
UNIVERSITY OF CALIFORNIA,

IRVINE

AND/OR Search Spaces for Graphical Models

DISSERTATION

submitted in partial satisfaction of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Robert Eugeniu Mateescu

Dissertation Committee:

Professor Rina Dechter, Chair

Professor Padhraic Smyth

Professor Sandra Irani

2007



c© 2007 Robert Eugeniu Mateescu



The dissertation of Robert Eugeniu Mateescu

is approved and is acceptable in quality and form for

publication on microfilm and in digital formats:

Committee Chair

University of California, Irvine

2007

ii



DEDICATION

To my parents, Margareta and Victor

To my wife, Cipriana

To my daughter, Andreea

iii



TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiv

ACKNOWLEDGMENTS xvi

CURRICULUM VITAE xviii

ABSTRACT OF THE DISSERTATION xx

1 Introduction 1

1.1 Dissertation Outline and Contributions . . . . . . . . . . . . . .. . . . . . 3

1.1.1 AND/OR Search Spaces for Graphical Models (Chapter 2) .. . . . 5

1.1.2 Mixed Networks (Chapter 3) . . . . . . . . . . . . . . . . . . . . . 7

1.1.3 Iterative Algorithms for Mixed Networks (Chapter 4) . .. . . . . . 8

1.1.4 AND/OR Cutset Conditioning (Chapter 5) . . . . . . . . . . . . . 11

1.1.5 AND/OR Search and Inference Algorithms (Chapter 6) . . .. . . . 12

1.1.6 AND/OR Multi-Valued Decision Diagrams (Chapter 7) . . .. . . 14

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Graph Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.2 AND/OR Search Graphs . . . . . . . . . . . . . . . . . . . . . . . 17

1.2.3 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Constraint Networks . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



1.2.5 Belief Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 AND/OR Search Spaces for Graphical Models 28

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 AND/OR Search Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Weights of OR-AND Arcs . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Properties of AND/OR Search Tree . . . . . . . . . . . . . . . . . 35

2.2.3 From DFS Trees to Pseudo Trees . . . . . . . . . . . . . . . . . . 38

2.2.4 Pruning Inconsistent Subtrees for the Flat ConstraintNetwork . . . 41

2.3 AND/OR Search Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.3.1 Minimal AND/OR Search Graphs . . . . . . . . . . . . . . . . . . 44

2.3.2 Building AND/OR Search Graphs . . . . . . . . . . . . . . . . . . 48

2.3.3 On the Canonicity and Generation of the Minimal AND/OR Graph 57

2.3.4 Merging and Pruning: Orthogonal Concepts . . . . . . . . . . .. . 60

2.3.5 Using Dynamic Variable Ordering . . . . . . . . . . . . . . . . . .62

2.4 Solving Reasoning Problems by AND/OR Search . . . . . . . . . . .. . . 63

2.4.1 Value Functions of Reasoning Problems . . . . . . . . . . . . . .. 63

2.4.2 Algorithm AND/OR Tree Search and Graph Search . . . . . . .. . 66

2.4.3 General AND-OR Search - AO(i) . . . . . . . . . . . . . . . . . . 67

2.4.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.1 Relationship with Variable Elimination . . . . . . . . . . . .. . . 70

2.5.2 Relationship with BTD (Backtracking with Tree-Decomposition) . 71

2.5.3 Relationship with Recursive Conditioning . . . . . . . . . . . .. . 71

2.5.4 Relationship with Value Elimination . . . . . . . . . . . . . . .. . 72

2.5.5 Relationship with Case-Factor Diagrams . . . . . . . . . . . . .. 73

2.5.6 AO-Search Graphs and Compilation . . . . . . . . . . . . . . . . . 74

v



2.6 Conclusion to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Mixed Networks 78

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Mixing Probabilities with Constraints . . . . . . . . . . . . . . .. . . . . 80

3.2.1 Defining the Mixed Network . . . . . . . . . . . . . . . . . . . . . 80

3.2.2 Queries over Mixed Networks . . . . . . . . . . . . . . . . . . . . 81

3.2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.2.4 Processing Networks with Determinism . . . . . . . . . . . . .. . 84

3.2.5 Mixed Graphs as I-Maps . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Inference Algorithms for Processing Mixed Networks . . .. . . . . . . . . 88

3.3.1 A Bucket Elimination Method . . . . . . . . . . . . . . . . . . . . 89

3.3.2 Probability of Relational Constraints . . . . . . . . . . . . . .. . . 94

3.3.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.3.4 Elim-CPE with General Constraint Propagation . . . . . . . .. . . 96

3.4 AND/OR Search Algorithms For Mixed Networks . . . . . . . . . .. . . 96

3.4.1 AND/OR Search with Constraint Propagation . . . . . . . . . .. . 99

3.4.2 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 104

3.5 Conclusion to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4 Iterative Algorithms for Mixed Networks 109

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.2 Mini-Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Tree-Decomposition Schemes . . . . . . . . . . . . . . . . . . . . 112

4.2.2 Mini-Clustering for Belief Updating . . . . . . . . . . . . . . . .115

4.2.3 Properties of Mini-Clustering . . . . . . . . . . . . . . . . . . . .118

vi



4.2.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 120

4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.3 Iterative Join-Graph Propagation . . . . . . . . . . . . . . . . . .. . . . . 127

4.3.1 Join-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.3.2 Algorithm IJGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.3.3 I-Mappness of Arc-Labeled Join-Graphs . . . . . . . . . . . .. . . 132

4.3.4 Bounded Join-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.3.5 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 138

4.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.4 The Inference Power of Iterative Belief Propagation . . . .. . . . . . . . . 144

4.4.1 Arc-Consistency Algorithms . . . . . . . . . . . . . . . . . . . . . 145

4.4.2 Iterative Belief Propagation over Dual Join-Graphs . .. . . . . . . 148

4.4.3 The Flat Bayesian Network . . . . . . . . . . . . . . . . . . . . . 150

4.4.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . 159

4.4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

4.5 Conclusion to Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

5 AND/OR Cutset Conditioning 166

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Traditional Cycle Cutset Explored by AND/OR Search . . . . . .. . . . . 167

5.3 AND/OR Cycle Cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.4 AND/ORw-Cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

5.5 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . . . . .171

5.5.1 Adaptive AND/OR Caching Scheme . . . . . . . . . . . . . . . . . 172

5.5.2 AlgorithmAO-C(i) . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.5.3 Finding a Start Pseudo Tree . . . . . . . . . . . . . . . . . . . . . 173

5.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . .. 174

vii



5.6.1 The Quality of Start Pseudo Trees . . . . . . . . . . . . . . . . . .174

5.6.2 Performance ofAO-C(i) . . . . . . . . . . . . . . . . . . . . . . . 174

5.7 Conclusion to Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6 AND/OR Search and Inference Algorithms 179

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

6.2 AND/OR Search (AO) vs. Variable Elimination (VE) . . . . . . . . . . . . 181

6.2.1 AO vs. BE with No Determinism . . . . . . . . . . . . . . . . . . 182

6.2.2 Algorithmic Advances and Their Effect . . . . . . . . . . . . .. . 190

6.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.3 A Comparison of Hybrid Time-Space Schemes . . . . . . . . . . . . .. . 194

6.3.1 Defining the Algorithms . . . . . . . . . . . . . . . . . . . . . . . 194

6.3.2 AOC(i) Compared toVEC(i) . . . . . . . . . . . . . . . . . . . . 200

6.3.3 AOC(i) Compared toTDC(i) . . . . . . . . . . . . . . . . . . . . 205

6.3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.4 Conclusion to Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

7 AND/OR Multi-Valued Decision Diagrams (AOMDDs) 210

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

7.1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

7.3 Binary Decision Diagrams Review . . . . . . . . . . . . . . . . . . . . . .214

7.4 Bucket Elimination (BE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

7.5 AND/OR Multi-Valued Decision Diagrams (AOMDDs) . . . . . .. . . . . 217

7.5.1 From AND/OR Search Graphs to Decision Diagrams . . . . . .. . 218

7.6 Using AND/OR Search to Generate AOMDDs . . . . . . . . . . . . . . .. 222

7.6.1 AND/OR Search Algorithm . . . . . . . . . . . . . . . . . . . . . 222

viii



7.6.2 Reducing the Context Minimal AND/OR Graph to an AOMDD . . 225

7.7 Using Bucket Elimination to Generate AOMDDs . . . . . . . . . . .. . . 227

7.7.1 AlgorithmVE-AOMDD . . . . . . . . . . . . . . . . . . . . . . . 230

7.7.2 The AOMDDAPPLY Operation . . . . . . . . . . . . . . . . . . . 232

7.7.3 Complexity ofAPPLY . . . . . . . . . . . . . . . . . . . . . . . . . 235

7.8 AOMDDs Are Canonical Representations . . . . . . . . . . . . . . . . .. 238

7.8.1 Canonicity of AOMDDs for Constraint Networks . . . . . . . . .. 239

7.8.2 Canonicity of AOMDDs for Weighted Graphical Models . . .. . . 239

7.9 Semantic treewidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

7.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

7.11 Conclusion to Chapter 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8 Software 247

8.1 Iterative Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 247

8.2 AND/OR Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

9 Conclusion 251

ix



LIST OF FIGURES

1.1 Constraint network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2 Belief network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 OR vs. AND/OR search trees; note the connector for AND arcs . . . . . . 31

2.2 Arc weights for probabilistic networks . . . . . . . . . . . . . .. . . . . . 34

2.3 Arc weights for constraint networks . . . . . . . . . . . . . . . . .. . . . 35

2.4 Pseudo trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.5 AND/OR search tree along pseudo treesT1 andT2 . . . . . . . . . . . . . 39

2.6 AND/OR search tree and backtrack-free tree . . . . . . . . . . .. . . . . . 42

2.7 Merge vs. unify operators . . . . . . . . . . . . . . . . . . . . . . . . . .. 45

2.8 OR search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.9 Minimal OR search graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.10 AND/OR search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.11 Minimal AND/OR search graph . . . . . . . . . . . . . . . . . . . . . . .48

2.12 Context minimal vs. minimal AND/OR graphs . . . . . . . . . . . .. . . 56

2.13 AND/OR trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.14 AND/OR graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.15 Dynamic AND/OR tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.16 RC and AND/OR pseudo-trees . . . . . . . . . . . . . . . . . . . . . . . . 72

3.1 Two layer networks with root not-equal constraints (Java Bugs) . . . . . . . 83

3.2 Mixed network for student’s class taking . . . . . . . . . . . . .. . . . . . 85

x



3.3 DM-separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4 AlgorithmElim-CPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5 Process-bucket procedure . . . . . . . . . . . . . . . . . . . . . . . . .. . 91

3.6 Execution of elim-CPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.7 Execution of elim-bel-cnf . . . . . . . . . . . . . . . . . . . . . . . . .. . 92

3.8 The induced augmented graph . . . . . . . . . . . . . . . . . . . . . . . .92

3.9 Belief network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.10 AlgorithmElim-ConsPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.11 AND/OR search tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.12 AND/OR search graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3.13 Labeled AND/OR search tree for belief networks . . . . . . .. . . . . . . 98

3.14 AND/OR search tree with final node values . . . . . . . . . . . . .. . . . 101

3.15 Mixed network; queryϕ = (A ∨ ¬B)(D ∨ ¬C) . . . . . . . . . . . . . . . 101

3.16 Example of AND-OR-CPEand AO-FC search spaces . . . . . . . . . . . . 104

4.1 Execution of CTE-BU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Algorithm Cluster-Tree-Elimination for Belief Updating(CTE-BU) . . . . 115

4.3 Procedure Mini-Clustering for Belief Updating (MC-BU) . . .. . . . . . . 116

4.4 Execution of MC-BU fori = 3 . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Convergence of IBP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.6 Absolute error for noisy-OR networks . . . . . . . . . . . . . . . .. . . . 121

4.7 Absolute error for random networks . . . . . . . . . . . . . . . . . .. . . 122

4.8 BER for coding networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9 Absolute error and time for grid networks . . . . . . . . . . . . .. . . . . 125

4.10 Absolute error for CPCS422 . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.11 An arc-labeled decomposition . . . . . . . . . . . . . . . . . . . . .. . . 130

4.12 Algorithm Iterative Join-Graph Propagation (IJGP) . .. . . . . . . . . . . 131

4.13 Algorithm Join-Graph Structuring(i) . . . . . . . . . . . . . . . . . . . . . 135

xi



4.14 Procedure Schematic Mini-Bucket(i) . . . . . . . . . . . . . . . . . . . . . 135

4.15 Join-graph decompositions . . . . . . . . . . . . . . . . . . . . . . .. . . 137

4.16 Join-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.17 Random networks: KL distance . . . . . . . . . . . . . . . . . . . . . . .139

4.18 Random networks: Time . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.19 Grid 9x9: KL distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.20 CPCS360: KL distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.21 Part of the execution of RDAC algorithm . . . . . . . . . . . . . . .. . . . 147

4.22 Dual join-graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.23 Algorithm Iterative Belief Propagation . . . . . . . . . . . . .. . . . . . . 150

4.24 a) A belief network; b) An arc-minimal dual join-graph .. . . . . . . . . . 153

4.25 Max-closed relations . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 157

4.26 Example of a finite precision problem . . . . . . . . . . . . . . . .. . . . 159

4.27 Coding, N=200, 1000 instances, w*=15 . . . . . . . . . . . . . . . .. . . 160

4.28 10x10 grids, 100 instances, w*=15 . . . . . . . . . . . . . . . . . .. . . . 160

4.29 Random, N=80, 100 instances, w*=15 . . . . . . . . . . . . . . . . . .. . 161

4.30 CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20 .. . . . . . 162

5.1 Traditional cycle cutset viewed as AND/OR tree . . . . . . . .. . . . . . . 168

5.2 AND/OR cycle cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

6.1 Variable Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182

6.2 Context-minimal AND/OR search space . . . . . . . . . . . . . . . . .. . 183

6.3 CM graphs with determinism: a) AO; b) VE . . . . . . . . . . . . . . . .. 188

6.4 GBJ vs. AND/OR search . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.5 Context minimal graph (full caching) . . . . . . . . . . . . . . . . .. . . . 198

6.6 AOC(2) graph (Adaptive Caching) . . . . . . . . . . . . . . . . . . . . . . 198

6.7 AOCutset(2)graph (AND/OR Cutset) . . . . . . . . . . . . . . . . . . . . 199

xii



6.8 Primal graph and pseudo tree . . . . . . . . . . . . . . . . . . . . . . . .. 201

6.9 Components after conditioning onC . . . . . . . . . . . . . . . . . . . . . 201

6.10 Pseudo tree forAOC(2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.11 Context minimal graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.12 Tree decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .205

7.1 Boolean function representations . . . . . . . . . . . . . . . . . . .. . . . 214

7.2 Reduction rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

7.3 Bucket Elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

7.4 Decision diagram nodes (OR) . . . . . . . . . . . . . . . . . . . . . . . . 219

7.5 Decision diagram nodes (AND/OR) . . . . . . . . . . . . . . . . . . . . .219

7.6 Meta-nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

7.7 Example of constraint graph . . . . . . . . . . . . . . . . . . . . . . . .. 228

7.8 Execution of VE with AOMDDs . . . . . . . . . . . . . . . . . . . . . . . 229

7.9 Comparison of AOMDD and OBDD . . . . . . . . . . . . . . . . . . . . . 230

7.10 Weighted graphical model . . . . . . . . . . . . . . . . . . . . . . . . .. 240

7.11 AND/OR search tree and context minimal graph . . . . . . . . .. . . . . . 240

7.12 Normalizing values bottom up . . . . . . . . . . . . . . . . . . . . . .. . 241

7.13 AOMDD for the weighted graph . . . . . . . . . . . . . . . . . . . . . . .242

7.14 The 4-queen problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

xiii



LIST OF TABLES

2.1 OR vs. AND/OR search size, 20 nodes . . . . . . . . . . . . . . . . . . .. 37

2.2 Average depth of pseudo trees vs. DFS trees . . . . . . . . . . . .. . . . . 41

3.1 AND/OR space vs. OR space . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.2 AND/OR Search Algorithms (1) . . . . . . . . . . . . . . . . . . . . . . .105

3.3 AND/OR Search Algorithms (2) . . . . . . . . . . . . . . . . . . . . . . .106

3.4 AND/OR Search vs. Bucket Elimination . . . . . . . . . . . . . . . . .. . 107

4.1 Performance on Noisy-OR networks; . . . . . . . . . . . . . . . . . .. . . 121

4.2 Performance on random networks . . . . . . . . . . . . . . . . . . . . .. 122

4.3 BER for coding networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Performance on grid networks; . . . . . . . . . . . . . . . . . . . . . .. . 124

4.5 Performance on CPCS54 network, w*=15 . . . . . . . . . . . . . . . . . .125

4.6 Performance on CPCS360 and CPCS422 networks . . . . . . . . . . . . . 126

4.7 Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16 . . . . . 138

4.8 9x9 grid, K=2, 100 instances, w*=12 . . . . . . . . . . . . . . . . . .. . . 141

4.9 CPCS networks: CPCS54 and CPCS360 . . . . . . . . . . . . . . . . . . . 142

4.10 Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43 . . . . 143

4.11 Graph coloring type problems: 20 root variables . . . . . .. . . . . . . . . 163

5.1 CPCS 422 - Cutsets Comparison . . . . . . . . . . . . . . . . . . . . . . . 174

5.2 Random Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.3 CPCS 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xiv



5.4 Genetic Linkage Network . . . . . . . . . . . . . . . . . . . . . . . . . . .177

5.5 Networks with high memory requirements for BE . . . . . . . . . .. . . . 178

xv



ACKNOWLEDGEMENTS

I am indebted to all those who have helped me finish this dissertation: my advisor, com-

mittee members, colleagues, friends and family.

My gratitude goes towards my advisor, Professor Rina Dechter, to whom I owe the

greatest part of what I am as a researcher. I consider myself very fortunate to have had

the chance of such a close collaboration with her. She guidedmy first steps in research,

introduced me to the realm of sophisticated algorithms for automated reasoning, but at

the same time taught me to never lose sight of the bigger picture, and always build upon

first principles. I thank her both for the freedom to pursue myown ideas, that I very

much appreciated, and for her keen criticism that constantly pushed me to raise my own

standards. I have benefited enormously from the innumerablehours of discussions and

revisions to our papers, and am very grateful for her patience in times when I needed to

find my path. Thank you Rina, for everything.

My warmest thanks to my committee members, Professor Padhraic Smyth and Profes-

sor Sandy Irani, for their comments on my research, on preliminary drafts of the disserta-

tion, and for their help and encouragement.

My graduate school work was generously supported by the NSF grants IIS-0086529

and IIS-0412854, by the MURI ONR award N00014-00-1-0617 and by the Donald Bren

School of Information and Computer Science at University of California, Irvine.

It has been a joy to be a member of our research group. I want to thank my colleagues

Bozhena Bidyuk, Radu Marinescu, Vibhav Gogate, Kalev Kask and Lars Otten for the un-

countable hours of research discussions. I am grateful to Radu and Kalev in particular, for

contributing to the experimental evaluation of some of the algorithms that I have designed

and studied.

For having embraced me and my family with so much love from themoment we came to

California, I would like to thank Rev. Fr. Cornel Avramescu and Mrs. Eugenia Avramescu.

They made our adjustment to a new home much easier, and provided us the much needed

xvi



friendship and support during the more difficult times.

My close family is most important to me, and they have influenced and contributed

to my achievements immensely. My parents, Margareta and Victor, were always in my

heart, and gave me the courage and confidence to take greater challenges. They taught

me the simple and important things in life, that I will carry with me wherever I go, and

most importantly believed in me, and in my power to follow my dreams. Their emotional

and financial support were invaluable, and they were always ready to mitigate our worries.

Words are not enough to thank them, I only wish I could be a parent like them.

I thank my wonderful wife, Cipriana, my love and my best friendever since we met.

We shared our years in graduate school, yet she always found unbelievable resources and

energy to support, encourage and give me the power to continue. Thank you Cipi, for giving

so much more meaning to my life and work. I am very grateful to my wife’s parents, Rodica

and Constantin, for their love and for caring so tenderly for our daughter. Their invaluable

help has given me the precious time to work on my research and finish this dissertation.

I want to thank my brother, Eduard, for being my inspiration to come to graduate school

in the US. He generously shared his knowledge with me, and made my transition to Cali-

fornia much easier.

Above all, I cannot overestimate the influence my daughter, Andreea, has on all my life.

Her smile and laughter were enough to lift me up even during the toughest times. I promise

to make up for the story time that we missed in the late nights when I was wrapping up this

dissertation.

xvii



CURRICULUM VITAE

Robert Eugeniu Mateescu

EDUCATION

Ph.D. Information and Computer Science, 2007

Donald Bren School of Information and Computer Science

University of California Irvine

Dissertation: AND/OR Search Spaces for Graphical Models

Advisor: Rina Dechter.

M.S. Information and Computer Science, 2003

Donald Bren School of Information and Computer Science

University of California Irvine

B.S. Computer Science and Mathematics, 1997

University of Bucharest, Romania

PUBLICATIONS

[1] Rina Dechter and Robert Mateescu. AND/OR Search Spaces forGraphical Mod-

els.Artificial Intelligence171(2-3):73-106, 2007.

[2] Robert Mateescu and Rina Dechter. AND/OR Multi-Valued Decision Diagrams

(AOMDDs) for Weighted Graphical Models. InProceedings of the Twenty-Third

Conference on Uncertainty in Artificial Intelligence (UAI’07), 2007.

[3] Robert Mateescu and Rina Dechter. A Comparison of Time-Space Schemes for

Graphical Models. InProceedings of the Twentieth International Joint Confer-

ences on Artificial Intelligence (IJCAI’07), pages 2346-2352, 2007.

[4] Robert Mateescu and Rina Dechter. Compiling Constraint Networks into AND/OR

Multi-Valued Decision Diagrams (AOMDDs). InProceedings of the Twelfth In-

ternational Conference on Principles and Practice of Constraint Programming

(CP’06), pages 731–736, 2006.

xviii



[5] Robert Mateescu and Rina Dechter. The Relationship Between AND/OR Search

and Variable Elimination. InProceedings of the Twenty-First Conference on Un-

certainty in Artificial Intelligence (UAI’05), pages 380–387, 2005.

[6] Robert Mateescu and Rina Dechter. AND/OR Cutset Conditioning. In Proceed-

ings of the Nineteenth International Joint Conference on Artificial Intelligence (IJ-

CAI’05), pages 230–235, 2005.

[7] Rina Dechter and Robert Mateescu. The Impact of AND/OR Search Spaces on

Constraint Satisfaction and Counting. InProceedings of the Tenth International

Conference on Principles and Practice of Constraint Programming (CP’04), pages

731–736, 2004.

[8] Rina Dechter and Robert Mateescu. Mixtures of Deterministic-Probabilistic Net-

works and their AND/OR Search Space. InProceedings of the Twentieth Confer-

ence on Uncertainty in Artificial Intelligence (UAI’04), pages 120–129, 2004.

[9] Rina Dechter and Robert Mateescu. A Simple Insight into Iterative Belief Propa-

gation’s Success. InProceedings of the Nineteenth Conference on Uncertainty in

Artificial Intelligence (UAI’03), pages 175–183, 2003.

[10] Rina Dechter, Robert Mateescu and Kalev Kask. Iterative Join-Graph Propaga-

tion. In Proceedings of the Eighteenth Conference on Uncertainty in Artificial

Intelligence (UAI’02), pages 128–136, 2002.

[11] Robert Mateescu, Rina Dechter and Kalev Kask. Tree Approximation for Belief

Updating. InProceedings of the Eighteenth National Conference on Artificial In-

telligence (AAAI’02), pages 553–559, 2002.

xix



ABSTRACT OF THE DISSERTATION

AND/OR Search Spaces for Graphical Models

By

Robert Eugeniu Mateescu

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2007

Professor Rina Dechter, Chair

Graphical models are a widely used knowledge representation framework that captures in-

dependencies in the data and allows for a concise representation. Well known examples of

graphical models include Bayesian networks, constraint networks, Markov random fields

and influence diagrams. Graphical models are applicable to diverse domains such as plan-

ning, scheduling, design, diagnosis and decision making.

This dissertation is concerned with graphical model algorithms that leverage the struc-

ture of the problem. We investigate techniques that capitalize on the independencies ex-

pressed by the model’s graph by decomposing the problem intoindependent components,

resulting in often exponentially reduced computational costs.

The algorithms that we develop can be characterized along three main dimensions: (1)

search vs. dynamic programming methods; (2) deterministicvs. probabilistic information;

(3) approximate vs. exact algorithms.

We introduce the AND/OR search space perspective for graphical models. In contrast to

the traditional OR search, the new AND/OR search is sensitive to problem decomposition.

The AND/OR search tree search is in most cases exponentiallysmaller (and never larger)

than the OR search tree. The AND/OR search graph is exponential in the treewidth of the

xx



graph, while the OR search graph is exponential in the pathwidth.

We introducemixed networks, a new graphical model framework that combines belief

and constraint networks. By keeping the two types of information separate we are able to

more efficiently exploit them by specific methods. We describe the primary algorithms for

processing such networks, based on inference and on AND/OR search.

In terms of approximate algorithms, we investigate message-passing schemes based on

join tree clustering and belief propagation. We introduce Mini-Clustering (MC), which

performs bounded inference on a tree decomposition. We thencombine MC with the iter-

ative version of Pearl’s belief propagation (IBP), creatingIterative Join-Graph Propagation

(IJGP). We show empirically that IJGP is one of the most powerful approximate schemes

for belief networks. Through analogy with arc consistency algorithms from constraint net-

works, we show that IBP and IJGP infer zero-beliefs correctly, and empirically show that

this also extends to extreme beliefs.

We apply the AND/OR paradigm to cutset conditioning and showthat the new method

is a strict improvement, often yielding exponential savings. The AND/OR cutset is the

inspiration of a new caching scheme for AND/OR search, whichled to the design of our

most powerful and flexible algorithmAND/OR Adaptive Caching.

Furthermore we make a comparison of AND/OR search and inference methods. We

analyze them side by side by describing the context minimal graph that they traverse. We

also investigate three hybrid schemes, based on search and inference and show that Adap-

tive Caching is never worse than the other two.

Finally, we apply the AND/OR perspective to decision diagrams. We extend them

with AND nodes capturing function structure decomposition, resulting in AND/OR Multi-

Valued Decision Diagrams (AOMDDs). The AOMDD is a canonicalform that compiles a

graphical model and has size bounded exponentially by the treewidth, rather than pathwidth

(as is the case for OR decision diagrams). We present two compilation algorithms, one

based on AND/OR search, the other based on a Variable Elimination schedule.

xxi



Chapter 1

Introduction

Graphs are one of the fundamental concepts in mathematics, computer and information

sciences. They exist in different flavors, but the basic definition includes a set of vertices

and a set of edges (directed or undirected) between pairs of vertices. Due to this simple

definition, graphs are a convenient and natural way of representing the relationships (as

edges) between objects (vertices), and they can express a wide range of processes and

systems. For example, individuals in a community may be represented by vertices and

some relationships between them by edges. A complex productcould have its modules

represented by vertices and the interactions between them by edges. We may be interested

in modeling events, and we could represent them by vertices,and the causal links between

them by (directed) edges. In medicine, diseases and symptoms can be modeled by vertices,

and edges would express the appropriate connections between them. The World Wide Web

is another example of a graph, where pages are vertices and a link from one page to another

is a directed edge. The examples could continue, but the previous should give at least a

glimpse of the power of abstraction of graphs.

Modeling real-life decision problems requires the specification and reasoning with

probabilistic and deterministic information. Graphical models are a widely used knowl-

edge representation framework that captures independencies in the data and allows for a

1



concise representation. Essential to a graphical model is the underlying graph that captures

the problem structure. The vertices are the variables of interest, and the edges represent

the interactions between them. Some well known examples include Bayesian (or belief)

networks, constraint networks, Markov random fields, influence diagrams etc. There are

numerous examples of problems defined as graphical models, including design, scheduling,

planning, diagnosis, decision making or genetic linkage analysis.

Graphical models are the representation of choice for many problems because they are a

simple abstract mathematical model, and there exist many algorithms for solving different

tasks on them. Given a decision (or reasoning) problem, one can: (1) model it as a graphical

model; (2) apply some specific algorithm to solve it and then (3) interpret the results in

terms of the original problem. Modeling a problem (part 1), is an interesting and important

process in itself, but in most cases it is based on expert knowledge of the problem at hand,

or learned from data. Our work and the research presented in this dissertation is concerned

with the algorithms (part 2) that can be applied to a graphical model. Owing to the power of

abstraction, an efficient algorithm for graphical models isimmediately applicable to many

different types of problems (e.g., constraint satisfaction, belief updating, optimization).

The research presented in this dissertation is concerned with the study of graphical

model algorithms along three different dimensions:

1. searchvs. dynamic programmingmethods;

2. deterministicvs. probabilistic information;

3. approximatevs. exactalgorithms.

The following section will describe the outline of the dissertation and the contributions.

The rest of this chapter contains preliminary definitions and gives examples of graphical

models.

2



1.1 Dissertation Outline and Contributions

We describe here the structure of the dissertation, and the following sections will describe

in more detail the main results and contributions that appear in each chapter.

1. Chapter 2 introduces the AND/OR search space perspective for graphical models. In

contrast to the traditional (OR) search space view, the AND/OR search tree explicitly

displays some of the independencies that are present in the graphical model and

may sometimes reduce the search space exponentially. For memory intensive search,

familiar parameters such as the depth of a spanning tree, treewidth and pathwidth are

shown to play a key role in characterizing the effect of AND/OR search graphs vs.

the traditional OR search graphs.

2. Chapter 3 introducesmixed networks, a new framework for expressing and reason-

ing with probabilisticanddeterministicinformation. The framework combines belief

networks and constraint networks, and we define its semantics and its graphical rep-

resentation and outline the primary algorithms for processing such networks.

3. Chapter 4 investigates approximate message-passing algorithms for mixed networks.

We study the advantages of bounded inference provided by anytime schemes such

as Mini-Clustering (MC), and combine them with the virtues of iterative algorithms

such as Iterative Belief Propagation (IBP). Our resulting hybrid algorithm Iterative

Join-Graph Propagation (IJGP) is shown empirically to surpass the performance of

both MC and IBP on several classes of networks. Although thereis still little un-

derstanding of why or when IBP works well, it exhibits tremendous performance on

different classes of problems, most notably coding and satisfiability problems. We

investigate the iterative algorithms for Bayesian networksby making connections

with well known constraint processing algorithms, and thishelps explain when IBP

infers extreme beliefs correctly.

3



4. Chapter 5 describes theAND/OR cutset conditioning, which is an application of

the AND/OR paradigm to the method of cutset conditioning. Cutset conditioning

is one of the methods of solving reasoning tasks for graphical models, especially

when space restrictions make inference (e.g., jointree-clustering) algorithms infea-

sible. Thew-cutsetis a natural extension of the method to a hybrid algorithm that

performs search on the conditioning variables and inference on the remaining prob-

lems of induced width bounded byw. We take a fresh look at these methods through

the spectrum of AND/OR search spaces for graphical models. The resultingAND/OR

cutset methodis a strict improvement over the traditional one, often by exponential

amounts.

5. Chapter 6 compares search and inference in graphical models through the new frame-

work of AND/OR search. Specifically, we compare Variable Elimination (VE) and

memory-intensive AND/OR Search (AO) and place algorithms such as graph-based

backjumping and no-good and good learning within the AND/ORsearch framework.

We also compare three parameterized algorithmic schemes for graphical models that

can accommodate trade-offs between time and space: 1) AND/OR Cutset Condi-

tioning (AOC(i) ); 2) Variable Elimination with Conditioning (VEC(i) ); and 3) Tree

Decomposition with Conditioning (TDC(i) ). We show thatAOC(i) can simulate any

execution of the other two schemes, and thus is at least as good as them.

6. Chapter 7 describes how to augment Multi-Valued Decision Diagrams with AND

nodes, in order to capture function decomposition structure and to extend these

compiled data structures to general weighted graphical models (e.g., probabilistic

models). We present theAND/OR multi-valued decision diagram(AOMDD) which

compiles a graphical model into a canonical form that supports polynomial (e.g.,

solution counting, belief updating) or constant time (e.g.equivalence of graphical

models) queries. We provide two compilation algorithms forAOMDDs. The first is

4



based on AND/OR search and the subsequent reduction of the traversed context min-

imal graph. The second is based on a Bucket Elimination schedule to combine the

AOMDDs of the original functions. The algorithm uses theAPPLY operator which

combines two AOMDDs by a given operation. For both approaches, the complex-

ity of the compilation time and the size of the AOMDD are bounded exponentially

by thetreewidthof the graphical model, rather than thepathwidth, as is known for

ordered binary decision diagrams (OBDDs). We also introducethe concept ofse-

mantic treewidth, which helps explain why the size of a decision diagram is often

much smaller than the worst case bound.

7. Chapter 8 briefly presents the software implementation of the algorithms described

in the dissertation, and possible future directions. Chapter 9 concludes.

1.1.1 AND/OR Search Spaces for Graphical Models (Chapter 2)

Search-based algorithms (e.g., depth-first branch-and-bound, best-first search) traverse the

search space of the model, where each path represents a partial or full solution. The linear

structure of search spaces does not retain the independencies represented in the underlying

graphical models and, therefore, search-based algorithmsmay not be nearly as effective as

inference-based algorithms in using this information. On the other hand, the space require-

ments of search-based algorithms may be much less severe than those of inference-based

algorithms and they can accommodate a wide spectrum of space-bounded algorithms, from

linear space to treewidth bounded space. In addition, search methods require only an im-

plicit, generative, specification of the functional relationship (given in a procedural or func-

tional form) while inference schemes often rely on an explicit tabular representation over

the (discrete) variables. For these reasons, search-basedalgorithms are the only choice

available for models with large treewidth and with implicitrepresentation.

5



Contributions

The primary contribution of this chapter is in viewing search for graphical models in the

context of AND/OR search spaces rather than OR spaces. We introduce the AND/OR

search tree, and show that its size can be bounded exponentially by the depth of its pseudo

tree over the graphical model, and is never larger than the size of the OR search tree. This

implies exponential savings for any linear space algorithmtraversing the AND/OR search

tree vs. the OR search tree. Specifically, if the graphical model has treewidthw∗, there

exists a pseudo tree of depthO(w∗ · log n). Therefore, the size of the AND/OR search tree

isO(n · exp(w∗ · log n)), as opposed to the size of the OR search tree which isO(expn).

The AND/OR search tree can be transformed into a graph by merging identical subtrees.

We show that the size of the minimal AND/OR search graph is exponential in the treewidth

while the size of the minimal OR search graph is exponential in the pathwidth. Since

for some graphs the difference between treewidth and pathwidth is substantial (e.g., bal-

anced pseudo trees) the AND/OR representation implies substantial time and space savings

for memory intensive algorithms traversing the AND/OR graph. Searching the AND/OR

searchgraphcan be implemented by goods caching during search, while no-good record-

ing is interpreted as pruning portions of the search space independent of it being a tree or a

graph, an OR or an AND/OR. For finding a single solution, pruning the search space is the

most significant action. For counting and probabilistic inference, using AND/OR graphs

can be of much help even on top of no-good recording.

We also discuss the unifying power of the AND/OR search framework, and its relation-

ship with other existing algorithms, such as Variable Elimination, Recursive Conditioning

[23], Backtracking with Tree-Decomposition [99], Value Elimination [5], Case-Factor Di-

agrams [80] and compilation schemes.

6



1.1.2 Mixed Networks (Chapter 3)

The communities of probabilistic networks and constraint networks matured in parallel

with only minor interaction. Nevertheless some of the algorithms and reasoning princi-

ples that emerged within both frameworks, especially thosethat are graph-based, are quite

related. Both frameworks can be viewed as graphical models, apopular paradigm for

knowledge representation in general.

Researchers within the logic-based and constraint communities have recognized for

some time the need for augmenting deterministic languages with uncertainty information,

leading to a variety of concepts and approaches such as non-monotonic reasoning, proba-

bilistic constraint networks and fuzzy constraint networks. The belief networks community

started only recently to look into mixed representation [87, 84, 62, 35] perhaps because it

is possible, in principle, to capture constraint information within belief networks [86].

In principle, constraints can be embedded within belief networks by modeling each

constraint as a Conditional Probability Table (CPT). One approach is to add a new variable

for each constraint that is perceived as itseffect(child node) in the corresponding causal

relationship and then to clamp its value totrue [86, 21]. While this approach is semanti-

cally coherent and complies with the acyclic graph restriction of belief networks, it adds a

substantial number of new variables, thus cluttering the problem’s structure. An alternative

approach is to designate one of the arguments of the constraint as a child node (namely,

as its effect). This approach, although natural for functions (the arguments are the causes

or parents and the function variable is the child node), is quite contrived for general re-

lations (e.g.,x + 6 6= y). Such constraints may lead to cycles, which are disallowedin

belief networks. Furthermore, if a variable is a child node of two different CPTs (one may

be deterministic and one probabilistic) the belief networkdefinition requires that they be

combined into a single CPT.

The main shortcoming, however, of any of the above integrations is computational.

Constraints have special properties that render them attractive computationally. When con-

7



straints are disguised as probabilistic relationships, their computational benefits may be

hard to exploit. In particular, the power of constraint inference and constraint propagation

may not be brought to bear.

Contributions

We propose a simple framework that combines deterministic and probabilistic networks,

calledmixed network. In the mixed network framework the identity of the respective rela-

tionships, as constraints or probabilities, will be maintained explicitly, so that their respec-

tive computational power and semantic differences can be vivid and easy to exploit. The

mixed network approach allows two distinct representations: causal relationships that are

directional and normally (but not necessarily) quantified by CPTs and symmetrical deter-

ministic constraints.

The proposed scheme’s value is in providing: (1) semantic coherence; (2) user-interface

convenience (the user can relate better to these two pieces of information if they are dis-

tinct); and most importantly, (3) computational efficiency.

We outline the main types of algorithms for mixed networks: inference-based and

search-based. In particular, we discuss the application ofAND/OR search to mixed net-

works, and the exploitation of constraint propagation algorithms.

1.1.3 Iterative Algorithms for Mixed Networks (Chapter 4)

Probabilistic inference is the principal task in Bayesian networks, and it is known to be an

NP-hard problem [21]. Most of the commonly used exact algorithms such as join-tree clus-

tering [66, 57] or Variable Elimination [28, 103], exploit the network structure. Yet, they

are time and space exponential in a graph parameter calledinduced width(or tree-width),

rendering them essentially intractable even for moderate size problems. Approximate algo-

rithms are therefore necessary for most of the practical problems, although approximation

within given error bounds is also NP-hard [22, 92].

8



In this chapter we present iterative inference-based algorithms for graphical models,

focusing primarily on the task of belief updating. They are inspired by Pearl’s belief prop-

agation algorithm [86], which is known to be exact for poly-trees, and by the Mini-Buckets

algorithm [43], which is a bounded inference scheme, an anytime version of Variable Elim-

ination. As a distributed algorithm, belief propagation isalso well defined for networks that

contain cycles, and it can be applied iteratively in the formof Iterative Belief Propagation

(IBP), also known as loopy belief propagation. When the networks contain cycles, IBP is

no longer guaranteed to be exact, but in many cases it provides very good approximations

upon convergence, most notably in the case of coding networks [89] and some classes of

satisfiability [69].

Contributions

In this chapter we investigate: (1) The quality of bounded inference in anytime schemes

such as Mini-Clustering, which is a generalization of Mini-Buckets to arbitrary tree-

decompositions. (2) The virtues of iterative message-passing algorithms, combined with

bounded inference, result in our new Iterative Join-Graph Propagation (IJGP). (3) We also

make connections with well known and understood consistency enforcing algorithms for

constraint satisfaction, giving strong support for iterating messages, and helping identify

cases of strong and weak inference power for IBP and IJGP. Morespecifically, the contri-

butions are as follows.

Specifically, we present the Mini-Clustering (MC) algorithm,which is inspired by the

Mini-Buckets algorithm [43]. MC is a message-passing algorithm guided by a user ad-

justable parameter calledi-bound, offering a flexible tradeoff between accuracy and effi-

ciency in anytime style (in general the higher the i-bound, the better the accuracy). MC

operates on a tree-decomposition, and similar to Pearl’s belief propagation algorithm [86]

it converges in two passes, up and down the tree. Our contribution beyond other work in

this area [43, 34] consists in:

9



1. Extending the partition-based approximation for beliefupdating from mini-buckets

to general tree-decompositions, thus allowing the computation of the updated beliefs

for all the variables at once. This extension is similar to the one proposed in [34] but

replaces optimization with probabilistic inference.

2. Providing for the first time empirical evaluation demonstrating the effectiveness of

the partition-based idea for belief updating.

We were motivated by the success of Iterative Belief Propagation (IBP) in trying to

make MC benefit from the apparent virtues of iterating. The resulting algorithm, Itera-

tive Join-Graph Propagation (IJGP) is still a message-passing algorithm, but it operates

on a general join-graph decomposition which may contain cycles. It also provides a user

adjustablei-boundthat defines the maximum cluster size of the graph (and hence the com-

plexity), so it is both anytime and iterative. IJGP can be viewed as a generalized belief

propagation algorithm [102], with user adjustable clustersize. Since both MC and IJGP

are approximate schemes, empirical results on various classes of problems are included,

shedding light on their average case performance.

The work presented in the last part of the chapter is based on some simple observations

that may shed light on IBP’s behavior, and on the more general class of IJGP algorithms.

Zero-beliefs are variable-value pairs that have zero conditional probability given the evi-

dence. We show that: (1) if a value of a variable is assessed ashaving zero-belief in any

iteration of IBP, it remains a zero-belief in all subsequent iterations; (2) that IBP converges

in a finite number of iterations relative to its set of zero-beliefs; and, most importantly (3)

that the set of zero-beliefs decided by any of the iterative belief propagation methods is

sound. Namely any zero-belief determined by IBP correspondsto a true zero conditional

probability relative to the given probability distribution expressed by the Bayesian network.

While each of these claims can be proved directly, our approach is to associate a be-

lief network with a constraint network and show a correspondence between IBP applied

to the belief network and an arc-consistency algorithm applied to the corresponding con-

10



straint network. Since arc-consistency algorithms are well understood this correspondence

not only immediately proves the targeted claims, but may provide additional insight into

the behavior of IBP and IJGP. In particular, it not only immediately justifies the iterative

application of belief propagation algorithms on the one hand, but it also illuminates its

“distance” from being complete, on the other.

1.1.4 AND/OR Cutset Conditioning (Chapter 5)

The complexity of a reasoning task over a graphical model depends on the induced width

of the graph. For inference-type algorithms, the space complexity is exponential in the

induced width in the worst case, which often makes them infeasible for large and densely

connected problems. In such cases, space can be traded at theexpense of time by condi-

tioning (assigning values to variables). Search algorithms perform conditioning on all the

variables. Cycle-cutset schemes [86, 26] only condition on asubset of variables such that

the remaining network is singly connected and can be solved by inference tree algorithms.

The more recent hybridw-cutsetscheme [90, 10] conditions on a subset of variables such

that, when removed, the remaining network has induced widthw or less, and can be solved

by a variable elimination [29] type algorithm.

Contributions

We apply the AND/OR paradigm to the cycle cutset method. We show that theAND/OR

cycle cutsetis a strict improvement of the traditional cycle cutset method (and the same

holds for the extended w-cutset version). The result goes beyond the simple organization

of the traditional cutset in an AND/OR pseudo tree and its exploration by AND/OR search,

which would be just the straightforward improvement.

The complexity of exploring the traditional cutset is time-exponential in the number of

nodes in the cutset, and therefore it calls for finding a minimal cardinality cutsetC. The

complexity of exploring the AND/OR cutset is time-exponential in its depth, and therefore

11



it calls for finding a minimal depthAND/OR cutsetAO-C. That is, a set of nodes that can

be organized in a start pseudo tree of minimal depth. Therefore, while the cardinality of

the optimal AND/OR cutset,|AO-C|, may be far larger than that of the optimal traditional

cutset,|C|, the depth ofAO-C is always smaller than or equal to|C|.

1.1.5 AND/OR Search and Inference Algorithms (Chapter 6)

It is convenient to classify algorithms that solve reasoning problems of graphical models

as either search (e.g., depth first, branch and bound) or inference (e.g., variable elimina-

tion, join-tree clustering). Search is time-exponential in the number of variables, yet it can

be accomplished in linear memory. Inference exploits the graph structure of the model

and can be accomplished in time and space exponential in thetreewidthof the problem.

When the treewidth is big, inference must be augmented with search to reduce the mem-

ory requirements. In the past three decades search methods were enhanced with structure

exploiting techniques. These improvements often require substantial memory, making the

distinction between search and inference fuzzy. Recently, claims regarding the superiority

of memory-intensive search over inference or vice-versa are were [5]. Our aim is to clarify

this relationship and to create cross-fertilization usingthe strengths of both schemes.

We also address some long-standing questions regarding thecomputational merits of

several time-space sensitive algorithms for graphical models. In the past ten years, four

types of algorithms have emerged, based on: (1) cycle-cutset andw-cutset [86, 26]; (2)

alternating conditioning and elimination controlled by induced widthw [90, 63, 47]; (3)

Recursive Conditioning [23], which was recently recast as context-based AND/OR search

[45]; (4) varied separator-sets for tree decompositions [32]. The question is how do all these

methods compare and, in particular, is there one that is superior? A brute-force analysis of

time and space complexities of the respective schemes does not settle the question.

12



Contributions

First, we compare pure search with pure inference algorithms in graphical models through

the new framework of AND/OR search. Specifically, we compareVariable Elimination

(VE) against memory-intensive AND/OR Search (AO), and place algorithms such as graph-

based backjumping, no-good and good learning, and look-ahead schemes [31] within the

AND/OR search framework. We show that there is no principleddifference between

memory-intensive search restricted to fixed variable ordering and inference beyond: (1)

different direction of exploring a common search space (topdown for search vs. bottom-

up for inference); (2) different assumption of control strategy (depth-first for search and

breadth-first for inference). We also show that those differences have no practical effect,

except under the presence of determinism. Our analysis assumes a fixed variable ordering.

Some of the conclusions may not hold for dynamic variable ordering.

Second, we compare three hybrid schemes, that can trade timefor space, governed by

a parameter bounding the memory limit. They have all emergedfrom seemingly different

principles: Adaptive Caching AND/OR Search (AOC(i) ) is search based, Tree Decompo-

sition with Conditioning (TDC(i) ) is inference based and Variable Elimination and Condi-

tioning (VEC) combines search and inference. We show that if the graphical models con-

tain no determinism,AOC(i) can have a smaller time complexity than the vanilla versions

of bothVEC(i) andTDC(i) . This is due to a more efficient exploitation of the graphical

structure of the problem through AND/OR search, and the adaptive caching scheme that

benefits from the cutset principle. These ideas can be used toenhanceVEC(i) andTDC(i) .

We show that ifVEC(i) uses AND/OR search over the conditioning set and is guided bythe

pseudo tree data structure, then there exists an execution of AOC(i) that is identical to it.

We also show that ifTDC(i) processes clusters by AND/OR search with adaptive caching,

then there exists an execution ofAOC(i) identical to it. AND/OR search with adaptive

caching (AOC(i) ) emerges therefore as a unifying scheme, never worse than the other two.

All the analysis was done by using the context minimal data structure, which provides a

13



powerful methodology for comparing the algorithms. When thegraphical model contains

determinism, all the above schemes become incomparable. This is due to the fact that

they process variables in reverse orderings, and will encounter and exploit deterministic

information differently.

1.1.6 AND/OR Multi-Valued Decision Diagrams (Chapter 7)

Decision diagrams are widely used in many areas of research,especially in software and

hardware verification [18, 81]. A binary decision diagram (BDD) represents a Boolean

function by a directed acyclic graph with two sink nodes (labeled 0 and 1), and every inter-

nal node is labeled with a variable and has exactly two children: low corresponding to the 0

value andhighcorresponding to the 1 value. If isomorphic nodes were not merged, on one

extreme we would have the full searchtree, also called a Shannon tree, which is the usual

full tree explored by the backtracking algorithm. The tree can be ordered if we impose

that variables be encountered in the same order along every branch. It can then be com-

pressed by merging isomorphic nodes (i.e., with the same label and identical children), and

by eliminating redundant nodes (i.e., whoselow andhighchildren are identical). The result

is the celebratedreduced ordered binary decision diagram, or OBDD for short, introduced

by Bryant [16]. However, the underlying structure is OR, because the initial Shannon tree

is an OR tree. If AND/OR search trees are reduced by node merging and redundant nodes

elimination we get a compact search graph that can be viewed as a BDD representation

augmented with AND nodes.

Contributions

In this chapter we apply the AND/OR decomposition to decision diagrams. As a detail, the

number of values is also increased from two to any constant, but this is less significant for

the algorithms. The benefit of moving from OR structure to AND/OR is in a lower com-

plexity of the algorithms and size of the compiled structure. It typically moves from being

14



bounded exponentially by thepathwidthpw∗, which is characteristic of chain decompo-

sitions or linear structures, to being exponentially bounded by thetreewidthw∗, which is

characteristic of tree structures (it always holds thatw∗ ≤ pw∗ andpw∗ ≤ w∗ · log n). In

both cases, the compactness achieved in practice is often far smaller than what the bounds

suggest.

Our contributions are as follows: (1) We formally describe the AND/OR Multi-Valued

Decision Diagram (AOMDD) and prove that it is a canonical representation for constraint

networks. (2) We extend the AOMDD to general weighted graphical models. (3) We give

a compilation algorithm based on AND/OR search, that saves the trace of the memory

intensive search (which is a subset of the context minimal graph), and then reduces it in

one bottom up pass. (4) We describe theAPPLY operator that combines two AOMDDs by

an operation, and show that its complexity is at most quadratic in the input. (5) We give a

scheduling of building the AOMDD of a graphical model starting with the AOMDDs of its

functions. It is based on an ordering of variables, which gives rise to a pseudo tree according

to the execution of Variable Elimination algorithm. This guarantees that the complexity is

at most exponential in theinduced widthalong the ordering (equal to the treewidth of the

corresponding decomposition). (6) We show how AOMDDs relate to various earlier and

recent compilation frameworks, providing a unifying perspective for all these methods. (7)

We also introduce the concept ofsemantic treewidth, which helps explain why the size of

a decision diagram is often much smaller than the worst case bound.

1.2 Preliminaries

The remaining of the chapter contains preliminary notationand definitions and gives ex-

amples of graphical models.

Notations A reasoning problem is defined in terms of a set of variables taking values

on finite domains and a set of functions defined over these variables. We denote vari-

15



ables or subsets of variables by uppercase letters (e.g., X,Y, . . .) and values of variables

by lower case letters (e.g., x, y, . . .). Sets are usually denoted by bold letters, for example

X = {X1, . . . , Xn} is a set of variables. An assignment (X1 = x1, . . . , Xn = xn) can be

abbreviated asx = (〈X1, x1〉, . . . , 〈Xn, xn〉) or x = (x1, . . . , xn). For a subset of variables

Y, DY denotes the Cartesian product of the domains of variables inY. The projection

of an assignmentx = (x1, . . . , xn) over a subsetY is denoted byxY or x[Y]. We will

also denote byY = y (or y for short) the assignment of values to variables inY from

their respective domains. We denote functions by lettersf , g, h etc., and the scope (set of

arguments) of the functionf by scope(f).

1.2.1 Graph Concepts

A directed graphis a pairG = {V,E}, whereV = {X1, . . . , Xn} is a set of vertices, and

E = {(Xi, Xj)|Xi, Xj ∈ V } is the set of edges (arcs). If(Xi, Xj) ∈ E, we say thatXi

points toXj. The degree of a variable is the number of arcs incident to it.For each variable

Xi, pa(Xi) or pai, is the set of variables pointing toXi in G, while the set of child vertices

of Xi, denotedch(Xi), comprises the variables thatXi points to. The family ofXi, Fi,

includesXi and its parent variables. A directed graph is acyclic if it has no directed cycles.

An undirected graphis defined similarly to a directed graph, but there is no directionality

associated with the edges.

DEFINITION 1.2.1 (induced width) Anordered graphis a pair (G, d) whereG is an undi-

rected graph, andd = X1, . . . , Xn is an ordering of the nodes. Thewidth of a nodeis the

number of the node’s neighbors that precede it in the ordering. Thewidth of an orderingd,

is the maximum width over all nodes. Theinduced width of an ordered graph, w∗(d), is the

width of the induced ordered graph obtained as follows: nodes are processed from last to

first; when nodeX is processed, all its preceding neighbors are connected. The induced

width of a graph, denoted byw∗, is the minimal induced width over all its orderings.

16



DEFINITION 1.2.2 (hypergraph) A hypergraphis a pair H = (X,S), where S =

{S1, . . . , St} is a set of subsets ofV calledhyperedges.

DEFINITION 1.2.3 (tree decomposition)A tree decompositionof a hypergraphH =

(X,S) is a treeT = (V,E) (V is the set of nodes, also called “clusters”, andE is the

set of edges) together with a labeling functionχ that associates with each vertexv ∈ V a

setχ(v) ⊆ X satisfying:

1. For eachSi ∈ S there exists a vertexv ∈ V such thatSi ⊆ χ(v);

2. (running intersection property)For eachXi ∈ X, the set{v ∈ V | Xi ∈ χ(v)}

induces a connected subtree ofT .

DEFINITION 1.2.4 (treewidth, pathwidth) Thewidth of a tree decomposition of a hyper-

graph is the size of its largest cluster minus 1 (maxv |χ(v)| − 1). The treewidth of a

hypergraph is the minimum width along all possible tree decompositions. Thepathwidth

is the treewidth over the restricted class of chain decompositions.

It is easy to see that given an induced graph, the set of maximal cliques (also called

clusters) provide a tree decomposition of the graph, namelythe clusters can be connected

in a tree structure that satisfies the running intersection property. It is well known that the

induced width of a graph is identical to its treewidth [41]. For various relationships between

these and other graph parameters see [3, 14, 13].

1.2.2 AND/OR Search Graphs

AND/OR search spaces An AND/OR state space representation of a problem is defined

by a 4-tuple〈S,O, Sg, s0〉. S is a set of states which can be either OR or AND states (the

OR states represent alternative ways for solving the problem while the AND states often

represent problem decomposition into subproblems, all of which need to be solved).O

17



is a set of operators. An OR operator transforms an OR state into another state, and an

AND operator transforms an AND state into a set of states. There is a set of goal states

Sg ⊆ S and a start nodes0 ∈ S. Example problem domains modeled by AND/OR graphs

are two-player games, parsing sentences and Tower of Hanoi [85].

The AND/OR state space model induces an explicit AND/OR searchgraph. Each state

is a node and its child nodes are those obtained by applicableAND or OR operators. The

search graph includes astartnode. The terminal nodes (having no child nodes) are marked

as Solved (S), or Unsolved (U).

Solution subtree A solution subtreeof an AND/OR search graphG is a subtree which:

(1) contains the start nodes0; (2) if n in the subtree is an OR node then it contains one of its

child nodes inG and ifn is an AND node it contains all its children inG; 3. all its terminal

nodes are “Solved” (S). AND/OR graphs can have a cost associated with each arc, and the

cost of a solution subtree is a function (e.g., sum-cost) of the arcs included in the solution

subtree. In this case we may seek a solution subtree with optimal (maximum or minimum)

cost. Other tasks that enumerate all solution subtrees (e.g., counting solutions) can also be

defined.

1.2.3 Graphical Models

Graphical models include constraint networks [31] defined by relations of allowed tuples,

(directed or undirected) probabilistic networks [86], defined by conditional probability ta-

bles over subsets of variables, cost networks defined by costs functions and influence di-

agrams [54] which include both probabilistic functions andcost functions (i.e., utilities)

[30]. Each graphical model comes with its typical queries, such as finding a solution, or an

optimal one (over constraint networks), finding the most probable assignment or updating

the posterior probabilities given evidence, posed over probabilistic networks, or finding op-

timal solutions for cost networks. The task for influence diagrams is to choose a sequence

18



of actions that maximizes the expected utility. Markov random fields are the undirected

counterparts of probabilistic networks. They are defined bya collection of probabilistic

functions called potentials, over arbitrary subsets of variables. The framework presented in

this dissertation is applicable across all graphical models that have discrete variables, how-

ever we will draw most of our examples from constraint networks and directed probabilistic

networks.

In general, a graphical model is defined by a collection of functionsF , over a set of vari-

ablesX, conveying probabilistic, deterministic or preferentialinformation, whose structure

is captured by a graph.

DEFINITION 1.2.5 (graphical model) A graphical modelM is a 4-tuple, M =

〈X,D,F,⊗〉, where:

1. X = {X1, . . . , Xn} is a finite set of variables;

2. D = {D1, . . . , Dn} is the set of their respective finite domains of values;

3. F = {f1, . . . , fr} is a set of positive real-valued discrete functions, each defined over

a subset of variablesSi ⊆ X, called its scope, and denoted byscope(fi).

4. ⊗ is a combination operator1 (e.g.,⊗ ∈ {
∏

,
∑

,1} (product, sum, join)).

The graphical model represents the combination of all its functions:⊗r
i=1fi.

Next, we introduce the notion ofuniversalgraphical model that is defined by a single

function.

DEFINITION 1.2.6 (universal equivalent graphical model)Given a graphical model

M = 〈X,D,F1,⊗〉 the universal equivalent model ofM is u(M) = 〈X,D,F2 =

{⊗fi∈F1fi},⊗〉.

1The combination operator can also be defined axiomatically [95].

19



Two graphical models areequivalent if they represent the same set of solutions.

Namely, if they have the same universal model.

DEFINITION 1.2.7 (weight (or cost) of a full and a partial assignment)Given a graphi-

cal modelM = 〈X,D,F〉, the weight of a full assignmentx = (x1, . . . , xn) is defined

by w(x) = ⊗f∈Ff(x[scope(f)]). Given a subset of variablesY ⊆ X, the weight of a

partial assignmenty is the combination of all the functions whose scopes are included inY

(denoted byFY) evaluated at the assigned values. Namely,w(y) = ⊗f∈FY
f(y[scope(f)]).

We can restrict a graphical model by conditioning on a partial assignment.

DEFINITION 1.2.8 (conditioned graphical model)Given a graphical modelR =

〈X,D,F,
⊗

〉 and given a partial assignmentY = y, Y ⊂ X, the conditional graph-

ical model isR|y = 〈X,D|y, F |y,
⊗

〉, whereD|y = {Di ∈ D,Xi /∈ Y } and F |y =

{f |Y =y, f ∈ F , andscope(f) 6⊆ Y }.

Consistency For most graphical models, the range of the functions has a special zero

value “0” that isabsorbingrelative to the combination operator (e.g., multiplication). Com-

bining anything with “0” yields a “0”. The “0” value expresses the notion of inconsistent

assignments. It is a primary concept in constraint networksbut can also be defined relative

to other graphical models that have a “0” element.

DEFINITION 1.2.9 (consistent partial assignment, solution)Given a graphical model

having a “0” element, a partial assignment is consistent if its cost is non-zero. A solu-

tion is a consistent assignment to all the variables.

Throughout the dissertation, we will use two examples of graphical models: constraint

networks and belief networks. In the case of constraint networks, the functions can be

understood as relations. In other words, the functions (also called constraints) can take

only two values,{0, 1} (or {true, false}). A 0 value indicates that the corresponding as-

signment to the variables is inconsistent (not allowed), and a1 value indicates consistency.

20



Belief networks are an example of the more general case of graphical models (also called

weightedgraphical models). The functions in this case are conditional probability tables,

so the values of a function are any real number in the interval[0, 1].

Flat functions Each function in a graphical model having a “0” element expresses im-

plicitly a constraint. Theflat constraint of functionfi is a constraintRi over its scope that

includes all and only the consistent tuples. In the following chapters, when we talk about

a constraint network, we refer also to the flat constraint network that can be extracted from

the general graphical model. When all the full assignments are consistent we say that the

graphical model isstrictly positive.

DEFINITION 1.2.10 (primal graph) The primal graphof a graphical model is an undi-

rected graph that has variables as its vertices and an edge connects any two variables that

appear in the scope of the same function.

The primal graph captures the structure of the knowledge expressed by the graphical

model. In particular, graph separation indicates independency of sets of variables given

some assignments to other variables. All of the advanced algorithms for graphical models

exploit the graphical structure, by using a heuristically good elimination order, or a tree

decomposition or some similar method. We will use the concept of pseudo tree, which

resembles the tree rearrangements introduced in [48]:

DEFINITION 1.2.11 (pseudo tree)A pseudo treeof a graphG = (X, E) is a rooted treeT

having the same set of nodesX, such that every arc inE is a back-arc inT (i.e., it connects

nodes on the same path from root).

DEFINITION 1.2.12 (reasoning problem)A reasoning problemover a graphical model

M = 〈X,D,F,⊗〉 is defined by a marginalization operator and a set of subsets of

X that are of interest. It is therefore a triplet,P = 〈M,⇓Y, {Z1, . . . ,Zt}〉, where

Z = {Z1, . . . ,Zt} is a set of subsets of variables ofX. If S is the scope of functionf

21



andY ⊆ X, then⇓Y f ∈ { max

S−Y
f, min

S−Y
f,

∏

Y
f,

∑

S−Y
f} is a marginalization operator.P

can be viewed as a vector function over the scopesZ1, . . . ,Zt. The reasoning problem is

to computePZ1,...,Zt
(M) = (⇓Z1 ⊗

r
i=1fi, . . . ,⇓Zt

⊗r
i=1fi) .

We will focus primarily on reasoning problems defined byZ = ∅. The marginalization

operator is sometimes calledeliminationoperator because it removes some arguments from

the scope of the input function. Specifically,⇓Y f is defined onY. It therefore removes

variablesS−Y fromS = scope(f). Note that here
∏

Y
f is the relational projection operator

and unlike the rest of the marginalization operators the convention is that is defined by the

scope of variables that arenoteliminated.

1.2.4 Constraint Networks

Constraint networks provide a framework for formulating real world problems, such as

scheduling and design, planning and diagnosis, and many more as a set of constraints

between variables. For example, one approach to formulating a scheduling problem as a

constraint satisfaction problem (CSP) is to create a variable for each resource and time

slice. Values of variables would be the tasks that need to be scheduled. Assigning a task

to a particular variable (corresponding to a resource at some time slice) means that this

resource starts executing the given task at the specified time. Various physical constraints

(such as that a given job takes a certain amount of time to execute, or that a task can be

executed at most once) can be modeled as constraints betweenvariables. Theconstraint

satisfaction taskis to find an assignment of values to all the variables that does not violate

any constraints, or else to conclude that the problem is inconsistent. Other tasks are finding

all solutions and counting the solutions.

