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Abstract

We introduce a new generation of depth-first Branch-and-Bound algorithms that explore
the AND/OR search tree using static and dynamic variable orderings for solving general
constraint optimization problems. The virtue of the AND/OR representation of the search
space is that its size may be far smaller than that of a traditional OR representation, which
can translate into significant time savings for search algorithms. The focus of this paper is
on linear space search which explores the AND/OR search tree rather than the search graph
and therefore make no attempt to cache information. We investigate the power of the mini-
bucket heuristics within the AND/OR search space, in both static and dynamic setups. We
focus on two most common optimization problems in graphical models: finding the Most
Probable Explanation (MPE) in Bayesian networks and solving Weighted CSPs (WCSP). In
extensive empirical evaluations we demonstrate that the new AND/OR Branch-and-Bound
approach improves considerably over the traditional OR search strategyand show how
various variable ordering schemes impact the performance of the AND/OR search scheme.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

1 Introduction

Graphical models such as Bayesian networks or constraint networks are a widely
used representation framework for reasoning with probabilistic and deterministic
information. These models use graphs to capture conditional independencies be-
tween variables, allowing a concise representation of the knowledge as well as
efficient graph-based query processing algorithms. Optimization problems such as
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finding the most likely state of a Bayesian network or finding a solution that vio-
lates the least number of constraints can be defined within this framework and they
are typically tackled with eitherinferenceor searchalgorithms.

Inference-based algorithms (e.g., Variable Elimination, Tree Clustering) were al-
ways known to be good at exploiting the independencies captured by the under-
lying graphical model. They provide worst case time guarantees exponential in
the treewidth of the underlying graph. Unfortunately, any method that is time-
exponential in the treewidth is also space exponential in the treewidth or separator
width, therefore not practical for models with large treewidth.

Search-based algorithms (e.g., depth-first Branch-and-Bound search) traverse the
model’s search space where each path represents a partial orfull solution. The linear
structure of such traditional search spaces does not retainthe independencies repre-
sented in the underlying graphical models and, therefore, search-based algorithms
may not be nearly as effective as inference-based algorithms in using this informa-
tion and therefore do not accommodate informative performance guarantees. This
situation has changed in the past few years with the introduction of AND/OR search
algorithms for graphical models. In addition, search methods require only an im-
plicit, generative, specification of the functional relationships (that may be given in
a procedural or functional form) while inference schemes often rely on an explicit
tabular representation over the (discrete) variables. Forthese reasons, search-based
algorithms are the only choice available for models with large treewidth and with
implicit representation.

The AND/OR search space for graphical models [1] is a new framework that is sen-
sitive to the independencies in the model, often resulting in exponentially reduced
complexities. It is guided by apseudo tree[2,3] that captures independencies in the
graphical model, resulting in a search space exponential inthe depth of the pseudo
tree, rather than in the number of variables.

In this paper we present a new generation of AND/OR Branch-and-Bound algo-
rithms (AOBB) that explore the AND/OR search tree in a depth-first manner for
solving optimization problems in graphical models. As in traditional Branch-and-
Bound search, the efficiency of these algorithm depends heavily also on its guid-
ing heuristic function. A class of partitioning-based heuristic functions, based on
the Mini-Bucket approximation [4] and known asstatic mini-bucket heuristicswas
shown to be powerful for optimization problems [5] in the context of OR search
spaces. The Mini-Bucket algorithm provides a scheme for extracting heuristic in-
formation from the functional specification of the graphical model, which is appli-
cable to any graphical model. The accuracy of the Mini-Bucketalgorithm is con-
trolled by a bounding parameter, calledi-bound, which allows varying degrees of
heuristics accuracy and results in a spectrum of search algorithms that can trade off
heuristic strength and search [5]. We show here how the pre-computed mini-bucket
heuristic as well as any other heuristic information can be incorporated in AND/OR
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search, then we introducedynamic mini-bucket heuristics, which are computed dy-
namically at each node of the search tree.

Since variable orderings can influence dramatically the search performance, we
also introduce a collection ofdynamicAND/OR Branch-and-Bound algorithms
that combine the AND/OR decomposition principle with dynamic variable order-
ing heuristics.

We apply the depth-first AND/OR Branch-and-Bound approach to two common
optimization problems in graphical models: finding the MostProbable Explana-
tion (MPE) in Bayesian networks [6] and solving Weighted Constraint Satisfac-
tion Problems (WCSP) [7]. We experiment with both random models and real-
world benchmarks. Our results show conclusively that the new depth-first AND/OR
Branch-and-Bound algorithms improve dramatically over traditional ones explor-
ing the OR search space, especially when the heuristic estimates are inaccurate
and the algorithms rely primarily on search and cannot prunethe search space effi-
ciently.

Following preliminary notations and definitions (Section 2), Sections 3, 4 and 5
provide background on graphical models, on the classic OR Branch-and-Bound
approach, and the AND/OR representation of the search space. Section 6 presents
our new depth-first AND/OR Branch-and-Bound algorithm. Section 7 describes
its extension with dynamic variable ordering heuristics. Section 8 presents several
general purpose heuristic functions that can guide the search focusing on the mini-
bucket heuristics. Section 9 is dedicated to an extensive empirical evaluation, Sec-
tion 10 overviews related work and Section 11 provides a summary and concluding
remarks.

2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variables taking values on fi-
nite domains and a set of functions defined over these variables. We denote vari-
ables by uppercase letters (e.g., X,Y, Z, ...), subsets of variables by bold faced
uppercase letters (e.g., X,Y,Z, ...) and values of variables by lower case letters
(e.g., x, y, z, ...). An assignment(X1 = x1, ..., Xn = xn) can be abbreviated as
x = (〈X1, x1〉, ..., 〈Xn, xn〉) or x = (x1, ..., xn). For a subset of variablesY, DY

denotes the Cartesian product of the domains of variables inY. xY andx[Y] are
both used as the projection ofx = (x1, ..., xn) over a subsetY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a functionf by scope(f).
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2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected graphis defined by a pair
G = {V,E}, whereV = {X1, ..., Xn} is a set of vertices (nodes), andE =
{(Xi, Xj)|Xi, Xj ∈ V } is a set of edges (arcs). If(Xi, Xj) ∈ E, we say thatXi

points toXj. The degree of a vertex is the number of incident arcs to it. For each
vertexXi, pa(Xi) or pai, is the set of vertices pointing toXi in G, while the set
of child vertices ofXi, denotedch(Xi), comprises the variables thatXi points to.
The family ofXi, denotedFi, includesXi and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Anundirectedgraph is defined similarly to a
directed graph, but there is no directionality associated with the edges.

DEFINITION 2 (induced width) An ordered graphis a pair (G, d) whereG is an
undirected graph, andd = X1, ..., Xn is an ordering of the nodes. Thewidth of
a nodeis the number of the node’s neighbors that precede it in the ordering. The
width of an orderingd is the maximum width over all nodes. Theinduced width
of an ordered graph, denoted byw∗(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first; when nodeXi is pro-
cessed, all its preceding neighbors are connected. Theinduced widthof a graph,
denoted byw∗, is the minimal induced width over all its orderings.

DEFINITION 3 (hypergraph) A hypergraphis a pair H = (X,S), whereS =
{S1, ..., St} is a set of subsets ofX, called hyperedges.

DEFINITION 4 (tree decomposition)A tree decompositionof a hypergraphH =
(X,S), is a treeT = (V,E), whereV is a set of nodes, also called ”clusters”, and
E is a set of edges, together with a labeling functionχ that associates with each
vertexv ∈ V a setχ(v) ⊆ X satisfying:

(1) For eachSi ∈ S there exists a vertexv ∈ V such thatSi ⊆ χ(v);
(2) (running intersection property) For eachXi ∈ X, the set{v ∈ V|Xi ∈ χ(v)}

induces a connected subtree ofT .

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (i.e.,maxv|χ(v) − 1|). The
treewidthof a hypergraph is the minimum width along all possible tree decom-
positions. Thepathwidthis the treewidth over the restricted class of chain decom-
positions.

2.3 AND/OR Search Spaces

An AND/OR state space representation of a problem is a 4-tuple 〈S,O, Sg, s0〉 [8].
S is a set of states which can be either OR or AND states (the OR states repre-
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sent alternative ways for solving the problem while the AND states often represent
problem decomposition into subproblems, all of which need to be solved).O is a
set of operators. An OR operator transforms an OR state into another state, and an
AND operator transforms an AND state into a set of states. There is a set of goal
statesSg ⊆ S and a start nodes0 ∈ S.

The AND/OR state space model induces an explicit AND/OR search graph. Each
state is a node and child nodes are obtained by applicable ANDor OR operators.
The search graph includes astart node. The terminal nodes (having no children)
are labeled as SOLVED or UNSOLVED.

A solution treeof an AND/OR search graphG is a subtree which: (1) contains the
start nodes0; (2) if n in the tree is an OR node then it contains one of its child nodes
in G, and ifn is an AND node it contains all its children inG; (3) all its terminal
nodes are SOLVED.

3 Graphical Models

Graphical models include constraint networks defined by relations of allowed tu-
ples, directed or undirected probabilistic networks and cost networks defined by
cost functions. Each graphical model comes with its specificoptimization queries
such as finding a solution of a constraint network that violates the least number of
constraints, finding the most probable assignment given some evidence, posed over
probabilistic networks or finding the optimal solution for cost networks.

In general, a graphical model is defined by a collection of functionsF, over a set of
variablesX, conveying probabilistic or deterministic information, whose structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = 〈X,D,F,⊗〉, where:

(1) X = {X1, ..., Xn} is a set of variables;
(2) D = {D1, ..., Dn} is the set of their respective finite domains of values;
(3) F = {f1, ..., fr} is a set of real-valued functions, each defined over a subset

of variablesSi ⊆ X (i.e., the scope);
(4) ⊗ifi ∈ {

∏

i fi,
∑

i fi} is a combination operator.

The graphical model represents the combination of all its functions:⊗r
i=1fi.

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignmentx = (x1, ..., xn) is defined by:

c(x) = ⊗f∈Ff(x[scope(f)])
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Given a subset of variablesY ⊆ X, the cost of a partial assignmenty is the combi-
nation of all the functions whose scopes are included inY, namelyFY, evaluated
at the assigned values. Namely,c(y) = ⊗f∈FY

f(y[scope(f)]). We will often abuse
notation writingc(y) = ⊗f∈FY

f(y) instead.

DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two variables that appear in the
scope of the same function.

There are various queries (tasks) that can be posed over graphical models. We refer
to all asautomated reasoning problems. In general, an optimization task is a rea-
soning problem defined as a function from a graphical model toa set of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) Aconstraint optimization prob-
lem (COP)is a pairP = 〈R,⇓X〉, whereR = 〈X,D,F,⊗〉 is a graphical model.
If S is the scope of functionf ∈ F and⇓S f ∈ {maxSf,minSf}. The optimization
problem is to compute⇓X ⊗r

i=1fi.

The min/max (⇓) operator is sometimes called aneliminationoperator because it
removes the arguments from the input functions’ scopes.

We next elaborate on several popular graphical models of constraint networks, cost
networks and belief networks which will be the primary focusof this paper.

3.1 Constraint Networks

Constraint Satisfactionis a framework for formulating real-world problems as a
set of constraints between variables. The task is to find an assignment of values to
variables that does not violate any constraint, or else to conclude that problem is
inconsistent. Such problems are graphically represented by nodes corresponding to
variables and edges corresponding to constraints between variables.

DEFINITION 10 (constraint network) A constraint networkis a graphical model
R = 〈X,D,C, ./〉, whereX = {X1, ..., Xn} is a set of variables, associated
with discrete-valued domainsD = {D1, ..., Dn}, and a set of constraintsC =
{C1, ..., Cr}. Each constraintCi is a pair (Si, Ri), whereRi is a relationRi ⊆
DSi

defined on a subset of variablesSi ⊆ X. The relation denotes all compatible
tuples ofDSi

allowed by the constraint. The combination operator⊗ is join, ./.
The primal graph of a constraint network is called aconstraint graph. A solution
is an assignment of values to all variablesx = (x1, ..., xn), xi ∈ Di, such that
∀Ci ∈ C, xSi

∈ Ri. The constraint network represents its set of solutions,./i Ci.
The elimination operator in this case isprojection.
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(a) Graph coloring problem
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(b) Constraint graph

Fig. 1. Constraint network.

Example 1 Figure 1(a) shows a graph coloring problem that can be modeledby
a constraint network. Given a map of regions, the problem is tocolor each region
by one of the given colors{red, green, blue}, such that neighboring regions have
different colors. The variables of the problem are the regions, and each one has
the domain{red,green,blue}. The constraints are the relation ”different” between
neighboring regions. Figure 1(b) shows the constraint graph, and a solution(A =
red,B = blue, C = green,D = green,E = blue, F = blue,G = red) is given in
Figure 1(a).

3.2 Cost Networks

An immediate extension of constraint networks arecost networkswhere the set of
functions are real-valued cost functions, the combinationand elimination operators
aresummationandminimization, respectively, and the primary constraint optimiza-
tion task is to find a solution with minimum cost.

A special class of COPs which has gained a lot of interest in recent years is the
Weighted Constraint Satisfaction Problem (WCSP). WCSP extends the classical
CSP formalism withsoft constraintswhich are represented as integer-valued cost
functions. Formally,

DEFINITION 11 (WCSP) A Weighted Constraint Satisfaction Problem (WCSP)is
a graphical model〈X,D,F,

∑

〉 where each of the functionsfi ∈ F assigns ”0”
(no penalty) to allowed tuples and a positive integer penaltycost to the forbidden
tuples. Namely,fi : DSi1

× ...×DSit
→ N, whereSi = {Si1 , ..., Sit} is the scope of

the function. The optimization problem is to find a value assignment to the variables
with minimum penalty cost, namely finding⇓X ⊗ifi = minX

∑

i fi.

DEFINITION 12 (MAX-CSP) A MAX-CSP is a WCSP with all penalty costs equal
to 1. Namely,∀fi ∈ F, fi : DSi1

× ...×DSit
→ {0, 1}, whereSi = {Si1 , ..., Sit} is

the scope offi.
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Fig. 2. A WCSP instance with cost functionsf1(A, B, C), f2(A, B, D) andf3(B, D, E).

Solving a MAX-CSP task can also be interpreted as finding an assignment that vi-
olates the minimum number of constraints (or maximizes the number of satisfied
constraints). Many real-world problems can be formulated as MAX-CSP/WCSPs,
including resource allocation problems [9], scheduling [10], bioinformatics [11,12],
combinatorial auctions [13,14] or maximum satisfiability problems [15].

Example 2 Figure 2 shows an example of a Weighted CSP instance with bi-valued
variables. The cost functions are given in Figure 2(a). The value∞ indicates an
inconsistent tuple. Figures 2(b) and 2(c) depict the primaland the induced graph
along the orderingd = (A,B,C,D,E, F ), respectively. The induced graph is
obtained by adding the dotted-arcs. It can be shown that the minimal cost solution
is 5 and corresponds to the assignment(A = 0, B = 1, C = 1, D = 0, E = 1).

Overview of Related Work on MAX-CSP/WCSP. MAX-CSP and WCSP can
also be formulated using the semi-ring framework introduced by [7]. As an opti-
mization version of constraint satisfaction, MAX-CSP/WCSP isNP-hard. A num-
ber of complete and incomplete algorithms have been developed for MAX-CSP
and WCSP, respectively. Stochastic Local Search (SLS) algorithms, such as GSAT
[16,17], developed for Boolean Satisfiability and ConstraintSatisfaction can be di-
rectly applied to MAX-CSP [18]. Since they are incomplete, SLS algorithms cannot
guarantee an optimal solution, but they have been successful in practice on many
classes of SAT and CSP problems. A number of search-based complete algorithms,
using partial forward checking [19] for heuristic computation, have been developed
[20,21]. The Branch-and-Bound algorithm proposed by [5] usesbounded mini-
bucket inference to compute the guiding heuristic function. More recently, [22–24]
introduced a family of depth-first Branch-and-Bound algorithms that maintain var-
ious levels of directional soft arc-consistency for solving WCSPs. The optimization
method, calledBacktracking with Tree Decomposition(BTD), developed by [25]
uses a tree decomposition of the graphical model to capture the problem structure
and guide the search more effectively. BTD can also be interpreted as traversing an
AND/OR search graph using substantial caching [1].
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Fig. 3. An example of a belief network.

3.3 Belief Networks

Belief networks[6] provide a formalism for reasoning about partial beliefsunder
conditions of uncertainty. They are defined by a directed acyclic graph over vertices
representing variables of interest (e.g., the temperature of a device, the gender of
a patient, a feature of an object, the occurrence of an event). The arcs signify the
existence of direct causal influences between linked variables quantified by condi-
tional probabilities that are attached to each cluster of parents-child vertices in the
network.

DEFINITION 13 (belief network) Abelief network (BN)is a graphical modelR =
〈X,D,PG,

∏

〉, whereX = {X1, ..., Xn} is a set of variables over multi-valued
domainsD = {D1, ..., Dn}. Given a directed acyclic graphG overX as nodes,
PG = {Pi}, wherePi = {P (Xi|pa(Xi))} are conditional probability tables (CPTs
for short) associated with each variableXi, andpa(Xi) are the parents ofXi in the
acyclic graphG. A belief network represents a joint probability distribution over
X, P (x1, ..., xn) =

∏n
i=1 P (xi|xpa(Xi)). An evidence sete is an instantiated subset

of variables.

When formulated as a graphical model, the functions inPG denote conditional
probability tables and the scopes of these functions are determined by the directed
acyclic graphG: each functionfi ranges over variableXi and its parents inG. The
combination operator is multiplication, namely⊗j =

∏

j. The primal graph of a
belief network is called amoral graph. It connects any two variables appearing in
the same probability table.

Example 3 An example of a belief network is given in Figure 3(a). This belief
network represents the joint probability distributionP (A,B,C,D,E) = P (A) ·
P (B|A) · P (C|A,B) · P (D|A) · P (E|B,D). In this case,pa(E) = {B,D},
pa(B) = {A}, pa(A) = ∅, ch(A) = {B,C,D}. We see that the moral graph
shown in Figure 3(b) is identical to the graph in Figure 2(b), and therefore, the
induced width along the orderingd = (A,B,C,D,E) is identical. Namely, the
width and induced width of the ordered moral graph is 3.
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DEFINITION 14 (most probable explanation)Given a belief network and evidence
e, the Most Probable Explanation(MPE) task is to find a complete assignment
which agrees with the evidence, and which has the highest probability among all
such assignments. Namely, to find an assignment(xo

1, ..., x
o
n) such that:

P (xo
1, ..., x

o
n) = maxx1,...,xn

n
∏

k=1

P (xk, e|xpak
)

As a reasoning problem, the MPE task is to find⇓X ⊗ifi = maxX

∏n
i=1 Pi.

The MPE task appears in applications such as diagnosis, abduction, and explana-
tion. For example, given data on clinical findings, MPE can postulate on a patient’s
probable affliction. In decoding, the task is to identify themost likely input mes-
sage transmitted over a noisy channel given the observed output. Researchers in
natural language consider the understanding of text to consist of finding the most
likely facts (in internal representation) that explain theexistence of the given text.
In computer vision and image understanding, researchers formulate the problem in
terms of finding the most likely set of objects that explain the image.

Overview of Related Work on MPE. It is known that solving the MPE task is NP-
hard [26]. Complete algorithms use either the cycle cutset technique (also called
conditioning) [6], the join-tree-clustering technique [27,28], or the bucket elimina-
tion scheme [29]. However, these methods work well only if the network is sparse
enough to allow small cutsets or small clusters. The complexity of algorithms based
on the cycle cutset idea is time exponential in the cutset size but require only linear
space. The complexity of join-tree-clustering and bucket elimination algorithms are
both time and space exponential in the cluster size that equals the induced-width of
the network’s moral graph. Following Pearl’s stochastic simulation algorithms [6],
the suitability of Stochastic Local Search (SLS) algorithms for MPE was studied
in the context of medical diagnosis applications [30] and more recently in [31–33].
Best-First search algorithms were proposed [34] as well as algorithms based on
linear programming [35]. Some extensions are also available for the task of finding
thek most-likely explanations [36,37]. Recently, [5,38] introduced a collection of
depth-first Branch-and-Bound algorithms that use bounded inference, in particular
the Mini-Bucket approximation [4], for computing the guiding heuristic function.

In the next section we present some of these known approacheson which we build
in this paper.
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4 Search and Inference for Combinatorial Optimization

4.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying algorithmic framework for dynamic pro-
gramming algorithms applicable to probabilistic and deterministic reasoning [29].

The input to a bucket elimination algorithm is an optimization problem, namely a
collection of cost functions or relations. Given a variableordering, the algorithm
partitions the functions into buckets, each associated with a single variable. A func-
tion is placed in the bucket of its argument that appears latest in the ordering. The al-
gorithm has two phases. During the first, top-down phase, it processes each bucket,
from last to first by a variable elimination procedure that computes a new function
which is placed in a lower bucket. The variable elimination procedure computes
the combination of all functions and eliminates the bucket’s variable. During the
second, bottom-up phase, the algorithm constructs a solution by assigning a value
to each variable along the ordering, consulting the functions created during the top-
down phase. It can be shown that:

THEOREM 1 (complexity of BE [29]) The time and space complexity of BE ap-
plied along orderd is O(r · k(w∗+1)) andO(n · kw∗

) respectively, wherew∗ is the
induced width of the primal graph along the orderingd, r is the number of func-
tions,n is the number of variables andk bounds the domain size.

Bucket Elimination can be viewed as message passing from leaves to root along
a bucket tree [39]. Let{B(X1), ..., B(Xn)} denote a set of buckets, one for each
variable, along an orderingd = (X1, ..., Xn). A bucket treeof R has buckets as
its nodes. BucketB(X) is connected to bucketB(Y ) if the function generated in
bucketB(X) by BE is placed inB(Y ). The variables ofB(X), are those appearing
in the scopes of any of its new and old functions. Therefore, in a bucket tree, every
vertexB(X) other than the root, has one parent vertexB(Y ) and possibly several
child verticesB(Z1), ..., B(Zt).

Mini-Bucket Elimination(MBE) is an approximation designed to avoid the space
and time problem of full bucket elimination [4] by partitioning large buckets into
smaller subsets, calledmini-bucketswhich are processed independently. Here is
the rationale. Consider an optimization problem over a graphical model〈X,D,F〉
with summationandminimizationas the combination and elimination operators,
respectively. Leth1, ..., hj be the functions in bucketB(Xp) of variableXp. When
BE processesB(Xp), it computes the functionhp: hp = minXp

∑j
i=1 hi, where

scope(hp) = ∪j
i=1Si − {Xp}. TheMini-Bucketalgorithm, on the other hand, cre-

ates a partitionQ′ = {Q1, ..., Qt} where the mini-bucketQl contains the func-
tionshl1 , ..., hlt . The approximation processes each mini-bucket separately, there-
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fore computinggp =
∑t

l=1 minXp

∑t
i=1 hli . Clearly, gp is a lower bound onhp,

namelygp ≤ hp (for maximization,gp is an upper bound). Therefore, the bound
computed in each bucket yields an overall bound on the cost ofthe solution. An
upper bound (resp. lower bound for maximization problems) can be obtained by
the cost of the assignment computed when going forward, fromthe first bucket to
the last, consulting the generated functions.

