WCSPs.

Since variable ordering can influence dramatically thecteperformance, we also
introduced several ordering schemes that combine the AIRDd@&composition
principle with dynamic variable ordering heuristics. Tdeare three approaches
to incorporating dynamic orderings into AND/OR Branch-d@alind search. The
first one applies an independent semantic variable ordéeangstic whenever the
partial order dictated by the static decomposition prilecgdlows. The second, or-
thogonal approach gives priority to the semantic varialstieong heuristic and
applies problem decomposition as a secondary principeeShe structure of the
problem may change dramatically during search we preserttadd approach that
uses a dynamic decomposition method coupled with semaatiable ordering
heuristics.

We focused our empirical evaluation on two common optinmzaproblems in
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graphical models: finding the MPE in Bayesian networks angisglWCSPs.
Our results demonstrated conclusively that in many caseddpth-first AND/OR
Branch-and-Bound algorithms guided by either mini-buckefooal consistency
based heuristics improve dramatically over traditionalB¥&nch-and-Bound search,
especially for relatively weak guiding heuristic estinmaté/e summarize next the
most important aspects reflecting the better performanabefAND/OR algo-
rithms, including the mini-bucketbound, dynamic variable orderings, constraint
propagation and the quality of the guiding pseudo tree.

e Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket hewsstiith relatively large
i-bounds are cost effective.., genetic linkage analysis networks from Table
7, Mastermind game instances from Table 11). However, i€spsa restricted,
the dynamic mini-bucket heuristics, which exploit the Erassignment along
the search path, appear to be the preferred choice, edpdaiaklatively small
i-bounds ¢.g., ISCAS’89 networks from Tables 10 and A.2). This is because
these heuristics are far more accurate for the sabweind than the pre-compiled
version and the savings in number of nodes explored tranisiatimportant time
savings.

e Impact of dynamic variable ordering. Our dynamic AND/OR search approach
was shown to be powerful especially when used in conjunetitimlocal consis-
tency based heuristics. The AND/OR Branch-and-Bound algostwith EDAC
based heuristics and dynamic variable orderings were so@&tble to outper-
form the Branch-and-Bound counterpart with static varialstleongs by two
orders of magnitude in terms of running time., see for example th03
SPOT5 network from Table 12).

e Impact of determinism. When the graphical model contains both deterministic
information (hard constraints) as well as general costtfans, we demonstrated
that is beneficial to exploit the computational power of thastraints explicitly,
via constraint propagation. Our experiments on selectasselk of determinis-
tic Bayesian networks showed that enforcing a form of comgtfgopagation,
called unit resolution, over the CNF encoding of the detersninpresent in the
network was able in some cases to render the search spacs hbwtrack-free
(e.g., ISCAS’89 networks from Table A.6). This caused a tremendedaction
in running time for the corresponding AND/OR algorithmsgy(, see for example
thes953 network from Table A.6).

e Impact of the static variable ordering via the pseudo tree.The performance
of the AND/OR search algorithms is highly influenced by thalgy of the guid-
ing pseudo tree. We investigated two heuristics for gemgratmall induced
width/depth pseudo trees. The min-fill based pseudo tregallyshave small
induced width but significantly larger depth, whereas thpengraph partition-
ing heuristic produces much smaller depth trees but withelainduced widths.
Our experiments demonstrated that the AND/OR algorithnrsgusini-bucket
heuristics benefit, on average, from the min-fill based psd¢rebs because the
guiding mini-bucket heuristic is sensitive to the inducadtv size which is ob-
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tained for these types of pseudo trees. In some exceptiasakdowever, the
hypergraph partitioning based pseudo trees were able tmiragsignificantly
the search performance, especially at relatively sidlatiunds ¢.g., see for ex-

ample thes 1238 network from Figure 24), because in those cases the smaller

depth guarantees a smaller AND/OR search tree. The picueversed for the
AND/OR algorithms that enforce local consistency, whicm@ sensitive to
the problem’s induced width. Here, the hypergraph based tneere able to im-
prove performance up to 3 orders of magnitude over the nmibaded trees(g.,
SPOT5 networks from Figure 26).

Our current depth-first AND/OR Branch-and-Bound approactdsaoom for fu-
ture improvements which are likely to make it more efficiemfpractice. For in-
stance, one could incorporate good initial upper boundriectes (using incom-
plete schemes), which in some cases can allow a best-fifstpemce using depth-
first AND/OR Branch-and-Bound search. Our approach for hagdhe determin-
istic information present in the graphical model is basechaestricted form of
relational arc consistency, namely unit resolution. Tfeees it would be interest-
ing to exploit more powerful constraint propagation schemech as generalized
arc or path consistency. The recent improvement of the BEirgket algorithm,
called Depth-First Mini-Bucket Eliminatioi77], could be explored further in the
context of AND/OR search in order to enhance the AND/OR Braanuth-Bound
guided by dynamic mini-bucket heuristics.

