AND/OR Branch-and-Bound Search for
Combinatorial Optimization in Graphical Models

Radu Marinescit™!, Rina Dechtef

aCork Constraint Computation Centre, University College Cork, Ireland

bDonald Bren School of Information and Computer Science, UniversiBatfornia,
Irvine, CA 92697, USA

Abstract

This is the first of two papers presenting and evaluating the power of afmaevework
for combinatorial optimization in graphical models, based on AND/OR segrabes.
We introduce a new generation of depth-first Branch-and-Bounditigos that explore
the AND/OR search tree using static and dynamic variable orderings. Tiue df the
AND/OR representation of the search space is that its size may be far smafigh#t of
a traditional OR representation, which can translate into significant time safdingearch
algorithms. The focus of this paper is on linear space search which expla@ND/OR
search tree. In the second paper we explore memory intensive AND/@&hsagorithms.
In conjunction with the AND/OR search space we investigate the power of thebmiket
heuristics in both static and dynamic setups. We focus on two most common optimizatio
problems in graphical models: finding the Most Probable Explanation indsayeetworks
and solving Weighted CSPs. In extensive empirical evaluations we demnsiat the
new AND/OR Branch-and-Bound approach improves considerablytbedraditional OR
search strategy and show how various variable ordering schemes ithpamrformance
of the AND/OR search scheme.

Key words: search, AND/OR search, decomposition, graphical models, Bayesian
networks, constraint networks, constraint optimization

* Corresponding author.

Email addresses:. nari nescu@c. ucc. i e (Radu Marinescu),
dechter @cs. uci . edu (Rina Dechter).
I This work was done while at the University of California, Irvine.

Preprint submitted to Elsevier December 8, 2009

1 Introduction

Graphical models such as Bayesian networks or constrainoniet are a widely
used representation framework for reasoning with proisisiland deterministic
information. These models use graphs to capture conditindapendencies be-
tween variables, allowing a concise representation of th@Medge as well as
efficient graph-based query processing algorithms. Opétian problems such as
finding the most likely state of a Bayesian network or findingolutson that vio-
lates the least number of constraints can be defined witigrirdmework and they
are typically tackled with eithanferenceor searchalgorithms.

Inference-based algorithms.{, Variable Elimination, Tree Clustering) were al-
ways known to be good at exploiting the independencies oegbtlry the under-
lying graphical model. They provide worst case time guaestexponential in
the treewidth of the underlying graph. Unfortunately, angtihod that is time-
exponential in the treewidth is also space exponentialartbewidth or separator
width, therefore not practical for models with large tredthi

Search-based algorithme.§, depth-first Branch-and-Bound search) traverse the
model’s search space where each path represents a paftillsmiution. The lin-
ear structure of such traditional search spaces does rai itbe independencies
represented in the underlying graphical models and, tberefearch-based algo-
rithms may not be nearly as effective as inference-basexdigigns in using this in-
formation. Moreover, these methods do not accommodatenaitive performance
guarantees. This situation has changed in the past few yatérshe introduction
of AND/OR search algorithms for graphical models. In additisearch methods
require only an implicit, generative, specification of thumdtional relationships
(that may be given in a procedural or functional form) whiléerence schemes of-
ten rely on an explicit tabular representation over thecfei®) variables. For these
reasons, search-based algorithms are usually the prfenoece for models with
large treewidth and with implicit representation.

The AND/OR search space for graphical models [1] is a newdraonk that is sen-
sitive to the independencies in the model, often resultingxiponentially reduced
complexities. Itis guided by pseudo tre¢2,3] that captures independencies in the
graphical model, resulting in a search space exponentthkidepth of the pseudo
tree, rather than in the number of variables.

In this paper we present a new generation of AND/OR BranchBmehd algo-
rithms (AOBB) that explore the AND/OR search tree in a depth-first manaer f
solving optimization problems in graphical models. As imditional Branch-and-
Bound search, the efficiency of these algorithms dependsiyadso on their guid-
ing heuristic function. A class of partitioning-based hstic functions, based on
the Mini-Bucket approximation [4] and known atatic mini-bucket heuristiosas

shown to be powerful for optimization problems [5] in the tax of the traditional
OR search spaces. The Mini-Bucket algorithm provides a seHemextracting
heuristic information from the functional specificationtb&é graphical model and
is applicable to any graphical model. The accuracy of theifurcket algorithm
is controlled by a bounding parameter, calledound, which allows varying de-
grees of heuristics accuracy and results in a spectrum offsafgorithms that can
trade off heuristic strength and search [5]. We show here th@rpre-computed
mini-bucket heuristic as well as any other heuristic infation can be incorporated
into AND/OR search. We also introdudgnamic mini-bucket heuristica/hich are
computed dynamically at each node of the search tree.

Since variable orderings can influence dramatically theckeperformance, we
also introduce a collection afynamicAND/OR Branch-and-Bound algorithms that
combine AND/OR decomposition with dynamic variable ordgs.

We apply the depth-first AND/OR Branch-and-Bound approactwtm ¢common
optimization problems in graphical models: finding the MBsbbable Explana-
tion (MPE) in Bayesian networks [6] and solving Weighted Caaist Satisfaction
Problems (WCSP) [7]. Our results show conclusively on vartmerschmark prob-
lems that the new depth-first AND/OR Branch-and-Bound algorg improve dra-
matically over traditional ones exploring the OR searclcspaspecially when the
heuristic estimates are inaccurate and the algorithmréetyarily on search.

Following preliminary notations and definitions (Section 3ections 3, 4 and 5
provide background on graphical models, on the classic ORd@rand-Bound ap-
proach, and on the AND/OR representation of the search sBaction 6 presents
our new depth-first AND/OR Branch-and-Bound algorithm. Sec# presents sev-
eral general purpose heuristic functions that can guideéaech focusing on the
mini-bucket heuristics. Section 8 describes its extensiim dynamic variable or-

dering heuristics. Section 9 shows the empirical evalnat8ection 10 overviews
related work and Section 11 provides a summary and congueimarks.

2 Preliminaries

2.1 Notations

A reasoning problem is defined in terms of a set of variablksm¢avalues on fi-
nite domains and a set of functions defined over these vadgaliVe denote vari-
ables by uppercase letters (., X,Y, Z, ...), sets of variables by bold faced up-
percase letterse(g., X,Y,Z,...) and values of variables by lower case letters
(e.g., z,y,z,..). An assignmentX; = z,...,X,, = z,) can be abbreviated as
x = ((Xy,21), ..., (Xp,) OF z = (x4, ..., x,). FOr a subset of variablég, Dy

denotes the Cartesian product of the domains of variabl&s iny andz[Y] are
both used as the projection.of= (x4, ..., z,,) over a subseY. We denote functions
by lettersf, h, g etc., and the scope (set of arguments) of a funcfity scope(f).

2.2 Graph Concepts

DEFINITION 1 (directed, undirected graphs) Adirected grapls defined by a pair
G = {V,E}, whereV = {X;,..., X,} is a set of vertices (nodes), afltl =
{(Xi, X;)|Xi, X; € V}is a set of edges (arcs). (iX;, X;) € E, we say thatX;
points to.X;. The degree of a vertex is the number of incident arcs to iteeh
vertex X;, pa(X;) or pa;, is the set of vertices pointing t§; in G, while the set
of child vertices ofX;, denoted-h(X;), comprises the variables thaf; points to.
The family ofX;, denotedF}, includesX; and its parent vertices. A directed graph
is acyclic if it has no directed cycles. Amdirectedgraph is defined similarly to a
directed graph, but there is no directionality associatethwine edges.

DEFINITION 2 (induced width) An ordered graplis a pair (G, d) whereG is an
undirected graph, and = X, ..., X,, is an ordering of the nodes. Theidth of

a nodeis the number of the node’s neighbors that precede it in tidemdng. The
width of an orderingd is the maximum width over all nodes. Timeluced width
of an ordered graphdenoted byw*(d), is the width of the induced ordered graph
obtained as follows: nodes are processed from last to first;wiede X; is pro-
cessed, all its preceding neighbors are connected.iitheced widthof a graph,
denoted byv*, is the minimal induced width over all its orderings.

DerINITION 3 (hypergraph) A hypergraphis a pair H = (X, S), whereS =
{81, ..., S; } is a set of subsets &, called hyperedges.

DEFINITION 4 (tree decomposition) A tree decompositioof a hypergraph =
(X,S),isatreeT = (V,E), whereV is a set of nodes, also called "clusters”, and
E is a set of edges, together with a labeling functipthat associates with each
vertexv € V a sety(v) C X satisfying:

(1) For eachS; € S there exists a vertex € V such thatS; C x(v);
(2) ForeachX; € X, the sef{v € V|X; € x(v)} induces a connected subtree of
T (running intersection property).

DEFINITION 5 (treewidth, pathwidth) Thewidth of a tree decomposition of a hy-
pergraph is the size of the largest cluster minus 1 (ixazr,|x(v) — 1]). The
treewidthof a hypergraph is the minimum width along all possible treecde-
positions. Thegathwidthis the treewidth over the restricted class of chain decom-
positions.

2.3 AND/OR Search Spaces

An AND/OR state space representation of a problem is a £4HlO, S,, s¢) [8].

S is a set of states which can be either OR or AND states (the @tesstepre-
sent alternative ways for solving the problem while the AN&es often represent
problem decomposition into subproblems, all of which neetld solved)O is a
set of operators. An OR operator transforms an OR state imdthar state, and an
AND operator transforms an AND state into a set of statesrdfsea set of goal
statesS, C S and a start node, € S.

The AND/OR state space model induces an explicit AND/ORdegiraph Each
state is a node and child nodes are obtained by applicable &NDR operators.
The search graph includesstart node. The terminal nodes (having no children)
are labeled as@.VED or UNSOLVED.

A solution treeof an AND/OR search grapfd is a subtree which: (1) contains the
start nodesy; (2) if n in the tree is an OR node then it contains one of its child nodes
in G, and ifn is an AND node it contains all its children @; (3) all its terminal
nodes are SLVED.

3 Graphical Models

Graphical models include constraint networks defined batiats of allowed tu-
ples, directed or undirected probabilistic networks anst c@tworks defined by
cost functions. Each graphical model comes with its speggitimization queries
such as finding a solution of a constraint network that vedahe least number of
constraints, finding the most probable assignment giveresanadence, posed over
probabilistic networks, or finding the optimal solution fast networks.

In general, a graphical model is defined by a collection otfiamsF, over a set of
variablesX, conveying probabilistic or deterministic informationh@se structure
is captured by a graph.

DEFINITION 6 (graphical model) A graphical modelR is defined by a 4-tuple
R = (X,D,F,®), where:

1) X ={Xy,...,, X, } is aset of variables;

(2) D ={Dy,...,D,} is the set of their respective finite domains of values;

(3) F = {f1,..., f} is a set of real-valued functions, each defined over a subset
of variablesS; C X (i.e., the scope);

4) ®.f; € {IL fi,>; f:} is a combination operator.

The graphical model represents the combination of all itefions:®!_, f;.

DEFINITION 7 (cost of a full and partial assignment) Given a graphical model
R, the cost of a full assignment= (x4, ..., z,,) is defined by:

c(x) = ®rer f(z[scope(f)])

Given a subset of variablég C X, the cost of a partial assignmenis the combi-
nation of all the functions whose scopes are include¥ jmamelyFy, evaluated
at the assigned values. Namelyy) = ®scr, f(y[scope(f)]). We will often abuse
notation writingc(y) = ®yepy, f(y) instead.

DEFINITION 8 (primal graph) The primal graphof a graphical model has the
variables as its nodes and an edge connects any two varidideésappear in the
scope of the same function.

There are various queries (tasks) that can be posed ovdrigaapodels. We refer
to all asautomated reasoning problems general, an optimization task is a rea-
soning problem defined as a function from a graphical modaldet of elements,
most commonly, the real numbers.

DEFINITION 9 (constraint optimization problem) A constraint optimization prob-
lem (COP)is a pairP = (R, |}x), whereR = (X, D, F, ®) is a graphical model.
If S is the scope of functioli € F thenlls f € {mazsf, minsf} and the opti-
mization problem is to computgx ®;_, fi.

The min/max {) operator is sometimes called ahminationoperator because it
removes the arguments fhfrom the input functions’ scopes.

We next overview briefly two popular graphical models of ¢oaist networks and
belief networks, which will be the primary focus of this papeor a detailed de-
scription of these models we refer the reader to [9,1].

A constraint networkR = (X, D, C) has a set of constraints = {C},...,C.}
as its functions. Each constraint is a péalr = (.5;, R;), whereS; C X is the
scope of the relatior?; defined oversS;, denoting the allowed combinations of
values. The primal graph of a constraint network is calledstraint graph The
Constraint Satisfaction Problem (CSP) seeks to determineahatraint network
has a solution, and if so, to find one.

An immediate extension of constraint networks eost networksvhere the set of
functions are real-valued functions, the combination dimdiration operators are
summatiorandminimization respectively, and the primary constraint optimization
task is to find a solution having minimum cost. A special claissonstraint opti-
mization problems that has gained attention in recent yieaige Weighted Con-
straint Satisfaction Problem (WCSP). WCSP extends the cla€38f formalism
with soft constraintsvhich are represented ageger-valuedcost functions. In a
WCSPW = (X, D, F) each functionf; € F assigns "0” (no penalty) to allowed

f,(ABC)

e}

f,(ABD)
1

f,(BDE)

()
f,(ABC) /‘
f,(ABD) 9'"@

f,(BDE)

rlrlr|r|o|lo|lo|o|m
rPlr|lo|lo|r|r|o|o]l O
rlo|r|lo|r|lo|r|olm

D
0
1
0
1
0
1
0
1

N EEEEI
r|r|o|lo|r|r|o|o|m
rlo|r|o|r|olr|e] o
N|g|nv[8|nv 8|8
N EEEE
rlr|o|o|r|r|o|lo|w
a|lo|a|lo|nv]|o|8
A8 |w|8|~]|8|w

© ®
(a) Functions (b) Primal graph (c) Induced graph

Fig. 1. AWCSP instance with cost functioiig(A, B, C), f2(A, B, D) andf3(B, D, E).

tuples and a positive integer penalty to forbidden tuplé® dptimization problem
is to find a value assignment to the variables with minimumajignAs a reasoning
problem, solving a WCSP is to finflk ®]_, = minx >/, fi.

Example 1 Figure 1 shows an example of a WCSP instance with bi-valued vari-
ables. The cost functions are given in Figure 1(a). The vatu@dicates an incon-
sistent tuple. Figures 1(b) and 1(c) depict the primal ang itduced graph along
the orderingd = (A, B,C, D, E, F), respectively. The induced graph is obtained
by adding the dotted-arcs. It can be shown that the minimal aisition is 5 and
corresponds to the assignmént=0,B=1,C =1,D =0,E =1).

A belief networkZ = (X, D, P) is defined over a directed acyclic graph =
(X,E) and its functionsP, € P denote conditional probability tables (CPTSs),
P, = P(X;|pa;), wherepa; is the set ofparent nodes pointing taX; in G. A
belief network represents a joint probability distributioverX, P(Xy,..., X,,) =

* . P(X;|pa;). When formulated as a graphical model, the scopes of the func-
tions in P are determined by the directed acyclic grapheach functionf; ranges
over variableX; and its parents id;. The combination operator is multiplication,
namely®; = [],. The primal graph of a belief network is calledreral graph It
connects any two variables appearing in the same prohataibte.

A common optimization task is thost probable explanatiofMPE) task. It calls
for finding a complete assignment which agrees with the exidein the network,
wheree an instantiated subset of variables, and which has the stigivebabil-
ity among such assignments, namely to find an assigngnt., z%) such that:
,,,,, en 11y P(24, e|xp,,). As a reasoning problem, the MPE
task is to find}x ®[_, fi = mazrx [1_; P

Overview of previous work on WCSP and MPE We will mention related work
separately for WCSP and MPE. Clearly, both tasks are NP-hardn#oar of com-
plete and incomplete algorithms have been developed for W8BEhastic Local
Search (SLS) algorithms, such as GSAT [10,11], develope®@tmlean Satisfia-
bility and Constraint Satisfaction can be directly applied¥CSP [12]. SLS al-
gorithms cannot guarantee an optimal solution, but they Heeen successful in
practice on many classes of SAT and CSP problems. A numberaoflsbased

complete algorithms, using partial forward checking [18] heuristic computa-
tion, have been developed [14,15]. The Branch-and-Bounditigoproposed by
[5] uses bounded mini-bucket inference to compute the ggiteuristic function.
More recently, [16—18] introduced a family of depth-first Bca-and-Bound algo-
rithms that maintain various levels of directional soft-aonsistency.

Complete algorithms for MPE used in the past either the cyotset technique
(also called conditioning) [6], the join-tree clusteringchnique [19,20], or the
bucket elimination scheme [21]. These methods work wely dinthe network is
sparse enough. The algorithms based on cutset conditidraing time complex-
ity exponential in the cutset size but require only lineascsy whereas join-tree
clustering and bucket elimination algorithms are both tame space exponential
in the cluster size that equals the induced width (or tregwidf the network’s
moral graph. Following Pearl’s stochastic simulation aipons [6], the suitability
of Stochastic Local Search (SLS) algorithms for MPE wasistlioh the context of
medical diagnosis applications [22] and more recently 8+§5]. Best-First search
algorithms were proposed [26] as well as algorithms basdohear programming
[27]. Some extensions are also available for the task ofrisnthe & most-likely
explanations [28,29]. We recently introduced in [5,30] demtion of depth-first
Branch-and-Bound algorithms that use bounded inferencearticplar the Mini-
Bucket approximation [4], for computing the guiding heudstnction.

In the next section we present inference and search apmsachwhich we build
in this paper.