The quality of the bound depends on the degree of partitioning into mini-buckets.
Given a bounding parameteri (called herei-bound), the algorithm creates ani-
partitioning, where each mini-bucket includes no more thani variables. Algorithm
MBE(i) is parameterized by thisi-bound. It outputs not only a lower bound on
the cost of the optimal solution and an assignment, but also the collection of the
augmented buckets. By comparing the bound computed by MBE(i) to the cost of
the assignment output by MBE(i), we can always have an interval bound on the
error for that given instance.

The complexity of the algorithm is time and spaceO(exp(i)) wherei < n. It can
be viewed as solving by bucket elimination a simplified problem that is sparser
[5]. When thei-bound is large enough (i.e., i ≥ w∗), the Mini-Bucket algorithm
coincides with full bucket elimination on the original problem. In summary,

THEOREM 2 (complexity of MBE(i) [4]) Algorithm MBE(i) generates an inter-
val bound of the optimal solution, and its time and space complexity areO(r · ki)
andO(r · ki−1) respectively, wherer is the number of functions andk bounds the
domain size.

4.2 Branch-and-Bound Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization problems in graphical mod-
els follow aBranch-and-Boundschema [40]. These algorithms perform a depth-
first traversal on the search tree defined by the problem, where internal nodes rep-
resent partial assignments and leaf nodes stand for complete ones. Throughout the
search, the algorithm maintains a global bound on the cost ofthe optimal solu-
tion, which corresponds to the cost of the best full variableinstantiation found thus
far. At each node, the algorithm computes a heuristic estimate of the best solution
extending the current partial assignment and prunes the respective subtree if the
heuristic estimate is not better than the current global bound (that is - not greater
for maximization problems, not smaller for minimization problems).

The algorithm requires only a limited amount of memory and can be used as an
anytime scheme, namely whenever interrupted, Branch-and-Bound outputs the best
solution found so far.

The effectiveness of Branch-and-Bound depends on the qualityof the heuristic
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function. A heuristic function that is accurate, but not toohard to compute, is desir-
able. The most common class of Branch-and-Bound algorithms was developed for
integer programming where the heuristic function is generated by solving a linear
relaxation of the problem via the simplex algorithm [41,40,42].

In the past few years [5] showed that the intermediate functions generated by
MBE(i) can be used to create a heuristic function that provides an optimistic es-
timate of the best cost extension of any partial variable assignment, and therefore
can guide Branch-and-Bound search. Since these heuristics have varying strengths
depending on the Mini-Bucketi-bound, they allow a controlled tradeoff between
pre-processing (for heuristics generation) and search. The following shows how a
heuristic evaluation function can be extracted from the functions generated by the
Mini-Bucket algorithm.

DEFINITION 15 (mini-bucket heuristic evaluation function [5]) Given an ordered
set of augmented buckets{B(X1), ..., B(Xp), ..., B(Xn)} generated by the Mini-
Bucket algorithm MBE(i) along the orderingd = (X1, ..., Xp, ..., Xn), and given
a partial assignment̄xp = (x1, ..., xp), the heuristic evaluation functionf(x̄p) =
g(x̄p) + h(x̄p) is defined follows:

1. g(x̄p) = (
∑

fi∈B(X1..Xp) fi)(x̄
p) is the combination of all the input functions

that are fully instantiated along the current path, whereB(X1..Xp) denotes
the bucketsB(X1) throughB(Xp) in the orderingd;

2. Themini-bucket heuristicfunctionh(x̄p) is defined as the sum of all the inter-
mediate functionshk

j that satisfy the following properties:
• They are generated in bucketsB(Xp+1) throughB(Xn),
• They reside in bucketsB(X1) throughB(Xp).

Kask and Dechter showed [5] that for any partial assignmentx̄p = (x1, ..., xp) of
the firstp variables in the ordering, the evaluation functionf(x̄p) = g(x̄p) + h(x̄p)
is admissibleandmonotonic[8].

Branch-and-Boundguided by theMini-Bucket heuristicsis denoted by BBMB(i).
The algorithm was introduced for a static variable orderingand has a space com-
plexity dominated by the pre-processing step which is exponential in thei-bound
[5]. BBMB(i) was evaluated extensively for probabilistic and deterministic opti-
mization tasks. The results showed conclusively that the scheme overcomes par-
tially the memory explosion of bucket elimination allowinga gradual tradeoff of
space for time, and of time for accuracy when used as an anytime scheme.

Subsequently, [43,38] explored the feasibility of generating partition-based heuris-
tics during search, rather than in a pre-processing manner.This allows dynamic
variable and value ordering, a feature that can have tremendous impact on search.
The dynamic generation of these heuristics is facilitated by Mini-Bucket-Tree Elim-
ination, MBTE(i), a partition-based approximation defined over cluster-trees [43].
MBTE(i) outputs multiple (lower or upper) bounds for each possiblevariable and
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value extension at once, which is much faster than running MBE(i) n times, once
for each variable.

The resultingBranch-and-Bound with Mini-Bucket-Tree heuristics[43,38], called
BBBT(i), applies the MBTE(i) heuristic computation at each node of the search
tree. Clearly, the algorithm has a higher time overhead compared with BBMB(i)
for the samei-bound, which computes the mini-buckets once. It is exponential in
the i-bound multiplied by the number of nodes visited, but it can prune the search
space much more effectively. Experimental results on probabilistic and determinis-
tic graphical models showed that the power of BBBT(i) is more pronounced over
BBMB(i) at relatively smalli-bounds, which is significant because smalli-bounds
require restricted space.

5 AND/OR Search Trees for Graphical Models

In this section we overview the AND/OR search space for graphical models, which
forms the core of our work in this paper.

The usual way to do search in graphical models is to instantiate variables in turn,
following a static/dynamic variable ordering. In the simplest case, this process de-
fines a search tree (called here OR search tree), whose state nodes represent partial
variable assignments. Since this search space does not capture the structure of the
underlying graphical model an AND/OR search space recentlyintroduced for gen-
eral graphical models [1] can be used instead. The AND/OR search space is defined
using a backbonepseudo tree[2,3].

DEFINITION 16 (pseudo tree, extended graph)Given an undirected graphG =
(V,E), a directed rooted treeT = (V,E′) defined on all its nodes is calledpseudo
tree if any arc ofG which is not included inE ′ is a back-arc, namely it connects
a node to an ancestor inT . Given a pseudo treeT of G, theextended graphof G

relative toT is defined asGT = (V,E ∪ E
′) (see Example 4 ahead).

We next define the notion of AND/OR search tree for a graphicalmodel.

DEFINITION 17 (AND/OR search tree [1]) Given a graphical modelR = 〈X,D,F〉,
its primal graphG and a backbone pseudo treeT of G, the associated AND/OR
search tree, denotedST (R), has alternating levels of AND and OR nodes. The OR
nodes are labeledXi and correspond to the variables. The AND nodes are labeled
〈Xi, xi〉 (or simplyxi) and correspond to value assignments in the domains of the
variables. The structure of the AND/OR search tree is based onthe underlying
backbone pseudo treeT . The root of the AND/OR search tree is an OR node la-
beled with the root ofT . A path from the root of the search treeST (R) to a noden
is denoted byπn. If n is labeledXi or xi the path will be denotedπn(Xi) or πn(xi),
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Fig. 4. AND/OR search spaces for graphical models.

respectively. The assignment sequence along pathπn, denotedasgn(πn), is the set
of value assignments associated with the AND nodes alongπn:

asgn(πn(Xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi−1, xi−1〉}

asgn(πn(xi)) = {〈X1, x1〉, 〈X2, x2〉, ..., 〈Xi, xi〉}

The set of variables associated with OR nodes along the pathπn is denoted by
var(πn): var(πn(Xi)) = {X1, ..., Xi−1}, var(πn(xi)) = {X1, ..., Xi}. The parent-
child relationship between nodes in the search space are defined as follows:

(1) An OR node,n, labeled byXi has a child AND node labeled〈Xi, xi〉 iff
〈Xi, xi〉 is consistent withasgn(πn), relative to the hard constraints.

(2) An AND node,n, labeled by〈Xi, xi〉 has a child OR node labeledY iff Y is a
child of Xi in the backbone pseudo treeT . Each OR arc, emanating from an
OR to an AND node is associated with a weight to be defined shortly.

Semantically, the OR states in the AND/OR search tree represent alternative ways
of solving a problem, whereas the AND states represent problem decomposition
into independent subproblems, conditioned on the assignment above them, all of
which need to be solved.

Following the general definition of a solution tree for AND/OR search graphs [8]
we have here that:

DEFINITION 18 (solution tree) A solution treeof an AND/OR search treeST (R)
is an AND/OR subtreeT such that:

(1) It contains the root ofST (R), s;
(2) If a non-terminal AND noden ∈ ST (R) is in T then all of its children are in

T ;
(3) If a non-terminal OR noden ∈ ST (R) is in T then exactly one of its children

is in T ;
(4) All its leaf (terminal) nodes are consistent.
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Example 4 Figure 4(a) shows the primal graph of cost network with 6 bi-valued
variablesA, B, C, D, E andF , and 9 binary cost functions. Figure 4(b) displays
a pseudo tree together with the back-arcs (dotted lines). Figure 4(c) shows the
AND/OR search tree based on the pseudo tree. A solution tree ishighlighted. Notice
that once variablesA andB are instantiated, the search space below the AND node
〈B, 0〉 decomposes into two independent subproblems, one that is rooted atC and
one that is rooted atE, respectively.

The virtue of an AND/OR search tree representation is that its size may be far
smaller than the traditional OR search tree. It was shown that:

THEOREM 3 (size of AND/OR search trees [1])Given a graphical modelR and
a backbone pseudo treeT , its AND/OR search treeST (R) is sound and complete,
and its size isO(l ·km) wherem is the depth of the pseudo tree,l bounds its number
of leaves, andk bounds the domain size.

Given atree decompositionof the primal graphG havingn nodes, whose treewidth
is w∗, it is known there exists a pseudo treeT of G whose depth,m, satisfies:
m ≤ w∗ · logn [44,45]. Therefore,

THEOREM 4 ([1]) A graphical model that has a treewidthw∗ has an AND/OR
search tree whose size isO(n · kw∗·logn), wherek bounds the domain size andn
is the number of variables.

The arcs in the AND/OR trees are associated with weights thatare defined based
on the graphical model’s functions and the combination operator. We next define
arc weights for any graphical model using the notion ofbuckets of functions.

DEFINITION 19 (buckets relative to a pseudo tree)Given a graphical modelR =
〈X,D,F〉 and a backbone pseudo treeT , the bucket ofXi relative to T , de-
notedBT (Xi), is the set of functions whose scopes containXi and are included
in pathT (Xi), which is the set of variables from the root toXi in T . Namely,

BT (Xi) = {f ∈ F|Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}

For simplicity and without loss of generality we consider inthe remainder of the
paper a graphical modelR = 〈X,D,F〉 for which the combination and elimination
operators aresummationandminimization, respectively.

DEFINITION 20 (OR-to-AND weights) Given an AND/OR search treeST (R), of
a graphical modelR, the weightw(n,m)(Xi, xi) (or simplyw(Xi, xi)) of arc(n,m),
whereXi labelsn andxi labelsm, is thecombinationof all the functions inBT (Xi)
assigned by values alongπm. Formally,
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Fig. 5. Arc weights for a cost network with 5 variables and 4 cost functions.

w(Xi, xi) =











0 , if BT (Xi) = ∅
∑

f∈BT (Xi) f(asgn(πm)) , otherwise

DEFINITION 21 (cost of a solution tree)Given a weighted AND/OR search tree
ST (R), of a graphical modelR, and given a solution treeT having OR-to-AND
set of arcsarcs(T ), the cost ofT is defined byf(T ) =

∑

e∈arcs(T ) w(e).

Let Tn be the subtree ofT rooted at noden in T . The costf(T ) can be computed
recursively, as follows:

1. If Tn consists only of a terminal AND noden, thenf(Tn) = 0.
2. If Tn is rooted at an OR node having an AND childm in Tn, thenf(Tn) =

w(n,m) + f(Tm).
3. If Tn is rooted at an AND node having OR childrenm1, ...,mk in Tn, then

f(Tn) =
∑k

i=1 f(Tmi
).

Example 5 Figure 5 shows the primal graph of a cost network with functions
{f(A,B), f(A,C), f(A,B,E), f(B,C,D)}, a pseudo tree that drives its weighted
AND/OR search tree, and a portion of the AND/OR search tree with appropri-
ate weights on the arcs expressed symbolically. In this case the bucket ofE con-
tains the functionf(A,B,E), the bucket ofC contains two functionsf(A,C) and
f(B,C,D) and the bucket ofB contains the functionf(A,B). We see indeed that
the weights on the arcs from the OR nodeE to any of its AND value assignments
include only the instantiated functionf(A,B,E), while the weights on the arcs
connectingC to its AND child nodes are the sum of the two functions in its bucket
instantiated appropriately. Notice that the buckets ofA andD are empty and there-
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fore the weights associated with the respective arcs are0.

With each noden of the search tree we can associate a valuev(n) which stands for
the answer to the particular query restricted to the subproblem belown [1].

DEFINITION 22 (node value)Given an optimization problemP = 〈R,min〉 over
a graphical modelR = 〈X,D,F,

∑

〉, thevalueof a noden in the AND/OR search
treeST (R) is the optimal cost to the subproblem belown.

The value of a node can be computed recursively, as follows: itis 0 for terminal
AND nodes and∞ for terminal OR nodes, respectively. The value of an internal
OR node is obtained bycombining (summing)the value of each AND child node
with the weight on its incoming arc and thenoptimize (minimize)over all AND
children. The value of an internal AND node is thecombination (summation)of
values of its OR children. Formally, ifsucc(n) denotes the children of the noden

in the AND/OR search tree, then:

v(n) =







































0 , if n = 〈X, x〉 is a terminal AND node

∞ , if n = X is a terminal OR node
∑

m∈succ(n) v(m) , if n = 〈X, x〉 is an AND node

minm∈succ(n)(w(n,m) + v(m)) , if n = X is an OR node
(1)

If n is the root ofST (R), then v(n) is the minimal cost solution to the initial
problem. Alternatively, the valuev(n) can also be interpreted as the minimum of
the costs of the solution trees rooted atn. Therefore, search algorithms that traverse
the AND/OR search space can compute the value of the root nodeyielding the
answer to the problem. It can be immediately inferred from Theorems 3 and 4 that:

THEOREM 5 (complexity [1]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is timeO(n · km), wherek bounds
the domain size andm is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidthw∗, there there exists a
pseudo treeT for which the time complexity isO(n · kw∗·logn).

6 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the paper which is an AND/OR
Branch-and-Bound algorithm for AND/OR search spaces for graphical models.
Traversing AND/OR search spaces by best-first algorithms ordepth-first Branch-
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Fig. 6. A partial solution tree and possible extensions to solution trees.

and-Bound was described as early as [8,46,47]. Here we adapt these algorithms
to graphical models. We will revisit next the notion of partial solution trees [8] to
represent sets of solution trees which will be used in our description.

DEFINITION 23 (partial solution tree) A partial solution treeT ′ of an AND/OR
search treeST is a subtree which: (1) contains the root nodes of ST ; (2) if n in T ′

is an OR node then it contains at most one of its AND child nodes in ST , and ifn
is an AND node then it contains all its OR children inST or it has no child nodes.
A node inT ′ is called atip node if it has no children inT ′. A tip node is either a
terminalnode (if it has no children inST ), or anon-terminalnode (if it has children
in ST ).

A partial solution tree can be extended (possibly in severalways) to a full solution
tree. It representsextension(T ′), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes areterminal inST is a
solution tree.

Example 6 Figure 6(c) shows a partial solution treeT ′ of the AND/OR search
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Algorithm 1 : AO: Depth-first AND/OR tree search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1.
Output : Minimal cost solution toP and an optimal solution tree.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize the root node1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN // EXPAND3
succ(n)← ∅4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′ labeled by〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
foreachXj ∈ childrenT (Xi) do12

create an OR noden′ labeled byXj13
v(n′)←∞; ST (n′)← ∅14
succ(n)← succ(n) ∪ {n′}15

Add succ(n) on top ofOPEN16
// PROPAGATE

while succ(n) == ∅ do17
let p be the parent ofn18
if n is an OR node, labeledXi then19

if Xi == X1 then20
return (v(n), ST (n)) // Search terminates21

v(p)← v(p) + v(n) // Update AND value22
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node23

else ifn is an AND node, labeled〈Xi, xi〉 then24
if v(p) > (w(p, n) + v(n)) then25

v(p)← w(p, n) + v(n) // Update OR value26
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node27

removen from succ(p)28
n← p29

tree of Figure 6(b) relative to the pseudo tree displayed in Figure 6(a). The set
of solution trees represented byT ′ is given in Figure 6(d) and corresponds to the
following assignments:(A = 0, B = 0, C = 0, D = 0), (A = 0, B = 0, C =
0, D = 1), (A = 0, B = 1, C = 0, D = 0) and(A = 0, B = 1, C = 0, D = 1).

Brute-force Depth-First AND/OR Tree Search.A simple depth-first search algo-
rithm, calledAO, that traverses the AND/OR search tree is described in Algorithm
1. The algorithm maintains the current partial solution being explored and will
compute the value of each node (see Definition 22) in a depth-first manner. The
value of the root node is the optimal cost. The algorithm alsoreturns the optimal
solution tree. It interleaves a forward expansion of the current partial solution tree
(EXPAND) with a cost revision step (PROPAGATE) that updates the node values.
The search stack is maintained by theOPEN list, n denotes the current node and
p its parent in the search tree. Each noden in the search tree maintains its current
valuev(n), which is updated based on the values of its children. For OR nodes, the
currentv(n) is an upper bound on the optimal solution cost belown. Initially, v(n)
is set to∞ if n is OR, and0 if n is AND, respectively. A data structureST (n)
maintains the actual best solution found in the subtree ofn.
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EXPAND selects a tip noden of the current partial solution tree and expands it
by generating its successors. Ifn is an OR node, labeledXi, then its successors
are AND nodes represented by the valuesxi in variableXi’s domain (lines 5–
10). Each OR-to-AND arc is associated with the appropriate weight (see Definition
20). Similarly, if n is an AND node, labeled〈Xi, xi〉, then its successors are OR
nodes labeled by the child variables ofXi in T (lines 11–15). There are no weights
associated with AND-to-OR arcs.

PROPAGATE propagates node values bottom up in the search tree. Is is triggered
when a node has an empty set of descendants (note that as each successor is eval-
uated, it is removed from the set of successors in line 28). This means that all
its children have been evaluated, and their final values are already determined. If
the current node is the root, then the search terminates withits value and an opti-
mal solution tree (line 21). Ifn is an OR node, then its parentp is an AND node,
andp updates its current valuev(p) by summation with the value ofn (line 22).
An AND noden propagates its value to its parentp in a similar way, by mini-
mization (lines 25–27). Finally, the current noden is set to its parentp (line 29),
becausen was completely evaluated. Each node in the search tree also records the
current best assignment to the variables of the subproblem below it and when the
algorithm terminates it contains an optimal solution tree.Specifically, if n is an
AND node, thenST (n) is the union of the optimal solution trees propagated from
n’s OR children (line 23). Ifn is an OR node andn′ is its AND child such that
n′ = argminm∈succ(n)(w(n,m) + v(m)), thenST (n) is obtained from the label
of n′ combined with the optimal solution tree belown′ (line 27). Search continues
either with apropagationstep (if conditions are met) or with anexpansionstep.

Heuristic Lower Bounds on Partial Solution Trees.A regular OR Branch-and-
Bound algorithm traverses the space of partial assignments in a depth-first manner
and discards any partial assignment that cannot lead to a superior solution than the
current best one found so far. This is normally achieved by using an evaluation
function that underestimates (for minimization tasks) thebest possible extension of
the current partial path. Thus, when the estimated lower bound, called also heuristic
evaluation function, is higher than the best current solution (upper bound), search
terminates below this path.

We will now extend the brute-forceAO algorithm into a Branch-and-Bound scheme,
guided by a lower bound heuristic evaluation function. For that, we first define the
exact evaluation function of a partial solution tree, and will then derive the notion
of a lower bound for it. Like in OR search, we assume a given heuristic evaluation
function h(n) associated with each noden in the AND/OR search tree such that
h(n) ≤ h∗(n), whereh∗(n) is the best cost extension of the subproblem belown

(namely,h∗(n) = v(n)). We callh(n) anode-based heuristic function.

DEFINITION 24 (exact evaluation function of a partial solution tree) The exact
evaluation functionf ∗(T ′) of a partial solution treeT ′ is the minimum of the costs
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of all solution trees represented byT ′, namely:

f ∗(T ′) = min{f(T ) | T ∈ extension(T ′)}

We definef ∗(T ′n) the exact evaluation function of a partial solution tree rooted at
noden. Thenf ∗(T ′n) can be computed recursively, as follows:

1. If T ′n consists of a single noden, thenf ∗(T ′n) = v(n).
2. If n is an OR node having the AND childm in T ′n, thenf ∗(T ′n) = w(n,m) +

f ∗(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf ∗(T ′n) =

∑k
i=1 f ∗(T ′mi

), whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

Clearly, we are interested to find thef ∗(T ′) of a partial solution treeT ′ rooted at
the roots. If each non-terminal tip noden of T ′ is assigned a heuristic lower bound
estimateh(n) of v(n), then it induces a heuristic evaluation function on the minimal
cost extension ofT ′, as follows.

DEFINITION 25 (heuristic evaluation function of a partial solution tree) Given a
node-based heuristic functionh(m) which is a lower bound on the optimal cost be-
low any nodem, namelyh(m) ≤ v(m), and given a partial solution treeT ′n rooted
at noden in the AND/OR search treeST , thetree-based heuristic evaluation func-
tion f(T ′n) of T ′n, is defined recursively by:

1. If T ′n consists of a single noden thenf(T ′n) = h(n).
2. If n is an OR node having the AND childm in T ′n, thenf(T ′n) = w(n,m) +

f(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
3. If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf(T ′n) =

∑k
i=1 f(T ′mi

), whereT ′mi
is the partial solution subtree ofT ′n rooted atmi.

PROPOSITION1 Clearly, by definitionf(T ′n) ≤ f ∗(T ′n). If n is the root of the
AND/OR search tree, thenf(T ′) ≤ f ∗(T ′).