DEFINITION 1.2.13 (constraint network, constraint satisfaction problem) A constraint

network (CN)is a 4-tuple,〈X,D,C,1〉, whereX is a set of variablesX = {X1, . . . , Xn},

associated with a set of discrete-valued domains,D = {D1, . . . , Dn}, and a set of con-

22



C

A

B

D

E

F

G

(a) Graph coloring problem

A

B
D

C
G

F

E

(b) Constraint graph

Figure 1.1: Constraint network

straintsC = {C1, . . . , Cr}. Each constraintCi is a pair (Si, Ri), whereRi is a relation

Ri ⊆ DSi
defined on a subset of variablesSi ⊆ X. The relation denotes all compatible

tuples ofDSi
allowed by the constraint. The combination operator,1, is join. The primal

graph of a constraint network is calledconstraint graph. A solution is an assignment of

values to all the variablesx = (x1, . . . , xn), xi ∈ Di, such that∀ Ci ∈ C, xSi
∈ Ri. The

constraint network represents its set of solutions,1i Ci.

Constraint satisfactionis a reasoning problemP = 〈R,Π,Z〉, whereR = 〈X,D,C,1

〉 is a constraint network, and the marginalization operator is the projection operatorΠ.

Namely, for constraint satisfactionZ = {∅}, and⇓Y is ΠY. So the task is to find⇓∅ ⊗ifi =

Π∅(1ifi) which corresponds to enumerating all solutions. When the combination operator

is a product over the cost-based representation of the relations, and the marginalization

operator is logical summation we get “1” if the constraint problem has a solution and “0”

otherwise. Forcounting, the marginalization operator is summation andZ = {∅} too.

Example 1.2.1 Figure 1.1(a) shows a graph coloring problem that can be modeled by a

constraint network. Given a map of regions, the problem is to color each region by one

of the given colors{red, green, blue}, such that neighboring regions have different colors.

The variables of the problems are the regions, and each one has the domain{red, green,

blue}. The constraints are the relation“different” between neighboring regions. Figure

1.1(b) shows the constraint graph, and a solution (A=red, B=blue, C=green, D=green,

E=blue, F=blue, G=red) is given in Figure 1.1(a).

23



Cost Networks An immediate extension of constraint networks arecost networkswhere

the set of functions are real-valued cost functions, and theprimary task is optimization.

DEFINITION 1.2.14 (cost network, combinatorial optimization) A cost networkis a 4-

tuple, 〈X,D,C,
∑

〉, whereX is a set of variablesX = {X1, . . . , Xn}, associated with

a set of discrete-valued domains,D = {D1, . . . , Dn}, and a set of cost functionsC =

{C1, . . . , Cr}. EachCi is a real-valued function defined on a subset of variablesSi ⊆ X.

The combination operator, is
∑

. The reasoning problem is to find a minimum cost solution

which is expressed via the marginalization operator of minimization, andZ = {∅}.

The task of MAX-CSP, namely finding a solution that satisfies the maximum number

of constraints (when the problem is inconsistent), can be defined by treating each relation

as a cost function that assigns “0” to consistent tuples and “1” otherwise. The combination

operator is summation and the marginalization operator is minimization. Namely, the task

is to find⇓∅ ⊗ifi = minX(
∑

i fi).

Propositional Satisfiability A special case of a CSP ispropositional satisfiability(SAT).

A formula ϕ in conjunctive normal form(CNF) is a conjunction ofclausesα1, . . . , αt,

where a clause is a disjunction ofliterals (propositions or their negations). For example,

α = (P ∨ ¬Q ∨ ¬R) is a clause, whereP , Q andR are propositions, andP , ¬Q and

¬R are literals. The SAT problem is to decide whether a given CNF theory has amodel,

i.e., a truth-assignment to its propositions that does not violate any clause. Propositional

satisfiability (SAT) can be defined as a CSP, where propositions correspond to variables,

domains are{0, 1}, and constraints are represented by clauses, for example the clause

(¬A ∨ B) is a relation over its propositional variables that allows all tuples over(A,B)

except(A = 1, B = 0).

24



1.2.5 Belief Networks

Belief networks[86], also known as Bayesian networks, provide a formalism for reasoning

about partial beliefs under conditions of uncertainty. They are defined by a directed acyclic

graph over vertices representing random variables of interest (e.g., the temperature of a

device, the gender of a patient, a feature of an object, the occurrence of an event). The arcs

can signify the existence of direct causal influences between linked variables quantified by

conditional probabilities that are attached to each cluster of parents-child vertices in the

network. But these relationships need not necessarily be causal and we can still have a

perfectly well defined belief network.

DEFINITION 1.2.15 (belief networks)A belief network (BN)is a graphical modelP =

〈X,D,PG,
∏

〉, whereX = {X1, . . . , Xn} is a set of variables over multi-valued do-

mainsD = {D1, . . . , Dn}. Given a directed acyclic graphG over X as nodes,PG =

{P1, . . . , Pn}, wherePi = {P (Xi | pa (Xi) ) } are conditional probability tables (CPTs

for short) associated with eachXi, wherepa(Xi) are the parents ofXi in the acyclic

graphG. A belief network represents a probability distribution over X, P (x1, . . . , xn) =
∏n

i=1 P (xi|xpa(Xi)). An evidence sete is an instantiated subset of variables.

When formulated as a graphical model, functions inF denote conditional probability

tables and the scopes of these functions are determined by the directed acyclic graphG:

each functionfi ranges over variableXi and its parents inG. The combination operator is

product,⊗ =
∏

. The primal graph of a belief network is called a moral graph. It connects

any two variables appearing in the same CPT.

Example 1.2.2 Figure 1.2(a) gives an example of a belief network over 6 variables, and

Figure 1.2(b) shows its moral graph . The example expresses the causal relationship

between variables “Season” (A), “The configuration of an automatic sprinkler system”

(B), “The amount of rain expected” (C), “The amount of manual watering necessary”

(D), “The wetness of the pavement” (F ) and “Whether or not the pavement is slippery”

25



A

F

B C

D

G

Season

Sprinkler Rain

Watering Wetness

Slippery

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Figure 1.2: Belief network

(G). The belief network expresses the probability distribution P (A,B,C,D, F,G) =

P (A) · P (B|A) · P (C|A) · P (D|B,A) · P (F |C,B) · P (G|F ).

Two of the most popular tasks for belief networks are defined below:

DEFINITION 1.2.16 (belief updating) Given a belief network and evidencee, the belief

updatingtask is to compute the posterior marginal probability of variableXi, conditioned

on the evidence. Namely,

Bel(Xi = xi) = P (Xi = xi | e) = α
∑

{(x1,...,xi−1,xi+1,...,xn)|E=e,Xi=xi}

n
∏

k=1

P (xk, e|xpak
),

whereα is a normalization constant. In this case, the marginalization operator is⇓Y=
∑

X−Y
, andZi = {Xi}. Namely,∀Xi,⇓Xi

⊗kfk =
∑

{X−Xi|Xi=xi}

∏

k Pk. The query of

finding the probability of the evidence is defined byZ = ∅.

DEFINITION 1.2.17 (most probable explanation)Themost probable explanation (MPE)

task is to find a complete assignment which agrees with the evidence, and which has

the highest probability among all such assignments. Namely,to find an assignment

(xo
1, . . . , x

o
n) such that

P (xo
1, . . . , x

o
n) = maxx1,...,xn

n
∏

k=1

P (xk, e|xpak
).

26



As a reasoning problem, an MPE task is to find⇓∅ ⊗ifi = maxX

∏

i Pi. Namely, the

marginalization operator ismax andZ = {∅}.

27



Chapter 2

AND/OR Search Spaces for Graphical

Models

2.1 Introduction

Bayesian networks, constraint networks, Markov random fields and influence diagrams,

commonly referred to as graphical models, are all languagesfor knowledge representa-

tion that use graphs to capture conditional independenciesbetween variables. These in-

dependencies allow both the concise representation of knowledge and the use of efficient

graph-based algorithms for query processing. Algorithms for processing graphical models

fall into two general types: inference-based and search-based. Inference-based algorithms

(e.g., Variable Elimination, Tree Clustering) are better at exploiting the independencies

captured by the underlying graphical model. They provide a superior worst case time guar-

antee, as they are time exponential in the treewidth of the graph. Unfortunately, any method

that is time-exponential in the treewidth is also space exponential in the treewidth or sepa-

rator width and, therefore, not practical for models with large treewidth.

Search-based algorithms (e.g., depth-first branch-and-bound, best-first search) traverse

the model’s search space where each path represents a partial or full solution. The linear

28



structure of search spaces does not retain the independencies represented in the underlying

graphical models and, therefore, search-based algorithmsmay not be nearly as effective as

inference-based algorithms in using this information. On the other hand, the space require-

ments of search-based algorithms may be much less severe than those of inference-based

algorithms and they can accommodate a wide spectrum of space-bounded algorithms, from

linear space to treewidth bounded space. In addition, search methods require only an im-

plicit, generative, specification of the functional relationship (given in a procedural or func-

tional form) while inference schemes often rely on an explicit tabular representation over

the (discrete) variables. For these reasons, search-basedalgorithms are the only choice

available for models with large treewidth and with implicitrepresentation.

2.1.1 Contributions

In this chapter we propose to use the well-known idea of an AND/OR search space, origi-

nally developed for heuristic search [85], to generate search procedures that take advantage

of information encoded in the graphical model. We demonstrate how the independencies

captured by the graphical model may be used to yield AND/OR search trees that are ex-

ponentially smaller than the standard search tree (that canbe thought of as an OR tree).

Specifically, we show that the size of the AND/OR search tree is bounded exponentially by

the depth of a spanning pseudo tree over the graphical model.Subsequently, we move from

AND/OR search trees to AND/OR search graphs. Algorithms that explore the search graph

involve controlled memory management that allows improving their time-performance by

increasing their use of memory. The transition from a searchtree to a search graph in

AND/OR representations also yields significant savings compared to the same transition in

the original OR space. In particular, we show that the size ofthe minimal AND/OR graph

is bounded exponentially by the treewidth, while for OR graphs it is bounded exponentially

by the pathwidth.

Our idea of the AND/OR search space is inspired by search advances introduced spo-

29



radically in the past three decades for constraint satisfaction and more recently for prob-

abilistic inference and for optimization tasks. Specifically, it resembles pseudo tree rear-

rangement [48, 49], briefly introduced two decades ago, which was adapted subsequently

for distributed constraint satisfaction [19, 20] and more recently in [83], and was also shown

to be related to graph-based backjumping [27]. This work wasextended in [6] and more re-

cently applied to optimization tasks [65]. Another versionthat can be viewed as exploring

the AND/OR graphs was presented recently for constraint satisfaction [99] and for opti-

mization [98]. Similar principles were introduced recently for probabilistic inference (in

algorithm Recursive Conditioning [23] as well as in Value Elimination [5, 4]) and currently

provide the backbones of the most advanced SAT solvers [93].

The research presented in this chapter is based in part on [45, 44, 38].

2.2 AND/OR Search Trees

We will present the AND/OR search space for a generalgraphical modelstarting with an

example of a constraint network.

Example 2.2.1 Consider the simple tree graphical model (i.e., the primal graph is a

tree) in Figure 2.1(a), over domains{1, 2, 3}, which represents a graph-coloring problem.

Namely, each node should be assigned a value such that adjacent nodes have different val-

ues. Once variableX is assigned the value 1, the search space it roots can be decomposed

into two independent subproblems, one that is rooted atY and one that is rooted at Z, both

of which need to be solved independently. Indeed, givenX = 1, the two search subspaces

do not interact. The same decomposition can be associated with the other assignments to

X, 〈X, 2〉 and 〈X, 3〉. Applying the decomposition along the tree (in Figure 2.1(a) yields

the AND/OR search tree in Figure 2.1(c). In the AND/OR space a full assignment to all

the variables is not a path but a subtree. For comparison, thetraditional OR search tree

is depicted in Figure 2.1(b). Clearly, the size of the AND/OR search space is smaller than

30



X

Y Z

T R L M

(a) A constraint tree

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

(b) OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

(c) AND/OR search tree with one of its so-
lution subtrees

Figure 2.1: OR vs. AND/OR search trees; note the connector for AND arcs

that of the regular OR space. The OR search space has3 · 27 nodes while the AND/OR has

3 · 25 (compare 2.1(b) with 2.1(c)). Ifk is the domain size, a balanced binary tree withn

nodes has an OR search tree of sizeO(kn). The AND/OR search tree, whose pseudo tree

has depthO(log2 n), has sizeO((2k)log2 n) = O(n · klog2 n) = O(n1+log2 k). Whenk = 2,

this becomesO(n2).

The AND/OR space is not restricted to tree graphical models.It only has to be guided

by a backbonetree which spans the original primal graph of the graphical model in a

particular way. We will define the AND/OR search space relative to a depth-first search

tree (DFS tree) of the primal graph first, and will generalizeto a broader class of backbone

spanning trees subsequently. For completeness sake we defineDFS spanning tree, next.

DEFINITION 2.2.1 (DFS spanning tree)Given a DFS traversal orderingd =

(X1, . . . , Xn), of an undirected graphG = (V,E), the DFS spanning treeT of G

is defined as the tree rooted at the first node,X1, which includes only the traversed arcs of

G. Namely,T = (V,E ′), whereE ′ = {(Xi, Xj) | Xj traversed from Xi}.

We are now ready to define the notion of AND/OR search tree for agraphical model.

31



DEFINITION 2.2.2 (AND/OR search tree)Given a graphical modelR = 〈X,D,F,
⊗

〉,

its primal graphG and a backbone DFS treeT ofG, the associated AND/OR search tree,

denotedST (R), has alternating levels of AND and OR nodes. The OR nodes are labeled

Xi and correspond to the variables. The AND nodes are labeled〈Xi, xi〉 (or simplyxi)

and correspond to the value assignments of the variables. The structure of the AND/OR

search tree is based on the underlying backbone treeT . The root of the AND/OR search

tree is an OR node labeled by the root ofT . A path from the root of the search treeST (R)

to a noden is denoted byπn. If n is labeledXi or xi the path will be denotedπn(Xi) or

πn(xi), respectively. The assignment sequence along pathπn, denotedasgn(πn) is the set

of value assignments associated with the sequence of AND nodesalongπn:

asgn(πn(Xi)) = {〈X1, x1〉, 〈X2, x2〉, . . . , 〈Xi−1, xi−1〉},

asgn(πn(xi)) = {〈X1, x1〉, 〈X2, x2〉, . . . , 〈Xi, xi〉}.

The set of variables associated with OR nodes along pathπn is denoted byvar(πn):

var(πn(Xi)) = {X1, . . . , Xi−1}, var(πn(xi)) = {X1, . . . , Xi} . The exact parent-child

relationship between nodes in the search space are defined as follows:

1. An OR node,n, labeled byXi has a child AND node,m, labeled〈Xi, xi〉 iff 〈Xi, xi〉

is consistent with the assignmentasgn(πn). Consistency is defined relative to the flat

constraints.

2. An AND nodem, labeled〈Xi, xi〉 has a child OR noder labeledY , iff Y is child of

X in the backbone treeT . Each OR arc, emanating from an OR to an AND node is

associated with a weight to be defined shortly (see Definition 2.2.6).

Clearly, if a noden is labeledXi (OR node) orxi (AND node),var(πn) is the set of

variables mentioned on the path from the root toXi in the backbone tree, denoted by

pathT (Xi)
1.

1When the AND/OR tree is extended to dynamic variable orderings the set of variables along different
paths may vary.

32



A solution subtree is defined in the usual way:

DEFINITION 2.2.3 (solution subtree)A solution subtreeof an AND/OR search tree con-

tains the root node. For every OR nodes it contains one of its child nodes and for each of

its AND nodes it contains all its child nodes, and all its leaf nodes are consistent.

Example 2.2.2 In the example of Figure 2.1(a),T is the DFS tree which is the tree rooted

atX, and accordingly the root OR node of the AND/OR tree in 2.1(c) isX. Its child nodes

are labeled〈X, 1〉, 〈X, 2〉, 〈X, 3〉 (only the values are noted in the Figure), which are AND

nodes. From each of these AND nodes emanate two OR nodes,Y andZ, since these are

the child nodes ofX in the DFS tree of (2.1(a)). The descendants ofY along the path from

the root,(〈X, 1〉), are 〈Y, 2〉 and 〈Y, 3〉 only, since〈Y, 1〉 is inconsistent with〈X, 1〉. In

the next level, from each node〈Y, y〉 emanate OR nodes labeledT andR and from〈Z, z〉

emanate nodes labeledL andM as dictated by the DFS tree. In 2.1(c) a solution tree is

highlighted.

2.2.1 Weights of OR-AND Arcs

The arcs in AND/OR trees are associated with weightsw that are defined based on the

graphical model’s functions and combination operator. Thesimplest case is that of con-

straint networks.

DEFINITION 2.2.4 (arc weight for constraint networks) Given an AND/OR treeST (R)

of a constraint networkR, each terminal node is assumed to have a single, dummy, outgo-

ing arc. The outgoing arc of a terminal AND node always has the weight “1” (namely it is

consistent and thus solved). An outgoing arc of a terminal ORnode has weight “0”, (there

is no consistent value assignments). The weight of any internal OR to AND arc is “1”. The

arcs from AND to OR nodes have no weight.

We next define arc weights for any graphical model using the notion of buckets of

functions.

33



A

C

B

DE

A

D

B C

E

0

A

B

0

E D

0 1

C

0

0 1

1

C

0 1

1

E D

0 1

C

0

0 1

1

C

0 1

P(A=0)

P(B=0|A=0) P(B=1|A=0)

P(E=0|A=0,B=0)

P(D=0|B=0,C=0)×
P(C=0|A=0)

P(D=1|B=1,C=1)×
P(C=1|A=0)

P(D=0|B=0,C=1)×
P(C=1|A=0)

P(D=1|B=0,C=0)×
P(C=0|A=0)

P(D=1|B=0,C=1)×
P(C=1|A=0)

P(D=0|B=1,C=0)×
P(C=0|A=0)

P(D=0|B=1,C=1)×
P(C=1|A=0)

P(D=1|B=1,C=0)×
P(C=0|A=0)

P(E=1|A=0,B=0) P(E=0|A=0,B=1) P(E=1|A=0,B=1)

Figure 2.2: Arc weights for probabilistic networks

DEFINITION 2.2.5 (buckets relative to a backbone tree)Given a graphical modelR =

〈X,D,F,
⊗

〉 and a backbone treeT , thebucketof Xi relative toT , denotedBT (Xi), is

the set of functions whose scopes containXi and are included inpathT (Xi), which is the

set of variables from the root toXi in T . Namely,

BT (Xi) = {f ∈ F |Xi ∈ scope(f), scope(f) ⊆ pathT (Xi)}.

DEFINITION 2.2.6 (OR-to-AND weights) Given an AND/OR treeST (R), of a graphical

modelR, the weightw(n,m)(Xi, xi) of arc (n,m) whereXi labelsn andxi labelsm, is

the combinationof all the functions inBT (Xi) assigned by values alongπm. Formally,

w(n,m)(Xi, xi) =
⊗

f∈BT (Xi)
f(asgn(πm)[scope(f)]).

DEFINITION 2.2.7 (weight of a solution subtree)Given a weighted AND/OR treeST (R),

of a graphical modelR, and given a solution subtreet having OR-to-AND set of arcs

arcs(t), the weight oft is defined byw(t) =
⊗

e∈arcs(t)w(e).

Example 2.2.3 Figure 2.2 shows a belief network, a DFS tree that drives its weighted

AND/OR search tree, and a portion of the AND/OR search tree with the appropriate weights

on the arcs expressed symbolically. In this case the bucket of E contains the function

P (E|A,B), and the bucket ofC contains two functions,P (C|A) andP (D|B,C). Note

34



A

C

B

DE

A

D

B C

E

0

A

B

0

E D

0 1

C

0

0 1

1

C

0 1

1

E D

0 1

C

0

0 1

1

C

0 1

R(A=0, B=0) R(A=0,B=1)

R(A=0,B=0,E=0)

R(B=0,C=0,D=0)×
R(A=0,C=0)

R(B=1,C=1,D=1)×
R(A=0,C=1)

R(B=0,C=1,D=0)×
R(A=0,C=1)

R(B=0,C=0,D=1)×
R(A=0,C=0)

R(B=0,C=1,D=1)×
R(A=0,C=1)

R(B=1,C=0,D=0)×
R(A=0,C=0)

R(B=1,C=1,D=0)×
R(A=0,C=1)

R(B=1,C=0,D=1)×
R(A=0,C=0)

R(A=0,B=0,E=1) R(A=0,B=1,E=0) R(A=0,B=1,E=1)

R(AB)
R(AC)
R(ABE)
R(BCD)

Figure 2.3: Arc weights for constraint networks

thatP (D|B,C) belongs neither to the bucket ofB nor to the bucket ofD, but it is contained

in the bucket ofC, which is the last variable in its scope to be instantiated in apath from

the root of the tree. We see indeed that the weights on the arcs from the OR nodeE and

any of its AND value assignments include only the instantiated functionP (E|A,B), while

the weights on the arcs connectingC to its AND child nodes are the products of the two

functions in its bucket instantiated appropriately. Figure 2.3 shows a constraint network

with four relations, a backbone DFS tree and a portion of the AND/OR search tree with

weights on the arcs. Note that the complex weights would reduce to“0”s and “1”s in

this case. However, since we use the convention that arcs appear in the search tree only if

they represent a consistent extension of a partial solution, we will not see arcs having zero

weights.

2.2.2 Properties of AND/OR Search Tree

Any DFS treeT of a graphG has the property that the arcs ofG which are not inT are

backarcs. Namely, they connect a node and one of its ancestors in the backbone tree. This

ensures that each scope ofF will be fully assigned on some path inT , a property that is

essential for the validity of the AND/OR search tree.

THEOREM 2.2.4 (correctness)Given a graphical modelR having a primal graphG and a

DFS spanning treeT ofG, its weighted AND/OR search treeST (R) is sound and complete,

35



namely: 1) there is a one-to-one correspondence between solution subtrees ofST (R) and

solutions ofR; 2) the weight of any solution tree equals the cost of the full solution it

denotes; namely, ift is a solution tree ofST (R) which denotes a solutionx = (x1, ...xn)

thenc(x) = w(t).

Proof. 1) By definition, all the arcs ofST (R) are consistent. Therefore, any solution

tree ofST (R) denotes a solution forR whose assignments are all the labels of the AND

nodes in the solution tree. Also, by definition of the AND/OR tree, every solution ofR

must corresponds to a solution subtree inST (R). 2) By construction, the set of arcs in

every solution tree have weights such that each function ofF contribute to one and only

one weight via the combination operator. Since the total weight of the tree is derived by

combination, it yields the cost of a solution.2

The virtue of an AND/OR search tree representation is that its size may be far smaller

than the traditional OR search tree. The size of an AND/OR search tree depends on the

depth of its backbone DFS treeT . Therefore, DFS trees of smaller depth should be pre-

ferred to drive the AND/OR searchtree. An AND/OR search tree becomes an OR search

tree when its DFS tree is a chain.

THEOREM 2.2.5 (size bounds of AND/OR search tree)Given a graphical modelR, with

domains size bounded byk, and a DFS spanning treeT having depthm and l leaves,

the size of its AND/OR search treeST (R) is O(l · km) (and therefore alsoO(nkm) and

O((bk)m) whenb bounds the branching degree ofT andn bounds the number of nodes).

In contrast the size of its OR search tree along any ordering isO(kn). The above bounds

are tight and realizable for fully consistent graphical models. Namely, one whose all full

assignments are consistent.

Proof. Let p be an arbitrary directed path in the DFS treeT that starts with the root and

ends with a leaf. This path induces an OR search subtree whichis included in the AND/OR

search treeST , and its size isO(km) whenm bounds the path length. The DFS treeT

36



Table 2.1: OR vs. AND/OR search size, 20 nodes
OR space AND/OR space

treewidth height time (sec.) nodes time (sec.) AND nodes OR nodes
5 10 3.154 2,097,151 0.03 10,494 5,247
4 9 3.135 2,097,151 0.01 5,102 2,551
5 10 3.124 2,097,151 0.03 8,926 4,463
5 10 3.125 2,097,151 0.02 7,806 3,903
6 9 3.124 2,097,151 0.02 6,318 3,159

is covered byl such directed paths, whose lengths are bounded bym. The union of their

individual search trees covers the whole AND/OR search treeST , where every distinct full

path in the AND/OR tree appears exactly once, and therefore,the size of the AND/OR

search tree is bounded byO(l · km). Sincel ≤ n andl ≤ bm, it concludes the proof. 2

Table 2.1 demonstrates the size saving of AND/OR vs. OR search spaces for 5 random

networks having 20 bivalued variables, 18 CPTs with 2 parentsper child and 2 root nodes,

when all the assignments are consistent (remember that thisis the case when the probability

distribution is strictly positive). The size of the OR spaceis the full binary tree of depth 20.

The size of the full AND/OR space varies based on the backboneDFS tree. We can give

a better analytic bound on the search space size by spelling out the depthmi of each leaf

nodeLi in T .

Proposition 1 Given a graphical modelR, with domains size bounded byk, and a back-

bone spanning treeT havingL = {L1, . . . , Ll} leaves, where depth of leafLi ismi, then

the size of its full AND/OR search treeST (R) is O(
∑l

k=1 k
mi). Alternatively, we can

use the exact domain sizes for each variable yielding an evenmore accurate expression

O(
∑

Lk∈L Π{Xj |Xj∈pathT (Lk)}|D(Xj)|).

Proof. The proof is similar to that of Theorem 2.2.5, only each nodescontributes with its

actual domain size rather than the maximal one, and each pathto a leaf inT contributes

with its actual depth, rather than the maximal one.2

37



(a)

61

23

4

7 5

3

4

2

1

7

5

6

(b)

3

42

1

7

5

6

(c)

3

7

4

2

1

(d)

6

5

Figure 2.4: (a) A graph; (b) a DFS treeT1; (c) a pseudo treeT2; (d) a chain pseudo treeT3

2.2.3 From DFS Trees to Pseudo Trees

There is a larger class of trees that can be used as backbones for AND/OR search trees,

calledpseudo trees[48]. They have the above mentioned back-arc property.

DEFINITION 2.2.8 (pseudo tree, extended graph)Given an undirected graphG =

(V,E), a directed rooted treeT = (V,E ′) defined on all its nodes is apseudo treeif

any arc ofG which is not included inE ′ is a back-arc inT , namely it connects a node in

T to an ancestor inT . The arcs inE ′ may not all be included inE. Given a pseudo tree

T ofG, theextended graphofG relative toT is defined asGT = (V,E ∪ E ′).

Clearly, any DFS tree and any chain of a graph are pseudo trees.

Example 2.2.6 Consider the graphG displayed in Figure 2.4(a). Orderingd1 =

(1, 2, 3, 4, 7, 5, 6) is a DFS ordering of a DFS treeT1 having the smallest DFS tree depth

of 3 (Figure 2.4(b)). The treeT2 in Figure 2.4(c) is a pseudo tree and has a tree depth

of 2 only. The two tree-arcs (1,3) and (1,5) are not inG. TreeT3 in Figure 2.4(d), is a

chain. The extended graphsGT1 , GT2 andGT3 are presented in Figure 2.4(b),(c),(d) when

we ignore directionality and include the dotted arcs.

It is easy to see that the weighted AND/OR search tree is well defined when the back-

bone trees is a pseudo tree. Namely, the properties of soundness and completeness hold

and the size bounds are extendible.

38



a

1

2

a

3

a b

4 4

b

cba a cb cba

c

4

3

a b

4 4

cba a cb cba

c

4

c

3

a b

4 4

cba a cb cba

c

4

7

a

5

a b

6 6

b

cba a cb cba

c

6

5

a b

6 6

cba a cb cba

c

6

c

5

a b

6 6

cba a cb cba

c

6

b

2

a

3

a b

4 4

b

cba a cb cba

c

4

3

a b

4 4

cba a cb cba

c

4

c

3

a b

4 4

cba a cb cba

c

4

7

a

5

a b

6 6

b

cba a cb cba

c

6

5

a b

6 6

cba a cb cba

c

6

c

5

a b

6 6

cba a cb cba

c

6

c

2

a

3

a b

4 4

b

cba a cb cba

c

4

3

a b

4 4

cba a cb cba

c

4

c

3

a b

4 4

cba a cb cba

c

4

7

a

5

a b

6 6

b

cba a cb cba

c

6

5

a b

6 6

cba a cb cba

c

6

c

5

a b

6 6

cba a cb cba

c

6

a

1

3

a

4

a b c

2

a b c

b

4

a b c

2

a b c

c

4

a b c

2

a b c

5

a

7

a b c

6

a b c

b

7

a b c

6

a b c

c

7

a b c

6

a b c

a

3

a

4

a b c

2

a b c

b

4

a b c

2

a b c

c

4

a b c

2

a b c

5

a

7

a b c

6

a b c

b

7

a b c

6

a b c

c

7

a b c

6

a b c

c

3

a

4

a b c

2

a b c

b

4

a b c

2

a b c

c

4

a b c

2

a b c

5

a

7

a b c

6

a b c

b

7

a b c

6

a b c

c

7

a b c

6

a b c

Figure 2.5: AND/OR search tree along pseudo treesT1 andT2

THEOREM 2.2.7 (properties of AND/OR search trees)Given a graphical modelR and a

backbone pseudo treeT , its weighted AND/OR search treeST (R) is sound and complete,

and its size isO(l · km) wherem is the depth of the pseudo tree,l bounds its number of

leaves, andk bounds the domain size.

Proof. All the arguments in the proof for Theorem 2.2.4 carry immediately to AND/OR

search spaces that are defined relative to a pseudo tree. Likewise, the bound size argument

in the proof of Theorem 2.2.5 holds relative to the depth of the more general pseudo tree.

2

Example 2.2.8 Figure 2.5 shows the AND/OR search trees along the pseudo treesT1 and

T2 from Figure 2.4. Here the domains of the variables are{a, b, c} and the constraints are

universal. The AND/OR search tree based onT2 is smaller, becauseT2 has a smaller depth

thanT1. The weights are not specified here.

Finding good pseudo trees.Finding a pseudo tree or a DFS tree of minimal depth is

known to be NP-complete. However various greedy heuristicsare available. For example,

pseudo trees can be obtained by generating a heuristically good induced graph along an

39



orderingd and then traversing the induced graph depth-first, breakingties in favor of earlier

variables [6]. For more information see [71, 2].

The definition of buckets relative to a backbone tree extendsto pseudo trees as well,

and this allows the definitions of weights for an AND/OR tree based on pseudo tree. Next

we define the notion of abucket treeand show that it corresponds a pseudo tree. This

relationship will be used to make additional connections between various graph parameters.

DEFINITION 2.2.9 (bucket tree [59]) Given a graphical model, its primal graphG and an

orderingd, thebucket treeofG alongd is defined as follows. LetG∗d be the induced graph

ofG alongd. Each variableX has an associatedbucket, denoted byBX , that containsX

and its earlier neighbors in the induced graphG∗d (similar to Definition 2.2.5). The nodes

of the bucket tree are then buckets. Each nodeBX points toBY (BY is the parent ofBX)

if Y is the latest earlier neighbor ofX in G∗d.

The following relationship between the treewidth and the depth of pseudo trees is

known [6, 14]. Given atree decompositionof a primal graphG havingn nodes, whose

treewidth isw∗, there exists a pseudo treeT ofGwhose depth,m, satisfies:m ≤ w∗ · log n.

It can also be shown that any bucket tree [59] yields a pseudo tree and that a min-depth

bucket tree yields min-depth pseudo trees. The depth of a bucket tree was also calledelim-

ination depthin [14].

In summary,

Proposition 2 [6, 14] The minimal depthm over all pseudo trees satisfiesm ≤ w∗ · log n,

wherew∗ is the treewidth of the primal graph of the graphical model.

Therefore,

THEOREM 2.2.9 A graphical model that has a treewidthw∗ has an AND/OR search tree

whose size isO(n · k(w∗·log n)), wherek bounds the domain size andn is the number of

variables.

40



Table 2.2: Average depth of pseudo trees vs. DFS trees; 100 instances of each random
model
Model (DAG) width Pseudo tree depth DFS tree depth
(N=50, P=2, C=48) 9.5 16.82 36.03
(N=50, P=3, C=47) 16.1 23.34 40.60
(N=50, P=4, C=46) 20.9 28.31 43.19
(N=100, P=2, C=98) 18.3 27.59 72.36
(N=100, P=3, C=97) 31.0 41.12 80.47
(N=100, P=4, C=96) 40.3 50.53 86.54

For illustration, Table 2.2 shows the effect of DFS spanningtrees against pseudo trees,

both generated using brute-force heuristics over randomlygenerated graphs, whereN is

the number of variables,P is the number of variables in the scope of a function andC is

the number of functions.

2.2.4 Pruning Inconsistent Subtrees for the Flat Constraint Network

Most advanced constraint processing algorithms incorporate no-good learning, and con-

straint propagation during search, or use variable elimination algorithms such asadaptive-

consistencyand directional resolution[31], generating all relevant no-goods, prior to

search. Such schemes can be viewed as compiling a representation that would yield a

prunedsearch tree. We next define thebacktrack-freeAND/OR search tree.

DEFINITION 2.2.10 (backtrack-free AND/OR search tree)Given an AND/OR search

treeST (R), thebacktrack-free AND/OR search treeofR based onT , denotedBFT (R),

is obtained by pruning fromST (R) all inconsistent subtrees, namely all nodes that root no

consistent partial solution.

Example 2.2.10Consider 5 variablesX,Y, Z, T,R over domains{2, 3, 5}, where the con-

straints are:X dividesY andZ, andY dividesT andR. The constraint graph and the

AND/OR search tree relative to the DFS tree rooted atX, are given in Figure 2.6(a). In

2.6(b) we present theST (R) search space whose nodes’ consistency status (which will

latter will be referred to asvalues) are already evaluated having value “1” is consistent

41



X

Y Z

T R

{2,3,5}

{2,4,7} {2,3,5}

{4,5,7} {4,6,7}

(a) A constraint tree

2 3 5

X

Y Z Y Z Y

22 4

T

4

3

Z

3

R

4

T

4

R

41 1 1 1

1 1 1

1 1 1 1

1 1

1 1 0 1 0 1

1 0 0

1

(b) Search tree

2

X

Y Z

22 4

T

4

R

4

T

4

R

4

OR

OR

AND

AND

OR

AND 1 1 1 1

1

1 1 1 1

1 1

1 1

1

1

(c) Backtrack-free search tree

Figure 2.6: AND/OR search tree and backtrack-free tree

and “0” otherwise. We also highlight two solutions subtrees; one depicted by solid lines

and one by dotted lines. Part (c) presentsBFT (R), where all nodes that do not root a

consistent solution are pruned.

If we traverse the backtrack-free AND/OR search tree we can find a solution sub-

tree without encountering any dead-ends. Some constraint networks specifications yield

a backtrack-free search space. Others can be made backtrack-free by massaging their rep-

resentation usingconstraint propagationalgorithms before or during search. In particular,

it is well known that variable-elimination algorithms suchasadaptive-consistency[40] and

directional resolution [90], applied in a reversed order ofd (whered is the DFS order of the

pseudo tree) compile a constraint specification (resp., a Boolean CNF formula) that has a

backtrack-free search space. Assuming that the reader is familiar with variable elimination

algorithms [29] we define:

DEFINITION 2.2.11 (directional extension [40, 90])LetR be a constraint problem and

let d be a DFS traversal ordering of a backbone pseudo tree of its primal graph, then we

denote byEd(R) the constraint network (resp., the CNF formula) compiled by Adaptive-

consistency (resp., directional resolution) in reversed order ofd.

Proposition 3 Given a Constraint networkR, the AND/OR search tree of the directional

42



extensionEd(R) whend is a DFS ordering ofT , is identical to the backtrack-free AND/OR

search tree ofR based onT . NamelyST (Ed(R)) = BFT (R).

Proof. First, we should note that ifT is a pseudo tree ofR and ifd is a DFS ordering ofT ,

thenT is also a pseudo tree ofEd(R) and thereforeST (Ed(R)) is a faithful representation

of Ed(R). Ed(R) is equivalent toR, thereforeST (Ed(R)) is a supergraph ofBFT (R).

We only need to show thatST (Ed(R)) does not contain any dead-ends, in other words any

consistent partial assignment must be extendable to a solution ofR. Adaptive consistency

makesEd(R) strongly directionalw∗(d) consistent, wherew∗(d) is the induced width of

R along orderingd [40]. It follows from this that eitherR is inconsistent, in which case

the proposition is trivially satisfied, both trees being empty, or else any consistent partial

assignment inST (Ed(R)) can be extended to the next variable ind, and therefore no dead-

end is encountered. 2

Example 2.2.11 In Example 2.2.10, if we apply adaptive-consistency in reverse order of

X,Y, T,R, Z, the algorithm will remove the values3, 5 from the domains of bothX andZ

yielding a tighter constraint networkR′. The AND/OR search tree in Figure 2.2.10(c) is

bothST (R′) andBFT (R).

Proposition 3 emphasizes the significance of no-good learning [26] for deciding incon-

sistency or for finding a single solution. These techniques are known as clause learning in

SAT solvers, first introduced by [7] and are currently used inmost advanced solvers [72].

Namely, when we apply no-good learning we explore the searchspace whose many incon-

sistent subtrees are pruned. For counting however, and for other relevant tasks, pruning

inconsistent subtrees and searching the backtrack-free search tree yields a partial help only,

as we elaborate later.

43



2.3 AND/OR Search Graphs

It is often the case that a search space that is a tree can become a graph if identical nodes

are merged, because identical nodes root identical search subspaces, and correspond to

identical reasoning subproblems. Any two nodes that root identical weighted subtrees can

bemerged, reducing the size search graph. For example, in Figure 2.1(c), the search trees

below any appearance of〈Y, 2〉 are all identical, and therefore can be merged.

Sometimes, two nodes may not root identical subtrees, but they could still root search

subspaces that correspond to equivalent subproblems. Nodes that root equivalent subprob-

lems having the same universal model (see Definition 2.3.1) even though the weighted

subtrees may not be identical, can beunified, yielding an even smaller search graph, as we

will show.

We next formalize the notions ofmergingandunifying nodes and define the minimal

AND/OR search graph.

2.3.1 Minimal AND/OR Search Graphs

An AND/OR search tree can also be viewed as a data structure that defines auniversal

graphical model (see Definition 1.2.6), defined by the weights of its set of solution subtrees

(see Definition 2.2.3).

DEFINITION 2.3.1 (universal graphical model of AND/OR search trees)Given a

weighted AND/OR search treeG over a set of variablesX and domainsD, its universal

graphical model, denoted byU(G), is defined by its set of solutions as follows: ift is

a solution subtree andx = asgn(t) is the set of assignments associated witht then

u(x) = w(t); otherwiseu(x) = 0.

A graphical modelR is equivalent to its AND/OR search tree,ST (R), which means

that u(R) is identical toU(ST (R)). We will next define sound merge operations that

transform AND/OR search trees into graphs that preserve equivalence.

44



C

A

B

C

A B

0

C

A

0

B

0 1

1

B

0 1

1

A

0

B

0 1

1

B

0 1

(a) (b) (c)

20111

15011

2101

1001

4110

3010

6100

3000

f(C,A,B)BAC

111

601

510

200

f(C,A)AC

2 5 6 1

3 6 3 4 1 2 15 20

6 12 15 20 6 12 15 20

Figure 2.7: Merge vs. unify operators

DEFINITION 2.3.2 (merge)Assume a given weighted AND/OR search graphS ′T (R)

(S ′T (R) can be the AND/OR search treeST (R)), and assume two pathsπ1 = πn1(xi)

andπ2 = πn2(xi) ending by AND nodes at leveli having the same labelxi. Nodesn1 and

n2 can bemergediff the weighted search subgraphs rooted atn1 andn2 are identical. The

mergeoperator,merge(n1, n2), redirects all the arcs going inton2 into n1 and removesn2

and its subgraph. It thus transformsS ′T into a smaller graph. When we merge AND nodes

only we call the operation AND-merge. The same reasoning can beapplied to OR nodes,

and we call the operation OR-merge.

We next define the semantic notion ofunifiable nodes, as opposed to the syntactic

definition ofmerge.

DEFINITION 2.3.3 (unify) Given a weighted AND/OR search graphG for a graphical

modelR and given two pathsπn1 and πn2 having the same label on nodesn1 and n2,

thenn1 andn2 are unifiable, iff they root equivalent conditioned subproblems (Definition

1.2.8). Namely, ifR|asgn(π1) = R|asgn(π2).

Example 2.3.1 Let’s follow the example in Figure 2.7 to clarify the difference between

mergeandunify. We have a graphical model defined by two functions (e.g.cost functions)

over three variables. The search tree given in Figure 2.7(c)cannot be reduced to a graph

45



by merge, because of the different arc weights. However, the two OR nodeslabeledA root

equivalent conditioned subproblems (the cost of each individual solution is given at the

leaves). Therefore, the nodes labeledA can beunified, but they cannot be recognized as

identical by themergeoperator.

Proposition 4 (minimal graph) Given a weighted AND/OR search graphG based on

pseudo treeT :

1. Themergeoperator has a unique fix point, called themerge-minimal AND/OR

search graph and denoted byMmerge
T (G).

2. Theunify operator has a unique fix point, called theunify-minimal AND/OR search

graph and denoted byMunify
T (G).

3. Any two nodesn1 andn2 of G that can be merged can also be unified.

Proof. (1) All we need to show is that themergeoperator is not dependant on the order of

applying the operator. Mergeable nodes can only appear at the same level in the AND/OR

graph. Looking at the initial AND/OR graph, before the mergeoperator is applied, we can

identify all the mergeable nodes per level. We prove the proposition by showing that if two

nodes are initially mergeable, then they must end up merged after the operator is applied

exhaustively to the graph. This can be shown by induction over the level where the nodes

appear.

Base case:If the two nodes appear at the leaf level (level0), then it is obvious that the

exhaustive merge has to merge them at some point.

Inductive step:Suppose our claim is true for nodes up to levelk and two nodesn1 andn2

at levelk + 1 are initially identified as mergeable. This implies that, initially, their corre-

sponding children are identified as mergeable. These children are at levelk, so it follows

from the inductive hypothesis that the exhaustive merge hasto merge the corresponding

children. This in fact implies that nodesn1 andn2 will root the same subgraph when the

46



exhaustive merge ends, so they have to end up merged. Since the graph only becomes

smaller by merging, based on the above the process of merginghas to stop at a fix point.

(2) Analogous to (1). (3) If the nodes can be merged, it follows that the subgraphs are

identical, which implies that they define the same conditioned subproblems, and therefore

the nodes can also be unified.2

DEFINITION 2.3.4 (minimal AND/OR search graph) The unify-minimal AND/OR

search graph ofR relative toT will also be simply called theminimal AND/OR search

graphand be denoted byMT (R).

WhenT is a chain pseudo tree, the above definitions are applicable to the traditional

OR search tree as well. However, we may not be able to reach thesame compression as in

some AND/OR cases, because of the linear structure imposed by the OR search tree.

Example 2.3.2 The smallest OR search graph of the graph-coloring problem in Figure

2.1(a) is given in Figure 2.9 along the DFS orderX,Y, T,R, Z, L,M . The smallest

AND/OR graph of the same problem along the DFS tree is given in Figure 2.11. We

see that some variable-value pairs (AND nodes) must be repeated in Figure 2.9 while

in the AND/OR case they appear just once. In particular, the subgraph below the paths

(〈X, 1〉, 〈Y, 2〉) and (〈X, 3〉, 〈Y, 2〉) in the OR tree cannot be merged at〈Y, 2〉. You can

now compare all the four search space representations side by side in Figures 2.8-2.11.

Note that in the case of constraint networks we can accommodate an even more gen-

eral definition of merging of two AND nodes that are assigneddifferentvalues from their

domain, or two OR nodes labeled by different variables, as long as they root identical

subgraphs. In that case the merged node should be labeled by the disjunction of the two

assignments (this is similar to interchangeable values [101]).

47



1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

Figure 2.8: OR search tree
for the tree problem in Figure
2.1(a)

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Figure 2.9: The minimal OR search graph of the
tree graphical model in Figure 2.1(a)

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

Figure 2.10: AND/OR search
tree for the tree problem in Fig-
ure 2.1(a)

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Figure 2.11: The minimal AND/OR search graph
of the tree graphical model in Figure 2.1(a)

2.3.2 Building AND/OR Search Graphs

In this subsection we will discuss practical algorithms forgenerating compact AND/OR

search graphs of a given graphical model. In particular we will identify effective rules for

recognizing unifiable nodes, aiming towards the minimal AND/OR search graph as much as

computational resources allow. The rules allow generatinga small AND/OR graph called

the context minimal graphwithout creating the whole search treeST first. We focus first

on AND/OR search graphs of graphical models having no cycles, calledtree models(i.e.,

the primal graph is a tree).

48



Building AND/OR search graphs for Tree Models and Tree Decompositions

Consider again the graph in Figure 2.1(a) and its AND/OR search tree in Figure 2.1(c) rep-

resenting a constraint network. Observe that at level 3, node 〈Y, 1〉 appears twice, (and so

are〈Y, 2〉 and〈Y, 3〉). Clearly however, the subtrees rooted at each of these two AND nodes

are identical and we can reason that they can be merged because any specific assignment

to Y uniquely determines its rooted subtree. Indeed, the AND/ORsearch graph in Figure

2.11 is equivalent to the AND/OR search tree in Figure 2.8 (same as Figure 2.1(c)).

DEFINITION 2.3.5 (explicit AND/OR graphs for constraints tree models)Given a tree

model constraint network and the pseudo treeT identical to its primal graph, theexplicit

AND/OR search graphof the tree model relative toT is obtained fromST by merging all

AND nodes having the same label〈X, x〉.

Proposition 5 Given a rooted tree modelT : (1) Its explicit AND/OR searchgraphis equiv-

alent toST . (2) The size of the explicit AND/OR search graph isO(nk). (3) For some tree

models the explicit AND/OR search graph is minimal.

Proof. Parts 1 and 2 follow from definitions. Regarding claim 3, for the graph coloring

problem in Figure 2.1(a), the minimal AND-OR search graph isidentical to its explicit

AND/OR search graph,GT . (See Figure 2.11). 2

The notion of explicit AND/OR search graph for a tree model isextendable to any

general graphical models that are trees. The only difference is that the arcs have weights.

Thus, we need to show that merged nodes via the rule in definition 2.3.5 root identical

weighted AND/OR trees.

Proposition 6 Given a general graphical model whose graph is a treeT , its explicit

AND/OR searchgraphis equivalent toST , and its size isO(nk);

Proof. In tree models, the functions are only over two variables. Therefore, after an as-

signment〈X, x〉 is made and the appropriate weight is given to the arc fromX to 〈X, x〉,

49



the variableX and all its ancestors in the pseudo tree do not contribute to any arc weight

below in the AND/OR search tree. Therefore, the conditionedsubproblems rooted at any

AND node labeled by〈X, x〉 depend only on the assignment ofX to x (and do not depend

on any other assignment on the current path), so it follows that all the AND nodes labeled

by 〈X, x〉 can be merged. Since the equivalence of AND/OR search spacesis preserved by

merge, the explicit AND/OR search graph is equivalent toST . At each AND level in the

explicit graph there are at mostk values, and therefore its size isO(nk). 2

Next, the question is how to identifyefficientlymergeable nodes forgeneralnon-tree

graphical models. A guiding idea is to transform a graphicalmodel into a tree decompo-

sition first, and then apply the explicit AND/OR graph construction to the resulting tree

decomposition. The next paragraph sketches this intuition.

A tree decomposition[59] (see Definition 1.2.3) of a graphical model partitions the

functions into clusters. Each cluster corresponds to a subproblem that has a set of solutions

and the clusters interact in a tree-like manner. Once we havea tree decomposition of

a graphical model, it can be viewed as a regular (meta) tree model where each cluster

is a node and its domain is the cross product of the domains of variables in the cluster.

The constraint between two adjacent nodes in the tree decomposition is equality over the

common variables. For more details about tree decompositions see [59]. For the meta-tree

model the explicit AND/OR search graph is well defined: the ORnodes are the scopes of

clusters in the tree decomposition and the AND nodes, are their possible value assignments.

Since the graphical model is converted into a tree, its explicit AND/OR search graph is well

defined and we can bound its size.

THEOREM 2.3.3 Given atree decompositionof a graphical model, whose domain sizes

are bounded byk, theexplicit AND/OR search graphimplied by the tree decomposition

has a size ofO(rkw∗
), wherer is the number of clusters in the tree decomposition andw∗

is the size of the largest cluster.

50



Proof. The size of an explicit AND/ORgraphof a tree model was shown to beO(n · k)

(Proposition 5), yielding,O(r · kw∗
) size for the explicit AND/OR graph, becausek is

replaced bykw∗
, the number of possible assignments to a cluster of scope sizew∗, andr

replacesn. 2

The tree decomposition can guide an algorithm for generating an AND/OR search graph

whose size is bounded exponentially by the induced width, which we will refer to in the

next section as thecontext minimal graph.

While the idea of explicit AND/OR graph based on a tree decomposition can be ex-

tended to any graphical model it is somewhat cumbersome. Instead, in the next section we

propose a more direct approach for generating the context minimal graph.

The Context Based AND/OR Graph

We will now present a generative rule for merging nodes in theAND/OR search graph

that yields the size bound suggested above. We will need the notion of induced width of

a pseudo tree of Gfor bounding the size of the AND/OR searchgraphs. We denote by

dDFS(T ) a linear DFS ordering of a treeT .

DEFINITION 2.3.6 (induced width of a pseudo tree)The induced width ofG relative to

the pseudo treeT ,wT (G), is the induced width along thedDFS(T ) ordering of the extended

graph ofG relative toT , denotedGT .

Proposition 7 (1) The minimal induced width ofG over all pseudo trees is identical to the

induced width (treewidth),w∗, of G. (2) The minimal induced width restricted to chain

pseudo trees is identical to its pathwidth,pw∗.

Proof. (1) The induced width ofG relative to a given pseudo tree is always greater than

w∗, by definition ofw∗. It remains to show that there exists a pseudo treeT such that

wT (G) = w∗. Consider an orderingd that gives the induced widthw∗. The orderingd

51



defines a bucket treeBT (see Definition 2.2.9), which can also be viewed as a pseudo tree

for the AND/OR search, thereforewBT (G) = w∗. (2) Analogous to (1). 2

Example 2.3.4 In Figure 2.4(b), the induced graph ofG relative toT1 contains also the

induced arcs (1,3) and (1,5) and its induced width is 2.GT2 is already triangulated (no

need to add induced arcs) and its induced width is 2 as well.GT3 has the added arc (4,7)

and when ordered it will have the additional induced arcs (1,5)and (1,3) edges, yielding

induced width 2 as well.

We will now provide definitions that will allow us to identifynodes that can be merged

in an AND/OR graph. The idea is to find a minimal set of variableassignments from the

current path that will always generate the same conditionedsubproblem, regardless of the

assignments that are not included in this minimal set. Sincethe current path for an OR

nodeXi and an AND node〈Xi, xi〉 differ by the assignment ofXi to xi (Definition 2.2.2),

the minimal set of assignments that we want to identify will be different forXi and for

〈Xi, xi〉. In the following two definitions ancestors and descendantsare with respect to the

pseudo treeT , while connection is with respect to the primal graphG.

DEFINITION 2.3.7 (parents) Given a primal graphG and a pseudo treeT of a reasoning

problemP, theparentsof an OR nodeXi, denoted bypai or paXi
, are the ancestors ofXi

that have connections inG toXi or to descendants ofXi.

DEFINITION 2.3.8 (parent-separators)Given a primal graphG and a pseudo treeT of

a reasoning problemP, the parent-separatorsof Xi (or of 〈Xi, xi〉), denoted bypasi or

pasXi
, are formed byXi and its ancestors that have connections inG to descendants ofXi.

It follows from these definitions that the parents ofXi, pai, separate in the primal graph

G (and also in the extended graphGT and in the induced extended graphGT ∗) the ancestors

(in T ) of Xi, fromXi and its descendants (inT ). Similarly, the parents separators ofXi,

52



pasi, separate the ancestors ofXi from its descendants. It is also easy to see that each

variableXi and its parentspai form a clique in the induced graphGT ∗. The following

proposition establishes the relationship betweenpai andpasi.

Proposition 8 1. If Y is the single child ofX in T , thenpasX = paY .

2. IfX has childrenY1, . . . , Yk in T , thenpasX = ∪k
i=1paYi

.

Proof. Both claims follow directly from Definitions 2.3.7 and 2.3.8.2

THEOREM 2.3.5 (context based merge)GivenGT
∗
, let πn1 and πn2 be any two partial

paths in an AND/OR search graph, ending with two nodes,n1 andn2.

1. If n1 andn2 are AND nodes annotated by〈Xi, xi〉 and

asgn(πn1)[pasXi
] = asgn(πn2)[pasXi

] (2.1)

then the AND/OR search subtrees rooted byn1 andn2 are identical andn1 andn2

can be merged.asgn(πni
)[pasXi

] is called theAND contextof ni.

2. If n1 andn2 are OR nodes annotated byXi and

asgn(πn1)[paXi
] = asgn(πn2)[paXi

] (2.2)

then the AND/OR search subtrees rooted byn1 andn2 are identical andn1 andn2

can be merged.asgn(πni
)[paXi

] is called theOR contextof ni.

Proof. (1) The conditioned graphical models (Definition 1.2.8) atn1 andn2 are defined

by the functions whose scopes are not fully assigned byπn1 andπn2. Sincen1 andn2

have the same labeling〈Xi, xi〉, it follows that var(πn1) = var(πn2), and therefore the

two conditioned subproblems are based on the same set of functions, let’s call itF |var(πn1 ).

53



The scopes of functions inF |var(πn1 ) determine connections in the primal graph between

ancestors ofXi and its descendants. Therefore, the only relevant variables that define the

restricted subproblems are those inpasi, and equation 2.1 ensures that they have identical

assignments. It follows that the conditioned subproblems are identical, andn1 andn2 can

be merged.

(2) Analogous to (1). 2

Example 2.3.6 For the balanced tree in Figure 2.1 consider the chain

pseudo tree d = (X,Y, T,R, Z, L,M). Namely the chain has arcs

{(X,Y ), (Y, T ), (T,R), (R,Z), (Z,L), (L,M)} and the extended graph includes also the

arcs(Z,X), (M,Z). The parent-separator ofT alongd isXY T (since the induced graph

has the arc(T,X)), of R it is XR, for Z it is Z and forM it is M . Indeed in the first

3 levels of the OR search graph in Figure 2.9 there are no merged nodes. In contrast,

if we consider the AND/OR ordering along the DFS tree, the parent-separator of every

node is itself yielding a single appearance of each AND node having the same assignment

annotation in the minimal AND/OR graph.

DEFINITION 2.3.9 (context minimal AND/OR search graph)The AND/OR search

graph ofR based on the backbone treeT that is closed under context-based merge

operator is calledcontext minimalAND/OR search graph and is denotedCT (R).

We should note that we can in general merge nodes based both onAND and OR con-

texts. However, Proposition 8 shows that doing just one of them renders the other unnec-

essary (up to some small constant factor). In practice, we would recommend just the OR

context based merging, because it has a slight (albeit by a small constant factor) space ad-

vantage. In the examples that we give in this chapter,CT (R) refers to an AND/OR search

graph for which either the AND context based or OR context based merging was performed

exhaustively.

54



Example 2.3.7 Consider the example given in Figure 2.12(a). The OR context of each

node in the pseudo tree is given in square brackets. The context minimal AND/OR search

graph (based on OR merging) is given in Figure 2.12(b).

Since the number of nodes in the context minimal AND/OR search graph cannot exceed

the number of different contexts, we can bound the size of thecontext minimal graph.

THEOREM 2.3.8 Given a graphical modelR, its primal graphG, and a pseudo treeT

having induced widthw = wT (G), the size of the context minimal AND/OR search graph

based onT , CT (R), isO(n · kw), whenk bounds the domain size.

Proof. The number of different nodes in the context minimal AND/OR search graph,CT ,

does not exceed the number of contexts. From equations 2.1 and 2.2 we see that, for any

variable, the number of contexts is bounded by the number of possible instantiations of the

largest context inGT ∗, which is bounded byO(kw). For all then variables, the bound

O(n · kw) follows. 2

Note that the criterion in equations 2.1 and 2.2 is cautious.First, the real number of

assignments over context variables includes only consistent assignments. Second, we have

already seen (Example 2.3.1) that there exist nodes that canbe unified but not merged.

Here we give an example that shows that contexts can not identify all the nodes that can

be merged. There could be paths whose contexts are not identical, yet they might root

identical subgraphs.

Example 2.3.9 Let’s return to the example of the Bayesian network given in Figure

2.12(a), whereP (D|B,C) is given in the table, and the OR-context of each node in the

pseudo tree is given in square brackets. Figure 2.12(b) showsthe context minimal graph.

However, we can see thatP (D = 0|B = 0, C = 0) = P (D = 0|B = 1, C = 0) = x and

P (D = 1|B = 0, C = 0) = P (D = 1|B = 1, C = 0) = y. This allows theunificationof

the corresponding OR nodes labeled withD, and Figure 2.12(c) shows the (unify) minimal

graph.

55



A

D

B

CE

A

D

B C

E
s111

r011

y101

x001

q110

p010

y100

x000

P(D|B,C)DCB

(a)

[ ]

[ A ]

[ AB ]

[ BC ]

[ AB ]

(b)

0

A

B

0

E C

0 1

D

0 1

0 1

D

0 1

1

E C

0 1

D

0 1

0 1

D

0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

x y p q r sx y

(c)

0

A

B

0

E C

0 1

D

0 1

0 1

D

0 1

1

E C

0 1 0 1

D

0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

x y p q r s

Figure 2.12: Context minimal vs. minimal AND/OR graphs

The context based merge offers a powerful way of bounding thesearch complexity:

THEOREM 2.3.10 The context minimal AND/OR search graphCT of a graphical model

having a backbone tree with bounded treewidthw can be generated in time and space

O(nkw).

Proof. We can generateCT using depth-first or breadth first search which caches all nodes

via their contexts and avoids generating duplicate searches for the same contexts. There-

fore, the generation of the search graph is linear in its size, which is exponential inw and

linear inn. 2

Since the unify minimal AND/OR graphMunify
T and the merge minimal AND/OR

graphMmerge
T are subsets ofCT , both are bounded byO(n ·kw), wherew = wT (G). Since

minT {wT (G)} is equal to the treewidthw∗ and sinceminT ∈chains{wT (G)} is equal to the

pathwidthpw∗, we get:

Corollary 1 Given a graphical modelR, there exists a backbone treeT such that the unify

minimal, merge minimal and context minimal AND/OR search graphs ofR are bounded

exponentially by the treewidth of the primal graph. The unify, merge and context minimal

OR search graphs can be bounded exponentially by the pathwidth only.

56



More on OR vs. AND/OR

It is well known [14] that for any graphw∗ ≤ pw∗ ≤ w∗ · log n. It is easy to placem∗ (the

minimal depth over pseudo trees) in that relation yieldingw∗ ≤ pw∗ ≤ m∗ ≤ w∗ · log n.

It is also possible to show that there exist primal graphs forwhich the upper bound on

pathwidth is attained, that ispw∗ = O(w∗ · log n).

Consider a complete binary tree of depthm. In this case,w∗ = 1, m∗ = m, and it is

also known [91, 12]) that:

THEOREM 2.3.11 ([12]) If T is a binary tree of depthm thenpw∗(T ) ≥ m
2

.

Theorem 2.3.11 shows that for graphical models having a bounded tree widthw, the

minimal AND/OR graph is bounded byO(nkw) while the minimal OR graph is bounded

by O(nkw·log n). Therefore, even when caching, the use of an AND/OR vs. an OR search

space can yield a substantial saving.

Remark. We have seen that AND/ORtreesare characterized by thedepthof the pseudo

trees while minimal AND/ORgraphsare characterized by theirinduced width. It turns

out however that sometimes a pseudo tree that is optimal relative tow is far from optimal

for m and vice versa. For example a primal graph model that is a chain has a pseudo tree

havingm1 = n andw1 = 1 on one hand, and another pseudo tree that is balanced having

m2 = log n andw2 = log n. There is no single pseudo tree having bothw = 1 and

m = log n for a chain. Thus, if we plan to have linear space search we should pick one

kind of a backbone pseudo tree, while if we plan to search a graph, and therefore cache

some nodes, another pseudo tree should be used.

2.3.3 On the Canonicity and Generation of the Minimal AND/OR

Graph

We showed that the merge minimal AND/OR graph is unique for a given graphical model,

given a backbone pseudo tree (Proposition 4). In general, itsubsumes the minimal

57



AND/OR graph, and sometimes can be identical to it. For constraint networks we will

now prove a more significant property of uniqueness relativeto all equivalent graphical

models given a backbone tree. We will prove this notion relative to backtrack-freesearch

graphs which are captured by the notion of strongly minimal AND/OR graph. Remember

that any graphical model can have an associated flat constraint network.

DEFINITION 2.3.10 (strongly minimal AND/OR graph) 2 A strongly minimalAND/OR

graph ofR relative to a pseudo treeT is the minimal AND/OR graph,MT (R), that is

backtrack-free (i.e. any partial assignment in the graph leads to a solution), denoted by

M∗
T (R). The strongly context minimal graph is denotedC∗T (R).

Canonicity of Strongly Minimal AND/OR Search Graphs

We briefly discuss here the canonicity of the strongly minimal graph, focusing on constraint

networks. Given two equivalent constraint networks representing the same set of solutions,

where each may have a different constraint graph, are their strongly minimal AND/OR

search graphs identical?