4 Search and Inference for Combinatorial Optimization
4.1 Bucket and Mini-Bucket Elimination

Bucket Elimination(BE) is a unifying framework for inference (., dynamic pro-
gramming) applicable to probabilistic and determiniséagoning [21]. Given an
optimization problem, namely a collection of cost funcgpand given a variable
orderingd, the algorithm partitions the functions into buckets, eas$ociated with
a single variable. A function is placed in the bucket of itguament that appears
latest in the ordering. The algorithm has two phases. Duitegfirst, top-down
phase, it processes each bucket, from last to first by a Var@imination proce-
dure that computes a new function which is placed in a lowekéu The variable
elimination procedure computes the combination of all fioms and eliminates the
bucket’s variable. During the second, bottom-up phasealdarithm constructs a
solution by assigning a value to each variable along thermgleconsulting the
functions created during the top-down phase. The compleXithe algorithm is
time and spac® (exp(w*)), wherew* is the induced width of the primal graph
along the ordering [21].

BE can be viewed as message passing from leaves to root alantket lree [9].

Let {B(X;), ..., B(X,)} denote a set of buckets, one for each variable, along an
orderingd = (X4, ..., X,,). A bucket treehas buckets as its nodes. BucketX)

is connected to buckdB(Y") if the function generated in buckét(.X) by BE is
placed inB(Y'). The variables of3(X), are those appearing in the scopes of any
of its new and old functions.

Mini-Bucket Elimination(MBE) is an approximation of bucket elimination. It is
designed to avoid the space and time problem of full bucketie&tion by par-
titioning large buckets into smaller subsets, calhethi-buckets each containing
at most; (calledi-bound) distinct variables. The mini-buckets are then essed
separately [4]. The algorithm outputs not only a lower bo(redp. an upper bound
for maximization problems) on the cost of the optimal santand an assignment,
but also the collection of theugmented bucketghich contain both the original as
well as the intermediate functions generated by the algorifThe complexity of
the algorithm, which is parameterized by thieound, is time and spac@(exp(i))
wherei < n [4]. It can be viewed as solving by bucket elimination a siifirgd
problem that is sparser [5,31]. When thbound is large enough.¢., i > w*), the
Mini-Bucket algorithm coincides with full BE on the originatgblem.

4.2 Branch-and-Bound Search with Mini-Bucket Heuristics

Most exact search algorithms for solving optimization peafs in graphical mod-
els follow aBranch-and-Boundchema [32]. This algorithm performs a depth-first
traversal of the search tree defined by the problem, whegenaltnodes represent
partial assignments and leaf nodes stand for complete ®hesughout the search,
the algorithm maintains a global bound on the cost of thenmgdtsolution, which
corresponds to the cost of the best full variable instantigbund thus far. At each
node, the algorithm computes a heuristic estimate of thiesodgtion extending the
current partial assignment and prunes the respectiveesutbthe heuristic estimate
is not better than the current global bound (that is - nottgref@r maximization
problems, not smaller for minimization problems). The aiifpon requires only a
limited amount of memory and can be used as an anytime schreamesly when-
ever interrupted, Branch-and-Bound outputs the best saltbiond so far.

The effectiveness of Branch-and-Bound depends on the qudlithie heuristic
function. We next describe briefly a general scheme for geimgy heuristic es-
timates based on the Mini-Bucket approximation. This schisrparameterized by
the Mini-Bucketi-bound, thus allowing for a controllable trade-off betwges-
processing (for heuristics generation) and search [5].

DEFINITION 10 (mini-bucket heuristic evaluation function [5]) Given an ordered
set of augmented bucket®(X;), ..., B(X,), ..., B(X,)} generated by the Mini-

Bucket algorithm MBE] along the orderingl = (Xj, ..., X,, ..., X,,), and given
a partial assignment? = (z1, ..., x,), the heuristic evaluation functiofi(z?) =
g(z?) + h(zP) is defined follows:

(1) 9(z*) = (Xrenx..x,) fi)(@?) is thecombinationof all the input functions
that are fully instantiated along the current path, whe?€X;..X,) denotes
the buckets3 (X,) through B(X,,) in the orderingd;

(2) Themini-bucket heuristidunctioni(z?) is defined as theombinationof all
the intermediate functions}, h(z?) = (Xhrenix. x,) h%)(z?), that satisfy
the following properties:

e They are generated in bucke®&g X,) throughB(X,,),
e They reside in bucket8(X;) throughB(X,).

Kask and Dechter showed [5] that for any partial assignmént (x4, ..., z,) of
the firstp variables in the ordering, the evaluation functit@?) = g(z?) + h(z?)
is admissibleandmonotonid8].

Branch-and-Boundjuided by theMini-Bucket heuristicss denoted by BBMBI).
The algorithm was introduced for a static variable ordeand has a space com-
plexity dominated by the pre-processing step which is egptal in the:-bound
[5]. BBMB(7) was evaluated extensively for probabilistic and deterstim opti-
mization tasks. The results showed conclusively that therse overcomes par-
tially the memory explosion of bucket elimination allowiagyradual trade-off of
space for time, and of time for accuracy when used as an agwiimeme.

Subsequently, [33,30] explored the feasibility of genagppartition-based heuris-
tics during search, rather than in a pre-processing maiiihgs. allows dynamic
variable and value ordering, a feature that can have tremenienpact on search.
The dynamic generation of these heuristics is facilitateMmi-Bucket-Tree Elim-
ination, MBTE(), a partition-based approximation defined over clusteedr33].
MBTE(:) outputs multiple (lower or upper) bounds for each possialeable and
value extension at once, which is much faster than running (#BEtimes, once
for each variable.

The resultingBranch-and-Bound with Mini-Bucket-Tree heuristj88,30], called
BBBT(7), applies the MBTE{) heuristic computation at each node of the search
tree. Clearly, the algorithm has a higher time overhead coadpaith BBMB(;)

for the same-bound, which computes the mini-buckets once. It is expbtalkeim
the-bound multiplied by the number of nodes visited, but it camne the search
space much more effectively. Experimental results on pritisic and determinis-

tic graphical models showed that the power of BBBT$ more pronounced over
BBMB(7) only at relatively smali-bounds. This quality is important because small
1-bounds imply restricted space.

10

5 AND/OR Search Trees for Graphical Models

In this section we overview the AND/OR search space for gegbimodels [1,8],
which forms the core of our work in this paper. For simpliciyd without loss of
generality we consider in the remainder of the paper an ogpdithion problen? =
(R, min) over a graphical modekR = (X, D, F,>") for which the combination
and elimination operators asemmatiorandminimization respectively.

As noted in Section 4, the usual way to do search in graphicaleats is to in-
stantiate variables in turn, following a static/dynamiciable ordering. In the sim-
plest case this process defines a search tree (called heredéh dree), whose
state nodes represent partial variable assignments. ér to@¢apture the indepen-
dence structure of the underlying graphical model it wasmédyg extended by AND
nodes, yielding the AND/OR search space for graphical nsjdé¢l The AND/OR
search space is defined usingseudo tre¢2,3].

DEFINITION 11 (pseudo tree, extended graph)Given an undirected grapty =
(V,E), adirected rooted treg = (V, E’) defined on all its nodes is callgtbeudo
treeif any arc of G which is not included i’ is a back-arc, namely it connects
a node to an ancestor iff. The arcs inE’ may not all be included ifE. Given
a pseudo treg of G, the extended grapbf G relative to T is defined agi” =
(V,EUE).

We next define the notion of AND/OR search tree for a graphroadel.

DEFINITION 12 (AND/OR search tree [1]) Given a graphical modeR, its pri-

mal graphG and a backbone pseudo trgeof GG, the associated AND/OR search
tree, denoted(R), has alternating levels of AND and OR nodes. The OR nodes
are labeledX; and correspond to the variables. The AND nodes are labgledr;)

(or simplyzx;) and correspond to value assignments in the domains of thiebles.

The structure of the AND/OR search tree is based on the undgrlyackbone
pseudo tree7. The root of the AND/OR search tree is an OR node labeled with
the root of 7. The children of an AND nodgX;, x;) are OR nodes labeled with the
children of variableX; in 7. A path from the root of the search trég-(R) to a
noden is denoted byr,,. If n is labeledX; or z; the path will be denoted, (X;) or

. (z;), respectively. The assignment sequence alongpattienotedisgn(r,), is

the set of value assignments associated with the AND nodeg alon

Semantically, the OR states in the AND/OR search tree reptedternative ways
of solving a problem, whereas the AND states represent @nolidlecomposition
into independent subproblems, conditioned on the assighat®ve them, all of
which need to be solved.

Following the general definition of a solution tree for ANDR®Gearch spaces [8]
we have here that:

11

AND 0]
oRr () (®)
g g

x © ©® ©@ ©® O 6 O 6

Vv « PEOOOOOOOOOOD® OO
p—@)—) ano [o][1][o][1][o] 2] o] [1] [o]| 2} (ol [1][o] 2] o] [2] [o]] (o] [1] o] [2][o] [1] o] 2] o] 2] o] [x] [o] [2]

(€)
Fig. 2. AND/OR search spaces for graphical models.

DEFINITION 13 (solution tree) A solution treeof an AND/OR search tre€-(R)
is an AND/OR subtre@ such that: (i) it contains the root of-(R), s; (i) if a
non-terminal AND node € Sr(R) isinT then all of its children are irf¥’; (iii) if
a non-terminal OR node € S+ (R) is in T then exactly one of its children is if;
(iv) all its leaf (terminal) nodes are consistent.

Example 2 Figure 2(a) shows the primal graph of cost network with 6 bi-ealu
variablesA, B, C, D, E and F', and 9 binary cost functions. Figure 2(b) displays
a pseudo tree together with the back-arcs (dotted lines)urgi@(c) shows the
AND/OR search tree based on the pseudo tree. A solution treghibghted. Notice
that once variables! and B are instantiated, the search space below the AND node
labeled(B, 0) decomposes into two independent subproblems, one thatédrab

C and one that is rooted &, respectively.

The virtue of an AND/OR search tree representation is tlsaside may be far
smaller than the traditional OR search tree. It was showttieaAND/OR search
tree represents all solutions and is therefore sound.Zésisicontrolled by some
graph parameters, as follows:

THEOREM 1 (size of AND/OR search trees [1])Given a graphical modeR and

a backbone pseudo trég, the size of its AND/OR search trég(R) is O(l - k™)
wherem is the depth of the pseudo trédounds its number of leaves, ahtiounds
the domain size. Moreover,® has treewidtho*, then there is a pseudo tree whose
associated AND/OR search tree(ign - k" 1o9m),

The arcs in the AND/OR trees are associated with weightsatteatlefined based
on the graphical model’s functions and the summation operéte next define arc
weights for any graphical model using the notiorbatkets of functions

DEFINITION 14 (buckets relative to a pseudo tree)Given a graphical modeR =
(X,D,F) and a backbone pseudo trég, the bucket ofX; relative to 7, de-
noted By (Xj;), is the set of functions whose scopes confgjrand are included
in pathr(X;), which is the set of variables from the rootXq in 7. Namely,

12

() f,(A,B)

Wac T
f,(AB,E)
O (2) f(BCD |

f,(A=0,C=0)+
f,(B=0,C=0,D=0

f,(A=0,C=1)+ f,(A=0,C=0)+
f,(8=0,C=1,D=0)f,(B=0,C=0,D=1

f,(A=0,C=1)+
f,(8=0,C=1,D=1)

Fig. 3. Arc weights for a cost network with 5 variables and 4 cost funstion

Br(X;) ={f € F|X; € scope(f), scope(f) C pathr(X;)}

DEFINITION 15 (OR-to-AND weights) Given an AND/OR search treer-(R), of
a graphical modeR, the weightw,, .., (X, z;) (or simplyw(X;, x;)) of arc (n, m),
whereX; labelsn andz; labelsm, is thecombination {.e., sum)of all the functions
in Br(X;) assigned by values along,. Formally,

w(X;, 1) = {0 M Br(X:) =0

Y renr(x fasgn(my)) , otherwise

DEFINITION 16 (cost of a solution tree)Given a weighted AND/OR search tree
S7(R), of a graphical modeiR, and given a solution tre& having OR-to-AND
set of arcsurcs(T'), the cost ofl" is defined byf (T') = Yccares(r) w(e).

Let 7}, be the subtree df rooted at node: in 7. The costf(7") can be computed
recursively, as follows:

(1) If T,, consists only of a terminal AND node thenf(7,,) = 0.

(2) If T,, is rooted at an OR node having an AND childin T,,, then f(7,,) =
w(n,m) + f(T,).

(3) If T}, is rooted at an AND node having OR childret, ..., m; in T,,, then
f(Tn) = Zf:l f(va)

Example 3 Figure 3 shows the primal graph of a cost network with functions
fi(A, B), f2(A,C), f3(A,B,E) and fy(B,C, D), a pseudo tree that drives its
weighted AND/OR search tree, and a portion of the AND/OR seasehwith ap-
propriate weights on the arcs expressed symbolically. I thase the bucket @f

13

contains the functiorf; (A, B, E), the bucket of” contains two functiong, (A, C)

and f4(B, C, D) and the bucket aB contains the functiorf; (A, B). We see indeed
that the weights on the arcs from the OR ndd¢o any of its AND value assign-
ments include only the instantiated functifji A, B, F), while the weights on the
arcs connecting”' to its AND child nodes are the sum of the two functions in its
bucket instantiated appropriately. Notice that the bucks#tsl and D are empty
and therefore the weights associated with the respectivesaels

With each node: of the search tree we can associate a value which stands for
the answer to the particular query restricted to the subpnolbelown [1].

DEFINITION 17 (node value)Given an optimization problef® = (R, min) over
a graphical modeRR = (X, D, F, }"), thevalueof a noden in the AND/OR search
tree Sr(R) is the optimal cost to the subproblem belapwnamely the subproblem
conditioned on the assignments along the path

As was shown in [1], specializing combination and elimioatto summation and
minimization, respectively, we can show that the value obdencan be computed
recursively, as follows: it i$) for terminal AND nodes andc for terminal OR
nodes, respectively. The value of an internal OR node isimddieby summinghe
value of each AND child node with the weight on its incoming and theropti-
mize (minimizepver all AND children. The value of an internal AND node is the
summatiorof values of its OR children. Formally, #ucc(n) denotes the children
of the noden in the AND/OR search tree, then:

0 ,if n=(X,z) is aterminal AND node
00 ,if n = X is aterminal OR node

v(n) =
> mesuce(n) V(M) ,if m = (X, z)is an AND node
MiN,esucen) (w(n, m) +v(m)) , if n = X is an OR node

(1)

If n is the root ofS+(R), thenuv(n) is the minimal cost solution to the initial prob-
lem. Alternatively, the value(n) can also be interpreted as the minimum of the
costs of the solution trees rootedatSearch algorithms that traverse the AND/OR
search space can compute the value of the root node yielden@riswer to the
problem. In [1] a generic depth-first AND/OR search alganiltalledAQ, is de-
scribed. It can be immediately inferred from Theorem 1 that:

THEOREM 2 (complexity [1]) A depth-first search algorithm traversing an AND/OR
search tree for finding the minimal cost solution is tiMe: - k™), wherek bounds

the domain size anah is the depth of the pseudo tree, and may use linear space. If
the primal graph has a tree decomposition with treewidth there there exists a

14

pseudo treg for which the time complexity 9 (n - k¥ 9m),

6 AND/OR Branch-and-Bound Search

This section introduces the main contribution of the paphbictv is a Branch-
and-Bound algorithm for AND/OR search spaces of graphicaletw Traversing
AND/OR search spaces by best-first or depth-first BranchBoid algorithms
were described as early as [8,34,35]. Here we adapt thesethigs to graphical
models. We will revisit next the notion of partial solutioeés [8] to represent sets
of solution trees which will be used in our description.

DEFINITION 18 (partial solution tree) A partial solution treel” of an AND/OR
search treeS is a subtree which: (i) contains the root nodef S+; (ii) if nin T’
is an OR node then it contains at most one of its AND child naués-j and ifn
is an AND node then it contains all its OR childrends or it has no child nodes.
A node inT” is called atip node if it has no children iA”. A tip node is either a
terminalnode (if it has no children i¥7), or anon-terminahode (if it has children
in ST)

A partial solution tree may be extended (possibly in sewegesls) to a full solution
tree. It representsctension(1”), the set of all full solution trees which can extend
it. Clearly, a partial solution tree all of whose tip nodes teminal in S+ is a
solution tree.

Brute-Force Depth-First AND/OR Tree Search.A simple depth-first search al-
gorithm, calledAQ, that traverses the AND/OR search tree was described imfp#].
algorithm maintains the partial solution being explored aomputes the value of
each node in a depth-first manner. It interleaves a forwagpdmsion of the current
partial solution tree with a cost revision step that upd#tesnode values. In the
expansion step, the algorithm selects a tip node of the mupatial solution tree
and expands it by generating its successors. It also ags®eiach OR-to-AND arc
with the appropriate weight. The node values are updatetddopropagation step,
in the usual way: OR nodes by minimization, while AND nodessibynmation.
The search terminates when the root node is evaluated aralgbethm returns
both the optimal cost and an optimal solution tree. For metaits see [1].

Heuristic Lower Bounds on Partial Solution Trees. Search algorithms for op-
timization tasks often use a guiding heuristic evaluationction. We will now
show how to extend the brute-foré®algorithm into a Branch-and-Bound scheme,
guided by a lower bound heuristic evaluation function. fattwe first define the
exact evaluation function of a partial solution tree, andl thien derive the no-
tion of a lower bound. Like in OR search, we assume a givenistatevaluation
function h(n) associated with each nodein the AND/OR search tree such that

15

h(n) < h*(n), whereh*(n) is the best cost extension of the conditioned subprob-
lem belown (i.e., h*(n) = v(n)). We callh(n) anode-based heuristic function

DEFINITION 19 (exact evaluation function of a partial solution tree) The exact
evaluation functionf*(7”) of a partial solution tree7” is the minimum of the
costs of all solution trees represented’By namely: f*(T") = min{f(T) | T €
extension(T")}.

