
AND/OR Branch-and-Bound Search for
Combinatorial Optimization in Graphical Models

Radu Marinescua,∗,1, Rina Dechterb

aCork Constraint Computation Centre, University College Cork, Ireland
bDonald Bren School of Information and Computer Science, University ofCalifornia,

Irvine, CA 92697, USA

Abstract

This is the first of two papers presenting and evaluating the power of a newframework
for combinatorial optimization in graphical models, based on AND/OR search spaces.
We introduce a new generation of depth-first Branch-and-Bound algorithms that explore
the AND/OR search tree using static and dynamic variable orderings. The virtue of the
AND/OR representation of the search space is that its size may be far smaller than that of
a traditional OR representation, which can translate into significant time savings for search
algorithms. The focus of this paper is on linear space search which explores the AND/OR
search tree. In the second paper we explore memory intensive AND/OR search algorithms.
In conjunction with the AND/OR search space we investigate the power of the mini-bucket
heuristics in both static and dynamic setups. We focus on two most common optimization
problems in graphical models: finding the Most Probable Explanation in Bayesian networks
and solving Weighted CSPs. In extensive empirical evaluations we demonstrate that the
new AND/OR Branch-and-Bound approach improves considerably over the traditional OR
search strategy and show how various variable ordering schemes impactthe performance
of the AND/OR search scheme.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

∗ Corresponding author.
Email addresses:r.marinescu@4c.ucc.ie (Radu Marinescu),

dechter@ics.uci.edu (Rina Dechter).
1 This work was done while at the University of California, Irvine.

Preprint submitted to Elsevier December 8, 2009

1 Introduction

Graphical models such as Bayesian networks or constraint networks are a widely
used representation framework for reasoning with probabilistic and deterministic
information. These models use graphs to capture conditional independencies be-
tween variables, allowing a concise representation of the knowledge as well as
efficient graph-based query processing algorithms. Optimization problems such as
finding the most likely state of a Bayesian network or finding a solution that vio-
lates the least number of constraints can be defined within this framework and they
are typically tackled with eitherinferenceor searchalgorithms.

Inference-based algorithms (e.g., Variable Elimination, Tree Clustering) were al-
ways known to be good at exploiting the independencies captured by the under-
lying graphical model. They provide worst case time guarantees exponential in
the treewidth of the underlying graph. Unfortunately, any method that is time-
exponential in the treewidth is also space exponential in the treewidth or separator
width, therefore not practical for models with large treewidth.

Search-based algorithms (e.g., depth-first Branch-and-Bound search) traverse the
model’s search space where each path represents a partial orfull solution. The lin-
ear structure of such traditional search spaces does not retain the independencies
represented in the underlying graphical models and, therefore, search-based algo-
rithms may not be nearly as effective as inference-based algorithms in using this in-
formation. Moreover, these methods do not accommodate informative performance
guarantees. This situation has changed in the past few yearswith the introduction
of AND/OR search algorithms for graphical models. In addition, search methods
require only an implicit, generative, specification of the functional relationships
(that may be given in a procedural or functional form) while inference schemes of-
ten rely on an explicit tabular representation over the (discrete) variables. For these
reasons, search-based algorithms are usually the preferred choice for models with
large treewidth and with implicit representation.

The AND/OR search space for graphical models [1] is a new framework that is sen-
sitive to the independencies in the model, often resulting in exponentially reduced
complexities. It is guided by apseudo tree[2,3] that captures independencies in the
graphical model, resulting in a search space exponential inthe depth of the pseudo
tree, rather than in the number of variables.

In this paper we present a new generation of AND/OR Branch-and-Bound algo-
rithms (AOBB) that explore the AND/OR search tree in a depth-first manner for
solving optimization problems in graphical models. As in traditional Branch-and-
Bound search, the efficiency of these algorithms depends heavily also on their guid-
ing heuristic function. A class of partitioning-based heuristic functions, based on
the Mini-Bucket approximation [4] and known asstatic mini-bucket heuristicswas

2

shown to be powerful for optimization problems [5] in the context of the traditional
OR search spaces. The Mini-Bucket algorithm provides a scheme for extracting
heuristic information from the functional specification ofthe graphical model and
is applicable to any graphical model. The accuracy of the Mini-Bucket algorithm
is controlled by a bounding parameter, calledi-bound, which allows varying de-
grees of heuristics accuracy and results in a spectrum of search algorithms that can
trade off heuristic strength and search [5]. We show here howthe pre-computed
mini-bucket heuristic as well as any other heuristic information can be incorporated
into AND/OR search. We also introducedynamic mini-bucket heuristics, which are
computed dynamically at each node of the search tree.

Since variable orderings can influence dramatically the search performance, we
also introduce a collection ofdynamicAND/OR Branch-and-Bound algorithms that
combine AND/OR decomposition with dynamic variable orderings.

We apply the depth-first AND/OR Branch-and-Bound approach to two common
optimization problems in graphical models: finding the MostProbable Explana-
tion (MPE) in Bayesian networks [6] and solving Weighted Constraint Satisfaction
Problems (WCSP) [7]. Our results show conclusively on variousbenchmark prob-
lems that the new depth-first AND/OR Branch-and-Bound algorithms improve dra-
matically over traditional ones exploring the OR search space, especially when the
heuristic estimates are inaccurate and the algorithms relyprimarily on search.

Following preliminary notations and definitions (Section 2), Sections 3, 4 and 5
provide background on graphical models, on the classic OR Branch-and-Bound ap-
proach, and on the AND/OR representation of the search space. Section 6 presents
our new depth-first AND/OR Branch-and-Bound algorithm. Section 7 presents sev-
eral general purpose heuristic functions that can guide thesearch focusing on the
mini-bucket heuristics. Section 8 describes its extensionwith dynamic variable or-
dering heuristics. Section 9 shows the empirical evaluation, Section 10 overviews
related work and Section 11 provides a summary and concluding remarks.

2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variables taking values on fi-
nite domains and a set of functions defined over these variables. We denote vari-
ables by uppercase letters (e.g., X, Y, Z, ...), sets of variables by bold faced up-
percase letters (e.g., X,Y,Z, ...) and values of variables by lower case letters
(e.g., x, y, z, ...). An assignment(X1 = x1, ..., Xn = xn) can be abbreviated as
x = (〈X1, x1〉, ..., 〈Xn, xn〉) or x = (x1, ..., xn). For a subset of variablesY, DY

3

denotes the Cartesian product of the domains of variables inY. xY andx[Y] are
both used as the projection ofx = (x1, ..., xn) over a subsetY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a functionf by scope(f).

2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected graphis defined by a pair
G = {V,E}, whereV = {X1, ..., Xn} is a set of vertices (nodes), andE =
{(Xi, Xj)|Xi, Xj ∈ V } is a set of edges (arcs). If(Xi, Xj) ∈ E, we say thatXi

points toXj. The degree of a vertex is the number of incident arcs to it. For each
vertexXi, pa(Xi) or pai, is the set of vertices pointing toXi in G, while the set
of child vertices ofXi, denotedch(Xi), comprises the variables thatXi points to.
The family ofXi, denotedFi, includesXi and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Anundirectedgraph is defined similarly to a
directed graph, but there is no directionality associated with the edges.

DEFINITION 2 (induced width) An ordered graphis a pair (G, d) whereG is an
undirected graph, andd = X1, ..., Xn is an ordering of the nodes. Thewidth of
a nodeis the number of the node’s neighbors that precede it in the ordering. The
width of an orderingd is the maximum width over all nodes. Theinduced width
of an ordered graph, denoted byw∗(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first; when nodeXi is pro-
cessed, all its preceding neighbors are connected. Theinduced widthof a graph,
denoted byw∗, is the minimal induced width over all its orderings.

DEFINITION 3 (hypergraph) A hypergraphis a pair H = (X,S), whereS =
{S1, ..., St} is a set of subsets ofX, called hyperedges.

DEFINITION 4 (tree decomposition)A tree decompositionof a hypergraphH =
(X,S), is a treeT = (V,E), whereV is a set of nodes, also called ”clusters”, and
E is a set of edges, together with a labeling functionχ that associates with each
vertexv ∈ V a setχ(v) ⊆ X satisfying:

(1) For eachSi ∈ S there exists a vertexv ∈ V such thatSi ⊆ χ(v);
(2) For eachXi ∈ X, the set{v ∈ V|Xi ∈ χ(v)} induces a connected subtree of

T (running intersection property).

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (i.e.,maxv|χ(v) − 1|). The
treewidthof a hypergraph is the minimum width along all possible tree decom-
positions. Thepathwidthis the treewidth over the restricted class of chain decom-
positions.

4

2.3 AND/OR Search Spaces

An AND/OR state space representation of a problem is a 4-tuple 〈S,O, Sg, s0〉 [8].
S is a set of states which can be either OR or AND states (the OR states repre-
sent alternative ways for solving the problem while the AND states often represent
problem decomposition into subproblems, all of which need to be solved).O is a
set of operators. An OR operator transforms an OR state into another state, and an
AND operator transforms an AND state into a set of states. There is a set of goal
statesSg ⊆ S and a start nodes0 ∈ S.

The AND/OR state space model induces an explicit AND/OR search graph. Each
state is a node and child nodes are obtained by applicable ANDor OR operators.
The search graph includes astart node. The terminal nodes (having no children)
are labeled as SOLVED or UNSOLVED.

A solution treeof an AND/OR search graphG is a subtree which: (1) contains the
start nodes0; (2) if n in the tree is an OR node then it contains one of its child nodes
in G, and ifn is an AND node it contains all its children inG; (3) all its terminal
nodes are SOLVED.

3 Graphical Models

Graphical models include constraint networks defined by relations of allowed tu-
ples, directed or undirected probabilistic networks and cost networks defined by
cost functions. Each graphical model comes with its specificoptimization queries
such as finding a solution of a constraint network that violates the least number of
constraints, finding the most probable assignment given some evidence, posed over
probabilistic networks, or finding the optimal solution forcost networks.

In general, a graphical model is defined by a collection of functionsF, over a set of
variablesX, conveying probabilistic or deterministic information, whose structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = 〈X,D,F,⊗〉, where:

(1) X = {X1, ..., Xn} is a set of variables;
(2) D = {D1, ..., Dn} is the set of their respective finite domains of values;
(3) F = {f1, ..., fr} is a set of real-valued functions, each defined over a subset

of variablesSi ⊆ X (i.e., the scope);
(4) ⊗ifi ∈ {

∏

i fi,
∑

i fi} is a combination operator.

The graphical model represents the combination of all its functions:⊗r
i=1fi.

5

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignmentx = (x1, ..., xn) is defined by:

c(x) = ⊗f∈Ff(x[scope(f)])

Given a subset of variablesY ⊆ X, the cost of a partial assignmenty is the combi-
nation of all the functions whose scopes are included inY, namelyFY, evaluated
at the assigned values. Namely,c(y) = ⊗f∈FY

f(y[scope(f)]). We will often abuse
notation writingc(y) = ⊗f∈FY

f(y) instead.

DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two variables that appear in the
scope of the same function.

There are various queries (tasks) that can be posed over graphical models. We refer
to all asautomated reasoning problems. In general, an optimization task is a rea-
soning problem defined as a function from a graphical model toa set of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) Aconstraint optimization prob-
lem (COP)is a pairP = 〈R,⇓X〉, whereR = 〈X,D,F,⊗〉 is a graphical model.
If S is the scope of functionf ∈ F then⇓S f ∈ {maxSf,minSf} and the opti-
mization problem is to compute⇓X ⊗r

i=1fi.

The min/max (⇓) operator is sometimes called aneliminationoperator because it
removes the arguments inS from the input functions’ scopes.

We next overview briefly two popular graphical models of constraint networks and
belief networks, which will be the primary focus of this paper. For a detailed de-
scription of these models we refer the reader to [9,1].

A constraint networkR = 〈X,D,C〉 has a set of constraintsC = {C1, ..., Cr}
as its functions. Each constraint is a pairCi = (Si, Ri), whereSi ⊆ X is the
scope of the relationRi defined overSi, denoting the allowed combinations of
values. The primal graph of a constraint network is called aconstraint graph. The
Constraint Satisfaction Problem (CSP) seeks to determine if aconstraint network
has a solution, and if so, to find one.

An immediate extension of constraint networks arecost networkswhere the set of
functions are real-valued functions, the combination and elimination operators are
summationandminimization, respectively, and the primary constraint optimization
task is to find a solution having minimum cost. A special classof constraint opti-
mization problems that has gained attention in recent yearsis the Weighted Con-
straint Satisfaction Problem (WCSP). WCSP extends the classical CSP formalism
with soft constraintswhich are represented asinteger-valuedcost functions. In a
WCSPW = 〈X,D,F〉 each functionfi ∈ F assigns ”0” (no penalty) to allowed

6

2111

8

011
2101

8

001
2110

8

010

8

100

8

000

f1(ABC)CBA

5111
6011
5101
6001
2110
0010

8

100
1000

f2(ABD)DBA

4111

8

011
3101

8

001
4110

8

010
3100

8

000

f3(BDE)EDB

(a) Functions

A

E

B D

C

f2(ABD)

f1(ABC)

f3(BDE)

(b) Primal graph

A

E

B

D

C

(c) Induced graph

Fig. 1. A WCSP instance with cost functionsf1(A,B,C), f2(A,B,D) andf3(B,D,E).

tuples and a positive integer penalty to forbidden tuples. The optimization problem
is to find a value assignment to the variables with minimum penalty. As a reasoning
problem, solving a WCSP is to find⇓X ⊗r

i=1 = minX

∑r
i=1 fi.

Example 1 Figure 1 shows an example of a WCSP instance with bi-valued vari-
ables. The cost functions are given in Figure 1(a). The value∞ indicates an incon-
sistent tuple. Figures 1(b) and 1(c) depict the primal and the induced graph along
the orderingd = (A,B,C,D,E, F), respectively. The induced graph is obtained
by adding the dotted-arcs. It can be shown that the minimal cost solution is 5 and
corresponds to the assignment(A = 0, B = 1, C = 1, D = 0, E = 1).

A belief networkB = 〈X,D,P〉 is defined over a directed acyclic graphG =
(X,E) and its functionsPi ∈ P denote conditional probability tables (CPTs),
Pi = P (Xi|pai), wherepai is the set ofparent nodes pointing toXi in G. A
belief network represents a joint probability distribution overX, P (X1, ..., Xn) =
∏n

i=1 P (Xi|pai). When formulated as a graphical model, the scopes of the func-
tions inP are determined by the directed acyclic graphG: each functionfi ranges
over variableXi and its parents inG. The combination operator is multiplication,
namely⊗j =

∏

j. The primal graph of a belief network is called amoral graph. It
connects any two variables appearing in the same probability table.

A common optimization task is themost probable explanation(MPE) task. It calls
for finding a complete assignment which agrees with the evidencee in the network,
wheree an instantiated subset of variables, and which has the highest probabil-
ity among such assignments, namely to find an assignment(xo

1, ..., x
o
n) such that:

P (xo
1, ..., x

o
n) = maxx1,...,xn

∏n
i=1 P (xi, e|xpai). As a reasoning problem, the MPE

task is to find⇓X ⊗r
i=1fi = maxX

∏n
i=1 Pi.

Overview of previous work on WCSP and MPE We will mention related work
separately for WCSP and MPE. Clearly, both tasks are NP-hard. A number of com-
plete and incomplete algorithms have been developed for WCSP.Stochastic Local
Search (SLS) algorithms, such as GSAT [10,11], developed for Boolean Satisfia-
bility and Constraint Satisfaction can be directly applied to WCSP [12]. SLS al-
gorithms cannot guarantee an optimal solution, but they have been successful in
practice on many classes of SAT and CSP problems. A number of search-based

7

complete algorithms, using partial forward checking [13] for heuristic computa-
tion, have been developed [14,15]. The Branch-and-Bound algorithm proposed by
[5] uses bounded mini-bucket inference to compute the guiding heuristic function.
More recently, [16–18] introduced a family of depth-first Branch-and-Bound algo-
rithms that maintain various levels of directional soft arc-consistency.

Complete algorithms for MPE used in the past either the cycle cutset technique
(also called conditioning) [6], the join-tree clustering technique [19,20], or the
bucket elimination scheme [21]. These methods work well only if the network is
sparse enough. The algorithms based on cutset conditioninghave time complex-
ity exponential in the cutset size but require only linear space, whereas join-tree
clustering and bucket elimination algorithms are both timeand space exponential
in the cluster size that equals the induced width (or treewidth) of the network’s
moral graph. Following Pearl’s stochastic simulation algorithms [6], the suitability
of Stochastic Local Search (SLS) algorithms for MPE was studied in the context of
medical diagnosis applications [22] and more recently in [23–25]. Best-First search
algorithms were proposed [26] as well as algorithms based onlinear programming
[27]. Some extensions are also available for the task of finding thek most-likely
explanations [28,29]. We recently introduced in [5,30] a collection of depth-first
Branch-and-Bound algorithms that use bounded inference, in particular the Mini-
Bucket approximation [4], for computing the guiding heuristic function.

In the next section we present inference and search approaches on which we build
in this paper.