The above question is not well defined however, because an AND/OR graph forR is

defined only with respect to a backbone pseudo tree. We can have two equivalent constraint

networks having two different graphs where a pseudo tree forone graph may not be a

pseudo tree for the other. Consider, for example a constraintnetwork having three variables:

X, Y andZ and equality constraints. The following networks,R1 = {RXY = (X =

Y ), RY Z = (Y = Z)} andR2 = {RXZ = (X = Z), RY Z = (Y = Z)} andR3 =

{RXY = (X = Y ), RY Z = (Y = Z), RXZ = (X = Z)} are equivalent. However,T1 =

(X ← Y → Z) is a pseudo tree forR1, but not forR2 neither forR3. We ask therefore a

different question: given two equivalent constraint networks and given a backbone tree that

is a pseudo tree for both, is the strongly minimal AND/OR graph relative toT unique?
2The minimal graph is built by lumping together “unifiable” nodes, which are those that root equivalent

subproblems. Therefore, at each level (corresponding to one variable), all the nodes that root inconsistent
subproblems will be unified. If we eliminate the redundant nodes, the minimal graph is already backtrack
free.

58



We will answer this question positively quite straightforwardly. We first show that

equivalent networks that share a backbone tree have identical backtrack-free AND/OR

search trees. Since the backtrack-free search trees uniquely determine their strongly mini-

mal graph the claim follows.

DEFINITION 2.3.11 (shared pseudo trees)Given a collection of graphs on the same set of

nodes, we say that the graphs share a treeT , if T is a pseudo tree of each of these graphs.

A set of graphical models defined over the same set of variables share a treeT , iff their

respective primal graphs shareT .

Proposition 9 1. IfR1 andR2 are two equivalent constraint networks that shareT , then

BFT (R1) = BFT (R2) (see Definition 2.2.10). 2. IfR1 andR2 are two equivalent graphi-

cal models (not necessarily constraint networks) that shareT , thenBFT (R1) = BFT (R2)

as AND/OR search trees although their arcs may not have identical weights.

Proof. Let B1 = BFT (R1) and B2 = BFT (R2) be the corresponding backtrack-

free AND/OR search trees ofR1 andR2, respectively. Namely,BFT (R1) ⊆ ST (R1),

BFT (R2) ⊆ ST (R2). Clearly they are subtrees of the same full AND/OR tree. We claim

that a path appears inB1 iff it appears inB2. If not, assume without loss of generality that

there exists a path inB1, π, which does not exists inB2. Since this is a backtrack-free

search tree, every path appears in some solution and therefore there is a solution subtree in

B1 that includesπ which does not exist inB2, contradicting the assumption thatR1 and

R2 have the same set of solutions. The second part has an identical proof based on flat

functions (namely positive values of a function are associated with 1 and indicate allowed

tuples, and zero values remain 0).2

THEOREM 2.3.12 If R1 andR2 are two equivalent constraint networks that shareT , then

M∗
T (R1) = M∗

T (R2).

59



Proof. From Proposition 9 we know thatR1 andR2 have the same backtrack-free

AND/OR tree. Since the backtrack-free AND/OR search tree for a backbone treeT

uniquely determines the strongly minimal AND/OR graph, thetheorem follows. 2

Theorem 2.3.12 implies thatM∗
T is a canonical representation of a constraint network

R relative toT .

Generating the strongly minimal AND/OR graphs

From the above discussion we see that several methods for generating the canonical

AND/OR graph of a given graphical model, or a given AND/OR graph may emerge. The

method we focused on in this chapter is to generate the context minimal AND/OR graph

first. Then we can process this graph from leaves to root, while computing the value of

nodes, and additional nodes can be unified or pruned (if theirvalue is “0”).

There is another approach that is based on processing the functions in a variable elim-

ination style, when viewing the pseudo tree as a bucket tree or a cluster tree. The original

functions can be expressed as AND/OR graphs and they will be combined pairwise until

an AND/OR graph is generated. This phase allows computing the value of each node and

therefore allows for semantic unification. Subsequently a forward phase will allow generat-

ing the backtrack-free representation as well as allow computing the full values associated

with each node. The full details of this approach are out of the scope of the current chapter.

For initial work restricted to constraint networks see [76].

2.3.4 Merging and Pruning: Orthogonal Concepts

Notice that the notion of minimality is orthogonal to that ofpruning inconsistent subtrees

(yielding the backtrack-free search space). We can merge two identical subtrees whose

root value is “0” but still keep their common subtree. However, since our convention is

that we don’t keep inconsistent subtrees we should completely prune them, irrespective of

them rooting identical or non-identical subtrees. Therefore, we can have a minimal search

graph that isnot backtrack-free as well as a non-minimal search graph (e.g. a tree) that is

60



X

2

Y

2

T

74 5

R

74 6

4

T

74 5

R

74 6

7

T

74 5

R

74 6

Z

2 3 4 5

3

Y

2

T

74 5

R

74 6

4

T

74 5

R

74 6

7

T

74 5

R

74 6

Z

2 3 4 5

4

Y

2

T

74 5

R

74 6

4

T

74 5

R

74 6

7

T

74 5

R

74 6

Z

2 3 4 5

5

Y

2

T

74 5

R

74 6

4

T

74 5

R

74 6

7

T

74 5

R

74 6

Z

2 3 4 5

(a) Full AND/OR tree

X

2

Y

2

T

4

R

4 6

4

T

4

R

4

Z

2 4

4

Y

4

T

4

R

4

Z

4

(b) Pruned backtrack-free
AND/OR tree

Figure 2.13: AND/OR trees

X

2

Y

2

T

74 5

R

74 6

4

T R

7

T R

Z

2 3 4 5

3

Y Z

4

Y Z

5

Y Z

(a) Context minimal unpruned AND/OR graph

X

2

Y

2

T

4

R

4 6

4

T R

Z

2 4

4

Y Z

(b) Context minimal
pruned backtrack-free
AND/OR graph

Figure 2.14: AND/OR graphs

backtrack-free.

When the search space is backtrack-free and if we seek a singlesolution, the size of

the minimal AND/OR search graph and its being OR vs. AND/OR are both irrelevant. It

will, however, affect a traversal algorithm that counts allsolutions or computes an optimal

solution as was often observed [50]. For counting and for optimization tasks, even when

we record all no-goods and cache all nodes by context, the impact of the AND/OR graph

search vs. the OR graph search can still be significant.

Example 2.3.13Consider the graph problem in Figure 2.6(a) when we add the value4 to

the domains ofX andZ. Figure 2.13(a) gives the full AND/OR search tree and Figure

2.13(b) gives the backtrack-free search tree. Figure 2.14(a) gives the context minimal but

unpruned search graph and Figure 2.14(b) gives the minimal and pruned search graph.

61



CB

X

A

(a)

AB

C

X

(b) (c)

X

1

A C

0

A

1

B

1

1

A

0 1

B

0 1

0 1

0

B

0 1

C

0 1

Figure 2.15: (a) A constraint graph; (b) a spanning tree; (c)a dynamic AND/OR tree

2.3.5 Using Dynamic Variable Ordering

The AND/OR search tree we defined uses a fixed variable ordering. It is known that explor-

ing the search space in a dynamic variable ordering is highlybeneficial. AND/OR search

trees for graphical models can also be modified to allow dynamic variable ordering. A

dynamic AND/OR tree that allows varied variable ordering has to satisfy that for every

subtree rooted by the current pathπ, any arc of the primal graph that appears as a cross-arc

(not a back-arc) in the subtree must be “inactive” conditioned onπ.

Example 2.3.14Consider the propositional formulaX → A ∨ C andX → B ∨ C.

The constraint graph is given in Figure 2.15(a) and a DFS treein 2.15(b). However, the

constraint subproblem conditioned on〈X, 0〉, has no real constraint betweenA,B,C, so

the effective spanning tree below〈X, 0〉 is {〈X, 0〉 → A, 〈X, 0〉 → B, 〈X, 0〉 → C},

yielding the AND/OR search tree in Figure 2.15(c). Note that while there is an arc between

A andC in the constraint graph, the arc isnotactive whenX is assigned the value0.

Clearly, the constraint graph conditioned on any partial assignment can only be sparser

than the original graph and therefore may yield a smaller AND/OR search tree than with

fixed ordering. In practice, after each new value assignment, the conditional constraint

graph can be assessed as follows. For any constraint over thecurrent variableX, if the

current assignment〈X, x〉 does not make the constraintactivethen the corresponding arcs

can be removed from the graph. Then, a pseudo tree of the resulting graph is generated, its

first variable is selected, and search continues. A full investigation of dynamic orderings is

outside the scope of the current chapter.

62



2.4 Solving Reasoning Problems by AND/OR Search

2.4.1 Value Functions of Reasoning Problems

As we described earlier, there are a variety of reasoning problems over weighted graphical

models. For constraint networks, the most popular tasks areto decide if the problem is

consistent, to find a single solution or to count solutions. If there is a cost function defined

we may also seek an optimal solution. The primary tasks over probabilistic networks are

belief updating, finding the probability of the evidence andfinding the most likely tuple

given the evidence. Each of these reasoning problems can be expressed as finding the

valueof some nodes in the weighted AND/OR search space where different tasks call for

different value definitions. For example, for the task of finding a solution to a constraint

network, the value of every node is either “1” or “0”. The value “1” means that the subtree

rooted at the node is consistent and “0” otherwise. Therefore, the value of the root node

answers the consistency query. For solutions-counting thevalue function of each node is

the number of solutions rooted at that node.

DEFINITION 2.4.1 (value function for consistency and counting)Given a weighted

AND/OR treeST (R) of a constraint network. The value of a node (AND or OR) for

deciding consistencyis “1” if it roots a consistent subproblem and “0” otherwise. The

value of a node (AND or OR) forcounting solutionsis the number of solutions in its

subtree.

It is easy to see that the value of nodes in the search graph canbe computed recursively

from leaves to root.

Proposition 10 (recursive value computation)(1) For the consistency task the value of

AND leaves is their labels and the value of OR leaves is “0” (they are inconsistent). An

internal OR node is labeled “1” if one of its successor nodes is “1” and an internal AND

node has value “1” iff all its successor OR nodes have value “1”.

63



(2) The counting values of leaf AND nodes are “1” and of leaf OR nodes are “0”. The

counting value of an internal OR node is the sum of the counting-values of all its child

nodes. The counting-value of an internal AND node is the product of the counting-values

of all its child nodes.

Proof. The proof is by induction over the number of levels in the AND/OR graph.

Basis step:If the graph has only two levels, one OR and one AND, then the claim is

straightforward because the AND leaves are labeled by “1” ifconsistent and the OR node

accumulates “1” or the sum of consistent values below, or “0”if there is no consistent value.

Inductive step:Assuming the proposition holds fork pairs of levels (one AND and one OR

in each pair), proving it holds fork + 1 pairs of levels is similar to the basis step, only the

labeling of the top AND nodes is the sum of solutions below in the case of counting. 2

We can now generalize to any reasoning problem, focusing on the simplified case when

Z = ∅, namely when the marginalization has to be applied to all thevariables. This special

case captures most tasks of interest. We will start with the recursive definition.

DEFINITION 2.4.2 (recursive definition of values)The value function of a reasoning

problemP = 〈R,⇓Y , Z〉, whereR = 〈X,D, F,
⊗

〉 andZ = ∅, is defined as follows:

the value of leaf AND nodes is “1” and of leaf OR nodes is “0”. Thevalue of an internal

OR node is obtained bycombiningthe value of each AND child node with the weight (see

Definition 2.2.6) on its incoming arc and thenmarginalizingover all AND children. The

value of an AND node is the combination of the values of its OR children. Formally, if

children(n) denotes the children of noden in the AND/OR search graph, then:

v(n) =
⊗

n′∈children(n) v(n
′), if n = 〈X, x〉 is an AND node,

v(n) =⇓n′∈children(n) (w(n,n′)

⊗

v(n′)), if n = X is an OR node.

The following proposition states that given a reasoning task, computing the value of the

root node solves the given reasoning problem.

64



Proposition 11 LetP = 〈R,⇓Y , Z〉, whereR = 〈X,D, F,
⊗

〉 andZ = ∅, and letX1 be

the root node in any AND/OR search graphS ′T (R). Thenv(X1) =⇓X

⊗r

i=1 fi whenv is

defined in Definition 2.4.2.

Proof. The proof is again by induction, similar to the proof of Proposition 10.

Basis step:If the model has only one variable, then the claim is obvious.

Inductive step:Let X be an OR node in the graph. Assume that the value of each OR

node below it is the solution to the reasoning problem corresponding to the conditioned

subproblem rooted by it. We need to prove that the value ofX will be the solution to the

reasoning problem of the conditioned subproblem rooted byX. SupposeX has children

Y1, . . . , Ym in the pseudo tree. We havev(Yi) =⇓Yi∪Desc(Yi)

⊗

f∈F |πYi

f , whereDesc(Yi)

are the descendants ofYi, and the functions are restricted on the current path. Each AND

node〈X, x〉 will combine the values below. Because the setsYi ∪ Desc(Yi) are pairwise

disjoint, the marginalization operator commutes with the combination operator and we get:

v(〈X, x〉) =
⊗m

i=1 ⇓Yi∪Desc(Yi)

⊗

f∈F |πYi

f = ⇓⋃m
i=1(Yi∪Desc(Yi))

⊗

f∈F |πx
f.

The valuesv(〈X, x〉) are then combined with the values of the bucket ofX, which are the

weightsw(X,〈X,x〉). The functions that appear in the bucket ofX do not contribute to any

of the weights belowYi, and therefore the marginalization over
⋃m

i=1(Yi ∪Desc(Yi)) can

commute with the combination that we have just described:

w(X,〈X,x〉)

⊗

v(〈X, x〉) = ⇓⋃m
i=1(Yi∪Desc(Yi)) w(X,〈X,x〉)

⊗

(
⊗

f∈F |πx
f).

Finally, we get:

v(X) = ⇓X w(X,〈X,x〉)

⊗

v(〈X, x〉) = ⇓X∪Desc(X)

⊗

f∈F |πX
f. 2

Search algorithms that traverse the AND/OR search space cancompute the value of the

root node yielding the answer to the problem. The following section discusses such algo-

rithms. Algorithms that traverse the weighted AND/OR search tree in a depth-first manner

or a breadth-first manner are guaranteed to have time bound exponential in the depth of

the pseudo tree of the graphical model. Depth-first searchescan be accomplished using

either linear space only, or context based caching, boundedexponentially by the treewidth

65



of the pseudo tree. Depth-first search is an anytime schemes and can, if terminated, pro-

vide an approximate solution for some tasks such as optimization. The next subsection

presents typical depth-first algorithms that search AND/ORtrees and graphs. We useso-

lution countingas an example for a constraint query and the probability of evidence as an

example for a probabilistic reasoning query. The algorithms compute the value of each

node. For application of these ideas for combinatorial optimization tasks, such as MPE see

[71].

2.4.2 Algorithm AND/OR Tree Search and Graph Search

Algorithm 1 presents the basic depth-first traversal of the AND/OR search tree (or graph,

if caching is used) for counting the number of solutions of a constraint network, AO-

COUNTING (or for probability of evidence for belief networks, AO-BELIEF-UPDATING).

The context based caching is done based on tables. We exemplify with OR caching.

For each variableXi, a table is reserved in memory for each possible assignment to its

parent setpai. Initially each entry has a predefined value, in our case “-1”. The fringe

of the search is maintained on a stack calledOPEN. The current node is denoted byn, its

parent byp, and the current path byπn. The children of the current node are denoted by

successors(n).

The algorithm is based on two mutually recursive steps: EXPAND and PROPAGATE,

which call each other (or themselves) until the search terminates.

Since we only use OR caching, before expanding an OR node, itscache table is checked

(line 6). If the same context was encountered before, it is retrieved from cache, and

successors(n) is set to the empty set, which will trigger the PROPAGATE step.

If a node is not found in cache, it is expanded in the usual way,depending on whether

it is an AND or OR node (lines 10-17). The only difference between counting and belief

updating is line 12 vs. line 13. For counting, the value of a consistent AND node is

initialized to 1 (line 12), while for belief updating, it is initialized to the bucket value for

66



the current assignment (line 13). As long as the current nodeis not a dead-end and still

has unevaluated successors, one of its successors is chosen(which is also the top node on

OPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a node has an empty set of

successors (note that as each successor is evaluated, it is removed from the set of successors

in line 31). This means that all its children have been evaluated, and its final value can now

be computed. If the current node is the root, then the search terminates with its value (line

20). If it is an OR node, its value is saved in cache before propagating it up (line 22). Ifn

is OR, then its parentp is AND andp updates its value by multiplication with the value of

n (line 24). If the newly updated value ofp is 0 (line 25), thenp is a dead-end, and none

of its other successors needs to be evaluated. An AND noden propagates its value to its

parentp in a similar way, only by summation (line 30). Finally, the current noden is set

to its parentp (line 32), becausen was completely evaluated. The search continues either

with a propagation step (if conditions are met) or with an expansion step.

2.4.3 General AND-OR Search - AO(i)

General AND/OR algorithms for evaluating the value of a rootnode for any reasoning prob-

lem using tree or graph AND/OR search are identical to the above algorithms when product

is replaced by the combination operator and summation is replaced by the marginalization

operator. We can view the AND/OR tree algorithm (which we will denote AOT) and the

AND/OR graph algorithm (denoted AOG) as two extreme cases ina parameterized collec-

tion of algorithms that trade space for time via a controlling parameteri. We denote this

class of algorithms asAO(i) wherei determines the size of contexts that the algorithm

caches. AlgorithmAO(i) records nodes whose context size isi or smaller (the test in line

22 needs to be a bit more elaborate and check if the context size is smaller thani). Thus

AO(0) is identical to AOT, whileAO(w) is identical to AOG, wherew is the induced width

of the used backbone tree. For any intermediatei we get an intermediate level of caching,

67



Algorithm 1 : AO-COUNTING / AO-BELIEF-UPDATING
input : A constraint networkR = 〈X, D, C〉, or a belief networkP = 〈X, D, P 〉; a pseudo treeT rooted atX1;

parentspai (OR-context) for every variableXi; caching set totrue or false.
output : The number of solutions, or the updated belief,v(X1).
if caching == true then // Initialize cache tables1

Initialize cache tables with entries of “−1”2

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN3
while OPEN 6= φ do4

n← top(OPEN); removen from OPEN5
if caching == true and n is OR, labeledXi and Cache(asgn(πn)[pai]) 6= −1 then // In cache6

v(n)← Cache(asgn(πn)[pai]) // Retrieve value7
successors(n)← φ // No need to expand below8

else // EXPAND9
if n is an OR node labeledXi then // OR-expand10

successors(n)← {〈Xi, xi〉 | 〈Xi, xi〉 is consistent withπn }11
v(〈Xi, xi〉)← 1, for all 〈Xi, xi〉 ∈ successors(n)12
v(〈Xi, xi〉)←

∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all 〈Xi, xi〉 ∈ successors(n) // AO-BU
13

if n is an AND node labeled〈Xi, xi〉 then // AND-expand14
successors(n)← childrenT (Xi)15
v(Xi)← 0 for all Xi ∈ successors(n)16

Add successors(n) to top ofOPEN17

while successors(n) == φ do // PROPAGATE18
if n is an OR node labeledXi then19

if Xi == X1 then // Search is complete20
return v(n)21

if caching == true then22
Cache(asgn(πn)[pai])← v(n) // Save in cache23

v(p)← v(p) ∗ v(c)24
if v(p) == 0 then // Check if p is dead-end25

removesuccessors(p) from OPEN26
successors(p)← φ27

if n is an AND node labeled〈Xi, xi〉 then28
let p be the parent ofn29
v(p)← v(p) + v(n);30

removen from successors(p)31
n← p32

which is space exponential ini and whose execution time will increase asi decreases.

2.4.4 Complexity

From Theorems 2.2.7 and 2.2.9 we can conclude that:

THEOREM 2.4.1 For any reasoning problem,AOT runs in linear space and timeO(nkm),

whenm is the depth of the pseudo tree of its graphical model andk is the maximum domain

size. If the primal graph has a tree decomposition with treewidthw∗, there exists a pseudo

treeT for which AOT isO(nkw∗·log n).

68



Obviously, the algorithm for constraint satisfaction, that would terminate early with first

solution, would potentially be much faster than the rest of the AOT algorithms, in practice.

Based on Theorem 2.3.8 we get complexity bounds for graph searching algorithms.

THEOREM 2.4.2 For any reasoning problem, the complexity of algorithmAOG is time

and spaceO(nkw) wherew is the induced width of the pseudo tree andk is the maximum

domain size.

Thus the complexity of AOG can be time and space exponential in the treewidth, while

the complexity of any algorithm searching the OR space can betime and space exponential

in its pathwidth.

The space complexity can often be less than exponential in the treewidth. This is similar

to the well known space complexity of tree decomposition schemes which can operate in

space exponential only in the size of the cluster separators, rather than exponential in the

cluster size. It is also similar to thedead cachesconcept presented in [23, 2]. Intuitively,

a node that has only one incoming arc will only be traversed once by search, and therefore

its value does not need to be cached, because it will never be used again. For context based

caching, such nodes can be recognized based only on the parents (or parent separators) sets.

DEFINITION 2.4.3 (dead cache)If X is the parent ofY in T , andpaX ⊂ paY , thenpaY

is adead cache.

Given a pseudo treeT , the induced graph alongT can generate a tree decomposition

based on the maximal cliques. The maximum separator size of the tree decomposition is

the separator size ofT .

Proposition 12 The space complexity of graph-caching algorithms can be reduced to

being exponential in the separator’s size only, while still being time exponential in the

treewidth, if dead caches are not recorded.

69



Proof. A bucket tree can be built by having a cluster for each variableXi and its parents

pai, and following the structure of the pseudo treeT . Some of the clusters may not be

maximal, and they have a one to one correspondence to the variables with dead caches. The

parentspai that are not dead caches correspond to separators between maximal clusters in

the bucket tree. 2

2.5 Related Work

2.5.1 Relationship with Variable Elimination

In Chapter 6 we extend the results in [74] and show that Variable Elimination can be un-

derstood as bottom up layer by layer traversal of the contextminimal AND/OR search

graph. If the graphical model is strictly positive (has no determinism), then context based

AND/OR search and Variable Elimination are essentially identical. When determinism

is present, they may differ, because they traverse the AND/OR graph in different direc-

tions and encounter determinism (and can take advantage of it) differently. Therefore, for

graphical models with no determinism, there is no principled difference between memory-

intensive AND/OR search with fixed variable ordering and inference beyond: (1) different

direction of exploring a common search space (top down for search vs. bottom up for infer-

ence); (2) different assumption of control strategy (depth-first for search and breadth-first

for inference).

Another interesting observation discussed in [74] is that many known advanced al-

gorithms for constraint processing and satisfiability can be explained as traversing the

AND/OR search tree,e.g. graph based backjumping [49, 26, 6]. For more details we

refer the reader to [74].

70



2.5.2 Relationship with BTD (Backtracking with Tree-

Decomposition)

BTD [99] is a memory intensive method for solving constraint satisfaction problems, which

combines search techniques with the notion of tree decomposition. This mixed approach

can in fact be viewed as searching an AND/OR graph, whose backbone pseudo tree is de-

fined by and structured along the tree decomposition. What is defined in [99] asstructural

goods, that is parts of the search space that would not be visited again as soon as their con-

sistency is known, corresponds precisely to the decomposition of the AND/OR space at the

level of AND nodes, which root independent subproblems. Notsurprisingly, the time and

space guarantees of BTD are the same as those of AND/OR graph search. An optimization

version of the algorithm is presented in [98].

2.5.3 Relationship with Recursive Conditioning

Recursive Conditioning (RC) [23] is based on the divide and conquer paradigm. Rather

than instantiating variables to obtain a tree structured network like the cycle cutset scheme,

RC instantiates variables with the purpose of breaking the network into independent sub-

problems, on which it can recurse using the same technique. The computation is driven by

a data-structure calleddtree, which is a full binary tree, the leaves of which correspond to

the network CPTs.

It can be shown that RC explores an AND/OR space. Let’s start with the example

in Figure 2.16, which shows: (a) a belief network; (b) and (c), two dtrees and the corre-

sponding pseudo-trees for the AND/OR search. The dtrees also show the variables that

are instantiated at some of the internal nodes. The pseudo-trees can be generated from

the static ordering of RC dictated by the dtree. This ensures that whenever RC splits the

problem into independent subproblems, the same happens in the AND/OR space. It can

also be shown that the context of the nodes in RC, as defined in [23] is identical to that in

71



(a) (c)

A

E

B C

D

F

A AB AC ABE BCD DF

D
BC

A

D

B

C

E

A

F

A AB ABE AC BCD DF

C
B

A

D

A

B

C

F

D

E

(b)

Figure 2.16: RC and AND/OR pseudo-trees

AND/OR.

2.5.4 Relationship with Value Elimination

Value Elimination [5] is a recently developed algorithm forBayesian inference. It was al-

ready explained in [5] that, under static variable ordering, there is a strong relation between

Value Elimination and Variable Elimination. From our paragraph on the relation between

AND/OR search and VE we can derive the connection between Value Elimination and

AND/OR search, under static orderings. But we can also analyze the connection directly.

Given a static orderingd for Value Elimination, we can show that it actually traverses an

AND/OR space. The pseudo-tree underlying the AND/OR searchgraph traversal by Value

Elimination can be constructed as the bucket tree in reversed d. However, the traversal of

the AND/OR space will be controlled byd, advancing the frontier in a hybrid depth or

breadth first manner.

The most important part to analyze is the management ofgoodsand the computation

in which they are involved. Most backtracking algorithms for satisfiability and constraint

processing exploitno-goods, or inconsistencies, by detecting and learning them, and then

deriving new no-goods that help further prune the search space. For probabilistic networks

(or weighted models in general) consistent tuples have an attached probability (or weight).

The consistent tuples, and their associated probabilitiesare calledgoodsin this context.

72



When Value Elimination computes a factor at a leaf node, it backs up the value to the

deepest node in the dependency setDset. TheDset is identical to the context in the

AND/OR space. For clarity reasons, we chose to have the AND/OR algorithm back up

the value to its parent in the pseudo-tree, which may be different than the deepest vari-

able in the context. We can however accommodate the propagation of the value like in

Value Elimination, and maintain bookkeeping of the summation setSset, and this would

amount to a constant factor saving. Value Elimination continues by unionizingDsets and

Ssets whenever values are propagated, and this is identical to computing the context of

the corresponding node in the AND/OR space (which is in fact the induced ancestor set of

graph-based backjumping [33]).

In the presence of determinism, any backjumping strategy and nogood learning used by

Value Elimination can also be performed in the AND/OR space.Context specific structure

that can be used by Value Elimination, can also be used in AND/OR. Dynamic variable

orderings can also be used in AND/OR spaces, but here we limitthe discussion to static

orderings.

2.5.5 Relationship with Case-Factor Diagrams

Case-Factor Diagrams (CFD) were introduced in [80] and represent a probabilistic for-

malism subsuming Markov random fields of bounded treewidth and probabilistic context

free grammars. Case-factor diagrams are based on a variant ofBDDs (binary decision di-

agram [16]) with both zero suppression and “factor nodes”. Factor nodes are analogous

to the AND nodes in an AND/OR search space. A case-factor diagram can be viewed as

an AND/OR search space in which each outgoing arc from an OR node is explicitly la-

beled with an assignment of a value to a variable. Zero suppression is used to fix the value

of variables not mentioned in a given solution. Zero suppression allows the formalism to

concisely represent probabilistic context free grammars as functions from variable-value

assignments to log probabilities (or energies).

73



2.5.6 AO-Search Graphs and Compilation

We dedicate Chapter 7 to presenting a compilation scheme based on AND/OR search

spaces. Essentially, the AND/OR Multi-Valued Decision Diagrams (AOMDDs) is the

strongly minimal AND/OR graph representation of a graphical model with redundant vari-

ables removed for conciseness. We will present two algorithms for compiling an AOMDD.

The first is based on AND/OR search, and applies reduction rules to the trace of the search

(i.e., the context minimal graph). The second algorithm is based on a Variable Elimination

schedule. It uses a bottom up traversal of a bucket tree, and at each node anAPPLY oper-

ator is used to combine all the AOMDDs of the bucket into another AOMDD. TheAPPLY

is similar to the OBDD apply operator [16], but is adapted for AND/OR structures. The

AOMDD extends an OBDD (or multi-valued decision diagram) with an AND/OR structure.

We discuss further the relationship between AOMDDs and other compilation schemes.

Relationship with d-DNNF

An AND/OR structure restricted to propositional theories is very similar to d-DNNF [25].

One can show a one-to-one linear translation from an AND/OR bi-valued tree of a propo-

sitional CNF theory into a d-DNNF. The AND/OR structure is more restrictive allowing

disjunction only on the variable’s value while in d-DNNF disjunction is allowed on more

complex expressions; see [55] for implications of this distinction. The AND/OR search

graph is built on top of a graphical model and can be viewed as acompiled scheme of a

CNF into an AND/OR structure. Since an AND/OR search can be expressed as a d-DNNF,

the construction via pseudo tree yields a scheme for d-DNNF compilation. In other words,

given a CNF theory, the algorithm can be applied using a pseudotree to yield an AND/OR

graph, which can be transformed in linear time and space intoa d-DNNF.

Conversely, given a d-DNNF that is specialized to variable-based disjunction for OR

nodes, it is easy to create an AND/OR graph or a tree that is equivalent having a polynomi-

ally equivalent size. The AND/OR search graph for probabilistic networks is also closely

74



related to algebraic circuits of probabilistic networks [24] which is an extension of d-DNNF

to this domain.

Relationship with OBDDs

The notion of minimal OR search graphs is also similar to the known concept ofOrdered

Binary Decision Diagrams (OBDD)in the literature of hardware and software design and

verification The properties of OBDDs were studied extensively in the past two decades

[16, 81].

It is well known that the size of the minimal OBDD is bounded exponentially by the

pathwidthof the CNF’s primal graph and that the OBDD is unique for a fixed variable or-

dering. Our notion of backtrack-free minimal AND/OR searchgraphs, if applied to CNFs,

resemblestree BDDs[82]. Minimal AND/OR graphs are also related to Graph-driven

BDDs (called G-FBDD) [51, 96] in that they are based on a partialorder expressed in a

directed graph. Still, a G-FBDD has an OR structure, whose ordering is restricted to some

partial orders, but not an AND/OR structure. For example, the OBDD based on a DFS

ordering of a pseudo tree is a G-FBDD. Some other relationships between graphical model

compilation and OBDDs were studied in [25].

In summary, putting OBDDs within our terminology, an OBDD representation of a

CNF formula is a strongly minimal OR search graph where redundant nodes are removed.

Relationship with Tree Driven Automata

Fargier and Vilarem [46] proposed the compilation of CSPs into tree-driven automata,

which have many similarities to the work in [76]. In particular, the compiled tree-automata

proposed there is essentially the same as the AND/OR multi-valued decision diagram.

Their main focus is the transition from linear automata to tree automata (similar to that

from OR to AND/OR), and the possible savings for tree-structured networks and hyper-

trees of constraints due to decomposition. Their compilation approach is guided by a tree-

75



decomposition while ours is guided by a variable-elimination based algorithms. And, it is

well known that Variable Elimination and cluster-tree decomposition are in principle, the

same [41].

Relationship with Disjoint Support Decomposition

The work on Disjoint Support Decompositions (DSD) [8] was proposed in the area of

design automation [15], as an enhancement for BDDs aimed at exploiting function decom-

position. The main common aspect of DSD and AOMDD [76] is thatboth approaches

show how structure decomposition can be exploited in a BDD-like representation. DSD is

focused on Boolean functions and can exploit more refined structural information that is

inherent to Boolean functions. In contrast, AND/OR BDDs assume only the structure con-

veyed in the constraint graph, and are therefore more broadly applicable to any constraint

expression and also to graphical models in general. They allow a simpler and higher level

exposition that yields graph-based bounds on the overall size of the generated AOMDD.

Relationship with Semi-Ring BDDs

In recent work [101] OBDDs were extended to semi-ring BDDs. Thesemi-ring treatment

is restricted to the OR search spaces, but allows dynamic variable ordering. It is otherwise

very similar in aim and scope to our strongly minimal AND/OR graphs. When restrict-

ing the strongly minimal AND/OR graphs to OR graphs only, thetwo are closely related,

except that we express BDDs using the Shenoy-Shafer axiomatization that is centered on

the two operation of combination and marginalization rather then on the semi-ring formu-

lation. Minimality in the formulation in [101] is more general allowing merging nodes

having different values and therefore can capture symmetries (called interchangeability).

76



2.6 Conclusion to Chapter 2

The primary contribution of this chapter is in viewing search for graphical models in the

context of AND/OR search spaces rather than OR spaces. We introduced the AND/OR

search tree, and showed that its size can be bounded exponentially by the depth of its

pseudo tree over the graphical model. This implies exponential savings for any linear

space algorithms traversing the AND/OR search tree. Specifically, if the graphical model

has treewidthw∗, the depth of the pseudo tree isO(w∗ · log n).

The AND/OR search tree was extended into a graph by merging identical subtrees. We

showed that the size of the minimal AND/OR search graph is exponential in the treewidth

while the size of the minimal OR search graph is exponential in the pathwidth. Since

for some graphs the difference between treewidth and pathwidth is substantial (e.g., bal-

anced pseudo trees) the AND/OR representation implies substantial time and space savings

for memory intensive algorithms traversing the AND/OR graph. Searching the AND/OR

searchgraphcan be implemented by goods caching during search, while no-good record-

ing is interpreted as pruning portions of the search space independent of it being a tree or a

graph, an OR or an AND/OR. For finding a single solution, pruning the search space is the

most significant action. For counting and probabilistic inference, using AND/OR graphs

can be of much help even on top of no-good recording.

77



Chapter 3

Mixed Networks

3.1 Introduction

Modeling real-life decision problems requires the specification and reasoning with proba-

bilistic and deterministic information. The primary approach developed in artificial intel-

ligence for representing and reasoning with partial information under conditions of uncer-

tainty is Bayesian networks. They allow expressing information such as “if a person has

flu, he is likely to have fever.” Constraint networks and propositional theories are the most

basic frameworks for representing and reasoning about deterministic information. Con-

straints often express resource conflicts frequently appearing in scheduling and planning

applications, precedence relationships (e.g., “job 1 mustfollow job 2”) and definitional in-

formation (e.g., “a block is clear iff there is no other blockon top of it”). Most often the

feasibility of an action is expressed using a deterministicrule between the pre-conditions

(constraints) and post-conditions that must hold before and after executing an action (e.g.,

STRIPS for classical planning).

The two communities of probabilistic networks and constraint networks matured in

parallel with only minor interaction. Nevertheless some ofthe algorithms and reasoning

principles that emerged within both frameworks, especially those that are graph-based, are

78



quite related. Both frameworks can be viewed as graphical models, a popular paradigm for

knowledge representation in general.

Researchers within the logic-based and constraint communities have recognized for

some time the need for augmenting deterministic languages with uncertainty information,

leading to a variety of concepts and approaches such as non-monotonic reasoning, proba-

bilistic constraint networks and fuzzy constraint networks. The belief networks community

started only recently to look into the mixed representation[87, 84, 62, 35] perhaps because

it is possible, in principle, to capture constraint information within belief networks [86].

In principle, constraints can be embedded within belief networks by modeling each

constraint as a Conditional Probability Table (CPT). One approach is to add a new variable

for each constraint that is perceived as itseffect(child node) in the corresponding causal

relationship and then to clamp its value totrue [86, 21]. While this approach is semanti-

cally coherent and complies with the acyclic graph restriction of belief networks, it adds a

substantial number of new variables, thus cluttering the problem’s structure. An alternative

approach is to designate one of the arguments of the constraint as a child node (namely,

as its effect). This approach, although natural for functions (the arguments are the causes

or parents and the function variable is the child node), is quite contrived for general re-

lations (e.g.,x + 6 6= y). Such constraints may lead to cycles, which are disallowedin

belief networks. Furthermore, if a variable is a child node of two different CPTs (one may

be deterministic and one probabilistic) the belief networkdefinition requires that they be

combined into a single CPT.

3.1.1 Contributions

The main shortcoming of any of the above integrations is computational. Constraints have

special properties that render them attractive computationally. When constraints are dis-

guised as probabilistic relationships, their computational benefits may be hard to exploit. In

particular, the power of constraint inference and constraint propagation may not be brought

79



to bear.

Therefore, we propose a simple framework that combines deterministic and probabilis-

tic networks, called amixed network. In the mixed network framework identity of the

respective relationships, as constraints or probabilities, will be maintained explicitly, so

that their respective computational power and semantic differences can be vivid and easy

to exploit. The mixed network approach allows two distinct representations: causal rela-

tionships that are directional and normally (but not necessarily) quantified by CPTs and

symmetrical deterministic constraints. The proposed scheme’s value is in providing: (1)

semantic coherence; (2) user-interface convenience (the user can relate better to these two

pieces of information if they are distinct); and most importantly, (3) computational effi-

ciency.

The research presented in this chapter is based in part on [37, 44, 38].

3.2 Mixing Probabilities with Constraints

This section introduces the mixed network concept and discusses some of its properties.

3.2.1 Defining the Mixed Network

We next define the central concept ofmixed networks.

DEFINITION 3.2.1 (mixed networks) Given a belief networkB = 〈X,D,P〉 that ex-

presses the joint probabilityPB and given a constraint networkR = 〈X,D,C〉 that

expresses a set of solutionsρ, a mixed network based onB andR denotedM(B,R) =

〈X,D,P,C〉 is created from the respective components of the constraintnetwork and the

belief network as follows. The variablesX and their domains are shared, (we could allow

non-common variables and take the union), and the relationships include the CPTs inP

80



and the constraints inC. The mixed network expresses the conditional probabilityPM(X):

PM(x̄) =











PB(x̄|x̄ ∈ ρ), if x̄ ∈ ρ

0, otherwise.

Clearly,PB(x̄|x̄ ∈ ρ) = PB(x̄)
PB(x̄∈ρ)

.

The auxiliary network . We now define the belief network that expresses constraintsas

pure CPTs.

DEFINITION 3.2.2 (auxiliary network) Given a mixed networkM(B,R) we define the aux-

iliary networkS(B,R) to be a belief network that has new auxiliary variables as follows. For

every constraintCi = (Si, Ri) inR, we add the auxiliary variableAi that has a domain of

2 values, “0” and “1”. There is a CPT overAi whose parent variables areSi, defined as

follows:

P (Ai = 1|tSi
) =











1, if t ∈ Ri

0, otherwise.

S(B,R) is a belief network that expresses a probability distributionPS. It is easy to see

that

Proposition 13 Given a mixed networkM(B,R) and an associated auxiliary networkS =

S(B,R) then:PM(x̄) = PS(x̄|A1 = 1, ..., At = 1).

3.2.2 Queries over Mixed Networks

Belief updating, MPE and MAP queries can be extended to mixed networks straight-

forwardly. They are well defined relative to the mixed probability PM. SincePM is not

well defined for inconsistent constraint networks we alwaysassume that the constraint net-

work portion is consistent. An additional relevant query over a mixed network is to find

81



the probability of a consistent tuple relative toB, namely determiningPB(x̄ ∈ ρ(R)) It is

calledCNF or Constraint Probability Evaluation (CPE). Note that the notion of evidence

is a special type of constraint. We will ellaborate on this next.

The problem of evaluating the probability of CNF queries overbelief networks has var-

ious applications. One application is to network reliability described as follows. Given

a communication graph with a source and a destination, one seeks to diagnose failure of

communication. Since several paths may be available, the reason for failure can be de-

scribed by a CNF formula. Failure means that for all paths (conjunctions) there is a link on

that path (disjunction) that fails. Given a probabilistic fault model of the network, the task

is to assess the probability of a failure [88].

DEFINITION 3.2.3 (CPE) Given a mixed networkM(B,R), where the belief network is de-

fined over variablesX = {X1, ..., Xn} and where the constraint portion is a either a set

of relational constraints or a CNF query (R = ϕ) over a set of subsetsQ = {Q1, ...Qr},

whereQ ⊆ X, theconstraint, (respectivelyCNF) Probability Evaluation (CPE) taskis the

task to find the probabilityPB(x̄ ∈ ρ(R)), respectivelyPB(x̄ ∈ m(ϕ)) wherem(ϕ) are the

models (solutions ofϕ).

Belief assessment conditioned on a constraint network or a CNF expressionis the task

of assessingP (X|ϕ) for every variableX. SinceP (X|ϕ) = αP (X ∧ ϕ) whereα is a

normalizing constant relative toX, computingP (X|ϕ) reduces to a CPE task for the query

((X = x) ∧ ϕ). More generally,P (ϕ|ψ) can be derived fromP (ϕ|ψ) = αϕ · P (ϕ ∧ ψ)

whereαϕ is a normalization constant relative to all the models ofϕ.

3.2.3 Examples

Java bugs Consider the classical naive-Bayes model or, more generally,two layer net-

work. Often the root nodes in the first layer are desired to be mutually exclusive, a property

that can be enforced byall-differentconstraints. For example, consider a bug diagnostics

82



4255386 46454084210626

secure keys modify table thread disabled caret clicked handle selection

browser file worker reopening editor prevent disabling properties message

hangs resource field menu value closing read-only restart text disappear

started service background switching freeze machines editable listenercomponent

≠ ≠

≠

Figure 3.1: Two layer networks with root not-equal constraints (Java Bugs)

system for a software application such as Java Virtual Machine that contains numerous bug

descriptions. When the user performs a search for the relevant bug reports, the system out-

puts a list of bugs, in decreasing likelihood of it being the problem’s culprit. We can model

the relationship between each bug identity and the key wordsthat are likely to trigger this

bug as a parent child relationship of a two layer belief network where the bug identities are

root nodes and all the key words that may appear in each bug description are child nodes.

Each bug has a directed edge to each relevant keyword (See Figure 3.1). In practice, a

problem is caused by only one bug and thus, the bugs on the listare mutually exclusive.

We may want to express this fact using a not-equal relationship between all (or some of)

the root nodes. We could have taken care of this by putting allthe bugs in one node. How-

ever, this will cause a huge inconvenience, having to express the conditional probability of

each key word given each bug, even when it is not relevant. Java bug database contains

thousands of bugs. It is hardly sensible to define a conditional probability table of that size.

So, in the mixed network framework we can simply add one not-equal constraint over all

the root variables.

Class scheduling Another source of examples is when reasoning about an agent’s behav-

ior. Consider a student’s class scheduling activitiy. A relevant knowledge base can be built

either from the student’s point of view, the administrationview or from the faculty point of

83



view. Perhaps, the same knowledge-base can serve these multiple reasoning perspectives.

The administration (e.g, the chair) tries to schedule the classes so as to meet the various

requirements of the students (alow enough classes in each quarter for each concentration)

while faculty may want to teach their classes in a particularquarter to maximize (or min-

imize) students attendance or to better distribute their research vs teaching time throuout

the academic year.

In Figure 3.2 we demonstrate a scenario with 3 classes and 2 students. The variables

areT (Si, Cj) meaning “studentSi takes courseCj”, P (Si, Cj) denoting the performance

(grade) of studentSi in courseCj. past-P (Si, Cj) is the past performance of studentSi

in Cj (if the class was taken). The variableteach(Cj) denotes the professor who teaches

Cj in the current quarter, andtype(Si) stands for a collection of variables denoting student

Si’s characteristics (his strengths, goals and inclinations, time in the program etc.). If we

have a restriction on the number of students that can take a class, we can impose a unary

constraints (N(Ci) ≤ 10). For each student and for eachP (Si, Cj) we have a CPT from

the parents nodeT (Si, Cj), teaches(Cj) andtype(Si). We then have constraints between

various classes such asT (S,C1) andT (S,C2) indicating that both cannot be taken together

due to scheduling conflicts. We can also have all-different constraints between pairs of

teachCj since the same teacher may not teaches two classes even if those classes are not

conflicting. (For clarity we do not express this constraintsin Figure 3.2.) Finally, since a

student may need to take at least 2 and at most 3 classes, we canhave a variableN(Si) that

is the number function of the classes taken by the student. IfC1 is a prerequisite toC2 we

can have a constraint betweenT (S,C1) andpast− P (S,C2).

3.2.4 Processing Networks with Determinism

Often belief networks have a hybrid probabilistic and deterministic relationships. Such net-

works appear in medical applications in coding networks [89] and in networks having CPTs

that arecausally independent[53]. Recent work in dynamic decision networks reveals the

84



Past-P(S1,C4) Past-P(S1,C5)

type(S 1) teach(C 1) T(S1,C1) teach(C 2) T(S1,C2) teach(C 3) T(S1,C3)

P(S1,C1) P(S1,C2) P(S1,C3)

N(C1) N(C2) N(C3)N(S1)

Figure 3.2: Mixed network for student’s class taking

need to express large portion of the knowledge using deterministic constraints. We argue

that treating such information in a special manner, using constraint processing methods is

likely to yield significant computational benefit.

Belief assessment in belief networks having determinism translates to a CPE task over

a mixed network. The idea is to collect together all the deterministic information appearing

in the functions ofF and to extract the deterministic information in the mixed CPTs, and

then transform it all to one CNF or a constraint expression that will be treated as a constraint

network part relative to the original belief network. Each entry in a mixed CPTP (Xi|pai),

havingP (xi|xpai
) = 1, (x is a tuple of variables in the family ofXi) can be translated to a

constraint (not allowing tuples with zero probability) or to clausesxpai
→ xi, and all such

entries constitute a conjunction of clauses.

Let B =< C,P, F > be a belief network having determinism. Given evidencee,

assessing the posterior probability of a single variableX given evidencee is to compute

P (X|e) = αP (X ∧ e). Let cl(P ) be the clauses extracted from the mixed CPTs. The

network’s deterministic portion iscl(F )∧ cl(P ), and because this conjunction is redundant

relative to the given network, namely sinceP (cl(F ) ∧ cl(P ) = 1 we can write:

P ((X = x)∧e) = P ((X = x)∧e∧cl(F )∧cl(P )) Therefore, to evaluate the belief ofX =

x we can evaluate the probability of the CNF formulaϕ = ((X = x) ∧ e ∧ cl(F ) ∧ cl(P ))

over the original belief network.

85



3.2.5 Mixed Graphs as I-Maps

In this section we define themixed graphof a mixed network and an accompanying sepa-

ration criterion, extending d-separation. We show that a mixed graph is a minimal I-map

(independency map) of a mixed network relative to an extended notion of separation, called

dm-separation.

DEFINITION 3.2.4 (mixed graph) Given a mixed networkM(B,R), the mixed graphGM =

(G,D) is defined as follows. Its nodes correspond to the variables appearing either inB or

inR, and the arcs are the union of the undirected arcs in the constraint graphD ofR, and

the directed arcs in the belief networkB, G. The moral mixed graph is the moral graph of

the belief network union the constraint graph.

The notion of d-speration in belief networks is known to capture conditional indepen-

dence [86]. Namely any d-separation in the directed graph corresponds to a conditional

independence in the corresponding probability distribution. Likewise, an undirected graph

representation of probabilistic networks (i.e., Markov networks) allows reading valid con-

ditional independence based on undirected graph separation.

In this section we define adm-separationof mixed graphs and show that it provides a

criterion for establishing minimal I-mapness for mixed networks.

DEFINITION 3.2.5 (ancestral mixed graph)Given a mixed graphGM = (G,D) of a

mixed networkM(B,R) whereG is the directed acyclic graph ofB, andD is the undi-

rected constraint graph ofR, the ancestral graph ofX in GM is the graphD union the

ancestral graph ofX in G.

DEFINITION 3.2.6 (dm-separation)Given a mixed graph,GM and given three subsets of

variablesX, Y andZ which are disjoint, we say thatX andY are dm-separated given

Z in the mixed graphGM , denoted< X,Z, Y >dm, iff in the ancestral mixed graph of

X ∪ Y ∪ Z, all the paths betweenX andY are intercepted by variables inZ.

86



X

Z

P Q

Y X

Z

P Q

Y X

Z

P Q

Y

A

(a) (b) (c)

Figure 3.3: DM-separation

The following Theorem follows straightforwardly from the correspondance between

mixed networks and auxiliary networks.

THEOREM 3.2.1 (I-map) Given a mixed networkM = M(B,R) and its mixed graphGM ,

thenGM is a minimal I-map relative to dm-separation. Namely, if< X,Z, Y >dm then

PM(X|Y, Z) = PM(X|Z) and no arc can be removed while maintaining this property.

Proof. Assuming< X,Z, Y >dm we should provePM(X|Y, Z) = PM(X|Z). Namely,

we should prove thatPS(X|Y, Z,A = 1) = PS(X|Z,A = 1) , whenS = S(B,R), and

A = 1 is an abbreviation to assigning all auxiliary variables inS the value 1 (Proposition

13). SinceS = S(B,R) is a regular belief network we can use the ancestral graph criterion

to determine d-separation. It is easy to see that the ancestral graph of the directed graph of

S givenX ∪ Y ∪ Z ∪ A when moralized is identical to the corresponding ancestralmixed

graph (if we ignore the edges going into the evidence variablesA), and thus dm-separation

translates to d-separation and provides a characterization of I-mapness of mixed networks.

The minimality of mixed graphs as I-maps follows from the minimality of belief networks

relative to d-separation applied to the auxiliary network.2

Example 3.2.2 Figure 3.3a shows a regular belief network in whichX and Y are d-

separated given the empty set. If we add a constraintRPQ betweenP andQ, we obtain

the mixed network in Figure 3.3b. According to dm-separationX is no longer independent

of Y , because of the pathXPQY in the ancestral graph. Figure 3.3c shows the auxialiary

network, with variableA assigned to 1 corresponding to the constraint betweenP andQ.

D-separation also dictates a dependency betweenX andY .

87



We will next see the first virtue of “mixed” vs “auxiliary” networks. It is now clear

that the concept of constraint propagation has a clear meaning within the mixed network

framework. That is, we can allow the constraint network to beprocessed by any constraint

propagation algorithm to yield another, equivalent, well defined, mixed network.

DEFINITION 3.2.7 (equivalent mixed networks)Two mixed networks defined on the

same set of variablesX = {X1, ..., Xn} and the same domains,D1, ..., Dn, denoted

M1 = M(B1,R1) andM2 = M(B2,R2), are equivalent iff they are equivalent as probabil-

ity distributions, namely iffPM1 = PM2.

Proposition 14 If R1 andR2 are equivalent constraint networks (have the same set of

solutions), thenM(B,R1) is equivalent toM(B,R2).

The above proposition shows one advantage of looking at mixed networks rather than

at auxiliary networks. Due to the explicit representation of deterministic relationships, no-

tions such as inference and constraint propagation are naturally defined and are exploitable

in mixed network.

3.3 Inference Algorithms for Processing Mixed Networks

There are two primary approaches for processing mixed networks. One is the variable

elimination approach which was presented in [35] and the other is search, also calledcon-

ditioning. Search is based on enumerating the solutions of the constraint formula, and then

assessing the belief of each solution. We will focus on the CPEtask of computingP (ϕ|e)

whereϕ is the constraint or CNF formula. A number of related tasks canbe easily derived

by changing the appropriate operator (e.g. using maximization for maximum probable ex-

planation - MPE, or summation and maximization for maximum aposteriori hypothesis -

MAP).

88



3.3.1 A Bucket Elimination Method

In this section we will first derive a bucket elimination algorithm when the deterministic

component is a CNF formula and then show how it generalizes to any constraint expression.

Given a mixed networkM(B,ϕ), whereϕ is a CNF formula defined on a subset of vari-

ablesQ, theCPE task is to compute:

P (ϕ) =
∑

x̄Q∈models(ϕ)

P (x̄Q).

Using the belief-network product form we get:

P (ϕ) =
∑

{x̄|x̄Q∈models(ϕ)}

n
∏

i=1

P (xi|xpai
)

We assume thatXn is one of the CNF variables, and we separate the summation overXn

andX \ {Xn}. We denote byγn the set of all clauses that are defined onXn and byβn all

the rest of the clauses. The scope ofγn is denotedQn, Sn = X \Qn andUn is the set of all

variables in the scopes of CPTs and clauses that are defined over Xn. We get:

P (ϕ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

∑

{xn|x̄Qn∈models(γn)}

n
∏

i=1

P (xi|xpai
)

Denoting bytn the set of indices of functions in the product thatdo notmentionXn and by

ln = {1, . . . , n} \ tn we get:

P (ϕ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

∏

j∈tn

Pj ·
∑

{xn|x̄Qn∈models(γn)}

∏

j∈ln

Pj

Therefore:

P (ϕ) =
∑

{x̄n−1|x̄Sn∈models(βn)}

(
∏

j∈tn

Pj) · λ
Xn

89



whereλXn is defined overUn − {Xn}, by

λXn =
∑

{xn|x̄Qn∈models(γn)}

∏

j∈ln

Pj (3.1)

Case of observed variables. WhenXn is observed, or constrained by a literal, the

summation operation reduces to assigning the observed value to each of its CPTsand to

each of the relevant clauses. In this case Equation (3.1) becomes (assumeXn = xn and

P=xn
is the function instantiated by assigningxn toXn):

λxn =
∏

j∈ln

Pj=xn
, if x̄Qn

∈ m(γn ∧ (Xn = xn)) (3.2)

Otherwise,λxn = 0. Sincex̄Qn
satisfiesγn ∧ (Xn = xn) only if x̄Qn−Xn

satisfiesγxn =

resolve(γn, (Xn = xn)), we get:

λxn =
∏

j∈ln

Pj=xn
if x̄Qn−Xn

∈ m(γxn

n ) (3.3)

Therefore, we can extend the case of observed variable in a natural way: CPTs are assigned

the observed value as usual while clauses are individually resolved with the unit clause

(Xn = xn), and both are moved to appropriate lower buckets.

Therefore, in the bucket ofXn we should computeλXn. We need to place all CPTs and

clauses mentioningXn and then compute the function in Equation (3.1). The computation

of the rest of the expression proceeds withXn−1 in the same manner. This yields algorithm

Elim-CPE, described in Figures 3.4 and 3.5. The elimination operation is denoted by the

general operator symbol⊗ that instantiates to summation for the current query. Thus,

for every ordering of the propositions, once all the CPTs and clauses are partitioned (each

clause and CPT is placed in the bucket of the latest variable intheir scope), we process

the buckets from last to first, in each applying the followingoperation. Letλ1, ...λt be the

probabilistic functions in bucketP over scopesS1, ..., St andα1, ...αr be the clauses over

90



Algorithm Elim-CPE
Input: A belief networkBN = {P1, ..., Pn}; A
cnf formula onk propositionsϕ = {α1, ...αm}
defined overk propositions, an ordering of the
variables,d
Output: The beliefP (ϕ).
1. Initialize: Place buckets with unit clauses last
in the ordering (to be processed first). Partition
theBN andϕ into bucket1, . . ., bucketn, where
bucketi contains all matrices and clauses whose
highest variable isXi. Put each observed vari-
able into its appropriate bucket. LetS1, ..., Sj be
the scopes of CPTs, andQ1, ...Qr be the scopes
of clauses. (We denote probabilistic functions as
λs and clauses byαs).
2. Backward: Process from last to first.
Let p be the current bucket.
Forλ1, ..., λj , α1, ..., αr in bucketp, do
• Process-bucketp(

∑

, (λ1, ..., λj), (α1, ..., αr))
3. Return P (ϕ) as the results of the elimination
function in the first bucket.

Process-bucketp(⊗, (λ1, ..., λj), (α1, ..., αr))
• If bucketp containsXp = xp,
1. AssignXp = xp to eachλi and put each
resulting function into its appropriate earlier
bucket.
2. Resolve eachαi with the unit clause, put
non-tautology resolvents in lower buckets
and move any bucket with unit clause to
top of processing.

• Else,generateλP :

λP = ⊗{xp|x̄Up∈models(α1,...,αr)}

j
∏

i=1

λi

Add λp to the bucket of the largest-index
variable inUp ←

⋃j
i=1 Si

⋃r
i=1Qi − {Xp}.

Figure 3.4: AlgorithmElim-CPE Figure 3.5: Process-bucket procedure

scopesQ1, ..., Qr. The algorithm computes a new functionλP overUp = S ∪ Q − {Xp}

whereS = ∪iSi, andQ = ∪jQj, defined by:

λP =
∑

{xp|x̄Q∈models(α1,...,αr)}

∏

j

λj

Example 3.3.1 Consider the belief network in Figure 3.9, which is similar to the one in

Figure 1.2, and the queryϕ = (B ∨ C) ∧ (G ∨D) ∧ (¬D ∨ ¬B). The initial partitioning

into buckets along the orderingd = A,C,B,D, F,G, as well as the output buckets are

given in Figure 3.6. We compute:

In bucketG: λG(f, d) =
∑

{g|g∨d=true} P (g|f)

In bucketF : λF (b, c, d) =
∑

f P (f |b, c)λG(f, d)

In bucketD: λD(a, b, c) =
∑

{d|¬d∨¬b=true} P (d|a, b)λF (b, c, d)

In bucketB: λB(a, c) =
∑

{b|b∨c=true} P (b|a)λD(a, b, c)λF (b, c)

In bucketC: λC(a) =
∑

c P (c|a)λB(a, c)

91



Bucket G:    P(G|F,D)

Bucket F:    P(F|B,C)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A)

Bucket C:   P(C|A)

Bucket A:   P(A)

)( CB∨ ),,( CBADλ

)( DG ∨

)( BD ¬∨¬

),( CABλ

)(ACλ

),,( DCBfλ

),( DFGλ

)(ϕP

(a)

Figure 3.6: Execution of elim-CPE

Bucket G:    P(G|F,D)

Bucket D:   P(D|A,B)

Bucket B:   P(B|A),P(F|B,C),

Bucket C:   P(C|A)

Bucket F:

Bucket A:

)( CB∨ ),( BADλ

),( CFBλ

)(1 ABλ

G   )( ¬∨ DG

D        ),(  ), ( DFBD Gλ¬∨¬

)(FCλ

)(2 ABλ )(ACλ Fλ

C

)(ϕP

B¬

)(FDλ

(b)

Figure 3.7: Execution of elim-bel-cnf

G

F

D

B

C

A

G

F

D

B

C

A

G

F

D

B

C

A

(a) (b) (c)

Figure 3.8: The induced augmented graph

In bucketA: λA =
∑

a P (a)λC(a)

P (ϕ) = λA.

For exampleλG(f, d = 0) = P (g = 1|f), because ifd = 0 g must get the value “1”,

while λG(f, d = 1) = P (g = 0|f) + P (g = 1|f). In summary,

THEOREM 3.3.2 (Correctness and Completeness)Algorithm Elim-CPE is sound and

complete for the CPE task.

Notice that algorithm Elim-CPE also includes a unit resolution step whenever possible

(in step 2) and a dynamic reordering of the buckets that prefer processing buckets that

include unit clauses. This may have a significant impact on efficiency because treating

observations (namely unit clauses) specially can avoid creating new dependencies. In fact,

92



A

F

B C

D

G

(a) Directed acyclic graph

A

F

B C

D

G

(b) Moral graph

Figure 3.9: Belief network

there exists a spectrum of feasible bounded inferences thatcan be applied to the clauses in

the buckets and can enhance efficiency considerably.

Example 3.3.3 Let’s now extend the example by adding¬G to the query. This will place

¬G in the bucket ofG. When processing bucketG, unit resolution creates the unit clauseD,

which is then placed in bucketD. Next, processing bucketF creates a probabilistic function

on the two variablesB andC. Processing bucketD that now contains a unit clause will

assign the valueD to the CPT in that bucket and apply unit resolution, generating the

unit clause¬B that is placed in bucketB. Subsequently, in bucketB we can apply unit

resolution again, generatingC placed in bucketC, and so on. In other words, aside from

bucketF , we were able to process all buckets as observed buckets, by propagating the

observations. (See Figure 3.7.) To incorporate dynamic variable ordering, after processing

bucketG, we move bucketD to the top of the processing list (since it has a unit clause).

Then, following its processing, we process bucketB and then bucketC, thenF , and finally

A.

Since unit resolution increases the number of buckets having unit clauses, and since

those are processed in linear time, it can improve performance substantially. Such buckets

can be identified a priori by applying unit resolution on the CNF formula or arc-consistency

on the constraint expression.

93



Algorithm Elim-ConsPE

Input: A belief networkBN = {P1, ..., Pn}; A constraint expression overk variables,R =

{RQ1
, ..., RQt

} an orderingd

Output: The beliefP (R).

1. Initialize: Place buckets with observed variables last in the ordering (to be processed first).

Partition theBN andR into bucket1, . . ., bucketn, wherebucketi contains all matrices and

constraints whose highest variable isXi. Let S1, ..., Sj be the scopes of CPTs, andQ1, ...Qt the

scopes of constraints.

We denote probabilistic functions asλs and constraints byRs.

2. Backward: Process from last to first. Letp be the current bucket. Forλ1, λ2, ..., λj , R1, .., Rr

in bucketp, do:

PROCESS-BUCKET-RELp(
∑

, (λ1, ..., λj), (R1, ..., Rr))

if bucketp containsXp = xp

i) AssignXp = xp to eachλi and put each resulting function into its appropriate bucket.

ii) Apply arc-consistency (or any constraint propagation)over the constraints in the bucket.

Put results in lower buckets and.Buckets with singleton domain go to top of processing.

else

GenerateλP =
∑

{xp|x̄Up∈1jRj}

∏j

i=1 λi.

Add λp to the bucket of the largest-index variable inUp ←
⋃j

i=1 Si ∪Qi − {Xp}.

3. Return P (R) as the results of the elimination function in the first bucket.

Figure 3.10: AlgorithmElim-ConsPE

3.3.2 Probability of Relational Constraints

When the variables in the belief network are multi-valued, the deterministic query can be

expressed using relational operators and constraints. Theset of solutions of a constraint

network can be expressed using the join operator. The join oftwo relationsRAB and

RBC denotedRAB 1 RBC is the largest set of solutions overA,B,C satisfying the two

constraintsRAB andRBC . The set of solutions of the constraint formulaR = {R1, ...Rt}

is sol(R) =1
t
i=1 Ri.

Given a belief network and a constraint formulaR we may be interested in computing

P (x̄ ∈ sol(R)). A bucket-elimination algorithm for computing this task isa simple gen-

eralization of Elim-CPE, except that it uses the relational operators as expressed in Figure

3.10.

94



3.3.3 Complexity

As usual, the complexity of bucket elimination algorithms is related to the number of vari-

ables appearing in each bucket, both in the scope of probability functions as well as in the

scopes of constraints. The worst-case complexity is time and space exponential in the size

of the maximal bucket, which is captured by the induced-width of the relevant graph. For

the task at hand, the relevant graph is the moral mixed graph.