In a subsequent article we will continue the investigatibthe AND/OR search
space perspective for optimization in graphical models.f®cus will be on mem-
ory intensive AND/OR search algorithms that explore an AQR/graph, rather
than the tree, by equipping them with a context-based agagdiching scheme sim-
ilar to good and no-good recording mechanism as well as tschemes appearing
in Recursive Conditioning [58] and Backtracking with Tree Dmpositions [25].
In addition to depth-first we will also explorel@est-firstcontrol strategy. Under
conditions of admissibility and monotonicity of the hetigsfunction, best-first
search is known to expand the minimal number of nodes, atxpense of using
additional memory [78]. In practice, these savings in nhundiernodes may often
translate into time savings as well.
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Table A.1

CPU time and nodes visited for solvingndom coding networkswith 64 bits, 4 parents
per XOR bit and channel noise varianeé € {0.22,0.36}. Time limit 5 minutes. The
pseudo trees were generated by the min-fill and hypergraph partitioainstics.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=8 i=12 i=16 i=20
time nodes time nodes time nodes time nodes time nodes
0.02 0.02 0.07 0.68 8.33
- 19.71 203,028 0.09 184 0.71 153 851 153
(64, 128) (27, 40) 287.10 5,052,010 6.58 119,289 152 0.68 129 8.34 129
0?2 =0.22 23.42 9,932 0.43 232 143 153 12.76 153 121.90 153
23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129
0.02 0.02 0.07 0.68 8.32
- 82.60 850,665 116 12,190 1,463 8.35 227
(64, 128) (27, 40) 27741 5,250,380 47.80 834,680 123 22,406 0.84 3,096 8.33 160
o2 =0.36 48.81 19,489 5.38 1,504 571 618 15.70 240 123.76 192
48.71 44,734 517 1,864 5.53 512 1553 164 122.90 144
hypergraph pseudo tree
0.32 0.33 0.38 1.02 891
24.29 287,699 0.59 2,259 1.06 156 8.97 156
(64, 128) (27, 34) - - 476 61,426 381 103 142 8.92 129
0?2 =0.22 3571 20,678 0.77 263 17 163 12.02 163 107.08 163
31.46 17,224 0.59 160 1.60 129 11.69 129 102.38 129
0.32 0.33 0.38 1.05 9.39
113.04 1,391,480 22.26 275,844 174 9,039 9.40 295
(64, 128) (27,34) 34.73 489,614 182 19,040 9,494 9.40 295
o2 =0.36 92.76 50,006 3.34 1,134 3.67 408 14.80 307 105.92 185
54.25 26,031 5.55 1,312 7.91 472 12.52 143 105.76 142

A Experiments - Bayesian Networks

A.1 Random Coding Networks

Table A.1 displays the results using min-fill and hypergréjlsed pseudo trees
for solving a classes of random coding networks with= 64 input bits, P = 4
parents per XOR bit and channel noise variant¢e= {0.22,0.36}. The spectrum
of results is similar to that observed in Section 9.3.2, AgM&©BB+SMB( ¢) is
slightly better tharBB+SMB( i) only for relatively smalli-bounds, while for dy-
namic mini-bucket heuristics there is no noticeable odifere between the OR and
AND/OR algorithms, acrossbounds.
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Table A.2

