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ABSTRACT OF THE DISSERTATION

AND/OR Search Spaces for Graphical Models

By

Robert Eugeniu Mateescu

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2007

Professor Rina Dechter, Chair

Graphical models are a widely used knowledge representitdinework that captures in-
dependencies in the data and allows for a concise repréisenté/ell known examples of
graphical models include Bayesian networks, constraiwards, Markov random fields
and influence diagrams. Graphical models are applicablevévsg domains such as plan-
ning, scheduling, design, diagnosis and decision making.

This dissertation is concerned with graphical model atbars that leverage the struc-
ture of the problem. We investigate techniques that capéain the independencies ex-
pressed by the model’s graph by decomposing the problemndependent components,
resulting in often exponentially reduced computationaitso

The algorithms that we develop can be characterized alaeg thain dimensions: (1)
search vs. dynamic programming methods; (2) deterministiprobabilistic information;
(3) approximate vs. exact algorithms.

We introduce the AND/OR search space perspective for gtapimodels. In contrast to
the traditional OR search, the new AND/OR search is seeditiproblem decomposition.
The AND/OR search tree search is in most cases exponerdiabyler (and never larger)

than the OR search tree. The AND/OR search graph is expahenthe treewidth of the

XX



graph, while the OR search graph is exponential in the patthwvi

We introducemixed networksa new graphical model framework that combines belief
and constraint networks. By keeping the two types of inforomaseparate we are able to
more efficiently exploit them by specific methods. We desctite primary algorithms for
processing such networks, based on inference and on ANDéaRIs.

In terms of approximate algorithms, we investigate mesgagsing schemes based on
join tree clustering and belief propagation. We introducmiMClustering (MC), which
performs bounded inference on a tree decomposition. Wedbeabine MC with the iter-
ative version of Pearl’s belief propagation (IBP), creatiiegative Join-Graph Propagation
(IJGP). We show empirically that IJGP is one of the most pdwepproximate schemes
for belief networks. Through analogy with arc consistengpathms from constraint net-
works, we show that IBP and IJGP infer zero-beliefs correetiyl empirically show that
this also extends to extreme beliefs.

We apply the AND/OR paradigm to cutset conditioning and shtitat the new method
is a strict improvement, often yielding exponential saging’he AND/OR cutset is the
inspiration of a new caching scheme for AND/OR search, whechto the design of our
most powerful and flexible algoriththtND/OR Adaptive Caching

Furthermore we make a comparison of AND/OR search and inéerenethods. We
analyze them side by side by describing the context minimegbly that they traverse. We
also investigate three hybrid schemes, based on searchfanence and show that Adap-
tive Caching is never worse than the other two.

Finally, we apply the AND/OR perspective to decision diagsa We extend them
with AND nodes capturing function structure decompositi@sulting in AND/OR Multi-
Valued Decision Diagrams (AOMDDs). The AOMDD is a canonifmam that compiles a
graphical model and has size bounded exponentially by élesvidth, rather than pathwidth
(as is the case for OR decision diagrams). We present two itatiop algorithms, one

based on AND/OR search, the other based on a Variable Eliilmmschedule.

XXi



Chapter 1

Introduction

Graphs are one of the fundamental concepts in mathematogputer and information
sciences. They exist in different flavors, but the basic defmincludes a set of vertices
and a set of edges (directed or undirected) between pairsrto€es. Due to this simple
definition, graphs are a convenient and natural way of reptesy the relationships (as
edges) between objects (vertices), and they can expresdearamge of processes and
systems. For example, individuals in a community may beesgmted by vertices and
some relationships between them by edges. A complex pradwdtl have its modules
represented by vertices and the interactions between tygddes. We may be interested
in modeling events, and we could represent them by vertasesthe causal links between
them by (directed) edges. In medicine, diseases and syrsgtambe modeled by vertices,
and edges would express the appropriate connections bethwe®. The World Wide Web
is another example of a graph, where pages are vertices ardfeoim one page to another
is a directed edge. The examples could continue, but thequeshould give at least a
glimpse of the power of abstraction of graphs.

Modeling real-life decision problems requires the speaifan and reasoning with
probabilistic and deterministic information. Graphicabaels are a widely used knowl-

edge representation framework that captures indepereteircthe data and allows for a



concise representation. Essential to a graphical modeéianderlying graph that captures
the problem structure. The vertices are the variables efést, and the edges represent
the interactions between them. Some well known exampldadedBayesian (or belief)
networks, constraint networks, Markov random fields, infeeediagrams etc. There are
numerous examples of problems defined as graphical modelsding design, scheduling,
planning, diagnosis, decision making or genetic linkagggyasis.

Graphical models are the representation of choice for mestyi@ms because they are a
simple abstract mathematical model, and there exist mayoyitims for solving different
tasks on them. Given a decision (or reasoning) problem, ane(@) model it as a graphical
model; (2) apply some specific algorithm to solve it and th@nirfterpret the results in
terms of the original problem. Modeling a problem (part &)an interesting and important
process in itself, but in most cases it is based on expert latlge of the problem at hand,
or learned from data. Our work and the research presentédsidissertation is concerned
with the algorithms (part 2) that can be applied to a grapinzadel. Owing to the power of
abstraction, an efficient algorithm for graphical modelsrimediately applicable to many
different types of problems (e.g., constraint satisfagtheelief updating, optimization).

The research presented in this dissertation is concerntidtiae@ study of graphical

model algorithms along three different dimensions:

1. searchvs. dynamic programmingnethods;
2. deterministicvs. probabilisticinformation;

3. approximatevs. exactalgorithms.

The following section will describe the outline of the digation and the contributions.
The rest of this chapter contains preliminary definitiond gives examples of graphical

models.



1.1 Dissertation Outline and Contributions

We describe here the structure of the dissertation, andtleeving sections will describe

in more detail the main results and contributions that appeaach chapter.

1. ChaptelR introduces the AND/OR search space perspeactigedphical models. In
contrast to the traditional (OR) search space view, the AND#@arch tree explicitly
displays some of the independencies that are present inr#phigal model and
may sometimes reduce the search space exponentially. Fooméntensive search,
familiar parameters such as the depth of a spanning tresyittth and pathwidth are
shown to play a key role in characterizing the effect of ANB/@earch graphs vs.

the traditional OR search graphs.

2. Chaptel B introducesixed networksa new framework for expressing and reason-
ing with probabilisticanddeterministianformation. The framework combines belief
networks and constraint networks, and we define its sensaaid its graphical rep-

resentation and outline the primary algorithms for processuch networks.

3. Chaptel ¥ investigates approximate message-passinilaige for mixed networks.
We study the advantages of bounded inference provided bynamgchemes such
as Mini-Clustering (MC), and combine them with the virtuestefative algorithms
such as lterative Belief Propagation (IBP). Our resultingrltyblgorithm Iterative
Join-Graph Propagation (IJGP) is shown empirically to asspthe performance of
both MC and IBP on several classes of networks. Although tlsestill little un-
derstanding of why or when IBP works well, it exhibits tremeusd performance on
different classes of problems, most notably coding andfsalility problems. We
investigate the iterative algorithms for Bayesian netwdriksmaking connections
with well known constraint processing algorithms, and tie¢ps explain when IBP

infers extreme beliefs correctly.



4. Chaptef b describes thHEND/OR cutset conditioningwhich is an application of
the AND/OR paradigm to the method of cutset conditioning. s€utonditioning
is one of the methods of solving reasoning tasks for grapncaels, especially
when space restrictions make inference (e.g., jointrasteting) algorithms infea-
sible. Thew-cutsetis a natural extension of the method to a hybrid algorithnt tha
performs search on the conditioning variables and infexemcthe remaining prob-
lems of induced width bounded hy. We take a fresh look at these methods through
the spectrum of AND/OR search spaces for graphical modéls rd@sultingAND/OR
cutset methods a strict improvement over the traditional one, often bganential

amounts.

5. Chaptelb compares search and inference in graphical sbdelgh the new frame-
work of AND/OR search. Specifically, we compare Variablertthation (VE) and
memory-intensive AND/OR Search (AO) and place algorithochsas graph-based
backjumping and no-good and good learning within the ANDA2Rrch framework.
We also compare three parameterized algorithmic schemgsdphical models that
can accommodate trade-offs between time and space: 1) ARIOtset Condi-
tioning (AOC(i)); 2) Variable Elimination with Conditioning\EC(i)); and 3) Tree
Decomposition with ConditioninglDC(i)). We show thaAOC(i) can simulate any

execution of the other two schemes, and thus is at least akagiiem.

6. Chaptefl7 describes how to augment Multi-Valued Decisiaagiams with AND
nodes, in order to capture function decomposition strecamd to extend these
compiled data structures to general weighted graphicaletso@.g., probabilistic
models). We present tt®ND/OR multi-valued decision diagra(AOMDD) which
compiles a graphical model into a canonical form that sugsppolynomial (e.g.,
solution counting, belief updating) or constant time (eeguivalence of graphical

models) queries. We provide two compilation algorithmsAQ@MDDs. The first is



based on AND/OR search and the subsequent reduction obtrezsed context min-
imal graph. The second is based on a Bucket Elimination sé&éé¢dicombine the
AOMDDs of the original functions. The algorithm uses thiePLY operator which
combines two AOMDDs by a given operation. For both approactiee complex-
ity of the compilation time and the size of the AOMDD are boedaxponentially
by thetreewidthof the graphical model, rather than thathwidth as is known for
ordered binary decision diagrams (OBDDs). We also introdbeeconcept oke-
mantic treewidthwhich helps explain why the size of a decision diagram isroft

much smaller than the worst case bound.

7. Chaptef B briefly presents the software implementatiohefdgorithms described

in the dissertation, and possible future directions. Chd&t®ncludes.

1.1.1 AND/OR Search Spaces for Graphical Models (Chaptér 2)

Search-based algorithms.g, depth-first branch-and-bound, best-first search) travies
search space of the model, where each path representsa paftill solution. The linear
structure of search spaces does not retain the indeperedarpresented in the underlying
graphical models and, therefore, search-based algoritheysnot be nearly as effective as
inference-based algorithms in using this information. @.dther hand, the space require-
ments of search-based algorithms may be much less severéhtiee of inference-based
algorithms and they can accommodate a wide spectrum of dggaceled algorithms, from
linear space to treewidth bounded space. In addition, Beaathods require only an im-
plicit, generative, specification of the functional retetship (given in a procedural or func-
tional form) while inference schemes often rely on an exjplabular representation over
the (discrete) variables. For these reasons, search-bég@ithms are the only choice

available for models with large treewidth and with impli@presentation.



Contributions

The primary contribution of this chapter is in viewing séafor graphical models in the
context of AND/OR search spaces rather than OR spaces. Wmsute the AND/OR
search tree, and show that its size can be bounded expdheoyighe depth of its pseudo
tree over the graphical model, and is never larger than #eeddithe OR search tree. This
implies exponential savings for any linear space algorittaversing the AND/OR search
tree vs. the OR search tree. Specifically, if the graphicadehbas treewidtho*, there
exists a pseudo tree of depgth{w™ - log n). Therefore, the size of the AND/OR search tree
is O(n - exp(w* - logn)), as opposed to the size of the OR search tree whi€t{désp n).

The AND/OR search tree can be transformed into a graph byintgidgentical subtrees.
We show that the size of the minimal AND/OR search graph i@egptial in the treewidth
while the size of the minimal OR search graph is exponentighe pathwidth. Since
for some graphs the difference between treewidth and pdthvis substantialg.g, bal-
anced pseudo trees) the AND/OR representation impliedantie time and space savings
for memory intensive algorithms traversing the AND/OR drafearching the AND/OR
searchgraphcan be implemented by goods caching during search, whilgooo-record-
ing is interpreted as pruning portions of the search spatependent of it being a tree or a
graph, an OR or an AND/OR. For finding a single solution, prgrihre search space is the
most significant action. For counting and probabilistieneince, using AND/OR graphs
can be of much help even on top of no-good recording.

We also discuss the unifying power of the AND/OR search fraark, and its relation-
ship with other existing algorithms, such as Variable Efiation, Recursive Conditioning
[23], Backtracking with Tree-Decomposition [99], Value faination [5], Case-Factor Di-

agrams|[[80] and compilation schemes.



1.1.2 Mixed Networks (Chapter3)

The communities of probabilistic networks and constraietworks matured in parallel
with only minor interaction. Nevertheless some of the athars and reasoning princi-
ples that emerged within both frameworks, especially thbaeare graph-based, are quite
related. Both frameworks can be viewed as graphical modeigmpalar paradigm for
knowledge representation in general.

Researchers within the logic-based and constraint comresriiave recognized for
some time the need for augmenting deterministic languagi@suncertainty information,
leading to a variety of concepts and approaches such as naptamic reasoning, proba-
bilistic constraint networks and fuzzy constraint netwgorkhe belief networks community
started only recently to look into mixed representatior %, 62, 35] perhaps because it
is possible, in principle, to capture constraint informaatwithin belief networks [86].

In principle, constraints can be embedded within beliefwogks by modeling each
constraint as a Conditional Probability Table (CPT). One aa@h is to add a new variable
for each constraint that is perceived asattect(child node) in the corresponding causal
relationship and then to clamp its valuettae [86,/21]. While this approach is semanti-
cally coherent and complies with the acyclic graph resticof belief networks, it adds a
substantial number of new variables, thus cluttering tloblem’s structure. An alternative
approach is to designate one of the arguments of the camsérsia child node (namely,
as its effect). This approach, although natural for funti@the arguments are the causes
or parents and the function variable is the child node), isequontrived for general re-
lations (e.g.,x + 6 # y). Such constraints may lead to cycles, which are disalloiwed
belief networks. Furthermore, if a variable is a child noflexm different CPTs (one may
be deterministic and one probabilistic) the belief netwaefinition requires that they be
combined into a single CPT.

The main shortcoming, however, of any of the above integnatis computational.

Constraints have special properties that render them tatgammputationally. When con-



straints are disguised as probabilistic relationshipsir tbtomputational benefits may be
hard to exploit. In particular, the power of constraint mefiece and constraint propagation

may not be brought to bear.

Contributions

We propose a simple framework that combines determinisiic @obabilistic networks,
calledmixed networkIn the mixed network framework the identity of the respextiela-
tionships, as constraints or probabilities, will be maimea explicitly, so that their respec-
tive computational power and semantic differences can \ad and easy to exploit. The
mixed network approach allows two distinct representatiarausal relationships that are
directional and normally (but not necessarily) quantifigdd®Ts and symmetrical deter-
ministic constraints.

The proposed scheme’s value is in providing: (1) semantie@nce; (2) user-interface
convenience (the user can relate better to these two piéeefoomation if they are dis-
tinct); and most importantly, (3) computational efficiency

We outline the main types of algorithms for mixed networkeference-based and
search-based. In particular, we discuss the applicatichiNid/OR search to mixed net-

works, and the exploitation of constraint propagation atgms.

1.1.3 Iterative Algorithms for Mixed Networks (Chapter 4)

Probabilistic inference is the principal task in Bayesiatwoeks, and it is known to be an
NP-hard problenm [21]. Most of the commonly used exact athors such as join-tree clus-
tering [66,[57] or Variable Eliminatiori [28, 103], explohe network structure. Yet, they
are time and space exponential in a graph parameter ¢atleded width(or tree-width,

rendering them essentially intractable even for moderiatgmoblems. Approximate algo-
rithms are therefore necessary for most of the practicdllpros, although approximation

within given error bounds is also NP-hard [22] 92].



In this chapter we present iterative inference-based #hgos for graphical models,
focusing primarily on the task of belief updating. They argpired by Pearl’s belief prop-
agation algorithm [86], which is known to be exact for palgeds, and by the Mini-Buckets
algorithm [43], which is a bounded inference scheme, an@aeytersion of Variable Elim-
ination. As a distributed algorithm, belief propagatioalso well defined for networks that
contain cycles, and it can be applied iteratively in the fariiterative Belief Propagation
(IBP), also known as loopy belief propagation. When the nets/opntain cycles, IBP is
no longer guaranteed to be exact, but in many cases it pviely good approximations
upon convergence, most notably in the case of coding nesn88d and some classes of

satisfiability [69].

Contributions

In this chapter we investigate: (1) The quality of bounddénence in anytime schemes
such as Mini-Clustering, which is a generalization of MinieRats to arbitrary tree-
decompositions. (2) The virtues of iterative message#pgsdgorithms, combined with
bounded inference, result in our new Iterative Join-Grap&gation (IJGP). (3) We also
make connections with well known and understood consigtenforcing algorithms for
constraint satisfaction, giving strong support for itergtmessages, and helping identify
cases of strong and weak inference power for IBP and IJGP. Bjweifically, the contri-
butions are as follows.

Specifically, we present the Mini-Clustering (MC) algorithwhich is inspired by the
Mini-Buckets algorithm|[[48]. MC is a message-passing athami guided by a user ad-
justable parameter callaebound offering a flexible tradeoff between accuracy and effi-
ciency in anytime style (in general the higher the i-bouiha, better the accuracy). MC
operates on a tree-decomposition, and similar to Pealisflpggopagation algorithim [86]
it converges in two passes, up and down the tree. Our cotibttbbeyond other work in

this areal[43, 34] consists in:



1. Extending the partition-based approximation for belipflating from mini-buckets
to general tree-decompositions, thus allowing the contjmutaf the updated beliefs
for all the variables at once. This extension is similar ®adne proposed in [34] but

replaces optimization with probabilistic inference.

2. Providing for the first time empirical evaluation demoeashg the effectiveness of

the partition-based idea for belief updating.

We were motivated by the success of Iterative Belief PropagdtBP) in trying to
make MC benefit from the apparent virtues of iterating. Thaulteng algorithm, Itera-
tive Join-Graph Propagation (IJGP) is still a messagehpgssggorithm, but it operates
on a general join-graph decomposition which may contairesyclt also provides a user
adjustable-boundthat defines the maximum cluster size of the graph (and hé&eosom-
plexity), so it is both anytime and iterative. IJGP can bewmad as a generalized belief
propagation algorithm [102], with user adjustable clusiee. Since both MC and 1IJGP
are approximate schemes, empirical results on variousesasf problems are included,
shedding light on their average case performance.

The work presented in the last part of the chapter is basedrae simple observations
that may shed light on IBP’s behavior, and on the more gentass of IJGP algorithms.
Zero-beliefs are variable-value pairs that have zero d¢mmdil probability given the evi-
dence. We show that: (1) if a value of a variable is assessbd\asg zero-belief in any
iteration of IBP, it remains a zero-belief in all subsequéstations; (2) that IBP converges
in a finite number of iterations relative to its set of zerdidfs; and, most importantly (3)
that the set of zero-beliefs decided by any of the iterateieb propagation methods is
sound. Namely any zero-belief determined by IBP corresptmdstrue zero conditional
probability relative to the given probability distributi@xpressed by the Bayesian network.

While each of these claims can be proved directly, our appresato associate a be-
lief network with a constraint network and show a corresgmug between IBP applied

to the belief network and an arc-consistency algorithmiagdgo the corresponding con-
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straint network. Since arc-consistency algorithms aré welerstood this correspondence
not only immediately proves the targeted claims, but mayipeoadditional insight into
the behavior of IBP and IJGP. In particular, it not only imnedly justifies the iterative
application of belief propagation algorithms on the onedydmut it also illuminates its

“distance” from being complete, on the other.

1.1.4 AND/OR Cutset Conditioning (Chapter®)

The complexity of a reasoning task over a graphical modeéddg on the induced width

of the graph. For inference-type algorithms, the space ¢axiip is exponential in the
induced width in the worst case, which often makes them silida for large and densely
connected problems. In such cases, space can be tradedeapthese of time by condi-
tioning (assigning values to variables). Search algorstiperform conditioning on all the
variables. Cycle-cutset schemes![86, 26] only condition ealsset of variables such that
the remaining network is singly connected and can be solyedference tree algorithms.
The more recent hybrid-cutsetscheme([90, 10] conditions on a subset of variables such
that, when removed, the remaining network has induced widthless, and can be solved

by a variable elimination [29] type algorithm.

Contributions

We apply the AND/OR paradigm to the cycle cutset method. Vevsihat theAND/OR
cycle cutsets a strict improvement of the traditional cycle cutset noéltitand the same
holds for the extended w-cutset version). The result gogserizbthe simple organization
of the traditional cutset in an AND/OR pseudo tree and itdagtion by AND/OR search,
which would be just the straightforward improvement.

The complexity of exploring the traditional cutset is tireponential in the number of
nodes in the cutset, and therefore it calls for finding a matioardinality cutse€. The

complexity of exploring the AND/OR cutset is time-exporeahin its depth, and therefore
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it calls for finding a minimal deptAND/OR cutsetdO-C. That is, a set of nodes that can
be organized in a start pseudo tree of minimal depth. Thezefehile the cardinality of

the optimal AND/OR cutsetAO-C

, may be far larger than that of the optimal traditional

cutset,/C|, the depth ofAO-C is always smaller than or equal f©).