4 Search and Inference for Combinatorial Optimization

4.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying framework for inference (e.g., dynamic pro-
gramming) applicable to probabilistic and deterministic reasoning [21]. Given an
optimization problem, namely a collection of cost functions, and given a variable
orderingd, the algorithm partitions the functions into buckets, eachassociated with
a single variable. A function is placed in the bucket of its argument that appears
latest in the ordering. The algorithm has two phases. Duringthe first, top-down
phase, it processes each bucket, from last to first by a variable elimination proce-
dure that computes a new function which is placed in a lower bucket. The variable
elimination procedure computes the combination of all functions and eliminates the
bucket’s variable. During the second, bottom-up phase, thealgorithm constructs a
solution by assigning a value to each variable along the ordering, consulting the
functions created during the top-down phase. The complexity of the algorithm is
time and spaceO(exp(w∗)), wherew∗ is the induced width of the primal graph
along the orderingd [21].

8

BE can be viewed as message passing from leaves to root along a bucket tree [9].
Let {B(X1), ..., B(Xn)} denote a set of buckets, one for each variable, along an
orderingd = (X1, ..., Xn). A bucket treehas buckets as its nodes. BucketB(X)
is connected to bucketB(Y) if the function generated in bucketB(X) by BE is
placed inB(Y). The variables ofB(X), are those appearing in the scopes of any
of its new and old functions.

Mini-Bucket Elimination(MBE) is an approximation of bucket elimination. It is
designed to avoid the space and time problem of full bucket elimination by par-
titioning large buckets into smaller subsets, calledmini-buckets, each containing
at mosti (calledi-bound) distinct variables. The mini-buckets are then processed
separately [4]. The algorithm outputs not only a lower bound(resp. an upper bound
for maximization problems) on the cost of the optimal solution and an assignment,
but also the collection of theaugmented bucketswhich contain both the original as
well as the intermediate functions generated by the algorithm. The complexity of
the algorithm, which is parameterized by thei-bound, is time and spaceO(exp(i))
wherei < n [4]. It can be viewed as solving by bucket elimination a simplified
problem that is sparser [5,31]. When thei-bound is large enough (i.e., i ≥ w∗), the
Mini-Bucket algorithm coincides with full BE on the original problem.

4.2 Branch-and-Bound Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization problems in graphical mod-
els follow aBranch-and-Boundschema [32]. This algorithm performs a depth-first
traversal of the search tree defined by the problem, where internal nodes represent
partial assignments and leaf nodes stand for complete ones.Throughout the search,
the algorithm maintains a global bound on the cost of the optimal solution, which
corresponds to the cost of the best full variable instantiation found thus far. At each
node, the algorithm computes a heuristic estimate of the best solution extending the
current partial assignment and prunes the respective subtree if the heuristic estimate
is not better than the current global bound (that is - not greater for maximization
problems, not smaller for minimization problems). The algorithm requires only a
limited amount of memory and can be used as an anytime scheme,namely when-
ever interrupted, Branch-and-Bound outputs the best solution found so far.

The effectiveness of Branch-and-Bound depends on the qualityof the heuristic
function. We next describe briefly a general scheme for generating heuristic es-
timates based on the Mini-Bucket approximation. This schemeis parameterized by
the Mini-Bucketi-bound, thus allowing for a controllable trade-off betweenpre-
processing (for heuristics generation) and search [5].

DEFINITION 10 (mini-bucket heuristic evaluation function [5]) Given an ordered
set of augmented buckets{B(X1), ..., B(Xp), ..., B(Xn)} generated by the Mini-

9

Bucket algorithm MBE(i) along the orderingd = (X1, ..., Xp, ..., Xn), and given
a partial assignment̄xp = (x1, ..., xp), the heuristic evaluation functionf(x̄p) =
g(x̄p) + h(x̄p) is defined follows:

(1) g(x̄p) = (
∑

fi∈B(X1..Xp) fi)(x̄
p) is thecombinationof all the input functions

that are fully instantiated along the current path, whereB(X1..Xp) denotes
the bucketsB(X1) throughB(Xp) in the orderingd;

(2) Themini-bucket heuristicfunctionh(x̄p) is defined as thecombinationof all
the intermediate functionshk

j , h(x̄
p) = (

∑

hk
j
∈B(X1..Xp) h

k
j)(x̄

p), that satisfy
the following properties:
• They are generated in bucketsB(Xp+1) throughB(Xn),
• They reside in bucketsB(X1) throughB(Xp).

Kask and Dechter showed [5] that for any partial assignmentx̄p = (x1, ..., xp) of
the firstp variables in the ordering, the evaluation functionf(x̄p) = g(x̄p) + h(x̄p)
is admissibleandmonotonic[8].

Branch-and-Boundguided by theMini-Bucket heuristicsis denoted by BBMB(i).
The algorithm was introduced for a static variable orderingand has a space com-
plexity dominated by the pre-processing step which is exponential in thei-bound
[5]. BBMB(i) was evaluated extensively for probabilistic and deterministic opti-
mization tasks. The results showed conclusively that the scheme overcomes par-
tially the memory explosion of bucket elimination allowinga gradual trade-off of
space for time, and of time for accuracy when used as an anytime scheme.

Subsequently, [33,30] explored the feasibility of generating partition-based heuris-
tics during search, rather than in a pre-processing manner.This allows dynamic
variable and value ordering, a feature that can have tremendous impact on search.
The dynamic generation of these heuristics is facilitated by Mini-Bucket-Tree Elim-
ination, MBTE(i), a partition-based approximation defined over cluster-trees [33].
MBTE(i) outputs multiple (lower or upper) bounds for each possiblevariable and
value extension at once, which is much faster than running MBE(i) n times, once
for each variable.

The resultingBranch-and-Bound with Mini-Bucket-Tree heuristics[33,30], called
BBBT(i), applies the MBTE(i) heuristic computation at each node of the search
tree. Clearly, the algorithm has a higher time overhead compared with BBMB(i)
for the samei-bound, which computes the mini-buckets once. It is exponential in
the i-bound multiplied by the number of nodes visited, but it can prune the search
space much more effectively. Experimental results on probabilistic and determinis-
tic graphical models showed that the power of BBBT(i) is more pronounced over
BBMB(i) only at relatively smalli-bounds. This quality is important because small
i-bounds imply restricted space.

10

5 AND/OR Search Trees for Graphical Models

In this section we overview the AND/OR search space for graphical models [1,8],
which forms the core of our work in this paper. For simplicityand without loss of
generality we consider in the remainder of the paper an optimization problemP =
〈R,min〉 over a graphical modelR = 〈X,D,F,

∑

〉 for which the combination
and elimination operators aresummationandminimization, respectively.

As noted in Section 4, the usual way to do search in graphical models is to in-
stantiate variables in turn, following a static/dynamic variable ordering. In the sim-
plest case this process defines a search tree (called here OR search tree), whose
state nodes represent partial variable assignments. In order to capture the indepen-
dence structure of the underlying graphical model it was recently extended by AND
nodes, yielding the AND/OR search space for graphical models [1]. The AND/OR
search space is defined using apseudo tree[2,3].

DEFINITION 11 (pseudo tree, extended graph)Given an undirected graphG =
(V,E), a directed rooted treeT = (V,E′) defined on all its nodes is calledpseudo
tree if any arc ofG which is not included inE′ is a back-arc, namely it connects
a node to an ancestor inT . The arcs inE′ may not all be included inE. Given
a pseudo treeT of G, theextended graphof G relative toT is defined asGT =
(V,E ∪ E

′).

We next define the notion of AND/OR search tree for a graphicalmodel.

DEFINITION 12 (AND/OR search tree [1]) Given a graphical modelR, its pri-
mal graphG and a backbone pseudo treeT of G, the associated AND/OR search
tree, denotedST (R), has alternating levels of AND and OR nodes. The OR nodes
are labeledXi and correspond to the variables. The AND nodes are labeled〈Xi, xi〉
(or simplyxi) and correspond to value assignments in the domains of the variables.
The structure of the AND/OR search tree is based on the underlying backbone
pseudo treeT . The root of the AND/OR search tree is an OR node labeled with
the root ofT . The children of an AND node〈Xi, xi〉 are OR nodes labeled with the
children of variableXi in T . A path from the root of the search treeST (R) to a
noden is denoted byπn. If n is labeledXi or xi the path will be denotedπn(Xi) or
πn(xi), respectively. The assignment sequence along pathπn, denotedasgn(πn), is
the set of value assignments associated with the AND nodes along πn.

Semantically, the OR states in the AND/OR search tree represent alternative ways
of solving a problem, whereas the AND states represent problem decomposition
into independent subproblems, conditioned on the assignment above them, all of
which need to be solved.

Following the general definition of a solution tree for AND/OR search spaces [8]
we have here that:

11

A

E

C

B

F

D

(a)

A

D

B

EC

F

(b)

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

B

0

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

1

E

F F

0 1 0 1

0 1

C

D D

0 1 0 1

0 1

(c)

Fig. 2. AND/OR search spaces for graphical models.

DEFINITION 13 (solution tree) A solution treeof an AND/OR search treeST (R)
is an AND/OR subtreeT such that: (i) it contains the root ofST (R), s; (ii) if a
non-terminal AND noden ∈ ST (R) is in T then all of its children are inT ; (iii) if
a non-terminal OR noden ∈ ST (R) is in T then exactly one of its children is inT ;
(iv) all its leaf (terminal) nodes are consistent.

Example 2 Figure 2(a) shows the primal graph of cost network with 6 bi-valued
variablesA, B, C, D, E andF , and 9 binary cost functions. Figure 2(b) displays
a pseudo tree together with the back-arcs (dotted lines). Figure 2(c) shows the
AND/OR search tree based on the pseudo tree. A solution tree ishighlighted. Notice
that once variablesA andB are instantiated, the search space below the AND node
labeled〈B, 0〉 decomposes into two independent subproblems, one that is rooted at
C and one that is rooted atE, respectively.

The virtue of an AND/OR search tree representation is that its size may be far
smaller than the traditional OR search tree. It was shown that the AND/OR search
tree represents all solutions and is therefore sound. Its size is controlled by some
graph parameters, as follows:

THEOREM 1 (size of AND/OR search trees [1])Given a graphical modelR and
a backbone pseudo treeT , the size of its AND/OR search treeST (R) is O(l · km)
wherem is the depth of the pseudo tree,l bounds its number of leaves, andk bounds
the domain size. Moreover, ifR has treewidthw∗, then there is a pseudo tree whose
associated AND/OR search tree isO(n · kw∗·logn).

The arcs in the AND/OR trees are associated with weights thatare defined based
on the graphical model’s functions and the summation operator. We next define arc
weights for any graphical model using the notion ofbuckets of functions.

DEFINITION 14 (buckets relative to a pseudo tree)Given a graphical modelR =
〈X,D,F〉 and a backbone pseudo treeT , the bucket ofXi relative to T , de-
notedBT (Xi), is the set of functions whose scopes containXi and are included
in pathT (Xi), which is the set of variables from the root toXi in T . Namely,

12

A

D

B C

E

A

C

B

DE

f1(A,B)
f2(A,C)
f3(A,B,E)
f4(B,C,D)

A

0

B

0

E D

C

0 1

00 1

f1(A=0,B=0) f1(A=0,B=1)

f3(A=0,B=0,E=0) f3(A=0,B=0,E=1)

f2(A=0,C=0)+
f4(B=0,C=0,D=0)

f2(A=0,C=1)+
f4(B=0,C=1,D=0)

1

C

0 1

1

f2(A=0,C=0)+
f4(B=0,C=0,D=1)

f2(A=0,C=1)+
f4(B=0,C=1,D=1)

0

0 0

Fig. 3. Arc weights for a cost network with 5 variables and 4 cost functions.

BT (Xi) = {f ∈ F|Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}

DEFINITION 15 (OR-to-AND weights) Given an AND/OR search treeST (R), of
a graphical modelR, the weightw(n,m)(Xi, xi) (or simplyw(Xi, xi)) of arc(n,m),
whereXi labelsn andxi labelsm, is thecombination (i.e., sum)of all the functions
in BT (Xi) assigned by values alongπm. Formally,

w(Xi, xi) =











0 , if BT (Xi) = ∅
∑

f∈BT (Xi) f(asgn(πm)) , otherwise

DEFINITION 16 (cost of a solution tree)Given a weighted AND/OR search tree
ST (R), of a graphical modelR, and given a solution treeT having OR-to-AND
set of arcsarcs(T), the cost ofT is defined byf(T) =

∑

e∈arcs(T)w(e).

LetTn be the subtree ofT rooted at noden in T . The costf(T) can be computed
recursively, as follows:

(1) If Tn consists only of a terminal AND noden, thenf(Tn) = 0.
(2) If Tn is rooted at an OR node having an AND childm in Tn, thenf(Tn) =

w(n,m) + f(Tm).
(3) If Tn is rooted at an AND node having OR childrenm1, ...,mk in Tn, then

f(Tn) =
∑k

i=1 f(Tmi
).

Example 3 Figure 3 shows the primal graph of a cost network with functions
f1(A,B), f2(A,C), f3(A,B,E) and f4(B,C,D), a pseudo tree that drives its
weighted AND/OR search tree, and a portion of the AND/OR search tree with ap-
propriate weights on the arcs expressed symbolically. In this case the bucket ofE

13

contains the functionf3(A,B,E), the bucket ofC contains two functionsf2(A,C)
andf4(B,C,D) and the bucket ofB contains the functionf1(A,B). We see indeed
that the weights on the arcs from the OR nodeE to any of its AND value assign-
ments include only the instantiated functionf3(A,B,E), while the weights on the
arcs connectingC to its AND child nodes are the sum of the two functions in its
bucket instantiated appropriately. Notice that the bucketsof A andD are empty
and therefore the weights associated with the respective arcsare0.

With each noden of the search tree we can associate a valuev(n) which stands for
the answer to the particular query restricted to the subproblem belown [1].

DEFINITION 17 (node value)Given an optimization problemP = 〈R,min〉 over
a graphical modelR = 〈X,D,F,

∑

〉, thevalueof a noden in the AND/OR search
treeST (R) is the optimal cost to the subproblem belown, namely the subproblem
conditioned on the assignments along the pathπn.

As was shown in [1], specializing combination and elimination to summation and
minimization, respectively, we can show that the value of a node can be computed
recursively, as follows: it is0 for terminal AND nodes and∞ for terminal OR
nodes, respectively. The value of an internal OR node is obtained bysummingthe
value of each AND child node with the weight on its incoming arc and thenopti-
mize (minimize)over all AND children. The value of an internal AND node is the
summationof values of its OR children. Formally, ifsucc(n) denotes the children
of the noden in the AND/OR search tree, then:

v(n) =







































0 , if n = 〈X, x〉 is a terminal AND node

∞ , if n = X is a terminal OR node
∑

m∈succ(n) v(m) , if n = 〈X, x〉 is an AND node

minm∈succ(n)(w(n,m) + v(m)) , if n = X is an OR node
(1)

If n is the root ofST (R), thenv(n) is the minimal cost solution to the initial prob-
lem. Alternatively, the valuev(n) can also be interpreted as the minimum of the
costs of the solution trees rooted atn. Search algorithms that traverse the AND/OR
search space can compute the value of the root node yielding the answer to the
problem. In [1] a generic depth-first AND/OR search algorithm, calledAO, is de-
scribed. It can be immediately inferred from Theorem 1 that:

THEOREM 2 (complexity [1]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is timeO(n · km), wherek bounds
the domain size andm is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidthw∗, there there exists a

14

pseudo treeT for which the time complexity isO(n · kw∗·logn).

6 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the paper which is a Branch-
and-Bound algorithm for AND/OR search spaces of graphical models. Traversing
AND/OR search spaces by best-first or depth-first Branch-and-Bound algorithms
were described as early as [8,34,35]. Here we adapt these algorithms to graphical
models. We will revisit next the notion of partial solution trees [8] to represent sets
of solution trees which will be used in our description.

DEFINITION 18 (partial solution tree) A partial solution treeT ′ of an AND/OR
search treeST is a subtree which: (i) contains the root nodes of ST ; (ii) if n in T ′

is an OR node then it contains at most one of its AND child nodes in ST , and ifn
is an AND node then it contains all its OR children inST or it has no child nodes.
A node inT ′ is called atip node if it has no children inT ′. A tip node is either a
terminalnode (if it has no children inST), or anon-terminalnode (if it has children
in ST).

A partial solution tree may be extended (possibly in severalways) to a full solution
tree. It representsextension(T ′), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes areterminal inST is a
solution tree.

Brute-Force Depth-First AND/OR Tree Search.A simple depth-first search al-
gorithm, calledAO, that traverses the AND/OR search tree was described in [1].The
algorithm maintains the partial solution being explored and computes the value of
each node in a depth-first manner. It interleaves a forward expansion of the current
partial solution tree with a cost revision step that updatesthe node values. In the
expansion step, the algorithm selects a tip node of the current partial solution tree
and expands it by generating its successors. It also associates each OR-to-AND arc
with the appropriate weight. The node values are updated by the propagation step,
in the usual way: OR nodes by minimization, while AND nodes bysummation.
The search terminates when the root node is evaluated and thealgorithm returns
both the optimal cost and an optimal solution tree. For more details see [1].