CPU time and nodes visited for solving Bayesian networks derived froni8é&S’'89

circuits. Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
iscas89 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
Samlam BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
0.04 0.05 0.08 0.12 0.26 0.88
c432 - - - - - - 432 0.42 432 104 432
(27, 45) out - - - - 605.79 20,751,699 432 0.28 432 0.89 432
(432, 2) - - 132.19 21,215 223 432 432 5.85 432 13.46 432
1422.98 4,438,597 24.03 39,711 115 432 223 432 4.52 432 12.06 432
0.02 0.03 0.05 0.14 0.37 101
c499 0.16 499 0.17 499 0.19 499 0.28 499 0.50 499 113 499
(23, 55) 139.89 499 0.05 499 0.06 499 0.15 499 0.38 499 1.02 499
(499, 2) 1.09 499 132 499 2.00 499 401 499 8.92 499 28.35 499
0.39 499 0.63 499 131 499 3.32 499 8.21 499 27.67 499
0.09 0.11 0.18 0.51 1.49
c880 - - 881 0.60 881 0.66 881 0.99 881 197 881
(27,67) out 884 881 0.15 881 0.21 881 0.55 881 153 881
(880, 2) 881 881 8.07 881 12.78 881 20.99 881 42.16 881
881 881 2.16 881 498 881 13.19 881 34.42 881
0.03 0.08 0.20 047
s386 1,358 677 0.05 172 0.10 172 0.22 172 0.50 172
(19, 44) 3.66 257 257 0.03 172 0.08 172 0.21 172 0.48 172
(172, 2) 172 172 0.42 172 0.78 172 156 172 3.13 172
172 172 0.36 172 0.72 172 1.50 172 3.09 172
0.07 0.12 0.31 1.01 3.40
s953 - - - - - - - 4,031,967 449.40 3,075,116
(66, 101) out 71560 9,919,295 15.25 238,780 3711 549,181 22.83 21,499 442 19,117
(440, 2) 2712 2,737 18.84 912 64.12 1,009 25.28 577 211.70 447
26.48 2,738 18.30 913 63.44 1,010 24.75 468 | 220.97 578 211.44 447
0.07 0.10 0.16 0.39 1.30 4.60
s1196 - - - - - - - - - - - -
(54, 97) out 21.75 316,875 21581 3,682,077 457 77,205 19.81 320,205 16.64 289,873 9.81 99,935
(560, 2) 257 580 434 568 49.30 924 | 126.85 863 | 582.66 1,008 | 1413.31 817
660 259 568 45.90 924 | 11816 863 | 57179 1,008 | 1404.57 817
0.07 0.09 0.17 0.42 1.26 474
51238 - - - - 272.63 2,078,885 144.85 1,094,713 585.48 4,305,175 38.57 253,706
(59, 94) out 263 57,355 8.32 187,499 214 47,340 25,538 212 20,689 5.27 13,032
(540, 2) 3217 5,841 6.59 601 | 370.26 17,278 651 120.20 558 353.63 551
2.04 1,089 4.02 795 17.44 1,824 849 95.84 744 313.29 737
0.06 0.06 0.09 0.35 0.96
s1423 - - - - - - 762 0.67 749 129 749
(24, 54) 107.48 1,986 0.30 5171 0.32 5,078 866 0.37 749 0.99 749
(748, 2) 751 337 749 4.05 749 749 9.62 749 20.82 749
751 0.76 749 135 749 749 6.93 749 18.16 749
0.10 0.18 150 5.49
51488 92,764 1.65 12,080 219 17,410 6,480 217 5,327 578 830
(47, 67) out 135,563 1.48 17,170 229 28,420 12,285 2.26 12,370 5.53 964
(667, 2) 670 3.14 670 5.43 668 667 41.43 667 14313 667
670 164 670 3.92 668 667 40.17 667 142.68 667
0.09 0.17 157 5.69
s1494 64,629 524.05 3,410,547 130.92 815,326 33,373 43.54 268,421 6.07 2,504
(48, 69) out 158,070 28.14 476,874 7.09 118,372 198,912 2.75 21,137 5.83 3,061
(661, 2) 6.29 873 6.23 711 9.81 681 680 93.29 686 207.20 667
4.88 873 477 711 8.36 681 680 91.70 686 205.19 667
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A.2 ISCAS’89 Benchmark

ISCAS’89 circuits’ are a common benchmark used in formal verification and di-
agnosis. For our purpose, we converted each of these siintita belief network

by removing flip-flops and buffers in a standard way, creadimgterministic con-
ditional probabilistic tables for each gate and puttingamn distributions on the
input signals.

Table A.2 shows the results for experiments with 10 cir¢uitsng min-fill based
pseudo trees. As usual, for each test instance we generaiedla MPE query
without any evidence. When comparing the algorithms usiagjcstini-bucket
heuristics we observe again the superiority of the AND/OBr@R Branch-and-
Bound search in almost all test cases, acidssunds. For instance, on tie&80
circuit, AOBB+SMB( 4) proves optimality in less than a second, wiig+SVB( 4)
exceeds the 30 minute time limit. Similarly, on 8853 circuit, AOBB+SNVB( 14)

is 300 times faster thaBB+SMB( 14) and explores a search space 180 times
smaller. Using the dynamic mini-bucket heuristics doesgfain some test cases.
For example, on the 1196 circuit, ACBB+DVB( 4) causes a speedup of 2 over
BB+DVB( 4) and 45 ovelrAOBB+SMB( 4) , while BB+SMVB( 4) exceeds the time
limit. The overall impact of the AND/OR algorithms versut®R ones can be
explained by the relatively shallow pseudo trees. In sumgnthe dynamic mini-
bucket heuristics were inferior to the corresponding staties for large-bounds,
however, smallef-bound dynamic mini-buckets were overall more cost-eifect
Notice that 3MIAM is able to solve only 2 out of 10 test instances.