1.1.5 AND/OR Search and Inference Algorithms (Chaptel b)

It is convenient to classify algorithms that solve reasgmnoblems of graphical models
as either searche(g, depth first, branch and bound) or inferenegy( variable elimina-
tion, join-tree clustering). Search is time-exponentiahie number of variables, yet it can
be accomplished in linear memory. Inference exploits tlalgrstructure of the model
and can be accomplished in time and space exponential itveéeeidthof the problem.
When the treewidth is big, inference must be augmented wibhcketo reduce the mem-
ory requirements. In the past three decades search metteydsewhanced with structure
exploiting techniques. These improvements often requibstantial memory, making the
distinction between search and inference fuzzy. Recendyns regarding the superiority
of memory-intensive search over inference or vice-versaware [5]. Our aim is to clarify
this relationship and to create cross-fertilization ughmgystrengths of both schemes.

We also address some long-standing questions regardingpthputational merits of
several time-space sensitive algorithms for graphicalet®din the past ten years, four
types of algorithms have emerged, based on: (1) cycle{catskw-cutset [86] 26]; (2)
alternating conditioning and elimination controlled byliced widthw [90, (63, 47]; (3)
Recursive Conditioning [23], which was recently recast agexdrbased AND/OR search
[45]; (4) varied separator-sets for tree decompositio@% [Bhe question is how do all these
methods compare and, in particular, is there one that isEupeA brute-force analysis of

time and space complexities of the respective schemes dbvesttle the question.
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Contributions

First, we compare pure search with pure inference algostimgraphical models through
the new framework of AND/OR search. Specifically, we compéadable Elimination
(VE) against memory-intensive AND/OR Search (AO), and elalgorithms such as graph-
based backjumping, no-good and good learning, and lookehbehemes [31] within the
AND/OR search framework. We show that there is no principdéterence between
memory-intensive search restricted to fixed variable andeand inference beyond: (1)
different direction of exploring a common search space @own for search vs. bottom-
up for inference); (2) different assumption of control tgy (depth-first for search and
breadth-first for inference). We also show that those difiees have no practical effect,
except under the presence of determinism. Our analysisnessa fixed variable ordering.
Some of the conclusions may not hold for dynamic variableond).

Second, we compare three hybrid schemes, that can tradéairepace, governed by
a parameter bounding the memory limit. They have all emehged seemingly different
principles: Adaptive Caching AND/OR Search@C(i)) is search based, Tree Decompo-
sition with Conditioning TDC(i)) is inference based and Variable Elimination and Condi-
tioning (VEC) combines search and inference. We show that if the grajpiicdels con-
tain no determinismAOC(i) can have a smaller time complexity than the vanilla versions
of bothVEC(i) andTDC(i). This is due to a more efficient exploitation of the graphical
structure of the problem through AND/OR search, and the tagapaching scheme that
benefits from the cutset principle. These ideas can be usathemce/EC(i) andTDC(i).
We show that iVEC(i) uses AND/OR search over the conditioning set and is guideddoy
pseudo tree data structure, then there exists an execudtid®©(i) that is identical to it.
We also show that iTDC(i) processes clusters by AND/OR search with adaptive caching,
then there exists an execution ADC(i) identical to it. AND/OR search with adaptive
caching AOC(i)) emerges therefore as a unifying scheme, never worse teanthbr two.

All the analysis was done by using the context minimal datacsire, which provides a
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powerful methodology for comparing the algorithms. Whendhegphical model contains
determinism, all the above schemes become incomparable. igdue to the fact that
they process variables in reverse orderings, and will emeowand exploit deterministic

information differently.

1.1.6 AND/OR Multi-Valued Decision Diagrams (Chaptel’T)

Decision diagrams are widely used in many areas of reseasgecially in software and
hardware verification [18, 81]. A binary decision diagram (BDrepresents a Boolean
function by a directed acyclic graph with two sink nodes €lak 0 and 1), and every inter-
nal node is labeled with a variable and has exactly two ofiidow corresponding to the O
value anchigh corresponding to the 1 value. If isomorphic nodes were nagete on one
extreme we would have the full seartthe also called a Shannon tree, which is the usual
full tree explored by the backtracking algorithm. The tre@ ©e ordered if we impose
that variables be encountered in the same order along evanglin It can then be com-
pressed by merging isomorphic nodes (i.e., with the sanes &atal identical children), and
by eliminating redundant nodes (i.e., whdse andhigh children are identical). The result
is the celebratededuced ordered binary decision diagraor OBDD for short, introduced
by Bryant [16]. However, the underlying structure is OR, beaesailne initial Shannon tree
is an OR tree. If AND/OR search trees are reduced by node ngeagid redundant nodes
elimination we get a compact search graph that can be viewedBDD representation

augmented with AND nodes.

Contributions

In this chapter we apply the AND/OR decomposition to decisimgrams. As a detail, the
number of values is also increased from two to any constanthis is less significant for
the algorithms. The benefit of moving from OR structure to ADB is in a lower com-

plexity of the algorithms and size of the compiled structutéypically moves from being
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bounded exponentially by theathwidthpw*, which is characteristic of chain decompo-
sitions or linear structures, to being exponentially baahby thetreewidthw*, which is
characteristic of tree structures (it always holds that< pw* andpw* < w* - logn). In
both cases, the compactness achieved in practice is oftemtller than what the bounds
suggest.

Our contributions are as follows: (1) We formally describe AND/OR Multi-Valued
Decision Diagram (AOMDD) and prove that it is a canonicalresggntation for constraint
networks. (2) We extend the AOMDD to general weighted gregdhinodels. (3) We give
a compilation algorithm based on AND/OR search, that savedrace of the memory
intensive search (which is a subset of the context minimaplgy, and then reduces it in
one bottom up pass. (4) We describe #reLY operator that combines two AOMDDs by
an operation, and show that its complexity is at most quadirathe input. (5) We give a
scheduling of building the AOMDD of a graphical model stagtwith the AOMDDs of its
functions. Itis based on an ordering of variables, whiclegise to a pseudo tree according
to the execution of Variable Elimination algorithm. Thisagantees that the complexity is
at most exponential in themduced widthalong the ordering (equal to the treewidth of the
corresponding decomposition). (6) We show how AOMDDs eetatvarious earlier and
recent compilation frameworks, providing a unifying pessiive for all these methods. (7)
We also introduce the concept s#mantic treewidthwhich helps explain why the size of

a decision diagram is often much smaller than the worst caged

1.2 Preliminaries

The remaining of the chapter contains preliminary notatiod definitions and gives ex-

amples of graphical models.

Notations A reasoning problem is defined in terms of a set of variablemgavalues

on finite domains and a set of functions defined over thesahlas. We denote vari-
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ables or subsets of variables by uppercase leteegs (X, Y, ...) and values of variables
by lower case lettere(g, z,y,...). Sets are usually denoted by bold letters, for example
X ={Xy,...,X,} is a set of variables. An assignmet,(= z,...,X, = z,) can be
abbreviated as = ((X1,z1), ..., (X,,z,)) orz = (z1,...,x,). For a subset of variables
Y, Dy denotes the Cartesian product of the domains of variabl&S.ifThe projection

of an assignment = (xy,...,z,) over a subseY is denoted byry or z[Y]. We will
also denote by = y (or y for short) the assignment of values to variablesyirfrom
their respective domains. We denote functions by letfeks & etc., and the scope (set of

arguments) of the functiofi by scope(f).

1.2.1 Graph Concepts

A directed graphis a pairG = {V, E}, wherelV = {X},..., X,,} is a set of vertices, and
E = {(X;,X;)|X;, X; € V}is the set of edges (arcs). (X, X,) € E, we say thatX;
points toX;. The degree of a variable is the number of arcs incident téoit.each variable
X, pa(X;) or pa;, is the set of variables pointing t§; in G, while the set of child vertices
of X;, denotedch(X;), comprises the variables that points to. The family ofX;, F;,
includesX; and its parent variables. A directed graph is acyclic if & ha directed cycles.
An undirected graphs defined similarly to a directed graph, but there is no dioaality

associated with the edges.

DEFINITION 1.2.1 (induced width) Anordered grapls a pair (G, d) whereG is an undi-
rected graph, and = X4, ..., X, is an ordering of the nodes. Thadth of a nodes the
number of the node’s neighbors that precede it in the orderirhewidth of an orderingl,
is the maximum width over all nodes. Tihduced width of an ordered graph*(d), is the
width of the induced ordered graph obtained as follows: nodegecessed from last to
first; when nodeX is processed, all its preceding neighbors are connectee.ifduced

width of a graph, denoted by*, is the minimal induced width over all its orderings.
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DEFINITION 1.2.2 (hypergraph) A hypergraphis a pair H = (X,S5), whereS =
{S1,...,S,} is a set of subsets &f called hyperedges

DEFINITION 1.2.3 (tree decomposition)A tree decompositiorof a hypergraphH =
(X,S)isatreeT = (V,E) (V is the set of nodes, also called “clusters”, atglis the
set of edges) together with a labeling functipithat associates with each vertexc V' a

sety(v) C X satisfying:
1. For eachS; € S there exists a vertex € V such thatS; C x(v);

2. (running intersection propertyjor eachX; € X, theset{v € V | X; € x(v)}

induces a connected subtreelaf

DEFINITION 1.2.4 (treewidth, pathwidth) Thewidth of a tree decomposition of a hyper-
graph is the size of its largest cluster minusrlak, |x(v)| — 1). Thetreewidth of a
hypergraph is the minimum width along all possible tree dgmasitions. Theathwidth

is the treewidth over the restricted class of chain decontijpos.

It is easy to see that given an induced graph, the set of maxiigqaes (also called
clusters) provide a tree decomposition of the graph, nathelylusters can be connected
in a tree structure that satisfies the running intersectiopegaty. It is well known that the
induced width of a graph is identical to its treewidth|[41¢r Warious relationships between

these and other graph parameters see [3, 14, 13].

1.2.2 AND/OR Search Graphs

AND/OR search spaces An AND/OR state space representation of a problem is defined
by a 4-tuple(S, O, Sy, so). S is a set of states which can be either OR or AND states (the
OR states represent alternative ways for solving the pnobidile the AND states often

represent problem decomposition into subproblems, all wtkwneed to be solved)O
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is a set of operators. An OR operator transforms an OR stadeaimother state, and an
AND operator transforms an AND state into a set of states.rd iea set of goal states
S, € S and a start node, € S. Example problem domains modeled by AND/OR graphs
are two-player games, parsing sentences and Tower of Ha5joi [

The AND/OR state space model induces an explicit AND/ORdegriaph Each state
is a node and its child nodes are those obtained by appli¢diiz or OR operators. The
search graph includesstartnode. The terminal nodes (having no child nodes) are marked

as Solved (S), or Unsolved (U).

Solution subtree A solution subtreef an AND/OR search grapff is a subtree which:
(1) contains the start nodg; (2) if n in the subtree is an OR node then it contains one of its
child nodes in7 and ifn is an AND node it contains all its children (; 3. all its terminal
nodes are “Solved” (S). AND/OR graphs can have a cost agsdaidth each arc, and the
cost of a solution subtree is a functiomg, sum-cost) of the arcs included in the solution
subtree. In this case we may seek a solution subtree witapfmaximum or minimum)
cost. Other tasks that enumerate all solution subtreegs ¢ounting solutions) can also be

defined.

1.2.3 Graphical Models

Graphical models include constraint networks| [31] defingddbations of allowed tuples,
(directed or undirected) probabilistic networks|[86], defi by conditional probability ta-
bles over subsets of variables, cost networks defined by éasttions and influence di-
agrams|([54] which include both probabilistic functions amust functionsi(e., utilities)
[30]. Each graphical model comes with its typical querieshsas finding a solution, or an
optimal one (over constraint networks), finding the mosbpime assignment or updating
the posterior probabilities given evidence, posed ovebaidistic networks, or finding op-

timal solutions for cost networks. The task for influencegdsens is to choose a sequence
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of actions that maximizes the expected utility. Markov ramdfields are the undirected
counterparts of probabilistic networks. They are definedmpllection of probabilistic
functions called potentials, over arbitrary subsets ofmdes. The framework presented in
this dissertation is applicable across all graphical motet have discrete variables, how-
ever we will draw most of our examples from constraint nets@nd directed probabilistic
networks.

In general, a graphical model is defined by a collection otfiomsF’, over a set of vari-
ablesX, conveying probabilistic, deterministic or preferenirdbrmation, whose structure

is captured by a graph.

DEFINITION 1.2.5 (graphical model) A graphical model M is a 4-tuple, M =
(X,D,F,®), where:

1. X ={X;,...,X,}is afinite set of variables;
2. D={D,,...,D,} is the set of their respective finite domains of values;

3. F={fi,..., [} isasetof positive real-valued discrete functions, eadmndd over

a subset of variableS; C X, called its scope, and denoted kyppe( f;).
4. ® is a combination operatgr(e.g.@ € {II,>_, X} (product, sum, join)).

The graphical model represents the combination of all itefions: ®;_, f;.

Next, we introduce the notion afmiversalgraphical model that is defined by a single

function.

DEFINITION 1.2.6 (universal equivalent graphical model)Given a graphical model
M = (X,D,F;,®) the universal equivalent model @#1 is u(M) = (X,D,Fy, =

{®fi€F1 fl}> ®>'

1The combination operator can also be defined axiomatic@gy. [
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Two graphical models arequivalent if they represent the same set of solutions.

Namely, if they have the same universal model.

DEFINITION 1.2.7 (weight (or cost) of a full and a partial assignment)Given a graphi-
cal modelIM = (X, D, F), the weight of a full assignment = (z1,...,z,) is defined
by w(z) = ®@yerf(x[scope(f)]). Given a subset of variables C X, the weight of a
partial assignment is the combination of all the functions whose scopes are dedunY

(denoted byF'y) evaluated at the assigned values. Namely;) = ® rer,, f(y[scope(f)]).
We can restrict a graphical model by conditioning on a peataignment.

DEFINITION 1.2.8 (conditioned graphical model)Given a graphical modelR =
(X, D, F,Q) and given a partial assignment = y, Y C X, the conditional graph-
ical model isR|, = (X, D|,, F|,,Q), whereD|, = {D, € D,X; ¢ Y}andF|, =

{fly=y, f € F,andscope(f) L Y}.

Consistency For most graphical models, the range of the functions haseiapzero
value “0” that isabsorbingrelative to the combination operat@a.g, multiplication). Com-
bining anything with “0” yields a “0”. The “0” value expressé¢he notion of inconsistent
assignments. It is a primary concept in constraint netwbtksan also be defined relative

to other graphical models that have a “0” element.

DEFINITION 1.2.9 (consistent partial assignment, solutionlGiven a graphical model
having a “0” element, a partial assignment is consistentt$f ¢ost is non-zero. A solu-

tion is a consistent assignment to all the variables.

Throughout the dissertation, we will use two examples opgieal models: constraint
networks and belief networks. In the case of constraint agtsy the functions can be
understood as relations. In other words, the function® (e#dled constraints) can take
only two values{0, 1} (or {true, false}). A 0 value indicates that the corresponding as-

signment to the variables is inconsistent (not allowedy, ahvalue indicates consistency.
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Belief networks are an example of the more general case ohgapmodels (also called
weightedgraphical models). The functions in this case are conditipnobability tables,

so the values of a function are any real number in the inteova.

Flat functions Each function in a graphical model having a “0” element egpes im-
plicitly a constraint. Thdlat constraint of functiory; is a constraint?; over its scope that
includes all and only the consistent tuples. In the follayvathapters, when we talk about
a constraint network, we refer also to the flat constrainogt that can be extracted from
the general graphical model. When all the full assignmergcansistent we say that the

graphical model istrictly positive

DEFINITION 1.2.10 (primal graph) The primal graphof a graphical model is an undi-
rected graph that has variables as its vertices and an edgeects any two variables that

appear in the scope of the same function.

The primal graph captures the structure of the knowledgeessed by the graphical
model. In particular, graph separation indicates indepeaoyg of sets of variables given
some assignments to other variables. All of the advancedtitigns for graphical models
exploit the graphical structure, by using a heuristicalbpgd elimination order, or a tree
decomposition or some similar method. We will use the cohogpseudo tree, which

resembles the tree rearrangements introduced In [48]:

DEFINITION 1.2.11 (pseudo tree)A pseudo treef a graphG = (X, E) is a rooted treel”
having the same set of nodEs such that every arc it is a back-arc in7 (i.e., it connects

nodes on the same path from root).

DEFINITION 1.2.12 (reasoning problem)A reasoning problenover a graphical model
M = (X,D,F,®) is defined by a marginalization operator and a set of subséts o
X that are of interest. It is therefore a triple® = (M, v,{Z1,...,Z;}), where

Z = {Z,,...,Z,;} is a set of subsets of variables ®f If S is the scope of functioif
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andY C X, thenlly f € {JCf, I 1 f 2, f} is a marginalization operatorP

can be viewed as a vector function over the scdpes. ., Z;. The reasoning problem is

to CompUthZ1 ----- Zy (M) = (UZ1 ®Z:1fi> v 7U’Zt ®::1f2) .

We will focus primarily on reasoning problems definedzy= (). The marginalization
operator is sometimes calletiminationoperator because it removes some arguments from
the scope of the input function. Specificallyy f is defined onY. It therefore removes
variablesS —Y from S = scope(f). Note that heregf is the relational projection operator
and unlike the rest of the marginalization operators theveotion is that is defined by the

scope of variables that anet eliminated.

1.2.4 Constraint Networks

Constraint networks provide a framework for formulatingl rearld problems, such as
scheduling and design, planning and diagnosis, and mang a®m set of constraints
between variables. For example, one approach to formglatischeduling problem as a
constraint satisfaction problem (CSP) is to create a vagifdl each resource and time
slice. Values of variables would be the tasks that need tcbeduled. Assigning a task
to a particular variable (corresponding to a resource atestime slice) means that this
resource starts executing the given task at the specified tf@rious physical constraints
(such as that a given job takes a certain amount of time tougxeor that a task can be
executed at most once) can be modeled as constraints betagables. Theconstraint

satisfaction tasks to find an assignment of values to all the variables thas da¢ violate

any constraints, or else to conclude that the problem isisistent. Other tasks are finding

all solutions and counting the solutions.

DEFINITION 1.2.13 (constraint network, constraint satisfaction prollem) A constraint
network (CN)is a 4-tuple,(X, D, C, X), whereX is a set of variableX = { X}, ..., X, },

associated with a set of discrete-valued domalds= {Dy,...,D,}, and a set of con-
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(a) Graph coloring problem (b) Constraint graph

Figure 1.1: Constraint network

straintsC = {C4,...,C,}. Each constrainC; is a pair (S;, R;), whereR; is a relation
R; C Dg, defined on a subset of variabl8s C X. The relation denotes all compatible
tuples ofDg, allowed by the constraint. The combination operataris join. The primal
graph of a constraint network is callezbnstraint graph A solutionis an assignment of
values to all the variables = (x4, ...,z,), z; € D;, such thatv C; € C, zg, € R;. The

constraint network represents its set of solutions(;.

Constraint satisfactiors a reasoning problef® = (R, 11, Z), whereR = (X, D, C, X
) is a constraint network, and the marginalization operaidhé projection operatdi.
Namely, for constraint satisfactidh= {0}, and|}y isITy. So the task is to fint}y ®, f; =
ITy(X; f;) which corresponds to enumerating all solutions. When thebamation operator
is a product over the cost-based representation of thamesatand the marginalization
operator is logical summation we get “1” if the constraimbigem has a solution and “0”

otherwise. Focounting the marginalization operator is summation &he- {0} too.

Example 1.2.1 Figure[1.1(a) shows a graph coloring problem that can be meddly a
constraint network. Given a map of regions, the problem isalorceach region by one
of the given colorgred, green, blug, such that neighboring regions have different colors.
The variables of the problems are the regions, and each osglt®adomain{red, green,
blue}. The constraints are the relatidfifferent” between neighboring regions. Figure
[1.1(b) shows the constraint graph, and a solution (A=red, Breb C=green, D=green,
E=blue, F=blue, G=red) is given in Figure 1.1(a).
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Cost Networks An immediate extension of constraint networks aost networksvhere

the set of functions are real-valued cost functions, angbtimeary task is optimization.

DEFINITION 1.2.14 (cost network, combinatorial optimization) A cost networkis a 4-
tuple, (X, D, C, > ), whereX is a set of variableX = {X;,..., X,,}, associated with

a set of discrete-valued domain®, = {D,,...,D,}, and a set of cost functionS =
{C1,...,C.}. Each(; is a real-valued function defined on a subset of variallles X.
The combination operator, is_. The reasoning problem is to find a minimum cost solution

which is expressed via the marginalization operator of migation, andZ = {0}.

The task of MAX-CSP, namely finding a solution that satisfiestaximum number
of constraints (when the problem is inconsistent), can ek by treating each relation
as a cost function that assigns “0” to consistent tuples ahdtherwise. The combination

operator is summation and the marginalization operatorimgmization. Namely, the task

is to find}y ®; f; = minx (>, f).

Propositional Satisfiability A special case of a CSPsopositional satisfiabilitf{ SAT).