Heuristic Lower Bounds on Partial Solution Trees.Search algorithms for op-
timization tasks often use a guiding heuristic evaluation function. We will now
show how to extend the brute-forceAO algorithm into a Branch-and-Bound scheme,
guided by a lower bound heuristic evaluation function. For that, we first define the
exact evaluation function of a partial solution tree, and will then derive the no-
tion of a lower bound. Like in OR search, we assume a given heuristic evaluation
functionh(n) associated with each noden in the AND/OR search tree such that

15

h(n) ≤ h∗(n), whereh∗(n) is the best cost extension of the conditioned subprob-
lem belown (i.e., h∗(n) = v(n)). We callh(n) anode-based heuristic function.

DEFINITION 19 (exact evaluation function of a partial solution tree) The exact
evaluation functionf ∗(T ′) of a partial solution treeT ′ is the minimum of the
costs of all solution trees represented byT ′, namely:f ∗(T ′) = min{f(T) | T ∈
extension(T ′)}.

We definef ∗(T ′n) the exact evaluation function of a partial solution tree rooted at
noden. Thenf ∗(T ′n) can be computed recursively, as follows:

(1) If T ′n consists of a single noden, thenf ∗(T ′n) = v(n).
(2) If n is an OR node having the AND childm in T ′n, thenf ∗(T ′n) = w(n,m) +

f ∗(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
(3) If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf ∗(T ′n) =

∑k
i=1 f

∗(T ′mi
), whereT ′mi

is the partial solution subtree ofT ′n rooted atmi.

Clearly, we are interested to find thef ∗(T ′) of a partial solution treeT ′ rooted at
the roots. If each non-terminal tip noden of T ′ is assigned a heuristic lower bound
estimateh(n) of v(n), then it induces a heuristic evaluation function on the minimal
cost extension ofT ′, as follows.

DEFINITION 20 (heuristic evaluation function of a partial solution tree) Given a
node-based heuristic functionh(m) which is a lower bound on the optimal cost be-
low any nodem, namelyh(m) ≤ v(m), and given a partial solution treeT ′n rooted
at noden in the AND/OR search treeST , a tree-based heuristic evaluation function
f(T ′n) of T ′n, is defined recursively by:

(1) If T ′n consists of a single noden thenf(T ′n) = h(n).
(2) If n is an OR node having the AND childm in T ′n, thenf(T ′n) = w(n,m) +

f(T ′m), whereT ′m is the partial solution subtree ofT ′n that is rooted atm.
(3) If n is an AND node having OR childrenm1, ...,mk in T ′n, thenf(T ′n) =

∑k
i=1 f(T

′
mi
), whereT ′mi

is the partial solution subtree ofT ′n rooted atmi.

PROPOSITION1 Clearly, by definition,f(T ′n) ≤ f ∗(T ′n). If n is the root of the
AND/OR search tree, thenf(T ′) ≤ f ∗(T ′).

Example 4 Consider the cost network with bi-valued variablesA,B,C,D,E and
F in Figure 4(a). The cost functionsf1(A,B,C), f2(A,B, F) and f3(B,D,E)
are given in Figure 4(b). A partially explored AND/OR search tree relative to the
pseudo tree from Figure 4(a) is displayed in Figure 4(c). Thecurrent partial solu-
tion treeT ′ is highlighted. It contains the nodes:A, 〈A, 0〉, B, 〈B, 1〉, C, 〈C, 0〉, D,
〈D, 0〉 andF . The nodes labeled by〈D, 0〉 and byF are non-terminal tip nodes and
their corresponding heuristic estimates areh(〈D, 0〉) = 4 andh(F) = 5, respec-
tively. The node labeled by〈C, 0〉 is a terminal tip node ofT ′. The subtree rooted at
〈B, 0〉 along the path(A, 〈A, 0〉, B, 〈B, 0〉) is fully explored, yielding the current

16

A

B

C

D E

F

A

B

C D

E

F

(a) Cost network and pseudo tree

A B C f1(ABC)

0 0 0 2
0 0 1 5
0 1 0 3
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 2

A B F f2(ABF)

0 0 0 3
0 0 1 5
0 1 0 1
0 1 1 4
1 0 0 6
1 0 1 5
1 1 0 6
1 1 1 5

B D E f3(BDE)

0 0 0 6
0 0 1 4
0 1 0 8
0 1 1 5
1 0 0 9
1 0 1 3
1 1 0 7
1 1 1 4

(b) Cost functions

OR

AND

OR

AND

OR

OR

AND

AND

A

0

B

0

D

E E

0 1 0 1

0 1

C

1

1

6 4 8 5

4 5

4 5

2 4

9

9

2 5 0 0

0 0

0

1

0

0

D

0 1

C

1

h(D,0) = 4

3

3 5 0 0

0

9

current best solution

tip nodes

F

1

3

3 5

0

F h(F) = 5

(c) Partial solution tree

Fig. 4. Cost of a partial solution tree.

best solution cost found so far equal to9. We assume that the search is currently
at the tip node labeled by〈D, 0〉 of T ′. The heuristic evaluation function ofT ′ is
computed recursively as follows:

f(T ′)=w(A, 0) + f(T ′〈A,0〉)

=w(A, 0) + f(T ′B)

=w(A, 0) + w(B, 1) + f(T ′〈B,1〉)

=w(A, 0) + w(B, 1) + f(T ′C) + f(T ′D) + f(T ′F)

=w(A, 0) + w(B, 1) + w(C, 0) + f(T ′〈C,0〉) + w(D, 0) + f(T ′〈D,0〉) + h(F)

=w(A, 0) + w(B, 1) + w(C, 0) + 0 + w(D, 0) + h(〈D, 0〉) + h(F)

= 0 + 0 + 3 + 0 + 0 + 4 + 5

=12

Notice that if the pseudo treeT is a chain, then a partial treeT ′ is also a chain
and corresponds to the partial assignmentx̄p = (x1, ..., xp). In this case,f(T ′)
is equivalent to the classical definition of the heuristic evaluation function of̄xp.
Namely, f(T ′) is the sum of the cost of the partial solution̄xp, g(x̄p), and the
heuristic estimate of the optimal cost extension ofx̄p to a complete solution.

During search we maintain an upper boundub(s) on the optimal solutionv(s) as
well as the heuristic evaluation function of the current partial solution treef(T ′),

17

OR

AND

OR

AND

OR

OR

AND

AND

A

0

5

1

1
12

7

B

09

10

1 2

1

D

E

0 1

0 1

C

1

3 4

3

3

1 5

1 3 2 0

0

F h(F) = 5

h(D,1) = 4

() 12' =BTf

() 4' =DTf

() 13' =ATf

tip nodes

Heuristic evaluation functions:

Fig. 5. Illustration of the pruning mechanism.

and we can prune the search space by comparing these two measures, as is common
in Branch-and-Bound search. Namely, iff(T ′) ≥ ub(s), then searching below the
current tip nodet of T ′ is guaranteed not to reduceub(s) and therefore, the search
space belowt can be pruned.

Example 5 For illustration, consider again the partially explored AND/OR search
tree from Example 4 (see Figure 4(c)). In this case, the current best solution found
after exploring the subtree below〈B, 0〉, which ends the path(A, 〈A, 0〉, B, 〈B, 0〉),
is 9. Since we computedf(T ′) = 12 for the current partial solution tree highlighted
in Figure 4(c), then exploring the subtree rooted at〈D, 0〉, which is the current tip
node, cannot yield a better solution and search can be pruned.

Up until now we considered the case when the best solution found so far is main-
tained at the root node of the search tree. It is also possibleto maintain the current
best solutions for all the OR nodes along the active path between the tip nodet of
T ′ ands. Then, iff(T ′m) ≥ ub(m), wherem is an OR ancestor oft in T ′ andT ′m is
the subtree ofT ′ rooted atm, it is also safe to prune the search tree belowt. This
provides a faster mechanism to discover that the search space below a node can be
pruned.

Example 6 Consider the partially explored weighted AND/OR search tree inFig-
ure 5, relative to the pseudo tree from Figure 4(a). The current partial solution tree
T ′ is highlighted. It contains the nodes:A, 〈A, 1〉, B, 〈B, 1〉, C, 〈C, 0〉, D, 〈D, 1〉
andF . The nodes labeled by〈D, 1〉 and byF are non-terminal tip nodes and their
corresponding heuristic estimates areh(〈D, 1〉) = 4 andh(F) = 5, respectively.
The subtrees rooted at the AND nodes labeled〈A, 0〉, 〈B, 0〉 and 〈D, 0〉 are fully
evaluated, and therefore the current upper bounds of the OR nodes labeledA, B
and D, along the active path, areub(A) = 12, ub(B) = 10 and ub(D) = 5,
respectively. Moreover, the heuristic evaluation functions of the partial solution
subtrees rooted at the OR nodes along the current path can be computed recur-
sively based on Definition 20, namelyf(T ′A) = 13, f(T ′B) = 12 andf(T ′D) = 4,
respectively. Notice that while we could prune the subtree below 〈D, 1〉 because

18

Algorithm 1 : AOBB: Depth-first AND/OR Branch-and-Bound search
Input : An optimization problem P = 〈X,D,F,

∑

,min〉, pseudo-tree T rooted at X1, heuristic function h(n).
Output : Minimal cost solution to P and an optimal solution tree.
create an OR node s labeled X1 // Create and initialize the root node1
v(s)←∞; ST (s)← ∅; OPEN ← {s}2
while OPEN 6= ∅ do3

n← top(OPEN); remove n from OPEN // EXPAND4
succ(n)← ∅5
if n is an OR node, labeledXi then6

foreachxi ∈ Di do7
create an AND node n′ labeled by 〈Xi, xi〉8
v(n′)← 0; ST (n′)← ∅9
w(n, n′)←

∑

f∈BT (Xi)
f(asgn(πn)) // Compute the OR-to-AND arc weight10

succ(n)← succ(n) ∪ {n′}11

else ifn is an AND node, labeled〈Xi, xi〉 then12
deadend← false13
foreachOR ancestorm of n do14

f(T ′
m)← evalPartialSolutionTree(T ′

m, h(m))15
if f(T ′

m) ≥ v(m) then16
deadend← true // Pruning the subtree below the current tip node17
break18

if deadend == false then19
foreachXj ∈ childrenT (Xi) do20

create an OR node n′ labeled by Xj21
v(n′)←∞; ST (n′)← ∅22
succ(n)← succ(n) ∪ {n′}23

else24
p← parent(n)25
succ(p)← succ(p)− {n}26

Add succ(n) on top of OPEN27
while succ(n) == ∅ do28

let p be the parent of n // PROPAGATE29
if n is an OR node, labeledXi then30

if Xi == X1 then31
return (v(n), ST (n)) // Search terminates32

v(p)← v(p) + v(n) // Update AND value33
ST (p)← ST (p) ∪ ST (n) // Update solution tree below AND node34

if n is an AND node, labeled〈Xi, xi〉 then35
if v(p) > (w(p, n) + v(n)) then36

v(p)← w(p, n) + v(n) // Update OR value37
ST (p)← ST (n) ∪ {(Xi, xi)} // Update solution tree below OR node38

remove n from succ(p)39
n← p40

f(T ′A) > ub(A), we could discover this pruning earlier by looking at nodeB only,
becausef(T ′B) > ub(B). Therefore, the partial solution treeT ′A need not be con-
sulted in this case.

Depth-First AND/OR Branch-and-Bound Tree Search.The AND/OR Branch-
and-Boundalgorithm,AOBB, for searching AND/OR trees for graphical models,
is described by Algorithm 1. It interleaves a forward expansion (EXPAND) of the
current partial solution tree with a backward propagation step (PROPAGATE) that
updates the nodes upper-bounds of values. The fringe of the search is maintained
by a stack calledOPEN, the current node isn, its parentp, and the current path

19

Algorithm 2 : Recursive computation of the heuristic evaluation function.
function: evalPartialSolutionTree(T ′

n, h(n))
Input : Partial solution subtree T ′

n rooted at node n, heuristic function h(n).
Output : Return heuristic evaluation function f(T ′

n).
if succ(n) == ∅ then1

if n is an AND nodethen2
return 03

else4
return h(n)5

else6
if n is an AND nodethen7

let m1, ...,mk be the OR children of n8

return
∑k

i=1
evalPartialSolutionTree(T ′

mi
, h(mi))9

else ifn is an OR nodethen10
let m be the AND child of m11
return w(n,m) + evalPartialSolutionTree(T ′

m, h(m))12

πn. A data structureST (n) maintains the actual best solution found in the subtree
belown. The node-based heuristic functionh(n) of v(n) is assumed to be available
to the algorithm, either retrieved from a cache or computed during search.

EXPAND selects a tip noden of the current partial solution tree and expands it
by generating its successors. Ifn is an OR node, labeledXi, then its successors
are AND nodes represented by the valuesxi in variableXi’s domain (lines 6–
11). Each OR-to-AND arc is associated with the appropriate weight (see Definition
15). Similarly, if n is an AND node, labeled〈Xi, xi〉, then its successors are OR
nodes labeled by the child variables ofXi in T (lines 20–23). There are no weights
associated with AND-to-OR arcs.

Before expanding the current AND noden, labeled〈Xi, xi〉, the algorithm com-
putes the heuristic evaluation function for every partial solution subtree rooted at
the OR ancestors ofn along the path from the root (lines 12–18). The search below
n is terminated if, for some OR ancestorm, f(T ′m) ≥ v(m), wherev(m) is the
current best upper bound on the optimal cost belowm. The recursive computation
of f(T ′m) based on Definition 20 is described in Algorithm 2. Notice also that for
any OR noden, labeledXi in the search tree,v(n) is trivially initialized to∞ and
is updated in line 36.

PROPAGATE propagates node values bottom up in the search tree. It is triggered
when a node has an empty set of descendants (note that as each successor is eval-
uated, it is removed from the set of successors in line 39). This means that all
its children have been evaluated, and their final values are already determined. If
the current node is the root, then the search terminates withits value and an opti-
mal solution tree (line 32). Ifn is an OR node, then its parentp is an AND node,
andp updates its current valuev(p) by summation with the value ofn (line 33).
An AND noden propagates its value to its parentp in a similar way, by mini-
mization (lines 35–38). Finally, the current noden is set to its parentp (line 40),
becausen was completely evaluated. Each node in the search tree also records the

20

current best assignment to the variables of the subproblem below it and when the
algorithm terminates it contains an optimal solution tree.Specifically, ifn is an
AND node, thenST (n) is the union of the optimal solution trees propagated from
n’s OR children (line 34). Ifn is an OR node andn′ is its AND child such that
n′ = argminm∈succ(n)(w(n,m) + v(m)), thenST (n) is obtained from the label
of n′ combined with the optimal solution tree belown′ (line 38). Search continues
either with apropagationstep (if conditions are met) or with anexpansionstep.

THEOREM 3 The time complexity of the depth-first AND/OR Branch-and-Bound
algorithm (AOBB) is O(n · km), wherem is the depth of the pseudo tree,k bounds
the domain size andn is the number of variables, and it can use linear space. If the
underlying primal graph has treewidthw∗, thenAOBB is timeO(n · kw∗·logn).

Proof. The time complexity follows immediately from the size of theAND/OR
search tree explored (see Theorems 1 and 2). Since only the current partial solution
tree needs to be stored in memory, the algorithm can operate in linear space.2

AOBB can naturally accommodate minimization tasks such as solving Weighted
CSPs. For maximization problems, such as the MPE task in Bayesian networks,
one need only replace summation bymultiplication (for AND nodes) and mini-
mization bymaximization(for OR nodes), respectively. In this case, the current
values maintained by OR nodes are lower bounds on the exact values, while the
heuristic evaluation function of the current partial solution tree yields an upper-
bound on the optimal cost. Moreover, the node values must be initialized with 1 for
AND nodes and0 for OR nodes, respectively.

7 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search strategy greatly depends on
the quality of the heuristic evaluation function. Naturally, more accurate heuris-
tic estimates may yield a smaller search space, possibly at amuch higher computa-
tional cost. The right trade-off between the computationaloverhead and the pruning
power exhibited during search may be hard to predict. One of the primary heuristics
we used is the Mini-Bucket heuristic introduced in [5] for OR search spaces. In the
following subsections we discuss its extension to AND/OR search spaces. We also
extend the local consistency based lower bound developed in[16–18] to AND/OR
search spaces. Both of these heuristic functions were used inour experiments.

21

A B

CD

E

F

G

(a) Cost network

A

B

C F

GD E

(b) Pseudo tree

A

f
1
(A,B)B

f2(B,C)C f8(B,F)F

f9(A,G)

f10(F,G)

Gf6(B,E)

f7(C,E)

Ef3(A,D)

f4(B,D)

f5(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (A,B,C)

hC (A,B)

(c) Bucket Elimination

A

f1(A,B)B

f2(B,C)C f8(B,F)F

f9(A,G)

f10(F,G)

Gf6(B,E)

f7(C,E)

Ef4(B,D)

f5(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (B,C)

hC (B)

hD (A)

f3(A,D)D

mini-buckets

(d) Mini-Bucket Elimination MBE(3)

Fig. 6. Static mini-bucket heuristics fori = 3.