Figure A.1 shows the runtime distributionA®©BB+SMB( i) with hypergraph based
pseudo trees, over 20 independent runs. We observe agtiim $eseral cases (.,
s$1196) the hypergraph pseudo trees are able to improve perforenaitic up to 3
orders of magnitude, at relatively smaibounds.

A.3 UAI'06 Evaluation Dataset

The UAI 2006 Evaluation Datasétcontains a collection of random as well as real-
world belief networks that were used during the first UAI 200f&rence Evalua-
tion contest.

Table A.3 shows the results for experiments with 14 netwarksg min-fill based
pseudo trees. InstancBbl.31 throughBN 41 are random grid networks with de-
terministic CPTs, while instanc&N 126 throughBN_133 represent random cod-
ing networks with 128 input bits, 4 parents per XOR bit andnete noise vari-

7 Available at http://www.fm.vslib.cz/kes/asic/iscas/
8 http://ssli.ee.washington.edu/bilmes/uaiO6InferenceEvaluation
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$1196 - AOBB+SMB(i) $1238 - AOBB+SMB(i)
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[hypergraph: w*=45, h=57] [minfill: w*=47, h=67] [hypergraph: w*=46, h=57] [minfill: w*=48, h=69]

—— hypergraph —e— hypergraph
—O— minfill —O— minfill

100

time (sec)

0.1 4

i-bound i-bound

Fig. A.1. Min-Fill versus Hypergraph partitioning heuristics for pseud@e ttonstruction.
CPU time in seconds for solvinCAS’89 networks with ACBB+SMB( 1) .

ancec? = 0.40. We report only on the Branch-and-Bound algorithms usingcstat
mini-buckets. The dynamic mini-buckets were not competitiue to their much
higher computational overhead at relatively laiggounds. We notice again that
AOBB+SMB( i) clearly outperform®88B+SMB( i) at all reportedi-bounds, espe-
cially on the first set of grid networks (5., BN_.31, ...,BN_41). For instance, on the
BN_37, AOBB+SMB( 19) finds the MPE solution in about 80 seconds, whereas its
OR counterparBB+SMB( 19) exceeds the 30 minute time limit. This is in contrast
to what we see on the second set of coding netwarks, BN_126, ..., BN_.133),
where the best performance is offered by the OR algorB@BnSIVB( 7) .

Figure A.2 shows the runtime distribution&OBB+SMB( i) with hypergraph pseudo
trees, over 20 independent runs. We see that the hypergssptd@ trees improve
slightly the performance compared with min-fill ones.

A.4 Bayesian Network Repository

The Bayesian Network Repositotycontains a collection of belief networks ex-
tracted from various real-life domains which are often usetbenchmarking prob-

9 http://www.cs.huji.ac.il/compbio/Repository/
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Table A.3

CPU time and nodes visited for solvitgAl'06 instances Time limit 30 minutes.

min-fill pseudo tree

MBE() MBE() MBE() MBE() MBE()
bn BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(W, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, d) i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes
BN.31 10.31 20.06 3415 7417 1215
(46, 160) out - - - - - - - - - -
(1156, 2) 82860 4741037 | 122064 7895304 50436 3,988,933 64667 4,203,760 | [178.87] 380,470
BN_33 1384 26.27 4861 90.35 159.67
(43,163) - - - - - - - - - - -
(1444, 2) 86501 3,540,778 | [193.79) 685,246 39599 1441245 30814  1,018353 23053 360,880
BN.35 14.27 24.62 47,50 77.66 124.17
(41, 168) - - - - - - - - - - -
(1444, 2) 33543 1755561 39004 1,954,720 24773 1108708 | [191.03 663,784 234.97 622,551
BN_37 1382 26.58 421 8517 170.20
(45, 159) - - - - - - - - - - -
(1444, 2) 94.27 428,643 82.15 208477 | [79.99 183,016 100.41 89,048 196.06 168,957
BN_39 12.95 26.10 51.51 87.16 148.40
(48, 164) - - - - - - - - - - -
(1444, 2) - - - - - - - - | [837.58 3366427
BN.41 1341 2351 4201 7177 125.97
(49, 164) - - - - - - - - - - -
(1444, 2) 125.27 486,844 107.81 364,363 | [79.23] 168,340 115.18 195,506 161.10 162,274
BN_126 6.76 13.75 24.62 4911 98.43
(54, 70) - | 3388 210192 87117 6,677,492 62826 3,717,027 97.21 350,841 105.54 71,919
(512, 2) 35191 4,459,174 91804 10,991,861 12649 1333266 | [75.40] 386,490 108.20 150,391
BN_127 715 14.26 30.82 56.12 98.82
(57,74) out - - - - - - - - 639,878
(512, 2) - - - - - - - - 20014 1384957
BN_128 15.38 28.49 58.08 99.85
(48,73) out 3476 15.66 2,645 3414 36,025 58.54 831 100.29 4,857
(512, 2) 5,587 15.48 1,712 29.64 18,734 58.12 625 100.18 5823
BN_129 11.83 24.96 55.28 96.60
(52, 68) out 188.49 1605045 | 142349 11,860,050 34368 2,049,880
(512, 2) 827.37 11,469,012 - - 19824 1999591 | 179681 22,855,693 297.90 2,542,057
BN_130 6.29 1324 22,63 53.68 94.78
(54, 67) out 184,439 - - 91848 7,317,237 - - 105.43 110,193
(512, 2) 2952 348,660 - - 981.08 10,905,151 - - 108.25 205,010
BN_131 7.16 1372 23.36 44.94 82.36
(48,72) out 142,487 4711 328560 | 121680 10,249,055 73.25 235,433 - -
(512, 2) 26.44 296,576 58.78 677,149 | 169544 24,678,072 87.01 673,358 - -
BN_132 6.16 11.63 2231 52.78
(49, 71) out - - - - - - 79242 6,596,296 4,829,396
(512, 2) - - - - - - 88631 10,251,600 809.86 10,207,347
BN_133 7.60 14.43 27.55 56.54 106.24
(54, 71) out - - 105,920 46,69 174,274 157.04 932,745 110.05 32,041
(512, 2) - - 2555 169,574 4853 272,258 18494 1,859,117 110.87 71,195