A formula ¢ in conjunctive normal forn{CNF) is a conjunction otlausesay, ..., a4,
where a clause is a disjunction literals (propositions or their negations). For example,
a = (PV -QV —R) is a clause, wheré’, () and R are propositions, an®, - and
=R are literals. The SAT problem is to decide whether a given Oideity has anode|
i.e,, a truth-assignment to its propositions that does not ieakay clause. Propositional
satisfiability (SAT) can be defined as a CSP, where proposittamrespond to variables,
domains are{0, 1}, and constraints are represented by clauses, for exampleldahse
(-A Vv B) is a relation over its propositional variables that allowdwples over(A, B)

except(A =1,B =0).
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1.2.5 Belief Networks

Belief network$86], also known as Bayesian networks, provide a formalismmédasoning
about partial beliefs under conditions of uncertainty. yraee defined by a directed acyclic
graph over vertices representing random variables ofasteg.g, the temperature of a
device, the gender of a patient, a feature of an object, tbercence of an event). The arcs
can signify the existence of direct causal influences batiiaked variables quantified by
conditional probabilities that are attached to each ciustgarents-child vertices in the
network. But these relationships need not necessarily bgatamd we can still have a

perfectly well defined belief network.

DEFINITION 1.2.15 (belief networks)A belief network (BN)is a graphical modefP =
(X,D,Pg,[]), whereX = {X;,...,X,} is a set of variables over multi-valued do-
mainsD = {D,,...,D,}. Given a directed acyclic grapty over X as nodesFP; =
{Py,...,P,}, whereP, = {P(X;|pa(X;))} are conditional probability tables (CPTs
for short) associated with eacl;, wherepa(X;) are the parents ofX; in the acyclic
graphG. A belief network represents a probability distribution o, P(z1,...,z,) =
[T, P(xilzpacx,))- An evidence setis an instantiated subset of variables.

When formulated as a graphical model, functiongFimlenote conditional probability
tables and the scopes of these functions are determinedelyirdgcted acyclic grapld-:
each functionf; ranges over variableX; and its parents irG. The combination operator is
product,® = []. The primal graph of a belief network is called a moral grapttdnnects

any two variables appearing in the same CPT.

Example 1.2.2 Figure[1.2(a) gives an example of a belief network over 6 \des, and
Figure [1.2(b) shows its moral graph . The example expressesdhsal relationship
between variables “Season’4), “The configuration of an automatic sprinkler system”
(B), “The amount of rain expected’(), “The amount of manual watering necessary”

(D), “The wetness of the pavementF’) and “Whether or not the pavement is slippery”
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(a) Directed acyclic graph (b) Moral graph

Figure 1.2: Belief network

(G). The belief network expresses the probability distributie(A, B,C, D, F,G) =
P(A)-P(BJ|A)- P(C|A)- P(D|B,A) - P(F|C,B) - P(G|F).

Two of the most popular tasks for belief networks are defireddv:

DEFINITION 1.2.16 (belief updating) Given a belief network and evidenegthe belief
updatingtask is to compute the posterior marginal probability ofiadte X;, conditioned

on the evidence. Namely,

Bel(X;=z;)=P(X;=uz;|e) =« Z HP(xk,e|xpak),

{(Z1,0 s Ti—1,Tig 15 Tn ) | B=e, X;=x; } k=1

wherea is a normalization constant. In this case, the marginal@atoperator is{y=

> x_y»andZ; = {X;}. Namelyv.X; |x, ®fr = Z{X,X”Xi:xi} [1; Px. The query of

finding the probability of the evidence is definedby: (.

DEFINITION 1.2.17 (most probable explanation)Themost probable explanation (MPE)
task is to find a complete assignment which agrees with the resadeand which has
the highest probability among all such assignments. Nantelyfind an assignment

(x9,...,2%) such that

26



As a reasoning problem, an MPE task is to find®; f; = maxy [[, ;. Namely, the

marginalization operator isiax andZ = {0}.
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Chapter 2

AND/OR Search Spaces for Graphical
Models

2.1 Introduction

Bayesian networks, constraint networks, Markov random di@ldd influence diagrams,

commonly referred to as graphical models, are all languégeknowledge representa-

tion that use graphs to capture conditional independero@eseen variables. These in-
dependencies allow both the concise representation of lkelg@ and the use of efficient
graph-based algorithms for query processing. Algorithongfocessing graphical models
fall into two general types: inference-based and searskanference-based algorithms
(e.g, Variable Elimination, Tree Clustering) are better at ekpig the independencies

captured by the underlying graphical model. They providepesor worst case time guar-

antee, as they are time exponential in the treewidth of taptgrUnfortunately, any method

that is time-exponential in the treewidth is also space egptal in the treewidth or sepa-

rator width and, therefore, not practical for models witty&atreewidth.

Search-based algorithme.g, depth-first branch-and-bound, best-first search) travers

the model’'s search space where each path represents a paftit solution. The linear
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structure of search spaces does not retain the indeperdeppresented in the underlying
graphical models and, therefore, search-based algorithaysnot be nearly as effective as
inference-based algorithms in using this information. R:dther hand, the space require-
ments of search-based algorithms may be much less severéhthee of inference-based
algorithms and they can accommodate a wide spectrum of dgaceled algorithms, from
linear space to treewidth bounded space. In addition, seaathods require only an im-
plicit, generative, specification of the functional retetship (given in a procedural or func-
tional form) while inference schemes often rely on an explabular representation over
the (discrete) variables. For these reasons, search-lbégaahms are the only choice

available for models with large treewidth and with impli@presentation.

2.1.1 Contributions

In this chapter we propose to use the well-known idea of an AlDsearch space, origi-
nally developed for heuristic search [85], to generatecderocedures that take advantage
of information encoded in the graphical model. We demotestnaw the independencies
captured by the graphical model may be used to yield AND/C&cdetrees that are ex-
ponentially smaller than the standard search tree (thabeahought of as an OR tree).
Specifically, we show that the size of the AND/OR search sdmunded exponentially by
the depth of a spanning pseudo tree over the graphical m8dbsequently, we move from
AND/OR search trees to AND/OR search graphs. Algorithmsdkplore the search graph
involve controlled memory management that allows imprguimeir time-performance by
increasing their use of memory. The transition from a seameh to a search graph in
AND/OR representations also yields significant savingsamed to the same transition in
the original OR space. In particular, we show that the siz@@iminimal AND/OR graph
is bounded exponentially by the treewidth, while for OR dn&jt is bounded exponentially
by the pathwidth.

Our idea of the AND/OR search space is inspired by searchnadgantroduced spo-
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radically in the past three decades for constraint satisfa@and more recently for prob-
abilistic inference and for optimization tasks. Specificat resembles pseudo tree rear-
rangement [48, 49], briefly introduced two decades ago, vhvas adapted subsequently
for distributed constraint satisfaction [19/20] and ma&eantly in [83], and was also shown
to be related to graph-based backjumping [27]. This workeva@snded in[6] and more re-
cently applied to optimization tasks [65]. Another versibat can be viewed as exploring
the AND/OR graphs was presented recently for constraimgfaation [99] and for opti-
mization [98]. Similar principles were introduced recgrfthr probabilistic inference (in
algorithm Recursive Conditioning [23] as well as in Value Bhation [5,/4]) and currently
provide the backbones of the most advanced SAT solvers [93].

The research presented in this chapter is based in part pA4438].

2.2 AND/OR Search Trees

We will present the AND/OR search space for a gengpaphical modektarting with an

example of a constraint network.

Example 2.2.1 Consider the simple tree graphical modeke(, the primal graph is a
tree) in FigureZ.1L(a), over domaind, 2, 3}, which represents a graph-coloring problem.
Namely, each node should be assigned a value such that atjaages have different val-
ues. Once variabl& is assigned the value 1, the search space it roots can be qexs®d
into two independent subproblems, one that is rooted ahd one that is rooted at Z, both
of which need to be solved independently. Indeed, given 1, the two search subspaces
do not interact. The same decomposition can be associatedhétother assignments to
X, (X,2) and (X, 3). Applying the decomposition along the tree (in Figure 2) }(elds
the AND/OR search tree in Figure 2.1(c). In the AND/OR spacdla$signment to all
the variables is not a path but a subtree. For comparison ttaditional OR search tree

is depicted in Figuré 2]1(b). Clearly, the size of the AND/O&despace is smaller than
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(a) A constraint tree (b) OR search tree (c) AND/OR search tree with one of its so-
lution subtrees

Figure 2.1: OR vs. AND/OR search trees; note the connectdkfD arcs

that of the regular OR space. The OR search spaceshas nodes while the AND/OR has

3 - 2° (compard 2.1 (b) with-211(c)). K is the domain size, a balanced binary tree with
nodes has an OR search tree of si2g:™). The AND/OR search tree, whose pseudo tree
has depthO(log, n), has size)((2k)"°%2") = O(n - k'°82") = O(n'te2*), Whenk = 2,

this become® (n?).

The AND/OR space is not restricted to tree graphical modetmly has to be guided
by a backbonetree which spans the original primal graph of the graphicatieh in a
particular way. We will define the AND/OR search space re¢atd a depth-first search
tree (DFS tree) of the primal graph first, and will generatza broader class of backbone

spanning trees subsequently. For completeness sake we BE&ffhspanning treenext.

DEFINITION 2.2.1 (DFS spanning tree)Given a DFS traversal orderingd =
(X1,...,X,), of an undirected graptG = (V, E), the DFS spanning tre¢ of GG
is defined as the tree rooted at the first node, which includes only the traversed arcs of

G. Namely,T = (V, E'), whereE' = {(X;, X,) | X; traversed from X;}.

We are now ready to define the notion of AND/OR search tree fpaphical model.
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DEFINITION 2.2.2 (AND/OR search tree)Given a graphical modeR = (X, D, F, Q)),

its primal graphG and a backbone DFS treg of (G, the associated AND/OR search tree,
denotedSr(R), has alternating levels of AND and OR nodes. The OR nodes bedeld
X, and correspond to the variables. The AND nodes are labéldz;) (or simply ;)
and correspond to the value assignments of the variables. stiucture of the AND/OR
search tree is based on the underlying backbone Tred he root of the AND/OR search
tree is an OR node labeled by the rootf A path from the root of the search trég (R)

to a noden is denoted byr,,. If n is labeledX; or x; the path will be denoted,, (X;) or
m(z;), respectively. The assignment sequence alongpatdenotedisgn(m,) is the set

of value assignments associated with the sequence of AND aluoiegr,,:

asgn(m,(X;)) = {(X1,21), (Xo,x9), ..., (Xio1,2-1)},

asgn(my(z;)) = {(X1,21), (Xo,22), ..., (X;, x;) }

The set of variables associated with OR nodes along patis denoted byar(r,):
var(m,(X;)) = {Xq,..., Xi_1}, var(m,(x;)) = {X1,...,X;} . The exact parent-child

relationship between nodes in the search space are definedl@ass:

1. An OR nodey, labeled byX; has a child AND noderp, labeled( X, z;) iff (X, z;)
is consistent with the assignmenin (). Consistency is defined relative to the flat

constraints.

2. An AND noden, labeled(X;, z;) has a child OR node labeledY’, iff Y is child of
X in the backbone tre&. Each OR arc, emanating from an OR to an AND node is

associated with a weight to be defined shortly (see DefiritiB@R.

Clearly, if a noden is labeled X; (OR node) orx; (AND node),var(m,) is the set of
variables mentioned on the path from the rootX¢ in the backbone tree, denoted by

pathT(Xi)u.

When the AND/OR tree is extended to dynamic variable orderthg set of variables along different
paths may vary.
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A solution subtree is defined in the usual way:

DEFINITION 2.2.3 (solution subtree)A solution subtreef an AND/OR search tree con-
tains the root node. For every OR nodes it contains one ohilsl @odes and for each of

its AND nodes it contains all its child nodes, and all its leaflrs are consistent.

Example 2.2.2 In the example of Figufle 2.1(&J, is the DFS tree which is the tree rooted
at X, and accordingly the root OR node of the AND/OR trele ih 2.Kd).i Its child nodes
are labeled( X, 1), (X, 2), (X, 3) (only the values are noted in the Figure), which are AND
nodes. From each of these AND nodes emanate two OR nodes] Z, since these are
the child nodes ok in the DFS tree ofi(Z2]1(a)). The descendant¥ aflong the path from
the root, ((X, 1)), are (Y, 2) and (Y, 3) only, since(Y, 1) is inconsistent with X, 1). In
the next level, from each nod¥, y) emanate OR nodes label&dand R and from(Z, z)
emanate nodes labelddand M as dictated by the DFS tree. [n_2.1(c) a solution tree is
highlighted.

2.2.1 Weights of OR-AND Arcs

The arcs in AND/OR trees are associated with weightthat are defined based on the
graphical model’'s functions and combination operator. Jingplest case is that of con-

straint networks.

DEFINITION 2.2.4 (arc weight for constraint networks) Given an AND/OR tre&7(R)

of a constraint networliR, each terminal node is assumed to have a single, dummy,-outgo
ing arc. The outgoing arc of a terminal AND node always has thgkeil” (namely it is
consistent and thus solved). An outgoing arc of a terminahO&e has weight “0”, (there

is no consistent value assignments). The weight of any @lt@R to AND arc is “1”. The

arcs from AND to OR nodes have no weight.

We next define arc weights for any graphical model using th@naf buckets of

functions.
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P(D=0|B=0,C=0)x /\ P(D=0|B=0,C=1)x P(D=1|B=0,C=0)%/\ P(D=1|B=0,C=1)x P(D=0[B=1,C=0)¥ P(D=1/B=1,C=1)x
P(C=0]A=0) P(C=1|A=0) P(C=0]A=0) P(C=1|A=0) P(C=0]A=0) =1]A= P(C=1]A=0)

Figure 2.2: Arc weights for probabilistic networks

DEFINITION 2.2.5 (buckets relative to a backbone treelGiven a graphical modeR =
(X, D, F,) and a backbone tre@, thebucketof X; relative to7, denotedB(Xj;), is
the set of functions whose scopes cont8jrand are included irpathr(X;), which is the

set of variables from the root t&; in 7. Namely,

Br(Xi) = {f € F|X; € scope(f), scope(f) C pathr(X;)}.

DEFINITION 2.2.6 (OR-to-AND weights) Given an AND/OR tre&7(R), of a graphical
modelR, the weightw, ,,\(X;, ;) of arc (n, m) where X; labelsn andz; labelsm, is

the combinationof all the functions inBr(X;) assigned by values along,,. Formally,

W) (Xi 1) = Qjep, (x,) f(asgn(mm)[scope(f)]).

DEFINITION 2.2.7 (weight of a solution subtree)Given a weighted AND/OR tre&-(R),
of a graphical modelR, and given a solution subtreehaving OR-to-AND set of arcs
ares(t), the weight ot is defined byu(t) = @

ecares(t) UJ(@) :

Example 2.2.3 Figure [2.2 shows a belief network, a DFS tree that drives its kteid)
AND/OR search tree, and a portion of the AND/OR search tree isgtlappropriate weights
on the arcs expressed symbolically. In this case the budkét contains the function

P(E|A, B), and the bucket of' contains two functionsP(C'|A) and P(D|B, (). Note
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R(B=0,C=0,0=0)x /\ R(B=0,C=1,D=0)x R(B=0,C=0,0=1)%/\ R(B=0,C=1,D=1)x R(B=1,C=0,0=0)¥/\ R(B=1,C=1D=0)x R(B=1,C=0,D=1)%/\ R(B=1,C=1D=1)x
R(A=0,C=0) R(A=0,C=1) R(A=0,C=0) =0,C= R(A=0,C=0) =0,C= R(A=0,C=0) R(A=0,C=1)

Figure 2.3: Arc weights for constraint networks

that P(D|B, C') belongs neither to the bucketBfnor to the bucket ab, but it is contained

in the bucket of”, which is the last variable in its scope to be instantiated ash from
the root of the tree. We see indeed that the weights on the ramtsthe OR node” and
any of its AND value assignments include only the instardidiactionP(E|A, B), while
the weights on the arcs connectingto its AND child nodes are the products of the two
functions in its bucket instantiated appropriately. Figl.3 shows a constraint network
with four relations, a backbone DFS tree and a portion of the ADIR search tree with
weights on the arcs. Note that the complex weights would redut@'tscand “1”s in

this case. However, since we use the convention that arcs apptee search tree only if
they represent a consistent extension of a partial solutiwill not see arcs having zero

weights.

2.2.2 Properties of AND/OR Search Tree

Any DFS tree7 of a graphG has the property that the arcs @fwhich are not inZ” are
backarcs. Namely, they connect a node and one of its ansesttire backbone tree. This
ensures that each scopeBfwill be fully assigned on some path ih, a property that is

essential for the validity of the AND/OR search tree.

THEOREM2.2.4 (correctness)Given a graphical modék having a primal graphG and a

DFS spanning treg of G, its weighted AND/OR search trég (R ) is sound and complete,
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namely: 1) there is a one-to-one correspondence betweeti@okubtrees o6 (R) and
solutions ofR; 2) the weight of any solution tree equals the cost of the follitson it
denotes; namely, ifis a solution tree o5+ (R) which denotes a solution = (1, ...x,,)

thenc(z) = w(t).

Proof. 1) By definition, all the arcs obr(R) are consistent. Therefore, any solution
tree of S7(R) denotes a solution foR whose assignments are all the labels of the AND
nodes in the solution tree. Also, by definition of the AND/QRe, every solution oR
must corresponds to a solution subtreeSin(R). 2) By construction, the set of arcs in
every solution tree have weights such that each functio” obntribute to one and only
one weight via the combination operator. Since the totagtteof the tree is derived by
combination, it yields the cost of a solution.O

The virtue of an AND/OR search tree representation is teadite may be far smaller
than the traditional OR search tree. The size of an AND/ORcbetree depends on the
depth of its backbone DFS trée. Therefore, DFS trees of smaller depth should be pre-
ferred to drive the AND/OR seardree An AND/OR search tree becomes an OR search

tree when its DFS tree is a chain.

THEOREM2.2.5 (size bounds of AND/OR search treefsiven a graphical modéR, with
domains size bounded iy and a DFS spanning tre& having depthm and !/ leaves,
the size of its AND/OR search trég-(R) is O(l - k™) (and therefore als@(nk™) and
O((bk)™) whenb bounds the branching degree dfandn bounds the number of nodes).
In contrast the size of its OR search tree along any order&1@(ik"). The above bounds
are tight and realizable for fully consistent graphical net&l Namely, one whose all full

assignments are consistent.

Proof. Let p be an arbitrary directed path in the DFS tfEdhat starts with the root and
ends with a leaf. This path induces an OR search subtree vghietiuded in the AND/OR

search treér, and its size i)(k™) whenm bounds the path length. The DFS trée
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Table 2.1: OR vs. AND/OR search size, 20 nodes

OR space AND/OR space
treewidth  height time (sec.) nodes| time (sec.) ANDnodes OR nodes
5 10 3.154 2,097,151 0.03 10,494 5,247
4 9 3.135 2,097,150 0.01 5,102 2,551
5 10 3.124 2,097,151 0.03 8,926 4,463
5 10 3.125 2,097,150 0.02 7,806 3,903
6 9 3.124 2,097,151 0.02 6,318 3,159

is covered by such directed paths, whose lengths are bounded byhe union of their
individual search trees covers the whole AND/OR searchSseavhere every distinct full
path in the AND/OR tree appears exactly once, and theretbeesize of the AND/OR
search tree is bounded B}/ - £™). Sincel < n andl < b™, it concludes the proof. O
Table[2.1 demonstrates the size saving of AND/OR vs. OR Besgraces for 5 random
networks having 20 bivalued variables, 18 CPTs with 2 paneetshild and 2 root nodes,
when all the assignments are consistent (remember thag this case when the probability
distribution is strictly positive). The size of the OR spa¢he full binary tree of depth 20.
The size of the full AND/OR space varies based on the backbdfte tree. We can give
a better analytic bound on the search space size by spellintpe depthn; of each leaf

nodelL; in 7.

Proposition 1 Given a graphical modeR, with domains size bounded byand a back-
bone spanning treé havingL = {L,..., L;} leaves, where depth of ledf is m,, then
the size of its full AND/OR search tre®-(R) is O(Z;:1 k™). Alternatively, we can

use the exact domain sizes for each variable yielding an evae accurate expression

O(ZLkeL H{Xj | X, epathy (L)} ‘ D(Xj> D

Proof. The proof is similar to that of Theorem 2.2.5, only each naotegributes with its
actual domain size rather than the maximal one, and each@atheaf in7 contributes

with its actual depth, rather than the maximal one
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Figure 2.4: (a) A graph; (b) a DFS tré@e; (c) a pseudo tre@,; (d) a chain pseudo treg
2.2.3 From DFS Trees to Pseudo Trees

There is a larger class of trees that can be used as backlmm&bID/OR search trees,

calledpseudo treef48]. They have the above mentioned back-arc property.

DEFINITION 2.2.8 (pseudo tree, extended graphlsiven an undirected graphz =
(V,E), a directed rooted tre = (V, E’) defined on all its nodes is pseudo treef
any arc ofG which is not included £’ is a back-arc in7, namely it connects a node in
7 to an ancestor ir/ . The arcs inE’ may not all be included iy. Given a pseudo tree

T of G, theextended grapbf G relative to7 is defined a&;” = (V, E U E').
Clearly, any DFS tree and any chain of a graph are pseudo trees.