We definef*(7)) the exact evaluation function of a partial solution tree texb at
noden. Thenf*(7) can be computed recursively, as follows:

(1) If 7] consists of a single node thenf*(7)) = v(n).

(2) If nis an OR node having the AND chitd in 7, thenf*(T)) = w(n,m) +
f*(T),), whereT} is the partial solution subtree @f’ that is rooted atn.

(3) If n is an AND node having OR children, ..., m;, in T/, then f*(T) =
i f*(T,.), whereT}, is the partial solution subtree &, rooted atm;.

Clearly, we are interested to find thfé(7") of a partial solution tre@” rooted at
the roots. If each non-terminal tip node of 7" is assigned a heuristic lower bound
estimatei(n) of v(n), then itinduces a heuristic evaluation function on the madi
cost extension of”, as follows.

DEFINITION 20 (heuristic evaluation function of a partial solution tree) Givena
node-based heuristic functidrim) which is a lower bound on the optimal cost be-
low any noden, namelyi(m) < v(m), and given a partial solution tre€’ rooted

at noden in the AND/OR search treg€r, atree-based heuristic evaluation function
f(T)) of TV, is defined recursively by:

(1) If T consists of a single nodethen f(7)) = h(n).

(2) If nis an OR node having the AND chitd in T, then f(T)) = w(n,m) +
f(T7,), whereT}, is the partial solution subtree &f’ that is rooted atn.

(3) If n is an AND node having OR childrem,, ..., m; in T}, then f(T") =
S, f(Ty,.), whereT?, is the partial solution subtree & rooted atm;.

PropPosITIONL Clearly, by definition,f (7)) < f*(7},). If n is the root of the
AND/OR search tree, thef(7") < f*(T").

Example 4 Consider the cost network with bi-valued variabksB, C, D, E and
F in Figure 4(a). The cost functiong (A, B, C), f2(A, B, F) and f;(B, D, E)
are given in Figure 4(b). A partially explored AND/OR searcketrelative to the
pseudo tree from Figure 4(a) is displayed in Figure 4(c). Theent partial solu-
tion tree7” is highlighted. It contains the noded; (A, 0), B, (B, 1), C, (C,0), D,
(D,0) andF'. The nodes labeled By, 0) and byF" are non-terminal tip nodes and
their corresponding heuristic estimates argD,0)) = 4 andh(F) = 5, respec-
tively. The node labeled Ky, 0) is a terminal tip node of’. The subtree rooted at
(B,0) along the path(A, (A,0), B, (B,0)) is fully explored, yielding the current

16

=
>
w
o

f,(ABF) f,(BDE)

Rk |o|o|o|o] m
o ==l =l{=] L]

F
0
1
0
1
0
1
0
1

Rk |o|lo|o(o] >
r(r|olo|r|r|olo] @
r|o|r|o|r|o|r|o] O
N [N|w|ofu|w|uo|n
Rk |o|lo|o|o] >
r(r|o|lo|k|r|olo] @
u|o|ufo|s||o]w
Al~|w|o|o|o|s|o

(a) Cost network and pseudo tree (b) Cost functions

current best solution

OR
AND

OR

AND 0
= O
2 /s .

/oy . N

AND [Al s
1
OR 4 @ 5 h(®.0)=4 tip nodes
6,74 8,75

AND o [

(c) Partial solution tree

Fig. 4. Cost of a partial solution tree.

best solution cost found so far equal@dWe assume that the search is currently
at the tip node labeled byD, 0) of 7". The heuristic evaluation function @f is
computed recursively as follows:

F(I) = w(A, 0) + f(T{40))
=w(A,0) + f(Tp)
=w(A,0) +w(B,1) + f(Tip 1))
=w(A,0) +w(B,1) + f(T5) + f(Tp) + f(Tk)
=w(A,0) +w(B,1) +w(C,0) + f(Tc) +w(D,0) + f(T(p) + h(F)
=w(A,0)+w(B,1) +w(C,0)+ 0+ w(D,0) + h((D,0)) + h(F)

+3+0+0+4+5

I
=)
+

Notice that if the pseudo treg is a chain, then a partial tré€ is also a chain
and corresponds to the partial assignmeht= (x4, ...,z,). In this casef(1")
is equivalent to the classical definition of the heuristialaation function ofz?.
Namely, f(T") is the sum of the cost of the partial solutiafi, g(z?), and the
heuristic estimate of the optimal cost extensiox®dfo a complete solution.

During search we maintain an upper bourids) on the optimal solution(s) as
well as the heuristic evaluation function of the currenttiipasolution treef (77),

17

OR 12 Heuristic evaluation functions:
AND
OR
AND
OR

AND

on ©

‘N
AND o

tip nodes

Fig. 5. lllustration of the pruning mechanism.

and we can prune the search space by comparing these twonesasis common

in Branch-and-Bound search. Namelyfifl”) > ub(s), then searching below the
current tip node of 7" is guaranteed not to redueé(s) and therefore, the search
space below can be pruned.

Example 5 For illustration, consider again the partially explored ANDR search
tree from Example 4 (see Figure 4(c)). In this case, the curpest solution found
after exploring the subtree beloWB, 0), which ends the patfA, (A, 0), B, (B, 0)),
is9. Since we computef{7”) = 12 for the current partial solution tree highlighted
in Figure 4(c), then exploring the subtree rooted&t, 0), which is the current tip
node, cannot yield a better solution and search can be pruned

Up until now we considered the case when the best solutiomdf@o far is main-
tained at the root node of the search tree. It is also posibtaintain the current
best solutions for all the OR nodes along the active path éxtvthe tip node of
T" ands. Then, if f(T)) > ub(m), wherem is an OR ancestor afin 7" and7}, is
the subtree of” rooted atm, it is also safe to prune the search tree betowhis
provides a faster mechanism to discover that the searcle $ilgdaw a node can be
pruned.

Example 6 Consider the partially explored weighted AND/OR search treféigna
ure 5, relative to the pseudo tree from Figure 4(a). The aurpartial solution tree
T" is highlighted. It contains the nodesd;, (A,1), B, (B,1), C, (C,0), D, (D, 1)
and F'. The nodes labeled By, 1) and byF' are non-terminal tip nodes and their
corresponding heuristic estimates dré(D, 1)) = 4 andh(F') = 5, respectively.
The subtrees rooted at the AND nodes labgléd0), (B,0) and (D, 0) are fully
evaluated, and therefore the current upper bounds of the Gdes labeled4, B
and D, along the active path, areb(A) = 12, ub(B) = 10 and ub(D) = 5,
respectively. Moreover, the heuristic evaluation funasiof the partial solution
subtrees rooted at the OR nodes along the current path carobguated recur-
sively based on Definition 20, namelyT",) = 13, f(T;) = 12 and f(T},) = 4,
respectively. Notice that while we could prune the subtreevbélo, 1) because

18

O©CoO~NOUIWNPRE

Algorithm 1 : ACBB: Depth-first AND/OR Branch-and-Bound search

Input: An optimization problem P = (X, D, F, » ", min), pseudo-tree 7 rooted at X1, heuristic function h(n).
Output: Minimal cost solution to P and an optimal solution tree.
create an OR node s labeled X /] Create and initialize the root node
v(s) <= 00; ST(s) < 0; OPEN <« {s}
while OPEN # () do
n < top(OPEN); remove n from OPEN /1 EXPAND
succ(n) « 0
if nis an OR node, labeled’; then
foreachz; € D; do
create an AND node n’ labeled by (X, z;)
v(n') « 0; ST(n') «+ 0
w(n,n') < ZfGBT(Xi) Flasgn(my)) /| Compute the OR-to-AND arc wei ght
succ(n) « succ(n) U {n'}

Ise ifn is an AND node, labeledX;, z;) then
deadend < false
foreach OR ancestorn of n do

0]

f(T},) < eval Partial Sol uti onTree(T},, h(m))

if £(T7,) > v(m)then
deadend < true /1 Pruning the subtree below the current tip node
break

if deadend == false then

foreach X; € childrens(X;) do
create an OR node n' |abeled by X ;
v(n') + oco; ST(n') < 0

| succ(n) + succ(n) U {n'}

else
p < parent (n)
| succ(p) < succ(p) — {n}

Add suce(n) ontop of OPEN
while succ(n) == 0 do
let p be the parent of n /| PROPAGATE
if nis an OR node, labele&; then
if X; == X; then
L return (v(n), ST(n)) /] Search term nates

v(p) < v(p) +v(n) /] Update AND val ue
| ST(p) < ST(p) U ST (n) /1 Update solution tree bel ow AND node

n is an AND node, labeledX;, z;) then

=

if v(p) > (w(p,n) + v(n)) then
v(p) + w(p,n) + v(n) /1 Update OR val ue
ST(p) + ST (n) U {(Xi,z;)} /1 Update solution tree bel ow OR node

remove n from succ(p)
n<p

f(T) > ub(A), we could discover this pruning earlier by looking at nagenly,
becausef(7};) > ub(B). Therefore, the partial solution treé€, need not be con-
sulted in this case.

Depth-First AND/OR Branch-and-Bound Tree Search.The AND/OR Branch-
and-Boundalgorithm, AOBB, for searching AND/OR trees for graphical models,
is described by Algorithm 1. It interleaves a forward expangEXPAND) of the
current partial solution tree with a backward propagatiep £ROPAGATE) that
updates the nodes upper-bounds of values. The fringe oftlrels is maintained
by a stack calleddPEN, the current node is, its parentp, and the current path

19

Algorithm 2 : Recursive computation of the heuristic evaluation functio

function: eval Parti al Sol uti onTree(T},,h(n))
Input: Partial solution subtree T?, rooted at node n, heuristic function h(n).
Output: Return heuristic evaluation function f(77,).

if succ(n) == 0 then
if n is an AND nodahen
| retun O

else
| return h(n)

else
if n is an AND nodehen
L let my, ..., my, bethe OR children of n

return Zle eval PartialSolutionTree(Ty, , h(m;))

else ifn is an OR nodé¢hen
let m bethe AND child of m
return w(n, m) + eval Partial SolutionTree(T},, h(m))

7, A data structureST'(n) maintains the actual best solution found in the subtree
belown. The node-based heuristic functib(n) of v(n) is assumed to be available
to the algorithm, either retrieved from a cache or computathd search.

EXPAND selects a tip node of the current partial solution tree and expands it
by generating its successors.rfis an OR node, labeled’;, then its successors
are AND nodes represented by the valugsn variable X;'s domain (lines 6—
11). Each OR-to-AND arc is associated with the appropriatghtésee Definition
15). Similarly, if n is an AND node, labeledX;, z;), then its successors are OR
nodes labeled by the child variablesXfin 7 (lines 20-23). There are no weights
associated with AND-to-OR arcs.

Before expanding the current AND nodg labeled(X;, x;), the algorithm com-
putes the heuristic evaluation function for every part@uson subtree rooted at
the OR ancestors of along the path from the root (lines 12—-18). The search below
n is terminated if, for some OR ancestar, f(7)) > v(m), wherev(m) is the
current best upper bound on the optimal cost betewl he recursive computation

of f(7),) based on Definition 20 is described in Algorithm 2. Noticeoalsat for
any OR node:, labeledX; in the search tree)(n) is trivially initialized to co and

is updated in line 36.

PROPAGATE propagates node values bottom up in the search tree. Igeted

when a node has an empty set of descendants (note that asueaebsor is eval-
uated, it is removed from the set of successors in line 39 Means that all
its children have been evaluated, and their final values leeady determined. If
the current node is the root, then the search terminatesitwittalue and an opti-
mal solution tree (line 32). I is an OR node, then its paremis an AND node,
andp updates its current valugp) by summation with the value of (line 33).

An AND noden propagates its value to its paremin a similar way, by mini-
mization (lines 35-38). Finally, the current nodes set to its parent (line 40),

because: was completely evaluated. Each node in the search treeesdsads the

20

current best assignment to the variables of the subprob&dowtit and when the
algorithm terminates it contains an optimal solution t®pecifically, ifn is an
AND node, thenST'(n) is the union of the optimal solution trees propagated from
n's OR children (line 34). Ifn is an OR node and’ is its AND child such that

n = argminmesucem)(w(n, m) + v(m)), thenST(n) is obtained from the label
of n’ combined with the optimal solution tree bela(line 38). Search continues
either with apropagationstep (if conditions are met) or with axpansiorstep.

THEOREM3 The time complexity of the depth-first AND/OR Branch-andrlou
algorithm (AOBB) is O(n - k™), wherem is the depth of the pseudo tréebounds
the domain size and is the number of variables, and it can use linear space. If the
underlying primal graph has treewidth*, thenAOBB is timeO(n - k¥ 9m).

Proof. The time complexity follows immediately from the size of tA&ID/OR
search tree explored (see Theorems 1 and 2). Since only tfentpartial solution
tree needs to be stored in memory, the algorithm can operétesar spacel

AOBB can naturally accommodate minimization tasks such asrgplWeighted
CSPs. For maximization problems, such as the MPE task in Bayestworks,
one need only replace summation tmyltiplication (for AND nodes) and mini-
mization bymaximization(for OR nodes), respectively. In this case, the current
values maintained by OR nodes are lower bounds on the exlesyavhile the
heuristic evaluation function of the current partial smnttree yields an upper-
bound on the optimal cost. Moreover, the node values mustitigized with 1 for
AND nodes and for OR nodes, respectively.

7 Lower Bound Heuristics for AND/OR Search

The effectiveness of any Branch-and-Bound search stratezptlgrdepends on
the quality of the heuristic evaluation function. Natuyalinore accurate heuris-
tic estimates may yield a smaller search space, possiblynaich higher computa-
tional cost. The right trade-off between the computati@varhead and the pruning
power exhibited during search may be hard to predict. Onlesoptimary heuristics
we used is the Mini-Bucket heuristic introduced in [5] for Ofarch spaces. In the
following subsections we discuss its extension to AND/O&ale spaces. We also
extend the local consistency based lower bound developdd+#18] to AND/OR
search spaces. Both of these heuristic functions were used Experiments.

21

h° (A,B,C) hE (B,C) he (A,F)

iD
D (f,(A,D) E [,(B,E) G f4(A,G) :
f,(B,D) £,(C,E) f10(F.G)
f5(C,D) mini-buckets

(c) Bucket Elimination (d) Mini-Bucket Elimination MBER)

Fig. 6. Static mini-bucket heuristics for= 3.

7.1 Static Mini-Bucket Heuristics

Consider the cost network and pseudo tree shown in Figurgsbgb(b), respec-
tively, and consider also the variable orderihg= (A, B,C, D, E, F,G) and the
bucket and mini-buckets configuration in the output as diggd in Figures 6(c) and
6(d), respectively (see Sections 4.1 and 4.2 for more dgt&ibr clarity, we dis-
play the execution of the bucket and mini-bucket elimima@édong the bucket tree
corresponding to the given elimination ordering. The btittee is also a pseudo
tree [1]. The functions denoted on the arcs are those messageéfrom a bucket
node to its parent in the tree.

Let us assume, without loss of generality, that variablesd B have been instan-
tiated during search. Lét"(a, b, ¢) be the minimal cost solution of the subproblem
rooted at node” in the pseudo tree, conditioned ¢4 = a, B = b,C = ¢). In
the AND/OR search tree, this is represented by the subprotdeted at the AND
node labeledC, ¢), ending the path A, (A, a), B, (B,b),C, (C, c) }. By definition,

h*(aa bv C) = mind,e(f7<ca 6) + f6(b7 6) + f3(a7 d) + f5(C, d) + f4(b7 d)) (2)

Notice that we restrict ourselves to the subproblem oveeks D and £ only.

22

Therefore, we obtain:

h*(a,b, c) = ming(f3(a,d) + fs(c,d) + fa(b,d) + min.(f7(c,e) + fs(b,€)))
= mina(fy(a,d) + fyled) + fa(b, d)) + ming(fr(c,) + fo(b,)
= hP(a,b,c) + h¥ (b, c)

where,

hP(a,b,c) = ming(fs(a,d) + fs(c,d) + fi(b,d))
hP(b,c) = mine(fr(c,e) + fo(b,e))

Notice that the functions?(a, b, ¢) andh” (b, ¢) are produced by the bucket elimi-
nation algorithm shown in Figure 6(c). Specifically, thedtion h”(a, b, c), gener-
ated in bucket oD by bucket elimination, is the result of a minimization ogena
over variableD. In practice, however, this function may be too hard to commps

it requires processing a function on four variables. It camdplaced by a partition-
based approximatiore(g., the minimization is split into two parts). This yields a
lower bound approximation, denoted by, b, ¢), namely:

h*(a,b,c) = ming(fs(a,d) + fs(c,d) + fi(b,d)) + h*(b,c)
> mingfs(a,d) + ming(fs(c,d) + fi(b,d)) + h¥(b,)
= hP(a) + hP(b,c) + h¥ (b, c)
2 h(a,b,c)

where,

hD(a) = mingf3(a,d)
hP (e, b) = ming(fs(c,d) + fi(b, d))

The functionsh” (a) andh? (b, c) are the ones computed by the Mini-Bucket al-
gorithm MBE), shown in Figure 6(d). Therefore, the functiéfu, b, ¢) can be
constructed during search from the pre-compiled mini-btgkyielding a lower
bound on the minimal cost of the respective subproblem.