7.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figures 6(a) and 6(b), respec-
tively, and consider also the variable orderingd = (A,B,C,D,E, F,G) and the
bucket and mini-buckets configuration in the output as displayed in Figures 6(c) and
6(d), respectively (see Sections 4.1 and 4.2 for more details). For clarity, we dis-
play the execution of the bucket and mini-bucket elimination along the bucket tree
corresponding to the given elimination ordering. The bucket tree is also a pseudo
tree [1]. The functions denoted on the arcs are those messages sent from a bucket
node to its parent in the tree.

Let us assume, without loss of generality, that variablesA andB have been instan-
tiated during search. Leth∗(a, b, c) be the minimal cost solution of the subproblem
rooted at nodeC in the pseudo tree, conditioned on(A = a,B = b, C = c). In
the AND/OR search tree, this is represented by the subproblem rooted at the AND
node labeled〈C, c〉, ending the path{A, 〈A, a〉, B, 〈B, b〉, C, 〈C, c〉}. By definition,

h∗(a, b, c) = mind,e(f7(c, e) + f6(b, e) + f3(a, d) + f5(c, d) + f4(b, d)) (2)

Notice that we restrict ourselves to the subproblem over variablesD andE only.

22

Therefore, we obtain:

h∗(a, b, c) = mind(f3(a, d) + f5(c, d) + f4(b, d) +mine(f7(c, e) + f6(b, e)))

= mind(f3(a, d) + f5(c, d) + f4(b, d)) +mine(f7(c, e) + f6(b, e))

= hD(a, b, c) + hE(b, c)

where,

hD(a, b, c) = mind(f3(a, d) + f5(c, d) + f4(b, d))

hE(b, c) = mine(f7(c, e) + f6(b, e))

Notice that the functionshD(a, b, c) andhE(b, c) are produced by the bucket elimi-
nation algorithm shown in Figure 6(c). Specifically, the functionhD(a, b, c), gener-
ated in bucket ofD by bucket elimination, is the result of a minimization operation
over variableD. In practice, however, this function may be too hard to compute as
it requires processing a function on four variables. It can be replaced by a partition-
based approximation (e.g., the minimization is split into two parts). This yields a
lower bound approximation, denoted byh(a, b, c), namely:

h∗(a, b, c) = mind(f3(a, d) + f5(c, d) + f4(b, d)) + hE(b, c)

≥ mindf3(a, d) +mind(f5(c, d) + f4(b, d)) + hE(b, c)

= hD(a) + hD(b, c) + hE(b, c)

, h(a, b, c)

where,

hD(a) = mindf3(a, d)

hD(c, b) = mind(f5(c, d) + f4(b, d))

The functionshD(a) andhD(b, c) are the ones computed by the Mini-Bucket al-
gorithm MBE(3), shown in Figure 6(d). Therefore, the functionh(a, b, c) can be
constructed during search from the pre-compiled mini-buckets, yielding a lower
bound on the minimal cost of the respective subproblem.

For OR nodes, such asn, labeled byC, ending the path{A, 〈A, a〉, B, 〈B, b〉, C},
h(n) can be obtained by minimizing over the valuesc ∈ DC the sum between
the weightw(n,m) and the heuristic estimateh(m) below the AND childm of n.
Namely,h(n) = minm(w(n,m) + h(m)).

23

In summary, similarly to [5], the mini-bucket heuristic associated with any node
in the AND/OR search tree can be obtained from the pre-compiled mini-bucket
functions. As was shown in earlier work [5], the mini-bucketheuristic functionh(n)
associated with a noden in the search tree yields a lower bound on the minimum
cost of the conditioned subproblem belown (see [5] for additional details).

DEFINITION 21 (static mini-bucket heuristic) Given an ordered set of augmented
buckets{B(X1), ..., B(Xn)} generated by the Mini-Bucket algorithm MBE(i) along
the bucket treeT , and given a noden in the AND/OR search tree, thestatic mini-
bucket heuristicfunctionh(n) is computed as follows:

(1) If n is an AND node, labeled by〈Xp, xp〉, then:

h(n) =
∑

hk∈{B(Xp)∪B(X1
p ..X

q
p)}

hk

Namely, it is the sum of the intermediate functionshk that satisfy the following
two properties:
• They are generated in bucketsB(Xk), whereXk is any descendant ofXp in

the bucket treeT ,
• They reside in bucketB(Xp) or the bucketsB(X1

p ..X
q
p) = {B(X1

p), ..., B(Xq
p)}

that correspond to the ancestors{X1
p , ..., X

q
p} of Xp in T .

(2) If n is an OR node, labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp ofXp.

Example 7 Figure 6(d) shows the bucket tree for the cost network in Figure6(a)
together with the intermediate functions generated by MBE(3) along the ordering
d = (A,B,C,D,E, F,G). The static mini-bucket functionh(a, b, c) associated
with the AND node labeled〈C, c〉 ending the path(A = a,B = b, C = c) in the
AND/OR search tree is by definitionh(a, b, c) = hD(a) + hD(c, b) + hE(b, c). The
intermediate functionshD(c, b) and hE(b, c) are generated in bucketsD andE,
respectively, and reside in bucketC. The functionhD(a) is also generated in bucket
D, but it resides in bucketA, which is an ancestor ofC in the bucket tree.

We see that the computation of the static mini-bucket heuristic of a noden in the
AND/OR search tree is identical to the OR case (see Definition10), except that it
only considers the intermediate functions generated by thebuckets corresponding
to the current conditioned subproblem rooted atn.

Example 8 For example, consider again the cost network in Figure 6(a). Figures
7(a) (which repeats Figure 6(d)) and 7(b) show the compiled bucket structure ob-
tained by MBE(3) along the given elimination orderd = (A,B,C,D,E, F,G), for
the AND/OR and OR spaces, respectively. The static mini-bucket heuristic function

24

A

f1(A,B)B

f2(B,C)C f8(B,F)F

f9(A,G)

f10(F,G)

Gf6(B,E)

f7(C,E)

Ef4(B,D)

f5(C,D)

D

hG (A,F)

hF (A,B)

hB (A)

hE (B,C)hD (B,C)

hC (B)

hD (A)

f3(A,D)D

mini-buckets

(a) AND/OR static mini-buckets

F:

E:

D:

C:

B:

A:

f8(F,B)

f7(E,C) f6(E,B)

f2(C,B)

f3(D,A)

G: f10(G,F) f9(G,A)

hG (F,A)

hF (B,A)

f5(D,C) f4(D,B)

f1(B,A)

hE (C,B) hD (C,B)

hB (A)

hC (B)

hD (A)

(b) OR static mini-buckets

Fig. 7. AND/OR versus OR static mini-bucket heuristics fori = 3.

underestimating the minimal cost extension of the partial assignment(A = a,B =
b, C = c) in the OR search space ish(a, b, c) = hD(a) + hD(c, b) + hE(b, c) +
hF (b, a). Namely, it involves the extra functionhF (b, a) which was generated in
bucketF and resides in bucketB, as shown in Figure 7(b). This is because, in the
OR space, variablesF andG are part of the subproblem rooted atC, unlike the
AND/OR search space.

7.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristic information dynamically
during search, as we show next. The idea is to compute MBE(i) conditioned on the
current partial assignment.

DEFINITION 22 (dynamic mini-bucket heuristics) Given a bucket treeT with buck-
ets{B(X1), ..., B(Xn)}, a noden in the AND/OR search tree and given the current
partial assignmentasgn(πn) along the path ton, thedynamic mini-bucket heuris-
tic functionh(n) is computed as follows:

(1) If n is an AND node labeled by〈Xp, xp〉, then:

h(n) =
∑

hk∈B(Xp)

hk

Namely, it is the sum of the intermediate functionshk that reside in bucket
B(Xp) and were generated by MBE(i), conditioned onasgn(πn), in buckets
B(Xk), whereXk is any descendant ofXp in T .

(2) If n is an OR node labeled byXp, then:

h(n) = minm(w(n,m) + h(m))

wherem is the AND child ofn labeled with valuexp ofXp.

25

A

f1(a,b)B

f2(b,C)C f8(b,F)F

f9(a,G)

f10(F,G)

Gf6(b,E)

f7(C,E)

Ef3(a,D)

f4(b,D)

f5(C,D)

D

hG (F)

hF ()

hB ()

hE (C)hD (C)

hC ()

Fig. 8. Dynamic mini-bucket heuristics fori = 3.

Given ani-bound, the dynamic mini-bucket heuristic implies a much higher com-
putational effort compared with the static version. However, the bounds generated
dynamically may be far more accurate since some of the variables are assigned and
will therefore yield smaller functions and less partitioning. More importantly, the
dynamic mini-bucket heuristic can be used with dynamic variable ordering heuris-
tics, unlike the pre-compiled one, which restricts search to be conducted in an order
that respects a static pseudo tree structure. However, whenusing dynamic mini-
bucket heuristics with a static variable ordering, rather than recomputing a new
ordering and bucket structure at each node in the search tree, we use the initial
variable ordering and partitioning into buckets restricted to the current subproblem.

Example 9 Figure 8 shows the bucket tree structure corresponding to thebinary
cost network instance displayed in Figure 6(a), along the elimination ordering
(A,B,C,D,E, F,G). The dynamic mini-bucket heuristic estimateh(a, b, c) of the
AND node labeled〈C, c〉 ending the path{A, 〈A, a〉, B, 〈B, b〉, C, 〈C, c〉} is com-
puted by MBE(3) on the subproblem represented by the bucketsD andE, condi-
tioned on the partial assignment(A = a,B = b, C = c). Namely, MBE(3) pro-
cesses bucketsD andE by eliminating the respective variables, and generates two
new functions:hD(c) andhE(c), as illustrated in Figure 8. These new functions are
in fact constants since variablesA, B andC are assigned in the scopes of the input
functions that constitute the conditioned subproblem:f3(a,D), f4(b,D), f5(c,D),
f6(b, E) and f7(c, E), respectively. Thereforeh(a, b, c) = hD(c) + hE(c) and it
equals the exacth∗(a, b, c) in this case.

7.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for guiding Branch-and-Bound
search for solving binary Weighted CSPs is based on exploiting local consistency
algorithms for cost functions. In the next section we overview the basic principles

26

behind these types of heuristics and discuss their extension to AND/OR trees.

7.3.1 Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistency on the initial problem pro-
vides in polynomial time anequivalentproblem defining the same cost distribution
on complete assignments, with possible smaller domains [16–18].

Let R = 〈X,D,C〉 be a binary WCSP, whereX = {X1, ..., Xn} and D =
{D1, ..., Dn} are the variables and their corresponding domains.C is the set of
binary and unary soft constraints. A binary soft constraintCij(Xi, Xj) ∈ C (orCij

in short) isCij(Xi, Xj) : Di ×Dj → N. A unary soft constraintCi(Xi) ∈ C (or
Ci in short) isCi(Xi) : Di → N. We assume the existence of a unary constraint
Ci for every variableXi, and a zero-arity constraint, denoted byC∅. If no such con-
straints are defined, we can always define dummy ones, asCi(xi) = 0, ∀xi ∈ Di or
C∅ = 0. We denote by>, the maximum allowed cost (e.g., > = ∞). The cost of a
tuplex = (x1, ..., xn), denoted bycost(x), is defined by:

cost(x) =
∑

Cij∈C

Cij(x[i, j]) +
∑

Ci∈C

Ci(x[i]) + C∅

For completeness, we define next some local consistencies inWCSP, in particular
node, arc anddirectional arc consistency, as in [16,17]. We assume that the set of
variablesX is totally ordered. We note that there are several stronger local consis-
tencies which were defined in recent years, such asfull directional arc consistency
(FDAC) [16,17] orexistential directional arc consistency(EDAC) [18].

DEFINITION 23 (soft node consistency [16,17])LetR = 〈X,D,C〉 be a binary
WCSP.(Xi, xi) is star node consistent (NC∗) if C∅ + Ci(xi) < >. VariableXi is
NC∗ if: (i) all its values areNC∗ and (ii) there exists a valuexi ∈ Di such that
Ci(xi) = 0. Valuexi is called asupportfor variableXi.R isNC∗ if every variable
is NC∗.

DEFINITION 24 (soft arc consistency [16,17])Let R = 〈X,D,C〉 be a binary
WCSP.(Xi, xi) is arc consistent (AC) with respect to constraintCij if there exists a
valuexj ∈ Dj such thatCij(xi, xj) = 0. Valuexj is called asupportfor the value
xi. VariableXi is AC if all its values are AC wrt. every binary constraint affecting
Xi. R is AC∗ if every variable is AC andNC∗.

DEFINITION 25 (soft directional arc consistency [16,17])LetR = 〈X,D,C〉 be
a binary WCSP.(Xi, xi) is directional arc consistent (DAC) with respect to con-
straintCij, i < j, if there exists a valuexj ∈ Dj such thatCij(xi, xj)+Cj(xj) = 0.
Valuexj is called afull supportof xj. VariableXi is DAC is all its values are DAC
wrt. everyCij, i < j. R is DAC∗ if every variable is DAC andNC∗.

27

For our purpose, we point out that enforcing such local consistencies is done by
the repeated application of atomic operations calledarc equivalence preserving
transformations[36]. This process may increase the value ofC∅ and the unary
costsCi(xi) associated with domain values. The zero-arity cost functionC∅ defines
a strong lower boundwhich can be exploited by Branch-and-Bound algorithms
while the updatedCi(xi) can inform variable and value orderings [16–18].

If we consider two cost functionsCij, defined over variablesXi andXj, andCi,
defined over variableXi, a valuexi ∈ Di and a costα, we can addα to Ci(xi)
and subtractα from everyCij(xi, xj) for all xj ∈ Dj. Simple arithmetic shows
that the global cost distribution is unchanged while costs may have moved from
the binary to the unary level (ifα > 0, this is called aprojection) or from the
unary to the binary level (ifα < 0, this is called anextension). In these operations,
any cost above>, the maximum allowed cost, can be considered as infinite and is
thus unaffected by subtraction. If no negative cost appearsand if all costs above>
are set to>, the remaining problem is always a valid and equivalent WCSP. The
same mechanism, at the unary level, can be used to move costs from theCi to C∅.
Finally, any value a such thatCi(xi)+C∅ is equal to> can be deleted. For a detailed
description of these operations, we refer the reader to [16–18].

7.3.2 Extension of Local Consistency to AND/OR Search Spaces

As mentioned earlier, the zero-arity constraintC∅ which is obtained by enforcing
local consistency, can be used as a heuristic function to guide Branch-and-Bound
search. The extension of this heuristic to AND/OR search spaces is fairly straight-
forward and is similar to the extension of the mini-bucket heuristics from OR to
AND/OR spaces. ConsiderPn, the subproblem rooted at the AND noden, labeled
〈Xi, xi〉, in the AND/OR search tree defined by a pseudo treeT . The heuristic
functionh(n) underestimatingv(n) is the zero-arity cost functionCn

∅ resulted from
enforcing soft arc consistency overPn only, subject to the current partial instanti-
ation of the variables along the path from the root of the search tree. Note thatPn

is defined by the variables and cost functions correspondingto the subtree rooted
atXi in T . If n is an OR node labeledXi thenh(n) is computed in the usual way,
namelyh(n) = minm(w(n,m) + h(m)), wherem is the AND child ofn, labeled
with valuexi of Xi. Notice that in this case the weights associated with the OR-to-
AND arcs are computed now relative to the equivalent subproblem resulted from
enforcing arc consistency.

There is a strong relation between directional arc consistency and mini-buckets. It
was shown in [16] that given a WCSP with> = ∞, and a variable ordering, the
lower bound induced by mini-buckets involving at most 2 variables is the same as
the lower bound induced byC∅ after the problem is made directional arc consistent.
However, the mini-bucket computation provides only a lowerbound while DAC
enforcing provides both a lower bound and a directional arc consistent equivalent

28

problem. All the work done to compute the lower bound is captured in this problem
which offers the opportunity to perform incremental updates of the lower bound.

8 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introduced in Section 6 as-
sumed a static variable ordering determined by the underlying pseudo tree of the
primal graph. In classical CSPs, dynamic variable ordering is known to have a sig-
nificant impact on the size of the search space explored [37].Well known variable
ordering heuristics, such asmin-domain[38], min-dom/ddeg[39], brelaz[40] and
min-dom/wdeg[41,42] were shown to improve dramatically the performanceof
systematic search algorithms. In this section we discuss some strategies that allow
dynamic variable orderings in AND/OR search.

We distinguish two classes of variable ordering heuristics:

(1) Graph-based heuristics (e.g., pseudo tree) that try to maximize problem de-
composition, and

(2) Semantic-based heuristics (e.g., min-domain) that aim at shrinking the search
space, based on context and current value assignment.

These two approaches are orthogonal, namely we can use one asthe primary guide
and break ties based on the other. We present three schemes ofcombining these
heuristics. For simplicity and without loss of generality we consider themin-domain
as our semantic variable ordering heuristic. It selects thenext variable to instantiate
as the one having the smallest current domain among the uninstantiated (future)
variables. Clearly, it can be replaced by any other heuristic.

8.1 Partial Variable Ordering (PVO)

The first approach, calledAND/OR Branch-and-Bound with Partial Variable Or-
deringand denoted byAOBB+PVO uses the static graph-based decomposition given
by a pseudo tree with a dynamic semantic ordering heuristic applied over chain por-
tions of the pseudo tree. It is an adaptation of the ordering heuristics developed in
[43,44] which were used for solving large-scale SAT probleminstances.