Example 2.2.6 Consider the graphG displayed in Figure[Z2l4(a). Orderingl; =
(1,2,3,4,7,5,6) is a DFS ordering of a DFS tre&; having the smallest DFS tree depth
of 3 (Figure[2.4(b)). The tre&; in Figure[2.4(c) is a pseudo tree and has a tree depth
of 2 only. The two tree-arcs (1,3) and (1,5) are notGnh Tree7; in Figure[2.4(d), is a
chain. The extended graphig, G2 and G% are presented in Figurie 2.4(b),(c),(d) when

we ignore directionality and include the dotted arcs.

It is easy to see that the weighted AND/OR search tree is vedithed when the back-
bone trees is a pseudo tree. Namely, the properties of sesadgmd completeness hold

and the size bounds are extendible.
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Figure 2.5: AND/OR search tree along pseudo trBesnd7;

THEOREM2.2.7 (properties of AND/OR search trees)Given a graphical modéR and a
backbone pseudo treg, its weighted AND/OR search trég-(R) is sound and complete,
and its size i9)(l - k™) wherem is the depth of the pseudo trdebounds its number of

leaves, and: bounds the domain size.

Proof. All the arguments in the proof for Theordm 2J2.4 carry imnagely to AND/OR
search spaces that are defined relative to a pseudo treavitékehe bound size argument
in the proof of Theorern 2.2.5 holds relative to the depth efriore general pseudo tree.

O

Example 2.2.8 Figure[2.5 shows the AND/OR search trees along the pseudoZresasd
7, from Figure[2.4. Here the domains of the variables &ueb, c} and the constraints are
universal. The AND/OR search tree based/ems smaller, becausg,; has a smaller depth

than7;. The weights are not specified here.

Finding good pseudo treesFinding a pseudo tree or a DFS tree of minimal depth is
known to be NP-complete. However various greedy heuristiesavailable. For example,

pseudo trees can be obtained by generating a heuristicadigt pnduced graph along an
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orderingd and then traversing the induced graph depth-first, bredlasgn favor of earlier
variables[[6]. For more information see [71, 2].

The definition of buckets relative to a backbone tree extéogseudo trees as well,
and this allows the definitions of weights for an AND/OR treesdéd on pseudo tree. Next
we define the notion of ducket treeand show that it corresponds a pseudo tree. This

relationship will be used to make additional connectiortg/ben various graph parameters.

DEFINITION 2.2.9 (bucket tree [59]) Given a graphical model, its primal grapghi and an
orderingd, thebucket treeof G alongd is defined as follows. L&t be the induced graph
of G alongd. Each variableX has an associatebucket denoted byBy, that containsX
and its earlier neighbors in the induced graptj (similar to Definition[2.2.6). The nodes
of the bucket tree are the buckets. Each nodBx points toBy (By is the parent ofBx)

if Y is the latest earlier neighbor ot in G,.

The following relationship between the treewidth and thetdeof pseudo trees is
known [6,/14]. Given dree decompositionf a primal graphGG havingn nodes, whose
treewidth isw*, there exists a pseudo tréeof G whose depthy, satisfiesm < w*-logn.

It can also be shown that any bucket treel [59] yields a pseng#oand that a min-depth
bucket tree yields min-depth pseudo trees. The depth ofkebtree was also calleslim-
ination depthin [14].

In summary,

Proposition 2 [6| 14] The minimal depthn over all pseudo trees satisfies < w* - logn,

wherew* is the treewidth of the primal graph of the graphical model.
Therefore,

THEOREMZ2.2.9 A graphical model that has a treewidth* has an AND/OR search tree
whose size i©)(n - k"¢ wherek bounds the domain size andis the number of

variables.
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Table 2.2: Average depth of pseudo trees vs. DFS trees; Hi@nices of each random
model

Model (DAG) width Pseudo tree depth DFS tree depth
(N=50, P=2, C=48) 9.5 16.82 36.03
(N=50, P=3, C=47) 16.1 23.34 40.60
(N=50, P=4, C=46) 20.9 28.31 43.19
(N=100, P=2, C=98) 18.3 27.59 72.36
(N=100, P=3, C=97) 31.0 41.12 80.47
(N=100, P=4, C=96) 40.3 50.53 86.54

For illustration, Tablé 2]2 shows the effect of DFS spannirgs against pseudo trees,
both generated using brute-force heuristics over randgeherated graphs, whereé is
the number of variables; is the number of variables in the scope of a function &hig

the number of functions.

2.2.4 Pruning Inconsistent Subtrees for the Flat Constraint Network

Most advanced constraint processing algorithms incotpana-good learning, and con-
straint propagation during search, or use variable elitiinalgorithms such aadaptive-
consistencyand directional resolution[31], generating all relevant no-goods, prior to
search. Such schemes can be viewed as compiling a representeat would yield a

prunedsearch tree. We next define thacktrack-freeAND/OR search tree.

DEFINITION 2.2.10 (backtrack-free AND/OR search tree)Given an AND/OR search
tree S7(R), thebacktrack-free AND/OR search treéR based or7, denotedBFr(R),
is obtained by pruning fromy7(R) all inconsistent subtrees, namely all nodes that root no

consistent partial solution.

Example 2.2.10Consider 5 variableX, Y, Z, T, R over domaing2, 3, 5}, where the con-
straints are: X dividesY and Z, andY dividesT and R. The constraint graph and the
AND/OR search tree relative to the DFS tree rootedXatare given in Figuré 2J6(a). In
[2.6(b) we present th&7(R) search space whose nodes’ consistency status (which will

latter will be referred to asralues) are already evaluated having value “1” is consistent
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Figure 2.6: AND/OR search tree and backtrack-free tree

and “0” otherwise. We also highlight two solutions subtreesgalepicted by solid lines
and one by dotted lines. Part (c) presei$’r(R), where all nodes that do not root a

consistent solution are pruned.

If we traverse the backtrack-free AND/OR search tree we aaoh d& solution sub-
tree without encountering any dead-ends. Some constratmionks specifications yield
a backtrack-free search space. Others can be made baekgadky massaging their rep-
resentation usingonstraint propagatioralgorithms before or during search. In particular,
it is well known that variable-elimination algorithms suabadaptive-consistenddQ] and
directional resolution [90], applied in a reversed orded Oivhered is the DFS order of the
pseudo tree) compile a constraint specification (resp., #&BadCNF formula) that has a
backtrack-free search space. Assuming that the reademibaiawith variable elimination

algorithms [29] we define:

DEFINITION 2.2.11 (directional extension[[40, S0]Let R be a constraint problem and
let d be a DFS traversal ordering of a backbone pseudo tree of itegrgraph, then we
denote byE,;(R) the constraint network (resp., the CNF formula) compiled byphiga-

consistency (resp., directional resolution) in reversedko of d.

Proposition 3 Given a Constraint network, the AND/OR search tree of the directional
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extension®,;(R) whend is a DFS ordering of, is identical to the backtrack-free AND/OR
search tree ofR based ori7. NamelySy(E4(R)) = BFr(R).

Proof. First, we should note that if is a pseudo tree &®® and ifd is a DFS ordering of,
then7 is also a pseudo tree éf,(R) and therefore&sr (E4(R)) is a faithful representation

of E4(R). E4(R) is equivalent toR, thereforeSr(E,;(R)) is a supergraph oBFr(R).

We only need to show that; (F,;(R)) does not contain any dead-ends, in other words any
consistent partial assignment must be extendable to a@oloit’R. Adaptive consistency
makesFE,;(R) strongly directionalv*(d) consistent, where*(d) is the induced width of

R along orderingi [40]. It follows from this that eithefR is inconsistent, in which case
the proposition is trivially satisfied, both trees being é&ynpr else any consistent partial
assignment it (E4(R)) can be extended to the next variableljrand therefore no dead-

end is encountered. O

Example 2.2.111n Exampld 2.2.70, if we apply adaptive-consistency in sverder of
X, Y, T, R, Z, the algorithm will remove the valugs5 from the domains of both” and Z
yielding a tighter constraint networR’. The AND/OR search tree in Figure 2.2.10(c) is
bothS7(R') and BFr(R).

Propositior B emphasizes the significance of no-good legifi€] for deciding incon-
sistency or for finding a single solution. These technigweskaown as clause learning in
SAT solvers, first introduced by|[7] and are currently usechwst advanced solveris [72].
Namely, when we apply no-good learning we explore the sespabe whose many incon-
sistent subtrees are pruned. For counting however, andttier oelevant tasks, pruning
inconsistent subtrees and searching the backtrack-fezetstree yields a partial help only,

as we elaborate later.

43



2.3 AND/OR Search Graphs

It is often the case that a search space that is a tree can becgnaph if identical nodes
are merged, because identical nodes root identical seatidpaces, and correspond to
identical reasoning subproblems. Any two nodes that raatidal weighted subtrees can
be merged reducing the size search graph. For example, in Figufe )2 the search trees
below any appearance ¢¥, 2) are all identical, and therefore can be merged.

Sometimes, two nodes may not root identical subtrees, leytabuld still root search
subspaces that correspond to equivalent subproblems.sNloakeroot equivalent subprob-
lems having the same universal model (see Definition 2.3:&h ¢hough the weighted
subtrees may not be identical, canlbefied yielding an even smaller search graph, as we
will show.

We next formalize the notions ohergingandunifyingnodes and define the minimal

AND/OR search graph.

2.3.1 Minimal AND/OR Search Graphs

An AND/OR search tree can also be viewed as a data structatadéfines auniversal
graphical model (see Definition 1.2.6), defined by the weiglhits set of solution subtrees
(see Definitio 2.213).

DEFINITION 2.3.1 (universal graphical model of AND/OR search trees)siven a
weighted AND/OR search trég over a set of variableX’ and domainsD, its universal
graphical modeldenoted by (G), is defined by its set of solutions as follows:t ifs
a solution subtree and = asgn(t) is the set of assignments associated wittihen

u(z) = w(t); otherwiseu(z) = 0.

A graphical modelR is equivalent to its AND/OR search tregr(R), which means
that u(R) is identical toU(S7(R)). We will next define sound merge operations that

transform AND/OR search trees into graphs that preservieaguace.
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Figure 2.7: Merge vs. unify operators

DEFINITION 2.3.2 (merge)Assume a given weighted AND/OR search gref$hR)
(S%(R) can be the AND/OR search treég-(R)), and assume two paths = m,, (x;)
andmy = m,,(x;) ending by AND nodes at levehaving the same label;. Nodesr; and

no can bemergedff the weighted search subgraphs rootechatandn, are identical. The
mergeoperator,merge(ny, nsy), redirects all the arcs going inta, into n; and removes
and its subgraph. It thus transfornt§- into a smaller graph. When we merge AND nodes
only we call the operation AND-merge. The same reasoning cappked to OR nodes,

and we call the operation OR-merge.

We next define the semantic notion whifiable nodes, as opposed to the syntactic

definition ofmerge

DEFINITION 2.3.3 (unify) Given a weighted AND/OR search graghfor a graphical
modelR and given two paths,, and ,, having the same label on nodes and n,,
thenn; andn, are unifiablg iff they root equivalent conditioned subproblems (Dabnit

[L2.8). Namely, iR|asgn(m) = Rlasgnm)-

Example 2.3.1 Let’s follow the example in Figure 2.7 to clarify the diffece between
mergeand unify. We have a graphical model defined by two functi@ng.gost functions)

over three variables. The search tree given in Fiduré 2.@&)not be reduced to a graph
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by merge because of the different arc weights. However, the two OR rlabekdA root
equivalent conditioned subproblems (the cost of each idwdal solution is given at the
leaves). Therefore, the nodes labeléatan beunified but they cannot be recognized as

identical by themergeoperator.

Proposition 4 (minimal graph) Given a weighted AND/OR search graghbased on

pseudo tre€ :

1. Themergeoperator has a unique fix point, called tmerge-minimal AND/OR

search graph and denoted By"“"9(G).

2. Theunify operator has a unique fix point, called tbaify-minimal AND/OR search

graph and denoted byr2""/¥(G).

3. Any two nodes; andn, of G that can be merged can also be unified.

Proof. (1) All we need to show is that thmergeoperator is not dependant on the order of
applying the operator. Mergeable nodes can only appeae aame level in the AND/OR
graph. Looking at the initial AND/OR graph, before the meogerator is applied, we can
identify all the mergeable nodes per level. We prove the gsjon by showing that if two
nodes are initially mergeable, then they must end up merfjedtae operator is applied
exhaustively to the graph. This can be shown by inductiom theslevel where the nodes
appear.

Base caself the two nodes appear at the leaf level (levgl then it is obvious that the
exhaustive merge has to merge them at some point.

Inductive step:Suppose our claim is true for nodes up to leielind two nodes; andn,

at levelk + 1 are initially identified as mergeable. This implies thattiatly, their corre-
sponding children are identified as mergeable. These ehildre at levek, so it follows
from the inductive hypothesis that the exhaustive mergettaserge the corresponding

children. This in fact implies that nodes andn, will root the same subgraph when the
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exhaustive merge ends, so they have to end up merged. Smggdaph only becomes
smaller by merging, based on the above the process of mdngmtp stop at a fix point.
(2) Analogous to (1). (3) If the nodes can be merged, it foldiwat the subgraphs are
identical, which implies that they define the same condé@tseubproblems, and therefore

the nodes can also be unified.O

DEFINITION 2.3.4 (minimal AND/OR search graph) The  unify-minimal AND/OR
search graph ofR relative to7 will also be simply called theninimal AND/OR search

graphand be denoted by/+(R).

When7 is a chain pseudo tree, the above definitions are applicaliteettraditional
OR search tree as well. However, we may not be able to readdathe compression as in

some AND/OR cases, because of the linear structure impgsteelOR search tree.

Example 2.3.2 The smallest OR search graph of the graph-coloring problerkigure
2.1(a) is given in Figurd_219 along the DFS ordéf,Y,T, R, Z, L, M. The smallest
AND/OR graph of the same problem along the DFS tree is givenigar&[2.11. We
see that some variable-value pairs (AND nodes) must be regeaat Figure[2.9 while
in the AND/OR case they appear just once. In particular, thegsaph below the paths
((X,1),(Y,2)) and ((X, 3), (Y, 2)) in the OR tree cannot be merged @f,2). You can

now compare all the four search space representations sidede in Figure§ 2]8-2.11.

Note that in the case of constraint networks we can accomta@taeven more gen-
eral definition of merging of two AND nodes that are assigdérentvalues from their
domain, or two OR nodes labeled by different variables, ag las they root identical
subgraphs. In that case the merged node should be labeldg lolysjunction of the two

assignments (this is similar to interchangeable value¥])10
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2.3.2 Building AND/OR Search Graphs

In this subsection we will discuss practical algorithms generating compact AND/OR
search graphs of a given graphical model. In particular Weidéntify effective rules for
recognizing unifiable nodes, aiming towards the minimal AQR search graph as much as
computational resources allow. The rules allow generaisgall AND/OR graph called
the context minimal graptvithout creating the whole search trée first. We focus first
on AND/OR search graphs of graphical models having no cyclatedtree modelgi.e.,

the primal graph is a tree).
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Building AND/OR search graphs for Tree Models and Tree Decompsitions

Consider again the graph in Figlrel2.1(a) and its AND/OR $eaee in Figuré 2]1(c) rep-
resenting a constraint network. Observe that at level 3eodl) appears twice, (and so
are(Y, 2) and(Y, 3)). Clearly however, the subtrees rooted at each of these twd Addes
are identical and we can reason that they can be merged leeaayspecific assignment
to Y uniquely determines its rooted subtree. Indeed, the ANDg@&&ch graph in Figure
[2.11 is equivalent to the AND/OR search tree in Figuré 2.ésas Figuré 211(c)).

DEFINITION 2.3.5 (explicit AND/OR graphs for constraints tree models)Given a tree
model constraint network and the pseudo tée@entical to its primal graph, thexplicit
AND/OR search grapbf the tree model relative t@ is obtained fromS+ by merging all
AND nodes having the same lalié{, x).

Proposition 5 Given a rooted tree mod@T: (1) Its explicit AND/OR searchraphis equiv-
alent toS7. (2) The size of the explicit AND/OR search grapt®isik). (3) For some tree

models the explicit AND/OR search graph is minimal.

Proof. Parts 1 and 2 follow from definitions. Regarding claim 3, fog tiraph coloring
problem in Figuré_2]1(a), the minimal AND-OR search grapidentical to its explicit
AND/OR search graph;+. (See Figure 2.11). O

The notion of explicit AND/OR search graph for a tree modeéx$endable to any
general graphical models that are trees. The only differénthat the arcs have weights.
Thus, we need to show that merged nodes via the rule in defii#fi3.5 root identical

weighted AND/OR trees.

Proposition 6 Given a general graphical model whose graph is a tiEgits explicit

AND/OR searchyraphis equivalent ta57, and its size i$)(nk);

Proof. In tree models, the functions are only over two variableser&fore, after an as-

signment( X, z) is made and the appropriate weight is given to the arc ffono (X, z),
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the variableX and all its ancestors in the pseudo tree do not contributey@ec weight
below in the AND/OR search tree. Therefore, the conditiosiaproblems rooted at any
AND node labeled by X, =) depend only on the assignment¥fto = (and do not depend
on any other assignment on the current path), so it followsadh the AND nodes labeled
by (X, z) can be merged. Since the equivalence of AND/OR search siggesserved by
merge, the explicit AND/OR search graph is equivalentto At each AND level in the
explicit graph there are at moktvalues, and therefore its size(§nk). O

Next, the question is how to identiifficientlymergeable nodes f@eneralnon-tree
graphical models. A guiding idea is to transform a graphmatel into a tree decompo-
sition first, and then apply the explicit AND/OR graph couastion to the resulting tree
decomposition. The next paragraph sketches this intuition

A tree decompositiof59] (see Definitior 1.2]3) of a graphical model partitiohe t
functions into clusters. Each cluster corresponds to arsbibgim that has a set of solutions
and the clusters interact in a tree-like manner. Once we havee decomposition of
a graphical model, it can be viewed as a regular (meta) tregemehere each cluster
is a node and its domain is the cross product of the domainardhles in the cluster.
The constraint between two adjacent nodes in the tree demsitigm is equality over the
common variables. For more details about tree decompnsitiee/[59]. For the meta-tree
model the explicit AND/OR search graph is well defined: the @fdes are the scopes of
clusters in the tree decomposition and the AND nodes, anetbssible value assignments.
Since the graphical model is converted into a tree, its ex AND/OR search graph is well

defined and we can bound its size.

THEOREM2.3.3 Given atree decompositioof a graphical model, whose domain sizes
are bounded by, the explicit AND/OR search grapimplied by the tree decomposition
has a size 0O (rk™"), wherer is the number of clusters in the tree decompositionand

is the size of the largest cluster.
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Proof. The size of an explicit AND/ORyraph of a tree model was shown to 6&n - k)
(Proposition’b), yieldingO(r - k*") size for the explicit AND/OR graph, becauseis
replaced byk™", the number of possible assignments to a cluster of scopeusizandr
replaces:. O

The tree decomposition can guide an algorithm for geneyaimAND/OR search graph
whose size is bounded exponentially by the induced width¢hvive will refer to in the
next section as theontext minimal graph

While the idea of explicit AND/OR graph based on a tree decitipm can be ex-
tended to any graphical model it is somewhat cumbersom&ddsin the next section we

propose a more direct approach for generating the contetral graph.

The Context Based AND/OR Graph

We will now present a generative rule for merging nodes inAND/OR search graph
that yields the size bound suggested above. We will needdtiemnof induced width of
a pseudo tree of Gor bounding the size of the AND/OR searghaphs We denote by
dprs(7T) alinear DFS ordering of a tre&.

DEFINITION 2.3.6 (induced width of a pseudo tree)The induced width ofr relative to
the pseudo tre€, w(G), is the induced width along th&, s (7") ordering of the extended

graph ofG relative to7, denoted’” .

Proposition 7 (1) The minimal induced width &f over all pseudo trees is identical to the
induced width (treewidth)w*, of G. (2) The minimal induced width restricted to chain

pseudo trees is identical to its pathwidghy*.

Proof. (1) The induced width ot~ relative to a given pseudo tree is always greater than
w*, by definition ofw*. It remains to show that there exists a pseudo Feguch that

wr(G) = w*. Consider an ordering that gives the induced width*. The orderingd
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defines a bucket treBT (see Definitio 2.219), which can also be viewed as a pseeeo tr
for the AND/OR search, thereforezr(G) = w*. (2) Analogous to (1). O

Example 2.3.4 In Figure[2.4(b), the induced graph of relative to7; contains also the
induced arcs (1,3) and (1,5) and its induced width is”2 is already triangulated (no
need to add induced arcs) and its induced width is 2 as wiglt. has the added arc (4,7)
and when ordered it will have the additional induced arcs (B84 (1,3) edges, yielding

induced width 2 as well.