Example 7 Consider the cost network with bi-valued variablesA,B,C,D,E and
F in Figure 7(a). The cost functionsf1(A,B,C), f2(A,B, F ) and f3(B,D,E)
are given in Figure 7(b). A partially explored AND/OR search tree relative to the
pseudo tree from Figure 7(a) is displayed in Figure 7(c). Thecurrent partial solu-
tion treeT ′ is highlighted. It contains the nodes:A, 〈A, 0〉, B, 〈B, 1〉, C, 〈C, 0〉, D,
〈D, 0〉 andF . The nodes labeled by〈D, 0〉 and byF are non-terminal tip nodes and
their corresponding heuristic estimates areh(〈D, 0〉) = 4 andh(F ) = 5, respec-
tively. The node labeled by〈C, 0〉 is a terminal tip node ofT ′. The subtree rooted at
〈B, 0〉 along the path(A, 〈A, 0〉, B, 〈B, 0〉) is fully explored, yielding the current
best solution cost found so far equal to9. We assume that the search is currently
at the tip node labeled by〈D, 0〉 of T ′. The heuristic evaluation function ofT ′ is
computed recursively as follows:
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Fig. 7. Cost of a partial solution tree.

f(T ′) = w(A, 0) + f(T ′〈A,0〉)

= w(A, 0) + f(T ′B)

= w(A, 0) + w(B, 1) + f(T ′〈B,1〉)

= w(A, 0) + w(B, 1) + f(T ′C) + f(T ′D) + f(T ′F )

= w(A, 0) + w(B, 1) + w(C, 0) + f(T ′〈C,0〉) + w(D, 0) + f(T ′〈D,0〉) + h(F )

= w(A, 0) + w(B, 1) + w(C, 0) + 0 + w(D, 0) + h(〈D, 0〉) + h(F )

= 0 + 0 + 3 + 0 + 0 + 4 + 5

= 12

Notice that if the pseudo treeT is a chain, then a partial treeT ′ is also a chain
and corresponds to the partial assignmentx̄p = (x1, ..., xp). In this case,f(T ′)
is equivalent to the classical definition of the heuristic evaluation function of̄xp.
Namely, f(T ′) is the sum of the cost of the partial solution̄xp, g(x̄p), and the
heuristic estimate of the optimal cost extension ofx̄p to a complete solution.
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Fig. 8. Illustration of the pruning mechanism.

During search we maintain an upper boundub(s) on the optimal solutionv(s) as
well as the heuristic evaluation function of the current partial solution treef(T ′),
and we can prune the search space by comparing these two measures, as is common
in Branch-and-Bound search. Namely, iff(T ′) ≥ ub(s), then searching below the
current tip nodet of T ′ is guaranteed not to reduceub(s) and therefore, the search
space belowt can be pruned.

Example 8 For illustration, consider again the partially explored AND/OR search
tree from Example 7 (see Figure 7(c)). In this case, the current best solution found
after exploring the subtree below〈B, 0〉, which ends the path(A, 〈A, 0〉, B, 〈B, 0〉),
is 9. Since we computedf(T ′) = 12 for the current partial solution tree highlighted
in Figure 7(c), then exploring the subtree rooted at〈D, 0〉, which is the current tip
node, cannot yield a better solution and search can be pruned.

Up until now we considered the case when the best solution found so far is main-
tained at the root node of the search tree. It is also possibleto maintain the current
best solutions for all the OR nodes along the active path between the tip nodet of
T ′ ands. Then, iff(T ′m) ≥ ub(m), wherem is an OR ancestor oft in T ′ andT ′m is
the subtree ofT ′ rooted atm, it is also safe to prune the search tree belowt. This
provides an efficient mechanism to discover that the search space below a node can
be pruned more quickly.

Example 9 Consider the partially explored weighted AND/OR search tree inFig-
ure 8, relative to the pseudo tree from Figure 7(a). The current partial solution tree
T ′ is highlighted. It contains the nodes:A, 〈A, 1〉, B, 〈B, 1〉, C, 〈C, 0〉, D, 〈D, 1〉
andF . The nodes labeled by〈D, 1〉 and byF are non-terminal tip nodes and their
corresponding heuristic estimates areh(〈D, 1〉) = 4 andh(F ) = 5, respectively.
The subtrees rooted at the AND nodes labeled〈A, 0〉, 〈B, 0〉 and 〈D, 0〉 are fully
evaluated, and therefore the current upper bounds of the OR nodes labeledA, B

and D, along the active path, areub(A) = 12, ub(B) = 10 and ub(D) = 5,
respectively. Moreover, the heuristic evaluation functions of the partial solution
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Algorithm 2 : AOBB: Depth-first AND/OR Branch-and-Bound search
Input : An optimization problemP = 〈X,D,F,

∑

, min〉, pseudo-treeT rooted atX1, heuristic functionh(n).
Output : Minimal cost solution toP and an optimal solution tree.
v(s)←∞; ST (s)← ∅; OPEN ← {s} // Initialize the root node1
while OPEN 6= ∅ do2

n← top(OPEN); removen from OPEN // EXPAND3
succ(n)← ∅4
if n is an OR node, labeledXi then5

foreachxi ∈ Di do6
create an AND noden′ labeled by〈Xi, xi〉7
v(n′)← 0; ST (n′)← ∅8
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight9

succ(n)← succ(n) ∪ {n′}10

else ifn is an AND node, labeled〈Xi, xi〉 then11
deadend← false12
foreachOR ancestorm of n do13

f(T ′
m)← evalPartialSolutionTree(T ′

m)14
if f(T ′

m) ≥ v(m) then15
deadend← true // Pruning the subtree below the current tip node16
break17

if deadend == false then18
foreachXj ∈ childrenT (Xi) do19

create an OR noden′ labeled byXj20
v(n′)←∞; ST (n′)← ∅21
succ(n)← succ(n) ∪ {n′}22

else23
p← parent(n)24
succ(p)← succ(p)− {n}25

Add succ(n) on top ofOPEN26
// PROPAGATE

while succ(n) == ∅ do27
let p be the parent ofn28
if n is an OR node, labeledXi then29

if Xi == X1 then30
return (v(n), ST (n)) // Search terminates31

v(p)← v(p) + v(n) // Update AND value32
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node33

if n is an AND node, labeled〈Xi, xi〉 then34
if v(p) > (w(p, n) + v(n)) then35

v(p)← w(p, n) + v(n) // Update OR value36
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node37

removen from succ(p)38
n← p39

subtrees rooted at the OR nodes along the current path can be computed recur-
sively based on Definition 25, namelyf(T ′A) = 13, f(T ′B) = 12 andf(T ′D) = 4,
respectively. Notice that while we could prune the subtree below 〈D, 1〉 because
f(T ′A) > ub(A), we could discover this pruning earlier by looking at nodeB only,
becausef(T ′B) > ub(B). Therefore, the partial solution treeT ′A need not be con-
sulted in this case.

Depth-First AND/OR Branch-and-Bound Tree Search.The AND/OR Branch-
and-Boundalgorithm,AOBB, for searching AND/OR trees for graphical models, is
described by Algorithm 2. LikeAO, it interleaves a forward expansion of the cur-
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Algorithm 3 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n)
Input : Partial solution subtreeT ′

n rooted at noden.
Output : Return heuristic evaluation functionf(T ′

n).
if succ(n) == ∅ then1

if n is an AND nodethen2
return 03

else4
return h(n)5

else6
if n is an AND nodethen7

let m1, ..., mk be the OR children ofn8

return
∑k

i=1
evalPartialSolutionTree(T ′

mi
)9

else ifn is an OR nodethen10
let m be the AND child ofm11
return w(n, m) + evalPartialSolutionTree(T ′

m)12

rent partial solution tree with a backward propagation stepthat updates the nodes
upper-bounds of values. The fringe of the search is maintained by a stack called
OPEN, the current node isn, its parentp, and the current pathπn. As before,ST (n)
accumulates the current best solution tree belown. The node-based heuristic func-
tion h(n) of v(n) is assumed to be available to the algorithm, either retrieved from
a cache or computed during search.

Before expanding the current AND noden, labeled〈Xi, xi〉, the algorithm com-
putes the heuristic evaluation function for every partial solution subtree rooted at
the OR ancestors ofn along the path from the root (lines 11–17). The search below
n is terminated if, for some OR ancestorm, f(T ′m) ≥ v(m), wherev(m) is the
current best upper bound on the optimal cost belowm. The recursive computation
of f(T ′m) based on Definition 25 is described in Algorithm 3. Notice also that for
any OR noden, labeledXi in the search tree,v(n) is trivially initialized to∞ and
is updated in line 36.

The node values are updated by the propagation step, in the usual way (lines 24–
40): OR nodes by minimization, while AND nodes by summation.The search ter-
minates when the root node is evaluated in line 32.

THEOREM 6 The time complexity of the depth-first AND/OR Branch-and-Bound
algorithm (AOBB) is O(n · km), wherem is the depth of the pseudo tree,k bounds
the domain size andn is the number of variables, and it can use linear space.

Proof. The time complexity follows immediately from the size of theAND/OR
search tree explored (see Theorem 3). Since only the currentpartial solution tree
needs to be stored in memory, the algorithm can operate in linear space.2
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7 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search strategy greatly depends on the
quality of the heuristic evaluation function. Naturally, more accurate heuristic esti-
mates may yield a smaller search space, possibly at a much higher computational
cost for computing the lower bound heuristic function. The right tradeoff between
the computational overhead and the pruning power exhibitedduring search may be
hard to predict. One of the primary heuristics we used is the Mini-Bucket heuristic
introduced in [5] for OR search spaces. In the following subsections we discuss its
extension to AND/OR search spaces. We also extend the local consistency based
lower bound developed in [22–24] to AND/OR search spaces. Both of these heuris-
tic functions were used in our experiments.

7.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figures 9(a) and 9(b), respec-
tively, and consider also the variable orderingd = (A,B,C,D,E, F,G) and the
bucket and mini-buckets configuration in the output as displayed in Figures 9(c) and
9(d), respectively (see Sections 4.1 and 4.2 for more details). For clarity, we dis-
play the execution of the bucket and mini-bucket elimination along the bucket tree
corresponding to the given elimination ordering. The bucket tree is also a pseudo
tree [1]. The functions denoted on the arcs are those messages sent from a bucket
node to its parent in the tree.

Let us assume, without loss of generality, that variablesA andB have been instan-
tiated during search. Leth∗(a, b, c) be the minimal cost solution of the subproblem
rooted at nodeC in the pseudo tree, conditioned on(A = a,B = b, C = c). In
the AND/OR search tree, this is represented by the subproblem rooted at the AND
node labeled〈C, c〉, ending the path{A, 〈A, a〉, B, 〈B, b〉, C, 〈C, c〉}. By definition,

h∗(a, b, c) = mind,e(f(c, e) + f(b, e) + f(a, d) + f(c, d) + f(b, d)) (2)

Notice that we restrict ourselves to the subproblem over variablesD andE only.
Therefore, we obtain:

h∗(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d) + mine(f(c, e) + f(b, e)))

= mind(f(a, d) + f(c, d) + f(b, d)) + mine(f(c, e) + f(b, e))

= hD(a, b, c) + hE(b, c)
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Fig. 9. Static mini-bucket heuristics fori = 3.

where,

hD(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d))

hE(b, c) = mine(f(c, e) + f(b, e))
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Notice that the functionshD(a, b, c) andhE(b, c) are produced by the bucket elimi-
nation algorithm shown in Figure 9(c). Specifically, the functionhD(a, b, c), gener-
ated in bucket ofD by bucket elimination, is the result of a minimization operation
over variableD. In practice, however, this function may be too hard to compute as
it requires processing a function on four variables. It can be replaced by a partition-
based approximation (e.g., the minimization is split into two parts). This yields a
lower bound approximation, denoted byh(a, b, c), namely:

h∗(a, b, c) = mind(f(a, d) + f(c, d) + f(b, d)) + hE(b, c)

≥ mindf(a, d) + mind(f(c, d) + f(b, d)) + hE(b, c)

= hD(a) + hD(b, c) + hE(b, c)

, h(a, b, c)

where,

hD(a) = mindf(a, d)

hD(c, b) = mind(f(c, d) + f(b, d))

The functionshD(a) andhD(b, c) are the ones computed by the Mini-Bucket al-
gorithm MBE(3), shown in Figure 9(d). Therefore, the functionh(a, b, c) can be
constructed during search from the pre-compiled mini-buckets, yielding a lower
bound on the minimal cost of the respective subproblem.

For OR nodes, such asn, labeled byC, ending the path{A, 〈A, a〉, B, 〈B, b〉, C},
h(n) can be obtained by minimizing over the valuesc ∈ DC the sum between
the weightw(n,m) and the heuristic estimateh(m) below the AND childm of n.
Namely,h(n) = minm(w(n,m) + h(m)).

In summary, similarly to [5], we can show that the mini-bucket heuristic associ-
ated with any node in the AND/OR search tree can be obtained from the the pre-
compiled mini-bucket functions.

DEFINITION 26 (static mini-bucket heuristic) Given an ordered set of augmented
buckets{B(X1), ..., B(Xn)} generated by the Mini-Bucket algorithm MBE(i) along
the bucket treeT , and given a noden in the AND/OR search tree, thestatic mini-
bucket heuristicfunctionh(n) is computed as follows:

(1) If n is an AND node, labeled by〈Xp, xp〉, then:

h(n) =
∑

hk
j
∈{B(Xp)∪B(X1

p ..X
q
p)}

hk
j

Namely, it is the sum of the intermediate functionshk
j that satisfy the following
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Fig. 10. AND/OR versus OR static mini-bucket heuristics fori = 3.

two properties:
• They are generated in bucketsB(Xk), whereXk is any descendant ofXp in

the bucket treeT ,
• They reside in bucketB(Xp) or the bucketsB(X1

p ..Xq
p) = {B(X1

p ), ..., B(Xq
p)}

that correspond to the ancestors{X1
p , ..., Xq

p} of Xp in T .
(2) If n is an OR node, labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp of Xp.

Example 10 Figure 9(d) shows the bucket tree for the cost network in Figure9(a)
together with the intermediate functions generated by MBE(3) along the ordering
d = (A,B,C,D,E, F,G). The static mini-bucket functionh(a′, b′, c′) associated
with the AND node labeled〈C, c′〉 ending the path(A = a′, B = b′, C = c′) in the
AND/OR search tree is by definitionh(a′, b′, c′) = hD(a′) + hD(c′, b′) + hE(b′, c′).
The intermediate functionshD(c′, b′) andhE(b′, c′) are generated in bucketsD and
E, respectively, and reside in bucketC. The functionhD(a′) is also generated in
bucketD, but it resides in bucketA, which is an ancestor ofC in the bucket tree.

We see that the computation of the static mini-bucket heuristic of a noden in the
AND/OR search tree is identical to the OR case (see Definition15), except that it
only considers the intermediate functions generated by thebuckets corresponding
to the current conditioned subproblem rooted atn.

Example 11 For example, consider again the cost network in Figure 9(a). Figures
10(a) (which repeats Figure 9(d)) and 10(b) show the compiledbucket structure ob-
tained by MBE(3) along the given elimination orderd = (A,B,C,D,E, F,G), for
the AND/OR and OR spaces, respectively. The static mini-bucket heuristic function
underestimating the minimal cost extension of the partial assignment(A = a′, B =
b′, C = c′) in the OR search space ish(a′, b′, c′) = hD(a′)+hD(c′, b′)+hE(b′, c′)+
hF (b′, a′). Namely, it involves the extra functionhF (b′, a′) which was generated in
bucketF and resides in bucketB, as shown in Figure 10(b). This is because, in the
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OR space, variablesF andG are part of the subproblem rooted atC, unlike the
AND/OR search space.

7.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristic information dynamically
during search, as we show next. The idea is to compute MBE(i) conditioned on the
current partial assignment.

DEFINITION 27 (dynamic mini-bucket heuristics) Given a bucket treeT with buck-
ets{B(X1), ..., B(Xn)}, a noden in the AND/OR search tree and given the current
partial assignmentasgn(πn) along the path ton, thedynamic mini-bucket heuris-
tic functionh(n) is computed as follows:

(1) If n is an AND node labeled by〈Xp, xp〉, then:

h(n) =
∑

hk
j
∈B(Xp)

hk
j

Namely, it is the sum of the intermediate functionshk
j that reside in bucket

B(Xp) and were generated by MBE(i), conditioned onasgn(πn), in buckets
B(X1

p ) throughB(Xq
p), where{X1

p , ..., Xq
p} are the descendants ofXp in T .

(2) If n is an OR node labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp of Xp.

Given ani-bound, the dynamic mini-bucket heuristic implies a much higher com-
putational effort compared with the static version. However, the bounds generated
dynamically may be far more accurate since some of the variables are assigned and
will therefore yield smaller functions and less partitioning. More importantly, the
dynamic mini-bucket heuristic can be used with dynamic variable ordering heuris-
tics, unlike the pre-compiled one, which restricts search to be conducted in an order
that respects a static pseudo tree structure.

Example 12 Figure 11 shows the bucket tree structure corresponding to the bi-
nary cost network instance displayed in Figure 9(a), along the elimination order-
ing (A,B,C,D,E, F,G). The dynamic mini-bucket heuristic estimateh(a′, b′, c′)
of the AND node labeled〈C, c′〉 ending the path{A, 〈A, a′〉, B, 〈B, b′〉, C, 〈C, c′〉}
is computed by MBE(3) on the subproblem represented by the bucketsD and E,
conditioned on the partial assignment(A = a′, B = b′, C = c′). Namely, MBE(3)
processes bucketsD andE by eliminating the respective variables, and generates
two new functions:hD(c′) andhE(c′), as illustrated in Figure 11. These new func-
tions are in fact constants since variablesA, B andC are assigned in the scopes of
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the input functions that constitute the conditioned subproblem:f(a′, D), f(b′, D),
f(c′, D), f(b′, E) and f(c′, E), respectively. Thereforeh(a′, b′, c′) = hD(c′) +
hE(c′) and it equals the exacth∗(a′, b′, c′) in this case.

7.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for guiding Branch-and-Bound
search for solving binary Weighted CSPs is based on exploiting local consistency
algorithms for cost functions. In the next section we overview the basic principles
behind these types of heuristics and discuss their extension to AND/OR trees.

7.3.1 Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistency on the initial problem pro-
vides in polynomial time anequivalentproblem defining the same cost distribution
on complete assignments, with possible smaller domains [22–24].

Assume a binary Weighted CSPR = 〈X,D,C〉, whereX = {X1, ..., Xn} and
D = {D1, ..., Dn} are the variables and their corresponding domains.C is the set
of binary and unary cost functions (or soft constraints). A binary soft constraint
Cij(Xi, Xj) ∈ C (or Cij in short) isCij(Xi, Xj) : Di × Dj → N. A unary soft
constraintCi(Xi) ∈ C (or Ci in short) isCi(Xi) : Di → N. We assume the ex-
istence of a unary constraintCi(Xi) for every variable, and a zero-arity constraint,
denoted byC∅. If no such constraints are defined, we can always define dummy
ones, asCi(xi) = 0, ∀xi ∈ Di or C∅ = 0. We denote by>, the maximum allowed
cost (e.g., > = ∞). The cost of a tuplex = (x1, ..., xn), denoted bycost(x), is
defined by:
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cost(x) =
∑

Cij∈C
Cij(x[i, j]) +

∑

Ci∈C
CXi

(x[i]) + C∅

For completeness, we define next some local consistencies inWCSP, in particular
node, arc anddirectional arc consistency, as in [22,23]. We assume that the set of
variablesX is totally ordered. We note that there are several stronger local consis-
tencies which were defined in recent years, such asfull directional arc consistency
(FDAC) [22,23] orexistential directional arc consistency(EDAC) [24].

DEFINITION 28 (soft node consistency [22,23])LetR = 〈X,D,C〉 be a binary
WCSP.(Xi, xi) is star node consistent (NC∗) if C∅ + Ci(xi) < >. VariableXi is
NC∗ if: i) all its values areNC∗ and ii) there exists a valuexi ∈ Di such that
Ci(xi) = 0. Valuexi is a supportfor variableXi. R is NC∗ if every variable is
NC∗.

DEFINITION 29 (soft arc consistency [22,23])Let R = 〈X,D,C〉 be a binary
WCSP.(Xi, xi) is arc consistent (AC) with respect to constraintCij(Xi, Xj) if there
exists a valuexj ∈ Dj such thatCij(xi, xj) = 0. Valuexj is called asupportfor
the valuexi. VariableXi is AC if all its values are AC wrt. every binary constraint
affectingXi. R is AC∗ if every variable is AC andNC∗.

DEFINITION 30 (soft directional arc consistency [22,23])LetR = 〈X,D,C〉 be
a binary WCSP.(Xi, xi) is directional arc consistent (DAC) with respect to con-
straint Cij(Xi, Xj), i < j, if there exists a valuexj ∈ Dj such thatCij(xi, xj) +
Cj(xj) = 0. Valuexj is called afull supportof xj. VariableXi is DAC is all its
values are DAC wrt. everyCij(Xi, Xj), i < j. R is DAC∗ if every variable is DAC
andNC∗.

For our purpose, we point out that enforcing such local consistencies is done by
the repeated application of atomic operations calledarc equivalence preserving
transformations[48]. This process may increase the value ofC∅ and the unary
costsCi(xi) associated with domain values. The zero-arity cost function C∅ defines
a strong lower boundwhich can be exploited by Branch-and-Bound algorithms
while the updatedCi(xi) can inform variable and value orderings [22–24].

If we consider two cost functionsCij(Xi, Xj), defined over variablesXi andXj,
andCi(Xi), defined over variableXi, a valuexi ∈ Di and a costα, we can addα
to Ci(xi) and subtractα from everyCij(xi, xj) for all xj ∈ Dj. Simple arithmetics
shows that the global cost distribution is unchanged while costs may have moved
from the binary to the unary level (ifα > 0, this is called aprojection) or from the
unary to the binary level (ifα < 0, this is called anextension). In these operations,
any cost above>, the maximum allowed cost, can be considered as infinite and is
thus unaffected by subtraction. If no negative cost appearsand if all costs above>
are set to>, the remaining problem is always a valid and equivalent WCSP. The
same mechanism, at the unary level, can be used to move costs from theCi(Xi) to
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Fig. 12. Four equivalent WCSPs (for> = 4) [22].

C∅. Finally, any value a such thatCi(xi) + C∅ is equal to> can be deleted. For a
detailed description of these operations, we refer the reader to [22–24].

Example 13 Figure 12(a) shows a WCSP with a sets of costs[0, ..., 4] and with
> = 4. The network has three variablesX = {X,Y, Z}, each with values{a, b}.
There are 2 binary constraintsC(X,Z), C(Y, Z) and two non-trivial unary con-
straintsC(X) andC(Z). Unary costs are depicted inside their domain value. Bi-
nary costs are depicted as labeled edges connecting the corresponding pair of val-
ues. Zero costs are not shown. Initially,C∅ is set to 0. One optimal solution is
(X = b, Y = b, Z = b), with cost 2.

The problem in Figure 12(a) is notNC∗ sinceZ has no support. To enforceNC∗

we must force a support forZ by projectingCZ(Z) ontoC∅. The resulting prob-
lem in Figure 12(b) isNC∗ but notAC∗. To enforceAC∗, it suffices to enforce
a support for(Y, a) and (Z, a), as follows: we projectCY Z(Y, Z) over (Y, a) by
adding 1 toCY (a) and subtracting 1 fromCY Z(a, a) andCY Z(a, b), and similarly
projectCXZ(X,Z) over(Z, a). Consequently, we get problem 12(d) which isAC∗.
Observe also that problem 12(b) is notDAC∗ for order (X,Y, Z) since(Y, a) has
no full support onZ. Problem 12(c) is an equivalentDAC∗ problem.