abilistic inference algorithms.

Table A.4 displays the results for experiments with 15 lheletworks from the

repository. We set the time limit to 10 minutes and for each itestance we gen-
erated a single MPE query without evidence. We observe amaionsiderable
improvement of the new AND/OR Branch-and-Bound algorithmerae cor-

responding OR ones. For example, on t¢pes360b network, AOBB+SMB( 5)
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Table A.4

CPU time in seconds and number of nodes visited for solBiagesian Network Reposi-
Time limit 10 minutes.

tory instances.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
bn AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
Samlam BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(n, d) i=2 i=3 i=4 i=5 i=6 i=7
time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.01 0.01 0.01 0.01 0.01
cpcs54 10.41 141,260 18.26 252,886 054 8,072 218 30,912 0.62 9,237 0.47 6,955
(14,23) 0.16 0.66 16,030 0.34 8,621 0.27 6,761 0.39 10,485 0.13 3,672 2,674
(54,2) 1.99 2,493 145 2,214 0.70 1,003 0.53 848 0.34 532 0.33 510
1.48 2,339 116 1,889 0.86 798 0.42 419 0.29 159 0.29 131
0.09 0.09 0.09 0.09 0.09 0.09
cpcs360b 7221 336,720 66.86 317,249 65.05 316,991 61.38 297,313 63.82 314,173 64.59 318,067
(20, 27) 18.91 0.45 10,027 0.44 9,827 0.44 9,809 8,947 0.43 9,771 0.44 9,847
(360, 2) 377.73 308,339 37348 307,084 373.23 307,083 373.96 307,083 373.34 307,078 373.67 307,078
4.36 9,383 4.15 9,309 4.06 9,313 4.20 9,285 4.18 9,181 4.40 9,217
1.58 158 1.58 1.58 1.58 1.58
cpcs422b 57.43 204,209 56.60 203,448 55.61 203,410 54.27 203,410 54.34 203,409 53.98 203,370
(23, 36) 112.78 1.80 3,557 1.78 3,409 177 3,409 177 3,409 178 3,568 3,316
(422,2) - - - - - - - - - - - -
54.48 3,140 54.41 3,142 54.98 3,094 54.98 3,029 55.03 2,998 55.14 2,969
0.01 0.01 0.01 0.01 0.01 0.01
Insurance 0.14 1,877 0.06 962 69.56 1,749,933 35.70 910,498 0.02 160 0.03 136
(7,14) 0.08 0.04 977 0.02 453 0.02 411 255 62 0.03 80
(27,5) 0.13 364 0.03 89 0.03 87 87 87 0.52 125
0.11 299 0.02 36 0.03 33 33 33 0.51 62
0.02 0.02 0.03 0.71
Muninl - - - - - - - - 10.16 81,982 11.46 88,836
(12, 28) out 6.32 102,540 279 44,071 22,934 2.00 42,484 1.79 38,669 2.66 48,302
(189, 21) - - 256.48 80,411 228.91 66,583 62.08 15,523 65.29 15,513 77.73 15,514
45.76 84,788 25.46 27,217 18.15 11,230 9.45 2,557 12.30 2,547 25.61 2,548
0.14 0.16 0.20 0.32 0.46 0.69
Munin2 - - - - - - - - - - - -
(9,32) 4.30 - - - - 137.72 712,814 30.53 174,333 257 15,978 9,961
(1003, 21) - - - - - - - - - - - -
- - - - - - 208.47 13,459 167.27 9,360 122.50 4,806
0.15 0.15 0.18 0.28 0.40 0.74
Munin3 - - - - - - - - - - - -
9,32 7.28 - - - - 15.20 152,191 1.02 6,440 1,945 0.88 1,180
(1044, 21) - - - - - - - - - - - -
- - 345.26 146,866 28.54 2,573 1211 1,319 10.50 1,180 14.76 1,180
0.16 0.15 0.19 0.32 0.86 222
Munin4 - - - - - - - - - - - -
(9, 35) 26.19 - - - - - - - - 292.30 3,183,146 125,480
(1041, 21) - - - - - - - - - - - -
0.03 0.04 0.05 0.06
Pigs - - 0.50 6,060,855 0.48 6,446,055 0.48 5,956,733 0.48 81,982 0.50 88,836
(11, 26) 114 - - 455 455 455 007 455 0.09 455
(441, 3) 7.98 1,984 8.58 1,984 8.66 1,984 8.79 1,984 9.09 1,984
0.31 455 0.39 455 0.49 455 0.63 455 455
0.01 0.01 0.01 0.02 0.03
Water 78.53 1,658,313 78.02 1,670,307 3.47 53,784 0.34 5,202 0.45 6,769 973
(10, 15) 3.03 0.67 17,210 1.07 24,527 0.80 19,193 0.14 3,005 0.14 2,658 856
(32,4) 344.89 697,777 4.39 1,932 0.92 535 0.67 235 0.98 468 369
8.49 11,125 397 1,622 0.82 193 0.61 153 0.88 113 136
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Fig. A.2. Min-Fill versus Hypergraph partitioning heuristics for pseud@e ttonstruction.
CPU time in seconds for solvindAlI'06 networks with ACBB+SMB( 1) .