For OR nodes, such as labeled byC', ending the pat{ A, (A, a), B, (B, b),C'},
h(n) can be obtained by minimizing over the values D the sum between
the weightw(n, m) and the heuristic estimatgm) below the AND childm of n.
Namely,h(n) = min,,(w(n,m) + h(m)).

23

In summary, similarly to [5], the mini-bucket heuristic asgted with any node

in the AND/OR search tree can be obtained from the pre-caudpiini-bucket
functions. As was shown in earlier work [5], the mini-bucketristic functiom(n)
associated with a nodein the search tree yields a lower bound on the minimum
cost of the conditioned subproblem belavsee [5] for additional details).

DEFINITION 21 (static mini-bucket heuristic) Given an ordered set of augmented
buckety B(X,), ..., B(X,,)} generated by the Mini-Bucket algorithm MBJE&long
the bucket tred”, and given a node in the AND/OR search tree, trgtatic mini-
bucket heuristidunctioni(n) is computed as follows:

(1) If nis an AND node, labeled byX,, x,), then:

h(n) = Z hk

hke{B(Xp)UB(X}..X{)}

Namely, it is the sum of the intermediate functibfishat satisfy the following
two properties:
e They are generated in bucke® X},), whereX, is any descendant of, in
the bucket tred’,
e They reside in bucke?(X,) or the bucketd3(X)..X!) = {B(X,), ..., B(X])}
that correspond to the ancestof(}, ..., X} of X, in T
(2) Ifnis an OR node, labeled by, then:

h(n) = min,,(w(n,m) + h(m))
wherem is the AND child of: labeled with valuer, of X,,.

Example 7 Figure 6(d) shows the bucket tree for the cost network in Fig{e)
together with the intermediate functions generated by MBEI@nhg the ordering
d = (A, B,C,D,E,F,G). The static mini-bucket functioh(a, b, ¢) associated
with the AND node labeled”, ¢) ending the patfA = a, B = b,C = ¢) in the
AND/OR search tree is by definitidria, b, c) = hP(a) + h”(c,b) + hF(b,c). The
intermediate function&?”(c,b) and h¥ (b, c) are generated in bucket® and F,
respectively, and reside in buckét The functiom” (a) is also generated in bucket
D, but it resides in bucked, which is an ancestor af’ in the bucket tree.

We see that the computation of the static mini-bucket heard a noden in the
AND/OR search tree is identical to the OR case (see Definitin except that it
only considers the intermediate functions generated bytlo&ets corresponding
to the current conditioned subproblem rooted at

Example 8 For example, consider again the cost network in Figure 6(&ufes
7(a) (which repeats Figure 6(d)) and 7(b) show the compileckbtistructure ob-
tained by MBE() along the given elimination ordet= (A, B,C, D, E, F, G), for
the AND/OR and OR spaces, respectively. The static miniebbekiristic function

24

(6 menuea)

F: hS(FA) f4(FB)

E: £,(E,C)(E,B)

D: f4(D,A) f5(D,C) 4(D,B)

hS (A,F) /
e g | - PECBI W (CB) f(cB)
iD fA(B,D)] P E [fG(B,E)] G [fg(A,G)] e
: fs(CO) J | f,(CE) f1o(F.G) B: / hf (B,A) h¢ (B) f,(B,A)
mini-buckets A: hP(A) he (A)
(a) AND/OR static mini-buckets (b) OR static mini-buckets

Fig. 7. AND/OR versus OR static mini-bucket heuristicsfet 3.

underestimating the minimal cost extension of the parsaignmenfA = a, B =
b,C' = c) in the OR search space iga,b,c) = hP(a) + hP(c,b) + hF(b,c) +

h% (b, a). Namely, it involves the extra functidif (b, a) which was generated in
bucketF and resides in bucke®, as shown in Figure 7(b). This is because, in the
OR space, variableg’ and GG are part of the subproblem rooted at, unlike the
AND/OR search space.

7.2 Dynamic Mini-Bucket Heuristics

It is also possible to generate the mini-bucket heuristiormation dynamically
during search, as we show next. The idea is to compute N)B&hditioned on the
current partial assignment.

DEFINITION 22 (dynamic mini-bucket heuristics) Given a bucket treg with buck-
ets{B(X,), ..., B(X,)}, anoden in the AND/OR search tree and given the current
partial assignment.sgn(m,) along the path ta:, thedynamic mini-bucket heuris-
tic functioni(n) is computed as follows:

(1) If nis an AND node labeled byX,, =), then:
hin)= Y A*

R EB(X,)

Namely, it is the sum of the intermediate functidristhat reside in bucket
B(X,) and were generated by MB#(conditioned orusgn(m,), in buckets
B(X}), whereX, is any descendant of,, in 7.
(2) Ifnis an OR node labeled by, then:
h(n) = min,,(w(n,m) + h(m))

wherem is the AND child of: labeled with valuer, of X,,.

25

Fig. 8. Dynamic mini-bucket heuristics for= 3.

Given ani-bound, the dynamic mini-bucket heuristic implies a muajhler com-
putational effort compared with the static version. Howgetlge bounds generated
dynamically may be far more accurate since some of the asatre assigned and
will therefore yield smaller functions and less partitiogi More importantly, the
dynamic mini-bucket heuristic can be used with dynamicalad ordering heuris-
tics, unlike the pre-compiled one, which restricts seapdbetconducted in an order
that respects a static pseudo tree structure. However, wsieg dynamic mini-
bucket heuristics with a static variable ordering, rathemt recomputing a new
ordering and bucket structure at each node in the searchvire@se the initial
variable ordering and partitioning into buckets restddi@the current subproblem.

Example 9 Figure 8 shows the bucket tree structure corresponding tdthary
cost network instance displayed in Figure 6(a), along thenglation ordering
(A, B,C, D, E, F,G). The dynamic mini-bucket heuristic estimate, b, ¢) of the
AND node labeledC, ¢) ending the patq A, (A, a), B, (B,b),C,(C,c)} is com-
puted by MBEX) on the subproblem represented by the bucke@nd £, condi-
tioned on the partial assignmeftl = a, B = b,C = ¢). Namely, MBEY) pro-
cesses buckef3 and £’ by eliminating the respective variables, and generates two
new functionsh” (c) andh®(c), as illustrated in Figure 8. These new functions are
in fact constants since variable§ B andC' are assigned in the scopes of the input
functions that constitute the conditioned subproblggta, D), f4(b, D), f5(c, D),
fs(b, E) and f;(c, E), respectively. Thereforg(a,b,c) = hP(c) + hF(c) and it
equals the exadi*(a, b, ¢) in this case.

7.3 Local Consistency Based Heuristics for AND/OR Search

Another class of heuristic lower bounds developed for gigddranch-and-Bound
search for solving binary Weighted CSPs is based on expipitical consistency
algorithms for cost functions. In the next section we ovamwthe basic principles

26

behind these types of heuristics and discuss their extensiAND/OR trees.

7.3.1 Review of Local Consistency for Weighted CSPs

As in the classical CSP, enforcing soft local consistencyhenrtitial problem pro-
vides in polynomial time arquivalentproblem defining the same cost distribution
on complete assignments, with possible smaller domainslap

Let R = (X,D,C) be a binary WCSP, wherX = {X;,..,X,} andD =
{Ds,...,D,} are the variables and their corresponding domaihss the set of
binary and unary soft constraints. A binary soft constraint.X;, X;) € C (or C;;

in short) isC;;(X;, X;) : D; x D; — N. A unary soft constraint’;(X;) € C (or

C; in short) isC;(X;) : D; — N. We assume the existence of a unary constraint
C; for every variableX;, and a zero-arity constraint, denoteddy If no such con-
straints are defined, we can always define dummy ones,(as) = 0, Vx; € D, or

Cp = 0. We denote byT, the maximum allowed cost (., T = o). The cost of a
tuplex = (x4, ..., z,), denoted byost(x), is defined by:

cost(z) = Y Cy(ali,j])+ > Ci(x[i]) + Cy

CijEC C,eC

For completeness, we define next some local consistencW&<<iaP, in particular
node arc anddirectional arc consistengyas in [16,17]. We assume that the set of
variablesX is totally ordered. We note that there are several strorugail konsis-
tencies which were defined in recent years, sudulhdirectional arc consistency
(FDAC) [16,17] orexistential directional arc consisten¢izDAC) [18].

DEFINITION 23 (soft node consistency [16,17]let R = (X, D, C) be a binary
WCSP(X;, x;) is star node consistentNC*) if Cy + C;(z;) < T. Variable X; is
NC* if: (i) all its values are NC* and (ii) there exists a value; € D; such that
C;(x;) = 0. Valuex; is called asupportfor variable X;. R is NC* if every variable
is NC*.

DEFINITION 24 (soft arc consistency [16,17] et R = (X, D, C) be a binary
WCSP(X;,, z;) is arc consistent (AC) with respect to constraint if there exists a
valuez; € D, such thatC;;(x;, z;) = 0. Valuez; is called asupportfor the value
x;. Variable X; is AC if all its values are AC wrt. every binary constraint afiag
X;. R is AC* if every variable is AC anav C".

DEFINITION 25 (soft directional arc consistency [16,17]LetR = (X, D, C) be

a binary WCSP(X;, x;) is directional arc consistent (DAC) with respect to con-
straintC;, 7 < j, if there exists a value; € D; such thaiC;;(z;, z;) +Cj(x;) = 0.
Valuez; is called afull supportof z;. Variable X; is DAC is all its values are DAC
wrt. everyC;;, i < j. R is DAC™ if every variable is DAC andvC"*.

27

For our purpose, we point out that enforcing such local ctescies is done by
the repeated application of atomic operations ca#ed equivalence preserving
transformationg[36]. This process may increase the value(gfand the unary
costsC;(z;) associated with domain values. The zero-arity cost functipdefines

a strong lower boundwvhich can be exploited by Branch-and-Bound algorithms
while the updated’;(x;) can inform variable and value orderings [16—18].

If we consider two cost function§;;, defined over variableX; and X;, andC;,
defined over variable;, a valuex; € D; and a costy, we can addv to C;(z;)
and subtract from everyC;;(z;, z;) for all ; € D;. Simple arithmetic shows
that the global cost distribution is unchanged while costy fmave moved from
the binary to the unary level (& > 0, this is called gprojection) or from the
unary to the binary level (ife < 0, this is called arextensioh In these operations,
any cost abové’, the maximum allowed cost, can be considered as infiniteand i
thus unaffected by subtraction. If no negative cost appeaalsf all costs above
are set toT, the remaining problem is always a valid and equivalent WC®E. T
same mechanism, at the unary level, can be used to move owsishfeC; to Cp.
Finally, any value a such thét;(z;)+Cj is equal toT can be deleted. For a detailed
description of these operations, we refer the reader tol[@86—

7.3.2 Extension of Local Consistency to AND/OR Search Spaces

As mentioned earlier, the zero-arity constraiftwhich is obtained by enforcing
local consistency, can be used as a heuristic function tegBranch-and-Bound
search. The extension of this heuristic to AND/OR searcleepés fairly straight-
forward and is similar to the extension of the mini-bucketifigtics from OR to
AND/OR spaces. Considét,, the subproblem rooted at the AND nodglabeled
(X;,z;), in the AND/OR search tree defined by a pseudo ffeelhe heuristic
functionh(n) underestimating(n) is the zero-arity cost functiofij resulted from
enforcing soft arc consistency ovey, only, subject to the current partial instanti-
ation of the variables along the path from the root of thede#&ee. Note thab,

is defined by the variables and cost functions correspondirige subtree rooted
atX; in 7. If nis an OR node labeled; thenh(n) is computed in the usual way,
namelyh(n) = min,,(w(n,m) + h(m)), wherem is the AND child ofn, labeled
with valuez; of X;. Notice that in this case the weights associated with the @R-t
AND arcs are computed now relative to the equivalent sudprmolyesulted from
enforcing arc consistency.

There is a strong relation between directional arc consigtand mini-buckets. It
was shown in [16] that given a WCSP with = oo, and a variable ordering, the
lower bound induced by mini-buckets involving at most 2 &hles is the same as
the lower bound induced by, after the problem is made directional arc consistent.
However, the mini-bucket computation provides only a loweund while DAC
enforcing provides both a lower bound and a directional artsistent equivalent

28

problem. All the work done to compute the lower bound is cegatun this problem
which offers the opportunity to perform incremental updaiéthe lower bound.

8 Dynamic Variable Orderings

The depth-first AND/OR Branch-and-Bound algorithm introdligeSection 6 as-
sumed a static variable ordering determined by the undeylgseudo tree of the
primal graph. In classical CSPs, dynamic variable ordesrignown to have a sig-
nificant impact on the size of the search space explored Y8&l). known variable
ordering heuristics, such asin-domain[38], min-dom/dded39], brelaz[40] and
min-dom/wded41,42] were shown to improve dramatically the performante
systematic search algorithms. In this section we discuse strategies that allow
dynamic variable orderings in AND/OR search.

We distinguish two classes of variable ordering heuristics

(1) Graphbased heuristics(g., pseudo tree) that try to maximize problem de-
composition, and

(2) Semantiebased heuristics:(g., min-domain) that aim at shrinking the search
space, based on context and current value assignment.

These two approaches are orthogonal, namely we can use tre@imary guide
and break ties based on the other. We present three schernembining these
heuristics. For simplicity and without loss of generalitg wonsider thenin-domain
as our semantic variable ordering heuristic. It selectséxt variable to instantiate
as the one having the smallest current domain among thetantreged (future)
variables. Clearly, it can be replaced by any other heuristic

8.1 Partial Variable Ordering (PVO)

The first approach, calledND/OR Branch-and-Bound with Partial Variable Or-
deringand denoted bpOBB+PVOuses the static graph-based decomposition given
by a pseudo tree with a dynamic semantic ordering heurigptied over chain por-
tions of the pseudo tree. It is an adaptation of the orderegiktics developed in
[43,44] which were used for solving large-scale SAT probiestances.

Consider the pseudo tree from Figure 2(a) inducing the fotigwariable groups

(or chains){A, B}, {C, D} and{E, F'}, respectively. This implies that variables
{A, B} should be considered befof€’, D} and {E, F'}. The variables in each
group can be dynamically ordered based on a second, indepemelristic. Notice
that once variable§A, B} are instantiated, the problem decomposes into indepen-
dent components that can be solved separately.

29

cost functions

domains alB] #a8) |[a]E] fag) @

0|0 3 0|0 0
D,={0,1} o= [o[1] s Pean) P(cor)

of2] o |[of2] 1 e
Dg={0,1,2} 1/o] 4 o[3] 4 e
0-(01,2,3) B @O : '5

2 0
D¢=Dp=D¢=Dg=Dy=D¢ 1 3] 5 Pire) P(cor
(a) Cost network (b) AND/OR search tree

Fig. 9. Full dynamic variable ordering for AND/OR Branch-and-Bouedrsh.

AOBB+PVO can be derived from Algorithm 1 with some simple modification
As usual, the algorithm traverses an AND/OR search tree iepaghdfirst manner,
guided by a pre-computed pseudo tfEeWhen the current AND node, labeled
(X;, z;) is expanded in the forward step (line 9), the algorithm gatesrits OR suc-
cessor, labeled by;, based on the semantic variable ordering heuristic (lije 12
Specifically, the OR node, labeledX; corresponds to the uninstantiated variable
with the smallest current domain in the current pseudo theenc If there are no
uninstantiated variables left in the current chain, namvelyable X; was instanti-
ated last, then the OR successors @afre labeled by the variables with the smallest
domain from the variable chains rooted By in 7.

8.2 Full Dynamic Variable Ordering (DVO)

A second, orthogonal approach to partial variable ordetioglledAND/OR Branch-
and-Bound with Full Dynamic Variable Orderingnd denoted bypvO+AOBB,
gives priority to the dynamic semantic variable orderingristic and applies static
problem decomposition as a secondary principle duringckedihis idea was also
explored in [45] for model counting, and more recently in][#8 weighted model
counting.

For illustration, consider the cost network with 8 variadle, B, C, D, E, F, G, H},
13 binary cost functions, and the domains given in Figuré, @@follows: D, =
{0, 1}, Dgp = {O, 1,2}, andDC =Dp=Dgp=Dp =Dg=Dy = {O7 1,2,3},
respectively. Each of the cost functiofi§A, B) and f(A, E) assigns amo cost
to two of their corresponding tuples, whereas the remaidihdunctions do not
contain such tuples.

30

During search, variables are instantiated in min-domaigieoHHowever, after each
variable assignment we test for problem decomposition ahdghe remaining
subproblems independently. Figure 9(b) shows the partidDAOR search tree ob-
tained after several variable instantiations based on thedegree ordering heuris-
tic. Notice that, depending on the order in which the vagalare instantiated, the
primal graph may decompose into independent comportegteer or deeperin
the search tree. For instance, after instantiatintp 0, the values{1,2} can be
removed from the domain o8, because the corresponding tuples have co$h
the cost functiory (A, B) (see Figure 9(a)). Therefors, is the next variable to be
instantiated, at which point the problem decomposes irtependent components,
as shown in Figure 9(b). Similarly, whef is instantiated to 1, value, 1} can
also be removed from the domain®f because of the cost functigitA, F). Then,
variable £/, having 2 values left in its domain, is selected next in tha-domain
order, followed byB with domain size 3.

DVO+AOBB can be expressed by modifying Algorithm 1 as follows. It amtiates
the variables dynamically using the min-domain orderingristic while maintain-
ing the current graph structure. Specifically, after theenirAND noden, labeled
(X, z;), is expandedPVO+AOBB tentatively removes from the primal graph all
nodes corresponding to the instantiated variables togefitietheir incoming arcs.
If disconnected components are detected, their corresppadbproblems are then
solved separately and the results combined in an AND/OR erafmthis case a
variable selection may yield a significant impact on tigimgrthe search space,
yet, it may not yield a good decomposition for the remainingpotem.