We will now provide definitions that will allow us to identifyodes that can be merged
in an AND/OR graph. The idea is to find a minimal set of variaddsignments from the
current path that will always generate the same conditicudgroblem, regardless of the
assignments that are not included in this minimal set. Siheecurrent path for an OR
nodeX; and an AND node X, x;) differ by the assignment of, to z; (Definition[2.2.2),
the minimal set of assignments that we want to identify wal different for X; and for
(X;, z;). In the following two definitions ancestors and descendargswith respect to the

pseudo tre€, while connection is with respect to the primal gragh

DEFINITION 2.3.7 (parents) Given a primal graphz and a pseudo tre& of a reasoning
problemP, theparentsof an OR nodeX;, denoted byua; or pax,, are the ancestors of;

that have connections ifi to X; or to descendants of;.

DEFINITION 2.3.8 (parent-separators)Given a primal graphZ and a pseudo tre@ of
a reasoning problenP, the parent-separatorsf X; (or of (X;, z;)), denoted byas; or

pasy,, are formed byX; and its ancestors that have connections&:ito descendants of;.

It follows from these definitions that the parentsgf pa;, separate in the primal graph
G (and also in the extended gragff and in the induced extended gra@h”) the ancestors

(in 7) of X;, from X, and its descendants (ih). Similarly, the parents separators_¥f,
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pas;, separate the ancestors &f from its descendants. It is also easy to see that each
variable X; and its parentga,; form a clique in the induced grap” “. The following

proposition establishes the relationship betwgerandpas;.

Proposition 8 1. If Y is the single child ofX in 7', thenpasx = pay.
2. If X has childrenYy, ... Y} in 7, thenpasx = U pay..

Proof. Both claims follow directly from Definitions 2.3.7 and 2.3.8.0

THEOREM 2.3.5 (context based mergelGivenG””, let 7, and 7, be any two partial

paths in an AND/OR search graph, ending with two nodegndn..

1. If n; andn, are AND nodes annotated by, ;) and

asgn(mn, )[pasx,] = asgn(m,)[pasx,] (2.1)

then the AND/OR search subtrees rootednhyand n, are identical andn; andn,

can be mergedusgn(m,,)[pasx,] is called theAND contextof n;.

2. If n; andn, are OR nodes annotated By; and

asgn(mn, )[pax;] = asgn(m, )[pax;] (2.2)

then the AND/OR search subtrees rootednhyand n, are identical andn;, andn,

can be mergedusgn(m,,)[pax,] is called theOR contextof .

Proof. (1) The conditioned graphical models (Definition 112.8hatandn, are defined
by the functions whose scopes are not fully assigned ,hyandr,,. Sincen; andn,
have the same labelingX;, z;), it follows thatvar(r,,) = var(m,,), and therefore the

two conditioned subproblems are based on the same set adidnsdet’s call itF\W(M).
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The scopes of functions if|,q(x,,) determine connections in the primal graph between
ancestors ofX; and its descendants. Therefore, the only relevant vagdhbg define the
restricted subproblems are thosepirs;, and equatioh 211 ensures that they have identical
assignments. It follows that the conditioned subprobleresdentical, anch; andn, can

be merged.

(2) Analogous to (1). O

Example 2.3.6 For the balanced tree in Figure[_2.1 consider the chain
pseudo treed = (X,Y,T,R,Z L, M). Namely the chain has arcs
{(X,)Y),(Y,T),(T,R),(R,Z),(Z,L), (L, M)} and the extended graph includes also the
arcs(Z, X), (M, Z). The parent-separator df alongd is XY T (since the induced graph
has the arc(T, X)), of Ritis XR, for Z itis Z and for M itis M. Indeed in the first

3 levels of the OR search graph in Figure]2.9 there are no ntergmles. In contrast,

if we consider the AND/OR ordering along the DFS tree, the paseparator of every
node is itself yielding a single appearance of each AND nodenlgethe same assignment

annotation in the minimal AND/OR graph.

DEFINITION 2.3.9 (context minimal AND/OR search graph)The AND/OR search
graph of R based on the backbone trée that is closed under context-based merge

operator is calledcontext minimalAND/OR search graph and is denot€g(R).

We should note that we can in general merge nodes based bé&tNDBrand OR con-
texts. However, Propositidd 8 shows that doing just one effrtinenders the other unnec-
essary (up to some small constant factor). In practice, waddwacommend just the OR
context based merging, because it has a slight (albeit bya#l sonstant factor) space ad-
vantage. In the examples that we give in this chapie(R) refers to an AND/OR search
graph for which either the AND context based or OR contexédaserging was performed

exhaustively.
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Example 2.3.7 Consider the example given in Figdre 2.12(a). The OR contergtoh
node in the pseudo tree is given in square brackets. Thextomiaimal AND/OR search

graph (based on OR merging) is given in Figlre 2.12(b).

Since the number of nodes in the context minimal AND/OR degraph cannot exceed

the number of different contexts, we can bound the size ofdmeext minimal graph.

THEOREM2.3.8 Given a graphical modeR, its primal graphG, and a pseudo tre§&
having induced widtlw = w7 (G), the size of the context minimal AND/OR search graph

based o7, Cr(R), isO(n - k*), whenk bounds the domain size.

Proof. The number of different nodes in the context minimal AND/GRireh graph('r,
does not exceed the number of contexts. From equdtiohs d[2.2rwe see that, for any
variable, the number of contexts is bounded by the numbeosdiple instantiations of the
largest context irG”7 ", which is bounded by)(k*). For all then variables, the bound
O(n - k*) follows. O

Note that the criterion in equatios P.1 dnd]| 2.2 is cautidtisst, the real number of
assignments over context variables includes only comgiasignments. Second, we have
already seen (Example_2.8B.1) that there exist nodes thabeamified but not merged
Here we give an example that shows that contexts can notifigafitthe nodes that can
be merged There could be paths whose contexts are not identical,hgst inight root

identical subgraphs.

Example 2.3.9 Let’s return to the example of the Bayesian network given gurfé
[2.12(a), whereP(D|B, C) is given in the table, and the OR-context of each node in the
pseudo tree is given in square brackets. Fidure 2.12(b) shibasontext minimal graph.
However, we can see th&(D = 0|B=0,C =0) = P(D=0/B=1,C =0) =z and
P(D=1B=0,C=0)=P(D=1|B=1,C =0) =y. This allows thaunificationof

the corresponding OR nodes labeled withand Figurd 2.1P(c) shows the (unify) minimal
graph.
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Figure 2.12: Context minimal vs. minimal AND/OR graphs
The context based merge offers a powerful way of boundingélaech complexity:

THEOREM2.3.10 The context minimal AND/OR search graph of a graphical model
having a backbone tree with bounded treewidtlcan be generated in time and space

O(nk™).

Proof. We can generat€r using depth-first or breadth first search which caches aksod
via their contexts and avoids generating duplicate searfdrehe same contexts. There-
fore, the generation of the search graph is linear in its subéch is exponential inv and
linearinn. O

Since the unify minimal AND/OR graph/**/ and the merge minimal AND/OR
graphM "¢ are subsets af'7, both are bounded by (n - £*), wherew = w(G). Since
miny{w7(G)} is equal to the treewidth* and sinceminz¢nq.ins{w7r(G)} is equal to the

pathwidthpw*, we get:

Corollary 1 Given a graphical modeR, there exists a backbone tr@esuch that the unify
minimal, merge minimal and context minimal AND/OR searclpgsaofR are bounded
exponentially by the treewidth of the primal graph. The ymifgrge and context minimal

OR search graphs can be bounded exponentially by the pathnoidy.
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More on OR vs. AND/OR

It is well known [14] that for any graph* < pw* < w* - logn. Itis easy to placen* (the
minimal depth over pseudo trees) in that relation yieldirig< pw* < m* < w* - logn.
It is also possible to show that there exist primal graphswhich the upper bound on
pathwidth is attained, that jgv* = O(w* - logn).

Consider a complete binary tree of depth In this casew* = 1, m* = m, and it is

also known[[91], 12]) that:
THEOREM2.3.11 ([12]) If T is a binary tree of deptim thenpw*(7) > 7.

Theorem 2.3.71 shows that for graphical models having a dexditree widthw, the
minimal AND/OR graph is bounded by (nk") while the minimal OR graph is bounded
by O(nk*°sm). Therefore, even when caching, the use of an AND/OR vs. an€aRcB

space can yield a substantial saving.

Remark. We have seen that AND/OReesare characterized by tredepthof the pseudo
trees while minimal AND/ORyraphsare characterized by theinduced width It turns

out however that sometimes a pseudo tree that is optimadivesta w is far from optimal

for m and vice versa. For example a primal graph model that is andfes a pseudo tree
havingm; = n andw; = 1 on one hand, and another pseudo tree that is balanced having
mo = logn andw, = logn. There is no single pseudo tree having bath= 1 and

m = logn for a chain. Thus, if we plan to have linear space search weldhpck one

kind of a backbone pseudo tree, while if we plan to search phgrand therefore cache

some nodes, another pseudo tree should be used.

2.3.3 On the Canonicity and Generation of the Minimal AND/OR
Graph

We showed that the merge minimal AND/OR graph is unique favarggraphical model,

given a backbone pseudo tree (Proposifion 4). In generaubsumes the minimal
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AND/OR graph, and sometimes can be identical to it. For cairdgtnetworks we will
now prove a more significant property of uniqueness relatvall equivalent graphical
models given a backbone tree. We will prove this notion nadab backtrack-freesearch
graphs which are captured by the notion of strongly minimdDXOR graph. Remember

that any graphical model can have an associated flat camsteetiwork.

DEFINITION 2.3.10 (strongly minimal AND/OR graph) Q A strongly minimalAND/OR
graph of R relative to a pseudo tre@ is the minimal AND/OR graph)/+(R), that is
backtrack-freei(e. any partial assignment in the graph leads to a solution),aded by

M3 (R). The strongly context minimal graph is denotég(R ).

Canonicity of Strongly Minimal AND/OR Search Graphs

We briefly discuss here the canonicity of the strongly mirignaph, focusing on constraint
networks. Given two equivalent constraint networks regméag the same set of solutions,
where each may have a different constraint graph, are threingly minimal AND/OR
search graphs identical?

The above question is not well defined however, because an/@RQYraph forR is
defined only with respect to a backbone pseudo tree. We cantWa\equivalent constraint
networks having two different graphs where a pseudo treemer graph may not be a
pseudo tree for the other. Consider, for example a constrainiork having three variables:
X, Y and Z and equality constraints. The following network®; = {Rxy = (X =
Y), Ryz = (Y = Z)} andRy; = {Rxz = (X = Z), Ryz = (Y = Z)} andR; =
{Rxy = (X =Y), Ryz = (Y = Z), Rxz = (X = Z)} are equivalent. Howevet, =
(X <« Y — Z)is apseudo tree faR,, but not forR, neither forR;. We ask therefore a
different question: given two equivalent constraint netgand given a backbone tree that

is a pseudo tree for both, is the strongly minimal AND/OR graglative toZ7 unique?

2The minimal graph is built by lumping together “unifiable”des, which are those that root equivalent
subproblems. Therefore, at each level (corresponding ¢ovarniable), all the nodes that root inconsistent
subproblems will be unified. If we eliminate the redundande®) the minimal graph is already backtrack
free.
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We will answer this question positively quite straightfamaly. We first show that
equivalent networks that share a backbone tree have idém@cktrack-free AND/OR
search trees. Since the backtrack-free search trees inaptermine their strongly mini-

mal graph the claim follows.

DEFINITION 2.3.11 (shared pseudo treesfiven a collection of graphs on the same set of
nodes, we say that the graphs share a tfeéef 7 is a pseudo tree of each of these graphs.
A set of graphical models defined over the same set of vagalblare a tree7, iff their

respective primal graphs shafg.

Proposition 9 1. If R; andR, are two equivalent constraint networks that sh@rethen
BF7r(R:1) = BFr(R2) (see Definition 2.2.10). 2. R, andR, are two equivalent graphi-
cal models (not necessarily constraint networks) that sdarthenBFr(R,) = BFr(R»)

as AND/OR search trees although their arcs may not have icedntieights.

Proof. Let B, = BFr(R,) and B, = BFr(R,) be the corresponding backtrack-
free AND/OR search trees g2, andR,, respectively. NamelyBFr(R,) C Sr(R1),
BFr(Ry) C S7(R»). Clearly they are subtrees of the same full AND/OR tree. Warcla
that a path appears B, iff it appears inB,. If not, assume without loss of generality that
there exists a path i®;, =, which does not exists iB,. Since this is a backtrack-free
search tree, every path appears in some solution and thetbfre is a solution subtree in
B that includesr which does not exist irBy, contradicting the assumption thRt;, and
R, have the same set of solutions. The second part has an @emtoof based on flat
functions (namely positive values of a function are asgediavith 1 and indicate allowed

tuples, and zero values remain 0).0

THEOREM2.3.12 If R; and R, are two equivalent constraint networks that shdrethen

M:?(Rﬂ = M;(Rﬂ
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Proof. From Propositior 19 we know thakR,; and R, have the same backtrack-free
AND/OR tree. Since the backtrack-free AND/OR search treeafdackbone tre@
uniquely determines the strongly minimal AND/OR graph, tteorem follows. O

Theoreni 2.3.12 implies that/; is a canonical representation of a constraint network
R relative to7 .

Generating the strongly minimal AND/OR graphs

From the above discussion we see that several methods ferajery the canonical
AND/OR graph of a given graphical model, or a given AND/ORpjramay emerge. The
method we focused on in this chapter is to generate the domiexmal AND/OR graph
first. Then we can process this graph from leaves to root,endomputing the value of
nodes, and additional nodes can be unified or pruned (if vadie is “0”).

There is another approach that is based on processing tbediusin a variable elim-
ination style, when viewing the pseudo tree as a bucket treectuster tree. The original
functions can be expressed as AND/OR graphs and they wilbb@med pairwise until
an AND/OR graph is generated. This phase allows computiagdtue of each node and
therefore allows for semantic unification. Subsequenttyraérd phase will allow generat-
ing the backtrack-free representation as well as allow adimg the full values associated
with each node. The full details of this approach are out efsttope of the current chapter.

For initial work restricted to constraint networks see [76]

2.3.4 Merging and Pruning: Orthogonal Concepts

Notice that the notion of minimality is orthogonal to thatpfining inconsistent subtrees
(vielding the backtrack-free search space). We can mergedentical subtrees whose
root value is “0” but still keep their common subtree. Howesnce our convention is
that we don’t keep inconsistent subtrees we should coniplptane them, irrespective of
them rooting identical or non-identical subtrees. Thamfave can have a minimal search

graph that isnot backtrack-free as well as a non-minimal search grapip. & tree) that is
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(a) Full AND/OR tree (b) Pruned backtrack-free
AND/OR tree

Figure 2.13: AND/OR trees

(a) Context minimal unpruned AND/OR graph (b) Context minimal
pruned backtrack-free
AND/OR graph

Figure 2.14: AND/OR graphs

backtrack-free.

When the search space is backtrack-free and if we seek a siolgigon, the size of
the minimal AND/OR search graph and its being OR vs. AND/Oaoth irrelevant. It
will, however, affect a traversal algorithm that countssallutions or computes an optimal
solution as was often observed [50]. For counting and fongpation tasks, even when
we record all no-goods and cache all nodes by context, thadtmgd the AND/OR graph

search vs. the OR graph search can still be significant.

Example 2.3.13 Consider the graph problem in Figure 2.6(a) when we add the vélioe
the domains ofX and Z. Figure[2.13(d) gives the full AND/OR search tree and Figure
[2.13(b) gives the backtrack-free search tree. Figure Ajld{ves the context minimal but
unpruned search graph and FigJre 2.14(b) gives the minimdlgruned search graph.

61



(a) (b) ©)

Figure 2.15: (a) A constraint graph; (b) a spanning treea @ynamic AND/OR tree

2.3.5 Using Dynamic Variable Ordering

The AND/OR search tree we defined uses a fixed variable ogldtiis known that explor-
ing the search space in a dynamic variable ordering is higéheficial. AND/OR search
trees for graphical models can also be modified to allow dyoamariable ordering. A
dynamic AND/OR tree that allows varied variable ordering i@ satisfy that for every
subtree rooted by the current pathany arc of the primal graph that appears as a cross-arc

(not a back-arc) in the subtree must be “inactive” condébon.

Example 2.3.14 Consider the propositional formulx’ — Av C and X — BV C.
The constraint graph is given in Figure 2115(a) and a DFS ire@.15(b). However, the
constraint subproblem conditioned dX’, 0), has no real constraint betweeh B, C, so
the effective spanning tree belao\X, 0) is {(X,0) — A, (X,0) — B,(X,0) — C},
yielding the AND/OR search tree in Figure 2.15(c). Note thatewtiere is an arc between

A andC'in the constraint graph, the arc isot active whenX is assigned the valug

Clearly, the constraint graph conditioned on any partiabassent can only be sparser
than the original graph and therefore may yield a smaller ADI search tree than with
fixed ordering. In practice, after each new value assignptéetconditional constraint
graph can be assessed as follows. For any constraint oveuthent variableX, if the
current assignmentX, =) does not make the constramttivethen the corresponding arcs
can be removed from the graph. Then, a pseudo tree of theingsgitaph is generated, its
first variable is selected, and search continues. A fullstigation of dynamic orderings is

outside the scope of the current chapter.
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2.4 Solving Reasoning Problems by AND/OR Search

2.4.1 Value Functions of Reasoning Problems

As we described earlier, there are a variety of reasoninigl@nas over weighted graphical
models. For constraint networks, the most popular task$cadecide if the problem is
consistent, to find a single solution or to count solutiofthére is a cost function defined
we may also seek an optimal solution. The primary tasks orargbilistic networks are
belief updating, finding the probability of the evidence dimdling the most likely tuple
given the evidence. Each of these reasoning problems cargdressed as finding the
valueof some nodes in the weighted AND/OR search space whereatifféasks call for
different value definitions. For example, for the task of fingda solution to a constraint
network, the value of every node is either “1” or “0”. The valtil” means that the subtree
rooted at the node is consistent and “0” otherwise. Theeefibre value of the root node
answers the consistency query. For solutions-countingdhes function of each node is

the number of solutions rooted at that node.

DEFINITION 2.4.1 (value function for consistency and counting)Given a weighted
AND/OR treeS7(R) of a constraint network. The value of a node (AND or OR) for
deciding consistencis “1” if it roots a consistent subproblem and “0” otherwise. h€
value of a node (AND or OR) fartounting solutionss the number of solutions in its

subtree.

It is easy to see that the value of nodes in the search graphecemmputed recursively

from leaves to root.

Proposition 10 (recursive value computation)(1) For the consistency task the value of
AND leaves is their labels and the value of OR leaves is “0” ythee inconsistent). An
internal OR node is labeled “1” if one of its successor node&li” and an internal AND

node has value “1” iff all its successor OR nodes have value “1
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(2) The counting values of leaf AND nodes are “1” and of leaf Q&les are “0”. The
counting value of an internal OR node is the sum of the cogntalues of all its child
nodes. The counting-value of an internal AND node is the prbdiithe counting-values

of all its child nodes.

Proof. The proof is by induction over the number of levels in the AR graph.
Basis step:If the graph has only two levels, one OR and one AND, then tharcis
straightforward because the AND leaves are labeled by “tbdifsistent and the OR node
accumulates “1” or the sum of consistent values below, oiftbiere is no consistent value.
Inductive stepAssuming the proposition holds farpairs of levels (one AND and one OR
in each pair), proving it holds for + 1 pairs of levels is similar to the basis step, only the
labeling of the top AND nodes is the sum of solutions belowhm ¢ase of counting. O

We can now generalize to any reasoning problem, focusing@sitnplified case when
Z = (), namely when the marginalization has to be applied to alVér@bles. This special

case captures most tasks of interest. We will start witheleansive definition.

DEFINITION 2.4.2 (recursive definition of values)The value function of a reasoning
problemP = (R, |y, Z), whereR = (X, D, F,®) and Z = (), is defined as follows:
the value of leaf AND nodes is “1” and of leaf OR nodes is “0”. TWedue of an internal
OR node is obtained byombiningthe value of each AND child node with the weight (see
Definition[2.2.6) on its incoming arc and thamarginalizingover all AND children. The
value of an AND node is the combination of the values of its QRlreh. Formally, if
children(n) denotes the children of nodein the AND/OR search graph, then:

v(n) = Q,echitarentn) V(1) if n = (X, z) is an AND node,

v(n) =lwechidrentn) (W) @v(n')), if n = X is an OR node.

The following proposition states that given a reasoning,tesmputing the value of the

root node solves the given reasoning problem.
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Proposition 11 LetP = (R, |y, Z), whereR = (X, D, F, Q) and Z = (), and letX; be
the root node in any AND/OR search graph(R). Thenu(X;) =l x Q._, fi whenv is
defined in Definition 2.412.