Clearly, the complexity of Elim-CPE and Elim-Conspe isO(n · exp(w∗)), wherew∗ is

the induced width of the moral mixed ordered graph.

In Figure 3.8 we see that while the induced width of the moral graph is just 2 (Figure

3.8a), the induced width of the mixed graph is 3 (Figure 3.8b).

To capture the simplification associated with observed variables or unit clauses, we can

use the notion of anadjusted induced graph. The adjusted induced graph is created by

processing the variables from last to first in the given ordering. Only parents of each non-

observed variable are connected. The adjusted induced width is the width of the adjusted

induced-graph. Figure 3.8c shows the adjusted induced-graph relative to the evidence in

¬G. We see that the induced width, adjusted for the observation, is just 2 (Figure 3.8c).

Notice that adjusted induced-width can be obtained only after we obsereve those variables

that were instantiated as a result of our propagation algorithm.

In summary,

THEOREM 3.3.4 ([35]) Given a mixed network,M, of a belief network overn variables,

a constraint expression and an orderingo, algorithm Elim-CPE is time and spaceO(n ·

exp(w∗M(o))), wherew∗M(o) is the width alongo of the adjusted moral mixed induced

graph.

95



3.3.4 Elim-CPE with General Constraint Propagation

Constraint propagation can, in principle, improve Elim-CPE by inferring new unit clauses

beyond the power of unit-resolution. Furthermore, inferred clauses correspond to infered

conditional probabilities that are either “0” or “1”.

One form of constraint propagation is bounded resolution [90]. It applies pair-wise res-

olution to any two clauses in the CNF theory iff the resolvent does not exceed a bounding

parameter,i. Bounded-resolution algorithms can be applied until quiesence or in a direc-

tional manner, calledBDR(i). After partitioning the clauses into ordered buckets, eachis

processed by resolution with boundi.

We extend Elim-CPE into a parameterized family of algorithmsElim-CPE(i) that in-

corporatesBDR(i) . The added operation inbucketp is: (If the bucket does not have an

observed variable)

For each pair{(α∨Qi), (β∨¬Qi)} ⊆ bucketi. If the resolventγ = α∪β contains no more

thani propositions, place the resolvents in the bucket of its highest index variable. Higher

levels of propagation may infer more unit-clauses and general nogoods but require more

computation. It is hard to assess in advance the right balance of constraint propagation. It

is known that the complexity ofBDR(i) isO(exp(i)). Therefore, for small levels ofi the

computation in non-unit buckets is likely to be dominated bygenerating the probabilistic

function rather than byBDR(i).

3.4 AND/OR Search Algorithms For Mixed Networks

Proposition 14 ensures the equivalence of mixed networks defined by the same belief net-

work, and different constraint networks that have the same set of solutions. In particular,

this implies that we can process the deterministic information separately (e.g., by enforc-

ing some consistency level, which results in a tighter representation), without losing any

solution. Conditioning algorithms (search) offer a naturalapproach for exploiting the de-

96



A

D

B C

E

f3(ABE)

f2(AB)

f4(BCD)

f1(AC)

(a) Graphical
model

A

D

B

CE

(b) Pseudo tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

(c) Search tree

Figure 3.11: AND/OR search tree

A

D

B

CE

[ ]

[A]

[AB]

[BC]

[AB]

(a) Pseudo tree

0

A

B

0

E C

0 1

D

0 1

D

0 1 0 1

1

E C

0 1

D

0 1

D

0 1 0 1

1

B

0

E C

0 1 0 1

1

E C

0 1 0 1

(b) Context minimal graph

Figure 3.12: AND/OR search graph

terminism through constraint propagation techniques. Theintuitive idea is to search in the

space of partial variable assignments, and use the constraints to limit the actual traversed

space.

We will use the following examples to describe the algorithms.

Example 3.4.1 Figure 3.11 shows an example of an AND/OR search tree. Figure 3.11(a)

shows a graphical model defined by four functions, over binaryvariable, and assuming all

tuples are consistent. When some tuples are inconsistent, some of the paths in the tree do

not exists. Figure 3.11(b) gives the pseudo tree that guidesthe search, from top to bottom,

as indicated by the arrows. The dotted arcs are backarcs from the primal graph. Figure

3.11(c) shows the AND/OR search tree, with the alternating levels of OR (circle) and AND

(square) nodes, and having the structure indicated by the pseudo tree.

Example 3.4.2 For Figure 3.12 we refer back to the model given in Figure 3.11(a), again

assuming that all assignments are valid and that variables take binary values. Figure

97



A

D

B C

E

(a) Belif network

A

D

B

CE

(b) Pseudo tree

.2

.7

.5

.4

E=0

.811

.301

.510

.600

E=1BA

.1

.4

B=0

.91

.60

B=1A

.7

.2

C=0

.31

.80

C=1A

.4

.6

P(A)

1

0

A

.5

.3

.1

.2

D=0

.511

.701

.910

.800

D=1CB

P(E | A,B)P(D | B,C)

P(B | A) P(C | A)P(A)

(c) CPTs

0

A

B

0

E C

0

D

0 1

1

D

0 1

0 1

1

E C

0

D

0 1

1

D

0 1

0 1

1

B

0

E C

0

D

0 1

1

D

0 1

0 1

1

E C

0

D

0 1

1

D

0 1

0 1

.7.8 .9 .5 .7.8 .9 .5

.4 .5 .7 .2.2 .8 .2 .8 .1 .9 .1 .9

.4 .6 .1 .9

.6 .4

.6 .5 .3 .8

.2 .1 .3 .5 .2 .1 .3 .5

(d) Labeled AND/OR tree

Figure 3.13: Labeled AND/OR search tree for belief networks

3.12(a) shows the pseudo tree derived from orderingd = (A,B,E,C,D), having the same

structure as the bucket tree for this ordering. The (OR) context of each node appears in

square brackets, and the dotted arcs are backarcs. The context of a node is also identical to

the scope of the message sent from its bucket by Bucket Elimination. Figure 3.12(b) shows

the context minimal AND/OR graph.

Example 3.4.3 Figure 3.13 shows a weighted AND/OR tree for a belief network. Figure

3.13(a) shows the primal graph, 3.13(b) is the pseudo tree, and 3.13(c) shows the condi-

tional probability tables. Figure 3.13(d) shows the weightedAND/OR search tree. Natu-

rally, this tree could be transformed into the context minimal AND/OR graph, similar to

the one in Figure 3.12(b).

98



Algorithm 2 : AND-OR-CPE
input : A mixed networkM = 〈X,D,P,C〉; a pseudo treeT of the moral mixed graph, rooted atX1; parentspai

(OR-context) for every variableXi; caching set totrue or false.
output : The probabilityP (x̄ ∈ ρ(R)) that a tuple satisfies the constraint query.
if caching == true then // Initialize cache tables1

Initialize cache tables with entries of “−1”2

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN3
while OPEN 6= φ do4

n← top(OPEN); removen from OPEN5
if caching == true and n is OR, labeledXi and Cache(asgn(πn)[pai]) 6= −1 then // If in cache6

v(n)← Cache(asgn(πn)[pai]) // Retrieve value7
successors(n)← φ // No need to expand below8

else // Expand search (forward)9
if n is an OR node labeledXi then // OR-expand10

successors(n)← {〈Xi, xi〉 | 〈Xi, xi〉 is consistentwith πn } // CONSTRAINT PROPAGATION11

v(〈Xi, xi〉)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all 〈Xi, xi〉 ∈ successors(n)
12

if n is an AND node labeled〈Xi, xi〉 then // AND-expand13
successors(n)← childrenT (Xi)14
v(Xi)← 0 for all Xi ∈ successors(n)15

Add successors(n) to top ofOPEN16

while successors(n) == φ do // Update values (backtrack)17
if n is an OR node labeledXi then18

if Xi == X1 then // Search is complete19
return v(n)20

if caching == true then21
Cache(asgn(πn)[pai])← v(n) // Save in cache22

v(p)← v(p) ∗ v(c)23
if v(p) == 0 then // Check if p is dead-end24

removesuccessors(p) from OPEN25
successors(p)← φ26

if n is an AND node labeled〈Xi, xi〉 then27
let p be the parent ofn28
v(p)← v(p) + v(n);29

removen from successors(p)30
n← p31

3.4.1 AND/OR Search with Constraint Propagation

Algorithm 2, AND-OR-CPE, presents the basic depth-first traversal of the AND/OR search

tree (or graph, if caching is used) for solving the CPE task over a mixed network (the

algorithm is similar to the one presented in [38]). The algorithm is given as input a mixed

network, a pseudo treeT of the moral mixed graph and the context of each variable. The

output is the result of the CPE task, namely the probability that a random tuple satisfies the

constraint query. AND-OR-CPEtraverses the AND/OR search tree or graph corresponding

to T in a DFS manner. Each node maintains a valuev which accumulates the computation

99



resulted from its subtree. OR nodes accumulate the summation of the product between

each child’s value and its OR-to-AND weight, while AND nodes accumulate the product

of their children’s values.

The context based caching is done based on tables. We exemplify with OR caching. For

each variableXi, a table is reserved in memory for each possible assignment to its parent

setpai (context). Initially each entry has a predefined value, in our case “-1”. The fringe

of the search is maintained on a stack calledOPEN. The current node is denoted byn, its

parent byp, and the current path byπn. The children of the current node are denoted by

successors(n).

The algorithm is based on two mutually recursive steps:Expand search(line 16) and

Update values(line 31), which call each other (or themselves) until the search terminates.

Since we only use OR caching, before expanding an OR node, itscache table is checked

(line 6). If the same context was encountered before, the value is retrieved from cache, and

successors(n) is set to the empty set, which will trigger theUpdate valuesstep.

If a node is not found in cache, it is expanded in the usual way,depending on whether

it is an AND or OR node (lines 10-16). As long as the current node is not a dead-end and

still has unevaluated successors, one of its successors is chosen (which is also the top node

onOPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a node has an empty set of

successors (note that as each successor is evaluated, it is removed from the set of successors

in line 30). This means that all its children have been evaluated, and its final value can now

be computed. If the current node is the root, then the search terminates with its value (line

19). If it is an OR node, its value is saved in cache before propagating it up (line 21). Ifn

is OR, then its parentp is AND andp updates its value by multiplication with the value of

n (line 23). If the newly updated value ofp is 0 (line 24), thenp is a dead-end, and none

of its other successors needs to be evaluated. An AND noden propagates its value to its

parentp in a similar way, only by summation (line 29). Finally, the current noden is set

100



0

A

B

0

E C

0

D

1

1

D

1

0

1

E C

0

D

1

1

D

1

0

1

B

0

E C

0

D

1

1

D

1

0

1

E C

0

D

1

1

D

1

0

.7.8 .9 .5 .7.8 .9 .5

.4 .5 .7 .2.2 .8 .2 .8 .1 .9 .1 .9

.4 .6 .1 .9

.6 .4

.8 .9

.8 .9

.7 .5

.7 .5

.8 .9

.8 .9

.7 .5

.7 .5

.4 .5 .7 .2.88 .54 .89 .52

.352 .27 .623 .104

.3028 .1559

.3028 .1559

P(D=1,E=0) = .24408

1

1 1 1 1

1 1 1 1 1 1 1

(.2*.7) + (.8*.5) 

(.2*.52)

Figure 3.14: AND/OR search tree with final node values

C

A B

D

(a) Mixed graph

C

A

BD

(b) Pseudo tree

0 1

A

C

0 1

D B

0 1 0

D B

1 0

(c) AND/OR search tree

Figure 3.15: Mixed network; queryϕ = (A ∨ ¬B)(D ∨ ¬C)

to its parentp (line 31), becausen was completely evaluated. The search continues either

with a propagation step (if conditions are met) or with an expansion step.

Example 3.4.4 We refer again to the example in Figure 3.13. Considering a constraint

network that imposes thatD = 1 andE = 0 (this can also be evidence in the belief

network), the trace of theAND-OR-CPE algorithm without caching is given in Figure

3.14. To make the computation straightforward, the consistent leaf AND nodes are given a

value of 1 (shown under the square node). The final value of eachnode is shown to its left,

while the OR-to-AND weights are shown close to the arcs. The computation of the final

value is detailed for one OR node and one AND node.

Example 3.4.5 Figure 3.15(a) shows a mixed binary network (the constraint part is given

by the CNF formulaϕ). Figure 3.15(c) describes an AND/OR search tree based on theDFS

tree given in Figure 3.15(b). AlgorithmAND-OR-CPE starts from node A, and assigns

101



g(A) = 0, theng(〈A, 0〉) = P (A = 0). It continues assigningg(C) = 0, and then

g(〈C, 0〉) = 1. B is not assigned yet, soP (C|A,B) will participate in the label of a

descendant node (the set A of step (3) of the algorithm is empty). The node D can take both

values (ϕ is not violated), so by backing up the values of its descendents g(D) becomes 1

(g(D) =
∑

D P (D|C = 0) = 1). Going on the branch of B,g(B) = 0, then B can only be

extended to 0 (to satisfyA ∨ ¬B), and the label becomesg(〈B, 0〉) = P (B = 0) · P (C =

0|A = 0, B = 0). In general, a CPT participates in OR-to-AND weights at the highest

level (closer to the root) of the tree where all the variables in its scope are assigned.

The following are implied immediately from the general properties of AND/OR search

trees,

THEOREM 3.4.6 AlgorithmAND-OR-CPE is sound and exact for the CPE task.

THEOREM 3.4.7 Given a mixed networkM with n variables with domain sizes bounded

byk and a legal treeT of depthm of its moral mixed graph, the time complexity ofAND-

OR-CPE isO(n · km).

Proposition 15 A mixed network having induced widthw∗ has an AND/OR search tree

whose size isO(exp(w∗ · log n)).

Constraint Propagation in AND-OR-CPE

Proposition 14 provides an important justification for using mixed networks as opposed

to auxiliary networks. The constraint portion can be processed by a wide range of con-

straint processing techniques, both statically before AND/OR search or dynamically dur-

ing AND/OR search. The algorithms can combine consistency enforcing (e.g., arc-, path-,

i-consistency) before or during search, directional consistency, look-ahead techniques, no-

good learning etc.

The key to using constraint propagation is the boxed line 11 in Algorithm 2. Search

only expands when the assignment of the last variable is consistent with the current path.

102



Table 3.1: AND/OR space vs. OR space

N=25, K=2, R=2, P=2, C=10, S=3, t=70%, 20 instances, w*=9, h=14

Time Nodes Dead-ends Full space
AO-C 0.15 44,895 9,095 152,858
OR-C 11.81 3,147,577 266,215 67,108,862

Here we have the freedom to employ any procedure for checkingconsistency, based on

the constraints of the mixed network. The simplest case is when no constrain propagation

is used, and only the initial constraints are checked for consistency, and we denote this

algorithm by AO-C.

In the experimental evaluation, we used two forms of constraint propagation besides

AO-C. The first, yielding algorithm AO-FC, is based onforward checking, which is one

of the weakest forms of propagation. It propagates the effect of a value selection to each

future uninstantiated variable separately, and checks consistency against the constraints

whose scope would become fully instantiated by just one suchfuture variable.

The second algorithm we used is called AO-RFC, and performs a variant of relational

forward checking. Rather than checking only constraints whose scope becomes fully as-

signed, AO-RFC checks all the existing constraints by looking at their projection on the

current path. If the projection is empty an inconsistency isdetected. AO-RFC is computa-

tionally more expensive than AO-FC, but its search space is smaller.

Figure 3.16 shows the search spaces of AO-C and AO-FC.

Example 3.4.8 Figure 3.16(a) shows the belief part of a mixed network, and Figure 3.16(b)

the constraint part. All variables have the same domain,{1,2,3,4}, and the constraints

express “less than” relations. Figure 3.16(c) shows the search space ofAO-C. Figure

3.16(d) shows the space traversed by AO-FC. Figure 3.16(e) shows the space when consis-

tency is enforced with Maintaining Arc Consistency.

103



A

D

B C

E F

G H I K

(a) Belief network

A

D

B C

E F

G H I K

>

>

>

>>

>
> >

>

(b) Constraint network

1 2

A

C

3 4

B B

2 3 4

ED

3 4 3 4

HG

4 4

G I

4

I

D

4

G

D

2 3 4

FF

4

K

F

4

K

3

K

4

3 4

4

G

D D

B

4

D

B

OR

AND

OR

AND

OR

AND

AND

OR

(c) Constraint checking

1 2

A

C

3

B B

2 3

ED

3 3

HG

4 4

I

4

D

2 3

FF

3

K

4

3

D

B

OR

AND

OR

AND

OR

AND

AND

OR

(d) Forward checking

1

A

CB

2

ED

3 3

HG

4 4

I

4

2

F

3

K

4

OR

AND

OR

AND

OR

AND

AND

OR

(e) Maintaining arc consistency

Figure 3.16: Example of AND-OR-CPEand AO-FC search spaces

3.4.2 Experimental Evaluation

We ran our algorithms on mixed networks generated randomly uniformly given a number of

input parameters:N - number of variables;K - number of values per variable;R - number

of root nodes for the belief network;P - number of parents for a CPT;C - number of

constraints;S - the scope size of the constraints;t - the tightness (percentage of the allowed

tuples per constraint). (N,K,R,P) defines the belief networkand (N,K,C,S,t) defines the

constraint network. We report the time in seconds, number ofnodes expanded and number

of dead-ends encountered (in thousands), and the number of consistent tuples of the mixed

network (#sol). In tables,w∗ is the induced width andh is the height of the legal tree.

We compared four algorithms: 1) AND-OR-CPE, denoted here AO-C; 2) AO-FC and

3) AO-RFC (described in previous section); 4) BE - bucket elimination (which is equivalent

to join tree clustering) on the auxiliary network; the version we used is the basic one for

104



Table 3.2: AND/OR Search Algorithms (1)

N=40, K=2, R=2, P=2, C=10, S=4, 20 instances, w*=12, h=19

t i Time Nodes (*1000) Dead-ends (*1000) #sol
AO- AO- AO-

C RC RFC C FC RFC C FC RFC
20 0 0.671 0.056 0.022 153 4 1 95 3 1 2E+05

3 0.619 0.053 0.019 101 3 1 95 3 1
6 0.479 0.055 0.022 75 3 1 57 3 1
9 0.297 0.053 0.019 52 3 1 10 3 1

12 0.103 0.044 0.016 17 2 1 3 2 0
40 0 2.877 0.791 1.094 775 168 158 240 40 36 8E+07

3 2.426 0.663 0.894 330 57 52 240 40 36
6 1.409 0.445 0.544 183 35 32 107 28 24
9 0.739 0.301 0.338 119 24 21 20 12 10

12 0.189 0.142 0.149 28 9 7 3 4 3
60 0 6.827 4.717 7.427 1,975 1,159 1,148 362 163 159 6E+09

3 5.560 3.908 6.018 673 351 346 362 163 159
6 2.809 2.219 3.149 347 184 180 151 89 86
9 1.334 1.196 1.535 204 106 102 19 25 23

12 0.255 0.331 0.425 36 23 22 3 5 5
80 0 14.181 14.199 21.791 4,283 3,704 3,703 370 278 277 1E+11

3 11.334 11.797 17.916 1,320 1,109 1,107 370 278 277
6 5.305 6.286 9.061 626 519 518 128 98 97
9 2.204 2.890 3.725 336 274 273 17 21 20

12 0.318 0.543 0.714 44 40 40 1 3 3
100 0 23.595 27.129 41.744 7,451 7,451 7,451 0 0 0 1E+12

3 19.050 22.842 34.800 2,161 2,161 2,161 0 0 0
6 8.325 11.528 16.636 957 957 957 0 0 0
9 3.153 4.863 6.255 484 484 484 0 0 0

12 0.366 0.681 0.884 51 51 51 0 0 0

belief networks, without any constraint propagation and any constraint testing. For the

search algorithms we tried different levels of caching, denoted in the tables byi (i-bound,

this is the maximum scope size of the tables that are stored).i = 0 stands for linear space

search. Caching is implemented based on context as describedin Section 3.4.

Table 3.1 gives a brief account for our choice of using AND/ORspace instead of the

traditional OR space. Given the same ordering, an algorithmthat only checks constraints

(without constraint propagation) always expands less nodes in the AND/OR space.

Tables 3.2, 3.3, and 3.4 show a comparison of the linear spaceand caching algorithms

exploring the AND/OR space. We ran a large number of cases andthis is a typical sample.

Table 3.2 shows a medium sized mixed network, across the fullrange of tightness for

the constraint network. For linear space (i = 0), we see that more constraint propagation

helps for tighter networks (t = 20), AO-RFC being faster than AO-FC. As the constraint

network becomes loose, the effort of AO-RFC does not pay off anymore. When almost all

105



Table 3.3: AND/OR Search Algorithms (2)

t i Time Nodes (*1000) Dead-ends (*1000)#sol
AO-FC AO-RFC AO-FC AO-RFC AO-FC AO-RFC

N=100, K=2, R=10, P=2, C=30, S=3, 20 instances, w*=28, h=38
10 0 1.743 1.743 15 15 15 15 0

10 1.748 1.746 15 15 15 15
20 1.773 1.784 15 15 15 15

20 0 3.193 3.201 28 28 28 28 0
10 3.195 3.200 28 28 28 28
20 3.276 3.273 28 28 28 28

30 0 69.585 62.911 805 659 805 659 0
10 69.803 62.908 805 659 805 659
20 69.275 63.055 805 659 687 659

N=100, K=2, R=5, P=3, C=40, S=3, 20 instances, w*=41, h=51
10 0 1.251 0.382 7 2 7 2 0

10 1.249 0.379 7 2 7 2
20 1.265 0.386 7 2 7 2

20 0 22.992 15.955 164 113 163 111 0
10 22.994 15.978 162 110 162 111
20 22.999 16.047 162 110 162 110

30 0 253.289 43.255 2093 351 2046 304 0
10 254.250 42.858 2026 283 2032 289
20 253.439 43.228 2020 278 2026 283

tuples become consistent, any form of constraint propagation is not cost effective, AO-C

being the best choice in such cases (t = 80, 100). For each type of algorithm, caching

improves the performance. We can see the general trend givenby the bolded figures.

Table 3.3 shows results for large mixed networks (w∗ = 28, 41). These problems have

an inconsistent constraint portion (t = 10, 20, 30). AO-C was much slower in this case, so

we only include results for AO-FC and AO-RFC. For the smaller network (w∗ = 28), AO-

RFC is only slightly better than AO-FC. For the larger one (w∗ = 41), we see that more

propagation helps. Caching doesn’t improve either of the algorithms here. This means

that for these inconsistent problems, constraint propagation is able to detect many of the

no-goods easily, so the overhead of caching cancels out its benefits (only no-goods can be

cached for inconsistent problems). Note that these problems are infeasible for BE due to

high induced width.

Table 3.4 shows a comparison between search algorithms and BE. All instances for

t < 40 were inconsistent and the AO algorithms were much faster than BE, even with

linear space. Betweent = 40 − 60 we see that BE becomes more efficient than AO, and

106



Table 3.4: AND/OR Search vs. Bucket Elimination

t i Time Nodes (*1000) Dead-ends (*1000) #sol
BE AO-FC AO-RFC AO-FC AO-RFC AO-FC AO-RFC

N=70, K=2, R=5, P=2, C=30, S=3, 20 instances, w*=22, h=30
40 0 26.4 2.0 1.3 49 21 35 19 0

10 1.9 1.2 30 18 29 18
20 1.9 1.3 26 17 21 16

50 0 30.7 35.6 2,883 2,708 1,096 1,032 1E+12
10 18.6 18.9 557 512 342 302
20 12.4 12.1 245 216 146 130

60 0 396.8 511.4 51,223 50,089 13,200 12,845 7E+14
10 167.9 182.5 5,881 5,708 2,319 2,241
20 80.5 83.6 1,723 1,655 718 697

N=60, K=2, R=5, P=2, C=40, S=3, 20 instances, w*=23, h=31
40 0 67.3 0.7 0.6 9 9 8 7 0

10 0.6 0.6 6 5 5 5
20 0.6 0.6 5 5 4 4

50 0 3.2 3.0 58 55 41 38 6E+04
10 3.0 2.8 31 28 28 25
20 2.7 2.6 25 23 20 18

60 0 65.2 70.2 2,302 2,292 1,206 1,195 8E+08
10 54.1 56.4 791 781 660 649
20 39.6 40.7 459 449 319 309

may be comparable only if AO is given the same amount of space as BE.

There is an expected trend with respect to the size of the traversed space and the dead-

ends encountered. We see that the more advanced the constraint propagation technique, the

less nodes the algorithm expands, and the less dead-ends it encounters. More caching also

has a similar effect.

3.5 Conclusion to Chapter 3

We presented the new framework ofmixed networks(Deterministic-Probabilistic networks)

which combines belief and constraint networks. It allows for a more efficient and flexi-

ble exploitation of probabilistic and deterministic information by borrowing the specific

strengths of each formalism that it builds upon. Thedm-separationextends in a natural

way the d-separation in belief networks, and we show that it provides a criterion for char-

acterizing the minimal I-mapness of the mixed networks.

Proposition 14 which defines the equivalence of mixed networks gives the motivation

for using the deterministic information by constraint propagation methods, rather than in-

107



corporating it in probability tables.

A number of algorithms based primarily on variable elimination and search are dis-

cussed. Many different tasks can be addresed by making only small changes to these algo-

rithms, dictated by the operation that has to be performed (e.g. summation, maximization).

The time and space complexities of these algorithms do not indicate a clear hierarchy.

Rather, the problem itself may hint on which might be a better candidate, by the relative

complexity of the belief network and constraint network.

The belief networks algorithms can benefit from the mixed representation in a number

of ways. (1) Constraint propagation techniques can be applied straightforwardly, main-

taining their properties of convergence and fixed point. (2)The semantics is much clearer

by separating probabilistic and deterministic information. (3) The algorithms can be made

more efficient. It is often the case that search based algorithms can benefit from pruning in

the context of determinism, or when the number of solutions is small.

The relative advantages of the different algorithms presented here remain to be inves-

tigated empirically in future work. A wide variety of hybridalgorithms can be designed,

based on search and variable elimination. Finally, they canalso be adapted for the case of

approximate computation.

108



Chapter 4

Iterative Algorithms for Mixed

Networks

4.1 Introduction

Probabilistic inference is the principal task in Bayesian networks, and it is known to be

an NP-hard problem [21]. Most of the commonly used exact algorithms such as join-tree

clustering [66, 57] or variable-elimination [28, 103], exploit the network structure. Yet,

they are time and space exponential in thetreewidthof the graph, rendering them essen-

tially intractable even for moderate size problems. Approximate algorithms are therefore

necessary for most of the practical problems, although approximation within given error

bounds is also NP-hard [22, 92].

The research presented in this chapter is focused primarilyon graph algorithms for the

task of belief updating. They are inspired by Pearl’s beliefpropagation algorithm [86],

which is known to be exact for poly-trees, and by Mini-Bucketsalgorithm [43], which

performs bounded inference and is an anytime version of Variable Elimination. As a dis-

tributed algorithm, belief propagation is also well definedfor networks that contain cycles,

and it can be applied iteratively in the form of Iterative Belief Propagation (IBP), also

109



known as loopy belief propagation. When the networks containcycles, IBP is no longer

guaranteed to be exact, but in many cases it provides very good approximations upon con-

vergence, most notably in the case of coding networks [89] and satisfiability [69].

We are especially interested in the behavior of belief propagation algorithm on mixed

networks, specifically on networks that contain zero, or extreme (close to zero or one)

probabilities.

4.1.1 Contributions

In this chapter, we investigate: (1) the quality of bounded inference in anytime schemes

such as Mini-Clustering, which is a generalization of Mini-Buckets to arbitrary tree-

decompositions; (2) the virtues of iterating messages in belief propagation type algorithms,

and the result of combining bounded inference with iterative message-passing in Iterative

Join-Graph Propagation (IJGP); (3) we make connections with well understood consis-

tency enforcing algorithms for constraint satisfaction, giving strong support for iterating

messages, and helping identify cases of strong and weak inference power for IBP and IJGP.

Section 4.2 contains the Mini-Clustering (MC) algorithm, which is inspired by Mini-

Buckets algorithm [43]. It is a message-passing algorithm guided by a user adjustable

parameter calledi-bound, offering a flexible tradeoff between accuracy and efficiency in

anytime style (in general the higher the i-bound, the betterthe accuracy). MC algorithm

operates on a tree-decomposition, and similar to Pearl’s belief propagation algorithm [86]

it converges in two passes, up and down the tree. Our contribution beyond other works in

this area [43, 34] is in: (1) Extending the partition-based approximation for belief updating

from mini-buckets to general tree-decompositions, thus allowing the computation of the

updated beliefs for all the variables at once. This extension is similar to the one proposed

in [34] but replaces optimization with probabilistic inference. (2) Providing for the first

time empirical evaluation demonstrating the effectiveness of the partition-based idea for

belief updating.

110



We were motivated by the success of Iterative Belief Propagation (IBP) in trying to

make MC benefit from the apparent virtues of iterating. The resulting algorithm, Iterative

Join-Graph Propagation (IJGP) is described in Section 4.3.IJGP is also a messages-passing

algorithm, but it operates on a general join-graph decomposition which may contain cycles.

It still provides a user adjustablei-boundthat defines the maximum cluster size of the graph

(and hence the complexity), so it is both anytime and iterative. Since both MC and IJGP

are approximate schemes, empirical results on various classes of problems are included,

shedding light on their average case performance.

Section 4.4 is based on some some simple observations that may shed light on IBP’s

behavior, and on the more general class of IJGP algorithms. Zero-beliefs are variable-value

pairs that have zero conditional probability given the evidence. We show that: (1) if a value

of a variable is assessed as having zero-belief in any iteration of IBP, it remains a zero-belief

in all subsequent iterations; (2) that IBP converges in a finite number of iterations relative to

its set of zero-beliefs; and, most importantly (3) that the set of zero-beliefs decided by any

of the iterative belief propagation methods is sound. Namely any zero-belief determined

by IBP corresponds to a true zero conditional probability relative to the given probability

distribution expressed by the Bayesian network. While each ofthese claims can be proved

directly, our approach is to associate a belief network witha constraint network and show

a correspondence between IBP applied to the belief network and an arc-consistency algo-

rithm applied to the corresponding constraint network. Since arc-consistency algorithms

are well understood this correspondence not only proves right away the targeted claims, but

may provide additional insight into the behavior of IBP and IJGP. In particular, not only it

immediately justifies the iterative application of belief propagation algorithms on one hand,

but it also illuminates its “distance” from being complete,on the other.

The research presented in this chapter is based in part on [79, 39, 36].

111



4.2 Mini-Clustering

In this section we present a parameterized anytime approximation scheme for probabilistic

inference calledMini-Clustering (MC), which extends the partition-based approximation

offered by mini-bucket elimination [43], to general tree decompositions. The benefit of this

algorithm is that all single-variable beliefs are computed(approximately) at once, using a

two-phase message-passing process along the cluster tree.The resulting approximation

scheme allows adjustable levels of accuracy and efficiency,in anytime style. Empirical

evaluation against competing algorithms such as IterativeBelief Propagation and Gibbs

Sampling demonstrates the potential of the Mini-Clusteringapproximation scheme: on

several classes of problems (e.g. random noisy-or, grid networks and CPCS networks)

Mini-Clustering exhibited superior performance. A similarscheme was presented in a

general way in [58], and for optimization tasks in [34]. Herewe adapt the scheme for the

specific task of belief updating, and present the first empirical evaluation for this specific

task, showing its effectiveness.

4.2.1 Tree-Decomposition Schemes

We will describe our algorithms relative to a unifying tree-decomposition framework based

on [52]. It generalizes tree-decompositions to include join-trees, bucket-trees and other

variants applicable to both constraint processing and probabilistic inference.

DEFINITION 4.2.1 (tree-decomposition, cluster tree)Let BN =< X,D,G, P > be a

belief network. Atree-decompositionfor BN is a triple< T, χ, ψ >, whereT = (V,E)

is a tree, andχ andψ are labeling functions which associate with each vertexv ∈ V two

sets,χ(v) ⊆ X andψ(v) ⊆ P satisfying:

1. For each functionpi ∈ P , there isexactlyone vertexv ∈ V such thatpi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

112



2. For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces a connected subtree

of T . This is also called the running intersection property.

We will often refer to a node and its functions as acluster and use the termtree-

decompositionandcluster treeinterchangeably.

DEFINITION 4.2.2 (treewidth, hypertreewidth, separator, eliminator) The treewidth

[3] of a tree-decomposition< T, χ, ψ > is maxv∈V |χ(v)|, and its hypertreewidthis

maxv∈V |ψ(v)|. Given two adjacent verticesu andv of a tree-decomposition, theseparator

of u andv is defined assep(u, v) = χ(u) ∩ χ(v), and theeliminatorof u with respect tov

is elim(u, v) = χ(u)− χ(v).

Join-Trees and Cluster Tree Elimination

In both Bayesian network and constraint satisfaction communities, the most used tree de-

composition method is called join-tree decomposition [66,41]. Such decompositions can

be generated by embedding the network’s moral graph,G, in a chordal graph, often using

a triangulation algorithm and using its maximal cliques as nodes in the join-tree. The trian-

gulation algorithm assembles a join-tree by connecting themaximal cliques in the chordal

graph in a tree. Subsequently, every CPTpi is placed in one clique containing its scope.

Using the previous terminology, a join-tree decompositionof a belief network(G,P ) is

a treeT = (V,E), whereV is the set of cliques of a chordal graphG
′

that containsG,

andE is a set of edges that form a tree between cliques, satisfyingthe running intersection

property [70]. Such a join-tree satisfies the properties of tree-decomposition, therefore our

derivation using cluster trees is immediately applicable to join-trees.

There are a few variants for processing join-trees for belief updating [57, 94]. The

variant which we use here, (similar to [34]), called cluster-tree-elimination (CTE) is appli-

cable to tree-decompositions in general and is geared toward space savings. It is a message

passing algorithm (either two-phase message passing, or inasynchronous mode). , where

113



1

2

3

4

)},|(),|(),({)1(

},,{)1(

bacpabpap

CBA

=
=

ψ
χ

},|(),|({)2(

},,,{)2(

dcfpbdp

FDCB

=
=

ψ
χ

)},|({)4(

},,{)4(

fegp

GFE

=
=

ψ
χ

)},|({)3(

},,{)3(

fbep

FEB

=
=

ψ
χ

G

E

F

C D

B

A

(a) (b)

),|()|()(),()2,1( bacpabpapcbh
a

⋅⋅= ∑

),(),|()|(),( )2,3(
,

)1,2( fbhdcfpbdpcbh
fd

⋅⋅= ∑

),(),|()|(),( )2,4(
,

)3,2( cbhdcfpbdpfbh
dc

⋅⋅= ∑

),(),|(),( )3,4()2,3( fehfbepfbh
e

⋅= ∑

),(),|(),( )3,2()4,3( fbhfbepfeh
b

⋅= ∑
),|(),()3,4( fegGpfeh e==

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

(c)

Figure 4.1:a) A belief network;b) A join-tree decomposition;c)Execution of CTE-BU;
no individual functions appear in this case

messages are computed by summation over the eliminator between the two clusters of the

product of functions in the originating cluster. AlgorithmCTE for belief updating denoted

CTE-BU is given in Figure 4.2. The algorithm pays a special attention to the processing of

observed variables since the presence of evidence is a central component in belief updating.

When a cluster sends a message to a neighbor, the algorithm operates on all the functions

in the cluster except the message from that particular neighbor. The message contains a

singlecombinedfunction andindividual functions that do not share variables with the rel-

evant eliminator. All the non-individual functions arecombinedin a product and summed

over the eliminator.

Example 4.2.1 Figure 4.1 describes a belief network (a) and a join-tree decomposition for

it (b). Figure 4.1c shows the trace of running CTE-BU. In this case no individual functions

appear between any of the clusters. To keep the figure simple, weonly show the combined

functionsh(u,v) (each of them being in fact the only element of the setH(u,v) that represents

the corresponding message between clustersu andv).

THEOREM 4.2.2 (Complexity of CTE-BU) [34, 58] The time complexity of CTE-BU is

O(deg ·(n+N) ·dw∗+1) and the space complexity isO(N ·dsep), where deg is the maximum

degree of a node in the tree, n is the number of variables, N is the number of nodes in the

tree decomposition, d is the maximum domain size of a variable,w∗ is the treewidth and

sep is the maximum separator size.

114



Algorithm CTE for Belief-Updating (CTE-BU)
Input: A tree decomposition< T, χ, ψ >, T = (V,E) for BN =< X,D,G, P >.
Evidence variablesvar(e).
Output: An augmented tree whose nodes are clusters containing the original CPTs and
the messages received from neighbors.P (Xi, e), ∀Xi ∈ X.

Denote byH(u,v) the message from vertexu to v, nev(u) the neighbors ofu in T

excludingv.
cluster(u) = ψ(u) ∪ {H(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message fromv to u.

• Compute messages:
For every nodeu in T , onceu has received messages from allnev(u), compute message
to nodev:

1. Process observed variables:
Assign relevant evidence to allpi ∈ ψ(u)

2. Compute the combined function:

h(u,v) =
∑

elim(u,v)

∏

f∈A

f.

whereA is the set of functions inclusterv(u) whose scope intersectselim(u, v).
Add h(u,v) toH(u,v) and add all the individual functions inclusterv(u)−A
SendH(u,v) to nodev.

• ComputeP (Xi, e):
For everyXi ∈ X let u be a vertex inT such thatXi ∈ χ(u). ComputeP (Xi, e) =
∑

χ(u)−{Xi}
(
∏

f∈cluster(u) f)

Figure 4.2: Algorithm Cluster-Tree-Elimination for Belief Updating (CTE-BU)

4.2.2 Mini-Clustering for Belief Updating

The time, and especially the space complexity of CTE-BU renders the algorithm infeasi-

ble for problems with large treewidth. In this section we introduce the Mini-Clustering,

a partition-based anytime algorithm which computes approximate values or bounds on

P (Xi, e) for every variableXi in the network. It is a natural extension of the mini-

bucket idea to tree-decompositions. Rather than computing the mini-bucket approximation

n times, one for each variable as would be required by the mini-bucket approach, the algo-

rithm performs an equivalent computation with just two message passings along each arc

115



ProcedureMC for Belief Updating (MC-BU( i))

2. Compute the combined mini-functions:

Make an (i)-size mini-clusters partitioning ofclusterv(u), {mc(1), . . . ,mc(p)};

h1
(u,v) =

∑

elim(u,v)

∏

f∈mc(1) f

hi
(u,v) = maxelim(u,v)

∏

f∈mc(i) f i = 2, . . . , p

add{hi
(u,v)|i = 1, . . . , p} toH(u,v). SendH(u,v) to v.

Compute upper bounds onP (Xi, e):
For everyXi ∈ X let u ∈ V be a cluster such thatXi ∈ χ(u). Make (i) mini-clusters
from cluster(u), {mc(1), . . . ,mc(p)}; Compute
(
∑

χ(u)−Xi

∏

f∈mc(1) f) · (
∏p

k=2 maxχ(u)−Xi

∏

f∈mc(k) f).

Figure 4.3: Procedure Mini-Clustering for Belief Updating (MC-BU)

of the cluster tree. The idea is to partition each cluster into mini-clusters having at most

i variables, wherei is an accuracy parameter. Nodeu partitions its cluster intop mini-

clustersmc(1), . . . ,mc(p). Instead of computingh(u,v) =
∑

elim(u,v)

∏p

k=1

∏

f∈mc(k) f as

in CTE-BU, we can compute an upper bound by migrating the summation operator into

each mini-cluster. However, this would give
∏p

k=1

∑

elim(u,v)

∏

f∈mc(k) f which is an un-

necessarily large upper bound onh(u,v) in which each
∏

f∈mc(k) f is bounded by its sum

overelim(u, v). Instead, we rewriteh(u,v) =
∑

elim(u,v)(
∏

f∈mc(1) f) · (
∏p

i=2

∏

f∈mc(i) f).

Subsequently, instead of bounding
∏

f∈mc(i) f, (i ≥ 2) by summation over the eliminator,

we bound it by its maximum over the eliminator, which yields(
∑

elim(u,v)

∏

f∈mc(1) f) ·
∏p

k=2(maxelim(u,v)

∏

f∈mc(k) f). Therefore, if we are interested in an upper bound, we

marginalize one mini-cluster by summation and the others bymaximization. Note that the

summation in the first mini-cluster must be overall variables in the eliminator, even if some

of them might not appear in the scope of functions inmc(1).

Consequently, the combined functions are approximated via mini-clusters, as follows.

Supposeu ∈ V has received messages from all its neighbors other thanv (the message from

v is ignored even if received). The functions inclusterv(u) that are to be combined are

116



partitioned into mini-clusters{mc(1), . . . ,mc(p)}, each one containing at mosti variables.

One of the mini-clusters is processed by summation and the others by maximization over

the eliminator, and the resulting combined functions as well as all the individual functions

are sent tov.

Lower Bounds and Mean Approximations

We can also derive a lower-bound on beliefs by replacing themax operator withmin

operator (see above derivation for rationale). This allows, in principle, computing both an

upper bound and a lower bound on the joint beliefs. Alternatively, if we yield the idea

of deriving a bound (and indeed the empirical evaluation encourages that) we can replace

max by amean operator (taking the sum and dividing by the number of elements in the

sum), deriving an approximation of the joint belief.

Algorithm MC-BU for upper bounds can be obtained from CTE-BU byreplacing step

2 of the main loop and the final part of computing the upper bounds on the joint belief by

the procedure given in Figure 4.3.

Partitioning Strategies

In the implementation we used for the experiments reported here, the partitioning was done

in greedy brute-force manner guided only by the sizes of the functions, and the choice of

the first mini-cluster for upper bound computation was random. This had the advantage

of adding a very small overhead to the Mini-Clustering algorithm. Clearly, more informed

schemes that take into account the actual information in thetables of the functions may

improve the overall accuracy.

Example 4.2.3 Figure 4.4 shows the trace of running MC-BU(3) on the problem inFigure

4.1. First, evidenceG = ge is assigned in all CPTs. There are no individual functions to

be sent from cluster1 to cluster2. Cluster1 contains only 3 variables,χ(1) = {A,B,C},

therefore it is not partitioned. The combined functionh1
(1,2)(b, c) =

∑

a p(a) · p(b|a) ·

117



),|()|()(:),(1
)2,1( bacpabpapcbh

a

⋅⋅=∑

),|(max:)(

),()|(:)(

,

2
)1,2(

1
)2,3(

,

1
)1,2(

dcfpch

fbhbdpbh

fd

fd

=

⋅=∑

),|(max:)(

),()|(:)(

,

2
)3,2(

1
)2,1(

,

1
)3,2(

dcfpfh

cbhbdpbh

dc

dc

=

⋅=∑

),(),|(:),( 1
)3,4(

1
)2,3( fehfbepfbh

e

⋅=∑

)()(),|(:),( 2
)3,2(

1
)3,2(

1
)4,3( fhbhfbepfeh

b

⋅⋅=∑

),|(:),(1
)3,4( fegGpfeh e==

)2,1(H

)1,2(H

)3,2(H

)2,3(H

)4,3(H

)3,4(H

BCDF

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

Figure 4.4: Execution of MC-BU fori = 3

p(c|a, b) is computed and the messageH(1,2) = {h1
(1,2)(b, c)} is sent to node2. Now, node

2 can send its message to node3. Again, there are no individual functions. Cluster2 con-

tains 4 variables,χ(2) = {B,C,D, F}, and a partitioning is necessary: MC-BU(3) can

choosemc(1) = {p(d|b), h(1,2)(b, c)} andmc(2) = {p(f |c, d)}. The combined functions

h1
(2,3)(b) =

∑

c,d p(d|b) · h(1,2)(b, c) andh2
(2,3)(f) = maxc,d p(f |c, d) are computed and the

messageH(4,3) = {h1
(2,3)(b), h

2
(2,3)(f)} is sent to node3. The algorithm continues until

every node has received messages from all its neighbors. An upper bound onp(a,G = ge)

can now be computed by choosing cluster1, which contains variableA. It doesn’t need

partitioning, so the algorithm just computes
∑

b,c p(a) ·p(b|a) ·p(c|a, b) ·h
1
(2,1)(b) ·h

2
(2,1)(c).

Notice that unlike CTE-BU which processes 4 variables in cluster 2, MC-BU(3) never pro-

cesses more than 3 variables at a time.

4.2.3 Properties of Mini-Clustering

THEOREM 4.2.4 Algorithm MC-BU(i) withmax (respectivelymin) computes an upper

(respectively lower) bound on the joint probabilityP (X, e) of each variable and each of its

values.

A similar mini-clustering scheme for combinatorial optimization was developed in [34]

having similar performance properties as MC-BU.

118



THEOREM 4.2.5 (Complexity of MC-BU(i)) [34] The time and space complexity of MC-

BU(i) isO(n · hw∗ · di) where n is the number of variables, d is the maximum domain size

of a variable andhw∗ = maxu|{f |scope(f) ∩ χ(u) 6= φ}|, which bounds the number of

functions that may travel to a neighboring cluster via message-passing.

Accuracy

For a giveni, the accuracy of MC-BU(i) can be shown to be not worse than that of executing

the mini-bucket algorithm MB(i) n times, once for each variable (an algorithm that we call

nMB(i)). Given a specific execution of MC-BU(i), we can show that for every variableXi,

there exists an ordering of the variables and a corresponding partitioning such that MB(i)

computes the same approximation value forP (Xi, e) as doesMC − BU(i). In empirical

analysis [58] it is shown that MC-BU has an up to linear speed-up over nMB(i).

Normalization

The MC-BU algorithm usingmax operator computes an upper boundP (Xi, e) on the joint

probabilityP (Xi, e). However, deriving a bound on the conditional probabilityP (Xi|e) is

not easy when the exact value ofP (e) is not available. If we just try to divide (multiply)

P (Xi, e) by a constant, the result is not necessarily an upper bound onP (Xi|e). In prin-

ciple, if we can derive a lower boundP (e) onP (e), then we can computeP (Xi, e)/P (e)

as an upper bound onP (Xi|e). However, due to compound error, it is likely to be inef-

fective. In our empirical evaluation we experimented with normalizing the upper bound

asP (Xi, e)/
∑

Xi
P (Xi, e) over the values ofXi. The result is not necessarily an upper

bound on P(Xi|e). Similarly, we can also normalize the values when usingmean ormin

operators. It is easy to show that normalization with themean operator is identical to

normalization of MC-BU output when applying the summation operator in all the mini-

clusters.

119



Random Bayesian N=50 K=2 P=2 C=48

Number of iterations

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A

vg
 a

bs
 e

rr
or

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

#ev=0
#ev=10
#ev=20
#ev=30

Figure 4.5: Convergence of IBP

4.2.4 Experimental Evaluation

We tested the performance of our scheme on random noisy-or networks, random coding

networks, general random networks, grid networks, and three benchmark CPCS files with

54, 360 and 422 variables respectively (these are belief networks for medicine, derived

from the Computer based Patient Case Simulation system, knownto be hard for belief

updating). On each type of network we ran Iterative Belief Propagation (IBP) - set to run

at most 30 iterations, Gibbs Sampling (GS) and MC-BU(i), with i from 2 to the treewidth

w∗ to capture the anytime behavior of MC-BU.

We immediately observed that the quality of MC-BU in providing upper or lower

bounds on the jointP (Xi, e) was ineffective. Although the upper bound decreases as the

accuracy parameteri increases, it still is in most cases greater than 1. Therefore, following

the ideas explained in the previous subsection 4.2.3 we report the results with normalizing

the upper bounds (calledmax) and normalizing the mean (calledmean). We notice that

MC-BU using themean operator is doing consistently better.

For noisy-or networks, general random networks, grid networks and for the CPCS net-

works we computed the exact solution and used three different measures of accuracy: 1.

Normalized Hamming Distance (NHD) - We picked the most likely value for each variable

120



Noisy-OR networks, w*=10
N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0 9.0E-09 1.1E-05 0.102
IBP 0 3.4E-04 4.2E-01 0.081

0 9.6E-04 1.2E+00 0.062
0 0 1.6E-03 1.1E-03 1.9E+00 1.3E+00 0.056 0.057

MC-BU(2) 0 0 1.1E-03 8.4E-04 1.4E+00 1.0E+00 0.048 0.049
0 0 5.7E-04 4.8E-04 7.1E-01 5.9E-01 0.039 0.039
0 0 1.1E-03 9.4E-04 1.4E+00 1.2E+00 0.070 0.072

MC-BU(5) 0 0 7.7E-04 6.9E-04 9.3E-01 8.4E-01 0.063 0.066
0 0 2.8E-04 2.7E-04 3.5E-01 3.3E-01 0.058 0.057
0 0 3.6E-04 3.2E-04 4.4E-01 3.9E-01 0.214 0.221

MC-BU(8) 0 0 1.7E-04 1.5E-04 2.0E-01 1.9E-01 0.184 0.190
0 0 3.5E-05 3.5E-05 4.3E-02 4.3E-02 0.123 0.127

Noisy-OR networks, w*=16
N=50, P=3, 25 instances

10 NHD Abs. Error Rel. Error Time
|e| 20

30 max mean max mean max mean max mean

0 1.3E-04 7.9E-01 0.242
IBP 0 3.6E-04 2.2E+00 0.184

0 6.8E-04 4.2E+00 0.121
0 0 1.3E-03 9.6E-04 8.2E+00 5.8E+00 0.107 0.108

MC-BU(2) 0 0 5.3E-04 4.0E-04 3.1E+00 2.4E+00 0.077 0.077
0 0 2.3E-04 1.9E-04 1.4E+00 1.2E+00 0.064 0.064
0 0 1.0E-03 8.3E-04 6.4E+00 5.1E+00 0.133 0.133

MC-BU(5) 0 0 4.6E-04 4.1E-04 2.7E+00 2.4E+00 0.104 0.105
0 0 2.0E-04 1.9E-04 1.2E+00 1.2E+00 0.098 0.095
0 0 6.6E-04 5.7E-04 4.0E+00 3.5E+00 0.498 0.509

MC-BU(8) 0 0 1.8E-04 1.8E-04 1.1E+00 1.0E+00 0.394 0.406
0 0 3.4E-05 3.4E-05 2.1E-01 2.1E-01 0.300 0.308
0 0 2.6E-04 2.4E-04 1.6E+00 1.5E+00 2.339 2.378

MC-BU(11) 0 0 3.8E-05 3.8E-05 2.3E-01 2.3E-01 1.421 1.439
0 0 6.4E-07 6.4E-07 4.0E-03 4.0E-03 0.613 0.624
0 0 4.2E-05 4.1E-05 2.5E-01 2.4E-01 7.805 7.875

MC-BU(14) 0 0 0 0 0 0 2.075 2.093
0 0 0 0 0 0 0.630 0.638

Table 4.1: Performance on Noisy-OR networks;

Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e 
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Noisy-OR networks, N=50, P=3, evid=20, w*=16, 25 instances

i-bound

0 2 4 6 8 10 12 14 16

A
bs

ol
ut

e 
er

ro
r

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

MC
IBP
Gibbs Sampling

Figure 4.6: Absolute error for noisy-OR networks

for the approximate and for the exact, took the ratio betweenthe number of disagreements

and the total number of variables, and averaged over the number of problems that we ran for

each class. 2. Absolute Error (Abs. Error) - is the absolute value of the difference between

the approximate and the exact, averaged over all values (foreach variable), all variables

and all problems. 3. Relative Error (Rel. Error) - is the absolute value of the difference

between the approximate and the exact, divided by the exact,averaged over all values (for

each variable), all variables and all problems. For coding networks, we report only one

measure, Bit Error Rate (BER). In terms of the measures defined above, BER is the nor-

malized Hamming distance between the approximate (computed by an algorithm) and the

actual input (which in the case of coding networks may be different from the solution given

by exact algorithms), so we denote them differently to make this semantic distinction. We

also show the time taken by each algorithm.

121



Random networks, w*=10
N=50, P=2, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.01840 0.00696 0.01505 0.100
IBP 0.19550 0.09022 0.34608 0.080

0.27467 0.13588 3.13327 0.062
0.50400 0.10715 0.26621 13.023

GS 0.51400 0.15216 0.57262 12.978
0.51267 0.18066 4.71805 13.321

0.11400 0.08080 0.03598 0.02564 0.07950 0.05628 0.055 0.055
MC-BU(2) 0.10600 0.08800 0.04897 0.03957 0.12919 0.10579 0.047 0.048

0.08667 0.07333 0.04443 0.03639 0.13096 0.10694 0.041 0.042
0.10120 0.06480 0.03392 0.02242 0.07493 0.04937 0.071 0.072

MC-BU(5) 0.06950 0.05850 0.03254 0.02723 0.08613 0.07313 0.063 0.065
0.03933 0.03400 0.02022 0.01831 0.05533 0.04984 0.059 0.060
0.05080 0.02680 0.01872 0.01030 0.04103 0.02262 0.216 0.221

MC-BU(8) 0.01550 0.01450 0.00743 0.00587 0.01945 0.01547 0.178 0.180
0.00600 0.00400 0.00228 0.00200 0.00597 0.00542 0.129 0.134

Random networks, w*=16
N=50, P=3, 25 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.03652 0.00907 0.01894 0.298
IBP 0.25200 0.08319 0.22335 0.240

0.34000 0.13995 0.91671 0.183
0.17304 0.04377 0.09395 0.140

MC-BU(2) 0.17600 0.11600 0.05930 0.04558 0.14706 0.11034 0.100 0.103
0.15067 0.14000 0.07658 0.06683 0.23155 0.19538 0.075 0.078
0.15652 0.04380 0.09398 0.158

MC-BU(5) 0.15600 0.11800 0.05665 0.04320 0.13484 0.10221 0.124 0.129
0.09467 0.09467 0.05545 0.05049 0.15000 0.13706 0.105 0.107
0.16783 0.04166 0.08904 0.602

MC-BU(8) 0.09800 0.08100 0.04051 0.03254 0.09923 0.07942 0.481 0.491
0.05467 0.04533 0.02939 0.02691 0.07865 0.07237 0.385 0.393
0.12087 0.03076 0.06550 2.986

MC-BU(11) 0.05500 0.04700 0.02425 0.01946 0.05644 0.04533 2.307 2.345
0.00800 0.00533 0.00483 0.00431 0.01307 0.01156 1.564 1.585
0.06348 0.01910 0.04071 14.910

MC-BU(14) 0.01400 0.01200 0.00542 0.00434 0.01350 0.01108 8.548 8.578
0.00000 0.00000 0.00089 0.00089 0.00212 0.00211 3.656 3.676

Table 4.2: Performance on random networks
Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e 
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances

i-bound

0 2 4 6 8 10

A
bs

ol
ut

e 
er

ro
r

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

MC
Gibbs Sampling
IBP

Figure 4.7: Absolute error for random networks

In Figure 4.5 we show that IBP converges after about 5 iterations. So, while in our

experiments we report its time for 30 iterations, its time iseven better when sophisticated

termination is used. These results are typical of all runs.

The random noisy-or networks and the random networks were generated using param-

eters (N,K,C,P), where N is the number of variables (a square integer for grid networks),

K is their domain size (we used only K=2), C is the number of conditional probability

matrices and P is the number of parents in each conditional probability matrix. The grid

networks have the structure of a square, with edges directedto form a diagonal flow (all

parallel edges have the same direction). They were generated by specifying N (a square

integer) and K (we used K=2). We also varied the number of evidence nodes, denoted by

|e| in the tables. The parameter values are reported in each table.

Comment: We should note that since our evaluation measures are based on comparing

122



σ = .22 σ = .26 σ = .32 σ = .40 σ = .51
BER max mean max mean max mean max mean max mean Time

N=100, P=3, 50 instances, w*=7
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.022 0.022 0.088 0.088 0.00
GS 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 31.36

MC-BU(2) 0.002 0.002 0.004 0.004 0.024 0.024 0.068 0.068 0.132 0.131 0.08
MC-BU(4) 0.001 0.001 0.002 0.002 0.018 0.018 0.046 0.045 0.110 0.110 0.08
MC-BU(6) 0.000 0.000 0.000 0.000 0.004 0.004 0.038 0.038 0.106 0.106 0.12
MC-BU(8) 0.000 0.000 0.000 0.000 0.002 0.002 0.023 0.023 0.091 0.091 0.19

N=100, P=4, 50 instances, w*=11
IBP 0.000 0.000 0.000 0.000 0.002 0.002 0.013 0.013 0.075 0.075 0.00
GS 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 0.506 39.85

MC-BU(2) 0.006 0.006 0.015 0.015 0.043 0.043 0.093 0.094 0.157 0.157 0.19
MC-BU(4) 0.006 0.006 0.017 0.017 0.049 0.049 0.104 0.102 0.158 0.158 0.19
MC-BU(6) 0.005 0.005 0.011 0.011 0.035 0.034 0.071 0.074 0.151 0.150 0.29
MC-BU(8) 0.002 0.002 0.004 0.004 0.022 0.022 0.059 0.059 0.121 0.122 0.71

MC-BU(10) 0.001 0.001 0.001 0.001 0.008 0.008 0.033 0.032 0.101 0.102 1.87

Table 4.3: BER for coding networks

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it 

E
rr

or
 R

at
e

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

MC
IBP

Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances

i-bound

0 2 4 6 8 10 12

B
it 

E
rr

or
 R

at
e

0.06

0.08

0.10

0.12

0.14

0.16

0.18

MC
IBP

Figure 4.8: BER for coding networks

against exact figures, we had to restrict the instances to be relatively small or sparse enough

to be managed by exact algorithms.

For all the problems, Gibbs sampling performed consistently poorly so we only include

part of the results in the following tables and figures.

Random noisy-or networks results are summarized in Table 4.1 and Figure 4.6. For

NHD, both IBP and MC-BU gave perfect results. For the other measures, we noticed that

IBP is more accurate for no evidence by about an order of magnitude. However, as evidence

is added, IBP’s accuracy decreases, while MC-BU’s increases and they give similar results.

We also notice that MC-BU gets better as the accuracy parameter i increases, which shows

its anytime behavior. We also observed a similar pattern of behavior when experimenting

with smaller noisy-or networks, generated with P=2 (w*=10).

123



Grid 13x13, w*=21
N=169, 25 instances,mean operator

|e| = 0, 10, 20, 30 NHD Abs. Error Rel. Error Time
IBP 0.0102 0.0038 0.0083 0.053

0.0745 0.0323 0.0865 0.047
0.1350 0.0551 0.3652 0.044
0.1672 0.0759 0.2910 0.044

GS 0.5172 0.1111 0.2892 6.634
0.4901 0.1229 0.3393 6.667
0.5205 0.1316 0.7320 6.787
0.4921 0.1431 0.5455 6.806

MC-BU(2) 0.1330 0.0464 0.1034 0.044
0.1263 0.0482 0.1103 0.028
0.1388 0.0479 0.1117 0.026
0.1168 0.0513 0.1256 0.024

MC-BU(6) 0.1001 0.0337 0.0731 0.044
0.0863 0.0313 0.0697 0.040
0.0805 0.0268 0.0605 0.041
0.0581 0.0263 0.0610 0.036

MC-BU(10) 0.0402 0.0144 0.0310 0.235
0.0330 0.0115 0.0252 0.220
0.0223 0.0092 0.0211 0.206
0.0224 0.0086 0.0195 0.191

MC-BU(14) 0.0151 0.0056 0.0123 1.246
0.0151 0.0051 0.0113 1.340
0.0137 0.0044 0.0101 1.306
0.0124 0.0032 0.0073 1.256

MC-BU(17) 0.0088 0.0027 0.0059 6.916
0.0045 0.0018 0.0040 5.889
0.0030 0.0010 0.0022 5.219
0.0023 0.0008 0.0018 4.354

Grid 15x15, w*=22
N=225, 10 instances,mean operator

|e| = 0, 10, 20, 30 NHD Abs. Error Rel. Error Time
0.0094 0.0037 0.0080 0.071

IBP 0.0665 0.0665 0.0761 0.070
0.1205 0.0463 0.1894 0.068
0.1462 0.0632 0.1976 0.062
0.5178 0.1096 0.2688 9.339

GS 0.5047 0.5047 0.3200 9.392
0.4849 0.1232 0.4009 9.524
0.4692 0.1335 0.4156 9.220
0.1256 0.0474 0.1071 0.049

MC-BU(2) 0.1312 0.1312 0.1070 0.041
0.1371 0.0523 0.1205 0.042
0.1287 0.0512 0.1201 0.053
0.1050 0.0356 0.0775 0.217

MC-BU(6) 0.0944 0.0944 0.0720 0.064
0.0844 0.0313 0.0701 0.059
0.0759 0.0286 0.0652 0.120
0.0406 0.0146 0.0313 0.500

MC-BU(10) 0.0358 0.0358 0.0288 0.368
0.0337 0.0122 0.0272 0.484
0.0256 0.0116 0.0265 0.468
0.0233 0.0081 0.0173 2.315

MC-BU(14) 0.0209 0.0209 0.0152 2.342
0.0146 0.0055 0.0126 2.225
0.0118 0.0046 0.0105 2.350
0.0089 0.0031 0.0065 10.990

MC-BU(17) 0.0116 0.0116 0.0069 10.105
0.0063 0.0022 0.0048 9.381
0.0036 0.0017 0.0038 9.573

Table 4.4: Performance on grid networks;

General random networks results are summarized in Table 4.2 and Figure 4.7. They

are in general similar to those for random noisy-or networks. NHD is non-zero in this case.

Again, IBP has the best result only for few evidence variables. It is remarkable how quickly

MC-BU surpasses the performance of IBP as evidence is added. Wealso experimented with

larger networks generated with P=3 (w*=16) and observed a similar behavior.

Random coding networks results are given in Table 4.3 and Figure 4.8. The instances

fall within the class of linear block codes, (σ is the channel noise level). It is known that IBP

is very accurate for this class. Indeed, these are the only problems that we experimented

with where IBP outperformed MC-BU throughout. The anytime behavior of MC-BU can

again be seen in the variation of numbers in each column.

Grid networks results are given in Table 4.4 and Figure 4.9. We only report results with

mean operator for a 15x15 grid for which the induced width is w*=22. We notice that IBP

is more accurate for no evidence and MC is better as more evidence is added. The same

behavior was consistently manifested for smaller grid networks that we experimented with

(from 7x7 up to 14x14).