8.3 Dynamic Separator Ordering (DSO)

The third approachAND/OR Branch-and-Bound with Dynamic Separator Order-
ing (AOBB+DSO), exploits constraint propagation which can be used foradyio
graph-based decomposition with a dynamic semantic variafalering, giving pri-
ority to the first. At each AND node we apply a lookahead procedcoping to
detect singleton variables.€., with only one feasible value left in their domains).
When the value of a variable is known, it can be removed fronttreesponding
subproblem, yielding a stronger decomposition of the siinepl primal graph.

AOBB+DSO defined on top of Algorithm 1 creates and maintains a sepafatd
the current primal graph. A graph separator can be compusied the hypergraph
partitioning method presented in [44]. The next variablehssen dynamically
from S by the min-domain ordering heuristic unflis fully instantiated and the
current problem decomposes into several independentahllepns, which are then
solved separately. The separator of each component isdréam a simplified
subgraph resulted from previous constraint propagatiepssand it may differ for
different value assignments. Clearly, if no singleton Jalea are discovered by the

31

lookahead steps this approach is computationally iddrit@sOBB+PVO, although
it may have a higher overhead due to the dynamic generatitheseparators.

9 Experimental Results

We have conducted a number of experiments on two common ization problem
classes in graphical models: finding the Most Probable Ewgtian in Bayesian
networks and solving Weighted CSPs. We implemehtedr algorithms in C++
and carried out all experiments on a 1.8GHz dual-core Atidamith 2GB of RAM
running Ubuntu Linux 7.04.

9.1 Overview and Methodology

MPE Task for Bayesian Networks We tested the performance of the AND/OR
Branch-and-Bound algorithms on the following types of praigé: random Bayesian
networks, random coding networks, grid networks, Bayesgwaorks derived from
the ISCAS’89 digital circuits benchmark, genetic linkagalgsis networks, net-
works from the Bayesian Networks Repository, and Bayesianar&taused in the
UAI'06 Inference Evaluation contest. We report here in dete results obtained
for grid networks and genetic linkage analysis networky,dmlit we summarize
the results over the entire set of benchmarks, and referetheer to [47,48] for
further details.

We evaluated the two classes of depth-first AND/OR Branch&mahd search
algorithms, guided by the static and dynamic mini-buckeiristics, denoted by
AOBB+SMB(i) and AOBB+DMB(i) , respectively. We compare these algorithms
against traditional depth-first OR Branch-and-Bound alporg with static and
dynamic mini-bucket heuristics introduced in [5,30], destbbyBB+SMB() and
BB+DMVB() , respectively, which were among the best-performing cetedearch
algorithms for this domain at the time. The parametapresents the mini-bucket
i-bound and controls the accuracy of the heuristic. The psétgs that guide
AND/OR search algorithms were generated using the min#fdl laypergraph par-
titioning heuristics, described later in this section. Viaconsider an extension
of the AND/OR Branch-and-Bound that exploits the determinm@sent in the
Bayesian network by constraint propagation.

Since the pre-compiled mini-bucket heuristics requiraticsvariable ordering, the
corresponding OR and AND/OR search algorithms used thie statable ordering

2 The code is available online dittp://graphmod.ics.uci.edu/group/Software
3 Available online athttp://graphmod.ics.uci.edu/group/Repository

32

derived from a depth-first traversal of the guiding pseude &s well. When we ap-
plied dynamic variable orderings with dynamic mini-bucketrristics we observed
that the computational overhead was prohibitively largepared with the static
variable ordering setup. We therefore do not report thesdtee Note however that
the ACBB+SMB(7) andAOBB+DMB(i) algorithms apply a restricted form of dy-
namic variable and value ordering. Namely, there is a dyoamernal ordering of
the successors of the node just expanded, before placimgdht® the search stack.
Specifically, in line 27 of Algorithm 1, if the current nodeis an AND node, then
the independent subproblems rooted by its OR children caolved in decreasing
order of their corresponding heuristic estimates (yiejdocal variable ordering).
Alternatively, if n is OR, then its AND children corresponding to domain values
can also be sorted in decreasing order of their heuristimasts (thus yielding a
value ordering).

We compared our algorithms with the\@1Am version 2.3.2 software packate
SAMIAM contains an implementation of Recursive Conditioning [49]attan
also be viewed as an AND/OR search algorithm. The algoritseswa context-
based caching mechanism that records the optimal solutitresolved subprob-
lems and retrieves the saved values when the same subpsohlenencountered
later during search. This version of recursive conditigrtiaverses a context min-
imal AND/OR search graph [1], rather than a tree, and its smammplexity is
exponential in the treewidth. Note that when we use minkbudeuristics with
high values of, we use space exponentialiifior the heuristic calculation and for
its storing. Our search regime however does not consumedtiijanal space.

Weighted CSPs We evaluated the performance of the AND/OR Branch-and-
Bound algorithms on: random binary WCSPs, scheduling problemsthe SPOT5
benchmark, networks derived from the ISCAS’89 digital citcbenchmark, radio
link frequency assignment problems and instances of thedvtasnd game. We
report here detailed results for Mastermind game instaaecd SPOTS5 problem in-
stances only. We also provide a summary of the results adidaon the other types
of problems, and refer the reader to [47,48] for the full Hessu

In addition to the mini-bucket heuristics, we also considdreuristic evaluation
function that is computed by maintaining Existential Dtrecal Arc-Consistency
(EDAC) [18]. AOBB with this heuristic is calledhOEDAC. We also used the ex-
tension of ACEDAC that incorporates dynamic variable orderings heuristies d
scribed earlier yieldingACEDAC+PVO (partial variable ordering - Section 8.1),
DVO+ACEDAC (full dynamic variable ordering - Section 8.2) aA@EDAC+DSO
(dynamic separator ordering - Section 8.3). For comparig@report results ob-
tained with our implementation of the classic OR Branch-Bodnd with EDAC,

4 Available online ahttp://reasoning.cs.ucla.edu/samiavile used théatchtool 1.5pro-
vided with the package.

33

denoted here bBBEDAC.

For comparison, we rahool bar °, which contains an OR Branch-and-Bound
implementation that maintains EDAC during search and ugeardic variable or-
deringst ool bar was introduced in [18] and is currently one of the best penfor
ing solvers for binary WCSPs.

The semantic-based dynamic variable ordering heurisgd by both the OR and
AND/OR Branch-and-Bound algorithms with EDAC heuristics &last ool bar
was themin-dom/ddedneuristic, which selects the variable with the smallesorat
of the current domain size divided by the future degree. Wege broken lexico-
graphically.

Measures of Performance In all our experiments we report the CPU time in
seconds and the number of nodes visited for solving the pnadl We also specify
the problems’ parameters such as the number of variabjesmber of evidence
variables ¢), maximum domain sizek{, number of functionsd), maximum arity
of the functions £), the depth of the pseudo trek) @nd the induced width of the
graph *). When evidence is asserted in the netwarkandh are computed after
the evidence nodes were removed from the graph. We alsa thedime required
by the Mini-Bucket algorithm MBE{ to pre-compile the heuristic information.
The best performance points are highlighted. In each tdblelenotes that the
respective algorithm exceeded the time limit. Similarlyyt” stands for exceeding
the 2GB memory limit.

9.2 Finding Good Pseudo Trees

The performance of the AND/OR Branch-and-Bound search dlgos is influ-
enced by the quality of the guiding pseudo tree. Finding thmemal depth/induced
width pseudo tree is a hard problem [2,50,3]. We describeé mex heuristics for
generating pseudo trees with relatively small depthstedwidths which we used
in our experiments.

Min-Fill Heuristic ~ Min-Fill [51] is one of the best and most widely used heuris-
tics for creating small induced width elimination orders érdering is generated
by placing the variable with the smallddt set (:.c., number of induced edges that
need be added to fully connect the neighbors of a node) anihefethe ordering,
connecting all of its neighbors and then removing the végiflom the graph. The
process continues until all variables have been eliminated

5 Available online athttp://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/SoftCSP

34

Once an elimination order is given, the pseudo tree can baa&tl as a depth-first
traversal of the min-fill induced graph, starting with theiahle that initiated the
ordering, always preferring as successor of a node theesbddjacent node in the
induced graph. An ordering uniquely determines a pseudo Tiieis approach was
first used by [3].

To improve orderings, we can run the min-fill ordering sel/énaes by randomiz-
ing the tie breaking rule. In our experiments, we ran the fillileuristic just once
and broke the ties lexicographically.

Hypergraph Decomposition Heuristic An alternative heuristic for generating
a low height balanced pseudo tree is based on the recursteeng@sition of the
dual hypergraph associated with the graphical model.

DEFINITION 26 (dual hypergraph) Thedual hypergrapbf a graphical modeR =
(X,D,F),isaparH(R) = (V,E), where each function i is a vertexv; € V
and each variable iX is an edges; € E connecting all the functions (vertices) in
which it appears.

DEFINITION 27 (hypergraph separators) Given a dual hypergrapi = (V,E)

of a graphical model, dypergraph separator decompositiera triple (#, S, «)
where: (i)S C E, and the removal of separatesH into k£ disconnected compo-
nents (subgraphs); and (it} is a relation over the size of the disjoint subgraphs
(i.e., balance factor).

It is well known that the problem of finding the minimal sizepeygraph separa-
tor is hard. However heuristic approaches were developedtbe years. A good
approach is packaged mveTi S°.

We will use this software as a basis for our pseudo tree geoer&ollowing [49],
generating a pseudo trége for R usinghMeTi S is fairly straightforward. The
vertices of the hypergraph are partitioned into two baldnceughly equal-sized)
parts, denoted b${;.;, and?H, ;. respectively, while minimizing the number of
hyperedges across. A small number of crossing edges tteasgito a small number
of variables shared between the two sets of functibfis, and#,,,: are then each
recursively partitioned in the same fashion, until theytaona single vertex. The
result of this process is a tree of hypergraph separatorshvdain be shown to also
be a pseudo tree of the original model where each separatesponds to a subset
of variables chained together.

Since the hypergraph partitioning heuristic uses a noardehistic algorithm{.e.,
hMeTi S), the depth and induced width of the resulting pseudo tregvagy sig-

6 Available online athttp://www-users.cs.umn.edu/karypis/metis/hmetis

35

nificantly from one run to the next. In our experiments we pitkhe pseudo tree
with the smallest depth out of 10 independent runs.

From the experiments presented in the remainder of thigoseete observed that
the min-fill heuristic generates lower induced width psetrdes, while the hyper-
graph heuristic produces much smaller depth pseudo tréesefbre, perhaps the
hypergraph based pseudo trees appear to be favorable éoseezch algorithms
guided by heuristics that are not sensitive to the treew(eth, local consistency
based heuristics).

9.3 Results for Empirical Evaluation of Bayesian Networks

In this section we show, using grid networks and linkage ysigalnetworks, the
impact of (1) AND/OR versus OR search, (2) static versus oyaanini-bucket
heuristics as well as (3) the impact of exploiting detersmmi

9.3.1 Grid Networks

In random grid networks, the nodes are arranged ivan/N square and each CPT
is generated uniformly at random. We experimented with lerobnstances having
bi-valued variables that were initially developed in [58} the task of weighted
model counting. For these problemysranges between 10 and 38, and, for each in-
stance90% of the CPTs are deterministic (having only 0 and 1 probabdittries).

Table 1 displays the results for experiments with 8 gridsnafeasing difficulty,
using min-fill based pseudo trees. The columns are indexeteoynini-bucket-
bound. The table is organized into two horizontal blockgheeorresponding to
a different range of-bound values. For each test instance we ran a single MPE
guery withe evidence variables picked randomly. We observe A@RB+SMB(7)

is better tharBB+SMB() at relatively small-bounds {.¢, i € {8,10,12}) when
the heuristic is weak. This demonstrates the benefit of AND®er classical OR
search when the heuristic estimates are relatively weakhenalgorithms rely pri-
marily on search rather than on pruning via the heuristiduaseon function. As
thei-bound increases and the heuristic estimates become srmanugh to cut the
search space substantially, the difference between ANCI@ROR Branch-and-
Bound decreases, especially on the first 3 easier instannghearder instances,
however AOBB+SMB(i) with the largest reporteitbounds offers the best perfor-
mance. For example, on tl@®- 30- 1 grid, AOBB+SMB(20) found the MPE in
about 87 seconds, whereBB+SNVB(20) exceeded the 1 hour time limit.

When focusing on dynamic mini-bucket heuristics, we see AQBB+DVB(7) is
better tharBB+DVB(¢) at relatively smalk-bounds, but the difference is not that
prominent as in the static case. This is probably because theuristics are far

36

Table 1

CPU time in seconds and nodes visited for solgnig networks using mini-bucket heuris-
tics and min-fill based pseudo trees. Time limit 1 hour. The two horizontal blotkhe
table show different ranges of the mini-buckdtounds.

minfill pseudo tree
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n,e BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=8 i=10 i=12 i=14 i=16 i=18
time time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.02 0.04 0.07 0.07 0.08
90-10-1 0.12 3,348 424 0.05 153 0.07 153 0.08 153 0.09 153
(13, 39) 0.13 0.17 8,080 0.06 2,052 0.05 101 0.07 101 0.08 101 0.08 101
(100, 0) 0.87 543 0.57 250 0.48 153 054 153 0.54 153 054 153
0.34 344 0.33 241 0.32 101 0.39 101 0.39 101 0.39 101
0.02 0.04 0.11 0.22 0.72 271
90-14-1 75.71 1,235,366 71.98 1,320,090 1.07 18,852 054 5,035 0.90 2,826 278 1,075
(22, 66) 11.97 4.27 130,619 344 100,696 0.61 17,479 3321 0.81 2,938 2.80 3,386
(196, 0) 149.44 16,415 52.34 2,894 12.46 537 13.71 211 19.22 199 38.05 198
65.74 31,476 3357 4,137 7.50 397 12.00 211 17.65 199 36.87 198
0.03 0.05 0.14 0.46 4.36
90-16-1 - - - - 23.74 347,479 1.85 18,855 6,098 453 1,894
(24,82 147.19 362.66 10,104,350 91.03 2,600,690 7.53 193,440 1.89 39,825 1.78 23,421 4.55 5,842
(256, 0) 771.73 43,366 553.08 13,363 172.14 2,011 166.61 1,169 65.15 414 181.71 414
1114.19 462,180 410.87 47,121 109.11 3,227 80.57 719 40.68 260 109.76 260
MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)
grid BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n,e BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j)
i=10 i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes time nodes
0.14 0.33 0.89 2.69 7.61 31.26
90-24-1 - - - - - - - - - - - -
(33,111) - - - - - 1500.66 24,117,151 921.96 18,238,983 1,413,764 111.46 1,308,009
(576, 20) - - - - - - - - - - - -
- - - - - - | 1367.38 2,739 | 1979.42 1228 | 2637.71 598
0.16 0.37 1.02 3.39 11.74 36.16
90-26-1 - - - - - - 324.30 2,234,558 - - 70.53 327,859
(36, 113) - 1533.11 17,899,574 206.93 2,903,489 242.37 3,205,257 59,055 21.48 165,182 36.49 5777
(676, 40) - - - - - - - - - - - -
1852.27 177,661 - - - - | 151418 2,545 | 2889.49 1,191 R -
0.25 0.53 1.35 4.36 13.34 50.53
90-30-1 - - - - - - - - - - - -
(43, 150) - - - 742,51 9,445,224 239.08 3,324,942 215.56 3,039,966 101.10 1,358,569 485,300
(900, 60) R R - - - - - R - - R -
0.33 0.66 1.60 5.35 18.42 62.17
90-34-1 - - - - - - - - - - - -
(45, 153) - - - - - - - - - - - 1,549,829
(1154, 80) - - - - - - - - - - - -
0.41 0.82 2.16 6.43 20.46 72.10
90-38-1 - - - - - - - - - - - -
(47, 163) - - - 936.65 6,835,745 1858.99 12,321,175 341.05 2,850,393 252.67 2,079,146
(1444, 120) - - - - - - - - - - - -

37

grid network 90-14-1 : CPU time grid network 90-14-1 : nodes visited
[minfill: w*=22, h=66] [minfill: w*=22, h=66]
10000 100
—@—— BB+SMB(i) —@&—— BB+SMB(i)
o AOBB+SMB(i) (e} AOBB+SMB(i)

v ——-¥-—— BB+DMB(i) 107 4 ——-v——— BB+DMB(i)
1000 N — A —- AOBB+DMB(j) —-—A.-—- AOBB+DMB(j)

100 H

time (sec)
nodes
S

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

i-bound i-bound

(a) CPU time in seconds (b) Nodes visited

Fig. 10. Comparison of the impact of static and dynamic mini-bucket heuriStcsvn are
the CPU time in seconds (a) and the number of nodes visited (b) 080th&4- 1 grid
network from Table 1.

90-24-1 - AOBB+SMB(i) 90-26-1 - AOBB+SMB(i)

[hypergraph: w*=36, h=59] [minfill: w*=33, h=111] 10000 [hypergraph: w*=34, h=58] [minfill: w*=36, h=113]

—— hypergraph —e— hypergraph
—O— minfill —O— minfill

10000

1000 4

1000 4

time (sec)

i-bound i-bound

Fig. 11. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
Distribution of CPU time for solving th80- 24- 1 (left) and90- 26- 1 (right) grid net-
works with AOBB+SMB(1) .

more accurate compared with the pre-compiled version amddkings in number
of nodes caused by traversing the AND/OR search tree do axuglate into addi-
tional time savings. When comparing the static and dynamig-bucket heuristics,
we see that the latter are competitive only for relativelyabmbounds, because
of their higher computational overhead. This may be sigaifidecause smalt
bounds usually require restricted space. At higher leveteeni-bound, the accu-
racy of the dynamic mini-bucket heuristic does not outweigloverhead.