7.3.2 Extension of Local Consistency to AND/OR Search Spaces

As mentioned earlier, the zero-arity constraintC∅ which is obtained by enforcing
local consistency, can be used as a heuristic function to guide Branch-and-Bound
search. The extension of this heuristic to AND/OR search spaces is fairly straight-
forward and is similar to the extension of the mini-bucket heuristics from OR to
AND/OR spaces. ConsiderPn, the subproblem rooted at the AND noden, labeled
〈Xi, xi〉, in the AND/OR search tree defined by a pseudo treeT . The heuristic
functionh(n) underestimatingv(n) is the zero-arity cost functionCn

∅ resulted from
enforcing soft arc consistency overPn only, subject to the current partial instanti-
ation of the variables along the path from the root of the search tree. Note thatPn

is defined by the variables and cost functions correspondingto the subtree rooted
atXi in T . If n is an OR node labeledXi thenh(n) is computed in the usual way,
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namelyh(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn, labeled
with valuexi of Xi. Notice that in this case the weights associated with the OR-to-
AND arcs are computed now relative to the equivalent subproblem resulted from
enforcing arc consistency.

There is a strong relation between directional arc consistency and mini-buckets. It
was shown in [22] that given a WCSP with> = ∞, and a variable ordering, the
lower bound induced by mini-buckets involving at most 2 variables is the same as
the lower bound induced byC∅ after the problem is made directional arc consistent.
However, the mini-bucket computation provides only a lowerbound while DAC
enforcing provides both a lower bound and a directional arc consistent equivalent
problem. All the work done to compute the lower bound is captured in this problem
which offers the opportunity to perform incremental updates of the lower bound.

8 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introduced in Section 6 as-
sumed a static variable ordering determined by the underlying pseudo tree of the
primal graph. In classical CSPs, dynamic variable ordering is known to have a sig-
nificant impact on the size of the search space explored [14].Well known variable
ordering heuristics, such asmin-domain[49], min-dom/ddeg[50], brelaz[51] and
min-dom/wdeg[52,53] were shown to improve dramatically the performanceof
systematic search algorithms. In this section we discuss some strategies that allow
dynamic variable orderings in AND/OR search.

We distinguish two classes of variable ordering heuristics:

(1) Graph-based heuristics (e.g., pseudo tree) that try to maximize problem de-
composition, and

(2) Semantic-based heuristics (e.g., min-domain) that aim at shrinking the search
space, based on context and current value assignment.

These two approaches are orthogonal, namely we can use one asthe primary guide
and break ties based on the other. We present three schemes ofcombining these
heuristics. For simplicity and without loss of generality we consider themin-domain
as our semantic variable ordering heuristic. It selects thenext variable to instantiate
as the one having the smallest current domain among the uninstantiated (future)
variables. Clearly, it can be replaced by any other heuristic.
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Fig. 13. Full dynamic variable ordering for AND/OR Branch-and-Boundsearch.

8.1 Partial Variable Ordering (PVO)

The first approach, calledAND/OR Branch-and-Bound with Partial Variable Or-
deringand denoted byAOBB+PVO uses the static graph-based decomposition given
by a pseudo tree with a dynamic semantic ordering heuristic applied over chain por-
tions of the pseudo tree. It is an adaptation of the ordering heuristics developed in
[54,55] which were used for solving large-scale SAT probleminstances.

Consider the pseudo tree from Figure 4(a) inducing the following variable groups
(or chains):{A,B}, {C,D} and{E,F}, respectively. This implies that variables
{A,B} should be considered before{C,D} and{E,F}. The variables in each
group can be dynamically ordered based on a second, independent heuristic. Notice
that once variables{A,B} are instantiated, the problem decomposes into indepen-
dent components that can be solved separately.

AOBB+PVO can be derived from Algorithm 2 with some simple modifications.
As usual, the algorithm traverses an AND/OR search tree in a depth-first manner,
guided by a pre-computed pseudo treeT . When the current AND noden, labeled
〈Xi, xi〉 is expanded in the forward step (line 9), the algorithm generates its OR suc-
cessor, labeled byXj, based on the semantic variable ordering heuristic (line 12).
Specifically, the OR nodem, labeledXj corresponds to the uninstantiated variable
with the smallest current domain in the current pseudo tree chain. If there are no
uninstantiated variables left in the current chain, namelyvariableXi was instanti-
ated last, then the OR successors ofn are labeled by the variables with the smallest
domain from the variable chains rooted byXi in T .
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8.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable orderings, calledAND/OR Branch-
and-Bound with Full Dynamic Variable Orderingand denoted byDVO+AOBB,
gives priority to the dynamic semantic variable ordering heuristic and applies static
problem decomposition as a secondary principle during search. This idea was also
explored in [56] for model counting, and more recently in [57] for weighted model
counting.

For illustration, consider the cost network with 8 variables{A,B,C,D,E, F,G,H},
13 binary cost functions, and the domains given in Figure 13(a), as follows:DA =
{0, 1}, DB = {0, 1, 2}, andDC = DD = DE = DF = DG = DH = {0, 1, 2, 3},
respectively. Each of the cost functionsf(A,B) andf(A,E) assigns an∞ cost
to two of their corresponding tuples, whereas the remaining11 functions do not
contain such tuples.

During search, variables are instantiated in min-domain order. However, after each
variable assignment we test for problem decomposition and solve the remaining
subproblems independently. Figure 13(b) shows the partialAND/OR search tree
obtained after several variable instantiations based on the min-degree ordering heuris-
tic. Notice that, depending on the order in which the variables are instantiated, the
primal graph may decompose into independent componentshigher or deeperin
the search tree. For instance, after instantiatingA to 0, the values{1, 2} can be
removed from the domain ofB, because the corresponding tuples have cost∞ in
the cost functionf(A,B) (see Figure 13(a)). Therefore,B is the next variable to be
instantiated, at which point the problem decomposes into independent components,
as shown in Figure 13(b). Similarly, whenA is instantiated to 1, values{0, 1} can
also be removed from the domain ofE, because of the cost functionf(A,E). Then,
variableE, having 2 values left in its domain, is selected next in the min-domain
order, followed byB with domain size 3.

DVO+AOBB can be expressed by modifying Algorithm 2 as follows. It instantiates
the variables dynamically using the min-domain ordering heuristic while maintain-
ing the current graph structure. Specifically, after the current AND noden, labeled
〈Xi, xi〉, is expanded,DVO+AOBB tentatively removes from the primal graph all
nodes corresponding to the instantiated variables together with their incoming arcs.
If disconnected components are detected, their corresponding subproblems are then
solved separately and the results combined in an AND/OR manner. In this case a
variable selection may yield a significant impact on tightening the search space,
yet, it may not yield a good decomposition for the remaining problem.
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8.3 Dynamic Separator Ordering (DSO)

The third approach,AND/OR Branch-and-Bound with Dynamic Separator Order-
ing (AOBB+DSO), exploits constraint propagation which can be used for dynamic
graph-based decomposition with a dynamic semantic variable ordering, giving pri-
ority to the first. At each AND node we apply a lookahead procedure hoping to
detect singleton variables (i.e., with only one feasible value left in their domains).
When the value of a variable is known, it can be removed from thecorresponding
subproblem, yielding a stronger decomposition of the simplified primal graph.

AOBB+DSO defined on top of Algorithm 2 creates and maintains a separator S of
the current primal graph. A graph separator can be computed using the hypergraph
partitioning method presented in [55]. The next variable ischosen dynamically
from S by the min-domain ordering heuristic untilS is fully instantiated and the
current problem decomposes into several independent subproblems, which are then
solved separately. The separator of each component is created from a simplified
subgraph resulted from previous constraint propagation steps and it may differ for
different value assignments. Clearly, if no singleton variables are discovered by the
lookahead steps this approach is computationally identical to AOBB+PVO, although
it may have a higher overhead due to the dynamic generation ofthe separators.

9 Experimental Results

We have conducted a number of experiments on two common optimization problem
classes in graphical models: finding the Most Probable Explanation in Bayesian
networks and solving Weighted CSPs. We implemented our algorithms in C++ and
carried out all experiments on a 1.8GHz dual-core Athlon64 with 2GB of RAM
running Ubuntu Linux 7.04.

9.1 Overview and Methodology

Bayesian Networks.For the MPE task, we tested the performance of the AND/OR
Branch-and-Bound algorithms on the following types of problems: random Bayesian
networks, random coding networks, grid networks, Bayesian networks derived from
the ISCAS’89 digital circuit benchmark, genetic linkage analysis networks, net-
works from the Bayesian Network Repository, and Bayesian networks from the
UAI’06 Inference Evaluation Dataset. We report here some ofthe results and place
the rest in the Appendix.

The detailed outline of the experimental evaluation for Bayesian networks is given
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Table 1
Detailed outline of the experimental evaluation for Bayesian networks.

static mini-buckets dynamic mini-buckets min-fill vs.

Benchmarks BB+SMB(i) BB+DMB(i) hypergraph constraint SamIam Superlink

AOBB+SMB(i) AOBB+DMB(i) pseudo trees propagation

main

Random BN
√ √ √

- - -

Coding
√ √ √

-
√

-

Grids
√ √ √ √ √

-

Linkage
√

-
√ √ √ √

appendix

ISCAS’89
√ √ √ √ √

-

UAI’06 Dataset
√

-
√

-
√

-

BN Repository
√ √

- -
√

-

in Table 1. We evaluated the two classes of depth-first AND/ORBranch-and-Bound
search algorithms, guided by the static and dynamic mini-bucket heuristics, denoted
byAOBB+SMB(i) andAOBB+DMB(i), respectively. We compare these algorithms
against traditional depth-first OR Branch-and-Bound algorithms with static and dy-
namic mini-bucket heuristics introduced in [5,38], denoted by BB+SMB(i) and
BB+DMB(i), respectively, which were among the best-performing complete search
algorithms for this domain at the time. The parameteri represents the mini-bucket
i-bound and controls the accuracy of the heuristic. The pseudo trees that guide
AND/OR search algorithms were generated using the min-fill and hypergraph par-
titioning heuristics, described later in this section. We also consider an extension
of the AND/OR Branch-and-Bound that exploits the determinismpresent in the
Bayesian network by constraint propagation.

Since the pre-compiled mini-bucket heuristics require a static variable ordering,
the corresponding OR and AND/OR search algorithms used the variable ordering
as well derived from a depth-first traversal of the guiding pseudo tree. When we
applied dynamic variable orderings with dynamic mini-bucket heuristics we ob-
served that the computational overhead was prohibitively large compared with the
static variable ordering setup. We therefore do not report these. We note however
that theAOBB+SMB(i) andAOBB+DMB(i) algorithms support a restricted form
of dynamic variable and value ordering. Namely, there is a dynamic internal order-
ing of the successors of the node just expanded, before placing them onto the search
stack. Specifically, in line 26 of Algorithm 2, if the currentnoden is AND, then the
independent subproblems rooted by its OR children can be solved in decreasing or-
der of their corresponding heuristic estimates (variable ordering). Alternatively, if
n is OR, then its AND children corresponding to domain values can also be sorted
in decreasing order of their heuristic estimates (value ordering).

We compared our algorithms with the SAM IAM version 2.3.2 software package1 .

1 Available at http://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5 pro-
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Table 2
Detailed outline of the experimental evaluation for Weighted CSPs.

static mini-buckets dynamic mini-buckets min-fill vs. EDAC heuristics

Benchmarks BB+SMB(i) BB+DMB(i) hypergraph BBEDAC toolbar

AOBB+SMB(i) AOBB+DMB(i) pseudo trees AOEDAC, PVO, DVO, DSO

main

SPOT5
√ √ √ √ √

ISCAS’89
√ √ √ √ √

Mastermind
√

-
√ √ √

CELAR - - -
√ √

SAM IAM is a public implementation of Recursive Conditioning [58] which can
also be viewed as an AND/OR search algorithm. The algorithm uses a context-
based caching mechanism that records the optimal solution of the subproblems and
retrieves the saved values when the same subproblems are encountered again during
search. This version of recursive conditioning traverses acontext minimal AND/OR
search graph [1], rather than a tree, and its space complexity is exponential in the
treewidth. Note that when we use mini-bucket heuristics with high values ofi,
we use space exponential ini for the heuristic calculation and storing. Our search
regime however does not consume any additional space.

Weighted CSPs.For WCSPs we evaluated the performance of the AND/OR Branch-
and-Bound algorithms on: random binary WCSPs, scheduling problems from the
SPOT5 benchmark, networks derived from the ISCAS’89 digitalcircuits, radio link
frequency assignment problems and instances of the Mastermind game.

The outline of the experimental evaluation for Weighted CSPsis detailed in Table
2. In addition to the mini-bucket heuristics, we also consider a heuristic evaluation
function that is computed by maintaining Existential Directional Arc-Consistency
(EDAC) [24]. AOBB with this heuristic is calledAOEDAC. We also consider the
extension ofAOEDAC that incorporates dynamic variable orderings heuristics de-
scribed earlier yielding:AOEDAC+PVO (partial variable ordering - Section 8.1),
DVO+AOEDAC (full dynamic variable ordering - Section 8.2) andAOEDAC+DSO
(dynamic separator ordering - Section 8.3). For comparison, we report results ob-
tained with our implementation of the classic OR Branch-and-Bound with EDAC,
denoted here byBBEDAC.

For reference, we also rantoolbar 2 , an OR Branch-and-Bound that maintains
EDAC during search and uses dynamic variable orderings.toolbar was intro-
duced in [24] and is currently one of the best performing solvers for binary WCSPs.

The semantic-based dynamic variable ordering heuristic used by both the OR and
AND/OR Branch-and-Bound algorithms with EDAC based heuristics was themin-

vided with the package.
2 Available at: http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP
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dom/ddegheuristic, which selects the variable with the smallest ratio of the current
domain size divided by the future degree. Ties were broken lexicographically.

Measures of Performance.In all our experiments we report the average CPU time
in seconds and the number of nodes visited, required for proving optimality. We
also specify the number of variables (n), number of evidence variables (e), max-
imum domain size (k), number of functions (c), maximum arity of the functions
(r), the depth of the pseudo tree (h) and the induced width of the graph (w∗), for
each problem instance. When evidence is asserted in the network, w∗ andh are
computed after the evidence nodes are removed from the graph. We also report the
time required by the Mini-Bucket algorithm MBE(i) to pre-compile the heuristic
information. The best performance points are highlighted.In each table, ”-” de-
notes that the respective algorithm exceeded the time limit. Similarly, ”out” stands
for exceeding the 2GB memory limit.

9.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search algorithms is influ-
enced by the quality of the guiding pseudo tree. Finding the minimal depth/induced
width pseudo tree is a hard problem [2,44,3]. We describe next two heuristics for
generating pseudo trees with relatively small depths/induced widths which we used
in our experiments.

Min-Fill Heuristic. Min-Fill [59] is one of the best and most widely used heuris-
tics for creating small induced width elimination orders. An ordering is generated
by placing the variable with the smallestfill set (i.e., number of induced edges that
need be added to fully connect the neighbors of a node) at the end of the ordering,
connecting all of its neighbors and then removing the variable from the graph. The
process continues until all variables have been eliminated.

Once an elimination order is given, the pseudo tree can be extracted as a depth-first
traversal of the min-fill induced graph, starting with the variable that initiated the
ordering, always preferring as successor of a node the earliest adjacent node in the
induced graph. An ordering uniquely determines a pseudo tree. This approach was
first used by [3].

To improve orderings, we can run the min-fill ordering several times by randomiz-
ing the tie breaking. In our experiments, we ran the min-fill heuristic just once and
broke the ties lexicographically.

Hypergraph Decomposition Heuristic. An alternative heuristic for generating
a low height balanced pseudo tree is based on the recursive decomposition of the
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Table 3
Bayesian Networks Repository (left); SPOT5 benchmarks (right).

Network hypergraph min-fill Network hypergraph min-fill

width depth width depth width depth width depth

barley 7 13 7 23 spot5 47 152 39 204

diabetes 7 16 4 77 spot28 108 138 79 199

link 21 40 15 53 spot29 16 23 14 42

mildew 5 9 4 13 spot42 36 48 33 87

munin1 12 17 12 29 spot54 12 16 11 33

munin2 9 16 9 32 spot404 19 26 19 42

munin3 9 15 9 30 spot408 47 52 35 97

munin4 9 18 9 30 spot503 11 20 9 39

water 11 16 10 15 spot505 29 42 23 74

pigs 11 20 11 26 spot507 70 122 59 160

dual hypergraph associated with the graphical model.

DEFINITION 31 (dual hypergraph) Thedual hypergraphof a graphical modelR =
〈X,D,F〉, is a pairH(R) = (V,E), where each function inF is a vertexvi ∈ V

and each variable inX is an edgeej ∈ E connecting all the functions (vertices) in
which it appears.

DEFINITION 32 (hypergraph separators) Given a dual hypergraphH = (V,E)
of a graphical model, ahypergraph separator decompositionis a triple 〈H,S, α〉
where:

(1) S ⊂ E, and the removal ofS separatesH into k disconnected components
(subgraphs);

(2) α is a relation over the size of the disjoint subgraphs (i.e., balance factor).

It is well known that the problem of finding the minimal size hypergraph separa-
tor is hard. However heuristic approaches were developed over the years. A good
approach is packaged inhMeTiS 3 .

We will use this software as a basis for our pseudo tree generation. Following [58],
generating a pseudo treeT for R usinghMeTiS is fairly straightforward. The
vertices of the hypergraph are partitioned into two balanced (roughly equal-sized)
parts, denoted byHleft andHright respectively, while minimizing the number of
hyperedges across. A small number of crossing edges translates into a small number

3 Available at: http://www-users.cs.umn.edu/karypis/metis/hmetis
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of variables shared between the two sets of functions.Hleft andHright are then each
recursively partitioned in the same fashion, until they contain a single vertex. The
result of this process is a tree of hypergraph separators which can be shown to also
be a pseudo tree of the original model where each separator corresponds to a subset
of variables chained together.

Since the hypergraph partitioning heuristic uses a non-deterministic algorithm (i.e.,
hMeTiS), the depth and induced width of the resulting pseudo tree may vary sig-
nificantly from one run to the next. In our experiments we picked the pseudo tree
with the smallest depth out of 10 independent runs.

In Table3 we illustrate the induced width and depth of the pseudo tree obtained with
the hypergraph and min-fill heuristics for 10 belief networks from the Bayesian
Networks Repository4 and 10 constraint networks derived from the SPOT5 bench-
mark [10]. From this and the experiments presented in the remainder of this section,
we observe that the min-fill heuristic generates lower induced width pseudo trees,
while the hypergraph heuristic produces much smaller depthpseudo trees. There-
fore, perhaps the hypergraph based pseudo trees appear to befavorable for tree
search algorithms guided by heuristics that are not sensitive to the treewidth (e.g.,
local consistency based heuristics), while the min-fill pseudo trees, which minimize
the treewidth, are more appropriate for search algorithms whose guiding heuristic
is sensitive to the treewidth (e.g., mini-bucket heuristics).

9.3 Results for Empirical Evaluation of Bayesian Networks

9.3.1 Random Bayesian Networks

The random Bayesian networks were generated using parameters(n, k, c, p), where
n is the number of variables,k is the domain size,c is the number of conditional
probability tables (CPTs) andp is the number of parents in each CPT. The struc-
ture of the network is created by randomly pickingc variables out ofn and, for
each, randomly pickingp parents from their preceding variables, relative to some
ordering. The remainingn − c variables are calledroot nodes. The entries of each
probability table are generated randomly using a uniform distribution, and the table
is then normalized.

Table 4 shows detailed results for solving a class of random belief networks using
min-fill and hypergraph partitioning based pseudo trees. The columns are indexed
by the mini-bucketi-bound. For each domain size we generated 20 random in-
stances and in each test casee = 10 variables were chosen randomly as evidence.

We observe thatAOBB+SMB(i) is better thanBB+SMB(i) at relatively smalli-

4 Available at: http://www.cs.huji.ac.il/labs/compbio/Repository
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Table 4
CPU time in seconds and number of nodes explored for solvingrandom belief net-
works with n = 100 nodes,p = 2 parents per CPT,c = 90 CPTs and domain sizes
k ∈ {2, 3, 4, 5}. Each test case hade = 10 variables chosen randomly as evidence. The
time limits are 180 seconds fork ∈ {2, 3} and 300 seconds fork ∈ {4, 5}, respectively.
Pseudo trees generated by min-fill and hypergraph heuristics.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

k (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=2 i=4 i=6 i=8 i=10 i=12

time nodes time nodes time nodes time nodes time nodes time nodes

0.43 0.43 0.44 0.43 0.44 0.45

174.86 2,109,890 89.33 1,088,420 38.19 488,197 3.28 41,539 0.90 12,918 1.06 15,021

2 (14, 25) 12.23 308,536 1.01 25,706 0.70 17,124 0.17 4,273 0.07 1,666 0.06 1,103

25.86 62,466 3.13 10,737 2.75 10,289 2.71 10,653 2.91 11,570 2.59 10,153

3.07 11,023 0.50 1,365 0.24 635 0.15 489 0.17 450 0.18 347

0.43 0.43 0.44 0.47 0.69 2.12

- - - - 122.00 1,061,530 37.44 344,128 7.23 67,299 3.55 21,341

3 (14, 25) - - 100.47 1,950,280 40.54 722,818 19.78 384,609 2.37 39,318 2.26 13,957

163.72 208,945 31.09 24,603 23.00 19,753 23.50 19,293 28.24 17,787 44.43 18,994

137.61 357,485 24.93 34,127 16.17 6,283 16.40 1,613 20.85 702 34.96 478

0.50 0.50 0.52 0.80 3.93 39.22

- - - - 251.01 1,724,330 107.49 742,803 20.31 137,357 43.14 42,869

4 (14, 25) - - 283.61 4,585,420 188.38 2,922,760 85.19 1,326,610 23.38 303,695 41.27 51,276

- - 162.86 48,281 157.93 31,620 170.88 28,508 218.89 27,731 323.48 13,235

- - 155.49 85,964 146.72 7,891 161.38 1,367 211.84 697 317.11 218

0.49 0.49 0.58 2.20 33.18

- - - - 298.49 1,645,150 174.05 998,579 116.31 572,171

5 (14, 25) - - - - 267.68 3,804,650 185.49 2,540,320 127.26 1,218,160

- - 277.68 51,702 288.91 42,167 293.88 38,522 - -

- - 270.10 69,453 282.30 5,623 291.07 1,054 - -

hypergraph pseudo tree

0.43 0.43 0.44 0.43 0.44 0.45

178.94 2,076,390 143.48 1,739,470 121.20 1,495,580 67.72 858,691 24.85 319,742 7.63 99,539

2 (14, 20) 18.87 453,372 2.37 44,796 0.83 9,181 0.73 7,135 0.54 2,415 0.50 1,242

120.80 203,392 8.83 15,798 3.65 9,299 3.47 9,134 3.41 9,013 3.47 9,163

3.64 11,524 0.85 899 0.63 480 0.58 363 0.60 336 0.66 294

0.43 0.43 0.44 0.47 0.69 2.12

- - - - - - 172.16 1,508,000 119.81 1,066,200 81.45 717,941

3 (14, 20) 178.35 3,965,780 137.11 2,558,520 67.95 1,078,460 14.27 198,026 5.10 68,847 2.94 13,396

- - 67.56 53,725 29.66 24,415 21.68 20,004 29.79 19,347 49.22 17,425

129.58 490,813 16.66 9,164 10.57 1,409 8.39 640 16.64 469 35.47 349

0.50 0.50 0.52 0.80 3.93 39.22

- - - - - - - - 243.82 1,685,500 157.19 848,755

4 (14, 20) - - 284.29 4,679,600 176.11 2,478,050 89.32 1,196,610 35.50 409,701 41.73 30,918

- - 167.98 52,789 141.18 32,760 164.00 30,774 213.91 31,316 300.53 13,787

287.64 666,192 142.71 18,706 125.39 2,834 139.73 785 196.69 502 303.70 195

0.49 0.49 0.58 2.20 33.18

- - - - - - - - 295.99 1,524,180

5 (14, 20) - - - - 257.71 2,955,420 152.83 1,365,200 102.25 586,760

- - 287.11 59,292 289.47 40,179 - - - -

- - 254.74 30,200 253.84 1,933 279.00 645 - -
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Fig. 14. Comparison of the impact of static and dynamic mini-bucket heuristics on random
belief networkswith parameters(n = 100, k = 3, p = 2, c = 90) from Table 4.

bounds (i.e., i ∈ {2, 4, 6}) when the heuristic is weak. This demonstrates the ben-
efit of AND/OR over classical OR search when the heuristic estimates are rela-
tively weak and the algorithms rely primarily on search rather than on pruning via
the heuristic evaluation function. As thei-bound increases (e.g., i ≥ 8) and the
heuristic estimates become strong enough to cut the search space substantially, the
difference between the AND/OR and OR Branch-and-Bound decreases.