causes a CPU speedup of 153 oB&+SMB( 5) , while exploring a search space
33 times smaller. SimilarlyAOBB+DIVB( 5) is 89 times faster thaBB+DVB( 5)

and expands about 33 times less nodes. Ovex@BB+SMB( i) is the best per-
forming algorithm for this domain. In particular, for netus with relatively low
connectivity and large domain sizes (eMuni n networks) the difference between
AOBB+SMB( i) andBB+SMB( i) is up to several orders of magnitude in terms of
both running time and size of the search space explored.

A.5 The Impact of Determinism in Bayesian Networks

In this section we present a detailed description of the Chd@ita which encodes
the determinism in the Bayesian network. It is created basedezero probability
table entries, as follows.

SAT Variables: Given a Bayesian networR = (X, D, F), the CNF is defined
over the multi-valued variable§X;, ..., X, }. Its propositions ard.y, ,,, where
x; € D;. The proposition idrue if X; is assigned value; € D, and isfalse
otherwise.

SAT Clauses:The CNF is augmented with a collection of 2-CNFs for each véiab
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Table A.5

Deterministic CPTP(C| A, B)
’ A ‘ B ‘ c H P(C|A, B) H Clauses
111 1
112 0 (=La1V=Lp1V-Lcs)
1]1]3 0 (~La1V-Lp1V-Lcs)
121 0 (=La1V-LpaV-Lc)
1]2]2 1
1]2]3 0 (-La,1V-LpaV-Lcs)
2|11 2
2|12 8
2|13 0 (~La2V-Lg1V-Lcg)
2|21 7
2|22 3
2|23 0 (~La2V-LgaV-Lcs)

X; in the network, calle@t-most-onelauses, that forbids the assignments of more
than one value to a variable. Formally,

DEFINITION 33 (at-most-one clause)Given a variableX; € X with domainD; =
{zi, ..., z;,}, its correspondin@t-most-onelauses have the following form:

_'LXMCip V oLy

for every pair(z;,, z;,) € D; x D;, wherel < p < ¢ < d.

In addition, we will add to the CNF a set af-least-oneclauses to ensure that each
variable in the network is assigned at least one value frerdamain:

DEFINITION 34 (at-least-one clause)Given a variableX; € X with domainD; €
{Xi,,..., X,,}, its correspondingt-least-onelause is of the following form:

Lx,., VLx, . ...V Lx

irTiq i Tig i Tig

The remaining clauses are generated from the zero pralyatoiples in the net-
work’s CPTs.