In some exceptional cases the OR Branch-and-Bound explonest feodes than
the AND/OR counterpart. For example, on #9@- 16- 1 grid, the search space
explored byAOBB+SMB(16) was almost 4 times larger that that explored by
BB+SMB(16) . This can be explained by the internal dynamic ordering used
AND/OR Branch-and-Bound to solve independent subproblewtedat the AND
nodes in the search tree.

Figures 10(a) and 10(b) plot the running time and number afesovisited by

38

AOBB+SMB(i) andAOBB+DVB() (resp.BB+SMB(:) andBB+DMB(7)), on the
90- 14- 1 grid network from Table 1. Focusing &OBB+SMB(i) (resp.BB+SMB(7))
in Figure 10(a) we see that its running time, as a functiony &drms a U-shaped
curve. At first ¢ = 4) it is high, then as the-bound increases the total time
decreases (when = 10 the time is 3.44 forACBB+SMB(10) and 71.98 for
BB+SMB(10) , respectively), but then asincreases further the time starts to in-
crease again. The same behavior can be observed in the cASBB DVB(7)
(resp.BB+DMB(7)) as well. When looking at the size of the search space explored
as a function of the-bound (shown in Figure 10(b)) we can see that ag-iheund
increases, the strength of the heuristic estimates ineseaswell, therefore pruning
the search space more effectively.

Figure 11 displays the running time distribution ADBB+SMB(i) using hyper-
graph based pseudo trees for 8@ 24- 1 (left) and90- 26- 1 (right) grid net-
works, respectively. For each reporiedound (the X axis), the corresponding data
point and error bar show the average as well as the minimumrandmum run-
ning time obtained over 20 independent runs of the algoritith a 30 minute
time limit. We also record the average induced width and gsdtee depth ob-
tained with the hypergraph partitioning heuristic (showrhe header of each plot
in Figure 11). For comparison, we also display the resultaiobd with the min-
fill pseudo trees from Table 1. We see that the hypergraphdaseudo trees are
significantly shallower compared with the min-fill ones, amdome cases they are
able to improve performance dramatically, especially ktireely smalli-bounds.
For example, on the gri@0- 24- 1, AOBB+SMB(14) guided by a hypergraph
pseudo tree is about 2 orders of magnitude faster &@B+SMB(14) using a
min-fill pseudo tree. At larget-bounds, the pre-compiled mini-bucket heuristic
benefits from the small induced width which normally is obéal with the min-fill
ordering. ThereforedOBB+SMB(i) using min-fill based trees is generally faster
thanAOBB+SMB(7) guided by hypergraph based treeg(, 90- 26- 1).

9.3.2 Genetic Linkage Analysis

In human genetic linkage analysis [53], thaplotypeis the sequence of alleles
at different loci inherited by an individual from one pareahd the two haplo-
types (maternal and paternal) of an individual constithig individual'sgenotype
When genotypes are measured by standard procedures, titeigeslist of un-
ordered pairs of alleles, one pair for each locus. fteximum likelihood haplo-
typeproblem consists of finding a joint haplotype configurationdll members of
the pedigree which maximizes the probability of data. It barshown that given
the pedigree data, the haplotyping problem is equivalemotaputing the most
probable explanation of a Bayesian network that represbatgddigree [54,55].

Table 2 shows the results for experiments with 12 genetialie network$ us-

7 Available athttp://bioinfo.cs.technion.ac.il/superlink’he corresponding belief network

39

Table 2

CPU time in seconds and nodes visited for solviiegetic linkage networksusing static
mini-bucket heuristics and min-fill based pseudo trees. Time limit 3 hoursthrae hori-
zontal blocks of the table show different ranges of the mini-buéketunds.

min-fill pseudo tree

MBE() MBE() MBE() MBE() MBE()
pedigree | Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(n. k) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) i=6 i=8 i=10 i=12 i=14
time nodes time nodes time nodes time nodes time nodes
ped1 0.05 0.05 0.11 031 097
(299, 5) 54.73 - - - - 6.34 37,657 7.33 42,447 8.30 41,134
(15, 61) 544 24.30 416,326 1317 206,439 24,361 184 25,674 1.89 15,156
ped3s 012 045 2.20 60.97 out
(582, 5) - - - - - - - -
(17, 59) out - - | 812058 85367,022 - - | 304060 35394461
peds0 011 0.74 5.38 37.19 out
(479, 5) - - - - - - - - -
(18, 58) out - - - - | are77 5566578 | [104.00] 748,792
MBE() MBE() MBE() MBE() MBE()
pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(k) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(W*, h) i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes
ped23 0.42 233 11.33 27475 out
(310, 5) 9146.19 - - - - | 317672 14,044,797 34352 358,604
(27,71) out | 49805 6623197 | [15.45 154,676 16.28 67,456 286.11 117,308
ped37 067 5.16 21.53 58.59 out
(1032, 5) - - - - - - - -
(21, 61) out | 27339 3191218 | 168209 25729009 | 109679 15598863 128.16 953,061
MBE() MBE() MBE() MBE() MBE()
pedigree Superlink BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(n. k) Samlam AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(W, h) i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes
ped18 051 1.42 459 12.87 19.30
(1184, 5) 139.06 - - - - - - - - - -
(21,119) 157.05 - - | 217781 28651103 | 270.9 2,555,078 100.61 682,175 [20.27] 7,689
ped20 1.42 511 37.53 410,96 out
(388, 5) - - - - - - - -
(24, 66) out | 379331 54941659 | 129376 18449,393 | 125005 17,810674 | 108005 9,151,195
ped25 034 072 227 6.56 29.30
(994, 5) - - - - - - - - - - -
(34,89) out - - - - | 930928 111,301,168 | 3607.82 34,306,937 | [2965.60 28,326,541
ped30 0.42 0.83 178 575 21.30
(1016,5) | 13095.83 - - - - - - - - - -
(23,118) out - - - - - - 21410 1,379,131 [o1.92] 685,661
ped33 058 231 7.84 33.44 112.83
(581, 4) - - - - - - - - - - -
(37, 165) out | 280461 34229495 | 737.96 9114411 | 389698 50,072,988 | [159.50] 1,647,488 295647 35903215
ped39 052 232 841 3315 81.27
(1272, 5) 32214 - - - - - - - - - -
(23, 94) out - - - - | 404156 52,804,044 38613 2171470 | [141.23 407,280
ped4?2 420 31.33 206.40 out out
(448,5) - - - - - -
(25,76) out - - - - - -

40

ped23 - AOBB+SMB(i) ped33 - AOBB+SMB(i)
[hypergraph: w*=24, h=38] [minfill: w*=27, h=71] 10000 [hypergraph: w*=27, h=48] [minfill: w*=37, h=165]

—e— hypergraph —e— hypergraph
—O— minfill —O— minfill

10000

1000 4

1000 o

time (sec)

Fig. 12. Min-Fill versus Hypergraph partitioning heuristics for pseude tonstruction.
Distribution of CPU time for solving thped23 (left) andped33 (right) genetic linkage
networks with ACBB+SMB(1) .

ing AND/OR Branch-and-Bound search guided by static miniketiheuristics.
The columns are indexed by the mini-buckdiound. The table is organized into
three horizontal blocks, each corresponding to a differamgie ofi-bound values.
For comparison, we include results obtained withP&RLINK 1.6. SUPERLINK
[54,55] which is currently one of the most efficient solveos §enetic linkage
analysis, uses a combination of variable elimination amditaning, and takes
advantage of the determinism in the network. We did notAGBB+DMVB(i) (resp.
BB+DIVB(7)) on this domain because of its prohibitively high computaail over-
head associated with relatively largounds.

We observe thahOBB+SMB(i) is the overall best performing algorithm, outper-
forming its competitors on 8 out of the 12 test networks. Fxangple, on the
ped23 instance AOBB+SMB(12) is 2 orders of magnitude faster thawrE:r-
LINK, whereas 8mIAM andBB+SMB(i) exceed the 2GB memory bound and the

3 hour time limit, respectively. Similarly, on theed30 instance AOBB+SVB(20)
outperforms SPERLINK with about 2 orders of magnitude, while neithemsl Am

nor BB+SMB(20) are able to solve the problem instance. Notice however tieat t
ped4?2 instance is solved only by B3 ERLINK. When looking at the impact of
the mini-bucket-bound, we see again that the performance of Branch-and-Bound
changes with the mini-bucket strength.

Figure 12 displays the running time distributionAgBB+SNMB() with hypergraph
based pseudo trees for 2 linkage instances from Table 2. $\thaethe hypergraph
based pseudo trees are significantly shallower comparddtiét min-fill based
ones, and in some cases they are able to improve the perfoendaamatically for
relatively smalli-bounds.

41

Table 3

CPU time and nodes visited for solvirpterministic grid networks using mini-bucket
heuristics, min-fill based pseudo trees and constraint propagation. Timellimoiir. The
two horizontal blocks of the table correspond to different ranges afihebucketi-bound.

min-fill pseudo tree

AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
grid AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(j) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(n, e i=8 i=10 i=12 i=14 i=16 i=18
time nodes time nodes time nodes time nodes time nodes time nodes
0.31 8,080 0.11 2,052 101 0.05 101 0.05 101 0.06 101
90-10-1 0.28 7,909 0.09 2,050 0.05 101 0.06 101 0.06 101 0.06 101
(13, 39) 0.31 344 0.30 241 0.24 101 0.30 101 0.30 101 0.28 101
(100, 0) 0.52 344 0.47 241 0.39 101 0.47 101 0.47 101 0.47 101
7.84 130,619 6.42 100,696 1.03 17,479 0.34 3,321 0.61 2,938 181 3,386
90-14-1 2.36 45,870 252 46,064 0.66 11,914 3,286 0.61 2,922 1.78 3,359
(22, 66) 62.17 31,476 25.22 4,137 5.05 397 7.61 211 10.67 199 21.23 198
(196, 0) 33.03 10,135 16.08 3,270 4.92 39% 7.72 211 10.88 199 21.64 198
646.83 10,104,350 164.02 2,600,690 13.14 193,440 292 39,825 2.08 23,421 292 5,842
90-16-1 121.24 2,209,097 78.97 1,416,247 6.99 121,595 225 35,376 22,986 284 5,609
(24,82 1030.41 462,180 316.77 47,121 75.13 3,227 52.16 719 25.63 260 65.05 260
(256, 0) 841.32 452,923 248.38 37,670 55.86 2,264 49.99 719 25.03 260 64.99 260
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i) AOBB+SAT+SMB(i)
grid AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
(w*, h) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i) AOBB+SAT+DMB(i)
(ne i=10 i=12 i=14 i=16 i=18 i=20
time nodes time nodes time nodes time nodes time nodes time nodes
2214.12 24,117,151 1479.15 18,238,983 132.35 1,413,764 135.72 1,308,009
90-24-1 1529.21 18,103,859 2605.56 30,929,553 689.47 9,868,626 738.17 11,100,088 1,282,902 121.67 1,273,738
(33,111) 884.41 2,739 1223.18 1,228 1634.57 598
(576, 20) 843.79 2,739 1173.48 1,228 1611.74 598
2217.15 17,899,574 314.88 2,903,489 382.22 3,205,257 8.42 59,055 23.14 165,182 22.22 5777
90-26-1 233.94 2,527,496 103.56 1,264,309 167.27 1,805,787 43,798 19.36 150,345 2211 4,935
(36, 113) 1420.21 177,661 938.98 2,545 1701.64 1,191 2638.95 691
(676, 40) 1099.87 171,961 1592.53 108,694 1034.26 12,819 862.38 2,545 1583.37 1,191 2478.19 691
1125.40 9,445,224 379.14 3,324,942 339.66 3,039,966 147.99 1,358,569 93.63 485,300
90-30-1 754.427 7,050,411 367.41 3,723,781 190.38 2,002,447 164.39 1,734,294 107.95 1,150,182 387,242
(43, 150) _
(900, 60) _
462.41 1,549,829
90-34-1 981,831
(45, 153) -
(1154, 80) -
2007.47 6,835,745 3589.43 12,321,175 800.72 2,850,393 566.11 2,079,146 368.60 1,038,065
90-38-1 1128.56 5,121,466 410.94 1,972,430 578.54 2,339,244 270.05 1,349,223 278.11 1,249,270 702,806
(47, 163) -
(1444, 120) -

9.3.3 The Impact of Determinism in Bayesian Networks

In general, when the functions of the graphical model exqbesh hard constraints
and general cost functions, it is beneficial to exploit theapatational power of the
constraints explicitly via constraint propagation [56}-3%r Bayesian networks,
the hard constraints are represented by the zero prolyabitites of the CPTs. We

of the pedigree data was extracted using the export feature ofutbEREINK 1.6 program.

42

note that the use of constraint propagation via directioesblution [60] or gen-
eralized arc consistency has been explored in [56,57], enctintext of variable
elimination algorithms where the constraints are alsoaex¢d based on the zero
probabilities in the Bayesian network. The approach we takééndling the de-
terminism in belief networks is based on the known technigfuenit resolution
for Boolean Satisfiability (SAT). The idea of using unit regan during search for
Bayesian networks was first explored in [58]. One common waighwve used for
encoding hard constraints as a CNF formula isdinect encoding61].

We evaluated the AND/OR Branch-and-Bound algorithms witticstand dynamic
mini-bucket heuristics on selected classes of Bayesianank$ncontaining deter-
ministic conditional probability tables.¢., zero probability tuples). The algorithms
exploit the determinism present in the networks by applynigresolution over the
CNF encoding of the zero-probability tuples, at each nodbaersearch tree. They
are denoted byAOBB+SAT+SMB(i) and AOBB+SAT+DMB(i) , respectively. We
used a unit resolution scheme similar to the one employed@af f , a state-
of-the-art SAT solver introduced by [62]. These experirsemére performed on a
2.4GHz Pentium IV with 2GB of RAM running Windows XP, and thiere the
CPU times reported here may be slower than those in the presextions.

Table 3 shows the results for experiments with the grid neks/fsom Section 9.3.1.
As mentioned earlier, these networks have a high degred@frdmism encoded in
their CPTs. Specifically, 90% of the probability tables ardwainistic, containing
only 0 and 1 probability entries.

We observe thadOBB+SAT+SMB(i) improves significantly oveAOBB+SMVB(i) ,
especially at relatively smallbounds. For example, on tH0- 26- 1 grid in-
stance AOBB+SAT+SMB(10) is 9 times faster thal\OBB+SMB(10) . As the
i-bound increases and the search space is pruned moreveffgdine difference
betweenAOBB+SMB(i) and AOBB+SAT+SMB(/) decreases because the heuris-
tics are strong enough to cut the search space significaiiymini-bucket heuris-
tic already does some level of constraint propagation.

When comparing the AND/OR search algorithms with dynamid+butket heuris-
tics, we see that the difference betwe®pBB+DVB(/) andAOBB+SAT+DVB(7)
is again more pronounced at relatively smiabounds.

9.3.4 Summary of Empirical Results on Bayesian Networks

Our extensive empirical evaluation on Bayesian networksasestnated conclu-
sively that the AND/OR Branch-and-Bouti@e search algorithms guided by static
mini-bucket heuristics were the best performing algorghaverall. The differ-
ence betweeOBB+SMB(i) and the OR tree search counterpBB+SMB(i)
was more pronounced at relatively sméalbounds (corresponding to relatively
weak heuristic estimates) and amounted to almost 2 ordersghitude in terms

43

of both running time and size of the search space explared (SCAS’89 net-
works, grid networks, instances from the UAI'06 Inferencalgation contest, ge-
netic linkage analysis). For largeébounds, when the heuristic estimates are strong
enough to prune the search space substantially, the diferbetween AND/OR
and OR Branch-and-Bound decreased. We also showed@B&+SMB(i) was in
many cases able to outperform dramatically the currengé-sththe-art solvers for
Bayesian networks such aga@IAM and SUPERLINK (for genetic linkage analy-
sis). With dynamic mini-bucket heuristicOBB+DIVB(;) AND/OR Branch-and-
Bound proved competitive only for relatively smalbounds due to computational
overhead issueg.g., ISCAS’89 networks, instances from the Bayesian Networks
Repository). This suggests that the dynamic mini-bucketisgécs can be consid-
ered when space is limited. We also evaluated the impacttefrdenism over IS-
CAS’89 networks and genetic linkage analysis networks. &leespirical results,
also available in [47,48], showed that while applying uagalution caused signif-
icant time savings on the ISCAS’89 networks, it was not cdsicéifze for linkage
networks.

9.4 Results for Empirical Evaluation of Weighted CSPs

In this section we focus on Weighted CSP problems. We evahaitemini-bucket
and EDAC heuristics when the problems are solved in a statiabie ordering.
We also evaluate the impact of dynamic variable orderingsnatsing directional
arc-consistency (EDAC) based heuristics.

9.4.1 SPOT5 Benchmark

SPOT5 benchmark contains a collection of large real scireglproblems for the
daily management of Earth observing satellites [63]. Tudj@m of scheduling an
Earth observing satellite is to select from a set of candigdibtographs, the best
subset such that a set of imperative constraints are sdtesiakthe total importance
of the selected photographs is maximized. These probleiamoss can be naturally
casted as WCSPs with binary and ternary cost functions, asiloleddn [63].