124



Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e 
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

0.06

MC
IBP

Grid 15x15, evid=10, w*=22, 10 instances

i-bound

0 2 4 6 8 10 12 14 16 18

T
im

e 
(s

ec
on

ds
)

0

2

4

6

8

10

12

MC
IBP

Figure 4.9: Absolute error and time for grid networks

N=54, 50 instances

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max mean max mean max mean max mean

0.01852 0.00032 0.00064 2.450
IBP 0.15727 0.03307 0.07349 2.191

0.20765 0.05934 0.14202 1.561
0.49444 0.07797 0.18034 17.247

GS 0.51409 0.09002 0.21298 17.208
0.48706 0.10608 0.26853 17.335

0.16667 0.07407 0.02722 0.01221 0.05648 0.02520 0.154 0.153
MC-BU(2) 0.11636 0.07636 0.02623 0.01843 0.05581 0.03943 0.096 0.095

0.10529 0.07941 0.02876 0.02196 0.06357 0.04878 0.067 0.067
0.18519 0.09259 0.02488 0.01183 0.05128 0.02454 0.157 0.155

MC-BU(5) 0.10727 0.07682 0.02464 0.01703 0.05239 0.03628 0.112 0.112
0.08059 0.05941 0.02174 0.01705 0.04790 0.03778 0.090 0.087
0.12963 0.07407 0.01487 0.00619 0.03047 0.01273 0.438 0.446

MC-BU(8) 0.06591 0.05000 0.01590 0.01040 0.03394 0.02227 0.369 0.370
0.03235 0.02588 0.00977 0.00770 0.02165 0.01707 0.292 0.294
0.11111 0.07407 0.01133 0.00688 0.02369 0.01434 2.038 2.032

MC-BU(11) 0.02818 0.01500 0.00600 0.00398 0.01295 0.00869 1.567 1.571
0.00353 0.00353 0.00124 0.00101 0.00285 0.00236 0.867 0.869

Table 4.5: Performance on CPCS54 network, w*=15

CPCS networks results We also tested on three CPCS benchmark files. The results are

given in Tables 4.5 and 4.6 and in Figure 4.10. It is interesting to notice that the MC

scheme scales up even to fairly large networks, like the reallife example of CPCS422

(induced width 23). IBP is again slightly better for no evidence, but is quickly surpassed

by MC when evidence is added.

4.2.5 Discussion

We presented in this section an approximation scheme for probabilistic inference, one of the

most important task over belief networks. The scheme, called Mini-Clustering, is governed

by a controlling parameter that allows adjustable levels ofaccuracy and efficiency in an

anytime style.

125



CPCS360, w*=20
N=360, 5 instances,mean operator

|e| = 0, 20, 40 NHD Abs. Error Rel. Error Time
0.0000 0.0027 0.0054 82

IBP 0.0112 0.0256 3.4427 76
0.0363 0.0629 736.1080 60
0.0056 0.0125 0.0861 16

MC-BU(8) 0.0041 0.0079 0.0785 14
0.0113 0.0109 0.2997 9
0.0000 0.0080 0.0636 38

MC-BU(11) 0.0000 0.0048 0.0604 39
0.0088 0.0102 0.1733 33
0.0000 0.0030 0.0192 224

MC-BU(14) 0.0012 0.0045 0.0502 232
0.0056 0.0070 0.0693 200
0.0000 0.0016 0.0073 1433

MC-BU(17) 0.0006 0.0026 0.0266 1455
0.0013 0.0006 0.0045 904

CPCS422, w*=23
N=422, 1 instance,mean operator

|e| = 0, 20, 40 NHD Abs. Error Rel. Error Time
0.0024 0.0062 0.0150 2838

IBP 0.0721 0.0562 7.5626 2367
0.0654 0.0744 37.5096 2150
0.0687 0.0455 1.4341 161

MC-BU(3) 0.0373 0.0379 0.9792 85
0.0366 0.0233 2.8384 48
0.0545 0.0354 0.1531 146

MC-BU(7) 0.0249 0.0253 0.3112 77
0.0262 0.0164 0.5781 45
0.0166 0.0175 0.0738 152

MC-BU(11) 0.0448 0.0352 0.6113 95
0.0340 0.0237 0.6978 63
0.0024 0.0039 0.0145 526

MC-BU(15) 0.0398 0.0278 0.5338 564
0.0183 0.0113 0.5248 547

Table 4.6: Performance on CPCS360 and CPCS422 networks
CPCS 422, evid=0, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18

A
bs

ol
ut

e 
er

ro
r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

CPCS 422, evid=10, w*=23, 1 instance

i-bound

2 4 6 8 10 12 14 16 18
A

bs
ol

ut
e 

er
ro

r

0.00

0.01

0.02

0.03

0.04

0.05

MC
IBP

Figure 4.10: Absolute error for CPCS422

We presented empirical evaluation of mini-cluster approximation on several classes of

networks, comparing its anytime performance with competing algorithms such as Gibbs

Sampling and Iterative Belief Propagation, over benchmarksof noisy-or random networks,

general random networks, grid networks, coding networks and CPCS type networks. Our

results show that, as expected, IBP is superior to all other approximations for coding net-

works. However, for random noisy-or, general random networks, grid networks and the

CPCS networks, in the presence of evidence, the mini-clustering scheme is often superior

even in its weakest form. Gibbs sampling was particularly bad and we believe that en-

hanced variants of the Monte Carlo approach, such as likelihood weighting and importance

sampling, should be compared with [17]. The empirical results are particularly encour-

aging as we use an unoptimized scheme that exploits a universal principle applicable to

many reasoning tasks. Our contribution beyond recent worksin this area [43, 34] is in:

1. Extending the partition-based approximation for beliefupdating from mini-buckets to

126



general tree-decompositions, thus allowing the computation of the updated beliefs for all

the variables at once. This extension is similar to the one proposed in [34] but replaces op-

timization with probabilistic inference. 2. Providing forthe first time empirical evaluation

demonstrating the effectiveness of the partition-based idea for belief updating.

There are many potential ways for improving the MC scheme. Among the most impor-

tant, the partitioning step can be further elaborated. In the work presented here, we used

only a brute-force approach for partitioning.

One extension of this work [39] is an iterative version of MC called Iterative Join-

Graph Propagation (IJGP), which is both anytime and iterative and belongs to the class of

generalized belief propagation methods [102]. Rather than assuming an underlying join-

tree, IJGP works on a join-graph that may contain loops. IJGPis related to MC in a similar

way as IBP is related to BP (Pearl’s belief propagation). Experimental work shows that in

most cases iterating improves the quality of the MC approximation even further, especially

for low i-bounds. We will discuss this algorithm in detail in Section4.3.

4.3 Iterative Join-Graph Propagation

This section contains our work on Iterative Join-Graph Propagation. The original moti-

vation for designing this algorithm was in trying to combinethe anytime feature of Mini-

Clustering (MC) and the iterative virtues of Iterative Belief Propagation (IBP). MC is an

anytime algorithm but it works on tree-decompositions and it converges in two passes, so

iterating doesn’t change the messages. IBP is an iterative algorithm that converges in most

cases, and when it converges it does so very fast. Allowing itmore time doesn’t improve

the accuracy. IJGP was designed to benefit from both these directions. It works on a gen-

eral join-graph which may contain cycles. The cluster size of the graph is user adjustable

by thei-bound(providing the anytime nature), and the cycles in the graph allow iterating.

The precise mechanics of the algorithm are given in the following sections. Empirical re-

127



sults are also provided, showing that in many cases IJGP is superior to both MC and IBP

on several classes of problems.

4.3.1 Join-Graphs

We will describe our algorithms relative to a join-graph decomposition framework using

recent notation proposed by [52]. The notion of join-tree decompositions was introduced

in relational databases [70].

DEFINITION 4.3.1 (join-graph decompositions)A join-graph decomposition for

BN =< X,D,G, P > is a triple D =< JG, χ, ψ >, whereJG = (V,E) is a

graph, andχ andψ are labeling functions which associate with each vertexv ∈ V two

sets,χ(v) ⊆ X andψ(v) ⊆ P such that:

1. For eachpi ∈ P , there isexactly one vertexv ∈ V such thatpi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

2. (connectedness) For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces a

connected subgraph ofG. The connectedness requirement is also called the running

intersection property.

We will often refer to a node and its CPT functions as acluster1 and use the termjoin-

graph-decompositionandcluster graphinterchangeably. Ajoin-tree-decompositionor a

cluster treeis the special case when the join-graphJG is a tree.

Join-Tree Propagation

The well known join-tree clustering algorithm first converts the belief network into a cluster

tree and then sends messages between clusters. We call the second message passing phase

1Note that a node may be associated with an empty set of CPTs

128



join-tree propagation. The complexity of join-tree clustering is exponential in the num-

ber of variables in a cluster (treewidth), and the number of variables in the intersections

between adjacent clusters (separator-width), as defined below.

DEFINITION 4.3.2 (treewidth, separator-width) Let D =< JT, χ, ψ > be a tree de-

composition of a belief network< G,P >. The treewidthof D [3] is maxv∈V |χ(v)|.

The treewidth of< G,P > is the minimum treewidth over all its join-tree decomposi-

tions. Given two adjacent verticesu and v of JT , theseparatorof u and v is defined as

sep(u, v) = χ(u) ∩ χ(v), and theseparator-widthismax(u,v)|sep(u, v)|.

The minimum treewidth of a graphG can be shown to be identical to a related parameter

calledinduced-width. A join-graph decompositionD is arc-minimalif none of its arcs can

be removed while still satisfying the connectedness property of Definition 4.3.1. If a graph-

decomposition is not arc-minimal it is easy to remove some ofits arcs until it becomes

arc-minimal. In our preliminary experiments we observed immediately that when applying

join-tree propagation on a join-graph iteratively, it is crucial to avoid cycling messages

relative to every single variable. The property of arc-minimality is not sufficient to ensure

such acyclicity though. What is required is that, for every nodeX, the arc-subgraph that

containsX be a tree.

Example 4.3.1 The example in Figure 4.11a shows an arc minimal join-graph which con-

tains a cycle relative to variable4, with arcs labeled with separators. Notice however that

if we remove variable4 from the label of one arc we will have no cycles (relative to single

variables) while the connectedness property will still be maintained.

To allow more flexible notions of connectedness we refine the definition of join-graph

decompositions, when arcs can be labeled with a subset of their separator.

DEFINITION 4.3.3 ((minimal) arc-labeled join-graph decompositions)An arc-labeled

decompositionfor BN =< X,D,G, P > is a four-tupleD =< JG, χ, ψ, θ >, where

129



1,2,4 2,3,4

1,3,4

2,4

3,41,4

A

B

C

1,2,4 2,3,4

1,3,4

2,4

31,4

A

B

C

a) b)

Figure 4.11: An arc-labeled decomposition

JG = (V,E) is a graph,χ andψ associate with each vertexv ∈ V the setsχ(v) ⊆ X and

ψ(v) ⊆ P andθ associates with each edge(v, u) ⊂ E the setθ((v, u)) ⊆ X such that:

1. For each functionpi ∈ P , there isexactlyone vertexv ∈ V such thatpi ∈ ψ(v), and

scope(pi) ⊆ χ(v).

2. (arc-connectedness) For each arc(u, v), θ(u, v) ⊆ sep(u, v), such that∀Xi ∈ X,

any two clusters containingXi can be connected by a path whose every arc’s label

includesXi.

Finally, an arc-labeled join-graph isminimal if no variable can be deleted from any label

while still satisfying the arc-connectedness property.

DEFINITION 4.3.4 (separator, eliminator) Given two adjacent verticesu and v of JG,

theseparatorof u andv is defined assep(u, v) = θ((u, v)), and theeliminatorof u with

respect tov is elim(u, v) = χ(u)− θ((u, v)).

Arc-labeled join-graphs can be made minimal by deleting variables from the labels. It

is easy to see that aminimal arc-labeled join-graphdoes not contain any cycle relative to

any single variable. That is, any two clusters containing the same variable are connected

by exactly one path labeled with that variable.

4.3.2 Algorithm IJGP

Applying join-tree propagation iteratively to join-graphs yields algorithmIterative Join-

Graph Propagation (IJGP)described in Figure 4.12. One iteration of the algorithm applies

message-passing in a topological order over the join-graph, forward and back.

130



Algorithm Iterative Join Graph Propagation (IJGP)

Input An arc-labeled join-graph decomposition< JG,χ, ψ, θ >, JG = (V,E) for BN =<
X,D,G, P >. Evidence variablesvar(e).

Output An augmented graph whose nodes are clusters containing the original CPTs and the mes-
sages received from neighbors. Approximations ofP (Xi|e), ∀Xi ∈ X.

Denote byh(u,v) the message from vertexu to v, nev(u) the neighbors ofu in JG excludingv.
cluster(u) = ψ(u) ∪ {h(v,u)|(v, u) ∈ E}.
clusterv(u) = cluster(u) excluding message fromv to u.

• One iteration of IJGP:
For every nodeu in JG in some topological orderd and back,do

1. Process observed variables:
Assign relevant evidence to allpi ∈ ψ(u) χ(u) := χ(u)− var(e), ∀u ∈ V

2. Compute individual functions:
Include inH(u,v) each function inclusterv(u) whose scope does not contain variables in
elim(u, v). Denote byA the remaining functions.

3. Compute and send tov the combined function: h(u,v) =
∑

elim(u,v)

∏

f∈A f .
Sendh(u,v) and the individual functionsH(u,v) to nodev.

Endfor
• ComputeP (Xi, e):

For everyXi ∈ X let u be a vertex inT such thatXi ∈ χ(u).
ComputeP (Xi|e) = α

∑

χ(u)−{Xi}
(
∏

f∈cluster(u) f)

Figure 4.12: Algorithm Iterative Join-Graph Propagation (IJGP)

When nodei sends a message (or messages) to a neighbor nodej it operates on all

the CPTs in its cluster and on all the messages sent from its neighbors excluding the ones

received fromj. First, all individual functions that share no variables with the eliminator

are collected and sent toj. All the rest of the functions arecombinedin a product and

summed over the eliminator betweeni andj.

It is known that:

THEOREM 4.3.2 1. [66] If IJGP is applied to a join-tree decomposition it reduces to

join-tree clustering and it therefore is guaranteed to compute the exact beliefs in one

iteration.

2. [64] The time complexity of one iteration of IJGP isO(deg · (n + N) · dw∗+1) and

its space complexity isO(N · dθ), where deg is the maximum degree of a node in

the join-graph, n is the number of variables, N is the number of nodes in the graph

131



decomposition, d is the maximum domain size,w∗ is the maximum cluster size andθ

is the maximum label size.

However, when applied to a join-graph the algorithm is neither guaranteed to converge

nor to find the exact posterior.

Proof. The number of cliques in the chordal graphG
′
corresponding toG is at mostn, so

the number of nodes in the join-tree is at mostn. The complexity of processing a nodeu in

the join-tree isdegu ·(|ψ(u)|+degu−1)·d|χ(u)|, wheredegu is the degree ofu. By bounding

degu by deg, |ψ(u)| byn andχ(u) byw∗+1 and knowing thatdeg < N , by summing over

all nodes, we can bound the entire time complexity byO(deg · (n+N) · dw∗+1).

For each edge JTC records functions. Since the number of edges in bounded byn and

the size of each message is bounded bydsep we get space complexity ofO(n · dsep). 2

4.3.3 I-Mappness of Arc-Labeled Join-Graphs

The success of IJGP, no doubt, will depend on the choice of cluster graphs it operates on.

The following paragraphs provide some rationale to our choice of minimal arc-labeled join-

graphs. First, we are committed to the use of an underlying graph structure that captures as

many of the distribution independence relations as possible, without introducing new ones.

That is, we restrict attention to cluster graphs that are I-maps ofP [86]. Second, we wish

to avoid cycles as much as possible in order to minimize computational over-counting.

Indeed, it can be shown that any join-graph of a belief network is an I-map of the

underlying probability distribution relative to node-separation. It turns out that arc-labeled

join-graphs display a richer set of independencies relative to arc-separation.

DEFINITION 4.3.5 (arc-separation in (arc-labeled) join-graphs) Let D =<

JG, χ, ψ, θ >, JG = (V,E) be an arc-labeled decomposition. LetNW , NY ⊆ V

be two sets of nodes, andEZ ⊆ E be a set of edges inJG. Let W,Y, Z be their

corresponding sets of variables (W = ∪v∈NW
χ(v), Z = ∪e∈EZ

θ(e)). EZ arc-separates

132



NW andNY in D if there is no path betweenNW andNY in the graphJG with the edges

in EZ removed. In this case we also say thatW is separatedfrom Y givenZ in D, and

write < W |Z|Y >D. Arc-separation in a regular join-graph is defined relativeto its

separators.

THEOREM 4.3.3 Any arc-labeled join-graph decompositionD =< JG, χ, ψ, θ > of a

belief networkBN =< X,D,G, P > is an I-map ofP relative to arc-separation.

Proof. Let MG be the moral graph ofBN . SinceMG is an I-map ofP , it is enough to

prove thatJG is and I-map ofMG.

LetNW , NZ , NY be three disjoint set of nodes inJG, andW,Z, Y be their correspond-

ing sets of variables inMG. We will prove:

< NW |NZ |NY >JG=⇒< W |Z|Y >MG

by contradiction.

Since the setsW,Z, Y may not be disjoint, we will actually prove that< W −Z|Z|Y −

Z >G holds, this being equivalent to< W |Z|Y >G.

Supposing< W − Z|Z|Y − Z >MG is false, then there exists a pathα =

γ1, γ2, . . . , γn−1, β = γn in MG that goes from some variableα = γ1 ∈ W − Z to some

variableβ = γn ∈ Y − Z without intersecting variables inZ.

LetNv be the set of all nodes inJG that contain variablev ∈ X, and let’s consider the

set of nodes:

S = ∪n
i=1Nγi

−NZ

We argue thatS forms a connected sub-graph inJG.

First, the running intersection property ensures that every Nγi
, i = 1, . . . , n, remains

connected inJG after pulling out the nodes inNZ (otherwise, it must be that there was a

path between the two disconnected parts in the originalJG, which implies that aγi is part

of Z, which is a contradiction).

133



Second, the fact that(γi, γi+1), i = 1, . . . , n− 1, is an edge in the moral graphMG im-

plies that there is a conditional probability table (CPT) on bothγi andγi+1, i = 1, . . . , n−1

(and perhaps other variables). From property 1 of the definition of the join-graph, it follows

that for all i = 1, . . . , n − 1 there exists a node in JG that contains bothγi andγi+1. This

proves the existence of a path in the mutilated join-graph (JG with NZ pulled out) from a

node inNW containingα = γ1 to the node containing bothγ1 andγ2 (Nγ1 is connected),

then from that node to the one containing bothγ2 andγ3 (Nγ2 is connected), and so on until

we reach a node inNY containingβ = γn.

This shows that< NW |NZ |NY >JG is false, concluding the proof by contradiction.

2

Interestingly however, removing arcs or labels from arc-labeled join-graphs whose clus-

ters are fixed will not increase the independencies capturedby arc-labeled join-graphs. That

is:

Proposition 16 Any two (arc-labeled) join-graphs defined on the same set of clusters,

sharing (V , χ ψ), express exactly the same set of independencies relative to arc-separation.

Consequently, all such decomposition arecorrectand are isomorphic I-maps.

THEOREM 4.3.4 Any arc-labeled join-graph decomposition of a belief network BN =<

X,D,G, P > is a minimal I-map ofP relative to arc-separation.

Hence, the issue of minimizing computational over-counting due to cycles appears to be

orthogonal to maximizing independencies via minimal I-mappness. Nevertheless, to avoid

over-counting as much as possible, we still prefer join-graphs that minimize cycles relative

to each variable. That is, we prefer to apply IJGP tominimalarc-labeled join-graphs.

4.3.4 Bounded Join-Graphs

Since we want to control the complexity of IJGP we will define it on decompositions having

bounded cluster size. If the number of variables in a clusteris bounded byi, the time and

134



Algorithm Join-Graph Structuring( i)

1. Apply procedure schematic mini-bucket(i).

2. Associate each resulting mini-bucket with a node in the join-graph, the variables
of the nodes are those appearing in the mini-bucket, the original functions are
those in the mini-bucket.

3. Keep the arcs created by the procedure (called out-edges)and label them by the
regular separator.

4. Connect the mini-bucket clusters belonging to the same bucket in a chain by
in-edges labeled by the single variable of the bucket.

Figure 4.13: Algorithm Join-Graph Structuring(i)

ProcedureSchematic Mini-Bucket(i)

1. Order the variables fromX1 to Xn minimizing (heuristically) induced-width,
and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index variable in its scope.

3. Forj = n to 1 do:
Partition the functions inbucket(Xj) into mini-buckets having at mosti vari-
ables.
For each mini-bucketmb create a new scope-function (message)f where
scope(f) = {X|X ∈ mb}−{Xi} and place scope(f) in the bucket of its highest
variable. Maintain an arc betweenmb and the mini-bucket (created later) off .

Figure 4.14: Procedure Schematic Mini-Bucket(i)

space complexity of one full iteration of IJGP(i) is exponential in i. How can good graph-

decompositions of bounded cluster size be generated?

Since we want the join-graph to be as close as possible to a tree, and since a tree has a

treewidth 1, we may try to find a join-graphJG of bounded cluster size whose treewidth

(as a graph) is minimized. While we will not attempt to optimally solve this task, we will

propose one method for generating i-bounded graph-decompositions.

DEFINITION 4.3.6 (external and internal widths) Given an arc-labeled join-graph de-

compositionD =< JG, χ, ψ, θ > of a network< G,P >, the internal width ofD is

maxv∈V |χ(v)|, while the external width ofD is the treewidth ofJG as a graph.

Clearly, ifD is a tree-decomposition its external width is 1 and its internal width equals

135



its treewidth. For example, an edge minimal dual decomposition has an internal width equal

to the maximum scope of each function,m, and external widthw∗ which is the treewidth

of the moral graph ofG. On the other hand, a tree-decomposition has internal widthof w∗

and external width of 1.

Using this terminology we can now state our target decomposition more clearly. Given

a graphG, and a bounding parameteri we wish to find a join-graph decomposition ofG

whose internal width is bounded byi and whose external width is minimized. The boundi

controls the complexity of one iteration ofIJGP while the external width provides some

measure of its accuracy.

One class of such decompositions is partition-based. It starts from a given tree-

decomposition and then partitions the clusters until the decomposition has clusters bounded

by i. The opposite approach is grouping-based. It starts from anarc-minimal dual-graph

decomposition (where each cluster contains a single CPT) andgroups clusters into larger

clusters as long as the resulting clusters do not exceed the given bound. In both meth-

ods we should attempt to reduce the treewidth of the generated graph-decomposition. Our

partition-based approach inspired by the mini-bucket idea[43] is as follows.

Given a boundi, algorithmjoin-graph structuring(i)applies procedureschematic mini-

bucket(i), described in Figure 4.14. The procedure only traces the scopes of the functions

that would be generated by the full mini-bucket procedure, avoiding actual computation.

The algorithm then connects the mini-buckets’ scopes minimally to obtain the running

intersection property, as described in Figure 4.13.

Example 4.3.5 Figure 4.15a shows the trace of procedure schematic mini-bucket(3) ap-

plied to the problem described in Figure 4.1a. The decomposition in Figure 4.15b is cre-

ated by the algorithm graph structuring. The only cluster partitioned is that ofF into two

scopes (FCD) and (BF), connected by an in-edge labeled with F.

Procedure schematic mini-bucket ends with a collection of trees rooted in mini-buckets

of the first variable. Each of these trees is minimally arc-labeled. Then,in-edgesare labeled

136



(b)(a)

CDB

CAB

BA

A

CB

P(D|B)

P(C|A,B)

P(A)

BA

P(B|A)

FCD

P(F|C,D)

GFE

EBF

BF

EF

P(E|B,F)

P(G|F,E)

B

CD

BF

A

F

G:  (GFE)

E:  (EBF)     (EF)

F:  (FCD)     (BF)

D:  (DB)       (CD)

C:  (CAB)    (CB)

B:  (BA)       (AB)       (B)

A:  (A)         (A)

Figure 4.15: Join-graph decompositions

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A C

A AB BC

BE

C

C
DE CE

F
H

F
FG GH H

GI

A

ABDE

FGI

ABC

BCE

GHIJ

CDEF

FGH

C

H

A

AB BC

C
DE CE

H

F
F GH

GI

ABCDE

FGI

BCE

GHIJ

CDEF

FGH

BC

DE CE

F
F GH

GI

ABCDE

FGHI GHIJ

CDEF

CDE

F

GHI

more accuracy

less complexity

Figure 4.16: Join-graphs

with only one variable, and they are added only to obtain the running intersection property

between branches of these trees. It can be shown that:

Proposition 17 Algorithm join-graph structuring(i), generates a minimalarc-labeled join-

graph decomposition having boundi.

Example 4.3.6 Figure 4.16 shows a range of arc-labeled join-graphs. On the left extreme

we have a graph with smaller clusters, but more cycles. This is the type of graph IBP

works on. On the right extreme we have a tree decomposition, which has no cycles but

has bigger clusters. In between, there could be a number of join-graphs where maximum

cluster size can be traded for number of cycles. Intuitively, the graphs on the left present

137



Table 4.7: Random networks: N=50, K=2, C=45, P=3, 100 instances, w*=16

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.02988 0.03055 0.02623 0.02940 0.06388 0.15694 0.05677 0.07153 0.00213 0.00391 0.00208 0.00277 0.0017 0.0036 0.0058 0.0295

1 5 0.06178 0.04434 0.04201 0.04554 0.15005 0.12340 0.12056 0.11154 0.00812 0.00582 0.00478 0.00558 0.0013 0.0040 0.0052 0.0200
10 0.08762 0.05777 0.05409 0.05910 0.23777 0.18071 0.14278 0.15686 0.01547 0.00915 0.00768 0.00899 0.0013 0.0040 0.0036 0.0121
0 0.00829 0.00636 0.00592 0.00669 0.01726 0.01326 0.01239 0.01398 0.00021 0.00014 0.00015 0.00018 0.0066 0.0145 0.0226 0.1219

5 5 0.05182 0.00886 0.00886 0.01123 0.12589 0.01967 0.01965 0.02494 0.00658 0.00024 0.00026 0.00044 0.0060 0.0120 0.0185 0.0840
10 0.08039 0.01155 0.01073 0.01399 0.21781 0.03014 0.02553 0.03279 0.01382 0.00055 0.00042 0.00073 0.0048 0.0100 0.0138 0.0536
0 0.00828 0.00584 0.00514 0.00495 0.01725 0.01216 0.01069 0.01030 0.00021 0.00012 0.00010 0.00010 0.0130 0.0254 0.0436 0.2383

10 5 0.05182 0.00774 0.00732 0.00708 0.12590 0.01727 0.01628 0.01575 0.00658 0.00018 0.00017 0.00016 0.0121 0.0223 0.0355 0.1639
10 0.08040 0.00892 0.00808 0.00855 0.21782 0.02101 0.01907 0.02005 0.01382 0.00028 0.00024 0.00029 0.0109 0.0191 0.0271 0.1062

0 0.04044 0.04287 0.03748 0.08811 0.09342 0.08117 0.00403 0.00435 0.00369 0.0159 0.0173 0.0552
MC 5 0.05303 0.05171 0.04250 0.12375 0.11775 0.09596 0.00659 0.00636 0.00477 0.0146 0.0158 0.0532

10 0.06033 0.05489 0.04266 0.14702 0.13219 0.10074 0.00841 0.00729 0.00503 0.0119 0.0143 0.0470

less complexity for IJGP because the cluster size is small, but they are also likely to be

less accurate. The graphs on the right side are computationally more complex, because of

larger cluster size, but are likely to be more accurate.

MC(i) vs. IJGP(i). As can be hinted by our structuring of a bounded join-graph, there is a

close relationship between MC(i) and IJGP(i). In particular, one iteration of IJGP(i) is sim-

ilar to MC(i) (MC(i) is an algorithm that approximates join-tree clustering and was shown

to be competitive with IBP and Gibbs Sampling [79]). Indeed, while we view IJGP(i) as an

iterative version of MC(i), the two algorithms differ in several technical points, some may

be superficial, due to implementation, others may be more principled. We will leave the

discussion at that and will observe the comparison of the twoapproaches in the empirical

section.

4.3.5 Experimental Evaluation

We tested the performance of IJGP(i) on random networks, on M-by-M grids, on two

benchmark CPCS files with 54 and 360 variables, respectively (these are belief networks

for medicine, derived from the Computer based Patient Case Simulation system, known to

be hard for belief updating) and on coding networks. On each type of networks, we ran

Iterative Belief Propagation (IBP), MC(i) and IJGP(i), while giving IBP and IJGP(i) the

same number of iterations.

138



Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L 

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

a) Performance vs. i-bound

Random networks, N=50, K=2, P=3, evid=5, w*=16

Number of iterations

0 5 10 15 20 25 30 35

K
L 

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IBP
IJGP(2)
IJGP(10)

b) Convergence with iterations

Figure 4.17: Random networks: KL distance

Random networks, N=50, K=2, P=3, evid=5, w*=16

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

T
im

e 
(s

ec
on

ds
)

0.0

0.2

0.4

0.6

0.8

1.0
IJPG 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
IJGP 15 it
IJGP 20 it
MC
IBP 1 it
IBP 20 it

Figure 4.18: Random networks: Time

We use the partitioning method described in Section 4.3.4 toconstruct a join-graph. To

determine the order of message computation, we recursivelypick an edge (u,v), such that

node u has the fewest incoming messages missing.

For each network except coding, we compute the exact solution and compare the accu-

racy of algorithms using: 1. Absolute error - the absolute value of the difference between

the approximate and the exact, averaged over all values, allvariables and all problems. 2.

Relative error - the absolute value of the difference betweenthe approximate and the ex-

act, divided by the exact, averaged over all values, all variables and all problems. 3. KL

(Kullback-Leibler) distance -Pexact(X = a) · log(Pexact(X = a)/Papproximation(X = a))

averaged over all values, all variables and all problems. Wealso report the time taken by

each algorithm. For coding networks we report Bit Error Rate (BER) computed as follows:

for each approximate algorithm we pick the most likely valuefor each variable, take the

number of disagreements with the exact input, divide by the total number of variables, and

139



average over all the instances of the problem. We also reporttime.

The random networks were generated using parameters (N,K,C,P), where N is the num-

ber of variables, K is their domain size, C is the number of conditional probability tables

(CPTs) and P is the number of parents in each CPT. Parents in eachCPT are picked ran-

domly and each CPT is filled randomly. In grid networks, N is a square number and each

CPT is filled randomly. In each problem class, we also tested different numbers of evi-

dence variables. The coding networks are from the class of linear block codes, whereσ

is the channel noise level. Note that we are limited to relatively small and sparse problem

instances since our evaluation measured are based on comparing against exact figures.

Random network results with networks of N=50, K=2, C=45 and P=3 are given in Table

4.7 and Figures 4.17 and 4.18. For IJGP(i) and MC(i) we report 3different values of i-

bound: 2, 5, 8; for IBP and IJGP(i) we report 3 different valuesof number of iterations:

1, 5, 10; for all algorithms we report 3 different values of number of evidence: 0, 5, 10.

We notice that IJGP(i) is always better than IBP (except when i=2 and number of iterations

is 1), sometimes as much as an order of magnitude, in terms of absolute and relative error

and KL distance. IBP rarely changes after 5 iterations, whereas IJGP(i) solution can be

improved up to 15-20 iterations. As we predicted, IJGP(i) isabout equal to MC(i) in terms

of accuracy for one iteration. But IJGP(i) improves as the number of iterations increases,

and is eventually better than MC(i) by as much as an order of magnitude, although it clearly

takes more time when the i-bound is large.

Figure 4.17a shows a comparison of all algorithms with different numbers of iterations,

using the KL distance. Because the network structure changeswith different i-bounds, we

do not see monotonic improvement of IJGP with i-bound for a given number of iterations

(as is the case with MC). Figure 4.17b shows how IJGP convergeswith iteration to smaller

KL distance than IBP. As expected, the time taken by IJGP (and MC) varies exponentially

with the i-bound (see Figure 4.18).

140



Table 4.8: 9x9 grid, K=2, 100 instances, w*=12

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8
0 0.03524 0.05550 0.04292 0.03318 0.08075 0.13533 0.10252 0.07904 0.00289 0.00859 0.00602 0.00454 0.0010 0.0053 0.0106 0.0426

1 5 0.05375 0.05284 0.04012 0.03661 0.16380 0.13225 0.09889 0.09116 0.00725 0.00802 0.00570 0.00549 0.0016 0.0041 0.0092 0.0315
10 0.07094 0.05453 0.04304 0.03966 0.23624 0.14588 0.12492 0.12202 0.01232 0.00905 0.00681 0.00653 0.0013 0.0038 0.0072 0.0256
0 0.00358 0.00393 0.00325 0.00284 0.00775 0.00849 0.00702 0.00634 0.00005 0.00006 0.00007 0.00010 0.0049 0.0152 0.0347 0.1462

5 5 0.03224 0.00379 0.00319 0.00296 0.11299 0.00844 0.00710 0.00669 0.00483 0.00006 0.00007 0.00010 0.0053 0.0131 0.0309 0.1127
10 0.05503 0.00364 0.00316 0.00314 0.19403 0.00841 0.00756 0.01313 0.00994 0.00006 0.00009 0.00019 0.0036 0.0127 0.0271 0.0913
0 0.00352 0.00352 0.00232 0.00136 0.00760 0.00760 0.00502 0.00293 0.00005 0.00005 0.00003 0.00001 0.0090 0.0277 0.0671 0.2776

10 5 0.03222 0.00357 0.00248 0.00149 0.11295 0.00796 0.00549 0.00330 0.00483 0.00005 0.00003 0.00002 0.0096 0.0246 0.0558 0.2149
10 0.05503 0.00347 0.00239 0.00141 0.19401 0.00804 0.00556 0.00328 0.00994 0.00005 0.00003 0.00001 0.0090 0.0223 0.0495 0.1716

0 0.05827 0.04036 0.01579 0.13204 0.08833 0.03440 0.00650 0.00387 0.00105 0.0106 0.0142 0.0382
MC 5 0.05973 0.03692 0.01355 0.13831 0.08213 0.03001 0.00696 0.00348 0.00099 0.0102 0.0130 0.0342

10 0.05866 0.03416 0.01075 0.14120 0.07791 0.02488 0.00694 0.00326 0.00075 0.0099 0.0116 0.0321

Grid network, N=81, K=2, evid=5, w*=12

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L 

di
st

an
ce

0.000

0.002

0.004

0.006

0.008

0.010
IJGP 1 it
IJGP 2 it
IJGP 3 it
IJGP 5 it
IJGP 10 it
MC
IBP 1 it
IBP 2 it
IBP 3 it
IBP 5 it
IBP 10 it

a) Performance vs. i-bound

Grid network, N=81, K=2, evid=5, w*=12

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L 

di
st

an
ce

0

1e-5

2e-5

3e-5

4e-5

5e-5

6e-5

7e-5
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 4.19: Grid 9x9: KL distance

Grid network results with networks of N=81, K=2, 100 instances are very similar to

those of random networks. They are reported in Table 4.8 and in Figure 4.19, where we

can see the impact of having evidence (0 and 5 evidence variables) on the algorithms.

IJGP at convergence gives the best performance in both cases, while IBP’s performance

deteriorates with more evidence and is surpassed by MC with i-bound 5 or larger.

CPCS network results with CPCS54 and CPCS360 are given in Table 4.9 and Figure

4.20, and are even more pronounced than those of random and grid networks. When evi-

dence is added, IJGP(i) is more accurate than MC(i), which is more accurate than IBP, as

can be seen in Figure 4.20a.

Coding network results are given in Table 4.10. We tested on large networks of 400

variables, with treewidth w*=43, with IJGP and IBP set to run 30 iterations (this is more

141



Table 4.9: CPCS54 50 instances, w*=15; CPCS360 10 instances, w*=20

Absolute error Relative error KL distance Time
IBP IJGP IBP IJGP IBP IJGP IBP IJGP

#it #evid i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8 i=2 i=5 i=8

CPCS54
0 0.01324 0.03747 0.03183 0.02233 0.02716 0.08966 0.07761 0.05616 0.00041 0.00583 0.00512 0.00378 0.0097 0.0137 0.0146 0.0275

1 5 0.02684 0.03739 0.03124 0.02337 0.05736 0.09007 0.07676 0.05856 0.00199 0.00573 0.00493 0.00366 0.0072 0.0094 0.0087 0.0169
10 0.03915 0.03843 0.03426 0.02747 0.08475 0.09156 0.08246 0.06687 0.00357 0.00567 0.00506 0.00390 0.005 0.0047 0.0052 0.0115
0 0.00031 0.00016 0.00123 0.00110 0.00064 0.00033 0.00255 0.00225 7.75e-7 0.00000 0.00002 0.00001 0.0371 0.0334 0.0384 0.0912

5 5 0.01874 0.00058 0.00092 0.00098 0.04067 0.00124 0.00194 0.00203 0.00161 0.00000 0.00001 0.00001 0.0337 0.0215 0.0260 0.0631
10 0.03348 0.00101 0.00139 0.00144 0.07302 0.00215 0.00298 0.00302 0.00321 0.00001 0.00003 0.00002 0.0290 0.0144 0.0178 0.0378
0 0.00031 0.00009 0.00014 0.00015 0.00064 0.00018 0.00029 0.00031 7.75e-7 0.0000 0.00000 0.00000 0.0736 0.0587 0.0667 0.1720

10 5 0.01874 0.00037 0.00034 0.00038 0.04067 0.00078 0.00071 0.00080 0.00161 0.00000 0.00000 0.00000 0.0633 0.0389 0.0471 0.1178
10 0.03348 0.00058 0.00051 0.00057 0.07302 0.00123 0.00109 0.00122 0.00321 4.0e-6 3.0e-6 4.0e-6 0.0575 0.0251 0.0297 0.0723
0 0.02721 0.02487 0.01486 0.05648 0.05128 0.03047 0.00218 0.00171 0.00076 0.0144 0.0125 0.0333

MC 5 0.02702 0.02522 0.01760 0.05687 0.05314 0.03713 0.00201 0.00186 0.00098 0.0103 0.0126 0.0346
10 0.02825 0.02504 0.01600 0.06002 0.05318 0.03409 0.00216 0.00177 0.00091 0.0094 0.0090 0.0295

CPCS360
1 10 0.26421 0.14222 0.13907 0.14334 7.78167 2119.20 2132.78 2133.84 0.17974 0.09297 0.09151 0.09255 0.7172 0.5486 0.5282 0.4593

20 0.26326 0.12867 0.12937 0.13665 370.444 28720.38 30704.93 31689.59 0.17845 0.08212 0.08269 0.08568 0.6794 0.5547 0.5250 0.4578
10 10 0.01772 0.00694 0.00121 0.00258 1.06933 6.07399 0.01005 0.04330 0.017718 0.00203 0.00019 0.00116 7.2205 4.7781 4.5191 3.7906

20 0.02413 0.00466 0.00115 0.00138 62.99310 26.04308 0.00886 0.01353 0.02027 0.00118 0.00015 0.00036 7.0830 4.8705 4.6468 3.8392
20 10 0.01772 0.00003 3.0e-6 3.0e-6 1.06933 0.00044 8.0e-6 7.0e-6 0.01771 5.0e-6 0.0 0.0 14.4379 9.5783 9.0770 7.6017

20 0.02413 0.00001 9.0e-6 9.0e-6 62.9931 0.00014 0.00013 0.00004 0.02027 0.0 0.0 0.0 13.6064 9.4582 9.0423 7.4453
MC 10 0.03389 0.01984 0.01402 0.65600 0.20023 0.11990 0.01299 0.00590 0.00390 2.8077 2.7112 2.5188

20 0.02715 0.01543 0.00957 0.81401 0.17345 0.09113 0.01007 0.00444 0.00234 2.8532 2.7032 2.5297

CPCS360, evid=10, w*=20

i-bound

0 1 2 3 4 5 6 7 8 9 10 11

K
L 

di
st

an
ce

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
IJGP 1 it
IJGP 10 it
IJGP 20 it
MC
IBP 1 it
IBP 10 it
IBP 20 it

a) Performance vs. i-bound

CPCS360, evid=10, w*=20

i-bound

1 2 3 4 5 6 7 8 9 10 11

K
L 

di
st

an
ce

0

1e-6

2e-6

3e-6

4e-6

5e-6

6e-6
IJGP 20 iterations
 (at convergence)

b) Fine granularity for KL

Figure 4.20: CPCS360: KL distance

than enough to ensure convergence). IBP is known to be very accurate for this class of

problems and it is indeed better than MC. It is remarkable however that IJGP converges

to smaller BER than IBP even for small values of the i-bound. Boththe coding network

and CPCS360 show the scalability of IJGP for large size problems. Notice that here the

anytime behavior of IJGP is not clear.

4.3.6 Discussion

In this section we presented an iterative anytime approximation algorithm called Iterative

Join-Graph Propagation (IJGP(i)), that applies the message passing algorithm of join-tree

142



Table 4.10: Coding networks: N=400, P=4, 500 instances, 30 iterations, w*=43

Bit Error Rate
i-bound

σ 2 4 6 8 10 IBP
0.22 IJGP 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005

MC 0.00501 0.00800 0.00586 0.00462 0.00392
0.28 IJGP 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064

MC 0.02170 0.02968 0.02492 0.02048 0.01840
0.32 IJGP 0.00238 0.00238 0.00238 0.00238 0.00238 0.00242

MC 0.04018 0.05004 0.04480 0.03878 0.03558
0.40 IJGP 0.01202 0.01188 0.01194 0.01210 0.01192 0.01220

MC 0.08726 0.09762 0.09272 0.08766 0.08334
0.51 IJGP 0.07664 0.07498 0.07524 0.07578 0.07554 0.07816

MC 0.15396 0.16048 0.15710 0.15452 0.15180
0.65 IJGP 0.19070 0.19056 0.19016 0.19030 0.19056 0.19142

MC 0.21890 0.22056 0.21928 0.21904 0.21830
Time

IJGP 0.36262 0.41695 0.86213 2.62307 9.23610 0.019752
MC 0.25281 0.21816 0.31094 0.74851 2.33257

clustering to join-graphs rather than join-trees, iteratively. The algorithm borrows the it-

erative feature from Iterative Belief Propagation (IBP) on one hand and is inspired by the

anytime virtues of mini-clustering MC(i) on the other. We show that the success of IJGP is

facilitated by extending the notion of join-graphs to minimal arc-labeled join-graphs, and

provide a structuring algorithm that generates minimal arc-labeled join-graphs of bounded

size.

The empirical results are extremely encouraging. We experimented with randomly gen-

erated networks, grid-like networks, medical diagnosis CPCSnetworks and coding net-

works. We showed that IJGP is almost always superior to both IBP and MC(i) and is

sometimes more accurate by an order of several magnitudes. One should note that IBP

cannot be improved with more time, while MC(i) requires a large i-bound for many hard

and large networks to achieve reasonable accuracy. There isno question that the iterative

application of IJGP is instrumental to its success. In fact,IJGP(2) in isolation appears to

be the most cost effective variant.

One question which we did not answer in this section is why propagating the mes-

sages iteratively helps. Why is IJGP upon convergence, superior to IJGP with one iteration

and is superior to MC(i)? One clue can be provided when considering deterministic con-

straint networks which can be viewed as ”extreme probabilistic networks”. It is known

that constraint propagation algorithms, which are analogous to the messages sent by belief

143



propagation, are guaranteed to converge and are guaranteedto improve with convergence.

The propagation scheme presented here works like constraint propagation relative to the

flat network abstraction ofP , (where all non-zero entries are normalized to a positive con-

stant), and is guaranteed to be more accurate for that abstraction at least. It is precisely

these issues that we address in Section 4.4.

4.4 The Inference Power of Iterative Belief Propagation

A good fraction of our current research is devoted to studying the properties ofIterative

Belief Propagation (IBP), and of the generalized belief propagation versionIterative Join-

Graph Propagation (IJGP). We are particularly interested in making connections to well

known algorithms from constraint networks, like Arc-consistency, which may help explain

when and why IBP has strong or weak inference power.

The belief propagation algorithm is a distributed algorithm that computes posterior be-

liefs for tree-structured Bayesian networks (poly-trees) [86]. However, in recent years it

was shown to work surprisingly well in many applications involving networks with loops,

including turbo codes, when applied iteratively [89]. Another recent result [69] shows im-

pressive performance for an iterative message passing scheme used for very large satisfia-

bility problems. While there is still very little understanding as to why and when IBP works

well, some recent investigation shows that when IBP converges, it converges to a stationary

point of the Bethe energy, thus making connections to approximation algorithms developed

in statistical physics and to variational approaches to approximate inference [100, 102].

However, these approaches do not explain why IBP is successful where it is, and do not

allow any performance guarantees on accuracy.

The work we present here is based on some some simple observations that may shed

light on IBP’s behavior, and on the more general class of IJGP algorithms. Zero-beliefs

are variable-value pairs that have zero conditional probability given the evidence. We show

144



that: if a value of a variable is assessed as having zero-belief in any iteration of IBP, it

remains a zero-belief in all subsequent iterations; that IBPfinitely converges relative to

its set of zero-beliefs; and, most importantly that the set of zero-beliefs decided by any

of the iterative belief propagation methods is sound. Namely any zero-belief determined

by IBP corresponds to a true zero conditional probability relative to the given probability

distribution expressed by the Bayesian network.

While each of these claims can be proved directly, our approach is to associate a be-

lief network with a constraint network and show a correspondence between IBP applied

to the belief network and an arc-consistency algorithm applied to the corresponding con-

straint network. Since arc-consistency algorithms are well understood this correspondence

not only proves right away the targeted claims, but may provide additional insight into the

behavior of IBP and IJGP. In particular, not only it immediately justifies the iterative appli-

cation of belief propagation algorithms on one hand, but it also illuminates its ”distance”

from being complete, on the other.

4.4.1 Arc-Consistency Algorithms

Constraint propagationalgorithms is a class of polynomial time algorithms that areat the

center of constraint processing techniques. They were investigated extensively in the past

three decades and the most well known versions arearc-, path-, andi-consistency[27].

DEFINITION 4.4.1 (arc-consistency)[68] Given a binary constraint network(X,D,C),

the network is arc-consistent iff for every binary constraint Rij ∈ C, every valuev ∈ Di

has a valueu ∈ Dj s.t. (v, u) ∈ Rij.

When a binary constraint network is not arc-consistent, arc-consistency algorithms can

enforce arc-consistency. The algorithms remove values from the domains of the variables

that violate arc-consistency until an arc-consistent network is generated. A variety of im-

proved performance arc-consistency algorithms were developed over the years, however

145



we will consider here a non-optimal distributed version, which we call distributed arc-

consistency.

DEFINITION 4.4.2 (distributed arc consistency, DAC)Distributed arc consistency

(DAC) is a message passing algorithm. Each node maintains a current set of viable values

Di. Letne(i) be the set of neighbors ofXi in the constraint graph. Every nodeXi sends

a message to any nodeXj ∈ ne(i), which consists of the values inXj ’s domain that

are consistent with the currentDi, relative to the constraint that they share. Namely, the

message thatXi sends toXj, denoted byDj
i , is:

Dj
i ← πj(Rji 1 Di) (4.1)

(where, join (1) and project (π) are the usual relational operators) and in addition nodei

computes:

Di ← Di ∩ (1k∈ne(i) D
i
k) (4.2)

Clearly the algorithm can be synchronized into iterations, where in each iteration ev-

ery node computes its current domain based on all the messages received so far from its

neighbors (eq. 4.2), and sends a new message to each neighbor(eq. 4.1). Alternatively,

equations 4.1 and 4.2 can be combined. The messageXi sends toXj is:

Dj
i ← πj(Rji 1 Di 1k∈ne(i) D

i
k) (4.3)

Let us mention again the definition of the dual graphs, which we will be using in this

section:

DEFINITION 4.4.3 (dual graphs) Given a set of functionsF = {f1, ..., fl} over scopes

S1, ..., Sl, the dual graph ofF is a graphDG = (V,E, L) that associates a node with each

function, namelyV = F and an arc connects any two nodes whose scope share a variable,

146



A

B C

D F

G

A

AB AC

ABD BCF

DFG

AB

2
1

3

A

23
2
C

1
A

12
32
13
23

3
2
B

1
1
A

1
3
F

23
2
C

1
B

312
132
213
1

2
3
D

23

3
2
B

1
1
A

3
3
G

1
2
F

2
1
D

4

1

5

3

6

2

2
4h

2
5h

6
5h

=6
5h 3

1

F

B

4
6h

D

4
5h

B

F

( )== 6
56

4
6    hRh Dπ

2
D

( )== 4
5

4
64

2
4       hhRh ABπ

3
B

1
A5

6h

( )== 6
56

5
6    hRh Fπ 1

F

( )=== 5
65

2
5

4
5    hRhh Bπ

3
B

1
2h A

( )== 2
5

2
42

1
2       hhRh Aπ 1

A

1R
2R

4R

3R

5R

6R

Figure 4.21: Part of the execution of RDAC algorithm

E = {(fi, fj)|Si ∩ Sj 6= φ} . L is a set of labels for the arcs, each arc being labeled by the

shared variables of its nodes,L = {lij = Si ∩ Sj|(i, j) ∈ E}.

The above distributed arc-consistency algorithm can be applied to the dual problem of

any non-binary constraint network as well. This is accomplished by the following rule

applied by each node in the dual graph. We call the algorithm relational distributed arc-

consistency (RDAC).

DEFINITION 4.4.4 (relational distributed arc-consistency, RDAC)LetRi andRj be two

constraints sharing scopes, whose arc in the dual graph is labeled bylij. The messageRi

sends toRj denotedhj
i is defined by:

hj
i ← πlij(Ri 1 (1k∈ne(i) h

i
k)) (4.4)

and each node updates its current relation according to:

Ri ← Ri ∩ (1k∈ne(i) h
i
k) (4.5)

Example 4.4.1 Figure 4.21 describes part of the execution of RDAC for a graph coloring

problem, having the constraint graph shown on the left. All variables have the same do-

main,{1,2,3}, except forC which is 2, andG which is 3. The arcs correspond tonot equal

147



constraints, and the relations areRA, RAB, RAC , RABD, RBCF , RDFG. The dual graph

of this problem is given on the right side of the figure, and each table shows the initial

constraints (there are unary, binary and ternary constraints). To initialize the algorithm,

the first messages sent out by each node are universal relations over the labels. For this

example, RDAC actually solves the problem and finds the unique solution A=1, B=3, C=2,

D=2, F=1, G=3.

Proposition 18 Relational distributed arc-consistency converges afterO(t · r) iterations

to the largest arc-consistent network that is equivalent to the original network, wheret

bounds the number of tuples in each constraint andr is the number of constraints.

Proposition 19 (complexity) The complexity of distributed arc-consistency is

O(r2t2 log t).

Proof. One iteration can be accomplished inO(r · t · log t), and there can be at mostr · t

iterations. 2

4.4.2 Iterative Belief Propagation over Dual Join-Graphs

Iterative belief propagation (IBP) is an iterative application of Pearl’s algorithm that was

defined for poly-trees [86]. Since it is a distributed algorithm, it is well defined for any

network. In this section we will present IBP as an instance of join-graph propagation over

variants of thedual graph.

Consider a Bayesian networkB =< X,D,G, P >. As defined earlier, thedual graph

DG of the Belief networkB, is an arc-labeled graph defined over the CPTs as its functions.

Namely, it has a node for each CPT and a labeled arc connecting any two nodes that share

a variable in the CPT’s scope. The arcs are labeled by the shared variables. Adual join-

graph is a labeled arc subgraph ofDG whose arc labels are subsets of the labels ofDG

such that therunning intersection property, also calledconnectedness property, is satisfied.

The running intersection property requires that any two nodes that share a variable in the

148



A

B C

a)

A

AB ABC

b)

A

AB ABC

c)

A A

B

A

AB

2 1

3

2 1

3

Figure 4.22: a) A belief network; b) A dual join-graph with singleton labels; c) A dual
join-graph which is a join-tree

dual join-graph be connected by a path of arcs whose labels contain the shared variable.

Clearly the dual graph itself is a dual join-graph. Anarc-minimal dual join-graph is a

dual join-graph for which none of the labels can be further reduced while maintaining the

connectedness property.

Interestingly, there are many dual join-graphs of the same dual graph and many of them

are arc-minimal. We define Iterative Belief Propagation on a dual join-graph. Each node

sends a message over an arc whose scope is identical to the label on that arc. Since Pearl’s

algorithm sends messages whose scopes are singleton variables only, we highlight arc-

minimal singleton dual join-graph. One such graph can be constructed directly from the

graph of the Bayesian network, labeling each arc with the parent variable. It can be shown

that:

Proposition 20 The dual graph of any Bayesian network has an arc-minimal dualjoin-

graph where each arc is labeled by a single variable.

Example 4.4.2 Consider the belief network on 3 variablesA,B,C with CPTs

1.P (C|A,B), 2.P (B|A) and 3.P (A), given in Figure 4.22a. Figure 4.22b shows a dual

graph with singleton labels on the arcs. Figure 4.22c shows a dual graph which is a join

tree, on which belief propagation can solve the problem exactly in one iteration (two passes

up and down the tree).

For complete reference, we will next present IBP algorithm that is applicable to any

dual join-graph (Figure 4.23). The algorithm is a special case of IJGP introduced in [39].

149



Algorithm IBP
Input: An arc-labeled dual join-graphDJ = (V,E,L) for a Bayesian networkBN =<
X,D,G, P >. Evidencee.
Output: An augmented graph whose nodes include the original CPTs andthe messages received
from neighbors. Approximations ofP (Xi|e), ∀Xi ∈ X. Approximations ofP (Fi|e), ∀Fi ∈ B.
Denote by:hv

u the message fromu to v; ne(u) the neighbors ofu in V ; nev(u) = ne(u) − {v};
luv the label of(u, v) ∈ E; elim(u, v) = scope(u)− scope(v).
• One iteration of IBP

For every nodeu in DJ in a topological order and back, do:
1. Process observed variables

Assign evidence variables to the eachpi and remove them from the labeled arcs.
2. Compute and send tov the function:

hv
u =

∑

elim(u,v)

(pu ·
∏

{hu
i

,i∈nev(u)}

hu
i )

Endfor
• Compute approximations ofP (Fi|e), P (Xi|e):

For everyXi ∈ X let u be the vertex of familyFi in DJ ,
P (Fi|e) = α(

∏

hu
i

,u∈ne(i) h
u
i ) · pu;

P (Xi|e) = α
∑

scope(u)−{Xi}
P (Fi|e).

Figure 4.23: Algorithm Iterative Belief Propagation

It is easy to see that one iteration of IBP is time and space linear in the size of the belief

network, and when IBP is applied to the singleton labeled dualgraph it coincides with

Pearl’s belief propagation applied directly to the acyclicgraph representation. For space

reasons, we do not include the proof here. Also, when the dualjoin-graph is a tree IBP

converges after one iteration (two passes, up and down the tree) to the exact beliefs.

4.4.3 The Flat Bayesian Network

Given a belief networkB we will now define a flattening of the Bayesian network into a

constraint network calledflat(B) where all the zero entries in the CPTs are removed from

the corresponding relation.flat(B) is a constraint network defined over the same set of

variables and has the same set of domain values asB. Formally, for everyXi and its CPT

P (Xi|pai) ∈ B we define a constraintRFi
over the family ofXi, Fi = {Xi} ∪ pai as

follows: for every assignmentx = (xi, xpai
) to Fi,

150



(xi, xpai
) ∈ RFi

iff P (xi|xpai
) > 0.

The evidence sete = {e1, ..., er} is mapped into unary constraints that assign the corre-

sponding values to the evidence variables.

THEOREM 4.4.3 Given a belief networkB and evidencee, for any tuplet: PB(t|e) > 0⇔

t ∈ sol(flat(B, e)).

Proof. PB(t|e) > 0⇔ΠiP (xi|xpai
)|t > 0⇔∀i, P (xi|xpai

)|t > 0⇔∀i, (xi, xpai
)|t ∈ RFi

⇔ t ∈ sol(flat(B, e)), where|t is the restriction tot. 2

We next define an algorithm dependent notion of zero tuples.

DEFINITION 4.4.5 (IBP-zero) Given a CPTP (Xi|pai), an assignmentx = (xi, xpai
) to

its familyFi is IBP-zeroif some iteration of IBP determines thatP (xi|xpai
, e) = 0.

It is easy to see that when IBP is applied to a constraint network where sum and product

are replaced by join and project, respectively, it becomes identical to distributed relational

arc-consistency defined earlier. Therefore, a partial tuple is removed from a flat constraint

by arc-consistency iff it is IBP-zero relative to the Bayesiannetwork.

THEOREM 4.4.4 When IBP is applied in a particular variable ordering to a dual join-

graph of a Bayesian networkB, its trace is identical, relative to zero-tuples generation, to

that of RDAC applied to the corresponding flat dual join-graph. Namely, taking a snapshot

at identical steps, any IBP-zero tuple in the Bayesian network is a removed tuple in the

corresponding step of RDAC over the flat dual join-graph.

Proof. It suffices to prove that the first iteration of IBP and RDAC generates the same

zero tuples and removed tuples, respectively. We prove the claim by induction over the

topological ordering that defines the order in which messages are sent in the corresponding

dual graphs.

Base case:By the definition of the flat network, when algorithms IBP and RDACstart,

every zero probability tuple in one of the CPTsPXi
in the dual graph of the Bayesian

151



network, becomes a removed tuple in the corresponding constraintRFi
in the dual graph of

the flat network.

Inductive step:Suppose the claim is true aftern correspondent messages are sent in IBP

and RDAC. Suppose the(n + 1)th message is scheduled to be the one from nodeu to

nodev. Indexing messages by the name of the algorithm, in the dual graph of IBP, node

u containspu andhIBP
u
i , i ∈ nev(u), and in the dual graph of RDAC, nodeu containsRu

andhRDAC
u
i , i ∈ nev(u). By the inductive hypothesis, the zero tuples inpu andhIBP

u
i , i ∈

nev(u) are the removed tuples inRu andhRDAC
u
i , i ∈ nev(u), respectively. Therefore, the

zero tuples in the product(pu · (
∏

i∈nev(u))h
u
i ) correspond to the removed tuples in the join

(Ru 1 (1i∈nev(u))h
u
i ). This proves that the zero tuples in the message of IBP

hIBP
v
u =

∑

elim(u,v)(pu · (
∏

i∈nev(u))h
u
i ), correspond to the removed tuples in the message

of RDAC

hRDAC
v
u = πluv

(Ru 1 (1i∈nev(u))h
u
i ).

The same argument can now be extended for every iteration of the algorithms. 2

Corollary 2 Algorithm IBP zero-converges. Namely, its set of zero tuplesdoes not change

after t · r iterations.

Proof. From Theorem 4.4.4 any IBP-zero is a no-good removed by arc-consistency over

the flat network. Since arc-consistency converges, the claim follows. 2

THEOREM 4.4.5 When IBP is applied to a dual join-graph of a Bayesian network,any

tuplet that is IBP-zero satisfiesPB(t|e) = 0.

Proof. From Theorem 4.4.4 if a tuplet is IBP zero, it is also removed from the correspond-

ing relation by arc-consistency overflat(B, e). Therefore this tuple is a no-good of the

networkflat(B, e) and, from Theorem 4.4.3 it follows thatPB(t|e) = 0. 2

152



3
1
2
X3

31
2
1
X2

1
1
H2

X1

X2

X3H1

H2

H3

a)

X1

X2

X3H1X1 X2

H2 X2 X3

H3X1 X3

b)

X1

X1

X2

X2

X3

X3
3
1
2
X2

31
2
1
X1

1
1
H1

3
2
1
X1

3
1
2
X3

31
2
1
X1

1
1
H3

3
2
1
X2

3
2
1
X3

Figure 4.24: a) A belief network; b) An arc-minimal dual join-graph

Zeros are Sound for any IJGP

The results for IBP can be extended to the more general class ofalgorithms callediterative

join-graph propagation, IJGP [39]. IJGP can be viewed as a generalized belief propagation

algorithm and was shown to benefit both from the virtues of iterative algorithms and from

the anytime characteristics of bounded inference providedby mini-buckets schemes.

The message-passing of IJGP is identical to that of IBP. The difference is in the under-

lying graph that it uses. IJGP typically has an accuracy parameteri called i-bound, which

restricts the maximum number of variables that can appear ina node (cluster). Each clus-

ter contains a set of functions. IJGP performs message-passing on a graph calledminimal

arc-labeled join-graph.

It is easy to define a corresponding RDAC algorithm that operates on a similar minimal

arc-label join-graph. Initially, each cluster of RDAC can contain a number of relations,

which are just the flat correspondents of the CPTs in the clusters of IJGP. The identical me-

chanics of the message passing ensure that all the previous results for IBP can be extended

to IJGP.

The Inference Power of IBP

We will next show that the inference power of IBP is sometimes very limited and other

times strong, exactly wherever arc-consistency is weak or strong.

Cases of weak inference power

153



Example 4.4.6 Consider a belief network over 6 variablesX1, X2, X3, H1, H2, H3 where

the domain of theX variables is{1, 2, 3} and the domain of theH variables is{0, 1} (see

Figure4.24a). There are three CPTs over the scopes:{H1, X1, X2}, {H2, X2, X3}, and

{H3, X1, X3}. The values of the CPTs for every triplet of variables{Hk, Xi, Xj} are:

P (hk = 1|xi, xj) =























1, if (3 6= xi 6= xj 6= 3);

1, if (xi = xj = 3);

0, otherwise ;

P (hk = 0|xi, xj) = 1− P (hk = 1|xi, xj).

Consider the evidence sete = {H1 = H2 = H3 = 1}. One can see that this Bayesian

network expresses the probability distribution that is concentrated in a single tuple:

P (x1, x2, x3|e) =











1, if x1 = x2 = x3 = 3;

0, otherwise.

In other words, any tuple containing an assignment of ”1” or ”2” for any X variable has a

zero probability. The flat constraint network of the above belief network is defined over the

scopesS1 = {H1, X1, X2}, S2 = {H2, X2, X3}, S3 = {H3, X1, X3}. The constraints are

defined by:RHk,Xi,Xj
= {(1, 1, 2), (1, 2, 1), (1, 3, 3), (0, 1, 1), (0, 1, 3), (0, 2, 2), (0, 2, 3),

(0, 3, 1), (0, 3, 2)}. Also, the prior probabilities forXi’s become unary constraints equal

to the full domain{1,2,3} (assuming the priors are non-zero). An arc-minimal dual join-

graph which is identical to the constraint network is given in Figure 4.24b.