Consider the pseudo tree from Figure 2(a) inducing the following variable groups
(or chains):{A,B}, {C,D} and{E,F}, respectively. This implies that variables
{A,B} should be considered before{C,D} and{E,F}. The variables in each
group can be dynamically ordered based on a second, independent heuristic. Notice
that once variables{A,B} are instantiated, the problem decomposes into indepen-
dent components that can be solved separately.

29

A

D

B C

E F

H

G

DA={0,1}

DB={0,1,2}

DE={0,1,2,3}

DC=DD=DF=DG=DH=DE

domains A B f(AB)

0 0 3
0 1 8

0 2 8

1 0 4
1 1 0
1 2 6

A E f(AE)

0 0 0
0 1 5
0 2 1
0 3 4
1 0 8

1 1 8
1 2 0
1 3 5

cost functions

(a) Cost network

A

B

D

C

F

P(EGH) P(CDF)

H

E

G

0

0

1

E

2

B

0

D

C

FH G D

P(HG) P(CDF)

H

(b) AND/OR search tree

Fig. 9. Full dynamic variable ordering for AND/OR Branch-and-Bound search.

AOBB+PVO can be derived from Algorithm 1 with some simple modifications.
As usual, the algorithm traverses an AND/OR search tree in a depth-first manner,
guided by a pre-computed pseudo treeT . When the current AND noden, labeled
〈Xi, xi〉 is expanded in the forward step (line 9), the algorithm generates its OR suc-
cessor, labeled byXj, based on the semantic variable ordering heuristic (line 12).
Specifically, the OR nodem, labeledXj corresponds to the uninstantiated variable
with the smallest current domain in the current pseudo tree chain. If there are no
uninstantiated variables left in the current chain, namelyvariableXi was instanti-
ated last, then the OR successors ofn are labeled by the variables with the smallest
domain from the variable chains rooted byXi in T .

8.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable orderings, calledAND/OR Branch-
and-Bound with Full Dynamic Variable Orderingand denoted byDVO+AOBB,
gives priority to the dynamic semantic variable ordering heuristic and applies static
problem decomposition as a secondary principle during search. This idea was also
explored in [45] for model counting, and more recently in [46] for weighted model
counting.

For illustration, consider the cost network with 8 variables{A,B,C,D,E, F,G,H},
13 binary cost functions, and the domains given in Figure 9(a), as follows:DA =
{0, 1}, DB = {0, 1, 2}, andDC = DD = DE = DF = DG = DH = {0, 1, 2, 3},
respectively. Each of the cost functionsf(A,B) andf(A,E) assigns an∞ cost
to two of their corresponding tuples, whereas the remaining11 functions do not
contain such tuples.

30

During search, variables are instantiated in min-domain order. However, after each
variable assignment we test for problem decomposition and solve the remaining
subproblems independently. Figure 9(b) shows the partial AND/OR search tree ob-
tained after several variable instantiations based on the min-degree ordering heuris-
tic. Notice that, depending on the order in which the variables are instantiated, the
primal graph may decompose into independent componentshigher or deeperin
the search tree. For instance, after instantiatingA to 0, the values{1, 2} can be
removed from the domain ofB, because the corresponding tuples have cost∞ in
the cost functionf(A,B) (see Figure 9(a)). Therefore,B is the next variable to be
instantiated, at which point the problem decomposes into independent components,
as shown in Figure 9(b). Similarly, whenA is instantiated to 1, values{0, 1} can
also be removed from the domain ofE, because of the cost functionf(A,E). Then,
variableE, having 2 values left in its domain, is selected next in the min-domain
order, followed byB with domain size 3.

DVO+AOBB can be expressed by modifying Algorithm 1 as follows. It instantiates
the variables dynamically using the min-domain ordering heuristic while maintain-
ing the current graph structure. Specifically, after the current AND noden, labeled
〈Xi, xi〉, is expanded,DVO+AOBB tentatively removes from the primal graph all
nodes corresponding to the instantiated variables together with their incoming arcs.
If disconnected components are detected, their corresponding subproblems are then
solved separately and the results combined in an AND/OR manner. In this case a
variable selection may yield a significant impact on tightening the search space,
yet, it may not yield a good decomposition for the remaining problem.

8.3 Dynamic Separator Ordering (DSO)

The third approach,AND/OR Branch-and-Bound with Dynamic Separator Order-
ing (AOBB+DSO), exploits constraint propagation which can be used for dynamic
graph-based decomposition with a dynamic semantic variable ordering, giving pri-
ority to the first. At each AND node we apply a lookahead procedure hoping to
detect singleton variables (i.e., with only one feasible value left in their domains).
When the value of a variable is known, it can be removed from thecorresponding
subproblem, yielding a stronger decomposition of the simplified primal graph.

AOBB+DSO defined on top of Algorithm 1 creates and maintains a separator S of
the current primal graph. A graph separator can be computed using the hypergraph
partitioning method presented in [44]. The next variable ischosen dynamically
from S by the min-domain ordering heuristic untilS is fully instantiated and the
current problem decomposes into several independent subproblems, which are then
solved separately. The separator of each component is created from a simplified
subgraph resulted from previous constraint propagation steps and it may differ for
different value assignments. Clearly, if no singleton variables are discovered by the

31

lookahead steps this approach is computationally identical to AOBB+PVO, although
it may have a higher overhead due to the dynamic generation ofthe separators.

9 Experimental Results

We have conducted a number of experiments on two common optimization problem
classes in graphical models: finding the Most Probable Explanation in Bayesian
networks and solving Weighted CSPs. We implemented2 our algorithms in C++
and carried out all experiments on a 1.8GHz dual-core Athlon64 with 2GB of RAM
running Ubuntu Linux 7.04.

9.1 Overview and Methodology

MPE Task for Bayesian Networks We tested the performance of the AND/OR
Branch-and-Bound algorithms on the following types of problems3 : random Bayesian
networks, random coding networks, grid networks, Bayesian networks derived from
the ISCAS’89 digital circuits benchmark, genetic linkage analysis networks, net-
works from the Bayesian Networks Repository, and Bayesian networks used in the
UAI’06 Inference Evaluation contest. We report here in detail the results obtained
for grid networks and genetic linkage analysis networks only, but we summarize
the results over the entire set of benchmarks, and refer the reader to [47,48] for
further details.

We evaluated the two classes of depth-first AND/OR Branch-and-Bound search
algorithms, guided by the static and dynamic mini-bucket heuristics, denoted by
AOBB+SMB(i) andAOBB+DMB(i), respectively. We compare these algorithms
against traditional depth-first OR Branch-and-Bound algorithms with static and
dynamic mini-bucket heuristics introduced in [5,30], denoted byBB+SMB(i) and
BB+DMB(i), respectively, which were among the best-performing complete search
algorithms for this domain at the time. The parameteri represents the mini-bucket
i-bound and controls the accuracy of the heuristic. The pseudo trees that guide
AND/OR search algorithms were generated using the min-fill and hypergraph par-
titioning heuristics, described later in this section. We also consider an extension
of the AND/OR Branch-and-Bound that exploits the determinismpresent in the
Bayesian network by constraint propagation.

Since the pre-compiled mini-bucket heuristics require a static variable ordering, the
corresponding OR and AND/OR search algorithms used the static variable ordering

2 The code is available online at:http://graphmod.ics.uci.edu/group/Software
3 Available online at:http://graphmod.ics.uci.edu/group/Repository

32

derived from a depth-first traversal of the guiding pseudo tree as well. When we ap-
plied dynamic variable orderings with dynamic mini-bucketheuristics we observed
that the computational overhead was prohibitively large compared with the static
variable ordering setup. We therefore do not report these results. Note however that
theAOBB+SMB(i) andAOBB+DMB(i) algorithms apply a restricted form of dy-
namic variable and value ordering. Namely, there is a dynamic internal ordering of
the successors of the node just expanded, before placing them onto the search stack.
Specifically, in line 27 of Algorithm 1, if the current noden is an AND node, then
the independent subproblems rooted by its OR children can besolved in decreasing
order of their corresponding heuristic estimates (yielding local variable ordering).
Alternatively, if n is OR, then its AND children corresponding to domain values
can also be sorted in decreasing order of their heuristic estimates (thus yielding a
value ordering).

We compared our algorithms with the SAM IAM version 2.3.2 software package4 .
SAM IAM contains an implementation of Recursive Conditioning [49] which can
also be viewed as an AND/OR search algorithm. The algorithm uses a context-
based caching mechanism that records the optimal solution of the solved subprob-
lems and retrieves the saved values when the same subproblems are encountered
later during search. This version of recursive conditioning traverses a context min-
imal AND/OR search graph [1], rather than a tree, and its space complexity is
exponential in the treewidth. Note that when we use mini-bucket heuristics with
high values ofi, we use space exponential ini for the heuristic calculation and for
its storing. Our search regime however does not consume any additional space.

Weighted CSPs We evaluated the performance of the AND/OR Branch-and-
Bound algorithms on: random binary WCSPs, scheduling problemsfrom the SPOT5
benchmark, networks derived from the ISCAS’89 digital circuits benchmark, radio
link frequency assignment problems and instances of the Mastermind game. We
report here detailed results for Mastermind game instancesand SPOT5 problem in-
stances only. We also provide a summary of the results obtained on the other types
of problems, and refer the reader to [47,48] for the full results.

In addition to the mini-bucket heuristics, we also considera heuristic evaluation
function that is computed by maintaining Existential Directional Arc-Consistency
(EDAC) [18]. AOBB with this heuristic is calledAOEDAC. We also used the ex-
tension ofAOEDAC that incorporates dynamic variable orderings heuristics de-
scribed earlier yielding:AOEDAC+PVO (partial variable ordering - Section 8.1),
DVO+AOEDAC (full dynamic variable ordering - Section 8.2) andAOEDAC+DSO
(dynamic separator ordering - Section 8.3). For comparison, we report results ob-
tained with our implementation of the classic OR Branch-and-Bound with EDAC,

4 Available online athttp://reasoning.cs.ucla.edu/samiam. We used thebatchtool 1.5pro-
vided with the package.

33

denoted here byBBEDAC.

For comparison, we rantoolbar 5 , which contains an OR Branch-and-Bound
implementation that maintains EDAC during search and uses dynamic variable or-
derings.toolbar was introduced in [18] and is currently one of the best perform-
ing solvers for binary WCSPs.

The semantic-based dynamic variable ordering heuristic used by both the OR and
AND/OR Branch-and-Bound algorithms with EDAC heuristics as well astoolbar
was themin-dom/ddegheuristic, which selects the variable with the smallest ratio
of the current domain size divided by the future degree. Tieswere broken lexico-
graphically.

Measures of Performance In all our experiments we report the CPU time in
seconds and the number of nodes visited for solving the problems. We also specify
the problems’ parameters such as the number of variables (n), number of evidence
variables (e), maximum domain size (k), number of functions (c), maximum arity
of the functions (r), the depth of the pseudo tree (h) and the induced width of the
graph (w∗). When evidence is asserted in the network,w∗ andh are computed after
the evidence nodes were removed from the graph. We also report the time required
by the Mini-Bucket algorithm MBE(i) to pre-compile the heuristic information.
The best performance points are highlighted. In each table,”-” denotes that the
respective algorithm exceeded the time limit. Similarly, ”out” stands for exceeding
the 2GB memory limit.

9.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search algorithms is influ-
enced by the quality of the guiding pseudo tree. Finding the minimal depth/induced
width pseudo tree is a hard problem [2,50,3]. We describe next two heuristics for
generating pseudo trees with relatively small depths/induced widths which we used
in our experiments.

Min-Fill Heuristic Min-Fill [51] is one of the best and most widely used heuris-
tics for creating small induced width elimination orders. An ordering is generated
by placing the variable with the smallestfill set (i.e., number of induced edges that
need be added to fully connect the neighbors of a node) at the end of the ordering,
connecting all of its neighbors and then removing the variable from the graph. The
process continues until all variables have been eliminated.

5 Available online at:http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

34

Once an elimination order is given, the pseudo tree can be extracted as a depth-first
traversal of the min-fill induced graph, starting with the variable that initiated the
ordering, always preferring as successor of a node the earliest adjacent node in the
induced graph. An ordering uniquely determines a pseudo tree. This approach was
first used by [3].

To improve orderings, we can run the min-fill ordering several times by randomiz-
ing the tie breaking rule. In our experiments, we ran the min-fill heuristic just once
and broke the ties lexicographically.

Hypergraph Decomposition Heuristic An alternative heuristic for generating
a low height balanced pseudo tree is based on the recursive decomposition of the
dual hypergraph associated with the graphical model.

DEFINITION 26 (dual hypergraph) Thedual hypergraphof a graphical modelR =
〈X,D,F〉, is a pairH(R) = (V,E), where each function inF is a vertexvi ∈ V

and each variable inX is an edgeej ∈ E connecting all the functions (vertices) in
which it appears.

DEFINITION 27 (hypergraph separators) Given a dual hypergraphH = (V,E)
of a graphical model, ahypergraph separator decompositionis a triple 〈H,S, α〉
where: (i)S ⊂ E, and the removal ofS separatesH into k disconnected compo-
nents (subgraphs); and (ii)α is a relation over the size of the disjoint subgraphs
(i.e., balance factor).

It is well known that the problem of finding the minimal size hypergraph separa-
tor is hard. However heuristic approaches were developed over the years. A good
approach is packaged inhMeTiS 6 .

We will use this software as a basis for our pseudo tree generation. Following [49],
generating a pseudo treeT for R usinghMeTiS is fairly straightforward. The
vertices of the hypergraph are partitioned into two balanced (roughly equal-sized)
parts, denoted byHleft andHright respectively, while minimizing the number of
hyperedges across. A small number of crossing edges translates into a small number
of variables shared between the two sets of functions.Hleft andHright are then each
recursively partitioned in the same fashion, until they contain a single vertex. The
result of this process is a tree of hypergraph separators which can be shown to also
be a pseudo tree of the original model where each separator corresponds to a subset
of variables chained together.

Since the hypergraph partitioning heuristic uses a non-deterministic algorithm (i.e.,
hMeTiS), the depth and induced width of the resulting pseudo tree may vary sig-

6 Available online at:http://www-users.cs.umn.edu/karypis/metis/hmetis

35

nificantly from one run to the next. In our experiments we picked the pseudo tree
with the smallest depth out of 10 independent runs.

From the experiments presented in the remainder of this section, we observed that
the min-fill heuristic generates lower induced width pseudotrees, while the hyper-
graph heuristic produces much smaller depth pseudo trees. Therefore, perhaps the
hypergraph based pseudo trees appear to be favorable for tree search algorithms
guided by heuristics that are not sensitive to the treewidth(e.g., local consistency
based heuristics).

9.3 Results for Empirical Evaluation of Bayesian Networks

In this section we show, using grid networks and linkage analysis networks, the
impact of (1) AND/OR versus OR search, (2) static versus dynamic mini-bucket
heuristics as well as (3) the impact of exploiting determinism.

9.3.1 Grid Networks

In random grid networks, the nodes are arranged in anN×N square and each CPT
is generated uniformly at random. We experimented with problem instances having
bi-valued variables that were initially developed in [52] for the task of weighted
model counting. For these problemsN ranges between 10 and 38, and, for each in-
stance,90% of the CPTs are deterministic (having only 0 and 1 probabilityentries).

Table 1 displays the results for experiments with 8 grids of increasing difficulty,
using min-fill based pseudo trees. The columns are indexed bythe mini-bucketi-
bound. The table is organized into two horizontal blocks, each corresponding to
a different range ofi-bound values. For each test instance we ran a single MPE
query withe evidence variables picked randomly. We observe thatAOBB+SMB(i)
is better thanBB+SMB(i) at relatively smalli-bounds (i.e, i ∈ {8, 10, 12}) when
the heuristic is weak. This demonstrates the benefit of AND/OR over classical OR
search when the heuristic estimates are relatively weak andthe algorithms rely pri-
marily on search rather than on pruning via the heuristic evaluation function. As
the i-bound increases and the heuristic estimates become strongenough to cut the
search space substantially, the difference between AND/ORand OR Branch-and-
Bound decreases, especially on the first 3 easier instances. On the harder instances,
however,AOBB+SMB(i) with the largest reportedi-bounds offers the best perfor-
mance. For example, on the90-30-1 grid, AOBB+SMB(20) found the MPE in
about 87 seconds, whereasBB+SMB(20) exceeded the 1 hour time limit.