Table 4 reports the results obtained for experiments witiPO B networks, us-
ing min-fill pseudo trees. We see th&DBB+SMB(i) is the best performing al-
gorithm on this dataset. The overhead of the dynamic miokbuheuristics out-
weighs search pruning here. We also see, once again, thetimipoe AND/OR
versus the OR search space. For instance, od@denetwork, the difference be-
tweenAOBB+SMB(12) andBB+SMB(12) , in terms of running time and size of
the search space explored, is up to 3 orders of magnitudeb@steperformances
on this domain are obtained ®NOBB+SMB(i) at relatively large-bounds which
generate very accurate heuristic estimates. For exarARB+SMB(14) is the

44

Table 4

CPU time and nodes visited for solvigPOT5 networksusing mini-bucket heuristics and
min-fill based pseudo trees. Time limit 2 hours.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) AOEDAC
spot5 BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) toolbar
AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(w*, h) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i) BB+DMB(i)
(n, k, ¢ AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i) AOBB+DMB(i)
i=4 i=6 i=8 i=12 i=14
time nodes time nodes time nodes time nodes time nodes time nodes
0.01 0.03 0.34 21.72 147.66 613.79 8,997,894
29 - - - - 25.69 5,095 148.27 632 4.56 218,846
(14, 42) 8.44 86,058 483 45,509 2,738 21.74 246 147.69 481
(83, 4, 476) 44.42 12,007 131.64 9,713 57.22 541 678.22 507 1758.78 507
28.27 14,438 65.91 11,850 5372 364 630.09 330 1675.74 330
0.01 0.11 0.50 28.81 223.14
42b 2154.64 9,655,444 148.11 712,685 228.17 12,255
(18, 62) 1790.76 9,606,846 689,402 223.64 4,189
(191, 4, 1341) -
0.01 0.02 0.09 1.25 1.23 31.34 823,326
54 668.77 6,352,998 2.98 27,383 0.59 4,996 128 921 152 921 21,939
(11, 33) 105.99 1,106,598 150 17,757 0.34 3,616 128 329 127 329
(68, 4, 283) 1150.54 163,993 52.44 2,469 38.63 921 464.58 921 465.35 921
204.11 69,362 2127 2,188 2191 329 266.55 329 265.89 329
0.01 0.02 0.09 1.09 4.03 255.83 3,260,610
404 4009.57 32,763,223 1827.05 15,265,025 15111 6,215,135
(19, 42) 413.18 3,969,398 146.05 1,373,846 14.08 144,535 3,273 4.06 367
(100, 4, 710) - 1964.20 2,015
238.97 156,338 272.46 39,144 215.17 5,612 565.06 1,327 167.90 220
0.02 0.08 0.31 830 3522
408b - - - -
(24, 59) 68212 4,784,407 567,407
(201, 4, 1847) -
0.01 0.03 0.14 0.39 0.39
503 - - - - 122 5,229 122 5,229
(9,39 412.63 5,102,299 397.77 4,990,898 641 641
(144, 4, 639) 690.44 5,229 694.86 5,229
64.02 641 64.52 641
0.01 0.01 0.12 48.20 372.27
505b -
(16, 98) 143,371
(240, 4, 1721) -

only algorithm able to solve the05b network.ACEDAC andt ool bar were able
to solve relatively efficiently only 3 out of the 7 test instas ¢.g., 29, 54 and

404).

In Figures 13(a) and 13(b) we plot the running time and nunab&odes visited
by ACBB+SMB(i) and AOBB+DMB(i) (resp.BB+SMB(i) andBB+DVB(i)), as
a function of thei-bound, on the29 SPOT5 network from Table 4. We see that

AOBB+SMB(i) achieves the best performancei at 8, whereasAOBB+DVB(7)

performs best only at the smallest reporidabund, namely = 4. This suggests,
again, that dynamic mini-bucket heuristics can be consilethen space is limited.

45

spot 29 network spot 29 network
[minfill: w*=14, h=42] . [minfill: w=14, h=42]

——e—— BB+SMB() ——e—— BB+SMB()
o AOBB+SMB(j) o AOBB+SMB(j)

——-v-—— BB+DMB() E ——-¥-—— BB+DMB(i)

—- =& —- AOBB+DMB()) AOBB+DMB(i)

_x 107 4
-

time (sec)
3
\
nodes

i-bound i-bound

(a) CPU time in seconds (b) Nodes visited

Fig. 13. Comparison of the impact of static and dynamic mini-bucket heuri€tiRid.time
(a) and number of nodes visited (b) on &@ SPOTS5 instancefrom Table 4.

spot 404 - AOBB+SMB(i) spot 503 - AOBB+SMB(i)
1000 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42] 10000 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39]
—— hypergraph —@— hypergraph
—-O— minfill —-O— minfill
O\\
< 1000
\
100 4 \?\

~ \ P 9

3 \ 3 100

e \ KA
E AN E
= N = 10 4
10 o}
\
\
I}
7 1
PR IN
o’ \ /p
A4
1 T T 0.1

i-bound i-bound

Fig. 14. Min-Fill versus Hypergraph partitioning heuristics for pseude tonstruction.
Distribution of CPU time for solving thd04 (left) and503 (right) SPOT5 networkswith
AOBB+SMB(7) .

Figure 14 displays the running time distributionA®BB+SMB(i) guided by hy-
pergraph based pseudo trees, over 20 independent rung/d@ROTS5 instances
from Table 4. The hypergraph based trees have far smallénslépan the min-fill
ones, and therefore are again able to improve the runnirg awver min-fill based
ones only at relatively smailtbounds ¢.¢., 404). On average, however, the min-
fill pseudo trees generally yield a more robust performaespecially for larger
i-bounds of the mini-bucket heuristics 4., 503).

9.4.2 Mastermind Game Instances

Table 5 shows the results for experiments with 6 networkeesponding to Mas-
termind game instances of increasing difficulty. Each o$éheetworks is a ground
instance of a relational Bayesian network that models dgiffesizes of the popular
game of Mastermind. They were produced by tmeMRJLA Systent and used in

8 Available at:http://www.cs.auc.dk/jaeger/Primula

46

Table 5

CPU time in seconds and nodes visited for solvMgstermind game instancesusing
static mini-bucket heuristics and min-fill based pseudo trees. Time limit 1 AGEHEDAC
andt ool bar did not solve any of the test instances within the time limit.

minfill pseudo tree

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, 1, k) i=8 i=10 i=12 i=14 i=16 i=18

time nodes time nodes time nodes time nodes time nodes time nodes
mm-03-08-03 0.17 0.22 0.35 0.91 2.83 7.99
(20, 57) - 897.87 873,606 946.84 915,095 738.13 720,764
(1220, 3, 2) 116 10,369 7,075 0.93 6,349 1.23 3,830 311 3,420 8.25 3,153
mm-03-08-04 0.48 0.60 0.89 2.08 6.45 25.15
(33,87) R
(2288, 3,2) 72.37 150,642 66.69 193,805 36.22 71,622 w 31,177 25.16 63,669 29.27 13,870
mm-04-08-03 0.21 0.27 0.48 1.06 354 1252
(26, 72) - - - - 1609.86 1,315,415 1603.71 1,175,430 1157.09 901,309 1924.02 1,451,854
(1418, 3, 2) 8.20 68,929 26,111 4.23 34,445 3.10 17,255 5.29 15,443 1371 10,570

MBE(i) MBE(i) MBE(i) MBE(i) MBE(i) MBE(i)

mastermind BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i) BB+SMB(i)
(w*, h) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i) AOBB+SMB(i)
(n, 1, k) i=12 i=14 i=16 i=18 i=20 i=22

time nodes time nodes time nodes time nodes time nodes time nodes
mm-04-08-04 119 235 6.85 26.47 106.37 39557
(39, 103) - - - - - - - - - - -
(2616, 3, 2) 32406 744,993 166.67 447,464 310.06 798,507 [ﬁ] 107,463 192.39 242,865 41454 62,964
mm-03-08-05 214 4.54 11.82 39.01 134.46 497.45
(41, 111) - - - - - -
(3692, 3,2) - - [835.90] 1122008 | 116222 1185327 | 120065 1,372,324
mm-10-08-03 1.48 3.78 11.39 3453 127.55 593.25
(51, 132) - - - - - - - - - - - -
(2606, 3, 2) 10950 290,594 | 12829 326,662 m} 151,128 74.14 127,130 169.84 133,112 623.83 79,724

experimental results from [64]. For our purpose, we comeethese networks into
equivalent WCSP instances by taking the negative log prababil each condi-
tional probability table entry, multiplying it with 2000 dmounding it to the nearest
integer. The resulting WCSP instances are quite large withuhgber of bi-valued
variablesn ranging between 1220 and 3692, and containingnary and ternary
cost functions. The table has two horizontal blocks eaclwsiga different range

of i-bounds.

We see again th&OBB+SMB(i) offers the overall best performance. For example,
AOBB+SMB(10) solves therm 04- 08- 03 instance in about 3 seconds, whereas
BB+SMB(10) exceeds the 1 hour time limit. We did not report results wih d
namic mini-bucket heuristics because of the prohibitivatge computational over-
head associated with relatively larggounds. We also note that the EDAC based
algorithms were not able to solve any of these instancesmitte alloted time
bound (not shown in the table).

In Figure 15 we display the running time distributionA®BB+SNVB(©) guided by

hypergraph based pseudo trees over 20 independent rurig,ofgame instances
from Table 5. The spectrum of results is similar to what weeolsd earlier.

a7

mm-03-08-03 - AOBB+SMB(i) mm-04-08-04 - AOBB+SMB(i)
[hypergraph: w*=20, h=29] [minfill: w*=20, h=57] 10000 [hypergraph: w*=30, h=43] [minfill: w*=39, h=103]

—e— hypergraph —®— hypergraph
—O— minfill —O— minfill

10 4 1000 4

time (sec)

Fig. 15. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
CPU time in seconds for solving thamn 03- 08- 03 (left) and mm 04- 08- 04 (right)
Mastermind networks with AOBB+SMB(i) .

9.4.3 The Impact of Dynamic Variable Orderings

In this section we evaluate the impact of dynamic variabteeongs on AND/OR
Branch-and-Bound search guided by local consistency (EDAM)dtes.

Table 6 shows the results for experiments with the SPOTS5 ar&svfrom Sec-
tion 9.4.1. For reference, the last column of the table shbedest performances
obtained withAOBB+SMB(i) (the value of the mini-bucketbound is given in
parenthesis). We see that variable ordering can have arigyus impact on per-
formance. IndeedAOEDAC+DSO is the best performing among the EDAC based
algorithms, and is able to solve 6 out of 7 test instances s€hend best algorithm
in this category i©DVO+ACEDACwhich solves relatively efficiently 3 test networks.
This demonstrates the benefit of using dynamic variablerorgléeuristics within
the AND/OR Branch-and-Bound search. We also observe thaeftgokrformance
points highlighted in Table 6 are inferior to those corresfing toAOBB+SMB(i) .

For example, on thd2b network, the difference in running time and size of the
search space explored betwestBB+SMB(12) and ACEDAC+DSOis up to one
order of magnitude in favor of the former. Similarly, t685b network could not
be solved by any of the EDAC based algorithms, whergBB+SVB(14) finds
the optimal solution in about 6 minutes. Notice thabl bar is much better than
BBEDAC in all test cases. This can be explained by its more careflibatimized
implementation of EDAC withirt ool bar .

In Figure 16 we show the running time distributionADEDAC+PVO with hyper-
graph pseudo trees, on 20 independent runs, for two netwioks Table 6. In
this case, the difference between the min-fill and the hypplgcase is dramatic,
resulting in up to three orders of magnitude in favor of ttieela

We also evaluated the impact of dynamic variable orderimggdio link frequency

assignment problems (detailed results for these expetsrae available online
in [47,48]). TheACEDAC algorithms with dynamic variable orderings were again

48

Table 6
CPU time in seconds and nodes visited for soMBROTS networksusing EDAC heuris-
tics, dynamic variable orderings and min-fill based pseudo trees. Time limitia ho

minfill pseudo tree
spot5 n w* tool bar BBEDAC | AOEDAC | AOEDAC+PVO DVO+AOEDAC | AOEDAC+DSO AOBB+SMB(i)
c h
29 16 7 time 4.56 109.66 613.79 545.43 11.36 0.64(i=8)
57 8 nodes 218,846 710,122 8,997,894 7,837,447 8,698 92,970 2,738
42b 14 9 time - - - - - 131.34(i=12)
75 9 nodes - - - - - 27,698,614 689,402
54 14 9 time 0.31 0.97 3134 911 0.75 0.34(i=8)
75 9 nodes 21,939 8,270 823,326 90,495 688 6,614 3,616
404 16 10 time 151.11 2232.89 255.83 152.81 12.09 1.39(i=12)
89 12 nodes | 6,215,135 7,598,995 3,260,610 1,984,747 88,079 14,844 3,273
408b 18 10 time - - - - - 747.71 124.67(i=14)
106 13 nodes - - - - - 2,134,472 567,407
503 2 | 1 time - - - - - [53.72] 0.44(i=12)
131 15 nodes - - - - - 231,480 641
505b 16 9 time - - - - - - 392.08(i=14)
70 10 nodes - - - - - - 143,271
spot 404 - AOEDAC+PVO spot 503 - AOEDAC+PVO
1000 [hypergraph: w*=19, h=25] [minfill: w*=19, h=42] 10000 [hypergraph: w*=11, h=21] [minfill: w*=9, h=39]
—— hypergraph hypergraph
—— = minfill ——~ minfill
w04 T 1000 4
PRI POERLLE
£ £
f /WA_/ "7 M/
0.1 T T T T 1
0 5 10 15 20 25 0 5 10 15 20 25

Fig. 16. Min-Fill versus Hypergraph partitioning heuristics for pseuée tonstruction.
Distribution of CPU time for solving thé04 (left) and503 (right) SPOT5 networkswith
ACEDAC+PVO.

superior to the OBBEDAC as well as thAOEDAC using a static variable ordering.
However, their performance was quite inferior to that obl bar . We suspect that
this was mainly due to implementation issues.

9.4.4 Summary of Empirical Results on WCSPs

Our extensive empirical evaluation on WCSPs demonstratenh sgat the best
performance on this domain was obtained by the AND/OR BrarachBound
tree search algorithm with static mini-bucket heuristics, farge :-bounds, es-
pecially on non-binary WCSPs with relatively small domainesiz.g., Master-
mind game instances, ISCAS’89 networks, instances fromB@TS benchmark).
AOBB+SMB(i) dominated all its competitors, including the clasBB+SMB(i)
as well as the OR and AND/OR algorithms that enforce EDAC dusearch,
namelyt ool bar and theAOEDAC family of algorithms. The AND/OR Branch-

49

and-Bound with dynamic mini-bucket heuristis©BB+DVB(i) was competitive
only for relatively smalk-bounds ¢.g., ISCAS’89 networks [47,48]). We also ob-
served that on binary problems having large domain sizesnihi-bucket heuris-
tics were far inferior to those based on enforcing local @iescy €.g., radio link
frequency assignment problems [47,48]).

10 Related Work

The idea of exploiting structural properties of the problenorder to enhance the
performance of search algorithms is not new. It was firspohiiced in constraint
satisfaction, then moved to satisfiability. Later, it wasaognized in the probabilistic
community via the cycle-cutset [6] and recursive conditigr{49] algorithms and

followed up by value elimination [65]. It was extended toioptation at about the
same time. We next elaborate more on these various connitsut

In constraints, Freuder and Quinn [2] introduced the conogépseudo tree ar-
rangement of a constraint graph as a way of capturing indpenes between sub-
sets of variables. Subsequenfhgeudo tree seard?] is conducted over a pseudo
tree arrangement of the problem which allows the detectfandependent sub-
problems that are solved separately. Bayardo and MiranReef8rmulated the
pseudo tree search algorithm in terms of back-jumping and/ed that the depth
of a pseudo tree arrangement is always within a logarithagtof off the induced
width of the graph. More recently, [66] extended pseudo sre&rch [2] to opti-
mization tasks in order to boost the Russian Doll search [d4$dlving Weighted
CSPs. Our AND/OR Branch-and-Bound algorithm is also relateithéoBranch-
and-Bound method proposed by [35] for acyclic AND/OR grapin game trees.
The difference is that we specialize the AND/OR search ovaplgcal models.
Here, the decomposition is graph-based.

Dechter’s graph-based back-jumping algorithm [67] usespldfirst (DFS) span-
ning tree to extract knowledge about dependencies in theghgrBhe notion of
DFS-based search was also used by [68] for a distributedreamissatisfaction al-
gorithm. More recently, distributed constraint optimiaatproblems in which mul-
tiple agents are involved, are solved using a pseudo traagement in a best-first
or depth-first manner using using linear space of each ageér¥[L]. A distributed
variable elimination algorithm that uses a pseudo treengements of the agents
was also proposed in [72].

In probabilistic reasoningRecursive ConditioningRC) [49] is a search method
based on the divide and conquer paradigm. Like AND/OR se&€Chinstantiates
variables with the purpose of breaking the network into patelent subproblems,
on which it can recurse using the same technique. The cotmpuia driven by a
data-structure calledtree[49]. It was shown in [1] that RC explores an AND/OR

50

space whose guiding pseudo tree can be generated from tleecstiering dic-
tated by the dtreé/alue Elimination(VE) [65] is a recently developed algorithm
for Bayesian inference. Given a static orderihfpr VE, it was shown that it tra-
verses an AND/OR space [1]. The pseudo tree underlying th®/8R search
graph traversal by VE can be constructed as the bucket treweénsed order aof.
The traversal of the AND/OR space will be controlleddyyadvancing the frontier
in a hybrid depth or breadth first manner.

In optimization,Backtracking with Tree-DecompositigBTD) [73] is a memory

intensive method for solving constraint optimization gesbs which combines
search techniques with the notion of tree decompositiors iflixed approach can
in fact be viewed as searching an AND/OR search space wha&bd@e pseudo
tree is defined by and structured along the tree decompogitjo

We note however that Recursive Conditioning, Backtrackingy Wiee Decompo-
sition and Value Elimination, unlike our AND/OR Branch-aBdund search, are
not restricted to be linear space search methods. They qaarameterized and use
various levels of caching, which can yield in the worst casex@ponential space
complexity. In a subsequent article we will extend the ANB/@lgorithms to use
substantial memory by exploring an AND/OR seageaph rather than the tree.