When focusing on dynamic mini-bucket heuristics, we observethatAOBB+DMB(i)
is better thanBB+DMB(i) at relatively smalli-bounds, but the difference is not that
prominent as in the static case. This is probably because these heuristics are far
more accurate compared with the pre-compiled version and the savings in number
of nodes caused by traversing the AND/OR search tree do not translate into addi-
tional time savings. When comparing the static and dynamic mini-bucket heuristics,
we see that the latter is competitive only for relatively small i-bounds, because of
the high overhead of the dynamic mini-bucket. This may be significant because
smalli-bounds usually require restricted space. At higher levelsof thei-bound the
accuracy of the dynamic mini-bucket heuristic does not outweigh its overhead.

In some exceptional cases the OR Branch-and-Bound explored fewer nodes than
the AND/OR counterpart. For example, on problem class displayed in the third hor-
izontal block of Table 4, the search space explored byAOBB+DMB(4) was almost
two times larger that that explored byBB+DMB(4). Similarly,AOBB+SMB(8) ex-
panded almost two times more nodes thanBB+SMB(8) on this problem class. This
can be explained by the internal dynamic ordering used by AND/OR Branch-and-
Bound to solve independent subproblems rooted at the AND nodes in the search
tree, which did not pay off in this case. We also see that even thoughBB+SMB(i)
(resp.BB+DMB(i)) traversed a smaller search space thanAOBB+SMB(i) (resp.
AOBB+DMB(i)), the runtime of the AND/OR algorithms was actually better.This
is because the computational overhead of the mini-bucket heuristics was much
smaller for AND/OR search than for OR search, and, therefore, the AND/OR algo-
rithms were able to overcome the increase in size of the search space.
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Figure 14 plots the running time and number of nodes visited by AOBB+SMB(i)
and AOBB+DMB(i) (resp.BB+SMB(i) and BB+DMB(i)) as a function of the
mini-bucketi-bound for solving the random belief networks with parameters (n =
100, k = 3, p = 2, c = 90) (i.e., corresponding to the second horizontal block from
Table 4). It shows explicitly how the performance of Branch-and-Bound changes
with the mini-bucket strength for both types of heuristics.We see thati-bound of
6 is most cost effective for dynamic mini-buckets, whilei-bound of 12 yields best
performance for static mini-buckets. We see clearly that the dynamic mini-bucket
heuristic is more accurate yielding smaller search spaces.It also demonstrates that
the dynamic mini-bucket heuristics are cost effective at small i-bounds, whereas the
pre-compiled version is more powerful for largeri-bounds. This behavior is typical
for all instances presented in the subsequent sections.

When comparing the min-fill versus hypergraph heuristics forgenerating pseudo
trees, we observe that the hypergraph based pseudo trees have smaller depths. How-
ever, min-fill trees appear to be favorable toAOBB+SMB(i). This may be explained
by the fact that pre-compiling the mini-bucket heuristic using a min-fill based elim-
ination ordering tends to generate more accurate estimates. ForAOBB+DMB(i) the
picture is sometimes reversed, but not in a significant way.

9.3.2 Random Coding Networks

We experimented with random coding networks from the class of linear block codes
[60–62]. They can be represented as 4-layer belief networkswith K nodes in each
layer (i.e., the number of input bits). The second and third layers correspond to in-
put information bits and parity check bits respectively. Each parity check bit repre-
sents an XOR function of the input bits. The first and last layers correspond to trans-
mitted information and parity check bits respectively. Input information and parity
check nodes are binary, while the output nodes are real-valued. Given a number of
input bitsK, number of parentsP for each XOR bit, and channel noise variance
σ2, a coding network structure is generated by randomly picking parents for each
XOR node. Then we simulate an input signal by assuming a uniform random dis-
tribution of information bits, compute the corresponding values of the parity check
bits, and generate an assignment to the output nodes by adding Gaussian noise to
each information and parity check bit. The decoding algorithm takes as input the
coding network and the observed real-valued output assignment and recovers the
original input bit-vector by computing an MPE assignment.

Table 5 displays the results using min-fill and hypergraph based pseudo trees for
solving a classes of random coding networks withK = 128 input bits. The number
of parents for each XOR bit wasP = 4 and we chose the channel noise variance
σ2 ∈ {0.22, 0.36}. For each value combination of the parameters we generated 20
random instances.
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Table 5
CPU time and nodes visited for solvingrandom coding networkswith 128 bits, 4 parents
per XOR bit and channel noise varianceσ2 ∈ {0.22, 0.36}. Time limit 5 minutes. The
pseudo trees were generated by the min-fill and hypergraph heuristics.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=8 i=12 i=16 i=20

time nodes time nodes time nodes time nodes time nodes

0.05 0.06 0.18 1.80 25.65

- - 257.42 1,581,950 52.69 345,028 3.53 12,513 25.75 2,065

(128, 256) (53, 71) - - - 229.02 3,227,110 16.67 206,004 3.51 22,644 25.87 3,081

σ2 = 0.22 196.64 41,359 48.80 4,178 17.86 726 130.95 588 - -

195.82 121,822 48.17 9,391 17.15 500 129.38 388 - -

0.05 0.06 0.18 1.80 25.39

- - - - 271.29 1,717,770 211.88 1,452,980 99.14 598,738

(128, 256) (53, 71) - - - 291.61 4,309,160 240.74 3,409,580 188.44 2,617,880 110.89 1,137,120

σ2 = 0.36 289.06 65,591 230.23 22,617 234.33 6,857 276.40 1,957 - -

289.09 223,938 229.91 46,768 233.96 7,947 276.31 953 - -

hypergraph pseudo tree

0.73 0.74 0.86 2.49 27.13

- - 285.82 1,765,300 184.90 1,264,890 94.43 677,488 31.72 36,604

(128, 256) (53, 63) - - - 238.91 3,070,670 125.01 1,252,930 38.12 404,160 27.28 1,658

σ2 = 0.22 277.94 133,702 152.10 21,264 27.63 942 90.89 376 - -

282.15 126,614 84.82 6,358 73.46 1,307 166.75 409 - -

0.73 0.74 0.86 2.51 25.95

- - - - 296.69 1,948,930 285.70 2,009,240 210.16 1,360,710

(128, 256) (53, 63) - - - - - 296.02 3,583,930 251.96 2,969,470 142.85 1,340,740

σ2 = 0.36 - - 287.30 32,456 269.73 5,269 292.08 2,308 - -

- - 261.00 58,212 269.14 4,614 282.24 823 - -

We see thatAOBB+SMB(i) andAOBB+DMB(i) are slightly faster thanBB+SMB(i)
andBB+DMB(i), respectively, only for relatively smalli-bounds. In several test
cases, however, the search space explored by the AND/OR algorithms was larger
than the corresponding OR space. For instance, on the problem class withσ2 =
0.36 shown in the second horizontal block of Table 5,AOBB+SMB(12) expanded
almost 2 times more nodes thanBB+SMB(12). This was caused again by the in-
ternal dynamic variable ordering used by the AND/OR algorithms. We also see that
the overhead of the mini-bucket heuristic was smaller in theAND/OR than the OR
case, which paid off in some test cases.

When looking at the impact of the min-fill versus the hypergraph based pseudo
trees we see that, even though the hypergraph trees were shallower than the min-
fill ones, the mini-bucket heuristics generated relative tomin-fill orderings were
more accurate than those corresponding to hypergraph partitioning based orderings.
In some cases this translated into significant time savings.For example, on the
problem class withσ2 = 0.22, the min-fill pseudo tree causes an 8-fold speedup
over the hypergraph tree, forAOBB+SMB(12). A similar behavior can be observed
for dynamic mini-bucket heuristics, as well.
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Fig. 15. Comparison of the impact of static and dynamic mini-bucket heuristics on random
coding networkswith parameters(K = 128, σ2 = 0.22) from Table 5.

Figure 15 plots the running time and number of nodes visited by AOBB+SMB(i)
andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), for solving the cod-
ing networks with parameters(K = 128, σ2 = 0.22) (i.e., corresponding to the
first horizontal block from Table 5). We see that as thei-bound increases, the mini-
bucket heuristics become more accurate and the performanceof Branch-and-Bound
improves. For example,i-bound of 14 yields the best performance forAOBB+SMB(i),
whereasAOBB+DMB(i) achieves the best performance ati = 12. For even larger
i-bounds however, the overhead of both the pre-compiled and dynamic heuristics
deteriorates the performance of the algorithms. The dynamic mini-bucket heuristics
are better for relatively smalli-bounds, whereas relatively largeri-bounds are cost
effective for the pre-compiled heuristics.

9.3.3 Grid Networks

In random grid networks, the nodes are arranged in anN ×N square and each CPT
is generated uniformly at random. We experimented with problem instances having
bi-valued variables that were initially developed in [63] for the task of weighted
model counting. For these problemsN ranges between 10 and 38, and, for each in-
stance,90% of the CPTs are deterministic (having only 0 and 1 probabilityentries).

Table 6 displays the results for experiments with 8 grids of increasing difficulty,
using min-fill based pseudo trees. For each test instance we ran a single MPE
query withe evidence variables picked randomly. We see again the superiority of
AOBB+SMB(i) over the OR counterpart, especially on the harder instances. For
example, on the90-30-1 grid,AOBB+SMB(20) finds the MPE in about 87 sec-
onds, whereasBB+SMB(20) exceeds the 1 hour time limit. The AND/OR Branch-
and-Bound algorithms with dynamic mini-bucket heuristics as well asSamIam are
able to solve relatively efficiently only the first 3 test instances.

Figure 16 plots the running time and number of nodes visited by AOBB+SMB(i)
andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), for solving the90-14-1
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Table 6
CPU time in seconds and nodes visited for solvinggrid networks. Time limit 1 hour.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, e) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=8 i=10 i=12 i=14 i=16 i=18

time time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.02 0.04 0.07 0.07 0.08

90-10-1 0.12 3,348 0.04 424 0.05 153 0.07 153 0.08 153 0.09 153

(13, 39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101 0.08 101

(100, 0) 0.87 543 0.57 250 0.48 153 0.54 153 0.54 153 0.54 153

0.34 344 0.33 241 0.32 101 0.39 101 0.39 101 0.39 101

0.02 0.04 0.11 0.22 0.72 2.71

90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 0.54 5,035 0.90 2,826 2.78 1,075

(22, 66) 11.97 4.27 130,619 3.44 100,696 0.61 17,479 0.32 3,321 0.81 2,938 2.80 3,386

(196, 0) 149.44 16,415 52.34 2,894 12.46 537 13.71 211 19.22 199 38.05 198

65.74 31,476 33.57 4,137 7.50 397 12.00 211 17.65 199 36.87 198

0.03 0.05 0.14 0.46 1.01 4.36

90-16-1 - - - - 23.74 347,479 1.85 18,855 1.44 6,098 4.53 1,894

(24, 82) 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 1.78 23,421 4.55 5,842

(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 65.15 414 181.71 414

1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 40.68 260 109.76 260

i=10 i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes time nodes

0.14 0.33 0.89 2.69 7.61 31.26

90-24-1 - - - - - - - - - - - -

(33, 111) - - - - - 1500.66 24,117,151 921.96 18,238,983 93.73 1,413,764 111.46 1,308,009

(576, 20) - - - - - - - - - - - -

- - - - - - 1367.38 2,739 1979.42 1,228 2637.71 598

0.16 0.37 1.02 3.39 11.74 36.16

90-26-1 - - - - - - 324.30 2,234,558 - - 70.53 327,859

(36, 113) - 1533.11 17,899,574 206.93 2,903,489 242.37 3,205,257 7.43 59,055 21.48 165,182 36.49 5,777

(676, 40) - - - - - - - - - - - -

1852.27 177,661 - - - - 1514.18 2,545 2889.49 1,191 - -

0.25 0.53 1.35 4.36 13.34 50.53

90-30-1 - - - - - - - - - - - -

(43, 150) - - - 742.51 9,445,224 239.08 3,324,942 215.56 3,039,966 101.10 1,358,569 87.68 485,300

(900, 60) - - - - - - - - - - - -

- - - - - - - - - - - -

0.33 0.66 1.60 5.35 18.42 62.17

90-34-1 - - - - - - - - - - - -

(45, 153) - - - - - - - - - - - 257.14 1,549,829

(1154, 80) - - - - - - - - - - - -

- - - - - - - - - - - -

0.41 0.82 2.16 6.43 20.46 72.10

90-38-1 - - - - - - - - - - - -

(47, 163) - - - 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146 199.44 1,038,065

(1444, 120) - - - - - - - - - - - -

- - - - - - - - - - - -

grid network (i.e., corresponding to the second horizontal block from Table 6).
Focusing onAOBB+SMB(i) (resp.BB+SMB(i)) we see that its running time, as
a function ofi, forms a U-shaped curve. At first (i = 4) it is high, then as the
i-bound increases the total time decreases (wheni = 10 the time is 3.44 for
AOBB+SMB(10) and 71.98 forBB+SMB(10), respectively), but then asi in-
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Fig. 16. Comparison of the impact of static and dynamic mini-bucket heuristics on the
90-14-1 grid network from Table 6.

creases further the time starts to increase again. The same behavior can be observed
in the case ofAOBB+DMB(i) (resp.BB+DMB(i)) as well.

Figure 17 displays the runtime distribution ofAOBB+SMB(i) using hypergraph
based pseudo trees for 4 grid networks. For each reportedi-bound, the corre-
sponding data point and error bar show the average as well as the minimum and
maximum runtime obtained over 20 independent runs of the algorithm with a 30
minute time limit. We also record the average induced width and depth obtained
for the hypergraph pseudo trees (see the header of each plot in Figure 17). As ob-
served earlier, the hypergraph based pseudo trees are significantly shallower com-
pared with the min-fill ones, and in some cases they are able toimprove perfor-
mance dramatically, especially at relatively smalli-bounds. For example, on the
grid 90-24-1, AOBB+SMB(14) guided by a hypergraph pseudo tree is about
2 orders of magnitude faster thanAOBB+SMB(14) using a min-fill pseudo tree.
At largeri-bounds, the pre-compiled mini-bucket heuristic benefits from the small
induced width which normally is obtained with the min-fill ordering. Therefore
AOBB+SMB(i) using min-fill based trees is generally faster thanAOBB+SMB(i)
guided by hypergraph based trees (e.g., 90-26-1).

9.3.4 Genetic Linkage Analysis

In human genetic linkage analysis [64], thehaplotypeis the sequence of alleles
at different loci inherited by an individual from one parent, and the two haplotypes
(maternal and paternal) of an individual constitute this individual’sgenotype. When
genotypes are measured by standard procedures, the result is a list of unordered
pairs of alleles, one pair for each locus. Themaximum likelihood haplotypeproblem
consists of finding a joint haplotype configuration for all members of the pedigree
which maximizes the probability of data.

The pedigree data can be represented as a belief network withthree types of random
variables:genetic locivariables which represent the genotypes of the individualsin
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Fig. 17. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvinggrid networks with AOBB+SMB(i).
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Fig. 18. A fragment of a belief network used in genetic linkage analysis.

the pedigree (two genetic loci variables per individual perlocus, one for the paternal
allele and one for the maternal allele),phenotypevariables, andselectorvariables
which are auxiliary variables used to represent the gene flowin the pedigree. Fig-
ure 18 shows a fragment of a network that describes parents-child interactions in
a simple 2-loci analysis. The genetic loci variables of individual i at locusj are
denoted byLi,jp andLi,jm. VariablesXi,j, Si,jp andSi,jm denote the phenotype
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Table 7
CPU time and nodes visited for solvinggenetic linkage networks. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink SamIam BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(n, k) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

ped1 0.05 0.05 0.11 0.31 0.97

(299, 5) 54.73 5.44 - - - - 6.34 37,657 7.33 42,447 8.30 41,134

(15, 61) 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156

ped38 0.12 0.45 2.20 60.97 out

(582, 5) 28.36 out - - - - - - - -

(17, 59) - - 8120.58 85,367,022 - - 3040.60 35,394,461

ped50 0.11 0.74 5.38 37.19 out

(479, 5) - out - - - - - - - -

(18, 58) - - - - 476.77 5,566,578 104.00 748,792

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

ped23 0.42 2.33 11.33 274.75 out

(310, 5) 9146.19 out - - - - 3176.72 14,044,797 343.52 358,604

(27, 71) 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308

ped37 0.67 5.16 21.53 58.59 out

(1032, 5) 64.17 out - - - - - - - -

(21, 61) 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

ped18 0.51 1.42 4.59 12.87 19.30

(1184, 5) 139.06 157.05 - - - - - - - - - -

(21, 119) - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689

ped20 1.42 5.11 37.53 410.96 out

(388, 5) 14.72 out - - - - - - - -

(24, 66) 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195

ped25 0.34 0.72 2.27 6.56 29.30

(994, 5) - out - - - - - - - - - -

(34, 89) - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541

ped30 0.42 0.83 1.78 5.75 21.30

(1016, 5) 13095.83 out - - - - - - - - - -

(23, 118) - - - - - - 214.10 1,379,131 91.92 685,661

ped33 0.58 2.31 7.84 33.44 112.83

(581, 4) - out - - - - - - - - - -

(37, 165) 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215

ped39 0.52 2.32 8.41 33.15 81.27

(1272, 5) 322.14 out - - - - - - - - - -

(23, 94) - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280

ped42 4.20 31.33 206.40 out out

(448, 5) 561.31 out - - - - - -

(25, 76) - - - - - -

variable, the paternal selector variable and the maternal selector variable of indi-
vidual i at locusj, respectively. The conditional probability tables that correspond
to the selector variables are parameterized by therecombination ratioθ [65]. The
remaining tables contain only deterministic information.It can be shown that given
the pedigree data, the haplotyping problem is equivalent tocomputing the Most
Probable Explanation (MPE) of the corresponding belief network [65,66].
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Fig. 19. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvinggenetic linkage networkswith AOBB+SMB(i).

Table 7 shows results with 12 genetic linkage networks5 . For comparison, we in-
clude results obtained with SUPERLINK 1.6. SUPERLINK [65,66] which is cur-
rently one of the most efficient solvers for genetic linkage analysis, uses a combi-
nation of variable elimination and conditioning, and takesadvantage of the deter-
minism in the network. We did not runAOBB+DMB(i) (resp.BB+DMB(i)) on this
domain because of its prohibitively high computational overhead associated with
relatively largei-bounds.

We observe again thatAOBB+SMB(i) is the best performing algorithm, outper-
forming its competitors on 8 out of the 12 test networks. For example, on the
ped23 instance,AOBB+SMB(12) is 2 orders of magnitude faster than SUPER-
LINK , whereas SAM IAM andBB+SMB(i) exceed the 2GB memory bound and the
3 hour time limit, respectively. Similarly, on theped30 instance,AOBB+SMB(20)
outperforms SUPERLINK with about 2 orders of magnitude, while neither SAM IAM

norBB+SMB(20) are able to solve the problem instance. Notice that theped42
instance is solved only by SUPERLINK.

Figure 19 displays the runtime distribution ofAOBB+SMB(i) with hypergraph
based pseudo trees over 20 independent runs, for 4 linkage instances. Again, we

5 Available at http://bioinfo.cs.technion.ac.il/superlink/. The corresponding belief network
of the pedigree data was extracted using the export feature of the SUPERLINK 1.6 program.
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see that the hypergraph partitioning heuristic generates pseudo trees having aver-
age depths almost two times smaller than those of the min-fillbased ones. There-
fore, using hypergraph based pseudo trees improves sometimes significantly the
performance for relatively smalli-bounds (e.g., ped23, ped33).

In the appendix we provide additional empirical results over coding networks (Sec-
tion A.1), circuit diagnosis networks (Section A.2), problem instances from the
Bayesian Networks Repository (Section A.4), and networks from the UAI’06 Eval-
uation Dataset (Section A.3).

9.4 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints
and general cost functions, it is beneficial to exploit the computational power of the
constraints explicitly via constraint propagation [67–70]. For Bayesian networks,
the hard constraints are represented by the zero probability tuples of the CPTs. We
note that the use of constraint propagation via directionalresolution [71] or gen-
eralized arc consistency has been explored in [67,68], in the context of variable
elimination algorithms where the constraints are also extracted based on the zero
probabilities in the Bayesian network. The approach we take for handling the de-
terminism in belief networks is based on the known techniqueof unit resolution
for Boolean Satisfiability (SAT). The idea of using unit resolution during search for
Bayesian networks was first explored in [69]. A detailed description of the CNF
encoding based on the zero probability tuples in the Bayesiannetwork is provided
in Appendix (Section A.5).

We evaluated the AND/OR Branch-and-Bound algorithms with static and dynamic
mini-bucket heuristics on selected classes of Bayesian networks containing deter-
ministic conditional probability tables (i.e., zero probability tuples). The algorithms
exploit the determinism present in the networks by applyingunit resolution over the
CNF encoding of the zero-probability tuples, at each node in the search tree. They
are denoted byAOBB+SAT+SMB(i) andAOBB+SAT+DMB(i), respectively. We
used a unit resolution scheme similar to the one employed byzChaff, a state-
of-the-art SAT solver introduced by [72]. These experiments were performed on a
2.4GHz Pentium IV with 2GB of RAM running Windows XP, and therefore the
CPU times reported here may be slower than those in the previous sections.

Table 8 shows the results for experiments with the grid networks from Section 9.3.3.
As mentioned earlier, these networks have a high degree of determinism encoded in
their CPTs. Specifically, 90% of the probability tables are deterministic, containing
only 0 and 1 probability entries.