When focusing on dynamic mini-bucket heuristics, we see thatAOBB+DMB(i) is
better thanBB+DMB(i) at relatively smalli-bounds, but the difference is not that
prominent as in the static case. This is probably because these heuristics are far

36

Table 1
CPU time in seconds and nodes visited for solvinggrid networks using mini-bucket heuris-
tics and min-fill based pseudo trees. Time limit 1 hour. The two horizontal blocks of the
table show different ranges of the mini-bucketi-bounds.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, e) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=8 i=10 i=12 i=14 i=16 i=18

time time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.02 0.04 0.07 0.07 0.08

90-10-1 0.12 3,348 0.04 424 0.05 153 0.07 153 0.08 153 0.09 153

(13, 39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101 0.08 101

(100, 0) 0.87 543 0.57 250 0.48 153 0.54 153 0.54 153 0.54 153

0.34 344 0.33 241 0.32 101 0.39 101 0.39 101 0.39 101

0.02 0.04 0.11 0.22 0.72 2.71

90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 0.54 5,035 0.90 2,826 2.78 1,075

(22, 66) 11.97 4.27 130,619 3.44 100,696 0.61 17,479 0.32 3,321 0.81 2,938 2.80 3,386

(196, 0) 149.44 16,415 52.34 2,894 12.46 537 13.71 211 19.22 199 38.05 198

65.74 31,476 33.57 4,137 7.50 397 12.00 211 17.65 199 36.87 198

0.03 0.05 0.14 0.46 1.01 4.36

90-16-1 - - - - 23.74 347,479 1.85 18,855 1.44 6,098 4.53 1,894

(24, 82) 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 1.78 23,421 4.55 5,842

(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 65.15 414 181.71 414

1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 40.68 260 109.76 260

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, e) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=10 i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes time nodes

0.14 0.33 0.89 2.69 7.61 31.26

90-24-1 - - - - - - - - - - - -

(33, 111) - - - - - 1500.66 24,117,151 921.96 18,238,983 93.73 1,413,764 111.46 1,308,009

(576, 20) - - - - - - - - - - - -

- - - - - - 1367.38 2,739 1979.42 1,228 2637.71 598

0.16 0.37 1.02 3.39 11.74 36.16

90-26-1 - - - - - - 324.30 2,234,558 - - 70.53 327,859

(36, 113) - 1533.11 17,899,574 206.93 2,903,489 242.37 3,205,257 7.43 59,055 21.48 165,182 36.49 5,777

(676, 40) - - - - - - - - - - - -

1852.27 177,661 - - - - 1514.18 2,545 2889.49 1,191 - -

0.25 0.53 1.35 4.36 13.34 50.53

90-30-1 - - - - - - - - - - - -

(43, 150) - - - 742.51 9,445,224 239.08 3,324,942 215.56 3,039,966 101.10 1,358,569 87.68 485,300

(900, 60) - - - - - - - - - - - -

- - - - - - - - - - - -

0.33 0.66 1.60 5.35 18.42 62.17

90-34-1 - - - - - - - - - - - -

(45, 153) - - - - - - - - - - - 257.14 1,549,829

(1154, 80) - - - - - - - - - - - -

- - - - - - - - - - - -

0.41 0.82 2.16 6.43 20.46 72.10

90-38-1 - - - - - - - - - - - -

(47, 163) - - - 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146 199.44 1,038,065

(1444, 120) - - - - - - - - - - - -

- - - - - - - - - - - -

37

(a) CPU time in seconds (b) Nodes visited

Fig. 10. Comparison of the impact of static and dynamic mini-bucket heuristics.Shown are
the CPU time in seconds (a) and the number of nodes visited (b) on the90-14-1 grid
network from Table 1.

Fig. 11. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
Distribution of CPU time for solving the90-24-1 (left) and90-26-1 (right) grid net-
works with AOBB+SMB(i).

more accurate compared with the pre-compiled version and the savings in number
of nodes caused by traversing the AND/OR search tree do not translate into addi-
tional time savings. When comparing the static and dynamic mini-bucket heuristics,
we see that the latter are competitive only for relatively small i-bounds, because
of their higher computational overhead. This may be significant because smalli-
bounds usually require restricted space. At higher levels of the i-bound, the accu-
racy of the dynamic mini-bucket heuristic does not outweighits overhead.

In some exceptional cases the OR Branch-and-Bound explored fewer nodes than
the AND/OR counterpart. For example, on the90-16-1 grid, the search space
explored byAOBB+SMB(16) was almost 4 times larger that that explored by
BB+SMB(16). This can be explained by the internal dynamic ordering usedby
AND/OR Branch-and-Bound to solve independent subproblems rooted at the AND
nodes in the search tree.

Figures 10(a) and 10(b) plot the running time and number of nodes visited by

38

AOBB+SMB(i) andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), on the
90-14-1 grid network from Table 1. Focusing onAOBB+SMB(i) (resp.BB+SMB(i))
in Figure 10(a) we see that its running time, as a function ofi, forms a U-shaped
curve. At first (i = 4) it is high, then as thei-bound increases the total time
decreases (wheni = 10 the time is 3.44 forAOBB+SMB(10) and 71.98 for
BB+SMB(10), respectively), but then asi increases further the time starts to in-
crease again. The same behavior can be observed in the case ofAOBB+DMB(i)
(resp.BB+DMB(i)) as well. When looking at the size of the search space explored
as a function of thei-bound (shown in Figure 10(b)) we can see that as thei-bound
increases, the strength of the heuristic estimates increases as well, therefore pruning
the search space more effectively.

Figure 11 displays the running time distribution ofAOBB+SMB(i) using hyper-
graph based pseudo trees for the90-24-1 (left) and90-26-1 (right) grid net-
works, respectively. For each reportedi-bound (the X axis), the corresponding data
point and error bar show the average as well as the minimum andmaximum run-
ning time obtained over 20 independent runs of the algorithmwith a 30 minute
time limit. We also record the average induced width and pseudo tree depth ob-
tained with the hypergraph partitioning heuristic (shown in the header of each plot
in Figure 11). For comparison, we also display the results obtained with the min-
fill pseudo trees from Table 1. We see that the hypergraph based pseudo trees are
significantly shallower compared with the min-fill ones, andin some cases they are
able to improve performance dramatically, especially at relatively smalli-bounds.
For example, on the grid90-24-1, AOBB+SMB(14) guided by a hypergraph
pseudo tree is about 2 orders of magnitude faster thanAOBB+SMB(14) using a
min-fill pseudo tree. At largeri-bounds, the pre-compiled mini-bucket heuristic
benefits from the small induced width which normally is obtained with the min-fill
ordering. ThereforeAOBB+SMB(i) using min-fill based trees is generally faster
thanAOBB+SMB(i) guided by hypergraph based trees (e.g., 90-26-1).

9.3.2 Genetic Linkage Analysis

In human genetic linkage analysis [53], thehaplotypeis the sequence of alleles
at different loci inherited by an individual from one parent, and the two haplo-
types (maternal and paternal) of an individual constitute this individual’sgenotype.
When genotypes are measured by standard procedures, the result is a list of un-
ordered pairs of alleles, one pair for each locus. Themaximum likelihood haplo-
typeproblem consists of finding a joint haplotype configuration for all members of
the pedigree which maximizes the probability of data. It canbe shown that given
the pedigree data, the haplotyping problem is equivalent tocomputing the most
probable explanation of a Bayesian network that represents the pedigree [54,55].

Table 2 shows the results for experiments with 12 genetic linkage networks7 us-

7 Available athttp://bioinfo.cs.technion.ac.il/superlink/. The corresponding belief network

39

Table 2
CPU time in seconds and nodes visited for solvinggenetic linkage networksusing static
mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hours. Thethree hori-
zontal blocks of the table show different ranges of the mini-bucketi-bounds.

min-fill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(n, k) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=6 i=8 i=10 i=12 i=14

time nodes time nodes time nodes time nodes time nodes

ped1 0.05 0.05 0.11 0.31 0.97

(299, 5) 54.73 - - - - 6.34 37,657 7.33 42,447 8.30 41,134

(15, 61) 5.44 24.30 416,326 13.17 206,439 1.58 24,361 1.84 25,674 1.89 15,156

ped38 0.12 0.45 2.20 60.97 out

(582, 5) 28.36 - - - - - - - -

(17, 59) out - - 8120.58 85,367,022 - - 3040.60 35,394,461

ped50 0.11 0.74 5.38 37.19 out

(479, 5) - - - - - - - - -

(18, 58) out - - - - 476.77 5,566,578 104.00 748,792

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(n, k) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes

ped23 0.42 2.33 11.33 274.75 out

(310, 5) 9146.19 - - - - 3176.72 14,044,797 343.52 358,604

(27, 71) out 498.05 6,623,197 15.45 154,676 16.28 67,456 286.11 117,308

ped37 0.67 5.16 21.53 58.59 out

(1032, 5) 64.17 - - - - - - - -

(21, 61) out 273.39 3,191,218 1682.09 25,729,009 1096.79 15,598,863 128.16 953,061

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(n, k) SamIam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes

ped18 0.51 1.42 4.59 12.87 19.30

(1184, 5) 139.06 - - - - - - - - - -

(21, 119) 157.05 - - 2177.81 28,651,103 270.96 2,555,078 100.61 682,175 20.27 7,689

ped20 1.42 5.11 37.53 410.96 out

(388, 5) 14.72 - - - - - - - -

(24, 66) out 3793.31 54,941,659 1293.76 18,449,393 1259.05 17,810,674 1080.05 9,151,195

ped25 0.34 0.72 2.27 6.56 29.30

(994, 5) - - - - - - - - - - -

(34, 89) out - - - - 9399.28 111,301,168 3607.82 34,306,937 2965.60 28,326,541

ped30 0.42 0.83 1.78 5.75 21.30

(1016, 5) 13095.83 - - - - - - - - - -

(23, 118) out - - - - - - 214.10 1,379,131 91.92 685,661

ped33 0.58 2.31 7.84 33.44 112.83

(581, 4) - - - - - - - - - - -

(37, 165) out 2804.61 34,229,495 737.96 9,114,411 3896.98 50,072,988 159.50 1,647,488 2956.47 35,903,215

ped39 0.52 2.32 8.41 33.15 81.27

(1272, 5) 322.14 - - - - - - - - - -

(23, 94) out - - - - 4041.56 52,804,044 386.13 2,171,470 141.23 407,280

ped42 4.20 31.33 206.40 out out

(448, 5) 561.31 - - - - - -

(25, 76) out - - - - - -

40

Fig. 12. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
Distribution of CPU time for solving theped23 (left) andped33 (right) genetic linkage
networks with AOBB+SMB(i).

ing AND/OR Branch-and-Bound search guided by static mini-bucket heuristics.
The columns are indexed by the mini-bucketi-bound. The table is organized into
three horizontal blocks, each corresponding to a differentrange ofi-bound values.
For comparison, we include results obtained with SUPERLINK 1.6. SUPERLINK

[54,55] which is currently one of the most efficient solvers for genetic linkage
analysis, uses a combination of variable elimination and conditioning, and takes
advantage of the determinism in the network. We did not runAOBB+DMB(i) (resp.
BB+DMB(i)) on this domain because of its prohibitively high computational over-
head associated with relatively largei-bounds.

We observe thatAOBB+SMB(i) is the overall best performing algorithm, outper-
forming its competitors on 8 out of the 12 test networks. For example, on the
ped23 instance,AOBB+SMB(12) is 2 orders of magnitude faster than SUPER-
LINK , whereas SAM IAM andBB+SMB(i) exceed the 2GB memory bound and the
3 hour time limit, respectively. Similarly, on theped30 instance,AOBB+SMB(20)
outperforms SUPERLINK with about 2 orders of magnitude, while neither SAM IAM

norBB+SMB(20) are able to solve the problem instance. Notice however that the
ped42 instance is solved only by SUPERLINK. When looking at the impact of
the mini-bucketi-bound, we see again that the performance of Branch-and-Bound
changes with the mini-bucket strength.

Figure 12 displays the running time distribution ofAOBB+SMB(i)with hypergraph
based pseudo trees for 2 linkage instances from Table 2. We see that the hypergraph
based pseudo trees are significantly shallower compared with the min-fill based
ones, and in some cases they are able to improve the performance dramatically for
relatively smalli-bounds.

41

Table 3
CPU time and nodes visited for solvingdeterministic grid networks using mini-bucket
heuristics, min-fill based pseudo trees and constraint propagation. Time limit1 hour. The
two horizontal blocks of the table correspond to different ranges of themini-bucketi-bound.

min-fill pseudo tree

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)

(n, e) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes

0.31 8,080 0.11 2,052 0.02 101 0.05 101 0.05 101 0.06 101

90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101 0.06 101

(13, 39) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101 0.28 101

(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101 0.47 101

7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938 1.81 3,386

90-14-1 2.36 45,870 2.52 46,064 0.66 11,914 0.31 3,286 0.61 2,922 1.78 3,359

(22, 66) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199 21.23 198

(196, 0) 33.03 10,135 16.08 3,270 4.92 396 7.72 211 10.88 199 21.64 198

646.83 10,104,350 164.02 2,600,690 13.14 193,440 2.92 39,825 2.08 23,421 2.92 5,842

90-16-1 121.24 2,209,097 78.97 1,416,247 6.99 121,595 2.25 35,376 1.84 22,986 2.84 5,609

(24, 82) 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260 65.05 260

(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260 64.99 260

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)

grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)

(n, e) i=10 i=12 i=14 i=16 i=18 i=20

time nodes time nodes time nodes time nodes time nodes time nodes

- - - - 2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009

90-24-1 1529.21 18,103,859 2605.56 30,929,553 689.47 9,868,626 738.17 11,100,088 106.00 1,282,902 121.67 1,273,738

(33, 111) - - - - - - 884.41 2,739 1223.18 1,228 1634.57 598

(576, 20) - - - - - - 843.79 2,739 1173.48 1,228 1611.74 598

2217.15 17,899,574 314.88 2,903,489 382.22 3,205,257 8.42 59,055 23.14 165,182 22.22 5,777

90-26-1 233.94 2,527,496 103.56 1,264,309 167.27 1,805,787 6.20 43,798 19.36 150,345 22.11 4,935

(36, 113) 1420.21 177,661 - - - - 938.98 2,545 1701.64 1,191 2638.95 691

(676, 40) 1099.87 171,961 1592.53 108,694 1034.26 12,819 862.38 2,545 1583.37 1,191 2478.19 691

- - 1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300

90-30-1 754.427 7,050,411 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 70.14 387,242

(43, 150) - - - - - - - - - - - -

(900, 60) - - - - - - - - - - - -

- - - - - - - - - - 462.41 1,549,829

90-34-1 - - - - - - - - - - 255.08 981,831

(45, 153) - - - - - - - - - - - -

(1154, 80) - - - - - - - - - - - -

- - 2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065

90-38-1 1128.56 5,121,466 410.94 1,972,430 578.54 2,339,244 270.05 1,349,223 278.11 1,249,270 204.56 702,806

(47, 163) - - - - - - - - - - - -

(1444, 120) - - - - - - - - - - - -

9.3.3 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model express both hard constraints
and general cost functions, it is beneficial to exploit the computational power of the
constraints explicitly via constraint propagation [56–59]. For Bayesian networks,
the hard constraints are represented by the zero probability tuples of the CPTs. We

of the pedigree data was extracted using the export feature of the SUPERLINK 1.6 program.

42

note that the use of constraint propagation via directionalresolution [60] or gen-
eralized arc consistency has been explored in [56,57], in the context of variable
elimination algorithms where the constraints are also extracted based on the zero
probabilities in the Bayesian network. The approach we take for handling the de-
terminism in belief networks is based on the known techniqueof unit resolution
for Boolean Satisfiability (SAT). The idea of using unit resolution during search for
Bayesian networks was first explored in [58]. One common way which we used for
encoding hard constraints as a CNF formula is thedirect encoding[61].

We evaluated the AND/OR Branch-and-Bound algorithms with static and dynamic
mini-bucket heuristics on selected classes of Bayesian networks containing deter-
ministic conditional probability tables (i.e., zero probability tuples). The algorithms
exploit the determinism present in the networks by applyingunit resolution over the
CNF encoding of the zero-probability tuples, at each node in the search tree. They
are denoted byAOBB+SAT+SMB(i) andAOBB+SAT+DMB(i), respectively. We
used a unit resolution scheme similar to the one employed byzChaff, a state-
of-the-art SAT solver introduced by [62]. These experiments were performed on a
2.4GHz Pentium IV with 2GB of RAM running Windows XP, and therefore the
CPU times reported here may be slower than those in the previous sections.

Table 3 shows the results for experiments with the grid networks from Section 9.3.1.
As mentioned earlier, these networks have a high degree of determinism encoded in
their CPTs. Specifically, 90% of the probability tables are deterministic, containing
only 0 and 1 probability entries.

We observe thatAOBB+SAT+SMB(i) improves significantly overAOBB+SMB(i),
especially at relatively smalli-bounds. For example, on the90-26-1 grid in-
stance,AOBB+SAT+SMB(10) is 9 times faster thanAOBB+SMB(10). As the
i-bound increases and the search space is pruned more effectively, the difference
betweenAOBB+SMB(i) andAOBB+SAT+SMB(i) decreases because the heuris-
tics are strong enough to cut the search space significantly.The mini-bucket heuris-
tic already does some level of constraint propagation.

When comparing the AND/OR search algorithms with dynamic mini-bucket heuris-
tics, we see that the difference betweenAOBB+DMB(i) andAOBB+SAT+DMB(i)
is again more pronounced at relatively smalli-bounds.