In the flat constraint network, the constraints in each node are restricted after assigning

the evidence values (see Figure 4.24b). In this case, RDAC sends as messages the full

domains of the variables and therefore no tuple is removed from any constraint. Since IBP

infers the same zeros as arc-consistency, IBP will alsonot infer any zeros for any family

or any single variable. However, since the true probability of most tuples is zero we can

conclude that the inference power of IBP on this example is weakor non-existent.

154



The weakness of arc-consistency as demonstrated in this example is not surprising.

Arc-consistency is known to be a weak algorithm in general. It implies the same weakness

for belief propagation and demonstrates that IBP is very far from completeness, at least as

long as zero tuples are concerned.

The above example was constructed by taking a specific constraint network with known

properties and expressing it as a belief network using a known transformation. We associate

each constraintRS with a bi-valued new hidden variableXh, direct arcs from the constraint

variables to this new hidden variableXh, and create the CPT such that:

P (xh = 1|xpah
) = 1 , iff xpah

∈ RS.

while zero otherwise [86]. The generated belief network conditioned on all theXh vari-

ables being assigned ”1” expresses the same set of solutionsas the constraint network.

Cases of strong inference power The relationship between IBP and arc-consistency en-

sures that IBP is zero-complete whenever arc-consistency is. In general, if for a flat con-

straint network of a Bayesian networkB, arc-consistency removes all the inconsistent do-

main values (it creates minimal domains), then IBP will also discover all the true zeros of

B. We next consider several classes of constraints that are known to be tractable.

Acyclic belief networks.When the belief network is acyclic, namely when it has a dual

join-graph that is a tree, the flat network is an acyclic constraint network that can be shown

to be solvable by relational distributed arc-consistency [27]. Note that acyclic Bayesian

networks is a strict superset of polytrees. The solution requires only one iteration (two

passes) of IBP. Therefore:

Proposition 21 IBP is complete for acyclic networks, when applied to the tree dual join-

graph (and therefore it is also zero-complete).

Example 4.4.7 We refer back to the example of Figure 4.22. The network is acyclic be-

cause there is a dual join-graph that is a tree, given in Figure 4.22c, and IBP will be

zero-complete on it. Moreover, IBP is known to be complete in this case.

155



Belief networks with no evidence.Another interesting case is when the belief network

has no evidence. In this case, the flat network always corresponds to thecausal constraint

networkdefined in [42]. The inconsistent tuples or domain values arealready explicitly

described in each relation, and new zeros do not exist. Indeed, it is easy to see (either

directly or through the flat network) that:

Proposition 22 IBP is zero-complete for any Bayesian network with no evidence.

In fact, it can be shown [9] that IBP is also complete for non-zero posterior beliefs of

many variables when there is no evidence.

Max-closed constraints. Consider next the class of Max-closed relations defined as fol-

lows. Given a domainD that is linearly ordered letMax be a binary operator that returns

the largest element among 2. The operator can be applied to 2 tuples by taking the pair-wise

operation [56].

DEFINITION 4.4.6 (Max-closed relations)A relation is Max-closed if whenevert1, t2 ∈ R

so isMax(t1, t2). A constraint network is Max-closed if all its constraints are Max-closed.

It turns out that if a constraint network is Max-closed, it can be solved by distributed

arc-consistency. Namely, if no domain becomes empty by the arc-consistency algorithm,

the network is consistent. While arc-consistency is not guaranteed to generate minimal

domains, thus removing all inconsistent values, it can generate a solution by selecting the

maximal value from the domain of each variable. Accordingly, while IBP will not neces-

sarily discover all the zeros, all the largest non-zero values in the domains of each variable

are true non-zeros.

Therefore, for a belief network whose flat network is Max-closed IBP is likely to be

powerful for generating zero tuples.

156



Z

Y

X

V

W

a)

Z

YZ

XZYW

VZ

WYZ

b)

Z

Z

Z Z

Y

Y

W

Figure 4.25: a) A belief network that corresponds to a Max-closed relation; b) An arc-
minimal dual join-graph

Example 4.4.8 Consider the following belief network: There are 5 variables

{V,W,X, Y, Z} over domains{1, 2, 3, 4, 5}. and the following CPTs:

P (x|z, y, w) 6= 0, iff 3x+ y + z ≥ 5w + 1

P (w|y, z) 6= 0, iff wz ≥ 2y

P (y|z) 6= 0, iff y ≥ z + 2

P (v|z) 6= 0, iff 3v ≤ z + 1

P (Z = i) = 1/4, i ∈ {1, 2, 3, 4}

All the other probabilities are zero. Also, the domain of W does not include 3 and the

domain z does not include 5. The problem’s acyclic graph is given in Figure 4.25a. It is

easy to see that the flat network is the set of constraints over the above specified domains:

w 6= 3, z 6= 5, 3v ≤ z + 1, y ≥ z + 2, 3x + y + z ≥ 5w + 1, wz ≥ 2y. An arc-

minimal dual join-graph with singleton labels is given in Figure 4.25b. It has 5 nodes, one

for each family in the Bayesian network. If we apply relationaldistributed consistency we

will get that the domains are:DV = {1}, DW = {4}, DX = {3, 4, 5}, DY = {4, 5} and

DZ = {2, 3}. Since all the constraints are Max-closed and since there isno empty domain

the problem has a solution given by the maximal values in eachdomain:V = 1, W = 4,

X = 5, Y = 5, Z = 3. The domains are not minimal however: there is no solution having

X = 3 or X = 4.

Based on the correspondence with arc-consistency, we know that applying IBP to the

157



dual join-graph will indeed infer all the zero domains exceptthose ofX, which validates

that IBP is quite powerful for this example.

The above example is suggested by a general scheme for creating belief networks that

correspond to Max-closed constraints (or any other language of constraints): First, create

an acyclic graph, then, associate with each node and its parents a max-closed probability

constraint.

An interesting case for propositional variables is the class of Horn clauses. A Horn

clause can be shown to be Min-closed (by simply checking its models). If we have an

acyclic graph, and we associate every family with a Horn clause expressed as a CPT in the

obvious way, then applying Belief propagation on a dual join-graph can be shown to be

nothing but the application of unit propagation until thereis no change. It is well known

that unit propagation decides the consistency of a set of Horn clauses (even if they are

cyclic). However, unit propagation will not necessarily generate the minimal domains, and

thus not infer all the zeros, but it is likely to behave well.

Implicational constraints.Finally, a class that is known to be solvable by path-consistency

is implicational constraints, defined as follows:

DEFINITION 4.4.7 A binary network is implicational, iff for every binary relation every

value of one variable is consistent either with only one or withall the values of the other

variable [60]. A Bayesian network is implicational if its flatconstraint networks is.

Clearly, a binary function is an implicational constraint. Since IBP is equivalent to

arc-consistency only, we cannot conclude that IBP is zero-complete for implicational con-

straints. This raises the question of what corresponds to path-consistency in belief net-

works, a question which we do not attempt to answer at this point.

158



X1

X2

X3H1

H2

H3

.1

.45

.45

P ( Xi )

3

2

1

X i

0……1

3

1

2

X j

1

1

1

P ( Hk | Xi , Xj )

31

2

1

X i

1

1

Hk

100
True 
belief

0.5.5300

1e-260……200

1e-129……100

.49986

.49721

.45

Bel(Xi = 2)

.00027

.00545

.1

Bel(Xi = 3)

.499863

.49721

.45

Bel(Xi = 1)

2

1

#iterPrior for Xi

CPT for Hk

Figure 4.26: Example of a finite precision problem

A Finite Precision Problem

Algorithms should always be implemented with care on finite precision machines. We

mention here a case where IBP’s messages converge in the limit(i.e. in an infinite number

of iterations), but they do not stabilize in any finite numberof iterations. Consider again

the example in Figure 4.24 with the priors onXi’s given in Figure 4.26. If all nodesHk

are set to value 1, the belief for any of theXi variables as a function of iteration is given in

the table in Figure 4.26. After about 300 iterations, the finite precision of our computer is

not able to represent the value forBel(Xi = 3), and this appears to be zero, yielding the

final updated belief(.5, .5, 0), when in fact the true updated belief should be(0, 0, 1). This

does not contradict our theory, because mathematically,Bel(Xi = 3) never becomes a true

zero, and IBP never reaches a quiescent state.

4.4.4 Experimental Evaluation

We tested the performance of IBP and IJGP both on cases of strong and weak inference

power. In particular, we looked at networks where probabilities are extreme and checked if

the properties of IBP with respect to zeros also extend toε small beliefs.

159



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

noise = 0.60

0

0.01

0.02

0.03

0.04

0.05

A
bs

ol
ut

e 
E

rr
or

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

noise = 0.40

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

noise = 0.20

P
er

ce
nt

ag
e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 4.27: Coding, N=200, 1000 instances, w*=15

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 10

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

A
bs

ol
ut

e 
E

rr
or

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 0

P
er

ce
nt

ag
e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 4.28: 10x10 grids, 100 instances, w*=15

Accuracy of IBP Across Belief Distribution

We investigated empirically the accuracy of IBP’s prediction across the range of belief

values from 0 to 1. Theoretically, zero values inferred by IBPare proved correct, and we

hypothesize that this property extends toε small beliefs. That is, if the flat network is easy

for arc-consistency and IBP infers a posterior belief close to zero, then it is likely to be

correct.

To capture the accuracy of IBP we computed its absolute error per intervals of[0, 1].

Using names inspired by the well known measures in information retrieval, we useRecall

Absolute ErrorandPrecision Absolute Error. Recall is the absolute error averaged over

all the exact posterior beliefs that fall into the interval.For Precision, the average is taken

over all the approximate posterior belief values computed by IBP that fall into the interval.

Our experiments show that the two measures are strongly correlated. We also show the

histograms of distribution of belief for each interval, forthe exact and for IBP, which are

160



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 20

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

A
bs

ol
ut

e 
E

rr
or

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 10

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

evidence = 0

P
er

ce
nt

ag
e

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 4.29: Random, N=80, 100 instances, w*=15

also strongly correlated. The results are given in Figures 4.27-4.30. The left Y axis corre-

sponds to the histograms (the bars), the right Y axis corresponds to the absolute error (the

lines). All problems have binary variables, so the graphs are symmetric about 0.5 and we

only show the interval [0, 0.5]. The number of variables, number of iterations and induced

width w* are reported for each graph.

Coding networks are the famous case where IBP has impressive performance. Theprob-

lems are from the class of linear block codes, with 50 nodes per layer and 3 parent nodes.

Figure 4.27 shows the results for three different values of channel noise: 0.2, 0.4 and 0.6.

For noise 0.2, all the beliefs computed by IBP are extreme. TheRecall and Precision are

very small, of the order of10−11. So, in this case, all the beliefs are very small (ε small) and

IBP is able to infer them correctly, resulting in almost perfect accuracy (IBP is indeed per-

fect in this case for the bit error rate). When the noise is increased, the Recall and Precision

tend to get closer to a bell shape, indicating higher error for values close to 0.5 and smaller

error for extreme values. The histograms also show that lessbelief values are extreme as

the noise is increased, so all these factors account for an overall decrease in accuracy as the

channel noise increases.

Grid networks results are given in Figure 4.28. Contrary to the case of coding networks,

the histograms show higher concentration around 0.5. The absolute error peaks closer to 0

and maintains a plateau, as evidence is increased, indicating less accuracy for IBP.

Random networks results are given in Figure 4.29. The histograms are similarto those

161



0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

cpcs54, evidence = 10

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

A
bs

ol
ut

e 
E

rr
or

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

cpcs360, evidence = 20

P
er

ce
nt

ag
e

0

0.
05 0.

1

0.
15 0.

2

0.
25 0.

3

0.
35 0.

4

0.
45

cpcs360, evidence = 30

Exact Histogram IBP Histogram Recall Abs. Error Precision Abs. Error

Figure 4.30: CPCS54, 100 instances, w*=15; CPCS360, 5 instances, w*=20

of the grids, but the absolute error has a tendency to decrease towards 0.5 as evidence

increases. This may be due to the fact that the total number ofnodes is smaller (80) than

for grids (100), and the evidence can in many cases make the problem easier for IBP by

breaking many of the loops (in the case of grids evidence has less impact in breaking the

loops).

CPCS networksare belief networks for medicine, derived from the Computer based Pa-

tient Case Simulation system. We tested on two networks, with54 and 360 variables. The

histograms show opposing trends in the distribution of beliefs. Although irregular, the ab-

solute error tends to increase towards 0.5 for cpcs54. For cpcs360 it is smaller around 0

and 0.5.

We note that for all these types of networks, IBP has very smallabsolute error for values

close to zero, so it is able to infer them correctly.

Graph-coloring type problems

We also tested the behavior of IBP and IJGP on a special class ofproblems which were

designed to be hard for belief propagation algorithms in general, based on the fact that

arc-consistency is poor on the flat network.

We consider a graph coloring problem which is a generalization of example 4.4.6, with

N = 20 X nodes, rather than 3, and a variable number ofH nodes defining the density of

the constraint graph.X variables are 3-valued root nodes,H variables are bi-valued and

162



Table 4.11: Graph coloring type problems: 20 root variables

Absolute error

ε H=40, w*=5 H=60, w*=7 H=80, w*=9
0.0 0.4373 0.4501 0.4115

IBP 0.1 0.3683 0.4497 0.3869
0.2 0.2288 0.4258 0.3832
0.0 0.1800 0.1800 0.1533

IJGP(2) 0.1 0.3043 0.3694 0.3189
0.2 0.1591 0.3407 0.3022
0.0 0.0000 0.0000 0.0000

IJGP(4) 0.1 0.1211 0.0266 0.0133
0.2 0.0528 0.1370 0.0916
0.0 0.0000 0.0000 0.0000

IJGP(6) 0.1 0.0043 0.0000 0.0132
0.2 0.0123 0.0616 0.0256

each has two parents which areX variables, with the CPTs defined like in example 4.4.6.

EachH CPT actually models a binary constraint between twoX nodes. AllH nodes are

assigned value1. The flat network of this kind of problems has only one solution, where

everyX has value 3. In our experiments we also added noise to theH CPTs, making

probabilitiesε and1− ε rather than 0 and 1.

The results are given in Table 4.11. We varied parameters along two directions. One

was increasing the number ofH nodes, corresponding to higher densities of the constraint

network (the average induced widthw∗ is reported for each column). The other was in-

creasing the noise parameterε. We averaged over 50 instances for each combination of

these parameters. In each instance, the priors for nodesX were random uniform, and the

parents for each nodeH were chosen randomly. We report the absolute error, averaged

over all values, all variables and all instances. We should note that these are fairly small

size networks (w*=5-9), yet they prove to be very hard for IBP and IJGP, because the flat

network is hard for arc-consistency. It is interesting to note that even whenε is not extreme

anymore (0.2) the performance is still poor, because the structure of the network is hard

for arc-consistency. IJGP with higher i-bounds is good forε = 0 because it is able to infer

some zeros in the bigger clusters, and these propagate in thenetwork and in turn infer more

zeros.

163



4.4.5 Discussion

The work presented in this section investigates the behavior of belief propagation algo-

rithms by making analogies to well known and understood algorithms from constraint net-

works. By a simple transformation, called flattening of the Bayesian network, IBP (as

well as any generalized belief propagation algorithm) can be shown to work in a manner

that is similar to relational distributed arc-consistencyrelative to zero tuples generation. In

particular we show that IBP’s inference of zero beliefs converges and is sound.

Theorem 4.4.5 provides a justification for applying the belief propagation algorithm

iteratively. We know that arc-consistency algorithms improve with iteration, generating

the largest arc-consistent network that is equivalent to the original network. Therefore

by applying IBP iteratively the set of zero tuples concluded grows monotonically until

convergence.

While the theoretical results presented here are straightforward, they help identify new

classes of problems that are easy or hard for IBP. Non-ergodicbelief networks with no

evidence, max-closed or implicational belief networks areexpected to be cases of strong

inference power for IBP. Based on empirical work, we observe that good performance

of IBP and many small beliefs indicate that the flat network is likely to be easy for arc-

consistency. On the other hand, when we generated hard networks for arc-consistency, IBP

was very poor in spite of the presence of many zero beliefs. Webelieve that the success

of IBP for coding networks can be explained by the presence of many extreme beliefs on

one hand, and by an easy-for-arc-consistency flat network onthe other. We plan to conduct

more experiments on coding networks and study the influence of the good accuracy of IBP

for extreme beliefs combined with theε-cutset effect described in [9].

164



4.5 Conclusion to Chapter 4

In this chapter we investigated a family of approximation algorithms for mixed networks,

that could also be extended to graphical models in general. We started with bounded infer-

ence algorithms and proposed Mini-Clustering (MC) scheme as ageneralization of Mini-

Buckets to arbitrary tree decompositions. Its power lies in being an anytime algorithm

governed by a user adjustable i-bound parameter. MC can start with small i-bound and

keep increasing it as long as it is given more time, and its accuracy usually improves with

more time. If enough time is given to it, it is guaranteed to become exact.

Inspired by the success of iterative belief propagation (IBP), we extended MC into an

iterative message-passing algorithm called Iterative Join-Graph Propagation (IJGP). IJGP

operates on general join-graphs that can contain cycles, but it is sill governed by an i-bound

parameter. Unlike IBP, IJGP is guaranteed to become exact if given enough time.

We also make connections with well understood consistency enforcing algorithms for

constraint satisfaction, giving strong support for iterating messages, and helping identify

cases of strong and weak inference power for IBP and IJGP. We show that: (1) if a value of

a variable is assessed as having zero-belief in any iteration of IBP, then it remains a zero-

belief in all subsequent iterations; (2) that IBP converges in a finite number of iterations

relative to its set of zero-beliefs; and, most importantly (3) that the set of zero-beliefs

decided by any of the iterative belief propagation methods is sound. Namely any zero-

belief determined by IBP corresponds to a true zero conditional probability relative to the

given probability distribution expressed by the Bayesian network.

Experimental evaluation is provided for all these schemes,and IJGP emerges as one of

the most powerful approximate algorithms for belief networks.

165



Chapter 5

AND/OR Cutset Conditioning

5.1 Introduction

The complexity of a reasoning task over a graphical model depends on the induced width

of the graph. For inference-type algorithms, the space complexity is exponential in the

induced width in the worst case, which often makes them infeasible for large and densely

connected problems. In such cases, space can be traded at theexpense of time by condi-

tioning (assigning values to variables).

Search algorithms perform conditioning on all the variables. Cycle cutset schemes

[86, 26] only condition on a subset of variables such that theremaining network is singly

connected (i.e., is a tree) and can be solved by inference tree algorithms. The more recent

hybrid w-cutsetscheme [90, 10] conditions on a subset of variables such that, when re-

moved, the remaining network has induced widthw or less, and can be solved by a variable

elimination [29] type algorithm.

5.1.1 Contributions

In this chapter we revisit the well known conditioning method of cycle cutset and introduce

the new concept ofAND/OR cycle cutset. We show that the AND/OR cycle cutset is a strict

166



improvement over the traditional cycle cutset method (and the same holds for the extended

w-cutset version). The result goes beyond the simple organization of the traditional cutset

in an AND/OR pseudo tree, which would be just the straightforward improvement. The

complexity of exploring the traditional cutset is time exponential in the number of nodes

in the cutset, and therefore it calls for finding a minimal cardinality cutset, denoted by

C. The complexity of exploring the AND/OR cutset is time exponential in its depth, and

therefore it calls for finding a minimal depthAND/OR cutset, denoted byAO-C. That is,

a set of nodes that can be organized in a start pseudo tree of minimal depth. So, while the

cardinality of the optimal AND/OR cutset,|AO-C|, may be larger than that of the optimal

traditional cutset,|C|, the depth ofAO-C is always smaller than or equal to|C|.

The research presented in this chapter is based in part on [75, 38].

5.2 Traditional Cycle Cutset Explored by AND/OR

Search

The AND/OR paradigm exploits the problem structure, by solving independent compo-

nents separately. This fundamental idea can also be appliedto the cycle cutset method, or

reasoning by conditioning [86].

DEFINITION 5.2.1 (cycle cutset)Given a graphical modelM = 〈X,D,F〉, acycle cutset

is a subsetC ⊂ X such that the primal graph ofM becomes singly connected (i.e., a tree)

if all the nodes inC are removed from it. Anoptimal cycle cutsetis one having the minimum

number of variables.

The cycle cutset method consists of enumerating all the possible instantiations ofC,

and for each one of them solving the remaining singly connected network by a linear time

and space tree algorithm. The instantiations ofC are enumerated by regular OR search,

yielding linear space complexity andO(exp |C|) time complexity, therefore requiring a

167



B A C

B

A

C

A

B

C

(a) (b) (c)

Figure 5.1: Traditional cycle cutset viewed as AND/OR tree

minimal cycle cutset to optimize complexity.

A first simple improvement to the traditional cycle cutset scheme described above

would be the enumeration ofC by AND/OR search.

Example 5.2.1 Figure 5.2.1a shows two3×3 grids, connected on the side nodeA. A cycle

cutset must include at least two nodes from each grid, so the minimal cycle cutset contains

three nodes: the common nodeA and one more node from each grid, for exampleB and

C. The traditional way of solving the cycle cutset problem consists of enumerating all the

assignments of the cycle cutset{A,B,C}, as if these variables form the chain pseudo tree

in Figure 5.2.1b. However, ifA is the first conditioning variable, the remaining subproblem

is split into two independent portions, so the cycle cutset{A,B,C} can be organized as

an AND/OR search space based on the pseudo tree in Figure 5.2.1c. If k is the maximum

domain size of variables, the complexity of solving Figure 5.2.1b isO(k3) while that of

solving Figure 5.2.1c isO(k2).

We can improve the general cycle cutset method, based on the previous example: first

find the minimal cycle cutsetC; then find the minimal depthstart pseudo treemade of

nodes inC:

DEFINITION 5.2.2 (start pseudo tree)Given an undirected graphG = (X, E), a directed

rooted treeT = (V,E ′), whereV ⊆ X, is called astart pseudo treeif it has the same root

and is a subgraph of some pseudo tree ofG.

If a cycle cutset of cardinality|C| = c is explored by AND/OR search, based on a start

pseudo treeT over the setC, and the depth ofT ism, thenm ≤ c. Therefore,

168



A
r

1

B
r

1

A
r

i

B
r

i

A
r

2r�1

B
r

2r�1
… …

A
3

1
A

3

2
A

3

3
A

3

4

A
2

1
A

2

2

A
1

1

… …

Figure 5.2: AND/OR cycle cutset

Proposition 23 Exploring a cycle cutset by AND/OR search is always better than, or the

same as, exploring it by OR search.

5.3 AND/OR Cycle Cutset

The idea presented in section 5.2 is a straightforward application of the AND/OR paradigm

to cycle cutsets. In the following we will describe a more powerful version of theAND/OR

cycle cutset.

DEFINITION 5.3.1 (AND/OR cycle cutset)Given a graphical modelR = (X,D,F ), an

AND/OR cycle cutsetAO-C is a cycle cutset together with an associated start pseudo tree

TAO-C of depthm. Anoptimal AND/OR cycle cutsetis one having the minimum depthm.

Example 5.3.1 Figure 5.3.1 shows a network for which theoptimal cycle cutsetcontains

fewer nodes than theoptimal AND/OR cycle cutset, yet the latter yields an exponential

improvement in time complexity. The network in the example isbased on a complete bi-

nary tree of depthr, the nodes markedAj
i shown on a gray background. The upper index

j corresponds to the depth of the node in the binary tree, and the lower indexi to the

position in the level. Each of the leaf nodes, fromAr
1 to Ar

2r−1 is a side node in a3 × 3

grid. A cycle cutset has to contain at least 2 nodes from each of the2r−1 grids. An optimal

cycle cutset isC = {Ar
1, . . . , A

r
2r−1 , Br

1, . . . , B
r
2r−1}, containing2r nodes, so the complex-

ity is O(exp |C|) = O(exp(2r)). We should note that the best organization ofC as an

169



AND/OR space would yield a pseudo tree of depth2r−1 + 1. This is because all the nodes

in {Ar
1, . . . , A

r
2r−1} are connected by the binary tree, so they all must appear along the

same path in the pseudo tree (this observation also holds forany other optimal cycle cutset

in this example). ExploringC by AND/OR search lowers the complexity fromO(exp(2r))

toO(exp(2r−1 + 1)).

Let’s now look at the AND/OR cycle cutsetAO-C = {Aj
i | j = 1, . . . , r; i =

1, . . . , 2j−1} ∪ {Br
1, . . . , B

r
2r−1}, containing all theA andB nodes. A pseudo tree in this

case is formed by the binary tree ofA nodes, and theB nodes exactly in the same position

as in the figure. The depth in this case isr + 1, so the complexity isO(exp(r + 1)), even

though the number of nodes is|AO-C| = |C|+ 2r−1 − 1.

The previous example highlights the conceptual differencebetween thecycle cutset

methodand what we will call theAND/OR cycle cutset method. In cycle cutset, the ob-

jective is to identify the smallest cardinality cutset. Subsequently, the exploration can be

improved from OR search to AND/OR search. InAND/OR cycle cutsetthe objective is to

find a cutset that forms a start pseudo tree of smallest depth.

THEOREM 5.3.2 Given a graphical modelR, an optimal cycle cutsetC, its corresponding

smallest depth start pseudo treeTC, and the optimal AND/OR cycle cutsetAO-C with the

start pseudo treeTAO-C, then:

|C| ≥ depth(TC) ≥ depth(TAO-C) (5.1)

There exist instances for which the inequalities are strict.

Proof. The leftmost inequality follows from Prop. 23. The rightmost inequality follows

from the definition of AND/OR cycle cutsets. Example 5.3.1 isan instance where the

inequalities are strict. 2

We should note that strict inequalities in Eq. 5.1 could translate into exponential differ-

ences in time complexities.

170



5.4 AND/ORw-Cutset

The principle of cutset conditioning can be generalized using the notion ofw-cutset. A w-

cutsetof a graph is a set of nodes such that, when removed, the remaining graph has induced

width at mostw. A hybrid algorithmic scheme combining conditioning andw-bounded

inference was presented in [90, 63]. More recently,w-cutsetsampling was investigated in

[10], and the complexity of finding the minimalw-cutsetwas discussed in [11].

The hybridw-cutsetalgorithm performs search on the cutset variables and exactinfer-

ence (e.g., bucket elimination [29]) on each of the conditioned subproblems. If thew-cutset

Cw is explored by linear space OR search, the time complexity isO(exp(|Cw| + w)), and

the space complexity isO(expw).

The AND/OR cycle cutset idea can be extended naturally toAND/OR w-cutset. To

show an example of the difference between the traditional w-cutset and theAND/OR w-

cutsetwe refer again to the example in Figure 5.3.1. Consider each3 × 3 grid replaced

by a network which has a minimal w-cutsetCw. The minimal w-cutset of the whole graph

contains in this case2r−1 · |Cw| nodes. If this w-cutset is explored by OR search, it yields a

time complexity exponential in(2r−1 · |Cw|+ w). If the w-cutset is explored by AND/OR

search it yields a time complexity exponential in(2r−1 + |Cw| + w) (similar to Example

5.3.1). In contrast to this, theAND/OR w-cutset, which contains theA nodes and the w-

cutsets of each leaf network, yields a time complexity exponential only in(r + |Cw|+ w),

or possibly even less if the nodes inCw can be organized in a start pseudo tree which is not

a chain (i.e., has depth smaller than|Cw|).

5.5 Algorithm Description

The idea ofw-cutset schemes is to define an algorithm that can run in spaceO(expw). The

AND/OR w-cutset algorithmis a hybrid scheme. The cutset portion, which is organized ina

start pseudo tree, is explored by AND/OR search. The remainingw-bounded subproblems

171



can be solved either by a variable elimination type algorithm, or by search withw-bounded

caching - in particular, AND/OR search with full caching is feasible for these subproblems.

5.5.1 Adaptive AND/OR Caching Scheme

In [45], the caching scheme of AND/OR search is based oncontexts[23], which are pre-

computed based on the pseudo tree before search begins. Algorithm AO(i) performs

caching only at the variables for which the context size is smaller than or equal toi (called

i-bound).

The cutset principle inspires a more refined caching scheme forAO, which caches some

values even at nodes with contexts greater than thei-bound. Lets assume the context of the

nodeXk is context(Xk) = {X1, . . . , Xk}, wherek > i. During the search, when variables

X1, . . . , Xk−i are instantiated, they can be regarded as part of a cutset. The problem rooted

by Xk−i+1 can be solved in isolation, like a subproblem in the cutset scheme, after the

variablesX1, . . . , Xk−i are assigned their current values in all the functions. In this sub-

problem,context(Xk) = {Xk−i+1, . . . , Xk}, so it can be cached withini-bounded space.

However, when the search retracts toXk−i or above, the cache table for variableXk needs

to be purged, and will be used again when a new subproblem rooted atXk−i+1 is solved.

This improved caching scheme only increases the space requirements linearly, com-

pared toAO(i), but the time savings can be exponential. We will show results in section

5.6.

5.5.2 Algorithm AO-C(i)

We can now define the different versions ofAND/OR i-cutset algorithmthat we exper-

imented with. We chose to explore the cutset portion either by linear space AND/OR

search (no caching) or by AND/OR search with improved caching. For thei-bounded sub-

problems, we chose either Bucket Elimination (BE) or AND/OR search with full caching

(which coincides with the improved caching on the bounded subproblems). The four result-

172



ing algorithms are: 1)AO-LC(i) - linear space cutset and full caching for subproblems; 2)

AO-LC-BE(i) - linear space cutset and BE for subproblems;AO-C(i) - improved caching

everywhere; 4)AO-C-BE(i) - improved caching on cutset and BE on subproblems.

5.5.3 Finding a Start Pseudo Tree

The performance ofAO-C(i) is influenced by the quality of the start pseudo tree. Finding

the minimal depth start pseudo tree for the giveni-bound is a hard problem, and it is beyond

the scope of this chapter to address its complexity and solution. We will only describe the

heuristic we used in creating the pseudo trees for our experiments.

Min-Fill [61] is one of the best and most widely used heuristics for creating small

induced width orderings. The ordering defines a unique pseudo tree. The minimal start

pseudo for ani-bound contains the nodes for which some descendant has adjusted context

(i.e., context without the variables instantiated on the current path) greater thani. Min-Fill

heuristic tends to minimize context size, rather than pseudo tree depth. Nevertheless, we

chose to try it and discovered that it provides one of the bestpseudo trees for higher values

of i.

Min-Depth We developed a heuristic to produce a balanced start pseudo tree, resulting

in smaller depth. We start from a Min-Fill tree decomposition and then iteratively search

for the separator that would break the tree in parts that are as balanced as possible, relative

to the following measure: on either side of the separator eliminate the separator variables,

count the number of remaining clusters, sayn, and then add the sizes of the largestlog n

clusters.

GWC [11] is a greedy algorithm to build a minimal cardinality cutset. In the process,

we also arranged the minimal cardinality cutset as AND/OR cutset, to compare with the

minimal depth cutset that we could find.

173



CPCS 422 -f(i)

i 1 2 3 4 5 6 7 8 9 10 11
d(AO-C) 32 32 32 32 31 31 31 31 31 30 29
d(C) 40 37 32 32 38 37 36 34 32 30 29
|C| 79 71 65 59 54 50 46 41 37 34 32

GWCA 79 67 60 55 50 46 42 38 34 31 29

Table 5.1: CPCS 422 - Cutsets Comparison

5.6 Experimental Evaluation

We investigated two directions. One was to empirically testthe quality of the start pseudo

trees, and the other was to compare actual runs of the different versions ofAO-C(i).

5.6.1 The Quality of Start Pseudo Trees

We report here the results on the CPCS 422b network from the UAI repository. It has 422

nodes and induced width 22. Table 5.1 shows the values off(i), which expresses the total

complexity of a cutset scheme. For a cardinality cutset,f(i) = i+ |C| and for an AND/OR

cutset of depthd, f(i) = i + d. The rowd(AO-C) shows the depth of the best AND/OR

cutset we could find.|C| shows the number of nodes in the best cutset found by GWC, and

d(C) shows its depth when organized as AND/OR cutset. GWCA is taken from [11]. The

best complexity, expressed by small values off(i), is always given by the AND/OR cutset,

and for smaller values ofi they translate into impressive savings over the cardinality cutset

C.

In all our experiments described in the following, we refrained from comparing the

new cutset scheme with the old cardinality cutset scheme (equivalent to an OR search on

the cutset), because the latter was too slow.

5.6.2 Performance ofAO-C(i)

We tested the different version of theAO-C(i) family primarily on Bayesian networks with

strictly positive distributions, for the task of belief updating. This is necessary to grasp the

174



N=40, K=3, P=2, 20 instances, w*=7
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

1 AO(i) 12 9 610.14 27.12 50,171,141 1,950,539
AO-LC(i) 174.53 8.75 13,335,595 575,936

AO-C(i) 67.99 7.61 4,789,569 499,391
AO-C-BE(i) 16.95 2.18 - -

3 AO(i) 7 6 71.68 8.13 5,707,323 595,484
AO-LC(i) 5.73 0.84 501,793 69,357

AO-C(i) 2.94 0.84 248,652 69,357
AO-C-BE(i) 0.69 0.25 - -

5 AO(i) 4 3 11.28 2.77 999,441 24,396
AO-LC(i) 0.55 0.54 50,024 4,670

AO-C(i) 0.55 0.55 49,991 4,670
AO-C-BE(i) 0.10 0.04 - -

N=60, K=3, P=2, 20 instances, w*=11
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

6 AO-LC(i) 7 6 159.79 63.01 14,076,416 5,165,486
AO-C(i) 112.43 62.98 9,925,855 5,165,486

AO-C-BE(i) 27.33 5.50 - -
9 AO-LC(i) 3 3 24.40 41.45 2,140,791 3,509,709

AO-C(i) 24.15 40.93 2,140,791 3,509,709
AO-C-BE(i) 4.27 2.89 - -

11 AO-LC(i) 0 1 17.39 38.46 1,562,111 3,173,129
AO-C(i) 17.66 38.22 1,562,111 3,173,129

AO-C-BE(i) 1.29 2.81 - -

Table 5.2: Random Networks

power of the scheme when no pruning is involved in search.

In all the tables N is the number of nodes, K is the maximum domain size, P is the

number of parents of a variable,w∗ is the induced width,i is thei-bound,d is the depth of

the i-cutset. For most problems, we tested a min-fill pseudo-tree(MF) and one based on

the depth minimizing heuristic (MD). The time and the numberof nodes expanded in the

search are shown for the two pseudo trees correspondingly.

Random networks. Table 5.2 shows results for random networks, generated based on

N, K and P and averaged over 20 instances. Note that K=3, whichmakes the problems

harder, even thoughw∗ seems small. For N=40 we see that the old scheme AO(i) is always

outperformed. Using improved caching on the cutset is almost always beneficial. Fori very

close tow∗, caching on the cutset doesn’t save much, and in some cases when no caching

is possible, the extra overhead may actually make it slightly slower. Also, for strictly

positive distributions, switching to BE is faster than running AO search with caching on

the remaining problems.

175



CPCS networks. CPCS are real life networks for medical diagnoses, which are hard

for belief updating. Table 5.3 shows results for CPCS 360 file, having induced width 20.

For i = 20, AO-C-BE(i) is actually BE. It is interesting to note thatAO-LC-BE(i), for

i = 12 is actually faster than BE on the whole problem, while requiring much less space

(exp(12) compared toexp(20)), due to smaller overhead in caching (smaller cache tables)

and a good ordering that doesn’t require recomputing the same problems again. We also

mention that AO(i) was much slower on this problem and therefore not included in the

table.

In the above experiments, the values ofd show that MF heuristic provided a better cutset

for large values ofi, while the MD heuristic provided good cutsets wheni was small.

Genetic linkage network. We include in Table 5.4 results for the genetic linkage net-

work EA4 [47]. This is a large network, with N=1173, but relatively small induced width,

w∗ = 15. This network contains a lot of determinism (zero probability tuples). We did not

use in AO search any form of constraint propagation, limiting the algorithm to prune only

the zero value nodes (their subproblems do not contribute tothe updated belief). We note

here that fori-bound 13 and 9,AO-C(i) is faster thanAO-C-BE(i) because it is able to

prune the search space. We used a version of BE which is insensitive to determinism.

Large networks. Memory limitations are the main drawback of BE. In Table 5.5 we

show results for hard networks, solved byAO-C-BE(i), wherei = 12 is set to the max-

imum value that we could use on a 2.4 GHz Pentium IV with 1 GB of RAM. For N=100,

the space requirements of BE would be about 100 times bigger than the RAM (note K=3),

yetAO-C-BE(12) could solve it in about six and a half hours, showing the scalability of

the AND/OR cutset scheme.

176



CPCS 360b, N=360, K=2, w* = 20
i Algorithms d (MF) Time # nodes
1 AO-LC(i) 23 2,507.6 406,322,117

AO-LC-BE(i) 1,756.4 -
AO-C(i) 1,495.2 243,268,549

AO-C-BE(i) 1,019.4 -
12 AO-LC(i) 8 186.8 14,209,057

AO-LC-BE(i) 10.3 -
AO-C(i) 185.1 14,209,057

AO-C-BE(i) 10.4 -
20 AO-LC(i) 0 167.8 12,046,369

AO-LC-BE(i) 11.5 -
AO-C(i) 170.9 12,046,369

AO-C-BE(i) 11.6 -

Table 5.3: CPCS 360

EA4 - N=1173, K=5, w*=15
i Algorithms d Time(sec) # nodes

MF MD MF MD MD MF

6 AO(i) 23 21 10.0 103.4 1,855,490 15,312,582
AO-LC(i) 22.5 76.4 3,157,012 9,928,754

AO-C(i) 2.0 51.3 281,896 6,666,210
AO-C-BE(i) 8.4 82.3 - -

9 AO(i) 18 17 3.3 9.3 410,934 1,466,338
AO-LC(i) 1.6 4.7 196,662 617,138

AO-C(i) 1.5 4.8 196,662 616,802
AO-C-BE(i) 3.5 7.0 - -

13 AO(i) 3 8 2.0 5.9 235,062 887,138
AO-LC(i) 1.4 3.6 172,854 431,458

AO-C(i) 1.6 3.4 172,854 431,458
AO-C-BE(i) 0.7 5.3 - -

Table 5.4: Genetic Linkage Network

5.7 Conclusion to Chapter 5

This section presents theAND/OR w-cutset scheme, which combines the newly developed

AND/OR search for graphical models [45] with the w-cutset scheme [10]. Theorem 5.3.2

shows that the new scheme is always at least as good as the existing cutset schemes, but it

often provides exponential improvements.

The new AND/OR cutset inspired an improved caching scheme for the AND/OR

search, which is always better than the one used by AO(i) [45], based on context.

The experimental evaluation showed, first, that the theoretical expectations of getting

exponential improvements over the traditional cardinality cutset are actually met in prac-

tice.

Second, it showed the power and flexibility of the new hybrid scheme. Our conclusion

177



K=3, P=2; AO-C-BE(i), i=12

N w* d (MF) Time(sec)
70 13 2 12
80 15 3 61
90 17 6 2,072

100 18 9 22,529

Table 5.5: Networks with high memory requirements for BE

is that improved caching on the cutset is in most cases beneficial. For the remaining prob-

lems, if the task is belief updating (or counting solutions)and there is little determinism,

then switching to BE is faster. In the presence of determinism, solving the remaining prob-

lems with search with full caching may be better. We leave forfuture work the investigation

of using look-ahead and no-good learning in the presence of determinism for the AND/OR

w-cutset scheme.

Finally, the new scheme is scalable to memory intensive problems, where inference

type algorithms are infeasible.

178



Chapter 6

AND/OR Search and Inference

Algorithms

6.1 Introduction

It is convenient to classify algorithms that solve reasoning problems of graphical models

as either search (e.g., depth first, branch and bound) or inference (e.g., variable elimina-

tion, join-tree clustering). Search is time exponential inthe number of variables, yet it can

be accomplished in linear memory. Inference exploits the graph structure of the model

and can be accomplished in time and space exponential in thetreewidthof the problem.

When the treewidth is big, inference must be augmented with search to reduce the mem-

ory requirements. In the past three decades search methods were enhanced with structure

exploiting techniques. These improvements often require substantial memory, making the

distinction between search and inference fuzzy. Recently, claims regarding the superior-

ity of memory-intensive search over inference or vice-versa were made [5]. Our aim is to

clarify this relationship and to create cross-fertilization using the strengths of both schemes.

179



6.1.1 Contributions

First, we compare pure search with pure inference algorithms in graphical models through

the new framework of AND/OR search. Specifically, we compareVariable Elimination

(VE) against memory-intensive AND/OR Search (AO), and place algorithms such as

graph-based backjumping, no-good and good learning, and look-ahead schemes [31] within

the AND/OR search framework. We show that there is no principled difference between

memory-intensive search restricted to fixed variable ordering and inference beyond: (1)

different direction of exploring a common search space (topdown for search vs. bottom-

up for inference); (2) different assumption of control strategy (depth first for search and

breadth first for inference). We also show that those differences have no practical effect,

except under the presence of determinism. Our analysis assumes a fixed variable ordering.

When variable ordering is dynamic in search, some of these conclusions may not hold.

Second, we address some long-standing questions regardingthe computational merits

of several time-space sensitive algorithms for graphical models. In the past ten years, four

types of algorithms have emerged, based on: (1) cycle-cutset andw-cutset [86, 26]; (2)

alternating conditioning and elimination controlled by induced-widthw [90, 63, 47]; (3)

recursive conditioning [23], which was recently recast as context-based AND/OR search

[45]; (4) varied separator-sets for tree decompositions [32]. The question is how do all

these methods compare and, in particular, is there one that is superior? A brute-force anal-

ysis of time and space complexities of the respective schemes does not settle the question.

For example, if we restrict the available space to be linear,the cycle-cutset scheme is ex-

ponential in the cycle-cutset size while recursive conditioning is exponential in the depth

of the pseudo tree (or d-tree) that drives the computation. However some graphs have

small cycle-cutset and larger tree depth, while others havelarge cycle-cutsets and small

tree depth (e.g., grid-like chains). The immediate conclusion seems to be that the methods

are not comparable.

We show that by looking at all these schemes side by side, and analyzing them using

180



the context minimal AND/OR graph data structure [74], each of these schemes can be

improved via the AND/OR search principle and by careful caching, to the point that they all

become identically good. Specifically, we show that the new algorithm Adaptive Caching

(AOC(i) ), inspired by AND/OR cutset conditioning [75] (improving cutset, andw-cutset

schemes), can simulate any execution of alternating elimination and conditioning, if the

latter is augmented with AND/OR search over the conditioning variables, and can also

simulate any execution of separator controlled tree-clustering schemes [32], if the clusters

are augmented with AND/OR cutset search, rather than regular search, as was initially

proposed.

All the analysis is again done assuming that the problem contains no determinism.

When the problem has determinism all these schemes become incomparable, as was shown

in [74], because they are all different in their variable ordering approach and this accounts

for differences in exploiting determinism as we observed inthe simplest case comparing

Variable Elimination to AND/OR search [74].

The research presented in this chapter is based in part on [74, 78, 38].

6.2 AND/OR Search (AO) vs. Variable Elimination (VE)

We will compare Variable Elimination and search by the portions of a common search space

that they traverse and record. Since VE’s execution is uniquely defined by a bucket-tree,

and since every bucket tree corresponds to a pseudo tree, anda pseudo tree uniquely defines

the context-minimal AND/OR search graph, we can compare both schemes on this common

search space. Furthermore, we choose the context-minimal AND/OR search graph (CM)

because algorithms that traverse the full CM need memory which is comparable to that

used by VE, namely, space exponential in the treewidth of their pseudo/bucket trees.

Algorithm AO denotes any traversal of the CM search graph, AO-DF is a depth-first

traversal and AO-BF is a breadth-first traversal. We will compare VE and AO via the

181



ABE

BCD

ABC

CD

D

AB

BC

CD

D

bucket-C

bucket-D

bucket-B

bucket-A

bucket-E

(b) (c)

D:     h4 (D)

C:     h3(CD)

B:     P(D|BC) h 2(BC)

A:     P(A) P(B|A) P(C|A) h 1(AB)

E:     P(E|AB)

(a)

A

E

B C

D

Figure 6.1: Variable Elimination

portion of this graph that they generate and by the order of node generation. The task’s

value computation performed during search adds only a constant factor.

We distinguish graphical models with or without determinism, namely, graphical mod-

els that have inconsistencies vs. those that have none. We comparebrute-forceversions of

VE and AO, as well as versions enhanced by various known features. We assume that the

task requires the examination of all solutions (e.g. beliefupdating, counting solutions).

6.2.1 AO vs. BE with No Determinism

We start with the simplest case in which the graphical model contains no determinism and

the bucket tree (pseudo tree) is a chain.

OR Search Spaces

Figure 6.1a shows a Bayesian network. Let’s consider the ordering d = (D,C,B,A,E)

which has the treewidthw(d) = w∗ = 2. Figure 6.1b shows the bucket-chain and a

schematic application of VE along this ordering (the bucketof E is processed first, and the

bucket of D last). The buckets include the initial CPTs and thefunctions that are generated

and sent (as messages) during the processing. Figure 6.1c shows the bucket tree.

If we use the chain bucket tree as pseudo tree for the AND/OR search alongd, we get

the full CM graphgiven in Figure 6.2. Since this is an OR space, we can eliminate the OR

182



D=0 D=1

C=0 C=1 C=0 C=1

B=0 B=1 B=0 B=1

A=0 A=1 A=0 A=1

E=0 E=1 E=0 E=1

B0C0D0 B0C0D1
B1C0D0 B1C0D1 B0C1D0 B0C1D1

B1C1D0 B1C1D1

A0B0C0 A0B0C1
A1B0C0 A1B0C1 A0B1C0 A0B1C1

A1B1C0 A1B1C1

E0A0B0 E0A0B1
E1A0B0 E1A0B1 E0A1B0 E0A1B1

E1A1B0 E1A1B1

Figure 6.2: Context-minimal AND/OR search space

levels as shown. Each level of the graph corresponds to one variable. The edges should be

labeled with the product of the values of the functions that have just been instantiated on

the current path. We note on the arc just the assignment to therelevant variables (e.g.,B1

denotesB = 1). For example, the edges between C and B in the search graph are labeled

with the function valuation on(BCD), namelyP (D|B,C), where for each individual edge

this function is instantiated as dictated on the arcs.

AO-DF computes the value (e.g., updated belief) of the root node by generating and

traversing the context-minimal graph in a depth-first manner and accumulating the partial

value (e.g., probabilities) using combination (products)and marginalization (summation).

The first two paths generated by AO-DF are(D0, C0, B0, A0, E0) and(D0, C0, B0, A0, E1),

which allow the first accumulation of valueh1(A0B0) = P (E0|A0B0)+P (E1|A0B0). AO-

DF subsequently generates the two paths(D0, C0, B0, A1, E0) and(D0, C0, B0, A1, E1) and

accumulates the next partial valueh1(A1B0) = P (E0|A1B0)+P (E1|A1B0). Subsequently

it computes the summationh2(B0C0) = P (A0)·P (B0|A0)·P (C0|A0)·h1(A0B0)+P (A1)·

P (B0|A1) · P (C0|A1) · h1(A1B0). Notice that due to caching each arc is generated and

traversed just once (in each direction). For example when the partial path(D1, C0, B0) is

created, it is recognized (via context) that the subtree below was already explored and its

compiled value will be reused.

183



In contrast, VE generates the full context-minimal graph bylayers, from thebottom

of the search graph up, in a manner that can be viewed as dynamic programming or as

breadth-first search on the explicated search graph. VE’s execution can be viewed as first

generating all the edges between E and A (in some order), and then all the edges between A

and B (in some order), and so on up to the top. We can see that there are 8 edges between E

and A. They correspond to the 8 tuples in the bucket of E (the function on(ABE)). There

are 8 edges between A and B, corresponding to the 8 tuples in thebucket of A. And there

are 8 edges between B and C, corresponding to the 8 tuples in thebucket of B. Similarly, 4

edges between C and D correspond to the 4 tuples in the bucket of C, and 2 edges between

D and the rood correspond to the 2 tuples in the bucket of D.

Since the computation is performed from bottom to top, the nodes of A store the result

of eliminatingE (namely the functionh1(AB) resulting by summing outE). There are 4

nodes labeled with A, corresponding to the 4 tuples in the message sent by VE from bucket

of E to bucket of A (the message on(AB)). And so on, each level of nodes corresponds to

the number of tuples in the message sent on the separator (thecommon variables) between

two buckets.

AND/OR Search Spaces

The above correspondence betweenAO and VE is also maintained in non-

chain pseudo/bucket trees, as is demonstrated next. We refer again to the ex-

ample in Figures 3.12, and assume the task is belief updating(the CPTs are

P (A), P (B|A), P (C|A), P (D|B,C), P (E|A,B). The bucket tree in Figure 7.3(c) has

the same structure as the pseudo tree in Figure 3.12(a). We will show that VE traverses

the AND/OR search graph in Figure 3.12(b) bottom up, while AO-DF traverses the same

graph in depth first manner, top down.

AO-DF first sumsh3(A0, B0) = P (E0|A0, B0) + P (E1|A0, B0) and then goes depth

first to h1(B0, C0) = P (D0|B0, C0) + P (D1|B0, C0) andh1(B0, C1) = P (D0|B0, C1) +

184



P (D1|B0, C1). Then it computesh2(A0, B0) = (P (C0|A0) · h1(B0, C0)) + (P (C1|A0) ·

h1(B0, C1)). All the computation of AO-DF is precisely the same as the oneperformed in

the buckets of VE. Namely,h1 is computed in the bucket ofD and placed in the bucket of

C. h2 is computed in the bucket ofC and placed in the bucket ofB, h3 is computed in the

bucket ofE and also placed in the bucket ofB and so on, as shown in Figure 7.3b. All this

corresponds to traversing the AND/OR graph from leaves to root. Thus, both algorithms

traverse the same graph, only the control strategy is different.

We can generalize both the OR and AND/OR examples,

THEOREM 6.2.1 (VE and AO-DF are identical) Given a graphical model having no de-

terminism, and given the same bucket/pseudo tree VE appliedto the bucket-tree is a

(breadth-first) bottom-up search that will explore all the full CM search graph, while AO-

DF is a depth-first top-down search that explores (and records) the full CM graph as well.

Breadth-first on AND/OR Since one important difference between AO search and VE

is the order by which they explore the search space (top-downvs. bottom-up) we wish to

remove this distinction and consider a VE-like algorithm that goes top-down. One obvious

choice is breadth-first search, yielding AO-BF. That is, in Figure 3.11 we can process the

layer of variable A first, then B, then E and C, and then D. Generalbreadth-firstor best-

first search of AND/OR graphs for computing the optimal cost solution subtrees are well

defined procedures. The process involves expanding all solution subtrees in layers of depth.

Whenever a new node is generated and added to the search frontier the value of all relevant

partial solution subtrees are updated. A well known Best-first version of AND/OR spaces

is the AO* algorithm [85]. Algorithm AO-BF can be viewed as a top-down inference

algorithm. We can now extend the comparison to AO-BF.

Proposition 24 (VE and AO-BF are identical) Given a graphical model with no deter-

minism and a bucket/pseudo tree, VE and AO-BF explore the same full CM graph, one

185



bottom-up (VE) and the other top-down; both perform identical value computation.

Terminology for the comparison of algorithms Let A andB be two algorithms over

graphical models, whose performance is determined by an underlying bucket/pseudo tree.

DEFINITION 6.2.1 (comparison of algorithms)We say that: 1. algorithmsA andB are

identical if for every graphical model and when given the samebucket-tree they traverse

an identical search space. Namely, every node is explored byA iff it is explored byB; 2.

A is weakly better thanB if there exists a graphical model and a bucket-tree, for whichA

explores a strict subset of the nodes explored byB; 3. A is better thanB if A is weakly

better thanB butB is not weakly better thanA; 4. The relation of ”weakly-better” defines

a partial order between algorithms.A andB arenot comparableif they are not comparable

w.r.t to the ”weakly-better” partial order.

Clearly, any two algorithms for graphical models are either 1. identical, 2. one is better

than the other, or 3. they are not comparable. We can now summarize our observations so

far using the new terminology.

THEOREM 6.2.2 For a graphical model having no determinism AO-DF, AO-BF andVE

are identical.

Note that our terminology captures the time complexity but may not capture the space

complexity, as we show next.

Space Complexity

To make the complete correspondence between VE and AO search, we can look not only

at the computational effort, but also at the space required.Both VE and AO search traverse

the context minimal graph, but they may require different amounts of memory to do so.

So, we can distinguish between the portion of the graph that is traversed and the portion

that should be recorded and maintained. If the whole graph isrecorded, then the space is

O(n · exp(w∗)), which we will call the base case.

186



VE can forget layers Sometimes, the task to be solved can allow VE to use less space

by deallocating the memory for messages that are not necessary anymore. Forgetting pre-

viously traversed layers of the graph is a well known property of dynamic programming.

In such a case, the space complexity for VE becomesO(dBT · exp(w∗)), wheredBT is

thedepthof the bucket tree (assuming constant degree in the bucket tree). In most cases,

the above bound is not tight. If the bucket tree is a chain, then dBT = n, but forgetting

layers yields anO(n) improvement over the base case. AO-DF cannot take advantageof

this property of VE. It is easy to construct examples where the bucket tree is a chain, for

which VE requiresO(n) less space than AO-DF.

AO dead caches The straightforward way of caching is to have a table for eachvariable,

recording its context. However, some tables might never getcache hits. We call these

dead-caches. In the AND/OR search graph, dead-caches appear at nodes that have only

one incoming arc. AO search needs to record only nodes that are likely to have additional

incoming arcs, and these nodes can be determined by inspection from the pseudo tree.

Namely, if the context of a node includes that of its parent, then AO need not store anything

for that node, because it would be a dead-cache.

In some cases, VE can also take advantage of dead caches. If the dead caches appear

along a chain in the pseudo tree, then avoiding the storage ofdead-caches in AO corre-

sponds to collapsing the subsumed neighboring buckets in the bucket tree (remember that

the computation within a bucket can be done with linear spacealgorithms, while space re-

flects the message size that needs to be communicated. Thus ifthe clique sizes are bounded

by r and the separators by s, time isexp(r) while space isexp(s)). This results in having

cache tables of the size of the separators, rather than the cliques. The time savings are

within a constant factor from the complexity of solving the largest clique, but the space

complexity can be reduced from exponential in the size of themaximal cique to exponen-

tial in the maximal separator.

187



Figure 6.3: CM graphs with determinism: a) AO; b) VE

However, if the variables having dead caches form connectedcomponents that are

subtrees (rather than chains) in the pseudo tree, then the space savings of AO cannot be

achieved by VE. Consider the following example:

Example 6.2.3 Let variables{X1, . . . , Xn} be divided in three sets:A = {X1, . . . , Xn
3
},

B = {Xn
3
+1, . . . , X 2n

3
} andC = {X 2n

3
+1, . . . , Xn}. There are two cliques onA ∪ B and

A ∪ C defined by all possibile binary functions over variables in those respective cliques.

The input is thereforeO(n2). Consider the bucket tree (pseudo tree) defined by the ordering

d = (X1, . . . , Xn), whereXn is eliminated first by VE. In this pseudo tree, all the caches

are dead, and as a result the AO search graph coincides with theAO search tree. Therefore,

AO can solve the problem using spaceO(2n
3

). VE can collapse some neighboring buckets

(for variables inB andC), but needs to store at least one message on the variables inA,

which yields space complexityO(exp(n
3
)). In this example, AO and VE have the same time

complexity, but AO uses space linear in the number of variables while VE needs space

exponential in the number of variables (and exponential in the input too).

The above observation is similar to the known properties of depth-first vs. breadth-first

search in general. When the search space is close to a tree, thebenefit from the inherent

memory use of breadth-first search is nil.

188



VE vs. AND/OR Search with Determinism

When the graphical model contains determinism the AND/OR trees and graphs are depen-

dant not only on the primal graph but also on the (flat) constraints, namely on the consis-

tency and inconsistency of certain relationships (no-goodtuples) in each relation. In such

cases AO and VE, may explore different portions of the context-minimal graphs because

the order of variables plays a central role, dictating wherethe determinism reveals itself.

Example 6.2.4 Let’s consider a problem on four variables:A,B,C,D, each having the

domain{1, 2, 3, 4}, and the constraintsA < B, B < C andC < D. The primal graph of

the problem is a chain. Let’s consider the natural ordering from A to D, which gives rise to

a chain pseudo tree (and bucket-tree) rooted at A. Figure 6.3a shows the full CM graph with

determinism generated by AO search, and Figure 6.3b the graph generated and traversed

by VE in reverse order. The thick lines and the white nodes are the ones traversed. The

dotted lines and the black nodes are not explored (when VE is executed fromD, the con-

straint betweenD andC implies thatC = 4 is pruned, and therefore not further explored).

Note that the intersection of the graphs explored by both algorithms is thebacktrack-free

AND/OR context graph, corresponding to the unique solution (A=1,B=2,C=3,D=4).

As we saw in the example, AO and VE explore different parts of the inconsistent portion

of the full CM. Therefore, in the presence of determinism, AO-DF and AO-BF are both un-

comparable to VE, as they differ in the direction they explore the CM space.

THEOREM 6.2.5 Given a graphical model with determinism, then AO-DF and AO-BF are

identical and both are un-comparable to VE.

This observation is in contrast with claims of superiority of one scheme or the other [5],

at least for the case when variable ordering is fixed and no advanced constraint propagation

schemes are used and assuming no exploitation of context independence.

189



6.2.2 Algorithmic Advances and Their Effect

So far we compared brute-force VE to brute-force AO search. We will now consider the

impact of some enhancements on this relationship. Clearly, both VE and AO explore the

portion of the context-minimal graph that is backtrack-free. Thus they can differ only on

the portion that is included in full CM and not in the backtrack-free CM. Indeed, constraint

propagation, backjumping and no-good recording just reduce the exploration of that portion

of the graph that isinconsistent. Here we compare those schemes against bare VE and

against VE augmented with similar enhancements whenever relevant.

VE vs. AND/OR Search with Look-Ahead

In the presence of determinism AO-DF and AO-BF can naturally accommodate look-ahead

schemes which may avoid parts of the context-minimal searchgraph using some level

of constraint propagation. It is easy to compare AO-BF against AO-DF when both use

the same look-ahead because the notion of constraint propagation as look-ahead is well

defined for search and because both algorithms explore the search space top down. Not

surprisingly when both algorithms have the same level of look-ahead propagation, they

explore an identical search space.

We can also augment VE with look-ahead constraint propagation (e.g., unit resolution,

arc consistency), yielding VE-LAH as follows. Once VE-LAH processes a single bucket,

it then applies constraint propagation as dictated by the look-ahead propagation scheme

(bottom-up), then continues with the next bucket applied over the modified set of functions

and so on. We can show that:

THEOREM 6.2.6 Given a graphical model with determinism and given a look-ahead prop-

agation scheme,LAH,

1. AO-DF-LAH and AO-BF-LAH are identical.

2. VE and VE-LAH are each un-comparable with each of AO-DF-LAHand AO-BF-LAH.

190



Proof. 1. The search graph is traversed in the same direction by bothAO-DF-LAH and

AO-BF-LAH, so the look-ahead has the same effect for both. 2. Determinism can still

impact differently in different variable orderings.2

Graph-Based No-Good Learning

AO search can be augmented with no-good learning [31]. Graph-based no-good learning

means recording that some nodes are inconsistent based on their context. This is auto-

matically accomplished when we explore the CM graph which actually amounts to record-

ing no-goods and goods by their contexts. Therefore AO-DF isidentical to AO-BF and

both already exploit no-goods, we get that (AO-NG denotes AOwith graph-based no-good

learning):

THEOREM 6.2.7 For every graphical model the relationship between AO-NG and VE is

the same as the relationship between AO (Depth-first or breadth-first) and VE.

Combined no-goods and look-ahead No-goods that are generated during search can

also participate in the constraint propagation of the look-ahead and strengthen the ability

to prune the search-space further. The graphical model itself is modified during search and

this affects the rest of the look-ahead. It is interesting tonote that AO-BF is not able to

simulate the same pruned search space as AO-DF in this case because of its breadth-first

manner. While AO-DF can discover deep no-goods due to its depth-first nature, AO-BF

has no access to such deep no-goods and cannot use them withina constraint propagation

scheme in shallower levels. However, even when AO exploits no-goods within its look-

ahead propagation scheme, VE and AO remain un-comparable. Any example that does not

allow effective no-good learning can illustrate this.

Example 6.2.8 Consider a constraint problem overn variables. VariablesX1, . . . , Xn−1

have the domain{1, 2, . . . , n − 2, ∗}, made of n-2 integer values and a special∗ value.

Between any pair of then−1 variables there is a not-equal constraint between the integers

191



4 61

3 2 7 5

8

2 7

1

4

3 5

6

8

(a)

(b) (c)

2

6

1

4

3

5

7

8

(d)

2

6

1

4

3

5

7

8

Figure 6.4: GBJ vs. AND/OR search

and equality between stars. There is an additional variableXn which has a constraint

with each variable, whose values are consistent only with the∗ of the other n-1 variables.

Clearly if the ordering isd = (X1, . . . , Xn−1, Xn), AO may search all the exponential

search space over the firstn − 1 variables (the inconsistent portion) before it reaches the

∗ of then − th variable. On the other hand, if we apply VE starting from then − th

variable, we will reveal the only solution immediately. No constraint propagation, nor

no-good learning can help any AO search in this case.

THEOREM 6.2.9 Given a graphical model with determinism and a particular look-ahead

propagation schemeLAH:

1. AO-DF-LAH-NG is better than AO-BF-LAH-NG.

2. VE and AO-DF-LAH-NG are not comparable.

Graph-Based Backjumping

Backjumping algorithms [31] are backtracking search applied to the OR space, which uses

the problem structure to jump back from a dead-end as far backas possible. Ingraph-based

backjumping(GBJ) each variable maintains a graph-based induced ancestor set which en-

sures that no solutions are missed by jumping back to its deepest variable.