Proof. The proof is again by induction, similar to the proof of Prejion[10.
Basis stepif the model has only one variable, then the claim is obvious.
Inductive step:Let X be an OR node in the graph. Assume that the value of each OR
node below it is the solution to the reasoning problem cpoeding to the conditioned
subproblem rooted by it. We need to prove that the valu& afill be the solution to the
reasoning problem of the conditioned subproblem rooteXbySupposeX has children
Yi,..., Y, in the pseudo tree. We haw¢Y;) =ly,upesc(vy) ®feF|ﬁy7. f, whereDesc(Y;)
are the descendants Bf, and the functions are restricted on the Current path. Eddb A
node (X, x) will combine the values below. Because the $étsl Desc(Y;) are pairwise
disjoint, the marginalization operator commutes with tbmbination operator and we get:

(X, 7)) = QL1 bviupesevy) ®f6F\WYi [ = Jur, viupeseviy) ®f€F\M [
The values ((X, z)) are then combined with the values of the buckeXofwhich are the
weightswx,(x.y)- The functions that appear in the bucket®fdo not contribute to any
of the weights below;, and therefore the marginalization o\gl” , (Y; U Desc(Y;)) can
commute with the combination that we have just described:

wix,(xa) @UUX,2)) = dym, viupese(v)) Wix,(x.2) Qe f)-
Finally, we get:

v(X) = Ux wxxa)) @vX, ) = Ixupese(x) ®f6F|ﬂ,X f. O

Search algorithms that traverse the AND/OR search spaceorapute the value of the

root node yielding the answer to the problem. The followiegt®n discusses such algo-
rithms. Algorithms that traverse the weighted AND/OR shdree in a depth-first manner
or a breadth-first manner are guaranteed to have time bouwhertial in the depth of
the pseudo tree of the graphical model. Depth-first searchiede accomplished using

either linear space only, or context based caching, bouagigonentially by the treewidth
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of the pseudo tree. Depth-first search is an anytime schentesam, if terminated, pro-
vide an approximate solution for some tasks such as optilmiza The next subsection
presents typical depth-first algorithms that search AND#t€Res and graphs. We use-
lution countingas an example for a constraint query and the probability mfezxce as an
example for a probabilistic reasoning query. The algorgloompute the value of each
node. For application of these ideas for combinatorialrogtation tasks, such as MPE see

[71].

2.4.2 Algorithm AND/OR Tree Search and Graph Search

Algorithm[1 presents the basic depth-first traversal of ttNDAOR search tree (or graph,
if caching is used) for counting the number of solutions ofoastraint network, AO-
COUNTING (or for probability of evidence for belief networks, A@ELIEF-UPDATING).

The context based caching is done based on tables. We ekemijth OR caching.
For each variableX;, a table is reserved in memory for each possible assignroeaig t
parent sepa;. Initially each entry has a predefined value, in our case.“-The fringe
of the search is maintained on a stack calle@N. The current node is denoted hyits
parent byp, and the current path by,. The children of the current node are denoted by
successors(n).

The algorithm is based on two mutually recursive steps: BEXPAnd PROPAGATE,
which call each other (or themselves) until the search teaies.

Since we only use OR caching, before expanding an OR nodamgdtee table is checked
(line [B). If the same context was encountered before, it tsexeed from cache, and
successors(n) is set to the empty set, which will trigger the PROPAGATE step

If a node is not found in cache, it is expanded in the usual d@gending on whether
it is an AND or OR node (lines_10-17). The only difference bedéw counting and belief
updating is lin€_ IR vs. line_13. For counting, the value of asistent AND node is

initialized to 1 (line[12), while for belief updating, it isitialized to the bucket value for
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the current assignment (lihel13). As long as the current modet a dead-end and still
has unevaluated successors, one of its successors is ¢adsen is also the top node on
OPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a nadeam empty set of
successors (note that as each successor is evaluatednitased from the set of successors
in line[31). This means that all its children have been evatliaand its final value can now
be computed. If the current node is the root, then the searatiriates with its value (line
[20). If it is an OR node, its value is saved in cache before ggafing it up (liné_2R). Ik
is OR, then its parent is AND andp updates its value by multiplication with the value of
n (line[24). If the newly updated value ¢fis 0 (line[25), therp is a dead-end, and none
of its other successors needs to be evaluated. An AND nqatepagates its value to its
parentp in a similar way, only by summation (liie 130). Finally, ther@nt noden is set
to its parent (line[32), becausa was completely evaluated. The search continues either

with a propagation step (if conditions are met) or with anasgion step.

2.4.3 General AND-OR Search - AO(i)

General AND/OR algorithms for evaluating the value of a romde for any reasoning prob-
lem using tree or graph AND/OR search are identical to theahfgorithms when product
is replaced by the combination operator and summation lacegd by the marginalization
operator. We can view the AND/OR tree algorithm (which wel wénote AOT) and the
AND/OR graph algorithm (denoted AOG) as two extreme caseggarameterized collec-
tion of algorithms that trade space for time via a contrgllparametei. We denote this
class of algorithms aslO(i) wherei determines the size of contexts that the algorithm
caches. AlgorithmAO(i) records nodes whose context size & smaller (the test in line
needs to be a bit more elaborate and check if the contexisemaller than). Thus
AO(0) is identical to AOT, whileAO(w) is identical to AOG, wherev is the induced width

of the used backbone tree. For any intermediate get an intermediate level of caching,
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Algorithm 1: AO-COUNTING / AO-BELIEF-UPDATING

input : A constraint networkR = (X, D, C), or a belief networkP = (X, D, P); a pseudo tre€ rooted atX;;
parentpa; (OR-context) for every variabl&’;; caching set totrue or false.
output  : The number of solutions, or the updated beligfX ).

1 if caching == true then /1 Initialize cache tables
2 L Initialize cache tables with entries of-1"
3 v(X1) < 0; 0PEN — {X} /1 Initialize the stack OPEN
4 while OPEN # ¢ do
5 n — top(OPEN); removen from OPEN
6 if caching == true andn is OR, labeledX; and Cache(asgn(my)[pa;]) # —1 then /1 1In cache
7 v(n) « Cache(asgn(my)[pa;)]) /1l Retrieve val ue
8 successors(n) «— ¢ /1 No need to expand bel ow
9 else /'l EXPAND
10 if nis an OR node labeled’; then /1 OR-expand
11 successors(n) «— {(X;,z;) | (Xi, ;) is consistent withr,, }
12 v((Xs, @) « 1, forall (X;,z;) € successors(n)
v((Xi, z;)) — 11 f(asgn(mn)[pa;]), forall (X;,x;) € successors(n) /1 AO BU
13 feEBT(X;)
14 if nis an AND node labeledX;, z;) then /1 AND- expand
15 successors(n) < childrens (X;)
16 v(X;) < Oforall X; € successors(n)
17 | Add successors(n) to top of OPEN
18 while successors(n) == ¢ do /1 PROPAGATE
19 if n is an OR node labeled’; then
20 if X; == X1 then /1 Search is conplete
21 | return v(n)
22 if caching == true then
23 L Cache(asgn(mn)[pa;]) < v(n) /1 Save in cache
24 v(p) < v(p) * v(c)
25 if v(p) == 0then /'l Check if p is dead-end
26 removesuccessors(p) from OPEN
27 successors(p) «— ¢
28 if nis an AND node labeledX;, z;) then
29 let p be the parent of
30 | () — v(p) + v(n);
31 removen from successors(p)
32 | n<p

which is space exponential irand whose execution time will increaseiatecreases.

2.4.4 Complexity

From Theorems 2.2.7 and 2.P.9 we can conclude that:

THEOREM2.4.1 For any reasoning problemAOT runs in linear space and tim@(nk™),
whenm is the depth of the pseudo tree of its graphical model/arsthe maximum domain
size. If the primal graph has a tree decomposition with treéwid , there exists a pseudo

tree7 for which AOT isO(nkv 1em).
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Obviously, the algorithm for constraint satisfaction ttwauld terminate early with first
solution, would potentially be much faster than the reshefAOT algorithms, in practice.

Based on Theorefm 2.3.8 we get complexity bounds for grapllsiegralgorithms.

THEOREM2.4.2 For any reasoning problem, the complexity of algorit®®G is time
and space)(nk™) wherew is the induced width of the pseudo tree g@ni the maximum

domain size.

Thus the complexity of AOG can be time and space exponenttak treewidth, while
the complexity of any algorithm searching the OR space cami#and space exponential
in its pathwidth.

The space complexity can often be less than exponentiatitnglewidth. This is similar
to the well known space complexity of tree decompositioresods which can operate in
space exponential only in the size of the cluster separatattser than exponential in the
cluster size. It is also similar to thdead cachesoncept presented in [23, 2]. Intuitively,
a node that has only one incoming arc will only be traversextday search, and therefore
its value does not need to be cached, because it will nevesdzkagain. For context based

caching, such nodes can be recognized based only on theégp@reparent separators) sets.

DEFINITION 2.4.3 (dead cache)f X is the parent oft” in 7, andpax C pay, thenpay

is adead cache

Given a pseudo tre&, the induced graph along can generate a tree decomposition
based on the maximal cliques. The maximum separator sizeedfée decomposition is

the separator size @f.

Proposition 12 The space complexity of graph-caching algorithms can beiced to
being exponential in the separator's size only, while stding time exponential in the

treewidth, if dead caches are not recorded.
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Proof. A bucket tree can be built by having a cluster for each vagiahland its parents
pa;, and following the structure of the pseudo trée Some of the clusters may not be
maximal, and they have a one to one correspondence to tlablemiwith dead caches. The
parentspa; that are not dead caches correspond to separators betwaenahelusters in

the bucket tree. O

2.5 Related Work

2.5.1 Relationship with Variable Elimination

In Chaptef 6 we extend the results in[74] and show that Vagi&dtimination can be un-
derstood as bottom up layer by layer traversal of the contertmal AND/OR search
graph. If the graphical model is strictly positive (has néedainism), then context based
AND/OR search and Variable Elimination are essentiallyntaal. When determinism
is present, they may differ, because they traverse the ARDgEaph in different direc-
tions and encounter determinism (and can take advantagedifferently. Therefore, for
graphical models with no determinism, there is no prindméference between memory-
intensive AND/OR search with fixed variable ordering anerehce beyond: (1) different
direction of exploring a common search space (top down farcdevs. bottom up for infer-
ence); (2) different assumption of control strategy (ddpst for search and breadth-first
for inference).

Another interesting observation discussed!(inl [74] is thahynknown advanced al-
gorithms for constraint processing and satisfiability canelaplained as traversing the
AND/OR search treee.g. graph based backjumping [49,]26, 6]. For more details we

refer the reader to [74].
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2.5.2 Relationship with  BTD (Backtracking with  Tree-

Decomposition)

BTD [99] is a memory intensive method for solving constraatisgaction problems, which
combines search techniques with the notion of tree decotigpusThis mixed approach
can in fact be viewed as searching an AND/OR graph, whoseboaekpseudo tree is de-
fined by and structured along the tree decomposition. Whadfiaetl in [99] asstructural
goods that is parts of the search space that would not be visitashag soon as their con-
sistency is known, corresponds precisely to the decomposif the AND/OR space at the
level of AND nodes, which root independent subproblems. $umprisingly, the time and
space guarantees of BTD are the same as those of AND/OR graan s&n optimization

version of the algorithm is presented iin [98].

2.5.3 Relationship with Recursive Conditioning

Recursive Conditioning (RC) [23] is based on the divide and cengaradigm. Rather
than instantiating variables to obtain a tree structure@ ok like the cycle cutset scheme,
RC instantiates variables with the purpose of breaking theor& into independent sub-
problems, on which it can recurse using the same technicuecdmputation is driven by
a data-structure calledtree which is a full binary tree, the leaves of which correspomd t
the network CPTs.

It can be shown that RC explores an AND/OR space. Let's stdht the example
in Figure[2.16, which shows: (a) a belief network; (b) and tejo dtrees and the corre-
sponding pseudo-trees for the AND/OR search. The dtreessalaw the variables that
are instantiated at some of the internal nodes. The pseade-tan be generated from
the static ordering of RC dictated by the dtree. This ensuraswhenever RC splits the
problem into independent subproblems, the same happehs iIAND/OR space. It can

also be shown that the context of the nodes in RC, as definedjims[RBntical to that in
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Figure 2.16: RC and AND/OR pseudo-trees

AND/OR.

2.5.4 Relationship with Value Elimination

Value Elimination [5] is a recently developed algorithm &ayesian inference. It was al-
ready explained in [5] that, under static variable orderthgre is a strong relation between
Value Elimination and Variable Elimination. From our paragh on the relation between
AND/OR search and VE we can derive the connection betweene\alimination and
AND/OR search, under static orderings. But we can also aaah& connection directly.
Given a static ordering for Value Elimination, we can show that it actually traverse
AND/OR space. The pseudo-tree underlying the AND/OR segirgph traversal by Value
Elimination can be constructed as the bucket tree in redetsélowever, the traversal of
the AND/OR space will be controlled by, advancing the frontier in a hybrid depth or
breadth first manner.

The most important part to analyze is the managemegbotisand the computation
in which they are involved. Most backtracking algorithms $atisfiability and constraint
processing exploiho-goods or inconsistencies, by detecting and learning them, aex th
deriving new no-goods that help further prune the searcbesgfor probabilistic networks
(or weighted models in general) consistent tuples havetanled probability (or weight).

The consistent tuples, and their associated probabiéitiesalledyoodsin this context.
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When Value Elimination computes a factor at a leaf node, ikbaip the value to the
deepest node in the dependency Beet . TheDset is identical to the context in the
AND/OR space. For clarity reasons, we chose to have the ARDd@orithm back up
the value to its parent in the pseudo-tree, which may berdiffethan the deepest vari-
able in the context. We can however accommodate the prdpagaitthe value like in
Value Elimination, and maintain bookkeeping of the sumoratietSset , and this would
amount to a constant factor saving. Value Elimination cargs by unionizindgpset s and
Sset s whenever values are propagated, and this is identical tgputing the context of
the corresponding node in the AND/OR space (which is in fagtimduced ancestor set of
graph-based backjumping [33]).

In the presence of determinism, any backjumping strategyhagood learning used by
Value Elimination can also be performed in the AND/OR sp&entext specific structure
that can be used by Value Elimination, can also be used in AND/Dynamic variable
orderings can also be used in AND/OR spaces, but here wethmitliscussion to static

orderings.

2.5.5 Relationship with Case-Factor Diagrams

Case-Factor Diagrams (CFD) were introduced_in [80] and reptes probabilistic for-
malism subsuming Markov random fields of bounded treewidtth @robabilistic context
free grammars. Case-factor diagrams are based on a variBit@é (binary decision di-
agram [16]) with both zero suppression and “factor nodesictér nodes are analogous
to the AND nodes in an AND/OR search space. A case-factoramgan be viewed as
an AND/OR search space in which each outgoing arc from an QR mexplicitly la-
beled with an assignment of a value to a variable. Zero sgpjme is used to fix the value
of variables not mentioned in a given solution. Zero suppogsallows the formalism to
concisely represent probabilistic context free grammartuactions from variable-value

assignments to log probabilities (or energies).
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2.5.6 AO-Search Graphs and Compilation

We dedicate Chaptér 7 to presenting a compilation schemed laséAND/OR search
spaces. Essentially, the AND/OR Multi-Valued Decision gpaams (AOMDDS) is the
strongly minimal AND/OR graph representation of a graphmeadel with redundant vari-
ables removed for conciseness. We will present two algostfor compiling an AOMDD.
The first is based on AND/OR search, and applies reducti@s tol the trace of the search
(i.e., the context minimal graph). The second algorithmeisdal on a Variable Elimination
schedule. It uses a bottom up traversal of a bucket tree, tag@ch node anPPLY oper-
ator is used to combine all the AOMDDs of the bucket into aap#ROMDD. TheAPPLY

is similar to the OBDD apply operatar [16], but is adapted f0MIHOR structures. The
AOMDD extends an OBDD (or multi-valued decision diagram) wah AND/OR structure.

We discuss further the relationship between AOMDDs andratbmpilation schemes.

Relationship with d-DNNF

An AND/OR structure restricted to propositional theorigsery similar to d-DNNF[25].
One can show a one-to-one linear translation from an AND/@®lued tree of a propo-
sitional CNF theory into a d-DNNF. The AND/OR structure is maestrictive allowing
disjunction only on the variable’s value while in d-DNNF jdisction is allowed on more
complex expressions; see [55] for implications of thisididton. The AND/OR search
graph is built on top of a graphical model and can be viewed @mailed scheme of a
CNF into an AND/OR structure. Since an AND/OR search can bessged as a d-DNNF,
the construction via pseudo tree yields a scheme for d-DNdRpilation. In other words,
given a CNF theory, the algorithm can be applied using a pstaddo yield an AND/OR
graph, which can be transformed in linear time and spaceaigt®NNF.

Conversely, given a d-DNNF that is specialized to varialdeda disjunction for OR
nodes, it is easy to create an AND/OR graph or a tree that isaguat having a polynomi-

ally equivalent size. The AND/OR search graph for probatdinetworks is also closely
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related to algebraic circuits of probabilistic networkd]&hich is an extension of d-DNNF

to this domain.

Relationship with OBDDs

The notion of minimal OR search graphs is also similar to thewn concept oDrdered
Binary Decision Diagrams (OBDD the literature of hardware and software design and
verification The properties of OBDDs were studied extengiwelthe past two decades
[16,/81].

It is well known that the size of the minimal OBDD is bounded exentially by the
pathwidthof the CNF’s primal graph and that the OBDD is unique for a fixedakde or-
dering. Our notion of backtrack-free minimal AND/OR seagrhphs, if applied to CNFs,
resembledree BDDs[82]. Minimal AND/OR graphs are also related to Graph-dnive
BDDs (called G-FBDD)|[51], 96] in that they are based on a padider expressed in a
directed graph. Still, a G-FBDD has an OR structure, whoserord is restricted to some
partial orders, but not an AND/OR structure. For example, @BDD based on a DFS
ordering of a pseudo tree is a G-FBDD. Some other relatiosglepveen graphical model
compilation and OBDDs were studied in [25].

In summary, putting OBDDs within our terminology, an OBDD regentation of a

CNF formula is a strongly minimal OR search graph where rednhdodes are removed.

Relationship with Tree Driven Automata

Fargier and Vilarem|[46] proposed the compilation of CSPe tnée-driven automata,
which have many similarities to the work in |76]. In partiaylthe compiled tree-automata
proposed there is essentially the same as the AND/OR nmallied decision diagram.
Their main focus is the transition from linear automata tetautomata (similar to that
from OR to AND/OR), and the possible savings for tree-stnextuinetworks and hyper-

trees of constraints due to decomposition. Their compitesipproach is guided by a tree-
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decomposition while ours is guided by a variable-elimimatbased algorithms. And, it is
well known that Variable Elimination and cluster-tree depmsition are in principle, the

samel[[41].

Relationship with Disjoint Support Decomposition

The work on Disjoint Support Decompositions (DSD) [8] wasgwsed in the area of
design automation [15], as an enhancement for BDDs aimecpédigrg function decom-

position. The main common aspect of DSD and AOMDDI [76] is thath approaches
show how structure decomposition can be exploited in a BBB4lepresentation. DSD is
focused on Boolean functions and can exploit more refinedtstral information that is

inherent to Boolean functions. In contrast, AND/OR BDDs assomly the structure con-
veyed in the constraint graph, and are therefore more by@agilicable to any constraint
expression and also to graphical models in general. Thewalsimpler and higher level

exposition that yields graph-based bounds on the overdidithe generated AOMDD.

Relationship with Semi-Ring BDDs

In recent work[[101] OBDDs were extended to semi-ring BDDs. $émi-ring treatment
is restricted to the OR search spaces, but allows dynamigbtarordering. It is otherwise
very similar in aim and scope to our strongly minimal AND/ORyghs. When restrict-
ing the strongly minimal AND/OR graphs to OR graphs only, tilve are closely related,
except that we express BDDs using the Shenoy-Shafer axiatiati that is centered on
the two operation of combination and marginalization rathen on the semi-ring formu-
lation. Minimality in the formulation in[[101] is more geradrallowing merging nodes

having different values and therefore can capture symeasefdalled interchangeability).
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2.6 Conclusion to Chaptel 2

The primary contribution of this chapter is in viewing séafor graphical models in the
context of AND/OR search spaces rather than OR spaces. Véelutied the AND/OR
search tree, and showed that its size can be bounded exadiyelny the depth of its
pseudo tree over the graphical model. This implies expaalesavings for any linear
space algorithms traversing the AND/OR search tree. Speltyfi if the graphical model
has treewidthv*, the depth of the pseudo tree(gw* - logn).