9.3.4 Summary of Empirical Results on Bayesian Networks

Our extensive empirical evaluation on Bayesian networks demonstrated conclu-
sively that the AND/OR Branch-and-Boundtreesearch algorithms guided by static
mini-bucket heuristics were the best performing algorithms overall. The differ-
ence betweenAOBB+SMB(i) and the OR tree search counterpartBB+SMB(i)
was more pronounced at relatively smalli-bounds (corresponding to relatively
weak heuristic estimates) and amounted to almost 2 orders ofmagnitude in terms

43

of both running time and size of the search space explored (e.g., ISCAS’89 net-
works, grid networks, instances from the UAI’06 Inference Evaluation contest, ge-
netic linkage analysis). For largeri-bounds, when the heuristic estimates are strong
enough to prune the search space substantially, the difference between AND/OR
and OR Branch-and-Bound decreased. We also showed thatAOBB+SMB(i) was in
many cases able to outperform dramatically the current state-of-the-art solvers for
Bayesian networks such as SAM IAM and SUPERLINK (for genetic linkage analy-
sis). With dynamic mini-bucket heuristicsAOBB+DMB(i) AND/OR Branch-and-
Bound proved competitive only for relatively smalli-bounds due to computational
overhead issues (e.g., ISCAS’89 networks, instances from the Bayesian Networks
Repository). This suggests that the dynamic mini-bucket heuristics can be consid-
ered when space is limited. We also evaluated the impact of determinism over IS-
CAS’89 networks and genetic linkage analysis networks. These empirical results,
also available in [47,48], showed that while applying unit resolution caused signif-
icant time savings on the ISCAS’89 networks, it was not cost effective for linkage
networks.

9.4 Results for Empirical Evaluation of Weighted CSPs

In this section we focus on Weighted CSP problems. We evaluateboth mini-bucket
and EDAC heuristics when the problems are solved in a static variable ordering.
We also evaluate the impact of dynamic variable orderings when using directional
arc-consistency (EDAC) based heuristics.

9.4.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scheduling problems for the
daily management of Earth observing satellites [63]. The problem of scheduling an
Earth observing satellite is to select from a set of candidate photographs, the best
subset such that a set of imperative constraints are satisfied and the total importance
of the selected photographs is maximized. These problem instances can be naturally
casted as WCSPs with binary and ternary cost functions, as described in [63].

Table 4 reports the results obtained for experiments with 7 SPOT5 networks, us-
ing min-fill pseudo trees. We see thatAOBB+SMB(i) is the best performing al-
gorithm on this dataset. The overhead of the dynamic mini-bucket heuristics out-
weighs search pruning here. We also see, once again, the impact of the AND/OR
versus the OR search space. For instance, on the404 network, the difference be-
tweenAOBB+SMB(12) andBB+SMB(12), in terms of running time and size of
the search space explored, is up to 3 orders of magnitude. Thebest performances
on this domain are obtained byAOBB+SMB(i) at relatively largei-bounds which
generate very accurate heuristic estimates. For example,AOBB+SMB(14) is the

44

Table 4
CPU time and nodes visited for solvingSPOT5 networksusing mini-bucket heuristics and
min-fill based pseudo trees. Time limit 2 hours.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) AOEDAC

spot5 BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) toolbar

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)

(n, k, c) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)

i=4 i=6 i=8 i=12 i=14

time nodes time nodes time nodes time nodes time nodes time nodes

0.01 0.03 0.34 21.72 147.66 613.79 8,997,894

29 - - - - - - 25.69 5,095 148.27 632 4.56 218,846

(14, 42) 8.44 86,058 4.83 45,509 0.64 2,738 21.74 246 147.69 481

(83, 4, 476) 44.42 12,007 131.64 9,713 57.22 541 678.22 507 1758.78 507

28.27 14,438 65.91 11,850 53.72 364 630.09 330 1675.74 330

0.01 0.11 0.50 28.81 223.14 - -

42b - - - - 2154.64 9,655,444 148.11 712,685 228.17 12,255 - -

(18, 62) - - - - 1790.76 9,606,846 131.34 689,402 223.64 4,189

(191, 4, 1341) - - - - - - - - - -

- - - - - - - - - -

0.01 0.02 0.09 1.25 1.23 31.34 823,326

54 668.77 6,352,998 2.98 27,383 0.59 4,996 1.28 921 1.52 921 0.31 21,939

(11, 33) 105.99 1,106,598 1.50 17,757 0.34 3,616 1.28 329 1.27 329

(68, 4, 283) 1150.54 163,993 52.44 2,469 38.63 921 464.58 921 465.35 921

204.11 69,362 27.27 2,188 21.91 329 266.55 329 265.89 329

0.01 0.02 0.09 1.09 4.03 255.83 3,260,610

404 - - - - - - 4009.57 32,763,223 1827.05 15,265,025 151.11 6,215,135

(19, 42) 413.18 3,969,398 146.05 1,373,846 14.08 144,535 1.39 3,273 4.06 367

(100, 4, 710) - - - - - - - - 1964.20 2,015

238.97 156,338 272.46 39,144 215.17 5,612 565.06 1,327 167.90 220

0.02 0.08 0.31 8.30 35.22 - -

408b - - - - - - - - - - - -

(24, 59) - - - - - - 682.12 4,784,407 124.67 567,407

(201, 4, 1847) - - - - - - - - - -

- - - - - - - - - -

0.01 0.03 0.14 0.39 0.39 - -

503 - - - - - - 1.22 5,229 1.22 5,229 - -

(9, 39) - - 412.63 5,102,299 397.77 4,990,898 0.44 641 0.44 641

(144, 4, 639) - - - - - - 690.44 5,229 694.86 5,229

- - - - - - 64.02 641 64.52 641

0.01 0.01 0.12 48.20 372.27 - -

505b - - - - - - - - - - - -

(16, 98) - - - - - - - - 392.08 143,371

(240, 4, 1721) - - - - - - - - - -

- - - - - - - - - -

only algorithm able to solve the505b network.AOEDAC andtoolbar were able
to solve relatively efficiently only 3 out of the 7 test instances (e.g., 29, 54 and
404).

In Figures 13(a) and 13(b) we plot the running time and numberof nodes visited
by AOBB+SMB(i) andAOBB+DMB(i) (resp.BB+SMB(i) andBB+DMB(i)), as
a function of thei-bound, on the29 SPOT5 network from Table 4. We see that
AOBB+SMB(i) achieves the best performance ati = 8, whereasAOBB+DMB(i)
performs best only at the smallest reportedi-bound, namelyi = 4. This suggests,
again, that dynamic mini-bucket heuristics can be considered when space is limited.

45

(a) CPU time in seconds (b) Nodes visited

Fig. 13. Comparison of the impact of static and dynamic mini-bucket heuristics.CPU time
(a) and number of nodes visited (b) on the29 SPOT5 instancefrom Table 4.

Fig. 14. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
Distribution of CPU time for solving the404 (left) and503 (right) SPOT5 networkswith
AOBB+SMB(i).

Figure 14 displays the running time distribution ofAOBB+SMB(i) guided by hy-
pergraph based pseudo trees, over 20 independent runs, for two SPOT5 instances
from Table 4. The hypergraph based trees have far smaller depths than the min-fill
ones, and therefore are again able to improve the running time over min-fill based
ones only at relatively smalli-bounds (e.g., 404). On average, however, the min-
fill pseudo trees generally yield a more robust performance,especially for larger
i-bounds of the mini-bucket heuristics (e.g., 503).

9.4.2 Mastermind Game Instances

Table 5 shows the results for experiments with 6 networks corresponding to Mas-
termind game instances of increasing difficulty. Each of these networks is a ground
instance of a relational Bayesian network that models differing sizes of the popular
game of Mastermind. They were produced by the PRIMULA System8 and used in

8 Available at:http://www.cs.auc.dk/jaeger/Primula

46

Table 5
CPU time in seconds and nodes visited for solvingMastermind game instancesusing
static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 hour.AOEDAC
andtoolbar did not solve any of the test instances within the time limit.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, r, k) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes

mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99

(20, 57) - - - - - - 897.87 873,606 946.84 915,095 738.13 720,764

(1220, 3, 2) 1.16 10,369 0.88 7,075 0.93 6,349 1.23 3,830 3.11 3,420 8.25 3,153

mm-03-08-04 0.48 0.60 0.89 2.08 6.45 25.15

(33, 87) - - - - - - - - - - - -

(2288, 3, 2) 72.37 150,642 66.69 193,805 36.22 71,622 10.15 31,177 25.16 63,669 29.27 13,870

mm-04-08-03 0.21 0.27 0.48 1.06 3.54 12.52

(26, 72) - - - - 1609.86 1,315,415 1603.71 1,175,430 1157.09 901,309 1924.02 1,451,854

(1418, 3, 2) 8.20 68,929 3.05 26,111 4.23 34,445 3.10 17,255 5.29 15,443 13.71 10,570

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)

(w*, h) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)

(n, r, k) i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes

mm-04-08-04 1.19 2.35 6.85 26.47 106.37 395.57

(39, 103) - - - - - - - - - - - -

(2616, 3, 2) 324.06 744,993 166.67 447,464 310.06 798,507 64.72 107,463 192.39 242,865 414.54 62,964

mm-03-08-05 2.14 4.54 11.82 39.01 134.46 497.45

(41, 111) - - - - - - - - - - - -

(3692, 3, 2) - - - - - - 835.90 1,122,008 1162.22 1,185,327 1200.65 1,372,324

mm-10-08-03 1.48 3.78 11.39 34.53 127.55 593.25

(51, 132) - - - - - - - - - - - -

(2606, 3, 2) 109.50 290,594 128.29 326,662 64.31 151,128 74.14 127,130 169.84 133,112 623.83 79,724

experimental results from [64]. For our purpose, we converted these networks into
equivalent WCSP instances by taking the negative log probability of each condi-
tional probability table entry, multiplying it with 1000 and rounding it to the nearest
integer. The resulting WCSP instances are quite large with thenumber of bi-valued
variablesn ranging between 1220 and 3692, and containingn unary and ternary
cost functions. The table has two horizontal blocks each showing a different range
of i-bounds.

We see again thatAOBB+SMB(i) offers the overall best performance. For example,
AOBB+SMB(10) solves themm-04-08-03 instance in about 3 seconds, whereas
BB+SMB(10) exceeds the 1 hour time limit. We did not report results with dy-
namic mini-bucket heuristics because of the prohibitivelylarge computational over-
head associated with relatively largei-bounds. We also note that the EDAC based
algorithms were not able to solve any of these instances within the alloted time
bound (not shown in the table).

In Figure 15 we display the running time distribution ofAOBB+SMB(i) guided by
hypergraph based pseudo trees over 20 independent runs, fortwo game instances
from Table 5. The spectrum of results is similar to what we observed earlier.

47

Fig. 15. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
CPU time in seconds for solving themm-03-08-03 (left) andmm-04-08-04 (right)
Mastermind networks with AOBB+SMB(i).

9.4.3 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variable orderings on AND/OR
Branch-and-Bound search guided by local consistency (EDAC) heuristics.

Table 6 shows the results for experiments with the SPOT5 networks from Sec-
tion 9.4.1. For reference, the last column of the table showsthe best performances
obtained withAOBB+SMB(i) (the value of the mini-bucketi-bound is given in
parenthesis). We see that variable ordering can have a tremendous impact on per-
formance. Indeed,AOEDAC+DSO is the best performing among the EDAC based
algorithms, and is able to solve 6 out of 7 test instances. Thesecond best algorithm
in this category isDVO+AOEDACwhich solves relatively efficiently 3 test networks.
This demonstrates the benefit of using dynamic variable ordering heuristics within
the AND/OR Branch-and-Bound search. We also observe that the best performance
points highlighted in Table 6 are inferior to those corresponding toAOBB+SMB(i).
For example, on the42b network, the difference in running time and size of the
search space explored betweenAOBB+SMB(12) andAOEDAC+DSO is up to one
order of magnitude in favor of the former. Similarly, the505b network could not
be solved by any of the EDAC based algorithms, whereasAOBB+SMB(14) finds
the optimal solution in about 6 minutes. Notice thattoolbar is much better than
BBEDAC in all test cases. This can be explained by its more careful and optimized
implementation of EDAC withintoolbar.

In Figure 16 we show the running time distribution ofAOEDAC+PVO with hyper-
graph pseudo trees, on 20 independent runs, for two networksfrom Table 6. In
this case, the difference between the min-fill and the hypergraph case is dramatic,
resulting in up to three orders of magnitude in favor of the latter.

We also evaluated the impact of dynamic variable orderings on radio link frequency
assignment problems (detailed results for these experiments are available online
in [47,48]). TheAOEDAC algorithms with dynamic variable orderings were again

48

Table 6
CPU time in seconds and nodes visited for solvingSPOT5 networksusing EDAC heuris-
tics, dynamic variable orderings and min-fill based pseudo trees. Time limit 2 hours.

minfill pseudo tree

spot5 n w* toolbar BBEDAC AOEDAC AOEDAC+PVO DVO+AOEDAC AOEDAC+DSO AOBB+SMB(i)

c h

29 16 7 time 4.56 109.66 613.79 545.43 0.83 11.36 0.64(i=8)

57 8 nodes 218,846 710,122 8,997,894 7,837,447 8,698 92,970 2,738

42b 14 9 time - - - - - 6825.4 131.34(i=12)

75 9 nodes - - - - - 27,698,614 689,402

54 14 9 time 0.31 0.97 31.34 9.11 0.06 0.75 0.34(i=8)

75 9 nodes 21,939 8,270 823,326 90,495 688 6,614 3,616

404 16 10 time 151.11 2232.89 255.83 152.81 12.09 1.74 1.39(i=12)

89 12 nodes 6,215,135 7,598,995 3,260,610 1,984,747 88,079 14,844 3,273

408b 18 10 time - - - - - 747.71 124.67(i=14)

106 13 nodes - - - - - 2,134,472 567,407

503 22 11 time - - - - - 53.72 0.44(i=12)

131 15 nodes - - - - - 231,480 641

505b 16 9 time - - - - - - 392.08(i=14)

70 10 nodes - - - - - - 143,271

Fig. 16. Min-Fill versus Hypergraph partitioning heuristics for pseudo tree construction.
Distribution of CPU time for solving the404 (left) and503 (right) SPOT5 networkswith
AOEDAC+PVO.

superior to the ORBBEDAC as well as theAOEDAC using a static variable ordering.
However, their performance was quite inferior to that oftoolbar. We suspect that
this was mainly due to implementation issues.

9.4.4 Summary of Empirical Results on WCSPs

Our extensive empirical evaluation on WCSPs demonstrated again that the best
performance on this domain was obtained by the AND/OR Branch-and-Bound
tree search algorithm with static mini-bucket heuristics, for large i-bounds, es-
pecially on non-binary WCSPs with relatively small domain sizes (e.g., Master-
mind game instances, ISCAS’89 networks, instances from the SPOT5 benchmark).
AOBB+SMB(i) dominated all its competitors, including the classicBB+SMB(i)
as well as the OR and AND/OR algorithms that enforce EDAC during search,
namelytoolbar and theAOEDAC family of algorithms. The AND/OR Branch-

49

and-Bound with dynamic mini-bucket heuristicsAOBB+DMB(i) was competitive
only for relatively smalli-bounds (e.g., ISCAS’89 networks [47,48]). We also ob-
served that on binary problems having large domain sizes, the mini-bucket heuris-
tics were far inferior to those based on enforcing local consistency (e.g., radio link
frequency assignment problems [47,48]).

10 Related Work

The idea of exploiting structural properties of the problemin order to enhance the
performance of search algorithms is not new. It was first introduced in constraint
satisfaction, then moved to satisfiability. Later, it was recognized in the probabilistic
community via the cycle-cutset [6] and recursive conditioning [49] algorithms and
followed up by value elimination [65]. It was extended to optimization at about the
same time. We next elaborate more on these various contributions.

In constraints, Freuder and Quinn [2] introduced the concept of pseudo tree ar-
rangement of a constraint graph as a way of capturing independencies between sub-
sets of variables. Subsequently,pseudo tree search[2] is conducted over a pseudo
tree arrangement of the problem which allows the detection of independent sub-
problems that are solved separately. Bayardo and Miranker [3] reformulated the
pseudo tree search algorithm in terms of back-jumping and showed that the depth
of a pseudo tree arrangement is always within a logarithmic factor off the induced
width of the graph. More recently, [66] extended pseudo treesearch [2] to opti-
mization tasks in order to boost the Russian Doll search [14] for solving Weighted
CSPs. Our AND/OR Branch-and-Bound algorithm is also related tothe Branch-
and-Bound method proposed by [35] for acyclic AND/OR graphs and game trees.
The difference is that we specialize the AND/OR search over graphical models.
Here, the decomposition is graph-based.

Dechter’s graph-based back-jumping algorithm [67] uses a depth-first (DFS) span-
ning tree to extract knowledge about dependencies in the graph. The notion of
DFS-based search was also used by [68] for a distributed constraint satisfaction al-
gorithm. More recently, distributed constraint optimization problems in which mul-
tiple agents are involved, are solved using a pseudo tree arrangement in a best-first
or depth-first manner using using linear space of each agent [69–71]. A distributed
variable elimination algorithm that uses a pseudo tree arrangements of the agents
was also proposed in [72].