192



DFS orderings If the ordering of the OR space is a DFS ordering of the primal graph, it

is known [31] that all the backjumps are from a variable to itsDFS parent. This means that

naive AO-DFautomatically incorporates GBJ jumping-back character.

Pseudo tree orderings In the case of pseudo tree orderings that are not DFS-trees, there

is a slight difference between OR-GBJ and AO-DF and GBJ may sometime perform deeper

backjumps than those implicitly done by AO. Figure 6.4a shows a probabilistic model,

6.4b a pseudo tree and 6.4c a chain driving the OR search (top down). If a deadend is

encountered at variable 3, GBJ retreats to 8 (see 6.4c), whilenaive AO-DF retreats to 1, the

pseudo tree parent. When the deadend is encountered at 2, bothalgorithms backtrack to 3

and then to 1. Therefore, in such cases, augmenting AO with GBJcan provide additional

pruning on top of the AND/OR structure. In other words, GBJ on OR space along a pseudo

tree is never stronger than GBJ on AND/OR and it is sometimes weaker.

GBJ can be applied using an arbitrary orderd for the OR space. The orderingd can be

used to generate a pseudo tree. In this case, however, to mimic GBJ ond, the AO traversal

will be controlled byd. In Figure 6.4d we show an arbitrary orderd = (8, 1, 3, 5, 4, 2, 7, 6)

which generates the pseudo tree in 6.4b. When AO search reaches 3, it goes in a breadth first

manner to 5, according tod. It can be shown that GBJ in orderd on OR space corresponds

to the GBJ-based AND/OR search based on the associated pseudotree. All the backjumps

have a one to one correspondence.

Since VE is not comparable with AO-DF, it is also un-comparable with AO-DF-GBJ.

Note that backjumping is not relevant to AO-BF or VE. In summary,

THEOREM 6.2.10 1. When the pseudo tree is a DFS tree AO-DF is identical to AO-DF-

GBJ. This is also true when the AND/OR searchtree is explored (rather than the CM-

graph). 2. AO-DF-GBJ is superior to AO-DF for general pseudo trees. 3. VE is not

comparable to AO-DF-GBJ.

Proof. 1. For DFS trees, backjumps go to DFS parent. 2. See example inFigure 6.4b. 3.

193



Determinism reveals itself differently in reversed orderings. 2

6.2.3 Discussion

In this section we compare search and inference in graphicalmodels through the new frame-

work of AND/OR search spaces. We show that there is no principled difference between

memory-intensive search with fixed variable ordering and inference beyond: (1) different

direction of exploring a common search space (top down for search vs. bottom-up for infer-

ence); (2) different assumption of control strategy (depth-first for search and breadth-first

for inference). We also show that those differences occur only in the presence of determin-

ism. We show the relationship between algorithms such as graph-based backjumping and

no-good learning [31] within the AND/OR search space. AND/OR search spaces can also

accommodate dynamic variable and value ordering which can affect algorithmic efficiency

significantly. Variable Elimination and general inferencemethods however require static

variable ordering. This issue will be addressed in future work.

6.3 A Comparison of Hybrid Time-Space Schemes

6.3.1 Defining the Algorithms

In this section we describe the three algorithms that will becompared. They are all param-

eterized memory intensive algorithms that need to use spacein order to achieve the worst

case time complexity ofO(n kw∗
), wherek bounds domain size, andw∗ is the treewidth

of the primal graph. The task that we consider is one that is #P-hard (e.g., belief updating

in Bayesian networks, counting solutions in SAT or constraint networks). We also assume

that the model has no determinism (i.e., all tuples have a strictly positive probability).

The algorithms we discuss work by processing variables either by eliminationor by

conditioning. These operations have an impact on the primal graph of the problem. When

194



a variable is eliminated, it is removed from the graph along with its incident edges, and its

neighbors are connected in a clique. When it is conditioned, it is simply removed from the

graph along with its incident edges.

The algorithms we discuss typically depend on a variable orderingd = (X1, ..., Xn).

Search proceeds by instantiating variables fromX1 toXn, while Variable Elimination pro-

cesses the variables backwards, fromXn to X1. Given a graphG and an orderingd, an

elimination tree, denoted byT (G, d), is uniquely defined by the Variable Elimination pro-

cess.T (G, d) is also a valid pseudo tree to drive the AND/OR search. Note however that

several orderings can give rise to the same elimination tree.

AND/OR Cutset Conditioning - AOCutset(i)

AND/OR Cutset Conditioning (AOCutset(i)) [75] is a search algorithm that combines

AND/OR search spaces with cutset conditioning. The conditioning (cutset) variables form

a start pseudo tree. The remaining variables (not belonging to the cutset), have bounded

conditioned context size that can fit in memory.

DEFINITION 6.3.1 (start pseudo tree)Given a primal graphG and a pseudo treeT ofG,

a start pseudo treeTstart is a connected subgraph ofT that contains the root ofT .

Algorithm AOCutset(i) depends on a parameter i that bounds the maximum size of

a context that can fit in memory. Given a graphical model and a pseudo treeT , we first

find a start pseudo treeTstart such that the context of any node not inTstart contains at

most i variables that are not inTstart. This can be done by starting with the root ofT and

then including as many descendants as necessary in the startpseudo tree until the previous

condition is met.Tstart now forms the cutset, and when its variables are instantiated, the

remaining conditioned subproblem has induced width bounded by i. The cutset variables

can be explored by linear space (no caching) AND/OR search, and the remaining variables

by using full caching, of size bounded by i. The cache tables need to be deleted and

195



reallocated for each new conditioned subproblem (i.e., each new instantiation of the cutset

variables).

Algorithm AOC(i) - Adaptive Caching

The cutset principle inspires a new algorithm, based on a more refined caching scheme for

AND/OR search, which we callAdaptive Caching- AOC(i) (in the sense that it adapts to

the available memory), that caches some values even at nodeswith contexts greater than

the bound i that defines the memory limit. Lets assume thatcontext(X) = [X1 . . . Xk]

and k > i. During search, when variablesX1, . . . , Xk−i are instantiated, they can be

regarded as part of a cutset. The problem rooted byXk−i+1 can be solved in isolation, like

a subproblem in the cutset scheme, after variablesX1, . . . , Xk−i are assigned their current

values in all the functions. In this subproblem,context(X) = [Xk−i+1 . . . Xk], so it can

be cached within space bounded by i. However, when the searchretracts toXk−i or above,

the cache table forX needs to be deleted and will be reallocated when a new subproblem

rooted atXk−i+1 is solved.

DEFINITION 6.3.2 (i-context, flag)Given a graphical model, a pseudo treeT , a variable

X andcontext(X) = [X1 . . . Xk], thei-contextofX is:

i-context(X) =











[Xk−i+1 . . . Xk], if i < k

context(X), if i ≥ k

Xi is called theflag of i-context(X).

The high level pseudocode forAOC(i) is given here. The algorithm works similar

to AND/OR search based on full context. The difference is in the management of cache

tables. Whenever a variableX is instantiated (when an AND node is reached), the cache

table is purged (reinitialized with a neutral value) for anyvariableY such thatX is the

flag of i-context(Y ) (line 6). Otherwise, the search proceeds as usual, retrieving values

196



Algorithm AOC(i)
input :M=〈X,D,F〉; G=(X,E);d=(X1,. . ., Xn); i
output : Updated belief forX1

Let T = T (G, d) // create elimination tree for eachX ∈ X do1

allocate a table fori-context(X)2

Initialize search with root ofT ;3

while search not finisheddo4

Pick next successor not yet visited // EXPAND;5

Purge cache tables that are not valid;6

if value in cachethen7

retrieve value; mark successors as visited;8

while all successors visiteddo // PROPAGATE9

Save value in cache;10

Propagate value to parent;11

from cache if possible (line 8) or else continuing to expand,and propagating the values up

when the search is completed for subproblem below (line 11).We do not detail here the

alternation of OR and AND type of nodes.

Example 6.3.1 We will clarify here the distinction between AND/OR with full caching,

AND/OR Cutset and AND/OR Adaptive Caching. We should note that the scope of a cache

table is always a subset of the variables on the current path inthe pseudo tree. Therefore,

the caching method (e.g., full caching based on context, cutset conditioning cache, adaptive

caching) is an orthogonal issue to that of the search space decomposition. We will show an

example based on an OR search space (pseudo tree is a chain), and the results will carry

over to the AND/OR search space.

Figure 6.5 shows a pseudo tree, with binary valued variables, the context for each

variable, and the context minimal graph. If we assume the bound i = 2, some of the cache

tables don’t fit in memory. We could in this case useAOCutset(2), shown in Figure 6.7, that

takes more time, but can execute in the bounded memory. The cutset in this case is made

of variablesA andB, and we see four conditioned subproblems, the four columns, that

are solved independently from one another (there is no sharing of subgraphs). Figure 6.6

197



B

0 1

B

0 1

A

0 1

G

H

0 1

H

1a 2a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

H

0 1

H

3a 4a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

[ ]

[A]

[AB]

[ABC]

[ABD]

[BDE]

[BDF]

[BG]

A

D

B

C

E

H

F

G

Figure 6.5: Context minimal graph (full caching)

B

0 1

B

0 1

A

0 1

G

H

0 1

H

1a 2a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

H

0 1

H

3a 4a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

0 1

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

0 1

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

[ ]

[ - A]

[ - AB]

[A - BC]

[A - BD]

[B - DE]

[B - DF]

[ - BG]

Figure 6.6:AOC(2) graph (Adaptive Caching)

showsAOC(2), which falls between the previous two. It uses bounded memory, takes more

time than full caching (as expected), but less time thanAOCutset(2)(because the graph is

smaller). This can be achieved because Adaptive Caching allows the sharing of subgraphs.

Note that the cache table ofH has the scope[BG], which allows merging.

Variable Elimination and Conditioning -VEC(i)

Variable Elimination and Conditioning (VEC) [90, 63] is an algorithm that combines the

virtues of both inference and search. One of its remarkably successful applications is the

198



B

0 1

B

0 1

A

0 1

G

H

0 1

H

1a 2a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

H

0 1

H

3a 4a

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

H

0 1

H

1b 2b

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

G

H

0 1

H

3b 4b

G

0 1

G

0 1

G

0 1

F

0 1

F

0 1

F

0 1

F

0 1

E

0 1

E

0 1

D

0 1

D

0 1

C

0 1

[ ]

[A]

[AB]

[AB - C]

[AB - D]

[B - DE]

[B - DF]

[B - G]

Figure 6.7:AOCutset(2)graph (AND/OR Cutset)

Algorithm VEC-OR(i)
input :M = 〈X,D,F〉; d = (X1, . . . , Xn)
output : Updated belief forX1

if (context(Xn) ≤ i) then1

eliminateXi;2

call VEC-OR(i) on reduced problem3

else foreachxn ∈ Dn do4

assignXn = xn;5

call VEC-OR(i) on the conditioned subproblem6

genetic linkage analysis software Superlink [47].VEC works by interleaving elimination

and conditioning of variables. Typically, given an ordering, it prefers the elimination of

a variable whenever possible, and switches to conditioningwhenever space limitations re-

quire it, and continues in the same manner until all variables have been processed. We say

that the conditioning variables form aconditioning set, or cutset(this can be regarded as

aw-cutset, where thew defines the induced width of the problems that can be handled by

elimination). The pseudocode for the vanilla version, calledVEC-OR(i) because the cutset

is explored by OR search rather than AND/OR, is shown below:

When there are no conditioning variables,VEC becomes the well known Variable Elim-

ination (VE) algorithm. In this caseAOC also becomes the usual AND/OR graph search

(AO), and it was shown in Theorem 6.2.1 thatVE andAO are identical.

199



Tree Decomposition with Conditioning - TDC

One of the most widely used methods of processing graphical models, especially belief

networks, is tree clustering (also known as join tree or junction tree algorithm [66]). The

work in [32] presents an algorithm calleddirectional join tree clustering, that corresponds

to an inward pass of messages towards a root in the regular tree clustering algorithm. If

space is not sufficient for the separators in the tree decomposition, then [32] proposes the

use of secondary join trees, which simply combine any two neighboring clusters whose

separator is too big to be stored. The resulting algorithm that uses less memory at the

expense of more time is calledspace based join tree clustering,

The computation in each cluster can be done by any suitable method. The obvious one

would be to simply enumerate all the instantiations of the cluster, which corresponds to an

OR search over the variables of the cluster. A more advanced method advocated by [32]

is the use of cycle cutset inside each cluster. We can improvethe cycle cutset scheme first

by using an AND/OR search space, and second by using AdaptiveCaching bounded by

i, rather than simple AND/OR Cutset in each cluster. We call theresulting methodtree

decomposition with conditioning(TDC(i) ).

6.3.2 AOC(i) Compared to VEC(i)

We will begin by following an example. Consider the graphicalmodel given in Figure 6.8a

having binary variables, the orderingd1 = (A,B,E, J,R,H,L,N,O,K,D, P ,C,M,F -

, G), and the space limitationi = 2. The pseudo tree corresponding to this ordering is given

in Figure 6.8b. The context of each node is shown in square brackets.

If we applyVEC alongd1 (eliminating from last to first), variablesG, F andM can be

eliminated. However,C cannot be eliminated, because it would produce a function with

scope equal to its context,[ABEHLKDP ], violating the boundi = 2. VEC switches to

conditioning onC and all the functions that remain to be processed are modifiedaccord-

ingly, by instantiatingC. The primal graph has two connected components now, shown

200



a) b)

B A

C

E

F G

H

J

D

K
M

L

N

O

P

R A [ ]

B [A]

F

E

[AR]

[AB]

G [AF]

J [ABE]

H [ABEJR]

L [ABEJH]

N [ABEJHL]

O [ABEJHLN]

K [ABEJHLNO]

D [ABEJHLOK]

P [ABEHLOKD]

C [ABEHLKDP]

M [DC]

R [ABEJ]

Figure 6.8: Primal graph and pseudo tree

N

L

K

P

O

[ ]

[L]

[LN]

[LNO]

[OK]
K

L

N

O

P

B A

E

H

J

D

R

B

A

D

J

R

E

[ ]

[A]

[AB]

[ABE]

[ABJ] [EJ]

H[ABJR]

Figure 6.9: Components after conditioning onC

in Figure 6.9. Notice that the pseudo trees are based on this new graph, and their shape

changes from the original pseudo tree.

Continuing with the ordering,P andD can be eliminated (one variable from each

component), but thenK cannot be eliminated. After conditioning onK, variablesO, N

andL can be eliminated (all from the same component), thenH is conditioned (from the

other component) and the rest of the variables are eliminated. To highlight the conditioning

set, we will box its variables when writing the ordering,d1 = (A,B,E, J,R, H , L,N,O-

, K , D, P , C,M, F,G).

If we take the conditioning set[HKC] in the order imposed on it byd1, reverse it and

201



C

HK

D

M F

G

A

B

E

J

O

L

N

R

P

[ - AR]

[ - AF]

[CH - AE]

[C - EJ]

[ - CD]

[H - AB][CH - AB]

[C - HA]

[ - CH]

[ - C]

[ ]

[C - KO]

[CK - LN]

[C - KL]

[ - CK]

[ - C]

Figure 6.10: Pseudo tree forAOC(2)

put it at the beginning of the orderingd1, then we obtain:

d2 =

(

C,

[

K ,
[

H ,
[

A,B,E,J,R
]

H
,L,N,O

]

K
,D,P

]

C

,M,F,G

)

where the indexed squared brackets together with the underlines represent subproblems

that need to be solved multiple times, for each instantiation of the index variable.

So we started withd1 and boundi = 2, then we identified the corresponding condition-

ing set[HKC] for VEC, and from this we arrived atd2. We are now going to used2 to

build the pseudo tree that guidesAOC(2), given in Figure 6.10. The outer box corresponds

to the conditioning ofC. The inner boxes correspond to conditioning onK andH, respec-

tively. The context of each node is given in square brackets,and the2-contextis on the

right side of the dash. For example,context(J) = [CH-AE], and2-context(J) = [AE].

The context minimal graph corresponding to the execution ofAOC(2) is shown in Figure

6.11.

We can follow the execution of bothAOC andVEC along this context minimal graph.

After conditioning onC, VEC solves two subproblems (one for each value ofC), which

are the ones shown on the large rectangles. The vanilla version VEC-OR is less efficient

thanAOC, because it uses an OR search over the cutset variables, rather than AND/OR. In

202



C

0

K

0

H

0

F F F

1 1

F

G

0 1

G

0 1

G

0 1

G

0 1

M

0 1

M

0 1

0

K

0

H

01 1

M

0 1

M

0 1 0 1 0 1 0 1 0 1

L

0 1

N N

0 1 0 1

A

0 1

B

0 1

E

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

D

0 1

D

0 1

D

0 1

D

0 1

R E R

L

0 1

N N

0 1 0 1

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

B

0 1

E R E R

A

0 1

B

0 1

E R E R

J

0 1

J

0 1

B

0 1

E R E R

J

0 1

J

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

L

0 1

N N

0 1 0 1

A

0 1

B

0 1

E

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

D

0 1

D

0 1

D

0 1

D

0 1

R E R

J

0 1

J

0 1

L

0 1

N N

0 1 0 1

P

0 1

P

0 1

O

0 1

O

0 1

O

0 1

O

0 1

B

0 1

E R E R

J

0 1

J

0 1

A

0 1

B

0 1

E R E R

J

0 1

J

0 1

B

0 1

E R E R

J

0 1

J

0 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

J

0 1

J

0 1

J

0 1

J

0 1

Figure 6.11: Context minimal graph

our example, the subproblem onA,B,E, J,R would be solved eight times byVEC-OR,

once for each instantiation ofC, K andH, rather than four times. It is now easy to make

the first improvement toVEC, so that it uses an AND/OR search over the conditioning

variables, an algorithm we callVEC-AO(i) , by changing line 6 ofVEC-OR to:

Algorithm VEC-AO(i)

. . .

call VEC-AO(i) on each connected component of conditioned6

subproblem separately;

Let’s look at one more condition that needs to be satisfied forthe two algorithms to

be identical. If we change the ordering tod3 = (A,B,E, J,R, H , L,N,O, K , D, P , F -

, G, C,M), (F andG are eliminated after conditioning onC), then the pseudo tree is the

same as before, and the context minimal graph forAOC is still the one shown in Figure

6.11. However,VEC-AO would require more effort, because the elimination ofG andF

is done twice now (once for each instantiation ofC), rather than once as was for ordering

d1. This shortcoming can be eliminated by defining a pseudo treebased version forVEC,

rather than one based on an ordering. The final algorithm,VEC(i) is given below (where

NG(Xi) is the set of neighbors ofXi in the graphG). Note that the guiding pseudo tree is

203



regenerated after each conditioning.

Algorithm VEC(i)
input :M=〈X,D,F〉; G=(X,E); d=(X1,. . ., Xn); i

output : Updated belief forX1

Let T = T (G, d) // create elimination tree ;1

while T not emptydo2

if ((∃Xi leaf inT )∧(|NG(Xi)|≤ i)) then eliminateXi elsepickXi leaf fromT ;3

for eachxi ∈ Di do4

assignXi = xi;5

call VEC(i) on each connected component of conditioned subproblem6

break;7

Based on the previous example, we can prove:

THEOREM 6.3.2 (AOC(i) simulates VEC(i))Given a graphical modelM = 〈X,D,F〉

with no determinism and an execution ofVEC(i), there exists a pseudo tree that guides

an execution ofAOC(i) that traverses the same context minimal graph.

Proof. The pseudo tree ofAOC(i) is obtained by reversing the conditioning set ofVEC(i)

and placing it at the beginning of the ordering. The proof is by induction on the number of

conditioning variables, by comparing the corresponding contexts of each variable.

Basis step.If there is no conditioning variable, Theorem 6.2.1 applies. If there is only

one conditioning variable. Given the orderingd = (X1, . . . , Xj, . . . , Xn), let’s sayXj is

the conditioning variable.

a) ConsiderX ∈ {Xj+1, . . . , Xn}. The function recorded byVEC(i) when eliminating

X has the scope equal to the context ofX in AOC(i) .

b) ForXj, bothVEC(i) andAOC(i) will enumerate its domain, thus making the same

effort.

c) After Xj is instantiated byVEC(i) , the reduced subproblem (which may contain

204



C

CH

CHA

CHAB

HABR

ARF

AFG

CHABE

CHAEJ

CEJD

CDM

CK

CKL

CKLN

CKLNO

CKOP

HABR

ARF

AFG

CHABE

CHAEJ

CEJD

CDM

CKLNO

CKOP

CKO

C
CHAE

CEJ

CD

AF

AR

HAB

a) b) c)

CHABEJDR

CKLNOP ARF

AFG

AF

ARC

CDM

CD

Figure 6.12: Tree decompositions: a) ford2; b) maximal cliques only; c) secondary tree for
i = 2

multiple connected components) can be solved by variable elimination alone. By Theorem

6.2.1, variable elimination on this portion is identical toAND/OR search with full caching,

which is exactlyVEC(i) on the reduced subproblem.

From a), b) and c) it follows thatVEC(i) andAOC(i) are identical if there is only one

conditioning variable.

Inductive step.We assume thatVEC(i) and AOC(i) are identical for any graphical

model if there are at mostk conditioning variables, and have to prove that the same is true

for k + 1 conditioning variables.

If the ordering isd = (X1, . . . , Xj, . . . , Xn) andXj is the last conditioning variable in

the ordering, it follows (similar to the basis step) thatVEC(i) andAOC(i) traverse the same

search space with respect to variables{Xj+1, . . . , Xn}, and also forXj. The remaining

conditioned subproblem now falls under the inductive hypothesis, which concludes the

proof. Note that it is essential thatVEC(i) uses AND/OR over cutset, and is pseudo tree

based, otherwiseAOC(i) is better. 2

6.3.3 AOC(i) Compared to TDC(i)

We will look again at the example from Figures 6.10 and 6.11, and the orderingd2. It is

well known that a tree decomposition corresponding tod2 can be obtained by inducing the

205



graph alongd2 (from last to first), and then picking as clusters each node together with

its parents in the induced graph, and connecting each cluster to that of its latest (in the

ordering) induced parent. Because the induced parent set is equal to the context of a node,

the method above is equivalent to creating a cluster for eachnode in the pseudo tree from

Figure 6.10, and labeling it with the variable and its context. The result is shown in Figure

6.12a. A better way to build a tree decomposition is to pick only the maximal cliques in

the induced graph, and this is equivalent to collapsing neighboring subsumed clusters from

Figure 6.12a, resulting in the tree decomposition in Figure6.12b. If we want to runTDC

with boundi = 2, some of the separators are bigger than 2, so a secondary treeis obtained

by merging clusters adjacent to large separators, obtaining the tree in Figure 6.12c.TDC(2)

now runs by sending messages upwards, toward the root. Its execution, when augmented

with AND/OR cutset in each cluster, can also be followed on the context minimal graph

in Figure 6.11. The separators[AF ], [AR] and [CD] correspond to the contexts ofG, F

andM . The root cluster[CHABEJDR] corresponds to the part of the context minimal

graph that contains all these variables. If this cluster would be processed by enumeration

(OR search), it would result in a tree with28 = 256 leaves. However, when explored by

AND/OR search with adaptive caching the context minimal graph of the cluster is much

smaller, as can be seen in Figure 6.11. By comparing the underlying context minimal

graphs, it can be shown that:

THEOREM 6.3.3 Given a graphical modelM = 〈X,D,F〉 with no determinism, and an

execution ofTDC(i), there exists a pseudo tree that guides an execution ofAOC(i) that

traverses the same context minimal graph.

Proof. Algorithm TDC(i) is already designed to be an improvement overspace based join

tree clustering(Section 6.3.1), in that it uses AND/OR Adaptive Caching (rather than cutset

conditioning) inside each cluster to compute the messages that are sent.TDC(i) is based

on a rooted tree decomposition, which can serve as the skeleton for the underlying pseudo

tree. Each cluster has its own pseudo tree to guide the AND/ORAdaptive Caching. Each

206



message sent between neighboring clusters couples all the variables in its scope, therefore

the scope variables have to appear on a chain at the top of the pseudo tree of the cluster

where the message is generated, and also they have to appear on a chain in the pseudo tree

of the cluster where the message is received. This implies that two neighboring clusters

can agree on an ordering of the common variables (since we assume no determinism, the

order of variables on a chain doesn’t change the size of the context minimal graph). All this

allows us to build a common pseudo tree for two neighboring clusters, by superimposing

the common variables in their respective pseudo trees (which are the variables in the sepa-

rator between the clusters). In this way we can build the pseudo tree for the entire problem.

Now, for any variableXi in the problem pseudo tree,i-context(Xi) is the same as it was

in the highest cluster (closest to the root of the tree decomposition) whereXi is mentioned.

From this, it follows thatAOC(i) based on the pseudo tree for the entire problem traverses

the same context minimal graph asTDC(i) . 2

6.3.4 Discussion

We have compared three parameterized algorithmic schemes for graphical models that can

accommodate time-space trade-offs. They have all emerged from seemingly different prin-

ciples: AOC(i) is search based,TDC(i) is inference based andVEC(i) combines search

and inference.

We show that if the graphical models contain no determinism,AOC(i) can have a

smaller time complexity than the vanilla versions of bothVEC(i) andTDC(i) . This is due

to a more efficient exploitation of the graphical structure of the problem through AND/OR

search, and the adaptive caching scheme that benefits from the cutset principle. These ideas

can be used to enhanceVEC(i) andTDC(i) . We show that ifVEC(i) uses AND/OR search

over the conditioning set and is guided by the pseudo tree data structure, then there exists

an execution ofAOC(i) that is identical to it. We also show that ifTDC(i) processes clus-

ters by AND/OR search with adaptive caching, then there exists an execution ofAOC(i)

207



identical to it. AND/OR search with adaptive caching (AOC(i) ) emerges therefore as a

unifying scheme, never worse than the other two. All the analysis was done by using the

context minimal data structure, which provides a powerful methodology for comparing the

algorithms.

When the graphical model contains determinism, all the aboveschemes become in-

comparable. This is due to the fact that they process variables in reverse orderings, and will

encounter and exploit deterministic information differently.

6.4 Conclusion to Chapter 6

This chapter was dedicated to the analysis of search and inference algorithms in graphical

models. Analogies between top down and bottom up traversalsof a tree or graph go a long

way back and appear in many areas of computer science.

Our main contribution in this chapter was the comparison of AND/OR search (as a

top down method) with inference algorithms (as bottom up methods) in graphical models.

We develop a methodology of comparison by describing thecontext minimal graph(CM

graph). Memory intensive AND/OR search (i.e., with full context-based caching) traverses

the CM graph top down, in a depth first (DFS) manner. Variable Elimination, on the other

hand, can be shown to traverse the same CM graph, if the elimination order is the reverse of

the DFS traversal of the pseduo tree that guides the AND/OR search. Each multiplication

and summation performed by Variable Elimination can be associated with the traversal

of and edge in the CM graph. We show that there is no principled difference between

memory-intensive search with fixed variable ordering and inference beyond: (1) different

direction of exploring a common search space (top down for search vs. bottom-up for

inference); (2) different assumption of control strategy (depth-first for search and breadth-

first for inference). We also show that those differences occur only in the presence of

determinism.

208



We also extend the same type of analysis to hybrid algorithms, that combine search

and inference. We propose theAdaptive Cachingalgorithm (AOC(i) ) as the most efficient

AND/OR search algorithm, that exploits the available memory in the best way. We show

that AOC(i) is never worse than two other schemes,VEC(i) that interleaves elimination

and conditioning, andTDC(i) that is based on tree decompositions.

209



Chapter 7

AND/OR Multi-Valued Decision

Diagrams (AOMDDs)

7.1 Introduction

The work presented in this chapter is based on two existing frameworks: (1) AND/OR

search spaces for graphical models (see Chapter 2) and (2) decision diagrams (DD).

Decision diagrams are widely used in many areas of research,especially in software

and hardware verification [18, 81]. A BDD represents a Boolean function by a directed

acyclic graph with two sink nodes (labeled 0 and 1), and everyinternal node is labeled

with a variable and has exactly two children:low for 0 andhigh for 1. If isomorphic nodes

were not merged, on one extreme we would have the full searchtree, also called Shannon

tree, which is the usual full tree explored by backtracking algorithm. The tree can be

ordered if we impose that variables be encountered in the same order along every branch.

It can then be compressed by merging isomorphic nodes (i.e.,with the same label and

identical children), and by eliminating redundant nodes (i.e., whoselow andhigh children

are identical). The result is the celebratedreduced ordered binary decision diagram, or

OBDD for short, introduced by Bryant [16]. However, the underlying structure is OR,

210



because the initial Shannon tree is an OR tree. If AND/OR search trees are reduced by

node merging and redundant nodes elimination we get a compact search graph that can be

viewed as a BDD representation augmented with AND nodes.

7.1.1 Contributions

We combine here the ideas of AND/OR search and decision diagrams, in order to create a

decision diagram that has an AND/OR structure, thus exploiting problem decomposition.

As a detail, the number of values is also increased from two toany constant, but this is

less significant for the algorithms. Our proposal is closelyrelated to two earlier research

lines within the BDD literature. The first is the work on Disjoint Support Decompositions

(DSD) investigated within the area of design automation [15], that were proposed recently

as enhancements for BDDs aimed at exploiting function decomposition [8]. The second is

the work on BDDs trees [82]. Another related proposal is the recent work by Fargier and

Vilarem [46] on compiling CSPs into tree-driven automata.

A decision diagram offers a compilation of a problem. It typically requires an extended

offline effort in order to be able to support polynomial (in its size) or constant time online

queries. In the context of constraint networks, it could be used to represent the whole set

of solutions, to give the solutions count or solution enumeration and to test satisfiability or

equivalence of constraint networks. The benefit of moving from OR structure to AND/OR

is in a lower complexity of the algorithms and size of the compiled structure. It typically

moves from being bounded exponentially inpathwidthpw∗, which is characteristic to chain

decompositions or linear structures, to being exponentially bounded intreewidthw∗, which

is characteristic of tree structures (it always holds thatw∗ ≤ pw∗ andpw∗ ≤ w∗ · log n). In

both cases, the compactness achieved in practice is often far smaller than what the bounds

suggest.

The contributions made in this chapter are the following:

(1) We formally describe the AND/OR Multi-Valued Decision Diagram (AOMDD) and

211



prove that it is a canonical representation for constraint networks.

(2) We extend the AOMDD to general weighted graphical models.

(3) We give a compilation algorithm based on AND/OR search, that saves the trace of

the memory intensive search (which is a subset of the contextminimal graph), and then

reduces it in one bottom up pass.

(4) We describe theAPPLY operator that combines two AOMDDs by an operation, and

show that its complexity is at most quadratic in the input.

(5) We give a scheduling of building the AOMDD of a graphical model starting with

the AOMDDs of its functions. It is based on an ordering of variables, which gives rise to a

pseudo tree according to the execution of Variable Elimination algorithm. This guarantees

that the complexity is at most exponential in the theinduced widthalong the ordering (equal

to the treewidth of the corresponding decomposition).

(6) We show how AOMDDs relate to various earlier and recent compilation frame-

works, providing a unifying perspective for all these methods.

(7) We also introduce the concept ofsemantic treewidth, which helps explain why the

size of a decision diagram is often much smaller than the worst case bound.

The research presented in this chapter is based in part on [76, 77, 38, 73].

7.2 Motivation

Before we proceed with the technical details, we provide the motivation for compilinga

graphical model, and give examples of how it would be useful.Without elaborating on the

definition now, what we mean bycompilationis a compact representation of a graphical

model, which allows fast response time to queries.

The first aim is to divide of the computational effort betweenanofflineand anonline

phase. Most of the work is pushed offline, with the tradeoff that online responses to querries

are be fast. The second purpose of compilation is that of obtaining the most compact

212



representation possible for a function (or graphical model), and to have efficient operations

between functions. This can have an impact on any existing algorithm that can benefit from

such a compact and efficient data structure.

A typical example where one would want to divide the work between offline computa-

tion and online query answering might be product configuration. Imagine a user that choses

sequential options to configure a product. There may be several constraints that do not per-

mit certain combinations. In a naive system, the user would be allowed to choose any valid

option at the current level based only on the initial constraints, until either the product is

configured, or else, when a dead-end is encountered, the system would backtrack to some

previous state and continue from there. This would in fact bea search through the space

of possible partial configurations. Needless to say, it would be very unpractical, and would

offer the user no guarantee of finishing in a limited time. A system based on compilation

would actually build thebacktrack-freesearch space in the offline phase, and represent it

in a compact manner. In the online phase, only valid partial configurations (i.e., that can

be extended to a full valid configuration) are allowed, and depending on the query type,

response time guarantees can be offered in terms of the size of the compiled structure.

There are numerous other examples that can be formulated as graphical models, and

where compilation would be useful. In diagnosis, the problem is to detect the possible faults

or explanations for some unusual behaviour. Planning problems can also be formulated as

graphical models, and a compilation would alow swift adjustments according to changes in

the environment. Probabilistic models are one of the most used types of graphical models,

and the basic query is to compute conditional probabilitiesof some variables given the

evidence. A compact compilation of a probabilistic model would allow fast response for

any change in the evidence along time.

Formal verification is another example where compilation isheavily used to compare

equivalence of circuit design, or to check the behaviour of acircuit. Binary Decision Dia-

gram(BDD) [16] are arguably the most widely known and used compiled structure.

213



1111
0011
1101
0001
1110
0010
0100
0000

f(ABC)CBA

(a) Table

B

A

C

0 0

C

0 1

C

B

0 0

B

1 1

(b) Unordered tree

B

A

C

0 0

C

0 1

B

C

0 1

C

0 1

(c) Ordered tree

Figure 7.1: Boolean function representations

7.3 Binary Decision Diagrams Review

Decision diagrams are widely used in many areas of research to represent decision pro-

cesses. In particular, they can be used to represent functions. Due to the fundamental

importance of Boolean functions, a lot of effort has been dedicated to the study ofBinary

Decision Diagrams(BDDs), which are extensively used in software and hardware veri-

fication [18, 81]. The earliest work on BDDs is due to Lee [67], who introduced binary-

decisionprograms, that can be understood as a linear representation of a BDD (e.g., a depth

first search ordering of the nodes), where each node is a branching instruction indicating

the address of the next instruction for both the 0 and the 1 value of the test variable. Ak-

ers [1] presented the actual graphical representation and further developed the BDD idea.

However, it was Bryant [16] that introduced what is now calledtheOrdered Binary Deci-

sion Diagram(OBDD). He restricted the order of variables along any path ofthe diagram,

and presented algorithms (most importantly theapply procedure, that combines two OB-

DDs by an operation) that have time complexity at most quadratic in the sizes of the input

diagrams. OBDDs are fundamental for applications with largebinary functions, especially

because in many practical cases they provide very compact representations.

A BDD is a representation of a Boolean function. GivenB = {0, 1}, a Boolean func-

tion f : B
n → B, hasn arguments,X1, · · · , Xn, which are Boolean variables, and takes

Boolean values.

Example 7.3.1 Figure 7.1(a) shows a table representation of a Boolean function of three

214



B

A

C C

0 1

B

C C

(a) Isomorphic nodes

B

A

C

0 1

B

C

(b) Redundant nodes

B

A

0 1

C

(c) OBDD

Figure 7.2: Reduction rules

variables. This explicit representation is the most straightforward, but also the most costly

due to its exponential requirements. The same function can also be represented by a binary

tree, shown in Figure 7.1(b), that has the same exponential size in the number of variables.

The internal round nodes represent the variables, the solidedges are the 1 (or high) value,

and the dotted edges are the 0 (or low) value. The leaf square nodes show the value of the

function for each assignment along a path. The tree shown in 7.1(b) is unordered, because

variables do not appear in the same order along each path.

In building an OBDD, the first condition is to have variables appear in the same order

(A,B,C) along every path from root to leaves. Figure 7.1(c) shows an ordered binary tree

for our function. Once an order is imposed, there are two reduction rules that transform a

decision diagram into an equivalent one:

(1) isomorphism:merge nodes that have the same label and the same children.

(2) redundancy:eliminate nodes whose low and high edges point to the same node, and

connect parent of removed node directly to child of removed node.

Applying the two reduction rules exhaustively yields areducedOBDD, sometimes de-

noted rOBDD. We will just use OBDD and assume that it is completely reduced.

Example 7.3.2 Figure 7.2(a) shows the binary tree from Figure 7.1(c) after the isomorphic

terminal nodes (leaves) have been merged. The highlighted nodes, labeled with C, are

also isomomorphic, and Figure 7.2(b) shows the result after they are merged. Now, the

highlighted nodes labeled with C and B are redundant, and removing them gives the OBDD

in Figure 7.2(c).

215



7.4 Bucket Elimination (BE)

Bucket Elimination (BE) [29] is a well known variable elimination algorithm for inference

in graphical models. We will describe it using the terminology for constraint networks,

but BE can also be applied to any graphical model. Consider a constraint networkR =

〈X,D,C〉 and an orderingd = (X1, X2, . . . , Xn). The orderingd dictates an elimination

order forVE, from last to first. Each variable is associated with a bucket. Each constraint

from C is placed in the bucket of its latest variable ind. Buckets are processed fromXn

to X1 by eliminating the bucket variable (the constraints residing in the bucket are joined

together, and the bucket variable is projected out) and placing the resulting constraint (also

calledmessage) in the bucket of its latest variable ind. After its execution,VE renders the

network backtrack free, and a solution can be produced by assigning variables alongd. VE

can also produce the solutions count if marginalization is done by summation (rather than

projection) over the functional representation of the constraints, and join is substituted by

multiplication.

VE also constructs a bucket tree, by linking the bucket of eachXi to the destination

bucket of its message (called the parent bucket). A node in the bucket tree typically has

a bucket variable, a collection of constraints, and ascope(the union of the scopes of its

constraints). If the nodes of the bucket tree are replaced bytheir respective bucket variables,

it is easy to see that we obtain a pseudo tree.

Example 7.4.1 Figure 7.3(a) shows a network with four constraints. Figure7.3(b) shows

the execution of Bucket Elimination alongd = (A,B,E,C,D). The buckets are processed

fromD to A 1. Figure 7.3(c) shows the bucket tree. The pseudo tree corresponding to the

orderd is given in Fig. 3.11(b).

1The representation in Figure 7.3 reverses the top down bucket processing described in earlier papers.

216



A

D

B C

E

C3(ABE)

C2(AB)

C4(BCD)

C1(AC)

(a) Constraint network

D:    C4 (BCD)

C:    C1(AC)     h1(BC)

E:    C3(ABE)

B:    C2(AB)     h 3(AB)     h 2(AB)

A:    h 4(A)

(b) VE execution

A

BCD

AB

ABCABE

A

AB

BC

AB

bucket-A

bucket-E

bucket-B

bucket-C

bucket-D

(c) Bucket tree

Figure 7.3: Bucket Elimination

7.5 AND/OR Multi-Valued Decision Diagrams

(AOMDDs)

The context minimalAND/OR graph (Definition 2.3.9) offers an effective way of identi-

fying some unifiable nodes during the execution of the searchalgorithm. Namely, context

unifiable nodes are discovered based only on their paths fromthe root, without actually

solving their corresponding subproblems. However, merging based on context is not com-

plete, which means that there may still exist unifiable nodesin the search graph that do

not have identical contexts. Moreover, some of the nodes in the context minimal AND/OR

graph may be redundant, for example when the set of solutionsrooted at variableXi is not

dependant on the specific value assigned toXi (this situation is not detectable based on

context). This is sometimes termed as “interchangeable values” or “symmetrical values”.

As overviewed earlier, in [45] we defined the completeminimal AND/OR graphwhich

is an AND/OR graph whose all unifiable nodes are merged and we also proved canonicity

[38]. Here we propose to augment the minimal AND/OR search graph with removing

redundant variables as is common in OBDD representation as well as adopt some nota-

217



tional conventions common in this community. This yields a data structure that we call

AND/OR BDD, that exploits decomposition by using AND nodes. We present the exten-

sion over multi-valued variables yielding AND/OR MDD or AOMDD and define them for

general weighted graphical models. We will also present twoalgorithms for compiling the

canonical AOMDD of a graphical model: the first is search based, and used the memory

intensive AND/OR graph search to generate the context minimal AND/OR graph, and then

reduces it bottom up by applying reduction rules; the secondis inference based, and uses

a Bucket Elimination schedule to combine the AOMDDs of initial functions byAPPLY op-

erations (similar to theapply for OBDDs). As we will show, both approaches have the

same worst case complexity as the AND/OR graph search with context based caching, and

also the same complexity as Bucket Elimination, namely time and space exponential in the

treewidth of the problem,O(n kw∗
).

7.5.1 From AND/OR Search Graphs to Decision Diagrams

An AND/OR search graphG of a graphical modelM = 〈X,D,F,⊗〉 represents the set

of all possible assignments to the problem variables (all solutions and their costs). In

this sense,G can be viewed as representing the functionf = ⊗fi∈Ffi that defines the

universal equivalent graphical modelu(M) (Definition 1.2.6). For each full assignment

x = (x1, . . . , xn), if x forms a solution subtreet, thenf(x) = w(t) = ⊗e∈arcs(t)w(e) (Def-

inition 2.2.7); otherwisef(x) = 0 (the assignment is inconsistent). The solution subtreet

of a consistent assignmentx can be read fromG in linear time by following the assignments

from the root. Ifx is inconsistent, then a deadend is encountered inG when attempting to

read the solution subtreet, andf(x) = 0. Therefore,G can be viewed as a decision diagram

that determines the values off for every complete assignmentx.

We will now see how we can process an AND/OR search graph by reduction rules

similar to the case of OBDDs, in order to obtain a representation of minimal size. In

the case of OBDDs, a node is labeled with a variable name, for exampleA, and thelow

218



A

(a) OBDD

1 2 k

A

…
(b) MDD

Figure 7.4: Decision diagram nodes (OR)

A

… …

(a) AOBDD

A

… … ……
1 2 k

(b) AOMDD

Figure 7.5: Decision diagram nodes (AND/OR)

(dotted line) andhigh (solid line) outgoing arcs capture the restriction of the function to

the assignmentsA = 0 or A = 1. To determine the value of the function, one needs to

follow either one or the other (but not both) of the outgoing arcs fromA (see Figure 7.4(a)).

The straightforward extension of OBDDs to multi-valued variables (multi-valued decision

diagrams, or MDDs) was presented in [97], and the nodes that they use are given in Figure

7.4(b). Here, each outgoing arc is associated with one of thek values of variableA.

In this chapter we generalize the OBDD and MDD representations in Figures 7.4(a)

and 7.4(b) by allowing each outgoing arc of a node to be an AND arc. An AND arc

connects a node to a set of nodes, and captures the decomposition of the problem into

independent components. The number of AND arcs emanating from a node is two in the

case of AOBDDs (Figure 7.5(a)), or the domain size of the variable in the general case

(Figure 7.5(b)). For a given nodeA, each of itsk AND arcs can connect it to possibly

different number of nodes, depending on how the problem decomposes based on each

particular assignment ofA. The AND arcs are depicted by a shaded sector that connects

the outgoing lines corresponding to the independent components.

We derive the AND/OR Decision Diagram representation basedon AND/OR search

graphs. We find that it is useful to maintain the semantics of Figure 7.5 especially when we

219



… … ……

A

1 2 k…

(a) Nonterminal meta-node

0

(b) Terminal meta-node0

1

(c) Terminal meta-node1

Figure 7.6: Meta-nodes

need to express the redundancy of nodes, and therefore we introduce themeta-nodedata

structure, which defines small portions of any AND/OR graph,based on a an OR node and

its AND children:

DEFINITION 7.5.1 (meta-node)A meta-nodeu in an AND/OR search graph consists of

an OR node labeledX (thereforevar(u) = X) and itsk AND children labeledx1, . . . , xk

that correspond to the value assignments ofX. Each AND node labeledxi stores a list of

pointers to child meta-nodes, denoted byu.childreni. In the case of weighted graphical

models, the AND nodexi also stores the OR-to-AND arc weightw(X, xi).

The rectangle in Figure 7.6(a) is a meta-node for variableA, that has a domain of size

k. Note that this is very similar to Figure 7.5, with the small difference that the information

about the value ofA that corresponds to each outgoing AND arc is now stored in theAND

nodes of the meta-node. We are not showing the weights in thatfigure. A larger example

of an AND/OR graph with meta-nodes appears later in Figure 7.8.

We also define two special meta-nodes, that will play the roleof the terminal nodes in

OBDDs. The terminal meta-node0, shown in Figure 7.6(b), indicates inconsistent assign-

ments, while the terminal meta-node1, shown in figure 7.6(c) indicates consistent ones.

Any AND/OR search graph can now be viewed as a diagram of meta-nodes, simply by

grouping OR nodes with their AND children, and adding the terminal meta-nodes appro-

priately.

Once we have defined the meta-nodes, it is easier to see when a variable is redundant

with respect to the outcome of the function based on the current patial assignment. Intu-

220



itiveley, any assignment to a redundant variable should lead to the same set of solutions.

DEFINITION 7.5.2 (redundant meta-node)Given a weighted AND/OR search graphG

represented with meta-nodes, a meta-nodeu with var(u) = X and |D(X)| = k is redun-

dantiff:

(a) u.children1 = . . . = u.childrenk and

(b) w(X, x1) = . . . = w(X, xk).

An AND/OR graphG, that contains a redundant meta-nodeu, can be transformed into

an equivalent graphG ′ by replacing any incoming arc intouwith its common list of children

u.children1, absorbing the common weightw(X, x1) by combination into the weight of the

parent meta-node corresponding to the incoming arc, and then removingu and its outgoing

arcs fromG. If u is the root of the graph, then the common weightw(X, x1) has to be

stored separateley as a constant.

The notion of isomorphism is extended naturally from AND/ORgraphs to meta-nodes.

DEFINITION 7.5.3 (isomorphic meta-nodes)Given a weighted AND/OR search graphG

represented with meta-nodes, two meta-nodesu andv havingvar(u) = var(v) = X and

|D(X)| = k are isomorphiciff:

(a) u.childreni = v.childreni ∀i ∈ {1, . . . , k} and

(b) wu(X, xi) = wv(X, xi) ∀i ∈ {1, . . . , k}, (wherewu, wv are the weights ofu and

v).

Naturally, the AND/OR graph obtained by merging isomorphicmeta-nodes is equiva-

lent to the original one.

We can now define the AND/OR Multi-Valued Decision Diagram:

DEFINITION 7.5.4 (AOMDD) An AND/OR Multi-Valued Decision Diagram (AOMDD) is

a weighted AND/OR search graph that is completely reduced by isomorphic merging and

redundancy removal, namely:

221



(1) it contains no isomorphic meta-nodes; and

(2) it contains no redundant meta-nodes.

The AOMDD of a functionf is denoted byGaomdd
f .

Examples of AOMDDs appear in Figures 7.8 and 7.9. We will nextdiscuss two ap-

proaches for generating the AOMDD of a graphical model: in Section 7.6 we present a

search based algorithm, that performs AND/OR search and then applies the reduction rules

(Definitions 7.5.2 and 7.5.3) bottom up to the trace of the search (i.e., the traversed space)

to obtain the AOMDD; in Section 7.7 we present an inference algorithm based on a Bucket

Elimination schedule, that uses theAPPLY operation inside each bucket to combine the

AOMDDs of the graphical model functions.

7.6 Using AND/OR Search to Generate AOMDDs

In Section 7.5.1 we described how we can transform an AND/OR graph into an AOMDD

by applying reduction rules. In this section we describe theexplicit algorithm that takes as

input a graphical model, performs AND/OR search with context based caching to obtain

the context minimal AND/OR graph, and then applies the reduction rules bottom up to

obtain the AOMDD.

7.6.1 AND/OR Search Algorithm

For completeness, Algorithm 7 shows the AND/OR search algorithm [38]. The input is a

graphical modelM and a pseudo treeT . Algorithm 7 associates a value to each node in the

AND/OR search space. This is necessary when solving a reasoning task, but can be avoided

when we just need to generate an AOMDD forM. The only important information that

needs to be propagated in the backtrack phase of the search when generating an AOMDD

is the distinction between consistent and inconsistent assignments, namely to propagate the

dead-ends up to the highest level. Therefore, an AOMDD does not need to be associated

222



with a reasoning task, since it represents the universal function ofM, and as such can be

traversed to obtain answers to different reasoning problems. It is up to the user to decide

if more information is stored in each meta-node, for examplethe value corresponding to a

reasoning task restricted to its subproblem.

Algorithm 7 describes both a depth first tree AND/OR search and a graph AND/OR

search. The switch is realized through the variablecaching, which we set totrue to obtain

the memory intensive version. Each variableXi has an associated cache table, whose scope

is the context ofXi in T . This will ensure that the trace of the search is the context minimal

AND/OR graph.

We will also use a list for each variable, to save pointers to meta-nodes corresponding

to that variable level. The lists will be used by the procedure that performs the bottom

up traversal, per layers of the AND/OR graph, to apply the reduction rules. The list for

variableXi is denoted byListXi.

The fringe of the search is maintained on a stack calledOPEN. The current node is

denoted byn, its parent byp, and the current path byπn. The children of the current node

are denoted bysuccessors(n).

The algorithm is based on two mutually recursive steps: EXPAND and PROPAGATE,

which call each other (or themselves) until the search terminates.

Since we only use OR caching, before expanding an OR node, itscache table is checked

(line 6). If the same context was encountered before, the node and its value are retrieved

from cache, andsuccessors(n) is set to the empty set, which will trigger the PROPAGATE

step.

If a node is not found in cache, it is expanded in the usual way,depending on whether

it is an AND or OR node (lines 10-19). In our description, we assume a sum-product

reasoning task (e.g., belief updating in belief networks, or solutions counting in constraint

networks). For belief updating, the value of an AND node is initialized to the bucket value

for the current assignment, namely the weight of the OR-to-AND arc (line 15). When

223



an OR node is expanded, its possible variable assignments are checked for consistency

(line 14). The deterministic information (inconsistent assignments) inM can be extracted

to form a constraint network. Any level of constraint propagation can be performed in

this step (e.g., look ahead, arc consistency, path consistency, i-consistency etc.). At the

minimum, a value〈Xi, xi〉 together with the current path assignementasgn(πn) can be

checked to be consistent with the initial functions inF. As long as the current node is not

a dead-end and still has unevaluated successors, one of its successors is chosen (which is

also the top node onOPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a node has an empty set of

successors (note that, as each successor is evaluated, it isremoved from the set of successors

in line 34). This means that all its children have been evaluated, and its final value can now

be computed. If the current node is the root, then the search terminates with its value (line

22). If it is an OR node, its value is saved in cache before propagating it up (line 24). Ifn

is OR, then its parentp is AND andp updates its value by multiplication with the value of

n (line 27). If the newly updated value ofp is 0 (line 28), thenp is a dead-end, and none

of its other successors needs to be evaluated. An AND noden propagates its value to its

parentp in a similar way, only by summation (line 33). Finally, the current noden is set

to its parentp (line 35), becausen was completely evaluated. The search continues either

with a propagation step (if conditions are met) or with an expansion step.

When Algorithm 7 terminates, the context minimal AND/OR graph ofM is obtained,

and can also be viewed as the trace of the search algorithm. Toavoid cluttering the algo-

rithm, we did not describe explicitly how pointers are maintained between OR and AND

nodes, and how meta-nodes are formed, but this is straightforwad from the execution of the

depth first search. A listLHi contains all the metanodes ofXi that appear in the context

minimal AND/OR graph.

224



Algorithm 7 : AND/OR SEARCH
input : A graphical modelM = 〈X,D,F〉; a pseudo treeT of the primal graph, rooted atX1; parentspai

(OR-context) for every variableXi; caching set totrue.
output : The context minimal graph ofM.
if caching == true then // Initialize cache tables1

Initialize cache tables with entries of “−1”2

v(X1)← 0; OPEN← {X1} // Initialize the stack OPEN3
while OPEN 6= φ do4

n← top(OPEN); removen from OPEN5
if caching == true and n is OR, labeledXi and Cache(asgn(πn)[pai]) 6= −1 then // If in cache6

v(n)← Cache(asgn(πn)[pai]) // Retrieve value7
successors(n)← φ // No need to expand below8

else // EXPAND (forward)9
if n is an OR node labeledXi then // OR-expand10

successors(n)← φ11
forall xi ∈ Di do // Constraint Propagation12

if 〈Xi, xi〉 is consistentwith πn then13
successors(n)← successors(n) ∪ 〈Xi, xi〉14

v(〈Xi, xi〉)←
∏

f∈BT (Xi)

f(asgn(πn)[pai]), for all 〈Xi, xi〉 ∈ successors(n)
15

if n is an AND node labeled〈Xi, xi〉 then // AND-expand16
successors(n)← childrenT (Xi)17
v(Xi)← 0 for all Xi ∈ successors(n)18

Add successors(n) to top ofOPEN19

while successors(n) == φ do // UPDATE VALUES (backtrack)20
if n is an OR node labeledXi then21

if Xi == X1 then // Search is complete22
return v(n)23

if caching == true then24
Cache(asgn(πn)[pai])← v(n) // Save in cache25
Add meta-node ofn to list LHi26

v(p)← v(p) ∗ v(c)27
if v(p) == 0 then // Check if p is dead-end28

removesuccessors(p) from OPEN29
successors(p)← φ30

if n is an AND node labeled〈Xi, xi〉 then31
let p be the parent ofn32
v(p)← v(p) + v(n);33

removen from successors(p)34
n← p35

return trace of search and meta-nodes listsLHi36

7.6.2 Reducing the Context Minimal AND/OR Graph to an AOMDD

We describe in Procedure 8 the bottom up reduction of the context minimal graph, and will

prove that the result is the AOMDD ofM.

Procedure 8 processes the variables bottom up relative to the pseudo treeT . We use

the depth first traversal ordering ofT (line 1), but any other bottom up ordering is as good.

The outer for loop (starting at line 10) goes through all eachlevel of the context minimal

AND/OR graph. For efficiency, and to ensure the complexity guarantees that we will prove,

225



a hash table, initially empty, is used for each level. The inner for loop (starting at line 10)

goes through all the metanodes of a level, that are also saved(or pointers to them are saved)

in the listLHi . For each new meta-noden in the list, if it was already encountered before (as

meta-nodep, namely if it is found in the cache table, thenn is merged withp. Otherwise,

if the new meta-noden is redundant, then it is eliminated from the AND/OR graph. Ifnone

of the previous two conditions is met, then the new meta-noden is hashed into the tableH.

Procedure 8: Bottom Up Reduction
input : A graphical modelM = 〈X,D,F〉; a pseudo treeT of the primal graph, rooted atX1;

Context minimal AND/OR graph, and listsLXi of meta-nodes for each levelXi.
output : AOMDD ofM.
Let d = {X1, . . . ,Xn} be the depth first traversal ordering ofT1

for i← n down to 1 do2

LetH be a hash table, initially empty3

forall meta-nodesn in LHi do4

if H(Xi, n.children1, . . . , n.childrenki
, wu(Xi, x1), . . . , w

u(Xki
, xki

)) returnsp then5

mergen with p in the AND/OR graph6

else ifn is redundantthen7

eliminaten from the AND/OR graph8

else9

H(Xi, n.children1, . . . , n.childrenki
, wu(Xi, x1), . . . , w

u(Xki
, xki

))← p10

return reduced AND/OR graph11

Proposition 25 The output of Procedure 8 is the AOMDD ofM along the pseudo treeT ,

namely the resulting AND/OR graph is completely reduced.

Proof. Consider the level of variableXi, and the meta-nodes in the listLXi. After one

pass through the meta-nodes inLXi (the inner for loop), there can be no two meta-nodes

at the level ofXi in the AND/OR graph that are isomorphic, because they would have

been merged in line 6. Also, during the same pass through the meta-nodes inLXi all the

redundant meta-nodes inLXi are eliminated in line 8. Processing the meta-nodes in the

level ofXi will not create new redundant or isomorphic meta-nodes in the levels that have

been processed before. It follows that the resulting AND/ORgraph is completely reduced.

2

226



Note that we explicated Procedure 8 separately only for clarity. In practice, it can

actually be included in Algorithm 7. We can maintain a hash table for each variable, during

the AND/OR search, to store pointers to meta-nodes. When the search backtracks out of

an OR node (in the Update value phase), it can already check the redundancy of that meta-

node, and also look up in the hash table to check for isomorphism. Therefore, the reduction

of the AND/OR graph can be done during the AND/OR search, and the output will be the

AOMDD ofM.

From Theorem 2.3.8 and Proposition 25 we can conclude:

THEOREM 7.6.1 Given a graphical modelM and a pseudo treeT of its primal graph

G, the AOMDD ofM corresponding toT has size bounded byO(n kw∗
T (G)) and it can

be computed by the AND/OR search algorithm in timeO(n kw∗
T (G)), wherew∗T (G) is the

induced width ofG over the depth first traversal ofT , andk bounds the domain size.

Proof. The bound on the size follows directly from Theorem 2.3.8. The AOMDD size can

only be smaller than the size of the context minimal AND/OR graph, which is bounded by

O(n kw∗
T (G)). To prove the time bound, we have to rely on the use of hash table, and the

assumption that an efficient implementation allows an access time that we assume to be

constant. The time bound of Algorithm 7 isO(n kw∗
T (G)), from Theorem 2.3.8, because it

takes time linear in the output (we assume here that no constraint propagation is performed

during search). Procedure 25 takes time linear in the size ofthe context minimal AND/OR

graph. Therefore, the AOMDD can be computed in timeO(n kw∗
T (G)), and the result is the

same for the algorithm that performs the reduction during the search. 2

7.7 Using Bucket Elimination to Generate AOMDDs

In this section we propose to use a Bucket Elimination (BE) type algorithm to guide the

compilation of a graphical model into an AOMDD. The basic idea is to express the graph-

ical model functions as AOMDDs, and then combine them withAPPLY operations based

227



D

C B F

AE

G

H

A

B

C F

D E G H

(a) (b)

Figure 7.7: (a) Constraint graph forC = {C1, . . . , C9}, whereC1 = F ∨H,C2 = A∨¬H,
C3 = A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E, C8 = C ⊕D,
C9 = B ∨ C; (b) Pseudo tree (bucket tree) for orderingd = (A,B,C,D,E, F,G,H)

on aBE schedule. TheAPPLY is very similar to that from OBDDs [16], but it is adapted to

AND/OR search graphs. It takes as input two functions represented as AOMDDs based on

the same pseudo tree, and outputs the combination of initialfunctions, also represented as

an AOMDD based on the same pseudo tree. We will describe it in detail in Section 7.7.2.

We will start with an example based on constraint networks. This is easier to understand

because the weights on the arcs are all 1 or 0, and therefore are depicted in the figures by

solid and dashed lines, respectively.

Example 7.7.1 Consider the network defined byX = {A,B, . . . , H},DA = . . . = DH =

{0, 1} and the constraints (where⊕ denotes XOR):C1 = F ∨ H, C2 = A ∨ ¬H, C3 =

A ⊕ B ⊕ G, C4 = F ∨ G, C5 = B ∨ F , C6 = A ∨ E, C7 = C ∨ E, C8 = C ⊕ D,

C9 = B ∨ C. The constraint graph is shown in Figure 7.7(a). Consider the ordering

d = (A,B,C,D,E, F,G,H). The pseudo tree (or bucket tree) induced byd is given in Fig.

7.7(b). Figure 7.8 shows the execution ofVE with AOMDDs along orderingd. Initially,

the constraintsC1 throughC9 are represented as AOMDDs and placed in the bucket of

their latest variable ind. The scope of any original constraint always appears on a path

from root to a leaf in the pseudo tree. Therefore, eachoriginal constraint is represented by

an AOMDD based on a chain. (i.e. there is no branching into independent components at

any point). The chain is just the scope of the constraint, ordered according tod. For bi-

valued variables, the original constraints are represented by OBDDs, for multiple-valued

variables they are MDDs. Note that we depict meta-nodes: one ORnode and its two AND

228



H
G

ED

C
F

B

A

F
0 1

H
0 1

0 1
C1     

A
0 1

H
0 1

0 1
C2     

A
0 1

B
0 1

G
0 1

G
0 1

B
0 1

0 1C3     

F
0 1

G
0 1

0 1
C4     

A
0 1

E
0 1

0 1
C6     

C
0 1

E
0 1

0 1
C7     

C
0 1

D
0 1

D
0 1

0 1
C8

B
0 1

C
0 1

0 1
C9     

B
0 1

F
0 1

0 1
C5     

m
1

m3

m7

m6

m
4 m2m5

A
0 1

F
0 1

H
0 1

F
0 1

H
0 1

0 1
m1     

A
0 1

B
0 1

G
0 1

F
0 1

B
0 1

G
0 1

0 1
m2     

A
0 1

E
0 1

C
0 1

0 1
m4     

C
0 1

D
0 1

D
0 1

0 1
m5    

A
0 1

B
0 1

F
0 1

G
0 1

H
0 1

F
0 1

G
0 1

B
0 1

F
0 1

F
0 1

H
0 1

0 1m3     

A
0 1

B
0 1

C
0 1

C
0 1

D
0 1

E
0 1

D
0 1

B
0 1

C
0 1

C
0 1

0 1m6    

m7     

A

F

H

A

B

F

G H

C

D

A

B

C

D E

A

B

C F

D E G H

A

B

F

G

C

E

A

Figure 7.8: Execution of VE with AOMDDs

children, that appear inside each gray node. The dotted edgecorresponds to the 0 value

(the low edge in OBDDs), the solid edge to the 1 value (thehigh edge). We have some

redundancy in our notation, keeping both AND value nodes and arc-types (doted arcs from

“0” and solid arcs from “1”).

TheVE scheduling is used to process the buckets in reverse order ofd. A bucket is

processed byjoining all the AOMDDs inside it, using theAPPLY operator. However, the

step of elimination of the bucket variable is omitted because we want to generate the full

AOMDD. In our example, the messagesm1 = C1 ./ C2 andm2 = C3 ./ C4 are still based

on chains, so they are still OBDDs. Note that they still contain the variablesH andG,

which have not been eliminated. However, the messagem3 = C5 ./ m1 ./ m2 is not an

OBDD anymore. We can see that it follows the structure of the pseudo tree, whereF has

two children,G andH. Some of the nodes corresponding toF have two outgoing edges

for value 1.