We observe thatAOBB+SAT+SMB(i) improves significantly overAOBB+SMB(i),
especially at relatively smalli-bounds. For example, on the90-26-1 grid in-
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Table 8
CPU time and nodes visited for solvingdeterministic grid networks. Time limit 1 hour.

min-fill pseudo tree

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)

(n, e) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes

0.31 8,080 0.11 2,052 0.02 101 0.05 101 0.05 101 0.06 101

90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101 0.06 101

(13, 39) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101 0.28 101

(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101 0.47 101

7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938 1.81 3,386

90-14-1 2.36 45,870 2.52 46,064 0.66 11,914 0.31 3,286 0.61 2,922 1.78 3,359

(22, 66) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199 21.23 198

(196, 0) 33.03 10,135 16.08 3,270 4.92 396 7.72 211 10.88 199 21.64 198

646.83 10,104,350 164.02 2,600,690 13.14 193,440 2.92 39,825 2.08 23,421 2.92 5,842

90-16-1 121.24 2,209,097 78.97 1,416,247 6.99 121,595 2.25 35,376 1.84 22,986 2.84 5,609

(24, 82) 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260 65.05 260

(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260 64.99 260

i=10 i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes time nodes

- - - - 2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009

90-24-1 1529.21 18,103,859 2605.56 30,929,553 689.47 9,868,626 738.17 11,100,088 106.00 1,282,902 121.67 1,273,738

(33, 111) - - - - - - 884.41 2,739 1223.18 1,228 1634.57 598

(576, 20) - - - - - - 843.79 2,739 1173.48 1,228 1611.74 598

2217.15 17,899,574 314.88 2,903,489 382.22 3,205,257 8.42 59,055 23.14 165,182 22.22 5,777

90-26-1 233.94 2,527,496 103.56 1,264,309 167.27 1,805,787 6.20 43,798 19.36 150,345 22.11 4,935

(36, 113) 1420.21 177,661 - - - - 938.98 2,545 1701.64 1,191 2638.95 691

(676, 40) 1099.87 171,961 1592.53 108,694 1034.26 12,819 862.38 2,545 1583.37 1,191 2478.19 691

- - 1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300

90-30-1 754.427 7,050,411 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 70.14 387,242

(43, 150) - - - - - - - - - - - -

(900, 60) - - - - - - - - - - - -

- - - - - - - - - - 462.41 1,549,829

90-34-1 - - - - - - - - - - 255.08 981,831

(45, 153) - - - - - - - - - - - -

(1154, 80) - - - - - - - - - - - -

- - 2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065

90-38-1 1128.56 5,121,466 410.94 1,972,430 578.54 2,339,244 270.05 1,349,223 278.11 1,249,270 204.56 702,806

(47, 163) - - - - - - - - - - - -

(1444, 120) - - - - - - - - - - - -

stance,AOBB+SAT+SMB(10) is 9 times faster thanAOBB+SMB(10). As the
i-bound increases and the search space is pruned more effectively, the difference
betweenAOBB+SMB(i) andAOBB+SAT+SMB(i) decreases because the heuris-
tics are strong enough to cut the search space significantly.The mini-bucket heuris-
tic already does some level of constraint propagation.

When comparing the AND/OR search algorithms with dynamic mini-bucket heuris-
tics, we see that the difference betweenAOBB+DMB(i) andAOBB+SAT+DMB(i)
is again more pronounced at relatively smalli-bounds. For more experiments on
deterministic Bayesian networks see Section A.5 in the appendix.

Figure 20 displays the CPU time and number of nodes visited, asa function of
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Fig. 20. Comparison of the impact of static and dynamic mini-bucket heuristics on the
90-16-1 deterministic grid network from Table 8.

the mini-bucketi-bound, on the90-16-1 grid network (i.e., corresponding to the
third horizontal block from Table 8). We notice again the U-shaped curve of the
running time for all algorithms.

9.5 Results for Empirical Evaluation of Weighted CSPs

In this section we focus on both mini-bucket and EDAC heuristics when problems
are solved in a static variable ordering. We also evaluate the impact of dynamic
variable orderings when using EDAC based heuristics.

9.5.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scheduling problems for the
daily management of Earth observing satellites [10]. Theseproblems can be de-
scribed as follows:

• Given a setP of photographs which can be taken the next day from at least one
of the three instruments, w.r.t. the satellite trajectory;

• Given, for each photograph, a weight expressing its importance;
• Given a set of imperative constraints: non overlapping and minimal transition

time between two successive photographs on the same instrument, limitation on
the instantaneous data flow through the satellite telemetry;

• The goal is to find an admissible subsetP
′ of P which maximizes the sum of the

weights of the photographs inP′ when all imperative constraints are satisfied.

They can be casted as WCSPs by:

• Associating a variableXi with each photographpi ∈ P;
• Associating withXi a domainDi to express the different ways of achievingpi

and adding toDi a special value, calledrejectionvalue, to express the possibility
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Table 9
CPU time and nodes visited for solvingSPOT5 networks. Time limit 2 hours.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) AOEDAC

spot5 BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) toolbar

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

(n, k, c) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.03 0.34 21.72 147.66 613.79 8,997,894

29 - - - - - - 25.69 5,095 148.27 632 4.56 218,846

(14, 42) 8.44 86,058 4.83 45,509 0.64 2,738 21.74 246 147.69 481

(83, 4, 476) 44.42 12,007 131.64 9,713 57.22 541 678.22 507 1758.78 507

28.27 14,438 65.91 11,850 53.72 364 630.09 330 1675.74 330

0.01 0.11 0.50 28.81 223.14 - -

42b - - - - 2154.64 9,655,444 148.11 712,685 228.17 12,255 - -

(18, 62) - - - - 1790.76 9,606,846 131.34 689,402 223.64 4,189

(191, 4, 1341) - - - - - - - - - -

- - - - - - - - - -

0.01 0.02 0.09 1.25 1.23 31.34 823,326

54 668.77 6,352,998 2.98 27,383 0.59 4,996 1.28 921 1.52 921 0.31 21,939

(11, 33) 105.99 1,106,598 1.50 17,757 0.34 3,616 1.28 329 1.27 329

(68, 4, 283) 1150.54 163,993 52.44 2,469 38.63 921 464.58 921 465.35 921

204.11 69,362 27.27 2,188 21.91 329 266.55 329 265.89 329

0.01 0.02 0.09 1.09 4.03 255.83 3,260,610

404 - - - - - - 4009.57 32,763,223 1827.05 15,265,025 151.11 6,215,135

(19, 42) 413.18 3,969,398 146.05 1,373,846 14.08 144,535 1.39 3,273 4.06 367

(100, 4, 710) - - - - - - - - 1964.20 2,015

238.97 156,338 272.46 39,144 215.17 5,612 565.06 1,327 167.90 220

0.02 0.08 0.31 8.30 35.22 - -

408b - - - - - - - - - - - -

(24, 59) - - - - - - 682.12 4,784,407 124.67 567,407

(201, 4, 1847) - - - - - - - - - -

- - - - - - - - - -

0.01 0.03 0.14 0.39 0.39 - -

503 - - - - - - 1.22 5,229 1.22 5,229 - -

(9, 39) - - 412.63 5,102,299 397.77 4,990,898 0.44 641 0.44 641

(144, 4, 639) - - - - - - 690.44 5,229 694.86 5,229

- - - - - - 64.02 641 64.52 641

0.01 0.01 0.12 48.20 372.27 - -

505b - - - - - - - - - - - -

(16, 98) - - - - - - - - 392.08 143,371

(240, 4, 1721) - - - - - - - - - -

- - - - - - - - - -

of not selecting the photographpi;
• Associating with everyXi an unary constraint forbidding the rejection value,

with a valuation equal to the weight ofpi;
• Translating as imperative constraints (binary or ternary)the constraints of non

overlapping and minimal transition time between two (or three) photographs on
the same instrument, and of limitation on the instantaneousdata flow. Each im-
perative constraint is defined over a subset of two or three photographs and for
each value combination of its scope variables it associatesa high penalty cost
(106) if the corresponding photographs cannot be taken simultaneously, on the
same instrument.
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Fig. 21. Comparison of the impact of static and dynamic mini-bucket heuristics on the29
SPOT5 instancefrom Table 9.

Fig. 22. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingSPOT5 networkswith AOBB+SMB(i).

The task is to compute:minX

∑r
i=1 fi, wherer is the number of unary, binary and

ternary cost functions in the problem.

Table 9 reports the results obtained for experiments with 7 SPOT5 networks, using
min-fill pseudo trees. We see thatAOBB+SMB(i) is the best performing algorithm
on this dataset. The overhead of the dynamic mini-bucket heuristics outweighs
search pruning here. For instance, on the404 network, the difference between
AOBB+SMB(12) andBB+SMB(12), in terms of runtime and size of the search
space explored, is up to 3 orders of magnitude. The best performances on this do-
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main are obtained byAOBB+SMB(i) at relatively largei-bounds which generate
very accurate heuristic estimates. For example,AOBB+SMB(14) is the only algo-
rithm able to solve the505b network.AOEDAC andtoolbar were able to solve
relatively efficiently only 3 out of the 7 test instances (e.g., 29, 54 and404).

In Figure 21 we plot the running time and number of nodes visited byAOBB+SMB(i)
andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), as a function of the
i-bound, on the29 SPOT5 network (i.e., corresponding to the first horizontal
block from Table 9). In this caseAOBB+DMB(i) (resp.BB+DMB(i)) is inferior
to AOBB+SMB(i) (resp.BB+DMB(i)) across all reportedi-bounds. We see that
AOBB+SMB(i) achieves the best performance ati = 8, whereasAOBB+DMB(i)
performs best only at the smallest reportedi-bound, namelyi = 4.

Figure 22 displays the runtime distribution ofAOBB+SMB(i) guided by hyper-
graph based pseudo trees, over 20 independent runs. Hypergraph based trees have
far smaller depths than the min-fill ones, and therefore are again able to improve
the runtime over min-fill based ones only at relatively smalli-bounds (e.g., 404).
On average, however, the min-fill pseudo trees generally yield a more robust per-
formance, especially for largeri-bounds of the mini-bucket heuristics (e.g., 503).

9.5.2 ISCAS’89 Benchmark

ISCAS’89 circuits are a common benchmark used in formal verification and diag-
nosis. For our purpose, we converted each of these circuits into a non-binary WCSP
instance by removing flip-flops and buffers in a standard way and creating for each
gate a cost function that assigns a high penalty cost (1000) to the forbidden tuples.
For each of the input signals we created, in addition, a unarycost function with
penalty costs distributed uniformly at random between 1 and10.

Table 10 shows the results for experiments with 10 circuits,using min-fill pseudo
trees. The EDAC based algorithms performed very poorly on this dataset and could
not solve any of the test instances within the 30 minute time limit. This was due to
the relatively large arity of the constraints, with up to 10 variables in their scope.

AOBB+SMB(i) is superior, especially at relatively largei-bounds. For example,
on thes1238 circuit, AOBB+SMB(16) finds the optimal solution in about 26
seconds, whereasBB+SMB(16) as well asAOBB+DMB(16) andBB+DMB(16)
exceed the time limit. In this case,AOBB+DMB(i) is competitive at relatively small
i-bounds, which cause a relatively small computational overhead. For instance,
AOBB+DMB(6) is the best performing algorithm on thes953 network. It is 18
times faster and expands 14 times fewer nodes thanBB+DMB(6).

In Figure 23 we show the running time and size of the search space explored by
AOBB+SMB(i) andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), as a
function of thei-bound, on thes1494 ISCAS’89 circuit (i.e., corresponding to
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Table 10
CPU time and nodes visited for solvingISCAS’89 circuits. Time limit 1 hour.AOEDAC
andtoolbar were not able to solve any of the test instances within the time limit.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

iscas AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(n, k) i=6 i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

0.06 0.07 0.09 0.14 0.27 0.89

c432 - - - - - - 13.27 103,088 13.29 102,546 6.79 34,671

(27, 45) - - 1373.07 23,355,897 96.29 1,713,265 3.85 76,346 3.89 75,420 0.97 1,958

(432, 2) - - 104.57 35,073 770.42 107,126 485.61 70,401 125.95 35,502 122.09 35,609

- - 3.04 1,578 39.65 34,904 26.26 16,482 9.17 1,070 6.67 692

0.03 0.04 0.05 0.14 0.36 0.99

c499 - - - - - - 11.71 53,171 9.62 63,177 5.80 24,397

(23, 55) 4.72 117,563 61.48 1,265,425 25.15 526,517 0.83 18,851 24.18 486,656 1.80 22,065

(499, 2) 56.49 29,664 141.89 78,830 110.56 56,256 65.42 40,123 132.20 56,002 203.74 76,832

3.87 10,147 23.31 13,529 15.67 6,101 5.71 1,002 37.34 3,353 87.99 1,736

0.06 0.07 0.10 0.16 0.49 1.48

c880 - - - - - - - - - - 816.47 4,953,611

(27, 67) 2284.65 39,448,762 957.25 19,992,512 737.90 15,247,946 275.51 5,835,825 607.43 13,568,696 137.31 2,837,010

(880, 2) 2463.80 321,585 - - - - 2461.68 270,166 3532.50 410,360 2817.47 238,297

28.43 40,057 809.53 796,699 709.79 569,471 101.88 32,748 232.97 36,187 625.50 20,357

0.01 0.01 0.03 0.06 0.19 0.46

s386 3.26 31,903 0.48 5,118 0.50 5,655 0.51 5,108 0.61 4,543 0.86 4,543

(19, 44) 0.12 3,705 0.07 2,073 0.19 4,867 0.14 2,699 0.22 1,420 0.49 1,420

(172, 2) 2.92 4,543 3.14 4,543 3.67 4,543 4.46 4,543 5.92 4,543 8.64 4,543

0.42 1,420 0.65 1,420 1.17 1,420 1.98 1,420 3.44 1,420 6.13 1,420

0.06 0.07 0.13 0.31 1.00 3.35

s953 - - - - - - - - - - - -

(66, 101) - - 1734.71 21,438,706 225.16 3,074,516 - - 28.40 348,699 7.14 51,441

(440, 2) 110.11 100,180 125.49 103,086 394.09 107,405 466.71 106,825 1412.68 107,063 1094.88 103,383

6.44 6,885 17.49 7,400 277.03 10,250 350.17 9,164 1294.39 11,164 984.06 8,377

0.06 0.08 0.15 0.37 1.27 4.51

s1196 - - - - - - - - - - - -

(54, 97) - - - - 920.11 12,392,442 3146.04 34,576,509 1281.38 15,775,180 269.73 3,318,953

(560, 21) 828.59 217,500 1126.06 216,777 2147.95 207,317 - - - - - -

39.22 26,501 62.99 21,849 147.88 17,524 355.39 15,443 1443.72 13,687 - -

0.06 0.09 0.15 0.41 1.25 4.72

s1238 - - - - - - - - - - - -

(59, 94) 2245.60 32,501,292 - - - - 1061.12 18,302,873 821.55 14,213,319 26.13 360,788

(540, 2) 2744.88 294,977 1661.09 141,562 1708.45 103,045 - - - - - -

142.51 44,980 288.25 39,493 250.61 21,252 844.40 20,945 1449.22 13,857 - -

0.04 0.05 0.08 0.12 0.33 0.94

s1423 - - - - - - - - - - 167.07 448,044

(24, 54) 25.97 309,520 51.60 648,520 18.23 228,634 5.03 68,102 5.50 70,043 7.62 87,483

(748, 2) - - - - 2056.98 566,007 1969.46 539,925 2056.07 565,423 2156.59 579,511

57.03 52,996 27.67 26,772 31.98 17,801 38.85 19,719 31.92 3,513 56.80 4,323

0.06 0.09 0.17 0.45 1.50 5.43

s1488 - - - - - - 20.49 58,330 21.56 58,859 23.59 50,080

(47, 67) 1076.11 13,244,002 4.79 50,613 32.33 430,141 3.08 29,729 4.28 33,827 6.63 17,904

(667, 2) 192.51 48,822 204.68 49,417 221.85 49,547 286.90 50,803 495.13 50,803 1205.42 50,803

11.58 15,025 18.02 15,064 35.61 13,279 94.05 13,762 304.60 13,762 1022.09 13,762

0.08 0.10 0.18 0.50 1.57 5.66

s1494 3483.40 11,667,673 94.08 362,002 1600.16 5,437,947 396.38 1,544,960 22.78 66,745 26.81 68,848

(48, 69) 345.91 3,076,992 91.55 833,720 43.87 455,131 343.58 3,207,718 9.06 83,318 17.01 124,765

(661, 2) 233.36 55,236 279.75 59,161 270.84 53,969 350.23 53,067 391.96 47,139 1431.41 48,119

41.40 21,156 64.60 21,743 77.64 18,671 162.70 15,699 232.34 9,706 1260.97 9,913
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Fig. 23. Comparison of the impact of static and dynamic mini-bucket heuristics on the
s1494 ISCAS’89 circuitfrom Table 10.

the last horizontal block from Table 10). We see that the power of the dynamic
mini-bucket heuristics is again more prominent for relatively small i-bounds. At
largeri-bounds, the static mini-bucket heuristics are cost effective, namely the dif-
ference in running time betweenAOBB+SMB(i) andAOBB+DMB(i) (resp. be-
tweenBB+SMB(i) andBB+DMB(i)) is about two orders of magnitude in favor of
the former.

Figure 24 depicts the runtime distribution ofAOBB+SMB(i) guided by hypergraph
based pseudo trees on the instances:c499, c880, s1238 ands1488, respec-
tively. In some cases (e.g., s1238), using hypergraph pseudo trees improves the
runtime up to one order of magnitude, compared with min-fill ones.

9.5.3 Mastermind Games

Each of these networks is a ground instance of a relational Bayesian network that
models differing sizes of the popular game of Mastermind. These networks were
produced by the PRIMULA System6 and used in experimental results from [73].
For our purpose, we converted these networks into equivalent WCSP instances by
taking the negative log probability of each conditional probability table entry and
rounding it to the nearest integer. The resulting WCSP instances are quite large
with the number of bi-valued variablesn ranging between 1220 and 3692, and
containingn unary and ternary cost functions.

Table 11 shows the results for experiments with 6 game instances of increasing
difficulty, using min-fill based pseudo trees. As before,AOBB+SMB(i) offers the
overall best performance. For example,AOBB+SMB(10) solves themm-04-08-03
instance in about 3 seconds, whereasBB+SMB(10) exceeds the 1 hour time limit.
We did not report results with dynamic mini-bucket heuristics because of the pro-
hibitively large computational overhead associated with relatively largei-bounds.
We also note that the EDAC based algorithms were not able to solve any of these

6 http://www.cs.auc.dk/jaeger/Primula
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Fig. 24. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingISCAS’89 networkswith AOBB+SMB(i).

instances within the alloted time bound (not shown in the table).

In Figure 25 we display the runtime distribution ofAOBB+SMB(i) guided by hy-
pergraph based pseudo trees over 20 independent runs, for 4 test instances. The
spectrum of results is similar to what we observed earlier.

9.6 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variable orderings on AND/OR
Branch-and-Bound search guided by local consistency (EDAC) based heuristics.
We did not use dynamic variable orderings with dynamic mini-bucket heuristics
because of the prohibitively large computational overhead.

SPOT5 Benchmark. Table 12 shows the results for experiments with the 7
SPOT5 networks described in Section 9.5.1. We see that variable ordering can have
a tremendous impact on performance.AOEDAC+DSO is the best performing among
the EDAC based algorithms, and is able to solve 6 out of 7 test instances. The
second best algorithm in this category isDVO+AOEDAC which solves relatively
efficiently 3 test networks. This demonstrates the benefit ofusing variable order-
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Table 11
CPU time and nodes visited for solvingMastermind game instances. Time limit 1 hour.
AOEDAC andtoolbar did not solve any of the test instances within the time limit.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=8 i=10 i=12 i=14 i=16 i=18

(n, r, k) time nodes time nodes time nodes time nodes time nodes time nodes

mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99

(20, 57) - - - - - - 897.87 873,606 946.84 915,095 738.13 720,764

(1220, 3, 2) 1.16 10,369 0.88 7,075 0.93 6,349 1.23 3,830 3.11 3,420 8.25 3,153

mm-03-08-04 0.48 0.60 0.89 2.08 6.45 25.15

(33, 87) - - - - - - - - - - - -

(2288, 3, 2) 72.37 150,642 66.69 193,805 36.22 71,622 10.15 31,177 25.16 63,669 29.27 13,870

mm-04-08-03 0.21 0.27 0.48 1.06 3.54 12.52

(26, 72) - - - - 1609.86 1,315,415 1603.71 1,175,430 1157.09 901,309 1924.02 1,451,854

(1418, 3, 2) 8.20 68,929 3.05 26,111 4.23 34,445 3.10 17,255 5.29 15,443 13.71 10,570

i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes

mm-04-08-04 1.19 2.35 6.85 26.47 106.37 395.57

(39, 103) - - - - - - - - - - - -

(2616, 3, 2) 324.06 744,993 166.67 447,464 310.06 798,507 64.72 107,463 192.39 242,865 414.54 62,964

mm-03-08-05 2.14 4.54 11.82 39.01 134.46 497.45

(41, 111) - - - - - - - - - - - -

(3692, 3, 2) - - - - - - 835.90 1,122,008 1162.22 1,185,327 1200.65 1,372,324

mm-10-08-03 1.48 3.78 11.39 34.53 127.55 593.25

(51, 132) - - - - - - - - - - - -

(2606, 3, 2) 109.50 290,594 128.29 326,662 64.31 151,128 74.14 127,130 169.84 133,112 623.83 79,724

ing heuristics within AND/OR Branch-and-Bound search. We also observe that the
best performance points highlighted in Table 12 are inferior to those from Table
9 corresponding toAOBB+SMB(i). For example, on the42b network, the differ-
ence in runtime and size of the search space explored betweenAOBB+SMB(12)
andAOEDAC+DSO is up to one order of magnitude in favor of the former. Simi-
larly, the505b network could not be solved by any of the EDAC based algorithms,
whereasAOBB+SMB(14) finds the optimal solution in about 6 minutes. Notice
thattoolbar is much better thanBBEDAC in all test cases. This can be explained
by a more careful and optimized implementation of EDAC whichis available in
toolbar.

In Figure 26 we show the runtime distribution ofAOEDAC+PVO with hypergraph
pseudo trees on 20 independent runs. In this case, the difference between the min-
fill and the hypergraph case is dramatic, resulting in up to three orders of magnitude
in favor of the latter.

CELAR Benchmark. Radio Link Frequency Assignment Problem (RLFAP) is
a communication problem where the goal is to assign frequencies to a set of radio
links in such a way that all links may operate together without noticeable interfer-
ences [9]. It can be naturally casted as a binary WCSP where eachforbidden tuple
has an associated penalty cost.
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Fig. 25. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingMastermind networks with AOBB+SMB(i).