In probabilistic reasoning,Recursive Conditioning(RC) [49] is a search method
based on the divide and conquer paradigm. Like AND/OR search, RC instantiates
variables with the purpose of breaking the network into independent subproblems,
on which it can recurse using the same technique. The computation is driven by a
data-structure calleddtree[49]. It was shown in [1] that RC explores an AND/OR

50

space whose guiding pseudo tree can be generated from the static ordering dic-
tated by the dtree.Value Elimination(VE) [65] is a recently developed algorithm
for Bayesian inference. Given a static orderingd for VE, it was shown that it tra-
verses an AND/OR space [1]. The pseudo tree underlying the AND/OR search
graph traversal by VE can be constructed as the bucket tree inreversed order ofd.
The traversal of the AND/OR space will be controlled byd, advancing the frontier
in a hybrid depth or breadth first manner.

In optimization,Backtracking with Tree-Decomposition(BTD) [73] is a memory
intensive method for solving constraint optimization problems which combines
search techniques with the notion of tree decomposition. This mixed approach can
in fact be viewed as searching an AND/OR search space whose backbone pseudo
tree is defined by and structured along the tree decomposition [1].

We note however that Recursive Conditioning, Backtracking with Tree Decompo-
sition and Value Elimination, unlike our AND/OR Branch-and-Bound search, are
not restricted to be linear space search methods. They can beparameterized and use
various levels of caching, which can yield in the worst case an exponential space
complexity. In a subsequent article we will extend the AND/OR algorithms to use
substantial memory by exploring an AND/OR searchgraph, rather than the tree.

11 Summary and Conclusion

The paper investigates the impact of graph-based AND/OR search spaces on solv-
ing general constraint optimization problems in graphicalmodels focusing on search
trees that do not facilitate caching. In contrast to the traditional OR search, the new
AND/OR search is sensitive the problem’s structure. The linear space AND/OR
tree search algorithms can be exponentially better (and never worse) than the linear
space OR tree search algorithms. Specifically, the size of their search tree is expo-
nential in the depth of the guiding pseudo tree rather than the number of variables,
as in the OR case.

The AND/OR Branch-and-Bound algorithm that we introduced explores the AND/OR
search tree in a depth-first manner and can be guided by any heuristic function. We
investigated extensively the mini-bucket heuristic and showed empirically that it
can prune the search space very effectively. The mini-bucket heuristics can be either
pre-compiled (static mini-buckets) or generated dynamically at each node in the
search tree (dynamic mini-buckets). They are parameterized by ani-bound which
allows for a controllable trade-off between heuristic strength and its computational
overhead. We also explored the effectiveness of a class of heuristic functions de-
rived from local consistency algorithms, in the context of WCSPs. Since variable
ordering can influence dramatically search performance, wealso introduced and
investigated empirically several ordering schemes that combine the AND/OR de-

51

composition principle with dynamic variable ordering heuristics.

We focused our empirical evaluation on finding the MPE in Bayesian networks
and solving WCSPs. Our results demonstrated conclusively that in many cases
the depth-first AND/OR Branch-and-Bound algorithms improve dramatically over
traditional OR Branch-and-Bound search, especially for relatively weak guiding
heuristic estimates when space is really restricted. We summarize next the most
important additional factors that when augmented on top of AND/OR search help
improve its performance. This includes the mini-bucketi-bound, dynamic variable
orderings, constraint propagation and the quality of the guiding pseudo tree.

• Impact of the mini-bucket i-bound on AND/OR search.Our results show
conclusively that when enough memory is available static mini-bucket heuristics
with relatively largei-bounds are cost effective (e.g., genetic linkage analysis
networks from Table 2, Mastermind networks from Table 5). However, if space is
restricted, dynamic mini-bucket heuristics, which exploit the partial assignment
along the search path, appear to be superior. This occurs forsmalli-bounds when
the dynamic heuristics are more accurate then the static ones.

• Impact of dynamic variable ordering. Our dynamic AND/OR search approach
was shown to be powerful in conjunction with local consistency based heuristics.
The AND/OR Branch-and-Bound algorithms with EDAC heuristicsand dynamic
variable orderings were sometimes by two orders of magnitude better than their
static counterparts (e.g., the503 SPOT5 network from Table 6).

• Impact of determinism. When the graphical model contains both deterministic
information (hard constraints) as well as general cost functions or probabilities,
we demonstrated that it is beneficial to exploit the computational power of the
constraints explicitly, via constraint propagation methods. Our experiments on
selected classes of deterministic Bayesian networks showedthat enforcing unit
resolution over the CNF encoding of the determinism present in the network
yielded a tremendous reduction in running time for the corresponding AND/OR
algorithms (e.g., deterministic grid networks from Table 3).

• Impact of static variable ordering. The performance of the AND/OR search
algorithms is highly influenced by the quality of the guidingpseudo tree. We in-
vestigated two heuristics for generating small induced width/depth pseudo trees.
The min-fill based pseudo trees usually yield small induced width but signifi-
cantly larger depth, whereas the hypergraph partitioning heuristic produces much
smaller depth trees but with larger induced widths. Our experiments demon-
strated indeed that the AND/OR algorithms using mini-bucket heuristics benefit,
on average, from the min-fill based pseudo trees because the guiding mini-bucket
heuristic is sensitive to the induced width size. In some exceptional cases how-
ever, the hypergraph partitioning based pseudo trees were able to improve signif-
icantly the search performance, especially for relativelysmalli-bounds, because
in those cases the smaller depth guarantees a smaller AND/ORsearch tree. The
picture is reversed for local consistency based heuristicswhich are not sensitive
to the induced width. Here, the hypergraph based trees were able to improve

52

performance by up to 3 orders of magnitude over the min-fill based trees (e.g.,
SPOT5 networks from Figure 16).

Clearly, there are various ways for improvements. For instance, one could incorpo-
rate good initial upper bound techniques (using incompleteschemes), apply addi-
tional schemes for exploiting determinism or use improved mini-bucket schemes.
For example, the recent improvement of the Mini-Bucket algorithm, calledDepth-
First Mini-Bucket Elimination[74], could be explored further in the context of
AND/OR search.

Acknowledgments

This work was partially supported by the NSF grants IIS-0086529 and IIS-0412854,
the MURI ONR award N00014-00-1-0617, the NIH grant R01-HG004175-02, the
Marie Curie Transfer of Knowledge grant MTKD-CT-2006-042563and by an IRC-
SET Embark post-doctoral fellowship.

References

[1] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.Artificial
Intelligence, 171(1):73–106, 2007.

[2] E. Freuder and M. Quinn. Taking advantage of stable sets of variables in constraint
satisfaction problems. InInternational Joint Conference on Artificial Intelligence
(IJCAI-1985), pages 1076–1078, 1985.

[3] R. Bayardo and D. Miranker. On the space-time trade-off in solving constraint
satisfaction problems. InInternational Joint Conference on Artificial Intelligence
(IJCAI-1995), pages 558–562, 1995.

[4] R. Dechter and I. Rish. Mini-buckets: A general scheme for approximating inference.
Journal of ACM, 2(50):107–153, 2003.

[5] K. Kask and R. Dechter. A general scheme for automatic generation of search
heuristics from specification dependencies.Artificial Intelligence, 129(1-2):91–131,
2001.

[6] J. Pearl.Probabilistic Reasoning in Intelligent Systems.Morgan-Kaufmann, 1988.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constraint solving and
optimization.Journal of ACM, 44(2):309–315, 1997.

[8] Nils J. Nilsson.Principles of Artificial Intelligence.Tioga, 1980.

[9] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying cluster-tree decompositions
for reasoning in graphical models.Artificial Intelligence, 166(1-2):225–275, 2005.

53

[10] S. Minton, M.D. Johnston, A.B. Philips, and P. Laired. Solving large scale constraint
satisfaction and scheduling problems using heuristic repair methods. InNational
Conference on Artificial Intelligence (AAAI-1990), pages 17–24, 1990.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. InNational Conference on Artificial Intelligence (AAAI-1992), pages 440–
446, 1992.

[12] R. Wallace. Analysis of heuristic methods for partial constraint satisfaction problems.
In In Principles and Practice of Constraint Programming (CP-1996), pages 482–496,
1996.

[13] E. Freuder and R. Wallace. Partial constraint satisfaction.Artificial Intelligence, 58(1–
3):21–70, 1992.

[14] G. Verfaillie, M. Lemaitre, and T. Schiex. Russian doll search for solving constraint
optimization problems. InNational Conference on Artificial Intelligence (AAAI),
pages 298–304, 1996.

[15] J. Larrosa and P. Meseguer. Partition-based lower bound for MAX-CSP. InPrinciples
and Practice of Constraint Programming (CP-1999), pages 303–315, 1999.

[16] J. Larrosa and T. Schiex. In the quest of the best form of localconsistency for weighted
CSPs. InNational Conference of Artificial Intelligence (AAAI-2003), pages 631–637,
2003.

[17] J. Larrosa and T. Schiex. Solving weighted CSP by maintaining arc consistency.
Artificial Intelligence, 159(1-2):1–26, 2004.

[18] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential arc consistency: getting
closer to full arc consistency in weighted CSPs. InInternational Joint Conference in
Artificial Intelligence (IJCAI-2005), pages 84–89, 2005.

[19] P. Shenoy and G. Shafer. Propagating belief functions with local computations.IEEE
Expert, 4(1):43–52, 1986.

[20] F.V. Jensen, S. Lauritzen, and K. Olesen. Bayesian updating in recursive graphical
models by local computation.In Computational Statistics Quarterly, 4(1):269–282,
1990.

[21] R. Dechter. Bucket elimination: A unifying framework for reasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

[22] Y. Peng and J.A. Reggia. A connectionist model for diagnostic problem solving.IEEE
Transactions on Systems, Man and Cybernetics, 1989.

[23] K. Kask and R. Dechter. Stochastic local search for Bayesian networks. InWorkshop
on AI and Statistics (AI-STAT-1999), pages 113–122, 1999.

[24] J. Park. Using weighted MAX-SAT engines to solve MPE. InNational Conference of
Artificial Intelligence (AAAI-2002), pages 682–687, 2002.

54

[25] F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local search for MPE solving.
In International Joint Conference on Artificial Intelligence (IJCAI-2005), pages 169–
174, 2005.

[26] S.E. Shimony and E. Charniak. A new algorithm for finding MAP assignments to
belief networks. InUncertainty in Artificial Intelligence (UAI-1991), pages 185–193,
1991.

[27] E. Santos. On the generation of alternative explanations with implicationsfor belief
revision. InUncertainty in Artificial Intelligence (UAI-1991), pages 339–347, 1991.

[28] Z. Li and B. DAmbrosio. An efficient approach for finding the MPEin belief networks.
In Uncertainty in Artificial Intelligence (UAI-1993), pages 342–349, 1993.

[29] B. K. Sy. Reasoning MPE to multiply connected belief networks using message-
passing. InNational Conference of Artificial Intelligence (AAAI-1992), pages 570–
576, 1992.

[30] R. Marinescu, K. Kask, and R. Dechter. Systematic vs non-systematic algorithms
for solving the MPE task. InUncertainty in Artificial Intelligence (UAI-2003), pages
394–402, 2003.

[31] A. Choi, M. Chavira, and A. Darwiche. Node splitting: A scheme for generating upper
bounds in Bayesian networks. InProceedings of the 23rd Conference on Uncertainty
in Artificial Intelligence (UAI), pages 57–66, 2007.

[32] E. Lawler and D. Wood. Branch-and-bound methods: A survey.Operations Research,
14(4):699–719, 1966.

[33] R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple lower bound
computation in constraint optimization. InPrinciples and Practice of Constraint
Programming (CP), pages 346–360, 2001.

[34] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Welsey, 1984.

[35] L. Kanal and V. Kumar.Search in artificial intelligence.Springer-Verlag., 1988.

[36] M. Cooper and T. Schiex. Arc consistency for soft constraints.Artificial Intelligence,
154(1-2):199–227, 2003.

[37] R. Dechter.Constraint Processing. MIT Press, 2003.

[38] R. Haralick and G. Elliot. Increasing tree search efficiency for constraint satisfaction
problems.Artificial Intelligence, 14(3):263–313, 1980.

[39] C. Bessiere and J-C. Regin. MAC and combined heuristics: two reasons to forsake FC
(and CBJ) on hard problems. InPrinciples and Practice of Constraint Programming
(CP-1996), pages 61–75, 1996.

[40] D. Brelaz. New method to color the vertices of a graph.Communications of the ACM,
4(22):251–256, 1979.

55

[41] C. Lecoutre F. Boussemart, F. Hemery and L. Sais. Boosting systematic search by
weighting constraints. InEuropean Conference on Artificial Intelligence (ECAI-2004),
pages 146–150, 2004.

[42] C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-based techniques versus
conflict directed heuristics. InInternational Conference on Tools with Artificial
Intelligence (ICTAI-2004), pages 549–557, 2004.

[43] J. Huang and A. Darwiche. A structure-based variable orderingheuristic. In
International Joint Conference on Artificial Intelligence (IJCAI-2003), pages 1167–
1172, 2003.

[44] W. Li and P. van Beek. Guiding real-world SAT solving with dynamic hypergraph
separator decomposition. InInternational Conference on Tools with Artificial
Intelligence (ICTAI-2004), pages 542–548, 2004.

[45] R. Bayardo and J. D. Pehoushek. Counting models using connected components. In
National Conference of Artificial Intelligence (AAAI-2000), pages 157–162, 2000.

[46] T. Sang, P. Beame, and H. Kautz. A dynamic approach to MPE and weighted MAX-
SAT. In International Joint Conference on Artificial Intelligence (IJCAI-2007), pages
549–557, 2007.

[47] R. Marinescu. AND/OR Search Strategies for Combinatorial Optimization in
Graphical Models. PhD thesis, University of California, Irvine, 2008.

[48] R. Marinescu and R. Dechter. AND/OR branch-and-bound search for combinatorial
optimization in graphical models. Technical report, University of California, Irvine,
2008.

[49] A. Darwiche. Recursive conditioning.Artificial Intelligence, 126(1-2):5–41, 2001.

[50] H. Bodlaender and J. Gilbert. Approximating treewidth, pathwidth and minimum
elimination tree-height.Technical Report, Utrecht University, 1991.

[51] U. Kjæaerulff. Triangulation of graph-based algorithms giving small total space.
Technical report, University of Aalborg, Denmark, 1990.

[52] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks by weighted model
counting. InNational Conference of Artificial Intelligence (AAAI-2005), pages 475–
482, 2005.

[53] Jurg Ott. Analysis of Human Genetic Linkage. The Johns Hopkins University Press,
1999.

[54] M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees.
In International Conference on Intelligent Systems for Molecular Biology, pages 189–
198, 2002.

[55] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihood haplotyping for
general pedigrees.Human Heredity, 2005.

[56] R. Dechter and D. Larkin. Hybrid processing of beliefs and constraints. InUncertainty
in Artificial Intelligence (UAI-2001), pages 112–119, 2001.

56

[57] D. Larkin and R. Dechter. Bayesian inference in the presence ofdeterminism. In
Artificial Intelligence and Statistics (AISTAT-2003), 2003.

[58] D. Allen and A. Darwiche. New advances in inference using recursive conditioning.
In Uncertainty in Artificial Intelligence (UAI-2003), pages 2–10, 2003.

[59] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks. In
Uncertainty in Artificial Intelligence (UAI), pages 120–129, 2004.

[60] I. Rish and R. Dechter. Resolution vs. search: two strategies for SAT. Journal of
Automated Reasoning, 24(1-2):225–275, 2000.

[61] T. Walsh. SAT vs CSP. InPrinciples and Practice of Constraint Programming (CP),
pages 441–456, 2000.

[62] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an
efficient SAT solver. InDesign Automation Conference (DAC-2001), 2001.

[63] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation satellitemanagement.
Constraints, 4(3):293–299, 1999.

[64] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational Bayesian networks
for exact inference.International Journal of Approximate Reasoning, 42(1–2):4–20,
2006.

[65] F. Bacchus, S. Dalmao, and T. Pittasi. Value elimination: Bayesian inference via
backtracking search. InUncertainty in Artificial Intelligence (UAI-2003), pages 20–
28, 2003.

[66] J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints. In
European Conference on Artificial Intelligence (ECAI-2002), pages 131–135, 2002.

[67] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning
and cutset decomposition.Artificial Intelligence, 41(3):273–312, 1990.

[68] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint
satisfaction. InInternational Joint Conference on Artificial Intelligence (IJCAI-1991),
pages 318–324, 1991.

[69] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronous complete method for
distributed constraint optimization. InInternational Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-2003), pages 161–168, 2003.

[70] P. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchronous distributed
constraint optimization with quality guarantees.Artificial Intelligence, 161(1-2):149–
180, 2005.

[71] W. Yeoh, A. Felner, and S. Koening. BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. InInternational Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-2008), pages 591–598, 2008.

[72] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent constraint
optimization. In International Joint Conference on Artificial Intelligence (IJCAI-
2005), pages 266–271, 2005.

57

[73] P. Jegou and C. Terrioux. Decomposition and good recording forsolving MAX-CSPs.
In European Conference on Artificial Intelligence (ECAI-2004), pages 196–200, 2004.

[74] E. Rollon and J. Larrosa. Depth-first mini-bucket elimination. InPrinciples and
Practice of Constraint Programming (CP-2005), pages 563–577, 2005.

58