11 Summary and Conclusion

The paper investigates the impact of graph-based AND/ORBepaces on solv-
ing general constraint optimization problems in graphmcatiels focusing on search
trees that do not facilitate caching. In contrast to theiti@ehl OR search, the new
AND/OR search is sensitive the problem’s structure. Thedmspace AND/OR
tree search algorithms can be exponentially better (anernvearse) than the linear
space OR tree search algorithms. Specifically, the sizeedf $earch tree is expo-
nential in the depth of the guiding pseudo tree rather thamtimber of variables,
as in the OR case.

The AND/OR Branch-and-Bound algorithm that we introduced@gs the AND/OR
search tree in a depth-first manner and can be guided by anigthefunction. We
investigated extensively the mini-bucket heuristic andvedd empirically that it
can prune the search space very effectively. The mini-bduekaristics can be either
pre-compiled (static mini-buckets) or generated dynaltyicd each node in the
search tree (dynamic mini-buckets). They are parametebyeani-bound which
allows for a controllable trade-off between heuristic sty and its computational
overhead. We also explored the effectiveness of a classurfstie functions de-
rived from local consistency algorithms, in the context of WRSSSince variable
ordering can influence dramatically search performancealse introduced and
investigated empirically several ordering schemes thatkioe the AND/OR de-

51

composition principle with dynamic variable ordering hstics.

We focused our empirical evaluation on finding the MPE in Baresetworks

and solving WCSPs. Our results demonstrated conclusivelyithmany cases
the depth-first AND/OR Branch-and-Bound algorithms improxenchtically over

traditional OR Branch-and-Bound search, especially fortikelly weak guiding

heuristic estimates when space is really restricted. Wengnze next the most
important additional factors that when augmented on toplDAOR search help
improve its performance. This includes the mini-buckbbund, dynamic variable
orderings, constraint propagation and the quality of theigg pseudo tree.

e Impact of the mini-bucket i-bound on AND/OR search.Our results show
conclusively that when enough memory is available statiu-miicket heuristics
with relatively largei-bounds are cost effective.(., genetic linkage analysis
networks from Table 2, Mastermind networks from Table 5wideer, if space is
restricted, dynamic mini-bucket heuristics, which exptbe partial assignment
along the search path, appear to be superior. This occusanfali;-bounds when
the dynamic heuristics are more accurate then the stats one

¢ Impact of dynamic variable ordering. Our dynamic AND/OR search approach
was shown to be powerful in conjunction with local consistebased heuristics.
The AND/OR Branch-and-Bound algorithms with EDAC heuriséiosl dynamic
variable orderings were sometimes by two orders of magaeibedter than their
static counterparts:(g., the503 SPOT5 network from Table 6).

e Impact of determinism. When the graphical model contains both deterministic
information (hard constraints) as well as general costtfans or probabilities,
we demonstrated that it is beneficial to exploit the compartal power of the
constraints explicitly, via constraint propagation methoOur experiments on
selected classes of deterministic Bayesian networks shtveeenforcing unit
resolution over the CNF encoding of the determinism presenhe network
yielded a tremendous reduction in running time for the apoading AND/OR
algorithms ¢.g., deterministic grid networks from Table 3).

e Impact of static variable ordering. The performance of the AND/OR search
algorithms is highly influenced by the quality of the guidipgeudo tree. We in-
vestigated two heuristics for generating small inducedaepth pseudo trees.
The min-fill based pseudo trees usually yield small inducétthwbut signifi-
cantly larger depth, whereas the hypergraph partitionengistic produces much
smaller depth trees but with larger induced widths. Our grpents demon-
strated indeed that the AND/OR algorithms using mini-btitleiristics benefit,
on average, from the min-fill based pseudo trees becauseitiagymini-bucket
heuristic is sensitive to the induced width size. In someepional cases how-
ever, the hypergraph partitioning based pseudo trees Wwéréamimprove signif-
icantly the search performance, especially for relatigahall --bounds, because
in those cases the smaller depth guarantees a smaller ANB¢@Rh tree. The
picture is reversed for local consistency based heurigtiosh are not sensitive
to the induced width. Here, the hypergraph based trees weeet@ improve

52

performance by up to 3 orders of magnitude over the min-fiiidobtreesd(g.,
SPOT5 networks from Figure 16).

Clearly, there are various ways for improvements. For ircsgaane could incorpo-
rate good initial upper bound techniques (using incompeteemes), apply addi-
tional schemes for exploiting determinism or use improvexi{oucket schemes.
For example, the recent improvement of the Mini-Bucket atbor, calledDepth-
First Mini-Bucket Elimination[74], could be explored further in the context of
AND/OR search.

Acknowledgments

This work was partially supported by the NSF grants 11S-@®6and 11S-0412854,
the MURI ONR award NO0014-00-1-0617, the NIH grant RO1-HGO®402, the

Marie Curie Transfer of Knowledge grant MTKD-CT-2006-042%6%@I by an IRC-

SET Embark post-doctoral fellowship.

References

[1] R. Dechter and R. Mateescu. AND/OR search spaces for grdphagels. Artificial
Intelligence 171(1):73-106, 2007.

[2] E. Freuder and M. Quinn. Taking advantage of stable sets of Vasai constraint
satisfaction problems. Imnternational Joint Conference on Artificial Intelligence
(IJCAI-1985) pages 1076-1078, 1985.

[3] R. Bayardo and D. Miranker. On the space-time trade-off in solviogstraint
satisfaction problems. Ilinternational Joint Conference on Artificial Intelligence
(IJCAI-1995) pages 558-562, 1995.

[4] R. Dechter and I. Rish. Mini-buckets: A general scheme for axiprating inference.
Journal of ACM 2(50):107-153, 2003.

[5] K. Kask and R. Dechter. A general scheme for automatic generafigearch
heuristics from specification dependencidstificial Intelligence 129(1-2):91-131,
2001.

[6] J. Pearl.Probabilistic Reasoning in Intelligent Systenvorgan-Kaufmann, 1988.

[7] S. Bistarelli, U. Montanari, and F. Rossi. Semiring based constrairntngpand
optimization.Journal of ACM 44(2):309-315, 1997.

[8] Nils J. Nilsson.Principles of Artificial IntelligenceTioga, 1980.

[9] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifying clustee decompositions
for reasoning in graphical modelArtificial Intelligence 166(1-2):225-275, 2005.

53

[10] S. Minton, M.D. Johnston, A.B. Philips, and P. Laired. Solving largges constraint
satisfaction and scheduling problems using heuristic repair methods\atinnal
Conference on Atrtificial Intelligence (AAAI-199@gnges 17—-24, 1990.

[11] B. Selman, H. Levesque, and D. Mitchell. A new method for solvingl satisfiability
problems. InNational Conference on Atrtificial Intelligence (AAAI-199@xages 440—
446, 1992.

[12] R. Wallace. Analysis of heuristic methods for partial constraint satigfn problems.
In In Principles and Practice of Constraint Programming (CP-1998ges 482-496,
1996.

[13] E. Freuder and R. Wallace. Partial constraint satisfacfwtificial Intelligence 58(1—
3):21-70, 1992.

[14] G. Verfaillie, M. Lemaitre, and T. Schiex. Russian doll search fdviag constraint
optimization problems. IMNational Conference on Atrtificial Intelligence (AAAI)
pages 298-304, 1996.

[15] J. Larrosa and P. Meseguer. Partition-based lower bound £-KaSP. InPrinciples
and Practice of Constraint Programming (CP-199pages 303-315, 1999.

[16] J. Larrosa and T. Schiex. In the quest of the best form of lomasistency for weighted
CSPs. InNational Conference of Artificial Intelligence (AAAI-200Bages 631-637,
2003.

[17] J. Larrosa and T. Schiex. Solving weighted CSP by maintaining amsistency.
Artificial Intelligence 159(1-2):1-26, 2004.

[18] S. de Givry, F. Heras, J. Larrosa, and M. Zytnicki. Existential@nsistency: getting
closer to full arc consistency in weighted CSPs.rternational Joint Conference in
Artificial Intelligence (IJCAI-2005)pages 84—89, 2005.

[19] P. Shenoy and G. Shafer. Propagating belief functions with lagapatationsIEEE
Expert 4(1):43-52, 1986.

[20] F.V. Jensen, S. Lauritzen, and K. Olesen. Bayesian updatingingige graphical
models by local computationin Computational Statistics Quarterly(1):269-282,
1990.

[21] R. Dechter. Bucket elimination: A unifying framework for reasoningrtificial
Intelligence 113(1-2):41-85, 1999.

[22] Y. Peng and J.A. Reggia. A connectionist model for diagnosticlprolsolving.|[EEE
Transactions on Systems, Man and Cyberngtieso.

[23] K. Kask and R. Dechter. Stochastic local search for Bayesitmonks. InWorkshop
on Al and Statistics (AlI-STAT-1999ages 113-122, 1999.

[24] J. Park. Using weighted MAX-SAT engines to solve MPENiational Conference of
Artificial Intelligence (AAAI-2002)pages 682—687, 2002.

o4

[25] F. Hutter, H. Hoos, and T. Stutzle. Efficient stochastic local $efocMPE solving.
In International Joint Conference on Artificial Intelligence (IJCAI-2008ges 169—
174, 2005.

[26] S.E. Shimony and E. Charniak. A new algorithm for finding MAP agsignts to
belief networks. InJncertainty in Artificial Intelligence (UAI-199]1pages 185-193,
1991.

[27] E. Santos. On the generation of alternative explanations with implicafboriselief
revision. InUncertainty in Artificial Intelligence (UAI-1991pages 339-347, 1991.

[28] Z. Liand B. DAmbrosio. An efficient approach for finding the MPEbelief networks.
In Uncertainty in Artificial Intelligence (UAI-1993pages 342—-349, 1993.

[29] B. K. Sy. Reasoning MPE to multiply connected belief networks usingsegs
passing. InNational Conference of Atrtificial Intelligence (AAAI-199ppges 570—
576, 1992.

[30] R. Marinescu, K. Kask, and R. Dechter. Systematic vs non-sysiemlgorithms
for solving the MPE task. ItUncertainty in Artificial Intelligence (UAI-2003pages
394-402, 2003.

[31] A. Choi, M. Chavira, and A. Darwiche. Node splitting: A scheme fengrating upper
bounds in Bayesian networks. Rroceedings of the 23rd Conference on Uncertainty
in Artificial Intelligence (UAI) pages 57-66, 2007.

[32] E. Lawler and D. Wood. Branch-and-bound methods: A sur@perations Research
14(4):699-719, 1966.

[33] R. Dechter, K. Kask, and J. Larrosa. A general scheme for nteiltgever bound
computation in constraint optimization. [Rrinciples and Practice of Constraint
Programming (CP)pages 346-360, 2001.

[34] J. Pearl. Heuristics: Intelligent search strategies for computer problem solving.
Addison-Welsey, 1984.

[35] L. Kanal and V. KumarSearch in artificial intelligenceSpringer-Verlag., 1988.

[36] M. Cooper and T. Schiex. Arc consistency for soft constraiAtsificial Intelligence
154(1-2):199-227, 2003.

[37] R. Dechter.Constraint ProcessingMIT Press, 2003.

[38] R. Haralick and G. Elliot. Increasing tree search efficiency forst@int satisfaction
problems.Atrtificial Intelligence 14(3):263-313, 1980.

[39] C. Bessiere and J-C. Regin. MAC and combined heuristics: twonsas forsake FC
(and CBJ) on hard problems. Rrinciples and Practice of Constraint Programming
(CP-1996) pages 61-75, 1996.

[40] D. Brelaz. New method to color the vertices of a graBbmmunications of the ACM
4(22):251-256, 1979.

55

[41] C. Lecoutre F. Boussemart, F. Hemery and L. Sais. Boosting systesearch by
weighting constraints. Ieuropean Conference on Artificial Intelligence (ECAI-2Q04)
pages 146-150, 2004.

[42] C. Lecoutre, F. Boussemart, and F. Hemery. Backjump-baseditpes versus
conflict directed heuristics. Imnternational Conference on Tools with Artificial
Intelligence (ICTAI-2004)pages 549-557, 2004.

[43] J. Huang and A. Darwiche. A structure-based variable ordehiggristic. In
International Joint Conference on Atrtificial Intelligence (IJCAI-2008xges 1167—
1172, 2003.

[44] W. Li and P. van Beek. Guiding real-world SAT solving with dynamigéasgraph
separator decomposition. Imternational Conference on Tools with Artificial
Intelligence (ICTAI-2004)pages 542-548, 2004.

[45] R. Bayardo and J. D. Pehoushek. Counting models using comhemteponents. In
National Conference of Artificial Intelligence (AAAI-200pages 157-162, 2000.

[46] T. Sang, P. Beame, and H. Kautz. A dynamic approach to MPE aighted MAX-
SAT. InInternational Joint Conference on Artificial Intelligence (IJCAI-20073ages
549-557, 2007.

[47]1 R. Marinescu. AND/OR Search Strategies for Combinatorial Optimization in
Graphical Models PhD thesis, University of California, Irvine, 2008.

[48] R. Marinescu and R. Dechter. AND/OR branch-and-boundcbeiar combinatorial
optimization in graphical models. Technical report, University of Califqrinéne,
2008.

[49] A. Darwiche. Recursive conditionind\rtificial Intelligence 126(1-2):5-41, 2001.

[50] H. Bodlaender and J. Gilbert. Approximating treewidth, pathwidth and mimmu
elimination tree-heightTechnical Report, Utrecht Universjt§991.

[51] U. Kjezeaerulff. Triangulation of graph-based algorithms giving small total space
Technical report, University of Aalborg, Denmark, 1990.

[52] T. Sang, P. Beame, and H. Kautz. Solving Bayesian networks lyhtesl model
counting. InNational Conference of Atrtificial Intelligence (AAAI-200ppges 475—
482, 2005.

[53] Jurg Ott. Analysis of Human Genetic Linkag@&he Johns Hopkins University Press,
1999.

[54] M. Fishelson and D. Geiger. Exact genetic linkage computationsfoeigl pedigrees.
In International Conference on Intelligent Systems for Molecular Biglpgges 189—
198, 2002.

[55] M. Fishelson, N. Dovgolevsky, and D. Geiger. Maximum likelihoodlbging for
general pedigreesiuman Heredity2005.

[56] R. Dechter and D. Larkin. Hybrid processing of beliefs and tran#ts. InUncertainty
in Artificial Intelligence (UAI-2001)pages 112-119, 2001.

56

[57] D. Larkin and R. Dechter. Bayesian inference in the presenaetd@rminism. In
Artificial Intelligence and Statistics (AISTAT-2003D03.

[58] D. Allen and A. Darwiche. New advances in inference using r@earconditioning.
In Uncertainty in Artificial Intelligence (UAI-2003pages 2—-10, 2003.

[59] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistiworks. In
Uncertainty in Artificial Intelligence (UAl)pages 120-129, 2004.

[60] I. Rish and R. Dechter. Resolution vs. search: two strategiesAdr Slournal of
Automated Reasoning4(1-2):225-275, 2000.

[61] T. Walsh. SAT vs CSP. IRrinciples and Practice of Constraint Programming (CP)
pages 441-456, 2000.

[62] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. @h&ngineering an
efficient SAT solver. IrDesign Automation Conference (DAC-2004001.

[63] E. Bensana, M. Lemaitre, and G. Verfaillie. Earth observation sateliieagement.
Constraints 4(3):293—-299, 1999.

[64] M. Chavira, A. Darwiche, and M. Jaeger. Compiling relational B#ge networks
for exact inferencelnternational Journal of Approximate Reasonjri(1-2):4-20,
2006.

[65] F. Bacchus, S. Dalmao, and T. Pittasi. Value elimination: Bayesianeinéer via
backtracking search. ldncertainty in Artificial Intelligence (UAI-2003)pages 20—
28, 2003.

[66] J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-treshsgith soft constraints. In
European Conference on Artificial Intelligence (ECAI-20Q8)ges 131-135, 2002.

[67] R. Dechter. Enhancement schemes for constraint processaagjuBnping, learning
and cutset decompositioArtificial Intelligence 41(3):273-312, 1990.

[68] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed tist
satisfaction. Irinternational Joint Conference on Artificial Intelligence (IJJCAI-1991)
pages 318-324, 1991.

[69] P. Modi, W. Shen, M. Tambe, and M. Yokoo. An asynchronousmete method for
distributed constraint optimization. International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS-20p8yes 161-168, 2003.

[70] P. Modi, W. Shen, M. Tambe, and M. Yokoo. ADOPT: Asynchrosdistributed
constraint optimization with quality guarantedstificial Intelligence 161(1-2):149—
180, 2005.

[71] W. Yeoh, A. Felner, and S. Koening. BnB-ADOPT: An asynctoos branch-and-
bound DCOP algorithm. Imhnternational Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS-200&ges 591-598, 2008.

[72] A. Petcu and B. Faltings. DPOP: A scalable method for multiagent @instr
optimization. Ininternational Joint Conference on Atrtificial Intelligence (IJCAI-
2005) pages 266—-271, 2005.

57

[73] P. Jegou and C. Terrioux. Decomposition and good recordingpleimg MAX-CSPs.
In European Conference on Artificial Intelligence (ECAI-2Q@8ges 196—-200, 2004.

[74] E. Rollon and J. Larrosa. Depth-first mini-bucket elimination. Pirinciples and
Practice of Constraint Programming (CP-200pgages 563-577, 2005.

58