The processing continues in the same manner The final output of the algorithm, which

229



A
0 1

B
0 1

C
0 1

0

D
0 1

1

F
0 1

G
0 1

H
0 1

C
0 1

D
0 1

E
0 1

F
0 1

G
0 1

B
0 1

C
0 1

F
0 1

C
0 1

F
0 1

H
0 1

(a)

D

C

B

F

A

E

G

H

1 0

B

CC C

D D D D D

E E

F F F

G G G G

H

(b)

Figure 7.9: (a) The final AOMDD; (b) The OBDD corresponding tod

coincides withm7, is shown in Figure 7.9(a). The OBDD based on the same orderingd

is shown in Fig. 7.9(b). Notice that the AOMDD has 18 nonterminal nodes and 47 edges,

while the OBDD has 27 nonterminal nodes and 54 edges.

7.7.1 Algorithm VE-AOMDD

Given an orderingd, the structural information captured in the primal graph through the

scopes of the functionsF = {f1, . . . , fr} can be used to create the unique pseudo tree that

corresponds tod. This is precisely the bucket tree (or elimination tree), that is created by

BE (when variables are processed in reversed). The same pseudo tree can be created by

conditioning on the primal graph, and processing variablesin the orderd, as described in

Procedure 9 (GeneratePseudoTree). In the following,d|Gi
is the restriction of the orderd

to the nodes of the graphGi.

Each constraintCi is compiled into an AOMDD that is compatible withT and placed

into the appropriate bucket. The buckets are processed fromlast variable to first as usual.

Each bucket contains AOMDDs that are either initial constraints or AOMDDs received

from previously processed buckets. The scope of all the variables that are mentioned in a

bucket includerelevantvariables, i.e. the ones whose buckets were not yet processed (note

that they are identical to the OR context), andsuperfluousvariables, the ones whose buckets

had been proceessed. The number of relevant variables is bounded by the induced width

230



Procedure 9: GeneratePseudoTree(G, d)

input : graphG = (X, E); orderd = (X1, . . . , Xn)
output : Pseudo treeT
MakeX1 the root ofT ;1

Condition onX1 (eliminateX1 and its incident edges fromG). LetG1, . . . , Gp be2

the resulting connected components ofG;
for i = 1 to p do3

Ti = GeneratePseudoTree (Gi, d|Gi
);4

Make root ofTi a child ofX15

return T ;6

Algorithm 10 : BE-AOMDD
input : Graphical modelM = 〈X,D,F〉, whereX = {X1, . . . , Xn},

F = {f1, . . . , fr} ; orderd = (X1, . . . , Xn)
output : AOMDD representing⊗i∈Ffi

T = GeneratePseudoTree(G, d);1

for i← 1 to r do // place functions in buckets2

placeGaomdd
fi

in the bucket of its latest variable ind3

for i← n down to 1 do // process buckets4

message(Xi)← G
aomdd
1

// initialize with AOMDD of 1 ;5

while bucket(Xi) 6= φ do // combine AOMDDs in bucket of Xi6

pick Gaomdd
f from bucket(Xi);7

bucket(Xi)← bucket(Xi) \ {G
aomdd
f };8

message(Xi)← APPLY(message(Xi),G
aomdd
f )9

addmessage(Xi) to the bucket of the parent ofXi in T10

return message(X1)11

(because so is the OR context). It is easy to see that any two AOMDDs in a bucket only

have in common relevant variables, which reside on the top chain portion of the bucket

pseudo tree. The superfluous variables appear in disjoint branches of the bucket pseudo

tree. These observations will be important later on when we present theAPPLY algorithm,

and analyze the complexity.

Algorithm 10, calledBE-AOMDD , creates the AOMDD of a graphical model by us-

ing aBE schedule forAPPLY operations. Given an orderd of the variables, first a pseudo

tree is created based on the primal graph. Each initial function fi is then represented as an

AOMDD, denoted byGaomdd
fi

, and placed in its bucket. To obtain the AOMDD of a func-

231



tion, the scope of the function is ordered according tod, a search tree (based on a chain)

that representsfi is generated, and then reduced by Procedure 8. The algorithmproceeds

exactly likeBE, with the only difference that combination is realized by the APPLY algo-

rithm, and variables are not eliminated but carried arroundto the destination bucket. We

defer the complexity analysis until we present theAPPLY algorithm, and just observe that

the complexity is bounded by that ofBE (namely exponential in treewidth), provided that

APPLY is an efficient operation. This will also become clear after we prove the canonic-

ity of the AOMDD, since the complexity bounds were already given by the search based

generation algorithm in Section 7.6.

7.7.2 The AOMDD APPLY Operation

We describe here how to combine two AOMDDs. The apply operator takes as input two

AOMDDs representing functionsf1 andf2 and returns an AOMDD representingf1 ⊗ f2.

In OBDDs theapplyoperator combines two input diagrams based on the same variable

ordering. Likewise, in order to combine two AOMDDs we assumethat their backbone

pseudo trees areidentical. This condition is satisfied by any two AOMDDs in the same

bucket ofVE-AOMDD . However, it we present here a version ofAPPLY that is more gen-

eral, by relaxing the previous condition fromidentical to compatiblepsedo trees. Namely,

there should be a pseudo tree in which both can be embedded. Ingeneral, a pseudo tree

induces a strict partial order between the variables where aparent node always precedes its

child nodes.

DEFINITION 7.7.1 (compatible pseudo trees)A strict partial orderd1 = (X, <1) over

a setX is consistentwith a strict partial orderd2 = (Y, <2) over a setY, if for all

x1, x2 ∈ X∩Y, if x1 <2 x2 thenx1 <1 x2. Two partial ordersd1 andd2 arecompatibleiff

there exists a partial orderd that is consistent with both. Two pseudo trees arecompatible

iff the partial orders induced via the parent-child relationship, are compatible.

232



For simplicity, we focus on a more restricted notion of compatibility, which is sufficient

when using aVE like schedule for theapplyoperator to combine the input AOMDDs (as

described in Section 7.7). Theapplyalgorithm that we will present can be extended to the

more general notion of compatibility.

DEFINITION 7.7.2 (strictly compatible pseudo trees)A pseudo treeT1 having the set of

nodesX1 can beembeddedin a pseudo treeT having the set of nodesX if X1 ⊆ X and

T1 can be obtained fromT by deleting each node inX \X1 and connecting its parent to

each of its descendents. Two pseudo treesT1 andT2 are compatibleif there existsT such

that bothT1 andT2 can be embedded inT .

Algorithm 11, calledAPPLY, takes as input one node fromGaomdd
f and a list of nodes

from Gaomdd
g . Initially, the node fromGaomdd

f is its, and the list of nodes fromGaomdd
g is in

fact just one node, its root. We will sometimes identify an AOMDD by its root node. The

backbone pseudo trees,Tf andTg are strictly compatible, having a target pseudo treeT .

The list of nodes fromGaomdd
f always has a special property: there is no node in it that

can be the ancestor inT of another (we refer to the variable of the meta-node). Therefore,

the listw1, . . . , wm from g expresses a decomposition with respect toT , so all those nodes

appear on different branches. We will employ the usual techniques from OBDDs to make

the operation efficient. First, if one of the arguments is0, then we can safely return0.

Second, a hash tableH1 is used to store the nodes that have already been processed, based

on the nodes(v1, w1, . . . , wr). Therefore, we never need to make multiple recursive calls

on the same arguments. Third, a hash tableH2 is used to detect isomorphic nodes. This

is typically split in separate tables for each variable. If at the end of the recursion, before

returning a value, we discover that a meta-node with the samevariable, the same children

and the same weights has already been created, then we don’t need to store it and we simply

return the existing node. And fourth, if at the end of the recursion we discover we created

a redundant node (all children are the same and all weights are the same), then we don’t

233



Algorithm 11 : APPLY(v1; w1, . . . , wm)
input : AOMDDs Gaomdd

f with nodesvi andGaomdd
g with nodeswj , based onstrictly compatible

pseudo treesTf , Tg that can be embedded inT .
var(v1) is an ancestor of allvar(w1), . . . , var(wm) in T .
var(wi) andvar(wj) are not in ancestor-descendant relation inT .

output : v1 ⊗ (w1 ∧ . . . ∧ wm), based onT .
if H1(v1, w1, . . . , wm) 6= null then return H1(v1, w1, . . . , wm); // is in cache1

if (any ofv1, w1, . . . , wm is 0) then return 02

if (v1 = 1) then return 13

if (m = 0) then return v1 // nothing to combine4

create new nonterminal meta-nodeu5

var(u)← var(v1) (call it Xi, with domainDi = {x1, . . . , xki
} )6

for j ← 1 to ki do7

u.childrenj ← φ // children of the j-th AND node of u8

wu(Xi, xj)← wv1(Xi, xj) // assign weight from v19

if ( (m = 1) and (var(v1) = var(w1) = Xi) ) then10

tempChildren← w1.childrenj11

wu(Xi, xj)← wv1(Xi, xj)⊗ w
w1(Xi, xj) // combine input weights12

else13

tempChildren← {w1, . . . , wm}14

group nodes fromv1.childrenj ∪ tempChildren in several{v1; w1, . . . , wr}15

for each{v1; w1, . . . , wr} do16

y ← APPLY(v1; w1, . . . , wr)17

if (y = 0) then18

u.childrenj ← 0; break19

else20

u.childrenj ← u.childrenj ∪ {y}21

if (u.children1 = . . . = u.childrenki
) and (wu(Xi, x1) = . . . = wu(Xi, xki

)) then22

promotewu(Xi, x1) to parent23

return u.children1 // redundancy24

if (H2(Xi, u.children1, . . . , u.childrenki
, wu(Xi, x1), . . . , w

u(Xki
, xki

)) 6= null) then25

return H2(Xi, u.children1, . . . , u.childrenki
, wu(Xi, x1), . . . , w

u(Xki
, xki

))26

// isomorphism

LetH1(v1, w1, . . . , wm) = u // add u to H127

LetH2(Xi, u.children1, . . . , u.childrenki
, wu(Xi, x1), . . . , w

u(Xki
, xki

)) = u // add u to28

H2

return u29

store it, and return instead one of its identical lists of children, and promote the common

weight.

Note thatv1 is always an ancestor of allw1, . . . , wm in T . We consider a variable inT

to be an ancestor of itself. A few self explaining checks are performed in lines 1-4. Line 2

is specific for multiplication, and needs to be changed for other operations. The algorithm

creates a new meta-nodeu, whose variable isvar(v1) = Xi - recall thatvar(v1) is highest

234



(closest to root) inT amongv1, w1, . . . , wm. Then, for each possible value ofXi, line 7, it

starts building its list of children.

One of the important steps happens in line 15. There are two lists of meta-nodes, one

from each original AOMDDf and g, and we will refer only to their variables, as they

appear inT . Each of these lists has the important property mentioned above, that its nodes

are not ancestors of each other. The union of the two lists is grouped into maximal sets of

nodes, such that the highest node in each set is an ancestor ofall the others. It follows that

the root node in each set belongs to one of the original AOMDD,sayv1 is fromf , and the

others, sayw1, . . . , wr are fromg. As an example, supposeT is the pseudo tree from Fig.

7.7(b), and the two lists are{C,G,H} from f and{E,F} from g. The grouping from line

15 will create{C;E} and{F ;G,H}. Sometimes, it may be the case that a newly created

group contains only one node. This means there is nothing more to join in recursive calls,

so the algorithm will return, via line 4, the single node. From there on, only one of the

input AOMDDs is traversed, and this is important for the complexity of APPLY, discussed

below.

7.7.3 Complexity ofAPPLY

An AOMDD along a pseudo tree can be regarded as a union of regular MDDs, each re-

stricted to a full path from root to a leaf in the pseudo tree. Let πT be such a path inT .

Based on the definition of strictly compatible pseudo trees,πT has corresponding paths

πTf
in Tf andπTg

in Tg. The MDDs fromf andg corresponding toπTf
andπTg

can be

combined using the regular MDDapply. This process can be repeated for every pathπT .

The resulting MDDs, one for each path inT need to be synchronized on their common

parts (on the intersection of the paths). The algorithm we proposed does all this processing

at once, in a depth first search traversal over the inputs. Based on our construction, we can

give a first characterization of the complexity of AOMDDAPPLY as being governed by the

complexity of MDD apply.

235



Proposition 26 Letπ1, . . . , πl be the set of paths inT enumerated from left to right and let

Gi
f andGi

g be the MDDs restricted to pathπi, then the size of the output of AOMDDapply

is bounded by
∑

i |G
i
f | · |G

i
g| ≤ n ·maxi|G

i
f | · |G

i
g|. The time complexity is also bounded by

∑

i |G
i
f | · |G

i
g| ≤ n ·maxi|G

i
f | · |G

i
g|.

Proof. The complexity of OBDD (and MDD) apply is known to be quadraticin the input.

Namely, the number of nodes in the output is at most the product of number of nodes in

the input. Therefore, the number of nodes that can appear along one path in the output

AOMDD can be at most the product of the number of nodes in each input, along the same

path,|Gi
f | · |G

i
g|. Summing over all the paths inT gives the result. 2

A second characterization of the complexity can be given, similar to the MDD case, in

terms of total number of nodes of the inputs:

Proposition 27 Given two AOMDDsGaomdd
f and Gaomdd

g based on strictly compatible

pseudo trees, the size of the output ofAPPLY is at mostO(| Gaomdd
f | · | Gaomdd

g |).

Proof. The argument is identical to the case of MDDs. The recursive calls in APPLY lead

to combinations of one node fromGaomdd
f and one node fromGaomdd

g (rather than a list of

nodes). The number of total possible such combinations isO(| Gaomdd
f | · | Gaomdd

g |). 2

We can further detail the previous proposition as follows. Given AOMDDsGaomdd
f and

Gaomdd
g , based on compatible pseudo treesTf andTg and the common pseudo treeT , we

define theintersection pseudo treeTf∩g as being obtained fromT by the following two

steps: (1) mark all the subtrees whose nodes belong to eitherTf or Tg but not to both

(the leaves of each subtree should be leaves inT ); (2) remove the subtrees marked in step

(1) from T . Steps (1) and (2) are applied just once (that is, not recursively). The part of

AOMDD Gaomdd
f corresponding to the variables inT∩ is denoted byGf∩g

f , and similarly for

Gaomdd
g it is denoted byGf∩g

g .

Proposition 28 The time complexity ofAPPLY and the size of the output areO(|Gf∩g
f | ·

|Gf∩g
g |+ |Gaomdd

f |+ |Gaomdd
g |).

236



Proof. The recursive calls ofAPPLY can generate one meta-node in the output for each

combination of nodes fromGf∩g
f andGf∩g

g . Let’s look at combinations of nodes from

Gf∩g
f andGaomdd

g \ Gf∩g
g . The meta-nodes fromGaomdd

g \ Gf∩g
g that can participate in such

combinations (let’s call this setA) are only those from levels (of variables) right below

Tf∩g. This is because of the mechanics of the recursive calls inAPPLY. Whenever a node

from f that belongs toGf∩g
f is combined with a node fromg that belongs toA, line 15 of

APPLY expands the node fromf , and the node (or nodes) fromA remain the same. This

will happen until there are no more nodes fromf that can be combined with the node (or

nodes) fromA, and at that pointAPPLY will simply copy the remaining portion of its output

from Gaomdd
g . The size ofA is therefore proportional to| Gf∩g

g | (because it is the layer of

metanodes immediately belowGf∩g
g ). A similar argument is valid for the symmetrical case.

And there are no combinations between nodes inGaomdd
g \ Gf∩g

g andGaomdd
g \ Gf∩g

g . The

bound follows from all these arguments.2

Having clarified theAPPLY operation, we can now return to the complexity of theVE-

AOMDD algorithm. Each bucket has an associated bucket pseudo tree. The top chain of

the bucket pseudo tree for variableXi contains all and only the variables incontext(Xi).

For any other variables that appear in the bucket pseudo tree, their associated buckets

have already been processed. The original functions that belong to the bucket ofXi have

their scope included incontext(Xi), and therefore their associated AOMDDs are based on

chains. Any other functions that appear in bucket ofXi are messages received from inde-

pendent branches below. Therefore, any two functions in bucket ofXi only share variables

in thecontext(Xi), which forms the top chain of the bucket pseudo tree. We can therefore

bound the complexity ofVE-AOMDD and the output size:

THEOREM 7.7.2 The space complexity ofBE-AOMDDand the size of the output AOMDD

areO(n kw∗
), wheren is the number of variables,k is the maximum domain size andw∗ is

the treewidth of the bucket tree. The time complexity is bounded byO(n kw∗
) andO(r kw∗

),

wherer is the number of initial functions.

237



Proof. The space complexity is governed by that ofBE. Since an AOMDD never requires

more space than that of a full exponential table (or a tree), it follows thatBE-AOMDD only

needs spaceO(n kw∗
). The size of the output AOMDD is also bounded, per layers, by

the number of assignments to the context of that layer (namely, by the size of the context

minimal AND/OR graph). Therefore, because context size is bounded by treewidth, it

follows that the output has sizeO(n kw∗
). For the time complexity, theAPPLY could be

modified to combine all the AOMDDs in a bucket at once, rather than two at a time. By

an argument similar to that of Proposition 28, the number of recursive calls is proportional

to the size of the intersection portion of all the AOMDDs in a bucket, which amounts to

that corresponding to the top chain. Even if the common portion can not be reduced at all,

and needs to be represented by a tree, the size of that tree would beO(kw∗
), because the

treewidth is equal to the context. The remaining independent portions of the AOMDDs are

just copied (or linked through pointers) and need no more processing. Therefore, the total

time for such an algorithm would beO(n kw∗
). If we maintain theAPPLY to process two

AOMDDs at a time, we can observe that we only needr APPLY operations in total. And

each such operation is again bounded byO(kw∗
), therefore the boundO(r kw∗

) follows.

2

7.8 AOMDDs Are Canonical Representations

It is well known that OBDDs are canonical representations of Boolean functions given an

ordering of the variables [16], and this property extends toMDDs [97]. In the case of

AOBDDs and AOMDDs, the canonicity is with respect to a pseudo tree, following the

transition from total orders (that correspond to a linear ordering) to partial orders (that

correspond to a pseudo tree ordering).

A pseudo treeT of the variablesX defines a partial order relation<T , whereXi <T Xj

iff Xi is an ancestor ofXj in T .

238



Many of the algorithms for graphical models are based on a linear orderingd of vari-

ables. The structural information captured in the primal graph through the scopes of the

functionsF = {f1, . . . , fr} can be used to create a natural pseudo tree that corresponds to

d. This is precisely the bucket tree (or elimination tree), that is created byBE(variables are

processed in reversed). The same pseudo tree can be created by conditioning on the primal

graph, and processing variables in the orderd, as described in Procedure 9.

We should note that given a graphical model and a pseudo treeT of it, there may be

several linear orderings that correspond to it. In fact, anytopological ordering of the vari-

ables inT (where ancestors appear before descendants), is a linear ordering that generates

T . Therefore, once we have structural information for the universal function of a graphical

modelF = ⊗ifi, given by the scopes of allfi, then all the linear orderings ofX can be

grouped into equivalence classes, based on the pseudo tree that they generate.

We will discuss the canonicity of AOMDD for constraint networks and for general

weighted graphical models separately.

7.8.1 Canonicity of AOMDDs for Constraint Networks

The case of constraint networks is easier, because the weights on the OR-to-AND arcs are

only 0 or 1.

THEOREM 7.8.1 (AOMDDs are canonical for a given pseudo tree)Given a constraint

network, and a pseudo treeT of its constraint graph, there is a unique (up to isomorphism)

AOMDD that represents it, and it has the minimal number of meta-nodes.

Proof. The proof is by structural induction over the pseudo treeT . 2

7.8.2 Canonicity of AOMDDs for Weighted Graphical Models

In this section we raise the issue of recognizing nodes that root AND/OR graphs that repre-

sent the same universal function, even though the graphicalrepresentation is different. We

239



M

A

B

A

M B

4111

6011

10101

4001

2110

18010

5100

12000

f(M,A,B)BAM

C C

6111

7011

15101

9001

12110

14010

5100

3000

g(M,B,C)CBM

Figure 7.10: Weighted graphical model

0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0

C

0 1

1

C

0 1

0

A

B

0

C

0 1

1

1

C

0 1

B

0

C

0 1

1

C

0 1

3 5 14 12 3 5 14 12 9 15 7 6 9 15 7 6

12 5 18 2 4 10 6 4

36 60 70 60 54 90 28 24 36 60 70 60 54 90 28 24

0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0 1

0

A

B

0

C

0 1

1

1

C

0 1

B

0 1

3 5 14 12 9 15 7 6

12 5 18 2 4 10 6 4

36 60

Figure 7.11: AND/OR search tree and context minimal graph

will see that the AOMDD for a weighted graphical model is not unique under the current

definitions, but we can slightly modify them to obtain canonicity again. We have to note

that canonicity of AOMDDs for weighted graphical models (e.g., belief networks) is far

less crucial than in the case of OBDDs that are used in formal verification. Even more than

that, sometimes it may be useful not to eliminate the redundant nodes, in order to maintain

a simpler semantics of the AND/OR graph that represents the model.

The loss of canonicity of AOMDD for weighted graphical models can happen because

of the weights on the OR-to-AND arcs, and we suggest a possibleway of re-enforcing it if

a more compact and canonical representation is needed.

Example 7.8.2 Figure 7.10 shows a weighted graphical model, defined by two (cost) func-

tions,f(M,A,B) andg(M,B,C). Assuming the order (M,A,B,C), Figure 7.11 shows the

AND/OR search tree on the left. The arcs are labeled with function values, and the leaves

show the value of the corresponding full assignment (which isthe product of numbers on

the arcs of the path). We can see that either value of M (0 or 1) gives rise to the same

240



0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0 1

0

A

B

0

C

0 1

1

1

C

0 1

B

0 1

3/8 5/8 14/26 12/26 3/8 5/8 14/26 12/26

12 5 18 2 4 10 6 4

8 26 24 13

0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0 1

0

A

B

0

C

0 1

1

1

C

0 1

B

0 1

3/8 5/8 7/13 6/13 3/8 5/8 7/13 6/13

8*12 26*5 8*18 26*2 24*4 13*10 24*6 13*4

Figure 7.12: Normalizing values bottom up

function (because the leaves in the two subtrees have the samevalues). However, the two

subtrees can not be identified as representing the same function by the usual reduction

rules. The right part of the figure shows the context minimal graph, which has a compact

representation of each subtree, but does not share any of their parts.

What we would like in this case is to have a method of recognizing that the left and

right subtrees corresponding toM = 0 andM = 1 represent the same function. We can

do this by normalizing the values in each level, and processing bottom up. In Figure 7.12

left, the values on the OR-to-AND arcs have been normalized, for each OR variable, and

the normalization constant was promoted up to the OR value. In Figure 7.12 right, the

normalization constant are promoted upwards again by multiplication. This process does

not change the value of each full assignment, and therefore produces equivalent graphs.

We can see already that some of the nodes labeled by C can now bemerged, producing

the graph in Figure 7.13 on the left. Continuing the same process we obtain the AOMDD

for the weighted graph, shown in Figure 7.13 on the right.

THEOREM 7.8.3 Given two equivalent weighted graphical models that accept a common

pseudo treeT , normalizing arc values together with exhaustive application of reduction

rules yields the same AND/OR graphs.

Proof. By structural induction over layers of the graph, bottom up.2

241



0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0 1

0

A

B

0 1

1

B

0 1

3/8 5/8 7/13 6/13

96 130 144 52 96 130 144 52

0

A

B

0

C

0 1

1

1

0

M

1

C

0 1

B

0 1

3/8 5/8 7/13 6/13

226/422 196/422

1/2 1/2

96/226 130/226 144/196 52/196

844

Figure 7.13: AOMDD for the weighted graph

oD

oC

oB

oA

4321

oD

oC

oB

oA

4321

(a) The two solutions

A

DB

C

24

14

13

42

41

31

BA

34

14

43

23

32

12

41

21

CA

34

24

43

23

13

42

32

12

31

21

DA

24

14

13

42

41

31

CB

34

14

43

23

32

12

41

21

DB

24

14

13

42

41

31

DC

(b) First model

A DB C

13

42

BA

14

41

CB

24

31

DC

(c) Second model

Figure 7.14: The 4-queen problem

7.9 Semantic treewidth

A graphical modelM represents a universal functionF = ⊗fi. The functionF may be

represented by different graphical models. Given a particular pseudo treeT , that captures

some of the structural information ofF , we are interested in all the graphical models that

acceptT as a pseudo tree, namely their primal graphs only contain edges that are back-arcs

in T . Since the size of the AOMDD forF based onT is bounded in the worst case by the

induced width of the graphical model alongT , we define thesemantic treewidthto be:

DEFINITION 7.9.1 (semantic treewidth)The semantic treewidth of a graphical model

M relative to a pseudo treeT denoted byswT (M), is defined byswT (M) =

minR,u(R)=u(M)wT (R), whereu(M) is the universal function ofM, andwT (R) is the

induced width ofR alongT . Thesemantic treewidthof a graphical model,M, is the min-

imal semantic treewidth over all the pseudo trees that can express its universal function.

242



Computing the semantic treewidth is obviously a hard problem. However, the semantic

treewidth can explain why sometimes the minimal AND/OR graph or OBDD are much

smaller than the upper bounds exponential in treewidth or pathwidth. In many cases, there

could be a huge disparity between the treewidth ofM and the semantic treewidth alongT .

Example 7.9.1 Figure 7.14(a) shows the two solutions of the 4-queen problem.The prob-

lem is expressed by a complete graph of treewidth 3, given in Figure 7.14(b). Figure 7.14(c)

shows an equivalent problem, which has treewidth 1. The semantic treewidth of the 4-queen

problem is 1.

Based on the fact that AOMDDs are canonical representation ofthe universal function

of a graphical model, we can conclude that the size of the AOMDD is bounded exponen-

tially by the semantic treewidth along the pseudo tree, rather than the treewidth of the given

graphical model representation.

Proposition 29 The size of the AOMDD of a graphical modelM is bounded by

O(n kswT (M)), wheren is the number of variables,k is the maximum domain size and

swT (M) is the semantic treewidth ofM along the pseudo treeT .

Example 7.9.2 Consider a constraint network onn variables such that every two variables

are the equality constraint (X = Y ). One graph representation is a complete graph,

another is a chain and another is a tree. If the problem is specified as a complete graph,

and if we use a linear order, the OBDD will have a linear size because there exists a

representation having a pathwidth of 1 (rather than n).

7.10 Related Work

There are various lines of related research. The formal verification literature, beginning

with [16] contains a very large number of papers dedicated tothe study of BDDs. However,

BDDs are in fact OR structures (the underlying pseudo tree is achain) and do not take

243



advantage of the problem decomposition in an explicit way. The complexity bounds for

OBDDs are based onpathwidthrather thantreewidth.

As noted earlier, the work on Disjoint Support Decomposition (DSD) is related to

AND/OR BDDs in various ways [8]. The main common aspect is thatboth approaches

show how structure decomposition can be exploited in a BDD-like representation. DSD is

focused on Boolean functions and can exploit more refined structural information that is

inherent to Boolean functions. In contrast, AND/OR BDDs assumes only the structure con-

veyed in the constraint graph, they are therefore more broadly applicable to any constraint

expression and also to graphical models in general. They allow a simpler and higher level

exposition that yields graph-based bounds on the overall size of the generated AOMDD.

The full relationship between these two formalisms should be studied further.

McMillan introduced the BDD trees [82], along with the operations for combining

them. For circuits of bounded tree width, BDD trees have linear upper space bound

O(|g|2w22w

), where|g| is the size of the circuitg (typically linear in the number of vari-

ables) andw is the treewidth. This bound hides some very large constantsto claim the linear

dependence on|g| whenw is bounded. However, McMillan maintains that when the input

function is a CNF expression BDD-trees have the same bounds as AND/OR BDDs, namely

they are exponential in the treewidth only.

Darwiche has done much research on compilation, using insights from the AI commu-

nity. The AND/OR structure restricted to propositional theories is very similar to determin-

istic decomposable negation normal form (d-DNNF) [25]. More recently, in [55], the trace

of the DPLL algorithm is used to generate an OBDD, and comparedwith the bottom up

approach of combining the OBDDs of the input function according to some schedule (as is

typical in formal verification). The structures that are investigated are still OR. The idea can

nevertheless be extended to AND/OR search. We could run the depth first AND/OR search

with caching, generating thecontext minimalAND/OR graph, which can then be processed

bottom up by layers to be reduced even further by eliminatingisomorphic subgraphs and

244



redundant nodes.

McAllester [80] introduced the case factor diagrams (CFD) which subsume Markov

random fields of bounded tree width and probabilistic context free grammars (PCFG).

CFDs are very much related to the AND/OR graphs. The CFDs targetthe minimal rep-

resentation, by exploiting decomposition (similar to AND nodes) but also by exploiting

context sensitive information and allowing dynamic ordering of variables based on con-

text. CFDs do not eliminate the redundant nodes, and part of the cause is that they use zero

suppression. There is no claim about CFDs being a canonical form, and also there is no

description of how to combine two CFDs.

More recently, independently and in parallel to our work on AND/OR graphs [45, 44],

Fargier and Vilarem [46] proposed the compilation of CSPs into tree-driven automata,

which have many similarities to our work. Their main focus isthe transition from linear

automata to tree automata (similar to that from OR to AND/OR),and the possible savings

for tree-structured networks and hyper-trees of constraints due to decomposition. Their

compilation approach is guided by a tree-decomposition while ours is guided by a variable

elimination based algorithm, or by AND/OR search directly.And, it is well known that

Bucket Elimination and cluster-tree decomposition are in principle, the same [41].

We see that our work using AND/OR search graphs has a unifyingquality that helps

make connections among seemingly different compilation approaches.

7.11 Conclusion to Chapter 7

We propose the AND/OR multi-valued decision diagram (AOMDD), which emerges from

the study of AND/OR search for graphical models [45, 44, 74] and ordered binary decision

diagrams (OBDDs) [16]. This data-structure can be used to compile any set of relations

over multi-valued variables as well as any CNF Boolean expression.

The approach we take in this chapter may seem to go against thecurrent trend in

245



model checking, which moves away from BDD-based algorithms into CSP/SAT based

approaches. However, constraint processing algorithms that are search-based and com-

piled data-structures such as BDDs differ primarily by theirchoices of time vs memory.

When we move from regular OR search space to an AND/OR search space the spectrum

of algorithms available is improved for all time vs memory decisions. We believe that the

AND/OR search space clarifies the available choices and helps guide the user into making

an informed selection of the algorithm that would fit best theparticular query asked, the

specific input function and the available computational resources.

In summary, the contribution of our work is: (1) We formally describe the AOMDD

and prove that it is a canonical representation of a constraint network; (2) We describe

the APPLY operator that combines two AOMDDs by an operation and give its complexity

bounded by the product of the sizes of the inputs; (3) We give ascheduling of building the

AOMDD of a constraint network starting with the AOMDDs of itsconstraints. It is based

on an ordering of variables, which gives rise to a pseudo tree(or bucket tree) according

to the execution of Bucket Elimination algorithm. This givesthe complexity guarantees in

terms of theinduced widthalong the ordering (equal to the treewidth of the corresponding

decomposition); 4) We show how AOMDDs relate to various earlier and recent works,

providing a unifying perspective for all these methods.

246



Chapter 8

Software

The main algorithms described in this dissertation have been implemented in software

packages developed in C++. This chapter contains a short overview and description of

the implementation and discusses future directions.

8.1 Iterative Algorithms

The algorithms presented in Chapter 4, namely Mini-Clustering (MC) and Iterative Join-

Graph Propagation (IJGP), produce approximate results by performing bounded inference

on tree decompositions or on the more general join graphs. Ifallowed enough resources

(memory and time), they become exact. IJGP is also an iterative algorithm, that can be

viewed as generalized belief propagation.

These algorithms have been implemented by Kalev Kask, with some contributions from

the author. The package, calledCSP, was originally developed for constraint networks,

and then extended to belief networks and mixed networks.CSPcan either load problems

in standard formats (e.g., *.bif for belief networks, *.ergfor CPCS networks), or it can

generate random networks based on user defined parameters. For example, it can generate

constraint networks defined by:N , the number of variables;k, the domain size;C, the

number of constraints;P , the size of a function scope. It can also generate linear block

247



coding networks, based on the length of the block and the channel noise, or noisy-OR

networks.

Both MC and IJGP work on a decomposition of the interaction graph, which is derived

based on an ordering of the variables. Typically, the heuristic min-fill is used to obtain the

ordering, but other options such as min-degree or weighted min-fill are available.

The CSPpackage was integrated in theREESsystem (Reasoning Engine(s) Evaluation

Shell) developed by Radu Marinescu.REESis a software environment to support research

and development in the area of both deterministic and non-deterministic reasoning.REES

has a plug-in oriented architecture that promotes reuse of existing software components

and allows for the comparison and evaluation of alternativetechnologies.

All the experiments presented in Chapter 4 were done using theCSPpackage integrated

in REES. For most of the experiments, an exact result was also necessary in order to com-

pute the various measures, such as absolute or relative error, Kullback-Leibler divergence,

bit error rate etc. We used a Bucket Elimination algorithm to compute the exact answer.

8.2 AND/OR Search

The AND/OR search algorithms have been implemented from scratch by Radu Marinescu

and the author, in a package calledAOLIB . The new system uses its own input format file

(*.simple), but can potentially load any other usual formatfile. Also, it can still generate

random networks based on user defined parameters.

The AOLIB package contains a family of algorithms, based on a combination of

AND/OR search, constraint propagation, AND/OR w-cutset conditioning, memory limit

and exact inference (Bucket Elimination).AOLIB is especially suitable for mixed networks,

because of the straightforward exploitation of deterministic information.

The pseudo tree that guides the AND/OR search is computed in accordance with the

available resources and the user instructions. If only a linear amount of memory is available

248



(tree search), the pseudo tree is optimized for depth. We usea min-depth heuristic that

creates a balanced tree decomposition, resulting in a likely small depth. If more memory is

available, then the heuristic tends to trade the small depthtarget for a smaller context size

(size of a cache table). If full caching is possible (i.e., the memory available is exponential

in the treewidth), then we typically use a weighted min-fill heuristic. We have implemented

all these heuristics and reported the results in Chapter 5, where we presented the AND/OR

cutset.

The current version ofAOLIB runs the Adaptive Caching algorithm, based on the

AND/OR cutset idea. We found that it is the most flexible and powerful, taking advan-

tage of the available memory in the most efficient way.

One of the ingredients ofAOLIB is the constraint propagation. The user can choose

between different levels of consistency enforcing algorithms, from forward checking, arc

consistency to relational forward checking. Each of the methods guarantees more pruning

of the search space, but at the cost of more computation, therefore an appropriate level

should be chosen based on the problem.

Finally, AOLIB offers the possibility to combine AND/OR search and inference algo-

rithms. When the conditoned subproblem has a sufficiently small treewidth, it can be solved

exactly. One option is to continue with AND/OR search with full caching. The other would

be to solve the conditioned subproblem by an inference-based method, such as Bucket

Elimination. They are in principle equivalent as shown in Chapter 6, unless there is de-

terminism. In practice we discovered that inference-basedmethods tend to have a smaller

overhead and are faster in the case of no determinism. The user can choose what method

to use for the conditioned subproblem.

The task thatAOLIB addresses is #P-hard. It can report the number of valid assign-

ments, or the probability of the evidence.

The AOLIB system participated in the UAI’06 (Uncertainty in Artificial Intelli-

gence) Evaluation of Probabilistic Inference Systems, both for the probability of evi-

249



dence task (PE) and for maximum probable explanation (MPE).Results are available at

http://ssli.ee.washington.edu/∼bilmes/uai06InferenceEvaluation/.

8.3 Future Work

The AOLIB package has been the focus of our experimental work. There are a number of

future directions that can be explored.

The pseudo tree that guides the AND/OR search can play a crucial role in the efficiency

of the algorithms. There is still a lot of potential in investigating new heuristics for the

generation of the pseudo tree in the context of Adaptive Caching.

The constraint propagation also plays an important role formixed networks with sub-

stantial deterministic information. The algorithms can beimproved by extending the con-

sistency enforcing schemes, possibly by integrating already existing libraries withAOLIB .

The experimental evaluation of AOMDDs (Chapter 7) is still under way. We intend

to have a functional AND/OR BDD package (also with the multi-valued version), and to

test it on the existing formal verification benchmarks. The Bucket Elimination schedule for

compilation is also promising for the case of genetic linkage analysis, where the networks

contain a lot of determinism.

All these software packages will be made available online ina short time, on the web

page of the research group of Professor Rina Dechter, at the University of California, Irvine

(http://csp.ics.uci.edu/).

250



Chapter 9

Conclusion

The research presented in this dissertation is concerned with graphical model algorithms

that leverage the structure of the problem. We investigatedtechniques that capitalize on

the independencies expressed by the model’s graph by decomposing the problem into in-

dependent components, resulting in often exponentially reduced computational costs. The

algorithms that we presented can be characterized along three main dimensions: (1) search

vs. dynamic programming methods; (2) deterministic vs. probabilistic information; (3)

approximate vs. exact algorithms.

The first and main contribution of this dissertation is the introduction of AND/OR

search spaces for graphical models. In contrast to the traditional OR search, the new

AND/OR search is sensitive to problem decomposition. The linear space AND/OR tree

search can be exponentially better (and never worse) than the linear space OR tree search.

The AND/OR search graph is exponential in the treewidthw∗ of the graph, while the OR

search graph is exponential in the pathwidthpw∗, and it is known thatw∗ ≤ pw∗ ≤

w∗ log n, wheren is the number of variables. Therefore, the savings with respect to mem-

ory intensive schemes are more modest when moving from OR to AND/OR,O(expw∗)

vs.O(exp(w∗ log n)), but can still be significant in practice whenn is large.

The second contribution is the framework ofmixed networks, a new graphical model

251



that combines belief and constraint networks. By keeping theprobabilistic and determinis-

tic information separate we are able to more efficiently exploit them by specific methods.

We describe the primary algorithms for processing such networks, based on inference and

on AND/OR search. We also present experimental evaluation showing the benefit of ex-

ploiting the deterministic information during search, coupled with the efficiency of the

AND/OR scheme.

The third contribution is in the area of approximate algorithms for graphical models,

and mixed networks in particular. We investigated message-passing schemes based on

join tree clustering and belief propagation. We introducedMini-Clustering (MC), which

performs bounded inference on a tree decomposition. We thencombine MC with the iter-

ative version of Pearl’s belief propagation (IBP), creatingIterative Join-Graph Propagation

(IJGP). IJGP is both anytime (controlled by a bounding parameter) and iterative, and we

showed empirically that IJGP is one of the most powerful approximate schemes for be-

lief networks. Through analogy with arc consistency algorithms from constraint networks,

we proved that IBP and IJGP infer zero-beliefs correctly, andempirically showed that this

property also extends to extreme beliefs. This gives an explanation of why and when iter-

ative algorithm perform well, in particular giving a strongexplanation of their tremendous

performance on coding networks.

The fourth contribution is the application of AND/OR searchspaces to the problem

of cutset and w-cutset conditioning. We showed that the new concept ofAND/OR cutset

(or w-cutset) is a strict improvement over the old one. Ratherthan trying to minimize the

number of variables that form a cutset, the new method needs to minimize the depth of the

pseudo tree that spans the AND/OR cutset. The new method alsoinspires our most flexible

and powerfulAdaptive Cachingalgorithm.

The fifth contribution is the creation of a methodology for the comparison of algorithms.

Using the context minimal graph traversed by full caching AND/OR search, we compared

pure search and pure dynamic programming algorithms for graphical models. We showed

252



that there is no principled difference between AND/OR search and Variable Elimination

besides different directions of exploring a common search space (top down vs. bottom up)

and different control strategies (depth first vs. breadth first).

The sixth contribution is in the domain of compilation of graphical models. We com-

bined AND/OR search with decision diagrams and created the AND/OR Multi-Valued De-

cision Diagram (AOMDD), that is sensitive to function decomposition structure. We gave

two compilation algorithms for AOMDDs, one search based andthe other inference based.

Both algorithms and the size of the AOMDD are bounded exponentially by the treewidth, in

contrast to the bound exponential in pathwidth known for ordered binary decision diagrams

(OBDDs). We also introduced the concept of semantic treewidth, which helps explain why

the size of decision diagrams is often much smaller than the worst case bound.

The examples that we used throughout the dissertation were primarily based on con-

straint networks and belief networks. The reasoning task that we considered was usually

#P-hard, or equivalent to solutions counting or belief updating. The exposition of AND/OR

search spaces was however at a general level, and therefore easily extendable to other types

of graphical models and reasoning tasks (e.g., optimization tasks).

253



Bibliography

[1] S.B. Akers. Binary decision diagrams.IEEE Transactions on Computers, C-
27(6):509–516, 1978.

[2] D. Allen and A. Darwiche. New advances in inference by recursive conditioning. In
Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence
(UAI’03), pages 2–10, 2003.

[3] S. A. Arnborg. Efficient algorithms for combinatorial problems on graphs with
bounded decomposability - a survey.BIT, 25:2–23, 1985.

[4] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #SAT
and bayesian inference. InProceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’03), pages 340–351, 2003.

[5] F. Bacchus, S. Dalmao, and T. Pitassi. Value elimination:Bayesian inference via
backtracking search. InProceedings of the Nineteenth Conference on Uncertainty
in Artificial Intelligence (UAI’03), pages 20–28, 2003.

[6] R. Bayardo and D. Miranker. A complexity analysis of space-bound learning al-
gorithms for the constraint satisfaction problem. InProceedings of the Thirteenth
National Conference on Artificial Intelligence (AAAI’96), pages 298–304, 1996.

[7] R. J. Bayardo and R. C. Schrag. Using CSP look-back techniques to solve real world
SAT instances. InProceedings of the Fourteenth National Conference on Artificial
Intelligence (AAAI’97), pages 203–208, 1997.

[8] V. Bertacco and M. Damiani. The disjunctive decomposition of logic functions. In
ICCAD, International Conference on Computer-Aided Design, pages 78–82, 1997.

[9] B. Bidyuk and R. Dechter. The epsilon-cuset effect in bayesian networks. Technical
report, University of California, Irvine, 2001.

[10] B. Bidyuk and R. Dechter. Cycle-cutset sampling for bayesian networks. InPro-
ceedings of the Sixteenth Canadian Conference on Artificial Intelligence (CAAI’03),
pages 297–312, 2003.

[11] B. Bidyuk and R. Dechter. On finding minimal w-cutset problem. In Proceedings of
the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI’04), pages
43–50, 2004.

254



[12] D. Bienstock, N. Robertson, P. Seymour, and R. Thomas. Quickly excluding a forest.
J. Combin. Theory Ser. B, 52:274–283, 1991.

[13] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. InThe Twenty
Second International Symposium on Mathematical Foundations of Computer Sci-
ence (MFCS’97), pages 19–36, 1997.

[14] H. L. Bodlaender and J. R. Gilbert. Approximating treewidth, pathwidth and mini-
mum elimination tree-height. Technical report, Utrecht University, 1991.

[15] R. K. Brayton and C. McMullen. The decomposition and factorization of boolean
expressions. InISCAS, Proceedings of the International Symposium on Circuits and
Systems, pages 49–54, 1982.

[16] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transaction on Computers, 35:677–691, 1986.

[17] J. Cheng and M. Druzdzel. AIS-BN: An adaptive importance sampling algorithm
for evidential reasoning in large bayesian networks.Journal of Artificial Intelligence
Research (JAIR), 13:155–188, 2000.

[18] E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. MIT Press, 1999.

[19] Z. Collin, R. Dechter, and S. Katz. On the feasibility of distributed constraint satis-
faction. InProceedings of the Twelfth International Joint Conferences on Artificial
Intelligence (IJCAI’91), pages 318–324, 1991.

[20] Z. Collin, R. Dechter, and S. Katz. Self-stabilizing distributed constraint satisfaction.
The Chicago Journal of Theoretical Computer Science, 3(4), special issue on self-
stabilization, 1999.

[21] G. F. Cooper. The computational complexity of probabistic inferences.Artificial
Intelligence, 42:393–405, 1990.

[22] P. Dagum and M. Luby. Approximating probabilistic inference in Bayesian belief
networks is NP-hard.Artificial Intelligence, 60(1):141–153, 1993.

[23] A. Darwiche. Recursive conditioning.Artificial Intelligence, 125(1-2):5–41, 2001.

[24] A. Darwiche. A differential approach to inference in Bayesian networks.Journal of
the ACM, 50(3):280–305, 2003.

[25] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of Artificial
Intelligence Research (JAIR), 17:229–264, 2002.

[26] R. Dechter. Enhancement schemes for constraint processing: Backjumping, learning
and cutset decomposition.Artificial Intelligence, 41:273–312, 1990.

[27] R. Dechter. Constraint networks.Encyclopedia of Artificial Intelligence, pages 276–
285, 1992.

255



[28] R. Dechter. Bucket elimination: A unifying framework forprobabilistic inference
algorithms. InProceedings of the Twelfth Conference on Uncertainty in Artificial
Intelligence (UAI’96), pages 211–219, 1996.

[29] R. Dechter. Bucket elimination: A unifying framework forreasoning. Artificial
Intelligence, 113(1-2):41–85, 1999.

[30] R. Dechter. A new perspective on algorithms for optimizing policies under un-
certainty. InInternational Conference on Artificial Intelligence Planning Systems
(AIPS’00), pages 72–81, 2000.

[31] R. Dechter.Constraint Processing. Morgan Kaufmann Publishers, 2003.

[32] R. Dechter and Y. El Fattah. Topological parameters for time-space tradeoff.Artifi-
cial Intelligence, 125:93–188, 2001.

[33] R. Dechter and D. Frost. Backjump-based backtracking forconstraint satisfaction
problems.Artificial Intelligence, 136(2):147–188, 2002.

[34] R. Dechter, K. Kask, and J. Larrosa. A general scheme for multiple lower bound
computation in constraint optimization.Proceedings of the Seventh International
Conference on Principles and Practice of Constraint Programming (CP’01), pages
346–360, 2001.

[35] R. Dechter and D. Larkin. Hybrid processing of belief andconstraints. InPro-
ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence
(UAI’01), pages 112–119, 2001.

[36] R. Dechter and R. Mateescu. A simple insight into iterative belief propagation’s
success. InProceedings of the Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI’03), pages 175–183, 2003.

[37] R. Dechter and R. Mateescu. Mixtures of deterministic-probabilistic networks and
their AND/OR search space. InProceedings of the Twentieth Conference on Uncer-
tainty in Artificial Intelligence (UAI’04), pages 120–129, 2004.

[38] R. Dechter and R. Mateescu. AND/OR search spaces for graphical models.Artificial
Intelligence, 171(2-3):73–106, 2007.

[39] R. Dechter, R. Mateescu, and K. Kask. Iterative join-graph propagation. InProceed-
ings of the Eighteenth Conference on Uncertainty in Artificial Intelligence (UAI’02),
pages 128–136, 2002.

[40] R. Dechter and J. Pearl. Network-based heuristics for constraint satisfaction prob-
lems.Artificial Intelligence, 34:1–38, 1987.

[41] R. Dechter and J. Pearl. Tree clustering for constraint networks. Artificial Intelli-
gence, 38:353–366, 1989.

256



[42] R. Dechter and J. Pearl. Directed constraint networks: Arelational framework for
causal reasoning. InProceedings of the Twelfth International Joint Conferences on
Artificial Intelligence (IJCAI’91), pages 1164–1170, 1991.

[43] R. Dechter and I. Rish. A scheme for approximating probabilistic inference. In
Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence
(UAI’97), pages 132–141, 1997.

[44] Rina Dechter and Robert Mateescu. The impact of AND/OR search spaces on con-
straint satisfaction and counting. InProceedings of the Tenth International Confer-
ence on Principles and Practice of Constraint Programming (CP’04), pages 731–
736, 2004.

[45] Rina Dechter and Robert Mateescu. Mixtures of deterministic-probabilistic net-
works and their AND/OR search space. InProceedings of the Twentieth Conference
on Uncertainty in Artificial Intelligence (UAI’04), pages 120–129, 2004.

[46] H. Fargier and M. Vilarem. Compiling CSPs into tree-driven automata for interactive
solving. Constraints, 9(4):263–287, 2004.

[47] M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedi-
grees.Bioinformatics, 18(1):189–198, 2002.

[48] E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in
constraint satisfaction problems. InProceedings of the Ninth International Joint
Conferences on Artificial Intelligence (IJCAI’85), pages 1076–1078, 1985.

[49] E. C. Freuder and M. J. Quinn. The use of lineal spanning trees to represent con-
straint satisfaction problems. Technical Report 87-41, University of New Hampshire,
Durham, 1987.

[50] D. H. Frost. Algorithms and Heuristics for constraint satisfaction problems. PhD
thesis, Information and Computer Science, University of California, Irvine, 1997.

[51] J. Gergov and C. Meinel. Efficient boolean manipulation with OBDDs can be ex-
tended to FBDDs.IEEE Trans. Computers, 43:1197–1209, 1994.

[52] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural CSP decompo-
sition methods.Artificial Intelligence, pages 243–282, 2000.

[53] D. Heckerman. A tractable inference algorithm for diagnosing multiple diseases. In
Proceedings of the Fifth Annual Conference on Uncertainty inArtificial Intelligence
(UAI’89), pages 171–181, 1989.

[54] R. A. Howard and J. E. Matheson.Influence diagrams, volume 2 ofReadings on
the Principles and Applications of Decision Analysis, pages 719–762. Strategic
decisions Group, Menlo Park, CA, USA, 1984.

257



[55] J. Huang and A. Darwiche. DPLL with a trace: From SAT to knowledge compila-
tion. In Proceedings of the Nineteenth International Joint Conferences on Artificial
Intelligence (IJCAI’05), pages 156–162, 2005.

[56] P. G. Jeavons and M. C. Cooper. Tractable constraints on ordered domains.Artificial
Intelligence, 79:327–339, 1996.

[57] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen. Bayesian updating in causal proba-
bilistic networks by local computation.Computational Statistics Quarterly, 4:269–
282, 1990.

[58] K. Kask. Approximation algorithms for graphical models. PhD thesis, Information
and Computer Science, University of California, Irvine, 2001.

[59] K. Kask, R. Dechter, J. Larrosa, and A. Dechter. Unifyingcluster-tree decomposi-
tions for reasoning in graphical models.Artificial Intelligence, 166 (1-2):165–193,
2005.

[60] L. M. Kirousis. Fast parallel constraint satisfaction. Artificial Intelligence, 64:147–
160, 1993.

[61] U. Kjæaerulff. Triangulation of graph-based algorithms giving small total state
space. Technical report, University of Aalborg, Denmark, 1990.

[62] D. Koller and A. Pfeffer. Probabilistic frame-based systems. InProceedings of the
Fifteenth National Conference of Artificial Intelligence (AAAI’98), pages 580–587,
1998.

[63] J. Larrosa and R. Dechter. Boosting search with variable elimination. Constraints,
7(3-4):407–419, 2002.

[64] J. Larrosa, K. Kask, and R. Dechter. Up and down mini-buckets: a scheme for
approximating combinatorial optimization tasks. Technical report, University of
California, Irvine, 2001.

[65] J. Larrosa, P. Meseguer, and M. Sanchez. Pseudo-tree search with soft constraints. In
Proceedings of the European Conference on Artificial Intelligence (ECAI’02), pages
131–135, 2002.

[66] S. L. Lauritzen and D. J. Spiegelhalter. Local computation with probabilities on
graphical structures and their application to expert systems. Journal of the Royal
Statistical Society, Series B, 50(2):157–224, 1988.

[67] C.Y. Lee. Representation of switching circuits by binary-decision programs.Bell
System Technical Journal, 38:985–999, 1959.

[68] A. K. Mackworth. Consistency in networks of relations.Artificial Intelligence,
8(1):99–118, 1977.

258



[69] M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random
satisfiability problems.Science, 297:812–815, 2002.

[70] D. Maier. The theory of relational databases. InComputer Science Press, Rockville,
MD, 1983.

[71] R. Marinescu and R. Dechter. AND/OR branch-and-bound forgraphical models. In
Proceedings of the Nineteenth International Joint Conferences on Artificial Intelli-
gence (IJCAI’05), pages 224–229, 2005.

[72] J. P. Marques-Silva and K. A. Sakalla. GRASP: A search algorithm for propositional
satisfiability. IEEE Transaction on Computers, 48 (5):506–521, 1999.

[73] R. Mateescu and R. Dechter. AND/OR search spaces and the semantic width of
constraint networks. InProceedings of the Eleventh International Conference on
Principles and Practice of Constraint Programming (CP’05), Doctoral Program,
page 860.

[74] R. Mateescu and R. Dechter. The relationship between AND/OR search and vari-
able elimination. InProceedings of the Twenty First Conference on Uncertainty in
Artificial Intelligence (UAI’05), pages 380–387, 2005.

[75] R. Mateescu and R. Dechter. AND/OR cutset conditioning. In Proceedings of
the Nineteenth International Joint Conferences on ArtificialIntelligence (IJCAI’05),
pages 230–235, 2005.

[76] R. Mateescu and R. Dechter. Compiling constraint networksinto AND/OR multi-
valued decision diagrams (AOMDDs). InProceedings of the Twelfth International
Conference on Principles and Practice of Constraint Programming (CP’06), pages
329–343, 2006.

[77] R. Mateescu and R. Dechter. And/or multi-valued decisiondiagrams (aomdds) for-
weighted graphical models. InProceedings of the Twenty Third Conference on Un-
certainty in Artificial Intelligence (UAI’07), 2007.

[78] R. Mateescu and R. Dechter. A comparison of time-space schemes for graphical
models. InProceedings of the Twentieth International Joint Conferences on Artifi-
cial Intelligence (IJCAI’07), pages 2346–2352, 2007.

[79] R. Mateescu, R. Dechter, and K. Kask. Tree approximation for belief updating.
In Proceedings of The Eighteenth National Conference on Artificial Intelligence
(AAAI’02), pages 553–559, 2002.

[80] D. McAllester, M. Collins, and F. Pereira. Case-factor diagrams for structured prob-
abilistic modeling. InProceedings of the Twentieth Conference on Uncertainty in
Artificial Intelligence (UAI’04), pages 382–391, 2004.

[81] K. L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

259



[82] K. L. McMillan. Hierarchical representation of discrete functions with application
to model checking. InComputer Aided Verification, pages 41–54, 1994.

[83] P. J. Modi, W. Shena, M. Tambea, and M. Yokoo. ADOPT: asynchronous distributed
constraint optimization with quality guarantees.Artificial Intelligence, 161:149–
180, 2005.

[84] L. Ngo and P. Haddawy. Answering queries from context-sensitive probabilistic
knowledge bases.Theoretical Computer Science, 171:147–177, 1977.

[85] N. J. Nilsson.Principles of Artificial Intelligence. Tioga, Palo Alto, CA, 1980.

[86] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publish-
ers, 1988.

[87] D. Poole. Probabilistic Horn abduction and Bayesian networks. Artificial Intelli-
gence, 64:81–129, 1993.

[88] L. Portinale and A. Bobbio. Bayesian networks for dependency analysis: an appli-
cation to digital control. InProceedings of the Fifteenth Conference on Uncertainty
in Artificial Intelligence (UAI’99), pages 551–558, 1999.

[89] D. J. C. MacKay R. J. McEliece and J. F. Cheng. Turbo decodingas an instance
of Pearl’s belief propagation algorithm.IEEE J. Selected Areas in Communication,
1997.

[90] I. Rish and R. Dechter. Resolution versus search: Two strategies for SAT.Journal
of Automated Reasoning, 24(1/2):225–275, 2000.

[91] N. Robertson and P. Seymour. Graph minors I. Excluding a forest. J. Combin.
Theory, Ser. B, 35:39–61, 1983.

[92] D. Roth. On the hardness of approximate reasoning.Artificial Intelligence, 82(1-
2):273–302, 1996.

[93] T. Sang, F. Bacchus, P. Beam, H. Kautz, and T. Pitassi. Combining component
caching and clause learning for effective model counting. In Proceedings of the Sev-
enth International Conference on Theory and Applications ofSatisfiability Testing
(SAT’04), 2004.

[94] G. R. Shafer and P. P. Shenoy. Probability propagation.Annals of Mathematics and
Artificial Intelligence, 2:327–352, 1990.

[95] P. P. Shenoy. Valuation-based systems for bayesian decision analysis.Operations
Research, 40:463–484, 1992.

[96] D. Sieling and I. Wegener. Graph driven BDDs - a new data structure for boolean
functions.Theoretical Computer Science, 141:283–310, 1994.

260



[97] A. Srinivasan, T. Kam, S. Malik, and R. K. Brayton. Algorithms for discrete function
manipulation. InInternational conference on CAD, pages 92–95, 1990.

[98] C. Terrioux and P. J́egou. Bounded backtracking for the valued constraint satisfac-
tion problems. InProceedings of the Ninth International Conference on Principles
and Practice of Constraint Programming (CP’03), pages 709–723, 2003.

[99] C. Terrioux and P. J́egou. Hybrid backtracking bounded by tree-decomposition of
constraint networks.Artificial Intelligence, 146:43–75, 2003.

[100] M. Welling and Y. W. Teh. Belief optimization for binarynetworks: a stable alter-
native to loopy belief propagation. InProceedings of the Seventeenth Conference on
Uncertainty in Artificial Intelligence (UAI’01), pages 554–561, 2001.

[101] Nic Wilson. Decision diagrams for the computation of semiring valuations. InPro-
ceedings of the Nineteenth International Joint Conferences on Artificial Intelligence
(IJCAI’05), pages 331–336, 2005.

[102] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalizedbelief propagation. In
Advances in Neural Information Processing Systems 13 (NIPS’00), pages 689–695,
2000.

[103] N. L. Zhang, R. Qi, and D. Poole. A computational theory of decision networks.
International Journal of Approximate Reasoning, 11:83–158, 1994.

261


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Introduction
	Dissertation Outline and Contributions
	AND/OR Search Spaces for Graphical Models (Chapter 2)
	Mixed Networks (Chapter 3)
	Iterative Algorithms for Mixed Networks (Chapter 4)
	AND/OR Cutset Conditioning (Chapter 5)
	AND/OR Search and Inference Algorithms (Chapter 6)
	AND/OR Multi-Valued Decision Diagrams  (Chapter 7)

	Preliminaries
	Graph Concepts
	AND/OR Search Graphs
	Graphical Models
	Constraint Networks
	Belief Networks


	AND/OR Search Spaces for Graphical Models
	Introduction
	Contributions

	AND/OR Search Trees
	Weights of OR-AND Arcs
	Properties of AND/OR Search Tree
	From DFS Trees to Pseudo Trees
	Pruning Inconsistent Subtrees for the Flat Constraint Network

	AND/OR Search Graphs
	Minimal AND/OR Search Graphs
	Building AND/OR Search Graphs
	On the Canonicity and Generation of the Minimal AND/OR Graph
	Merging and Pruning: Orthogonal Concepts
	Using Dynamic Variable Ordering

	Solving Reasoning Problems by AND/OR Search
	Value Functions of Reasoning Problems
	Algorithm AND/OR Tree Search and Graph Search
	General AND-OR Search - AO(i)
	Complexity

	Related Work
	Relationship with Variable Elimination
	Relationship with BTD (Backtracking with Tree-Decomposition)
	Relationship with Recursive Conditioning
	Relationship with Value Elimination
	Relationship with Case-Factor Diagrams
	AO-Search Graphs and Compilation

	Conclusion to Chapter 2

	Mixed Networks
	Introduction
	Contributions

	Mixing Probabilities with Constraints
	Defining the Mixed Network
	Queries over Mixed Networks
	Examples
	Processing Networks with Determinism
	Mixed Graphs as I-Maps

	Inference Algorithms for Processing Mixed Networks
	A Bucket Elimination Method
	Probability of Relational Constraints
	Complexity
	Elim-CPE with General Constraint Propagation

	AND/OR Search Algorithms For Mixed Networks
	AND/OR Search with Constraint Propagation
	Experimental Evaluation

	Conclusion to Chapter 3

	Iterative Algorithms for Mixed Networks
	Introduction
	Contributions

	Mini-Clustering
	Tree-Decomposition Schemes
	Mini-Clustering for Belief Updating 
	Properties of Mini-Clustering
	Experimental Evaluation
	Discussion

	Iterative Join-Graph Propagation
	Join-Graphs
	Algorithm IJGP
	I-Mappness of Arc-Labeled Join-Graphs
	Bounded Join-Graphs
	Experimental Evaluation
	Discussion

	The Inference Power of Iterative Belief Propagation
	Arc-Consistency Algorithms
	Iterative Belief Propagation over Dual Join-Graphs
	The Flat Bayesian Network
	Experimental Evaluation
	Discussion

	Conclusion to Chapter 4

	AND/OR Cutset Conditioning
	Introduction
	Contributions

	Traditional Cycle Cutset Explored by AND/OR Search
	AND/OR Cycle Cutset
	AND/OR w-Cutset
	Algorithm Description
	Adaptive AND/OR Caching Scheme
	Algorithm AO-C(i)
	Finding a Start Pseudo Tree

	Experimental Evaluation
	The Quality of Start Pseudo Trees
	Performance of AO-C(i)

	Conclusion to Chapter 5

	AND/OR Search and Inference Algorithms
	Introduction
	Contributions

	AND/OR Search (AO) vs. Variable Elimination (VE)
	AO vs. BE with No Determinism
	Algorithmic Advances and Their Effect
	Discussion

	A Comparison of Hybrid Time-Space Schemes
	Defining the Algorithms
	AOC(i) Compared to VEC(i)
	AOC(i) Compared to TDC(i)
	Discussion

	Conclusion to Chapter 6

	AND/OR Multi-Valued Decision Diagrams (AOMDDs)
	Introduction
	Contributions

	Motivation
	Binary Decision Diagrams Review
	Bucket Elimination (BE)
	AND/OR Multi-Valued Decision Diagrams (AOMDDs)
	From AND/OR Search Graphs to Decision Diagrams

	Using AND/OR Search to Generate AOMDDs
	AND/OR Search Algorithm
	Reducing the Context Minimal AND/OR Graph to an AOMDD

	Using Bucket Elimination to Generate AOMDDs
	Algorithm VE-AOMDD
	The AOMDD apply Operation
	Complexity of apply

	AOMDDs Are Canonical Representations
	Canonicity of AOMDDs for Constraint Networks
	Canonicity of AOMDDs for Weighted Graphical Models

	Semantic treewidth
	Related Work
	Conclusion to Chapter 7

	Software
	Iterative Algorithms
	AND/OR Search
	Future Work

	Conclusion