The AND/OR search tree was extended into a graph by mergengiahl subtrees. We
showed that the size of the minimal AND/OR search graph i@e&ptial in the treewidth
while the size of the minimal OR search graph is exponentighe pathwidth. Since
for some graphs the difference between treewidth and pdthvis substantiald.g, bal-
anced pseudo trees) the AND/OR representation impliedanitia time and space savings
for memory intensive algorithms traversing the AND/OR draearching the AND/OR
searchgraph can be implemented by goods caching during search, whilgooo-record-
ing is interpreted as pruning portions of the search spatsp@ndent of it being a tree or a
graph, an OR or an AND/OR. For finding a single solution, prgrilre search space is the
most significant action. For counting and probabilistieneince, using AND/OR graphs

can be of much help even on top of no-good recording.
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Chapter 3

Mixed Networks

3.1 Introduction

Modeling real-life decision problems requires the speatian and reasoning with proba-
bilistic and deterministic information. The primary appoh developed in artificial intel-
ligence for representing and reasoning with partial infation under conditions of uncer-
tainty is Bayesian networks. They allow expressing inforamasuch as “if a person has
flu, he is likely to have fever.” Constraint networks and praiponal theories are the most
basic frameworks for representing and reasoning aboutrdetistic information. Con-
straints often express resource conflicts frequently appean scheduling and planning
applications, precedence relationships (e.qg., “job 1 rfalistw job 2”) and definitional in-
formation (e.g., “a block is clear iff there is no other blomk top of it”). Most often the
feasibility of an action is expressed using a deterministie between the pre-conditions
(constraints) and post-conditions that must hold beforkadter executing an action (e.g.,
STRIPS for classical planning).

The two communities of probabilistic networks and constraietworks matured in
parallel with only minor interaction. Nevertheless someha algorithms and reasoning

principles that emerged within both frameworks, especihlbse that are graph-based, are
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quite related. Both frameworks can be viewed as graphicakispd popular paradigm for
knowledge representation in general.

Researchers within the logic-based and constraint comiasrtiave recognized for
some time the need for augmenting deterministic languagi@suncertainty information,
leading to a variety of concepts and approaches such as paptamic reasoning, proba-
bilistic constraint networks and fuzzy constraint netvgrkhe belief networks community
started only recently to look into the mixed representaf@h)84, 62| 35] perhaps because
it is possible, in principle, to capture constraint infotraa within belief networks/[86].

In principle, constraints can be embedded within beliefwogks by modeling each
constraint as a Conditional Probability Table (CPT). One ea@h is to add a new variable
for each constraint that is perceived asattect(child node) in the corresponding causal
relationship and then to clamp its valuettae [86,21]. While this approach is semanti-
cally coherent and complies with the acyclic graph resticof belief networks, it adds a
substantial number of new variables, thus cluttering tloblgm’s structure. An alternative
approach is to designate one of the arguments of the camsérsia child node (hamely,
as its effect). This approach, although natural for fumi¢the arguments are the causes
or parents and the function variable is the child node), iseqontrived for general re-
lations (e.g..x + 6 # y). Such constraints may lead to cycles, which are disalloiwed
belief networks. Furthermore, if a variable is a child nofleam different CPTs (one may
be deterministic and one probabilistic) the belief netwaefinition requires that they be

combined into a single CPT.

3.1.1 Contributions

The main shortcoming of any of the above integrations is agatpnal. Constraints have
special properties that render them attractive computaliyy. When constraints are dis-
guised as probabilistic relationships, their computaticrenefits may be hard to exploit. In

particular, the power of constraint inference and constiaiopagation may not be brought
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to bear.

Therefore, we propose a simple framework that combinesmétistic and probabilis-
tic networks, called anixed network In the mixed network framework identity of the
respective relationships, as constraints or probals|itill be maintained explicitly, so
that their respective computational power and semantieréices can be vivid and easy
to exploit. The mixed network approach allows two distirepresentations: causal rela-
tionships that are directional and normally (but not neaelyg quantified by CPTs and
symmetrical deterministic constraints. The proposed e’'®value is in providing: (1)
semantic coherence; (2) user-interface convenience giecan relate better to these two
pieces of information if they are distinct); and most impotty, (3) computational effi-
ciency.

The research presented in this chapter is based in part pAd4338].

3.2 Mixing Probabilities with Constraints

This section introduces the mixed network concept and dsEsisome of its properties.

3.2.1 Defining the Mixed Network

We next define the central conceptroixed networks

DEFINITION 3.2.1 (mixed networks) Given a belief networks = (X,D,P) that ex-
presses the joint probability’s; and given a constraint networR = (X, D, C) that
expresses a set of solutiopsa mixed network based of and R denotedM ) =
(X, D, P, C) is created from the respective components of the constnaimtork and the
belief network as follows. The variabl&and their domains are shared, (we could allow

non-common variables and take the union), and the relakigssinclude the CPTs i
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and the constraints i©. The mixed network expresses the conditional proballify X):

PB(£|j€p>7 Zf TEp
Pu(z) =
0, otherwise.

Clearly, Ps(Z|Z € p) = palls.

The auxiliary network. We now define the belief network that expresses constrasts

pure CPTs.

DEFINITION 3.2.2 (auxiliary network) Given a mixed network1 ;s ) we define the aux-
iliary networkS 5 z) to be a belief network that has new auxiliary variables asofol. For

every constrainC; = (5;, R;) in R, we add the auxiliary variablel; that has a domain of
2 values, “0” and “1”. There is a CPT overd; whose parent variables ar€;, defined as

follows:

1, if teR;

P(A; = 1ts,) =

0, otherwise.

Sir) is a belief network that expresses a probability distrinitPs. It is easy to see

that

Proposition 13 Given a mixed network/ 5 z) and an associated auxiliary netwotk =

S(B,’R) then:PM<.T> = Ps<f’A1 = 1, ...,At = 1)

3.2.2 Queries over Mixed Networks

Belief updating, MPE and MAP queries can be extended to miadarks straight-
forwardly. They are well defined relative to the mixed prabb Py,. SincePy, is not
well defined for inconsistent constraint networks we alwagsume that the constraint net-

work portion is consistent. An additional relevant quergioa mixed network is to find

81



the probability of a consistent tuple relative8o namely determinind®s(z € p(R)) Itis
calledCNF or Constraint Probability Evaluation (CPENote that the notion of evidence
is a special type of constraint. We will ellaborate on thigtne

The problem of evaluating the probability of CNF queries dwaref networks has var-
ious applications. One application is to network reliapiliescribed as follows. Given
a communication graph with a source and a destination, aglesge diagnose failure of
communication. Since several paths may be available, tsorefor failure can be de-
scribed by a CNF formula. Failure means that for all pathsj(cations) there is a link on
that path (disjunction) that fails. Given a probabilistiit model of the network, the task

is to assess the probability of a failure [88].

DEFINITION 3.2.3 (CPE) Given a mixed network/ s ), where the belief network is de-
fined over variableX = {X3, ..., X,,} and where the constraint portion is a either a set
of relational constraints or a CNF query = ) over a set of subset3 = {Q1,...Q,},
where() C X, theconstraint (respective \CNF) Probability Evaluation (CPE) taskthe
task to find the probability’s(z € p(R)), respectivelyPs(z € m(y)) wherem(yp) are the

models (solutions ap).

Belief assessment conditioned on a constraint network or a GigFessions the task
of assessing’(X|¢) for every variableX. SinceP(X|p) = aP(X A ¢) wherea is a
normalizing constant relative t&, computingP (X |¢) reduces to a CPE task for the query
(X = z) A p). More generally,P(¢[y) can be derived fronP(p|y) = a, - P A )

whereq, is a normalization constant relative to all the modelg of

3.2.3 Examples

Java bugs Consider the classical naive-Bayes model or, more genetailylayer net-
work. Often the root nodes in the first layer are desired to brially exclusive, a property

that can be enforced kall-different constraints. For example, consider a bug diagnostics
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Figure 3.1: Two layer networks with root not-equal consttai{Java Bugs)
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system for a software application such as Java Virtual Methat contains numerous bug
descriptions. When the user performs a search for the relbugrreports, the system out-
puts a list of bugs, in decreasing likelihood of it being tihelgpem’s culprit. We can model
the relationship between each bug identity and the key witvatsare likely to trigger this
bug as a parent child relationship of a two layer belief nekwahere the bug identities are
root nodes and all the key words that may appear in each bugipkssn are child nodes.
Each bug has a directed edge to each relevant keyword (SaeeBdl). In practice, a
problem is caused by only one bug and thus, the bugs on thardéishutually exclusive.
We may want to express this fact using a not-equal relatipristtween all (or some of)
the root nodes. We could have taken care of this by puttindpalbugs in one node. How-
ever, this will cause a huge inconvenience, having to esgresconditional probability of
each key word given each bug, even when it is not relevanta Bag database contains
thousands of bugs. Itis hardly sensible to define a conditiprobability table of that size.
So, in the mixed network framework we can simply add one goiaéconstraint over all

the root variables.

Class scheduling Another source of examples is when reasoning about an adestiav-
ior. Consider a student’s class scheduling activitiy. Avate knowledge base can be built

either from the student’s point of view, the administratieew or from the faculty point of
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view. Perhaps, the same knowledge-base can serve thesplewgdasoning perspectives.
The administration (e.g, the chair) tries to schedule thssds so as to meet the various
requirements of the students (alow enough classes in eacteqior each concentration)
while faculty may want to teach their classes in a particglaarter to maximize (or min-
imize) students attendance or to better distribute theeaech vs teaching time throuout
the academic year.

In Figure[3.2 we demonstrate a scenario with 3 classes anati2rds. The variables
areT'(S;, C;) meaning “student; takes cours€’;”, P(.S;, C;) denoting the performance
(grade) of studens; in courseC;. pastf(S;, C;) is the past performance of studet
in C; (if the class was taken). The variabile.ch(C;) denotes the professor who teaches
C; in the current quarter, angpe(S;) stands for a collection of variables denoting student
S;’s characteristics (his strengths, goals and inclinatiting in the program etc.). If we
have a restriction on the number of students that can takasa,clve can impose a unary
constraints {V(C;) < 10). For each student and for ea€l{s;, C;) we have a CPT from
the parents nod&(S;, C;), teaches(C;) andtype(S;). We then have constraints between
various classes such@$s, C;) and7'(.S, C5) indicating that both cannot be taken together
due to scheduling conflicts. We can also have all-differemtstraints between pairs of
teachC; since the same teacher may not teaches two classes evesdfdlasses are not
conflicting. (For clarity we do not express this constraint&igure[3.2.) Finally, since a
student may need to take at least 2 and at most 3 classes, \Wweea variableV(S;) that
is the number function of the classes taken by the student, i a prerequisite ta'; we

can have a constraint betwe®qS, C) andpast — P(S, Cy).

3.2.4 Processing Networks with Determinism

Often belief networks have a hybrid probabilistic and deiarstic relationships. Such net-
works appear in medical applications in coding netwark$ §f@l in networks having CPTs

that arecausally independerjb3]. Recent work in dynamic decision networks reveals the
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Figure 3.2: Mixed network for student’s class taking

need to express large portion of the knowledge using detgstiu constraints. We argue
that treating such information in a special manner, usingstraint processing methods is
likely to yield significant computational benefit.

Belief assessment in belief networks having determinismstedes to a CPE task over
a mixed network. The idea is to collect together all the awrieistic information appearing
in the functions off” and to extract the deterministic information in the mixed GPand
then transform it all to one CNF or a constraint expressiotwtiibbe treated as a constraint
network part relative to the original belief network. Eacttrg in a mixed CPTP(X;|pa;),
having P(x;|z,.;) = 1, (z is a tuple of variables in the family of;) can be translated to a
constraint (not allowing tuples with zero probability) ordlauses:,,, — z;, and all such
entries constitute a conjunction of clauses.

Let B =< C,P,F > be a belief network having determinism. Given evideace
assessing the posterior probability of a single variablgiven evidence is to compute
P(Xle) = aP(X Ae). Letcl(P) be the clauses extracted from the mixed CPTs. The
network’s deterministic portion id(F") A cl(P), and because this conjunction is redundant
relative to the given network, namely sinf¢cl(F') A cl(P) = 1 we can write:

P((X =x)Ne) = P((X = x)ANeNcl(F)Ncl(P)) Therefore, to evaluate the belief &f =
x we can evaluate the probability of the CNF formyla= (X = z) Ae A cl(F) A cl(P))

over the original belief network.

85



3.2.5 Mixed Graphs as I-Maps

In this section we define thmixed graphof a mixed network and an accompanying sepa-
ration criterion, extending d-separation. We show that @echigraph is a minimal I-map
(independency map) of a mixed network relative to an extémdgion of separation, called

dm-separation

DEFINITION 3.2.4 (mixed graph) Given a mixed network/ s z), the mixed grapld-,; =
(G, D) is defined as follows. Its nodes correspond to the variablpsagng either ins3 or
in R, and the arcs are the union of the undirected arcs in the caimgtgraph D of R, and
the directed arcs in the belief netwol G. The moral mixed graph is the moral graph of

the belief network union the constraint graph.

The notion of d-speration in belief networks is known to captconditional indepen-
dence[[86]. Namely any d-separation in the directed graptresponds to a conditional
independence in the corresponding probability distrdyutiLikewise, an undirected graph
representation of probabilistic networks (i.e., Markowyarks) allows reading valid con-
ditional independence based on undirected graph separatio

In this section we define dm-separatiorof mixed graphs and show that it provides a

criterion for establishing minimal I-mapness for mixedvertks.

DEFINITION 3.2.5 (ancestral mixed graph)Given a mixed graplG,, = (G, D) of a
mixed networkM z z) whereG' is the directed acyclic graph a8, and D is the undi-
rected constraint graph oR, the ancestral graph ok in G}, is the graphD union the

ancestral graph ofX in G.

DEFINITION 3.2.6 (dm-separation) Given a mixed graplhtr,, and given three subsets of
variables X, Y and Z which are disjoint, we say thaX andY are dm-separated given
Z in the mixed graphG,,, denoted< X, Z)Y >,,, iff in the ancestral mixed graph of

X UY U Z, all the paths betweeX andY are intercepted by variables iA.
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Figure 3.3: DM-separation

The following Theorem follows straightforwardly from th@rcespondance between

mixed networks and auxiliary networks.

THEOREM3.2.1 (I-map) Given a mixed network! = Mz ) and its mixed graplt,,
thenG,, is a minimal I-map relative to dm-separation. Namely<ifX, Z, Y >, then

Py (XY, Z) = Py(X|Z) and no arc can be removed while maintaining this property.

Proof. Assuming< X,Z,Y >, we should provePy,(X|Y, Z) = Py (X|Z). Namely,
we should prove thaPs(X Y, Z, A = 1) = Py(X|Z,A = 1), whenS = S x), and
A = 1is an abbreviation to assigning all auxiliary variablesSithe value 1 (Proposition
[13). SinceS = Sz r) is a regular belief network we can use the ancestral grapdriom
to determine d-separation. It is easy to see that the aatgsaiph of the directed graph of
S givenX UY U Z U A when moralized is identical to the corresponding ancestratd
graph (if we ignore the edges going into the evidence vagah), and thus dm-separation
translates to d-separation and provides a charactenizatismapness of mixed networks.
The minimality of mixed graphs as I-maps follows from the mmality of belief networks

relative to d-separation applied to the auxiliary networkd

Example 3.2.2 Figure [3.3a shows a regular belief network in whigh and Y are d-
separated given the empty set. If we add a constrRifng betweenP and ), we obtain
the mixed network in Figuife 3.3b. According to dm-separafiois no longer independent
of Y, because of the pat PQY in the ancestral graph. Figuiie_3.3c shows the auxialiary
network, with variabled assigned to 1 corresponding to the constraint betwBeand ().

D-separation also dictates a dependency betwEeandY .
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We will next see the first virtue of “mixed” vs “auxiliary” nerks. It is now clear
that the concept of constraint propagation has a clear mgamithin the mixed network
framework. That is, we can allow the constraint network t@tEcessed by any constraint

propagation algorithm to yield another, equivalent, wefiided, mixed network.

DEFINITION 3.2.7 (equivalent mixed networks)Two mixed networks defined on the
same set of variableX = {X;,...,, X,,} and the same domaind),, ..., D,,, denoted
M, = Mg, =,y and M, = M, r,), are equivalent iff they are equivalent as probabil-

ity distributions, namely iff?,;, = P,.

Proposition 14 If R, and R, are equivalent constraint networks (have the same set of

solutions), thenV/ 5 %, is equivalent taV/(z z,).

The above proposition shows one advantage of looking atdmedworks rather than
at auxiliary networks. Due to the explicit representatibd@terministic relationships, no-
tions such as inference and constraint propagation areatigtdefined and are exploitable

in mixed network.

3.3 Inference Algorithms for Processing Mixed Networks

There are two primary approaches for processing mixed mksvoOne is the variable
elimination approach which was presented_in [35] and therathsearch, also callexbn-

ditioning. Search is based on enumerating the solutions of the cortdtvemula, and then
assessing the belief of each solution. We will focus on the @BE of computing?(¢|e)

wherey is the constraint or CNF formula. A number of related taskslzarasily derived
by changing the appropriate operator (e.g. using maximizdbr maximum probable ex-
planation - MPE, or summation and maximization for maximupoateriori hypothesis -

MAP).
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3.3.1 A Bucket Elimination Method

In this section we will first derive a bucket elimination afgbom when the deterministic
component is a CNF formula and then show how it generalizestoc@nstraint expression.
Given a mixed network/z .y, wherey is a CNF formula defined on a subset of vari-

ables@, theC' PFE task is to compute:

Plp)= )  Pliq):

ZgEemodels(p)

Using the belief-network product form we get:

Pp) = > 11 P@ilap,)

{Z|zgemodels(p)} i=1

We assume thak’, is one of the CNF variables, and we separate the summation’gyer
andX \ {X,}. We denote by, the set of all clauses that are definedXdpand by, all
the rest of the clauses. The scope/pis denotedy,,, S,, = X\ @Q,, andU,, is the set of all

variables in the scopes of CPTs and clauses that are definedgvéVe get:
P(p) = > > 1 Ptailapa,)
{Zn_1|Zs,, €models(Bn)} {zn|Zq, €models(yn)} i=1

Denoting byt,, the set of indices of functions in the product tdatnotmention.X,, and by

I, ={1,...,n}\ t, we get:
Po= > e > 18
{Zn-1|Ts,, €models(Bn)} J€in {zn|Zq, €models(yn)} JEIn

Therefore:

P(p) = > (11 7) - »*

{Zn-1|Zs, €Emodels(Bn)} J€tn
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where\X» is defined ovet/,, — {X,,}, by

Ve 3 117 (3.)

{znl|Zq,, €models(yn)} j€In

Case of observed variables When X,, is observed, or constrained by a literal, the
summation operation reduces to assigning the observed alaach of its CPTand to
each of the relevant clauses. In this case Equatioh (3.Dnbes (assume&,, = z,, and

P_, is the function instantiated by assigningto X,,):

X =T[ P, if T, € m(y A (X, = 2,)) (3.2)
jeln
Otherwise \*" = 0. Sincez, satisfiesy, A (X,, = z,,) only if Zo, _x, satisfiesy™ =

resolve(vyn, (X, = z,)), we get:

AT = H Pi_,. if 2g,-x, € m(y") (3.3)

J€ln

Therefore, we can extend the case of observed variable itueahevay: CPTs are assigned
the observed value as usual while clauses are individuaiglved with the unit clause
(X, = x,), and both are moved to appropriate lower buckets.

Therefore, in the bucket of,, we should computa*~. We need to place all CPTs and
clauses mentioning’,, and then compute the function in Equatién [3.1). The contjmurta
of the rest of the expression proceeds WAih ; in the same manner. This yields algorithm
Elim-CPE described in Figurds 3.4 abd B.5. The elimination openatialenoted by the
general operator symbad that instantiates to summation for the current query. Thus,
for every ordering of the propositions, once all the CPTs dadses are partitioned (each
clause and CPT is placed in the bucket of the latest variablleein scope), we process
the buckets from last to first, in each applying the followomeration. Let\;,...\; be the

probabilistic functions in bucke over scopes,, ..., S; anday, ...a, be the clauses over
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Algorithm Elim-CPE Process-buckej(®, (A1, ..., Aj), (a1, ..., ar))

Input: A belief networkBN = {P;,..., P, }; A o If bucket, containsX, = xzp,

cnf formula onk propositionsy = {aq,...cm } 1. AssignX, = z, to each); and put each
defined overk propositions, an ordering of the|| resulting function into its appropriate earlief
variablesd bucket.