DEFINITION 35 (no-good clauses)Given a conditional probability table, denoted
by P(X;|pa(X;)), each entry in the CPT having(z;|z,.,) = 0, wherepa(X;) =

{\1,....Y;} are X,’s parents andr,,, = (v1, ..., 4:) is their corresponding value
assignment, can be translated tma-goodclause of the form:

_‘LY17y1 V..V _‘LYuyt \ _'LXMM
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Example 14 Consider a belief network over variabldsi, B, C'} with domains
D, = {1,2}, Dp = {1,2} and Do = {1,2,3}, and probability tables:P(A),

P(B) and P(C|A, B), respectively. The deterministic CETC|A, B) is given in
Table A.5. The corresponding CNF encoding has the followindedmovariables:
Lay, Las, Lpi, Lpa, Loy, Lo and Les. Variable Ly is true if the network
variable A takes valud, andfalseotherwise.

To generate the no-good clauses in the knowledge base, we Imggterating
through the parent instantiations of the CPT for varialile Whenever a state
¢ € D¢ has a probability of O we will generate a clause. This clausetaios
the negative literal-Lq ., as well as the negative literals-L 4 ,, ~Lp,} where
(A = a, B =) is the corresponding parent instantiation. These clausegaen
in the last column of Table A.5.

The remaining at-least-one and at-most-one clauses asngivthe table below:

at-least-one at-most-one

(LagV Lag) ( )

(Lp1V Lpa) ( )

(LeaV LoaV Leg) | (7Lea V =Lep)
( )
(

Table A.6 displays the results obtained for the 10 ISCAS’88uiis used in Section
A.2. Constraint propagation via unit resolution plays a draerole on this do-
main rendering the search space almost backtrack-freetordtatic and dynamic
mini-bucket heuristics, at all reportéebounds. For instance, on te®53 circuit,
AOBB+SAT+SMB( 6) is 3 orders of magnitude faster th&®BB+SMVB( 6) and
the search space explored is about 4 orders of magnitudéesnsamilarly, on the
same networkAOBB+SAT+DIVB( 6) is 12 times faster thaAOBB+DVB( 4) and
explores about 5 times fewer nodes. Notice that in the caggr@fmic mini-bucket
heuristics, the difference betweA®BB+SAT+DMB( i) andAOBB+DVB( ¢) is not
too prominent as in the static case, because the heuristitagéss prune the search
space quite effectively in this case.

Table A.7 shows the results for experiments with the 12 getiekage analysis
networks from Section 9.3.4. In this case, we observe thalyaqy unit resolution
was not cost effective.
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Table A.6
CPU time in seconds and number of nodes visited for solving Bayesian rkstderived
from ISCAS’89 circuits using constraint propagation. Time limit 30 minutes.

min-fill pseudo tree

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
iscas89 AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) | AOBB+SAT+DMB(i) | AOBB+SAT+DMB(i)
(n, d) i=6 i=8 i=10 i=12 i=14 i=16
time nodes time nodes time nodes time nodes time nodes time nodes
- - - - 107959 20,751,699 432 0.24 432 0.59 432
c432 1658.62 37,492,131 873.71 19,423,461 4.52 89,632 0.16 432 0.23 432 0.61 432
(27, 45) - - 30.08 39,711 1.03 432 175 432 3.20 432 7.74 432
(432, 2) 0.56 434 0.69 433 1.00 432 170 432 3.09 432 7.61 432
0.11 499 499 0.11 499 0.17 499 0.30 499 0.66 499
c499 0.10 499 499 0.11 499 0.17 499 0.30 499 0.69 499
(23,55) 0.59 499 0.75 499 122 499 255 499 5.55 499 17.16 499
(499, 2) 0.59 499 0.77 499 119 499 2.56 499 5.59 499 17.45 499
884 0.23 881 0.23 881 0.28 881 0.48 881 1.06 881
c880 881 881 0.25 881 0.28 881 0.47 881 1.08 881
(27, 67) 881 881 214 881 4.08 881 9.33 881 22.25 881
(880, 2) 881 881 225 881 4.03 881 9.67 881 22.92 881
257 257 172 0.06 172 0.14 172 0.31 172
s386 172 172 0.05 172 0.08 172 0.14 172 0.30 172
(19, 44) 0.14 172 172 0.31 172 0.53 172 1.03 172 202 172
172, 2) 0.11 172 172 0.30 172 0.52 172 1.02 172 1.98 172
1019.87 9,919,295 22.50 238,780 54.77 549,181 34.74 434,481 261 21,499 3.67 19,117
s953 829 667 0.22 685 0.33 623 0.74 623 214 599
(66, 101) 33.03 2,738 913 48.61 1,010 17.23 468 146.66 578 | 132.69 447
(440, 2) 2.64 543 525 1253 550 14.56 459 98.31 527 105.45 441
33.00 316,875 | 343.50 3,682,077 7.22 77,205 31.25 320,205 26.80 289,873 11.61 99,935
s1196 565 0.20 565 0.23 565 0.38 565 0.92 565 297 565
(54, 97) 159 660 2.50 568 3547 924 81.63 863 | 369.30 1,008 | 886.47 817
(560, 21) 117 564 2.00 563 461 563 13.05 563 42.02 563 | 14413 563
431 57,355 13.73 187,499 355 47,340 2.16 25,538 241 20,689 3.88 13,032
s1238 771 0.30 2,053 0.34 2,053 0.49 2,037 1.00 2,037 3.09 2,037
(59, 94) 2.66 1,089 381 795 13.77 1,824 849 62.30 744 | 19478 737
(540, 2) 1.63 748 2.48 734 7.44 1,655 802 52.86 736 | 17133 735
0.27 1,986 0.47 5171 0.48 5,078 866 0.34 749 0.70 749
51423 0.24 1,903 0.45 4,918 0.45 4,896 860 0.36 749 0.70 749
(24,54) 0.83 751 0.97 749 1.36 749 749 4.92 749 11.75 749
(748, 2) 0.81 751 0.97 749 137 749 749 4.92 749 11.89 749
15.95 135,563 2.09 17,170 324 28,420 12,285 164 12,370 342 964
51488 1,115 667 0.27 667 667 1.05 667 3.36 667
(47, 67) 114 670 1.67 670 3.25 668 8.11 667 2555 667 86.67 667
(667, 2) 0.89 667 1.30 667 263 667 6.61 667 | 20.641 667 69.88 667
15.13 158,070 4358 476,874 11.30 118,372 17.48 198,912 3.00 21,137 353 3,061
51494 665 0.22 665 0.25 665 0.45 665 111 665 342 665
(48, 69) 7.20 873 2.77 711 11.38 681 19.70 680 58.78 686 | 126.70 667
(661, 2) 111 665 175 665 3.92 665 10.41 665 3111 665 | 10139 665