Table 12
CPU time and nodes visited for solvingSPOT5 benchmarkswith EDAC heuristics and
dynamic variable orderings. Time limit 2 hours.

minfill pseudo tree

spot5 n w* toolbar BBEDAC AOEDAC AOEDAC+PVO DVO+AOEDAC AOEDAC+DSO

c h

29 16 7 time 4.56 109.66 613.79 545.43 0.83 11.36

57 8 nodes 218,846 710,122 8,997,894 7,837,447 8,698 92,970

42b 14 9 time - - - - - 6825.4

75 9 nodes - - - - - 27,698,614

54 14 9 time 0.31 0.97 31.34 9.11 0.06 0.75

75 9 nodes 21,939 8,270 823,326 90,495 688 6,614

404 16 10 time 151.11 2232.89 255.83 152.81 12.09 1.74

89 12 nodes 6,215,135 7,598,995 3,260,610 1,984,747 88,079 14,844

408b 18 10 time - - - - - 747.71

106 13 nodes - - - - - 2,134,472

503 22 11 time - - - - - 53.72

131 15 nodes - - - - - 231,480

505b 16 9 time - - - - - -

70 10 nodes - - - - - -

Table 13 shows detailed results for experiments withCELAR6 andCELAR7 sub-
instances. We considered only the OR and AND/OR algorithms using EDAC heuris-
tics. The performance of the mini-bucket based algorithms was quite poor on this
domain, due to the very low quality of the heuristic estimates resulted from approx-
imating subproblems with very large domains (up to 44 values).
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Fig. 26. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingSPOT5 networkswith AOEDAC+PVO.

We observe thattoolbar is the overall best performing algorithm on this dataset.
One reason is thath is close ton, so the AND/OR search is close to OR search.
When looking at the AND/OR algorithms we notice thatDVO+AOEDAC offers the
best performance. On average, the speedups caused byDVO+AOBB over the other
algorithms are as follows: 1.9x overAOEDAC, 1.6x overAOEDAC+PVO and 2.5x
overBBEDAC. Furthermore,AOEDAC+DSO performs similarly toAOEDAC+PVO
indicating that the quality of the dynamic problem decomposition is comparable to
the static one.

10 Related Work

The idea of exploiting structural properties of the problemin order to enhance the
performance of search algorithms in constraint satisfaction is not new. Freuder and
Quinn [2] introduced the concept of pseudo tree arrangementof a constraint graph
as a way of capturing independencies between subsets of variables. Subsequently,
pseudo tree search[2] is conducted over a pseudo tree arrangement of the problem
which allows the detection of independent subproblems thatare solved separately.
More recently, [74] extended pseudo tree search [2] to optimization tasks in order
to boost the Russian Doll search [20] for solving Weighted CSPs. Our AND/OR
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Table 13
CPU time and nodes visited for solvingCELAR6 andCELAR7 sub-instances with EDAC
heuristics and dynamic variable orderings. Time limit 10 hours.

minfill pseudo tree

celar n w* toolbar BBEDAC AOEDAC AOEDAC+PVO DVO+AOEDAC AOEDAC+DSO

c h

celar6-sub0 16 7 time 0.66 0.88 1.20 0.79 0.82 0.67

57 8 nodes 8,952 2,985 2,901 1,565 2,652 1,633

celar6-sub1 14 9 time 488.58 5079.28 6693.33 4972.42 4961.16 4999.17

75 9 nodes 7,521,496 6,381,472 5,558,900 4,376,510 4,420,050 4,326,480

celar6-sub1-24 14 9 time 47.80 269.88 319.20 251.11 248.55 252.65

75 9 nodes 1,028,814 716,746 512,419 446,808 440,238 440,857

celar6-sub2 16 10 time 1887.40 6579.99 23896.83 12026.15 6097.33 11323.30

89 12 nodes 30,223,624 10,941,839 21,750,156 8,380,049 6,700,589 5,584,139

celar6-sub3 18 10 time 4376.37 14686.60 32439.00 28251.70 11131.00 28407.40

106 13 nodes 61,700,735 63,304,285 39,352,900 32,467,100 28,803,649 32,451,800

celar6-sub4-20 22 11 time 27.76 1671.55 277.51 415.02 268.57 413.48

131 15 nodes 167,960 8,970,211 522,981 952,894 893,609 1,256,102

celar7-sub0 16 9 time 1.11 4.56 6.20 5.00 4.64 4.71

70 10 nodes 6,898 9,146 10,248 10,198 9,151 9,761

celar7-sub1 14 9 time 23.86 188.11 470.36 239.20 189.15 245.41

75 9 nodes 134,404 501,145 589,117 329,236 372,790 318,351

celar7-sub1-20 14 9 time 0.67 3.49 14.09 3.56 3.30 3.33

75 9 nodes 10,438 18,959 27,805 15,860 15,637 14,351

celar7-sub2 16 10 time 627.97 4822.89 7850.10 5424.98 4727.30 5545.80

89 11 nodes 1,833,808 4,026,263 7,644,780 3,454,750 3,326,511 2,654,120

celar7-sub3 18 10 time 6944.96 - - - - -

106 13 nodes 14,754,723

celar7-sub4-22 22 11 time 3604.47 23882.20 26210.05 7958.44 23166.40 2999.55

129 15 nodes 6,391,923 23,700,235 34,941,835 11,533,163 23,674,049 3,429,708

Branch-and-Bound algorithm is also related to the Branch-and-Bound method pro-
posed by [47] for acyclic AND/OR graphs and game trees.

Dechter’s graph-based back-jumping algorithm [75] uses a depth-first (DFS) span-
ning tree to extract knowledge about dependencies in the graph. The notion of
DFS-based search was also used by [76] for a distributed constraint satisfaction al-
gorithm. Bayardo and Miranker [3] reformulated the pseudo tree search algorithm
in terms of back-jumping and showed that the depth of a pseudo-tree arrangement
is always within a logarithmic factor off the induced width of the graph.

Recursive Conditioning(RC) [58] is based on the divide and conquer paradigm.
Rather than instantiating variables to obtain a tree structured network like the cycle
cutset scheme, RC instantiates variables with the purpose ofbreaking the network
into independent subproblems, on which it can recurse usingthe same technique.
The computation is driven by a data-structure calleddtree, which is a full binary
tree, the leaves of which correspond to the network CPTs. It can be shown that RC
explores an AND/OR space [1]. A pseudo tree can be generated from the static
ordering of RC dictated by the dtree. This ensures that whenever RC splits the
problem into independent subproblems, the same happens in the AND/OR space.

Backtracking with Tree-Decomposition(BTD) [25] is a memory intensive method
for solving constraint satisfaction (or optimization) problems which combines search
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techniques with the notion of tree decomposition. This mixed approach can in fact
be viewed as searching an AND/OR search space whose backbonepseudo tree is
defined by and structured along the tree decomposition. What is defined in [25] as
structural goods, that is parts of the search space that would not be visited again
as soon as their consistency (or optimal value) is known, corresponds precisely to
the decomposition of the AND/OR space at the level of AND nodes, which root in-
dependent subproblems. The BTD algorithm is not linear space, it uses substantial
caching and may be exponential in the induced width.

11 Summary and Conclusion

The paper investigates the impact of AND/OR search spaces perspective on solving
general constraint optimization problems in graphical models. In contrast to the
traditional OR search, the new AND/OR search is sensitive the problem’s structure.
The linear space AND/OR tree search algorithms can be exponentially better (and
never worse) than the linear space OR tree search algorithms. Specifically, the size
of the AND/OR search tree is exponential in the depth of the guiding pseudo tree
rather than the number of variables, as in the OR case.

We introduced a general AND/OR Branch-and-Bound algorithm that explores the
AND/OR search tree in a depth-first manner. It can be guided byany heuristic
function. We investigated extensively the mini-bucket heuristic and showed that
it can prune the search space very effectively. The mini-bucket heuristics can be
either pre-compiled (static mini-buckets) or generated dynamically at each node
in the search tree (dynamic mini-buckets). They are parameterized by the Mini-
Bucketi-bound which allows for a controllable trade-off between heuristic strength
and computational overhead. In conjunction with the mini-bucket heuristics we also
explored the effectiveness of another class of heuristic lower bounds that is based on
exploiting local consistency algorithms for cost functions, in the context of WCSPs.

Since variable ordering can influence dramatically the search performance, we also
introduced several ordering schemes that combine the AND/OR decomposition
principle with dynamic variable ordering heuristics. There are three approaches
to incorporating dynamic orderings into AND/OR Branch-and-Bound search. The
first one applies an independent semantic variable orderingheuristic whenever the
partial order dictated by the static decomposition principle allows. The second, or-
thogonal approach gives priority to the semantic variable ordering heuristic and
applies problem decomposition as a secondary principle. Since the structure of the
problem may change dramatically during search we presenteda third approach that
uses a dynamic decomposition method coupled with semantic variable ordering
heuristics.

We focused our empirical evaluation on two common optimization problems in
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graphical models: finding the MPE in Bayesian networks and solving WCSPs.
Our results demonstrated conclusively that in many cases the depth-first AND/OR
Branch-and-Bound algorithms guided by either mini-bucket orlocal consistency
based heuristics improve dramatically over traditional ORBranch-and-Bound search,
especially for relatively weak guiding heuristic estimates. We summarize next the
most important aspects reflecting the better performance ofthe AND/OR algo-
rithms, including the mini-bucketi-bound, dynamic variable orderings, constraint
propagation and the quality of the guiding pseudo tree.

• Impact of the mini-bucket i-bound. Our results show conclusively that when
enough memory is available the static mini-bucket heuristics with relatively large
i-bounds are cost effective (e.g., genetic linkage analysis networks from Table
7, Mastermind game instances from Table 11). However, if space is restricted,
the dynamic mini-bucket heuristics, which exploit the partial assignment along
the search path, appear to be the preferred choice, especially for relatively small
i-bounds (e.g., ISCAS’89 networks from Tables 10 and A.2). This is because
these heuristics are far more accurate for the samei-bound than the pre-compiled
version and the savings in number of nodes explored translate into important time
savings.

• Impact of dynamic variable ordering. Our dynamic AND/OR search approach
was shown to be powerful especially when used in conjunctionwith local consis-
tency based heuristics. The AND/OR Branch-and-Bound algorithms with EDAC
based heuristics and dynamic variable orderings were sometimes able to outper-
form the Branch-and-Bound counterpart with static variable orderings by two
orders of magnitude in terms of running time (e.g., see for example the503
SPOT5 network from Table 12).

• Impact of determinism. When the graphical model contains both deterministic
information (hard constraints) as well as general cost functions, we demonstrated
that is beneficial to exploit the computational power of the constraints explicitly,
via constraint propagation. Our experiments on selected classes of determinis-
tic Bayesian networks showed that enforcing a form of constraint propagation,
called unit resolution, over the CNF encoding of the determinism present in the
network was able in some cases to render the search space almost backtrack-free
(e.g., ISCAS’89 networks from Table A.6). This caused a tremendousreduction
in running time for the corresponding AND/OR algorithms (e.g., see for example
thes953 network from Table A.6).

• Impact of the static variable ordering via the pseudo tree.The performance
of the AND/OR search algorithms is highly influenced by the quality of the guid-
ing pseudo tree. We investigated two heuristics for generating small induced
width/depth pseudo trees. The min-fill based pseudo trees usually have small
induced width but significantly larger depth, whereas the hypergraph partition-
ing heuristic produces much smaller depth trees but with larger induced widths.
Our experiments demonstrated that the AND/OR algorithms using mini-bucket
heuristics benefit, on average, from the min-fill based pseudo trees because the
guiding mini-bucket heuristic is sensitive to the induced width size which is ob-
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tained for these types of pseudo trees. In some exceptional cases however, the
hypergraph partitioning based pseudo trees were able to improve significantly
the search performance, especially at relatively smalli-bounds (e.g., see for ex-
ample thes1238 network from Figure 24), because in those cases the smaller
depth guarantees a smaller AND/OR search tree. The picture is reversed for the
AND/OR algorithms that enforce local consistency, which isnot sensitive to
the problem’s induced width. Here, the hypergraph based trees were able to im-
prove performance up to 3 orders of magnitude over the min-fill based trees (e.g.,
SPOT5 networks from Figure 26).

Our current depth-first AND/OR Branch-and-Bound approach leaves room for fu-
ture improvements which are likely to make it more efficient in practice. For in-
stance, one could incorporate good initial upper bound techniques (using incom-
plete schemes), which in some cases can allow a best-first performance using depth-
first AND/OR Branch-and-Bound search. Our approach for handling the determin-
istic information present in the graphical model is based ona restricted form of
relational arc consistency, namely unit resolution. Therefore, it would be interest-
ing to exploit more powerful constraint propagation schemes such as generalized
arc or path consistency. The recent improvement of the Mini-Bucket algorithm,
calledDepth-First Mini-Bucket Elimination[77], could be explored further in the
context of AND/OR search in order to enhance the AND/OR Branch-and-Bound
guided by dynamic mini-bucket heuristics.

In a subsequent article we will continue the investigation of the AND/OR search
space perspective for optimization in graphical models. Our focus will be on mem-
ory intensive AND/OR search algorithms that explore an AND/OR graph, rather
than the tree, by equipping them with a context-based adaptive caching scheme sim-
ilar to good and no-good recording mechanism as well as recent schemes appearing
in Recursive Conditioning [58] and Backtracking with Tree Decompositions [25].
In addition to depth-first we will also explore abest-firstcontrol strategy. Under
conditions of admissibility and monotonicity of the heuristic function, best-first
search is known to expand the minimal number of nodes, at the expense of using
additional memory [78]. In practice, these savings in number of nodes may often
translate into time savings as well.
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Table A.1
CPU time and nodes visited for solvingrandom coding networkswith 64 bits, 4 parents
per XOR bit and channel noise varianceσ2 ∈ {0.22, 0.36}. Time limit 5 minutes. The
pseudo trees were generated by the min-fill and hypergraph partitioning heuristics.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(K, N) (w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=8 i=12 i=16 i=20

time nodes time nodes time nodes time nodes time nodes

0.02 0.02 0.07 0.68 8.33

- - 19.71 203,028 0.09 184 0.71 153 8.51 153

(64, 128) (27, 40) - 287.10 5,052,010 6.58 119,289 0.08 152 0.68 129 8.34 129

σ2 = 0.22 23.42 9,932 0.43 232 1.43 153 12.76 153 121.90 153

23.62 20,008 0.35 185 1.37 129 12.77 129 121.12 129

0.02 0.02 0.07 0.68 8.32

- - 82.60 850,665 1.16 12,190 0.81 1,463 8.35 227

(64, 128) (27, 40) - 277.41 5,250,380 47.80 834,680 1.23 22,406 0.84 3,096 8.33 160

σ2 = 0.36 48.81 19,489 5.38 1,504 5.71 618 15.70 240 123.76 192

48.71 44,734 5.17 1,864 5.53 512 15.53 164 122.90 144

hypergraph pseudo tree

0.32 0.33 0.38 1.02 8.91

- - 24.29 287,699 0.59 2,259 1.06 156 8.97 156

(64, 128) (27, 34) - - - 4.76 61,426 0.40 381 1.03 142 8.92 129

σ2 = 0.22 35.71 20,678 0.77 263 1.71 163 12.02 163 107.08 163

31.46 17,224 0.59 160 1.60 129 11.69 129 102.38 129

0.32 0.33 0.38 1.05 9.39

- - 113.04 1,391,480 22.26 275,844 1.74 9,039 9.40 295

(64, 128) (27, 34) - - - 34.73 489,614 1.82 19,040 1.69 9,494 9.40 295

σ2 = 0.36 92.76 50,006 3.34 1,134 3.67 408 14.80 307 105.92 185

54.25 26,031 5.55 1,312 7.91 472 12.52 143 105.76 142

A Experiments - Bayesian Networks

A.1 Random Coding Networks

Table A.1 displays the results using min-fill and hypergraphbased pseudo trees
for solving a classes of random coding networks withK = 64 input bits,P = 4
parents per XOR bit and channel noise varianceσ2 ∈ {0.22, 0.36}. The spectrum
of results is similar to that observed in Section 9.3.2, namely AOBB+SMB(i) is
slightly better thanBB+SMB(i) only for relatively smalli-bounds, while for dy-
namic mini-bucket heuristics there is no noticeable difference between the OR and
AND/OR algorithms, acrossi-bounds.
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Table A.2
CPU time and nodes visited for solving Bayesian networks derived from theISCAS’89
circuits. Time limit 30 minutes.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

iscas89 AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

SamIam BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(n, d) i=6 i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

0.04 0.05 0.08 0.12 0.26 0.88

c432 - - - - - - 0.29 432 0.42 432 1.04 432

(27, 45) out - - - - 605.79 20,751,699 0.13 432 0.28 432 0.89 432

(432, 2) - - 132.19 21,215 2.23 432 3.44 432 5.85 432 13.46 432

1422.98 4,438,597 24.03 39,711 1.15 432 2.23 432 4.52 432 12.06 432

0.02 0.03 0.05 0.14 0.37 1.01

c499 0.16 499 0.17 499 0.19 499 0.28 499 0.50 499 1.13 499

(23, 55) 139.89 0.04 499 0.05 499 0.06 499 0.15 499 0.38 499 1.02 499

(499, 2) 1.09 499 1.32 499 2.00 499 4.01 499 8.92 499 28.35 499

0.39 499 0.63 499 1.31 499 3.32 499 8.21 499 27.67 499

0.09 0.09 0.11 0.18 0.51 1.49

c880 - - 0.59 881 0.60 881 0.66 881 0.99 881 1.97 881

(27, 67) out 0.13 884 0.13 881 0.15 881 0.21 881 0.55 881 1.53 881

(880, 2) 4.49 881 5.82 881 8.07 881 12.78 881 20.99 881 42.16 881

0.78 881 1.14 881 2.16 881 4.98 881 13.19 881 34.42 881

0.01 0.02 0.03 0.08 0.20 0.47

s386 0.10 1,358 0.06 677 0.05 172 0.10 172 0.22 172 0.50 172

(19, 44) 3.66 0.02 257 0.02 257 0.03 172 0.08 172 0.21 172 0.48 172

(172, 2) 0.15 172 0.21 172 0.42 172 0.78 172 1.56 172 3.13 172

0.09 172 0.16 172 0.36 172 0.72 172 1.50 172 3.09 172

0.06 0.07 0.12 0.31 1.01 3.40

s953 - - - - - - - - 601.69 4,031,967 449.40 3,075,116

(66, 101) out 715.60 9,919,295 15.25 238,780 37.11 549,181 22.83 434,481 2.30 21,499 4.42 19,117

(440, 2) 27.12 2,737 18.84 912 64.12 1,009 25.28 467 221.17 577 211.70 447

26.48 2,738 18.30 913 63.44 1,010 24.75 468 220.97 578 211.44 447

0.07 0.10 0.16 0.39 1.30 4.60

s1196 - - - - - - - - - - - -

(54, 97) out 21.75 316,875 215.81 3,682,077 4.57 77,205 19.81 320,205 16.64 289,873 9.81 99,935

(560, 2) 2.57 580 4.34 568 49.30 924 126.85 863 582.66 1,008 1413.31 817

1.20 660 2.59 568 45.90 924 118.16 863 571.79 1,008 1404.57 817

0.07 0.09 0.17 0.42 1.26 4.74

s1238 - - - - 272.63 2,078,885 144.85 1,094,713 585.48 4,305,175 38.57 253,706

(59, 94) out 2.63 57,355 8.32 187,499 2.14 47,340 1.49 25,538 2.12 20,689 5.27 13,032

(540, 2) 32.17 5,841 6.59 601 370.26 17,278 52.28 651 120.20 558 353.63 551

2.04 1,089 4.02 795 17.44 1,824 40.35 849 95.84 744 313.29 737

0.06 0.06 0.09 0.13 0.35 0.96

s1423 - - - - - - 0.46 762 0.67 749 1.29 749

(24, 54) 107.48 0.14 1,986 0.30 5,171 0.32 5,078 0.17 866 0.37 749 0.99 749

(748, 2) 2.95 751 3.37 749 4.05 749 5.50 749 9.62 749 20.82 749

0.55 751 0.76 749 1.35 749 2.81 749 6.93 749 18.16 749

0.08 0.10 0.18 0.46 1.50 5.49

s1488 11.91 92,764 1.65 12,080 2.19 17,410 1.26 6,480 2.17 5,327 5.78 830

(47, 67) out 11.83 135,563 1.48 17,170 2.29 28,420 1.25 12,285 2.26 12,370 5.53 964

(667, 2) 2.31 670 3.14 670 5.43 668 13.11 667 41.43 667 143.13 667

0.83 670 1.64 670 3.92 668 11.67 667 40.17 667 142.68 667

0.07 0.09 0.17 0.49 1.57 5.69

s1494 8.64 64,629 524.05 3,410,547 130.92 815,326 4.43 33,373 43.54 268,421 6.07 2,504

(48, 69) out 9.63 158,070 28.14 476,874 7.09 118,372 11.87 198,912 2.75 21,137 5.83 3,061

(661, 2) 6.29 873 6.23 711 9.81 681 26.60 680 93.29 686 207.20 667

4.88 873 4.77 711 8.36 681 25.10 680 91.70 686 205.19 667
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A.2 ISCAS’89 Benchmark

ISCAS’89 circuits7 are a common benchmark used in formal verification and di-
agnosis. For our purpose, we converted each of these circuits into a belief network
by removing flip-flops and buffers in a standard way, creatinga deterministic con-
ditional probabilistic tables for each gate and putting uniform distributions on the
input signals.

Table A.2 shows the results for experiments with 10 circuits, using min-fill based
pseudo trees. As usual, for each test instance we generated asingle MPE query
without any evidence. When comparing the algorithms using static mini-bucket
heuristics we observe again the superiority of the AND/OR over OR Branch-and-
Bound search in almost all test cases, acrossi-bounds. For instance, on thec880
circuit,AOBB+SMB(4) proves optimality in less than a second, whileBB+SMB(4)
exceeds the 30 minute time limit. Similarly, on thes953 circuit,AOBB+SMB(14)
is 300 times faster thanBB+SMB(14) and explores a search space 180 times
smaller. Using the dynamic mini-bucket heuristics does payoff in some test cases.
For example, on thes1196 circuit, AOBB+DMB(4) causes a speedup of 2 over
BB+DMB(4) and 45 overAOBB+SMB(4), while BB+SMB(4) exceeds the time
limit. The overall impact of the AND/OR algorithms versus the OR ones can be
explained by the relatively shallow pseudo trees. In summary, the dynamic mini-
bucket heuristics were inferior to the corresponding static ones for largei-bounds,
however, smalleri-bound dynamic mini-buckets were overall more cost-effective.
Notice that SAM IAM is able to solve only 2 out of 10 test instances.

Figure A.1 shows the runtime distribution ofAOBB+SMB(i)with hypergraph based
pseudo trees, over 20 independent runs. We observe again that in several cases (e.g.,
s1196) the hypergraph pseudo trees are able to improve performance with up to 3
orders of magnitude, at relatively smalli-bounds.

A.3 UAI’06 Evaluation Dataset

The UAI 2006 Evaluation Dataset8 contains a collection of random as well as real-
world belief networks that were used during the first UAI 2006Inference Evalua-
tion contest.