84




Table A.7

CPU time and nodes visited for solviggnetic linkage networksusing constraint propa-

gation via unit resolution. Time limit 3 hours.

min-fill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
pedigree Samlam AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
pedl 0.05 0.05 011 031 0.97
(299, 5) 54.73 24.30 416,326 13.17 206,439 24,361 1.84 25,674 1.89 15,156
(15, 61) 5.44 24.72 414,239 12.97 205,887 159 24,361 1.86 25,674 1.89 15,156
ped38 0.12 0.45 220 60.97 out
(582, 5) - - | 812058 85,367,022 - - | 304060 35394461
(17, 59) out - - 766389 83,808,576 - - 3094.33 35,394,277
ped50 0.11 0.74 5.38 out
(479, 5) - - - - - 476.77 5,566,578 748,792
(18, 58) out - - - - 497.30 5,566,344 748,792
i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes
ped23 0.42 2.33 11.33 274.75 out
(310, 5) 9146.19 498.05 6,623,197 154,676 16.28 67,456 286.11 117,308
(27, 71) out 514.33 6,618,811 15.89 154,666 17.87 67,456 270.05 117,308
ped37 0.67 516 21.53 58.59 out
(1032, 5) 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061
(21, 61) out 282.83 3,189,847 1674.54 25,280,466 1066.79 15,372,724 131.56 953,061
i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
ped18 0.51 142 4.59 12.87 19.30
(1184, 5) 139.06 - - 217781 28,651,103 270.96 2,555,078 100.61 682,175 7,689
(21,119) 157.05 - - 2199.44 28,651,103 285.03 2,555,078 103.89 682,175 2041 7,689
ped20 1.42 511 37.53 410.96 out
(388, 5) 379331 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195
(24, 66) out 3953.23 54,941,659 1349.51 18,449,393 1301.26 17,810,674 1112.49 9,151,195
ped25 0.34 0.72 2.27 6.56 29.30
(994, 5) - - - - - 9399.28 111,301,168 3607.82 34,306,937 28,326,541
(34, 89) out - - - - 9690.70 111,301,168 3427.79 34,306,937 2987.50 28,326,541
ped30 0.42 0.83 178 575
(1016, 5) 13095.83 - - - - - - 214.10 1,379,131 685,661
(23,118) out - - - - - - 225.67 1,379,131 96.16 685,661
ped33 0.58 231 7.84 33.44 112.83
(581, 4) - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 1,647,488 2956.47 35,903,215
(37, 165) out 3051.15 34,218,037 796.58 9,113,615 | 4290.28 50,071,828 171.31 1,647,488 3216.04  35884,557
ped39 0.52 2.32 841 33.15 81.27
(1272, 5) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 407,280
(23,94) out - - - - 4242.59 52,804,044 405.08 2,171,470 145.03 407,280
ped42 4.20 31.33 206.40 out out
(448, 5) - - - - - -
(25, 76) - - - - - -
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