Table A.3 shows the results for experiments with 14 networks, using min-fill based
pseudo trees. InstancesBN 31 throughBN 41 are random grid networks with de-
terministic CPTs, while instancesBN 126 throughBN 133 represent random cod-
ing networks with 128 input bits, 4 parents per XOR bit and channel noise vari-

7 Available at http://www.fm.vslib.cz/kes/asic/iscas/
8 http://ssli.ee.washington.edu/bilmes/uai06InferenceEvaluation
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Fig. A.1. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingISCAS’89 networkswith AOBB+SMB(i).

anceσ2 = 0.40. We report only on the Branch-and-Bound algorithms using static
mini-buckets. The dynamic mini-buckets were not competitive due to their much
higher computational overhead at relatively largei-bounds. We notice again that
AOBB+SMB(i) clearly outperformsBB+SMB(i) at all reportedi-bounds, espe-
cially on the first set of grid networks (e.g., BN 31, ...,BN 41). For instance, on the
BN 37, AOBB+SMB(19) finds the MPE solution in about 80 seconds, whereas its
OR counterpartBB+SMB(19) exceeds the 30 minute time limit. This is in contrast
to what we see on the second set of coding networks (e.g., BN 126, ...,BN 133),
where the best performance is offered by the OR algorithmBB+SMB(i).

Figure A.2 shows the runtime distribution ofAOBB+SMB(i)with hypergraph pseudo
trees, over 20 independent runs. We see that the hypergraph pseudo trees improve
slightly the performance compared with min-fill ones.

A.4 Bayesian Network Repository

The Bayesian Network Repository9 contains a collection of belief networks ex-
tracted from various real-life domains which are often usedfor benchmarking prob-

9 http://www.cs.huji.ac.il/compbio/Repository/
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Table A.3
CPU time and nodes visited for solvingUAI’06 instances. Time limit 30 minutes.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

bn BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, d) i=17 i=18 i=19 i=20 i=21

time nodes time nodes time nodes time nodes time nodes

BN 31 10.31 20.06 34.15 74.17 121.5

(46, 160) out - - - - - - - - - -

(1156, 2) 828.60 4,741,037 1229.64 7,895,304 594.36 3,988,933 646.67 4,293,760 178.87 380,470

BN 33 13.84 26.27 48.61 90.35 159.67

(43, 163) - - - - - - - - - - -

(1444, 2) 865.01 3,540,778 193.79 685,246 395.99 1,441,245 308.14 1,018,353 230.53 360,880

BN 35 14.27 24.62 47.50 77.66 124.17

(41, 168) - - - - - - - - - - -

(1444, 2) 335.43 1,755,561 390.04 1,954,720 247.73 1,108,708 191.03 663,784 234.97 622,551

BN 37 13.82 26.58 44.21 85.17 170.20

(45, 159) - - - - - - - - - - -

(1444, 2) 94.27 428,643 82.15 298,477 79.99 183,016 100.41 89,948 196.06 168,957

BN 39 12.95 26.10 51.51 87.16 148.40

(48, 164) - - - - - - - - - - -

(1444, 2) - - - - - - - - 837.58 3,366,427

BN 41 13.41 23.51 42.01 71.77 125.97

(49, 164) - - - - - - - - - - -

(1444, 2) 125.27 486,844 107.81 364,363 79.23 168,340 115.18 195,506 161.10 162,274

BN 126 6.76 13.75 24.62 49.11 98.43

(54, 70) - 336.88 2,101,962 871.17 6,677,492 628.26 3,717,027 97.21 350,841 105.54 71,919

(512, 2) 351.91 4,459,174 918.04 10,991,861 126.49 1,333,266 75.40 386,490 108.20 150,391

BN 127 7.15 14.26 30.82 56.12 98.82

(57, 74) out - - - - - - - - 180.57 639,878

(512, 2) - - - - - - - - 200.14 1,384,957

BN 128 7.77 15.38 28.49 58.08 99.85

(48, 73) out 8.19 3,476 15.66 2,645 34.14 36,025 58.54 831 100.29 4,857

(512, 2) 8.11 5,587 15.48 1,712 29.64 18,734 58.12 625 100.18 5,823

BN 129 7.39 11.83 24.96 55.28 96.60

(52, 68) out 188.49 1,605,045 1423.49 11,860,050 343.68 2,049,880

(512, 2) 827.37 11,469,012 - - 198.24 1,999,591 1796.81 22,855,693 297.90 2,542,057

BN 130 6.29 13.24 22.63 53.68 94.78

(54, 67) out 25.42 184,439 - - 918.48 7,317,237 - - 105.43 110,193

(512, 2) 29.52 348,660 - - 981.08 10,905,151 - - 108.25 205,010

BN 131 7.16 13.72 23.36 44.94 82.36

(48, 72) out 21.55 142,487 47.11 328,560 1216.80 10,249,055 73.25 235,433 - -

(512, 2) 26.44 296,576 58.78 677,149 1695.44 24,678,072 87.01 673,358 - -

BN 132 6.16 11.63 22.31 52.78 91.20

(49, 71) out - - - - - - 792.42 6,596,296 644.01 4,829,396

(512, 2) - - - - - - 886.31 10,251,600 809.86 10,207,347

BN 133 7.60 14.43 27.55 56.54 106.24

(54, 71) out - - 24.18 105,920 46.69 174,274 157.04 932,745 110.05 32,041

(512, 2) - - 25.55 169,574 48.53 272,258 184.94 1,859,117 110.87 71,195

abilistic inference algorithms.

Table A.4 displays the results for experiments with 15 belief networks from the
repository. We set the time limit to 10 minutes and for each test instance we gen-
erated a single MPE query without evidence. We observe againa considerable
improvement of the new AND/OR Branch-and-Bound algorithms over the cor-
responding OR ones. For example, on thecpcs360b network,AOBB+SMB(5)
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Table A.4
CPU time in seconds and number of nodes visited for solvingBayesian Network Reposi-
tory instances. Time limit 10 minutes.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

bn AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

SamIam BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

(w*, h) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(n, d) i=2 i=3 i=4 i=5 i=6 i=7

time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.01 0.01 0.01 0.01 0.01

cpcs54 10.41 141,260 18.26 252,886 0.54 8,072 2.18 30,912 0.62 9,237 0.47 6,955

(14, 23) 0.16 0.66 16,030 0.34 8,621 0.27 6,761 0.39 10,485 0.13 3,672 0.10 2,674

(54, 2) 1.99 2,493 1.45 2,214 0.70 1,003 0.53 848 0.34 532 0.33 510

1.48 2,339 1.16 1,889 0.86 798 0.42 419 0.29 159 0.29 131

0.09 0.09 0.09 0.09 0.09 0.09

cpcs360b 72.21 336,720 66.86 317,249 65.05 316,991 61.38 297,313 63.82 314,173 64.59 318,067

(20, 27) 18.91 0.45 10,027 0.44 9,827 0.44 9,809 0.40 8,947 0.43 9,771 0.44 9,847

(360, 2) 377.73 308,339 373.48 307,084 373.23 307,083 373.96 307,083 373.34 307,078 373.67 307,078

4.36 9,383 4.15 9,309 4.06 9,313 4.20 9,285 4.18 9,181 4.40 9,217

1.58 1.58 1.58 1.58 1.58 1.58

cpcs422b 57.43 204,209 56.60 203,448 55.61 203,410 54.27 203,410 54.34 203,409 53.98 203,370

(23, 36) 112.78 1.80 3,557 1.78 3,409 1.77 3,409 1.77 3,409 1.78 3,568 1.76 3,316

(422, 2) - - - - - - - - - - - -

54.48 3,140 54.41 3,142 54.98 3,094 54.98 3,029 55.03 2,998 55.14 2,969

0.01 0.01 0.01 0.01 0.01 0.01

Insurance 0.14 1,877 0.06 962 69.56 1,749,933 35.70 910,498 0.02 160 0.03 136

(7, 14) 0.08 0.04 977 0.02 453 0.02 411 0.01 255 0.01 62 0.03 80

(27, 5) 0.13 364 0.03 89 0.03 87 0.08 87 0.16 87 0.52 125

0.11 299 0.02 36 0.03 33 0.08 33 0.15 33 0.51 62

0.02 0.02 0.03 0.06 0.19 0.71

Munin1 - - - - - - - - 10.16 81,982 11.46 88,836

(12, 28) out 6.32 102,540 2.79 44,071 1.32 22,934 2.00 42,484 1.79 38,669 2.66 48,302

(189, 21) - - 256.48 80,411 228.91 66,583 62.08 15,523 65.29 15,513 77.73 15,514

45.76 84,788 25.46 27,217 18.15 11,230 9.45 2,557 12.30 2,547 25.61 2,548

0.14 0.16 0.20 0.32 0.46 0.69

Munin2 - - - - - - - - - - - -

(9, 32) 4.30 - - - - 137.72 712,814 30.53 174,333 2.57 15,978 2.08 9,961

(1003, 21) - - - - - - - - - - - -

- - - - - - 208.47 13,459 167.27 9,360 122.50 4,806

0.15 0.15 0.18 0.28 0.40 0.74

Munin3 - - - - - - - - - - - -

(9, 32) 7.28 - - - - 15.20 152,191 1.02 6,440 0.63 1,945 0.88 1,180

(1044, 21) - - - - - - - - - - - -

- - 345.26 146,866 28.54 2,573 12.11 1,319 10.50 1,180 14.76 1,180

0.16 0.15 0.19 0.32 0.86 2.22

Munin4 - - - - - - - - - - - -

(9, 35) 26.19 - - - - - - - - 292.30 3,183,146 16.83 125,480

(1041, 21) - - - - - - - - - - - -

- - - - - - - - - - - -

0.03 0.04 0.04 0.04 0.05 0.06

Pigs - - 0.50 6,060,855 0.48 6,446,055 0.48 5,956,733 0.48 81,982 0.50 88,836

(11, 26) 1.14 - - 0.06 455 0.06 455 0.06 455 0.07 455 0.09 455

(441, 3) 7.98 1,984 8.58 1,984 8.66 1,984 8.79 1,984 9.09 1,984

0.31 455 0.39 455 0.49 455 0.63 455 0.93 455

0.01 0.01 0.01 0.02 0.03 0.05

Water 78.53 1,658,313 78.02 1,670,307 3.47 53,784 0.34 5,202 0.45 6,769 0.11 973

(10, 15) 3.03 0.67 17,210 1.07 24,527 0.80 19,193 0.14 3,005 0.14 2,658 0.08 856

(32, 4) 344.89 697,777 4.39 1,932 0.92 535 0.67 235 0.98 468 2.31 369

8.49 11,125 3.97 1,622 0.82 193 0.61 153 0.88 113 2.26 136
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Fig. A.2. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solvingUAI’06 networks with AOBB+SMB(i).

causes a CPU speedup of 153 overBB+SMB(5), while exploring a search space
33 times smaller. Similarly,AOBB+DMB(5) is 89 times faster thanBB+DMB(5)
and expands about 33 times less nodes. Overall,AOBB+SMB(i) is the best per-
forming algorithm for this domain. In particular, for networks with relatively low
connectivity and large domain sizes (e.g.,Munin networks) the difference between
AOBB+SMB(i) andBB+SMB(i) is up to several orders of magnitude in terms of
both running time and size of the search space explored.

A.5 The Impact of Determinism in Bayesian Networks

In this section we present a detailed description of the CNF formula which encodes
the determinism in the Bayesian network. It is created based on the zero probability
table entries, as follows.

SAT Variables: Given a Bayesian networkP = 〈X,D,F〉, the CNF is defined
over the multi-valued variables{X1, ..., Xn}. Its propositions areLXi,xi

, where
xi ∈ Di. The proposition istrue if Xi is assigned valuexi ∈ Di and is false
otherwise.

SAT Clauses:The CNF is augmented with a collection of 2-CNFs for each variable
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Table A.5
Deterministic CPTP (C|A, B)

A B C P (C|A, B) Clauses

1 1 1 1

1 1 2 0 (¬LA,1 ∨ ¬LB,1 ∨ ¬LC,2)

1 1 3 0 (¬LA,1 ∨ ¬LB,1 ∨ ¬LC,3)

1 2 1 0 (¬LA,1 ∨ ¬LB,2 ∨ ¬LC,1)

1 2 2 1

1 2 3 0 (¬LA,1 ∨ ¬LB,2 ∨ ¬LC,3)

2 1 1 .2

2 1 2 .8

2 1 3 0 (¬LA,2 ∨ ¬LB,1 ∨ ¬LC,3)

2 2 1 .7

2 2 2 .3

2 2 3 0 (¬LA,2 ∨ ¬LB,2 ∨ ¬LC,3)

Xi in the network, calledat-most-oneclauses, that forbids the assignments of more
than one value to a variable. Formally,

DEFINITION 33 (at-most-one clause)Given a variableXi ∈ X with domainDi =
{xi1 , ..., xid}, its correspondingat-most-oneclauses have the following form:

¬LXi,xip
∨ ¬LXi,xiq

for every pair(xip , xiq) ∈ Di × Di, where1 ≤ p < q ≤ d.

In addition, we will add to the CNF a set ofat-least-oneclauses to ensure that each
variable in the network is assigned at least one value from its domain:

DEFINITION 34 (at-least-one clause)Given a variableXi ∈ X with domainDi ∈
{Xi1 , ..., Xid}, its correspondingat-least-oneclause is of the following form:

LXi,xi1
∨ LXi,xi2

... ∨ LXi,xid

The remaining clauses are generated from the zero probability tuples in the net-
work’s CPTs.

DEFINITION 35 (no-good clauses)Given a conditional probability table, denoted
by P (Xi|pa(Xi)), each entry in the CPT havingP (xi|xpai

) = 0, wherepa(Xi) =
{Y1, ..., Yt} are Xi’s parents andxpai

= (y1, ..., yt) is their corresponding value
assignment, can be translated to ano-goodclause of the form:

¬LY1,y1 ∨ ... ∨ ¬LYt,yt
∨ ¬LXi,xi
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Example 14 Consider a belief network over variables{A,B,C} with domains
DA = {1, 2}, DB = {1, 2} and DC = {1, 2, 3}, and probability tables:P (A),
P (B) andP (C|A,B), respectively. The deterministic CPTP (C|A,B) is given in
Table A.5. The corresponding CNF encoding has the following Boolean variables:
LA,1, LA,2, LB,1, LB,2, LC,1, LC,2 and LC,3. Variable LA,1 is true if the network
variableA takes value1, andfalseotherwise.

To generate the no-good clauses in the knowledge base, we beginby iterating
through the parent instantiations of the CPT for variableC. Whenever a state
c ∈ DC has a probability of 0 we will generate a clause. This clause contains
the negative literal¬LC,c, as well as the negative literals{¬LA,a,¬LB,b} where
(A = a,B = b) is the corresponding parent instantiation. These clauses are given
in the last column of Table A.5.

The remaining at-least-one and at-most-one clauses are given in the table below:

at-least-one at-most-one

(LA,1 ∨ LA,2) (¬LA,1 ∨ ¬LA,2)

(LB,1 ∨ LB,2) (¬LB,1 ∨ ¬LB,2)

(LC,1 ∨ LC,2 ∨ LC,3) (¬LC,1 ∨ ¬LC,2)

(¬LC,1 ∨ ¬LC,3)

(¬LC,2 ∨ LC,3)

Table A.6 displays the results obtained for the 10 ISCAS’89 circuits used in Section
A.2. Constraint propagation via unit resolution plays a dramatic role on this do-
main rendering the search space almost backtrack-free for both static and dynamic
mini-bucket heuristics, at all reportedi-bounds. For instance, on thes953 circuit,
AOBB+SAT+SMB(6) is 3 orders of magnitude faster thanAOBB+SMB(6) and
the search space explored is about 4 orders of magnitude smaller. Similarly, on the
same network,AOBB+SAT+DMB(6) is 12 times faster thanAOBB+DMB(4) and
explores about 5 times fewer nodes. Notice that in the case ofdynamic mini-bucket
heuristics, the difference betweenAOBB+SAT+DMB(i) andAOBB+DMB(i) is not
too prominent as in the static case, because the heuristic estimates prune the search
space quite effectively in this case.

Table A.7 shows the results for experiments with the 12 genetic linkage analysis
networks from Section 9.3.4. In this case, we observe that applying unit resolution
was not cost effective.
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Table A.6
CPU time in seconds and number of nodes visited for solving Bayesian networks derived
from ISCAS’89 circuits using constraint propagation. Time limit 30 minutes.

min-fill pseudo tree

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

iscas89 AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)

(n, d) i=6 i=8 i=10 i=12 i=14 i=16

time nodes time nodes time nodes time nodes time nodes time nodes

- - - - 1079.59 20,751,699 0.14 432 0.24 432 0.59 432

c432 1658.62 37,492,131 873.71 19,423,461 4.52 89,632 0.16 432 0.23 432 0.61 432

(27, 45) - - 30.08 39,711 1.03 432 1.75 432 3.20 432 7.74 432

(432, 2) 0.56 434 0.69 433 1.00 432 1.70 432 3.09 432 7.61 432

0.11 499 0.09 499 0.11 499 0.17 499 0.30 499 0.66 499

c499 0.10 499 0.09 499 0.11 499 0.17 499 0.30 499 0.69 499

(23, 55) 0.59 499 0.75 499 1.22 499 2.55 499 5.55 499 17.16 499

(499, 2) 0.59 499 0.77 499 1.19 499 2.56 499 5.59 499 17.45 499

0.22 884 0.23 881 0.23 881 0.28 881 0.48 881 1.06 881

c880 0.22 881 0.22 881 0.25 881 0.28 881 0.47 881 1.08 881

(27, 67) 1.17 881 1.41 881 2.14 881 4.08 881 9.33 881 22.25 881

(880, 2) 1.19 881 1.35 881 2.25 881 4.03 881 9.67 881 22.92 881

0.03 257 0.05 257 0.03 172 0.06 172 0.14 172 0.31 172

s386 0.03 172 0.03 172 0.05 172 0.08 172 0.14 172 0.30 172

(19, 44) 0.14 172 0.17 172 0.31 172 0.53 172 1.03 172 2.02 172

(172, 2) 0.11 172 0.16 172 0.30 172 0.52 172 1.02 172 1.98 172

1019.87 9,919,295 22.50 238,780 54.77 549,181 34.74 434,481 2.61 21,499 3.67 19,117

s953 0.19 829 0.19 667 0.22 685 0.33 623 0.74 623 2.14 599

(66, 101) 33.03 2,738 16.52 913 48.61 1,010 17.23 468 146.66 578 132.69 447

(440, 2) 2.64 543 4.31 525 12.53 550 14.56 459 98.31 527 105.45 441

33.00 316,875 343.50 3,682,077 7.22 77,205 31.25 320,205 26.80 289,873 11.61 99,935

s1196 0.19 565 0.20 565 0.23 565 0.38 565 0.92 565 2.97 565

(54, 97) 1.59 660 2.50 568 35.47 924 81.63 863 369.30 1,008 886.47 817

(560, 21) 1.17 564 2.00 563 4.61 563 13.05 563 42.02 563 144.13 563

4.31 57,355 13.73 187,499 3.55 47,340 2.16 25,538 2.41 20,689 3.88 13,032

s1238 0.20 771 0.30 2,053 0.34 2,053 0.49 2,037 1.00 2,037 3.09 2,037

(59, 94) 2.66 1,089 3.81 795 13.77 1,824 28.03 849 62.30 744 194.78 737

(540, 2) 1.63 748 2.48 734 7.44 1,655 19.41 802 52.86 736 171.33 735

0.27 1,986 0.47 5,171 0.48 5,078 0.22 866 0.34 749 0.70 749

s1423 0.24 1,903 0.45 4,918 0.45 4,896 0.22 860 0.36 749 0.70 749

(24, 54) 0.83 751 0.97 749 1.36 749 2.33 749 4.92 749 11.75 749

(748, 2) 0.81 751 0.97 749 1.37 749 2.34 749 4.92 749 11.89 749

15.95 135,563 2.09 17,170 3.24 28,420 1.56 12,285 1.64 12,370 3.42 964

s1488 0.22 1,115 0.22 667 0.27 667 0.44 667 1.05 667 3.36 667

(47, 67) 1.14 670 1.67 670 3.25 668 8.11 667 25.55 667 86.67 667

(667, 2) 0.89 667 1.30 667 2.63 667 6.61 667 20.641 667 69.88 667

15.13 158,070 43.58 476,874 11.30 118,372 17.48 198,912 3.00 21,137 3.53 3,061

s1494 0.20 665 0.22 665 0.25 665 0.45 665 1.11 665 3.42 665

(48, 69) 7.20 873 2.77 711 11.38 681 19.70 680 58.78 686 126.70 667

(661, 2) 1.11 665 1.75 665 3.92 665 10.41 665 31.11 665 101.39 665
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Table A.7
CPU time and nodes visited for solvinggenetic linkage networksusing constraint propa-
gation via unit resolution. Time limit 3 hours.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

Superlink AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

pedigree SamIam AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

ped1 0.05 0.05 0.11 0.31 0.97

(299, 5) 54.73 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156

(15, 61) 5.44 24.72 414,239 12.97 205,887 1.59 24,361 1.86 25,674 1.89 15,156

ped38 0.12 0.45 2.20 60.97 out

(582, 5) 28.36 - - 8120.58 85,367,022 - - 3040.60 35,394,461

(17, 59) out - - 7663.89 83,808,576 - - 3094.33 35,394,277

ped50 0.11 0.74 5.38 37.19 out

(479, 5) - - - - - 476.77 5,566,578 104.00 748,792

(18, 58) out - - - - 497.30 5,566,344 107.11 748,792

i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

ped23 0.42 2.33 11.33 274.75 out

(310, 5) 9146.19 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308

(27, 71) out 514.33 6,618,811 15.89 154,666 17.87 67,456 270.05 117,308

ped37 0.67 5.16 21.53 58.59 out

(1032, 5) 64.17 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

(21, 61) out 282.83 3,189,847 1674.54 25,280,466 1066.79 15,372,724 131.56 953,061

i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

ped18 0.51 1.42 4.59 12.87 19.30

(1184, 5) 139.06 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689

(21, 119) 157.05 - - 2199.44 28,651,103 285.03 2,555,078 103.89 682,175 20.41 7,689

ped20 1.42 5.11 37.53 410.96 out

(388, 5) 14.72 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195

(24, 66) out 3953.23 54,941,659 1349.51 18,449,393 1301.26 17,810,674 1112.49 9,151,195

ped25 0.34 0.72 2.27 6.56 29.30

(994, 5) - - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541

(34, 89) out - - - - 9690.70 111,301,168 3427.79 34,306,937 2987.50 28,326,541

ped30 0.42 0.83 1.78 5.75 21.30

(1016, 5) 13095.83 - - - - - - 214.10 1,379,131 91.92 685,661

(23, 118) out - - - - - - 225.67 1,379,131 96.16 685,661

ped33 0.58 2.31 7.84 33.44 112.83

(581, 4) - 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215

(37, 165) out 3051.15 34,218,037 796.58 9,113,615 4290.28 50,071,828 171.31 1,647,488 3216.04 35,884,557

ped39 0.52 2.32 8.41 33.15 81.27

(1272, 5) 322.14 - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280

(23, 94) out - - - - 4242.59 52,804,044 405.08 2,171,470 145.03 407,280

ped42 4.20 31.33 206.40 out out

(448, 5) 561.31 - - - - - -

(25, 76) out - - - - - -
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