Output: The beliefP(yp). 2. Resolve each; with the unit clause, put

1. Initialize: Place buckets with unit clauses lagt non-tautology resolvents in lower buckets
in the ordering (to be processed first). Partition and move any bucket with unit clause to

=

the BN andy into bucket, . .., bucket,,, where top of processing.
bucket; contains all matrices and clauses whose
highest variable isY;. Put each observed vari-{| e Else,generate\”:

able into its appropriate bucket. L6t, ..., S; be _
the scopes of CPTs, ang, ...Q, be the scopes N J N
of clauses. (We denote probabilistic functions as = Ofa,y |0, €models(ai,....ar)} H i
As and clauses hys). =1

2. Backward: Process from last to first. Add A? to the bucket of the largest-index
Let p be the current bucket. variable in, — U7, i Uj_; Q: — {X,}.
ForAy, ..., Aj, aq, ..., o, in bucket,, do

e Process-buckef(> ", (A1, ..., Aj), (a1, ..., o))

3. Return P(y) as the results of the elimination
function in the first bucket.

Figure 3.4: AlgorithmElim-CPE Figure 3.5: Process-bucket procedure

scopedyy, ..., Q,. The algorithm computes a new functiafi overU, = SUQ — {X,}

whereS = U;S;, and@ = U,Q;, defined by:

AP = > IR

{zp|zgemodels(ay,...,ar)} J

Example 3.3.1 Consider the belief network in Figure 8.9, which is similar te thne in
Figure[1.2, and the query = (BV C) A (G vV D) A (=D Vv =B). The initial partitioning
into buckets along the ordering = A,C, B, D, F, G, as well as the output buckets are
given in Figurd_3.6. We compute:

InbucketG:  A“(f,d) = 3 (g1pvaziruey P(91f)

InbucketF:  AT(b,c,d) =37, P(f|b,c)A“(f,d)

Pla,b,c) = Z{dhdvﬁb:true} P(d|a,b)A" (b,c,d)

In bucketB:  A\P(a,c) = > (blpvetrue} P(bla)AP(a, b, c)\F(b,c)

InbucketC:  \°(a) =Y, P(cla)\B(a,c)

In bucketD:

>
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Bucket G: P(G|F,D) (GLD) Bucket G: P(G|F,.D) (GLD) -G

P

Bucket F: P(F|B,C) /\G(F&A Bucket D: P(D|A,B) (-~ D=B), A°(F,D) D\
Bucket D: P(D|m:}'(s,c,o) Bucket B: P(B|A),P(F|B,C), (BEC) B

2B(F.C) ]

Bucket B: P(BJA)  (BCC) “A°(AB,C) Bucket C P(C|A)
Bucket C: P(C}AB}AE)/ Bucket F:\ A°(F)
Bucket A: P(A)\/\C(lA) Bucket A: A3(A)  AS(A) A°(A) *A
P(Y) P@)
(@) (b)
Figure 3.6: Execution of elim-CPE Figure 3.7: Execution of elim-bel-cnf

Figure 3.8: The induced augmented graph

In bucketd: A =37 P(a)\%(a)
P(p) = M

For example\®(f,d = 0) = P(g = 1|f), because ifl = 0 g must get the value “1”,

while \6(f,d = 1) = P(g = 0|f) + P(g = 1|f). In summary,

THEOREM3.3.2 (Correctness and Completeness)lgorithm Elim-CPE is sound and

complete for the CPE task.

Notice that algorithm Elim-CPE also includes a unit resoluttep whenever possible
(in step 2) and a dynamic reordering of the buckets that py@fecessing buckets that
include unit clauses. This may have a significant impact dicieficy because treating

observations (namely unit clauses) specially can avoidtitrg new dependencies. In fact,
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(a) Directed acyclic graph (b) Moral graph

Figure 3.9: Belief network

there exists a spectrum of feasible bounded inferencesandbe applied to the clauses in

the buckets and can enhance efficiency considerably.

Example 3.3.3 Let’'s now extend the example by adding to the query. This will place
=G in the bucket of7. When processing buck@t unit resolution creates the unit claugg
which is then placed in buckél. Next, processing bucketcreates a probabilistic function
on the two variableg3 and C'. Processing buckeb that now contains a unit clause will
assign the valué) to the CPT in that bucket and apply unit resolution, generatine
unit clause—B that is placed in buckeB. Subsequently, in bucké&t we can apply unit
resolution again, generating' placed in bucket’, and so on. In other words, aside from
bucketF', we were able to process all buckets as observed buckets, pggatng the
observations. (See Figure 8.7.) To incorporate dynamicéde ordering, after processing
bucketG, we move buckeb to the top of the processing list (since it has a unit clause).
Then, following its processing, we process budkeind then buckef’, thenF’, and finally
A.

Since unit resolution increases the number of buckets bawmt clauses, and since
those are processed in linear time, it can improve perfoo@anbstantially. Such buckets
can be identified a priori by applying unit resolution on theFfirmula or arc-consistency

on the constraint expression.
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Algorithm Elim-ConsPE

Input: A belief network BN = {P,..., P,}; A constraint expression ovér variables,R =
{Rg,, ..., Ro, } an orderingl

Output: The beliefP(R).

1. Initialize: Place buckets with observed variables last in the ordetimdpé processed first).
Partition the BN and R into buckety, ..., bucket,,, wherebucket; contains all matrices and
constraints whose highest variableXs. Let Sy, ...,.S; be the scopes of CPTs, agll, ...Q: the
scopes of constraints.

We denote probabilistic functions as and constraints bigs.

2. Backward: Process from last to first. Letbe the current bucket. For, o, ..., Aj, R1, .., R,
in bucket,, do:
PROCESSBUCKET-REL,(D ., (A1, ..., Aj), (R1, ..., Ry))
if bucket, containsX, = z,
i) Assign X, = z, to each)\; and put each resulting function into its appropriate bucke
i) Apply arc-consistency (or any constraint propagatiovgr the constraints in the bucket
Put results in lower buckets anBuckets with singleton domain go to top of processing.
else
Generate\” = 37, o o iy [T1o1 Ai-
Add )* to the bucket of the largest-index variablelip — |J_, S; U Q; — {X,}.
3. Return P(R) as the results of the elimination function in the first bucket

—

Figure 3.10: AlgorithnElim-ConsPE

3.3.2 Probability of Relational Constraints

When the variables in the belief network are multi-valuee, dieterministic query can be
expressed using relational operators and constraints.s&hef solutions of a constraint
network can be expressed using the join operator. The joitwofrelationsR 5 and
Rpc denotedR g X Rpc is the largest set of solutions ovdr B, C' satisfying the two
constraintsk 45 and Rpc. The set of solutions of the constraint form®a= { R, ...R;}
is sol(R) =Xt_; R;.

Given a belief network and a constraint form®awe may be interested in computing
P(z € sol(R)). A bucket-elimination algorithm for computing this taskasimple gen-
eralization of Elim-CPE, except that it uses the relatiornparators as expressed in Figure

3.10.
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3.3.3 Complexity

As usual, the complexity of bucket elimination algorithraselated to the number of vari-
ables appearing in each bucket, both in the scope of pratydihctions as well as in the
scopes of constraints. The worst-case complexity is tingdespace exponential in the size
of the maximal bucket, which is captured by the induced-wiftthe relevant graph. For
the task at hand, the relevant graph is the moral mixed graph.

Clearly, the complexity of Elim-CPE and Elim-Consp&ién - exp(w*)), wherew* is
the induced width of the moral mixed ordered graph.

In Figure[3.8 we see that while the induced width of the morapy is just 2 (Figure
[3.8a), the induced width of the mixed graph is 3 (Fiduré 3.8b)

To capture the simplification associated with observedades or unit clauses, we can
use the notion of amadjusted induced graphThe adjusted induced graph is created by
processing the variables from last to first in the given arderOnly parents of each non-
observed variable are connected. The adjusted inducedti widhe width of the adjusted
induced-graph. Figure_3.8c shows the adjusted inducguhgrlative to the evidence in
—G. We see that the induced width, adjusted for the observaisgast 2 (Figuré 318c).
Notice that adjusted induced-width can be obtained onbrafke obsereve those variables
that were instantiated as a result of our propagation dlguri

In summary,

THEOREM 3.3.4 ([35]) Given a mixed networkM, of a belief network over variables,
a constraint expression and an orderingalgorithm Elim-CPE is time and space(n -
exp(wiy(0))), wherew?, (o) is the width alongo of the adjusted moral mixed induced

graph.
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3.3.4 Elim-CPE with General Constraint Propagation

Constraint propagation can, in principle, improve Elim-CBA&riderring new unit clauses
beyond the power of unit-resolution. Furthermore, infércéauses correspond to infered
conditional probabilities that are either “0” or “1”.

One form of constraint propagation is bounded resoluti@j.[R applies pair-wise res-
olution to any two clauses in the CNF theory iff the resolvergginot exceed a bounding
parameter;. Bounded-resolution algorithms can be applied until quieseor in a direc-
tional manner, calle® D R(i). After partitioning the clauses into ordered buckets, géach
processed by resolution with bound

We extend Elim-CPE into a parameterized family of algorittatisn-CPE:) that in-
corporatesBDR(i) . The added operation iucket, is: (If the bucket does not have an
observed variable)

For each paif (aVQ;), (BV—Q;)} C bucket;. If the resolventy = «U 3 contains no more
thani propositions, place the resolvents in the bucket of itsésgimdex variable. Higher
levels of propagation may infer more unit-clauses and gegmergoods but require more
computation. Itis hard to assess in advance the right balahconstraint propagation. It
is known that the complexity aBD R(i) is O(exp(i)). Therefore, for small levels afthe
computation in non-unit buckets is likely to be dominatedgieyerating the probabilistic

function rather than by3 D R(i).

3.4 AND/OR Search Algorithms For Mixed Networks

Propositior. 14 ensures the equivalence of mixed networkisatkeby the same belief net-
work, and different constraint networks that have the sas@fssolutions. In particular,
this implies that we can process the deterministic inforomaseparately (e.g., by enforc-
ing some consistency level, which results in a tighter regméation), without losing any

solution. Conditioning algorithms (search) offer a nataaproach for exploiting the de-
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(A)
f,(AC)
/A
f5(ABE) @' G
£,(BCD) 'v

® ©®

€)) Graphical (b) Pseudo tree (c) Search tree
model

Figure 3.11: AND/OR search tree

(a) Pseudo tree (b) Context minimal graph

Figure 3.12: AND/OR search graph

terminism through constraint propagation techniques. ifitugtive idea is to search in the
space of partial variable assignments, and use the camtsttailimit the actual traversed
space.

We will use the following examples to describe the algorishm

Example 3.4.1 Figure[3.11 shows an example of an AND/OR search tree. FijgH&)
shows a graphical model defined by four functions, over binanable, and assuming all
tuples are consistent. When some tuples are inconsistang sf the paths in the tree do
not exists. Figuré 3.11(p) gives the pseudo tree that guttesearch, from top to bottom,
as indicated by the arrows. The dotted arcs are backarcs fleaptimal graph. Figure
shows the AND/OR search tree, with the alternatingddenfeOR (circle) and AND

(square) nodes, and having the structure indicated by tee¢hs tree.

Example 3.4.2 For Figure[3.12 we refer back to the model given in Figure 3aj1égain

assuming that all assignments are valid and that variabde thinary values. Figure
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P(A) P(B | A) P(C|A)

A[PA) A|B=0 [ B=1 Al C=0{ C=1
0] 6 0 4 .6 0] 2 .8
1 4 1 .1 9 1| 7 3
P(D | B,C) P(E| A,B)
B|C| D=0 [ D=1 A|B| E=0 | E=1
0]0] 2 .8 010 4 .6
0]1] .1 9 0|1] 5 5
1/0] 3 7 1(0] 7 3
1|1 .5 .5 1({1] 2 8
(a) Belif network (b) Pseudo tree (c) CPTs
.6 0 4
[o]
&) ®
4 .6 .1 .9
[o] [o]
® © ® © ® © ® ©
4 .6 2 .8 .5 .5 2 .8 .7 .3 1 .9 .2 .8 .1 .9
(0] (0] [o] [o] [0] [0] o] o]
® O © © ® © ® O
2 .8 .1 .9 .3 .7 .5 .5 2 8 .1 .9 3 .7 .5 .5
[0] [0] [o] [0] [0] 0] o] [o]

(d) Labeled AND/OR tree

Figure 3.13: Labeled AND/OR search tree for belief networks

shows the pseudo tree derived from ordetlirg (A, B, E, C, D), having the same
structure as the bucket tree for this ordering. The (OR) ewindf each node appears in
square brackets, and the dotted arcs are backarcs. Thextarita node is also identical to
the scope of the message sent from its bucket by Bucket &liamninFigure[3.12(8) shows

the context minimal AND/OR graph.

Example 3.4.3 Figure[3.13 shows a weighted AND/OR tree for a belief networkurgig

shows the primal graph, 3.13(b) is the pseudo treé[3ah3(c) shows the condi-
tional probability tables. Figuré 3.13(d) shows the weightddD/OR search tree. Natu-

rally, this tree could be transformed into the context mairAND/OR graph, similar to

the one in Figur¢ 3.12(b).
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Algorithm 2: AND-OR-CPE

input : A mixed networkM = (X, D, P, C); a pseudo tre@ of the moral mixed graph, rooted &t ; parentgpa;
(OR-context) for every variabl&’;; caching set totrue or false.
output  : The probabilityP(z € p(R)) that a tuple satisfies the constraint query.

1 if caching == true then /1 Initialize cache tables
2 L Initialize cache tables with entries of-1"
3 v(X1) < 0; 0PEN — {X} /1 Initialize the stack OPEN
4 while OPEN # ¢ do
5 n — top(OPEN); removen from OPEN
6 if caching == true andn is OR, labeledX; and Cache(asgn(my)[pa;]) # —1 then /1 1f in cache
7 v(n) « Cache(asgn(my)[pa;)]) /1l Retrieve val ue
8 successors(n) «— ¢ /1 No need to expand bel ow
9 else /| Expand search (forward)
10 if nis an OR node labeled’; then /1 OR-expand
11 successors(n) «— {(X;,z;) | (Xi,z;) is consistentwith 7w, } |// CONSTRAINT PROPAGATION
v((Xi, z;)) — 11 f(asgn(mn)[pa;]), forall (X;,x;) € successors(n)
12 L feBT(X;)
13 if nis an AND node labeledX;, z;) then /1 AND- expand
14 successors(n) < childrens (X;)
15 | v(X;) < Oforall X; € successors(n)
16 | Add successors(n) to top of OPEN
17 while successors(n) == ¢ do /'l Update values (backtrack)
18 if n is an OR node labeled’; then
19 if X; == X then /1 Search is conplete
20 | return v(n)
21 if caching == true then
22 L Cache(asgn(mn)[pa;]) < v(n) /1 Save in cache
23 v(p) — v(p) * v(c)
24 if v(p) == Othen /'l Check if p is dead-end
25 removesuccessors(p) from OPEN
26 successors(p) «— ¢
27 if nis an AND node labeledX;, z;) then
28 let p be the parent af
29 | olp) — v(p) + v(a);
30 removen from successors(p)
31 | n<p

3.4.1 AND/OR Search with Constraint Propagation

Algorithm[2, AND-OR-PE, presents the basic depth-first traversal of the AND/ORcéear
tree (or graph, if caching is used) for solving the CPE task @venixed network (the
algorithm is similar to the one presented|inl[38]). The alipon is given as input a mixed
network, a pseudo treg of the moral mixed graph and the context of each variable. The
output is the result of the CPE task, namely the probabiliy #random tuple satisfies the
constraint query. AND-ORzPEtraverses the AND/OR search tree or graph corresponding

to 7 in a DFS manner. Each node maintains a valuéhich accumulates the computation
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resulted from its subtree. OR nodes accumulate the summatithe product between
each child’s value and its OR-to-AND weight, while AND nodes@amulate the product
of their children’s values.

The context based caching is done based on tables. We ekemigi OR caching. For
each variableX;, a table is reserved in memory for each possible assignroetst parent
setpa; (context). Initially each entry has a predefined value, inaase “-1”. The fringe
of the search is maintained on a stack calledN. The current node is denoted hyits
parent byp, and the current path by,. The children of the current node are denoted by
successors(n).

The algorithm is based on two mutually recursive stdpspand searclfline [18) and
Update valuegline[31), which call each other (or themselves) until tharsk terminates.

Since we only use OR caching, before expanding an OR nodamgdtee table is checked
(line@). If the same context was encountered before, theevialretrieved from cache, and
successors(n) is set to the empty set, which will trigger thipdate valuestep.

If a node is not found in cache, it is expanded in the usual @egending on whether
it is an AND or OR node (linels 10-16). As long as the currentenischot a dead-end and
still has unevaluated successors, one of its successdraseit (which is also the top node
on OPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a na@deam empty set of
successors (note that as each successor is evaluatednitaged from the set of successors
in line[30). This means that all its children have been evatliaand its final value can now
be computed. If the current node is the root, then the searatinates with its value (line
[19). If itis an OR node, its value is saved in cache beforeggaping it up (liné_211). Ih
is OR, then its parent is AND andp updates its value by multiplication with the value of
n (line[23). If the newly updated value ¢fis O (line[24), therp is a dead-end, and none
of its other successors needs to be evaluated. An AND nqatepagates its value to its

parentp in a similar way, only by summation (liie 29). Finally, ther@nt noden is set
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P(D=1,E=0) = 24408 ()

(a) Mixed graph (b) Pseudo tree (c) AND/OR search tree

Figure 3.15: Mixed network; query = (A V —=B)(D VvV =C)

to its parent (line[31), becausa was completely evaluated. The search continues either

with a propagation step (if conditions are met) or with anasgion step.

Example 3.4.4 We refer again to the example in Figure 3.13. Considering astraimt
network that imposes thad = 1 and £ = 0 (this can also be evidence in the belief
network), the trace of th& ND-OR-CPE algorithm without caching is given in Figure
[3.14. To make the computation straightforward, the consiséaf AND nodes are given a
value of 1 (shown under the square node). The final value of eadd is shown to its left,
while the OR-to-AND weights are shown close to the arcs. The daigru of the final

value is detailed for one OR node and one AND node.

Example 3.4.5 Figure[3.15(d) shows a mixed binary network (the constraimt igagiven
by the CNF formulap). Figure[3.15(d) describes an AND/OR search tree based oD&
tree given in Figuré 3.15(b). AlgorithtAND-OR-cPE starts from node A, and assigns
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g(A) = 0, theng({(A,0)) = P(A = 0). It continues assigning(C') = 0, and then
g({C,0)) = 1. B is not assigned yet, sB(C|A, B) will participate in the label of a
descendant node (the set A of step (3) of the algorithm isygmfite node D can take both
values (0 is not violated), so by backing up the values of its descesdé¢h) becomes 1
(9(D) =>_, P(D|C =0) = 1). Going on the branch of By(B) = 0, then B can only be
extended to O (to satisfyf V —B), and the label becomeg(B,0)) = P(B =0) - P(C =
0]JA = 0,B = 0). In general, a CPT participates in OR-to-AND weights at the b&ih

level (closer to the root) of the tree where all the variable#$ scope are assigned.

The following are implied immediately from the general pedpes of AND/OR search

trees,
THEOREM 3.4.6 Algorithm AND-OR-cPEis sound and exact for the CPE task.

THEOREM3.4.7 Given a mixed networR/ with n variables with domain sizes bounded
by k and a legal tre€l” of depthm of its moral mixed graph, the time complexity AND-
OR-CPEiIsO(n - k™).

Proposition 15 A mixed network having induced widiti has an AND/OR search tree

whose size i®(exp(w* - logn)).

Constraint Propagation in AND-OR-CPE

Proposition_I¥ provides an important justification for gsmixed networks as opposed
to auxiliary networks. The constraint portion can be preedsby a wide range of con-
straint processing techniques, both statically before ADB search or dynamically dur-
ing AND/OR search. The algorithms can combine consistenéyreing (e.g., arc-, path-,
i-consistency) before or during search, directional cstesicy, look-ahead techniques, no-
good learning etc.

The key to using constraint propagation is the boxed[lidenlAlgorithm[2. Search

only expands when the assignment of the last variable isstens with the current path.

102



Table 3.1: AND/OR space vs. OR space

[N=25, K=2, R=2, P=2, C=10, S=3, t=70%, 20 instances, w*=3.4}=

Time Nodes | Dead-ends Full space
AO-C 0.15] 44,895 9,095 152,854
OR-C 11.81 3,147,577 266,215 67,108,862

Here we have the freedom to employ any procedure for cheatongistency, based on
the constraints of the mixed network. The simplest case enwio constrain propagation
is used, and only the initial constraints are checked foisbancy, and we denote this
algorithm by AO-C.

In the experimental evaluation, we used two forms of condtr@ropagation besides
AO-C. The first, yielding algorithm AO-FC, is based torward checkingwhich is one
of the weakest forms of propagation. It propagates the teffea value selection to each
future uninstantiated variable separately, and checksistmcy against the constraints
whose scope would become fully instantiated by just one futcine variable.

The second algorithm we used is called AO-RFC, and performsiantaf relational
forward checking Rather than checking only constraints whose scope becargasé-
signed, AO-RFC checks all the existing constraints by logkah their projection on the
current path. If the projection is empty an inconsistenayeitected. AO-RFC is computa-
tionally more expensive than AO-FC, but its search space &lem

Figure[3.16 shows the search spaces of AO-C and AO-FC.

Example 3.4.8 Figure[3.16(a)) shows the belief part of a mixed network, and€i@.16(b)
the constraint part. All variables have the same domdih2,3,4, and the constraints
express “less than” relations. Figure 3.16]c) shows the shapace ofAO-C. Figure
[3.16(d) shows the space traversed by AO-FC. Figure 3.JL6(eystite space when consis-

tency is enforced with Maintaining Arc Consistency.
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(a) Belief network (b) Constraint network

(e) Maintaining arc consistency

Figure 3.16: Example of AND-ORPEand AO-FC search spaces

3.4.2 Experimental Evaluation

We ran our algorithms on mixed networks generated randomfgumly given a number of
input parameters - number of variablesk” - number of values per variabl&; - number
of root nodes for the belief network?? - number of parents for a CPT - number of
constraintsS - the scope size of the constraints;the tightness (percentage of the allowed
tuples per constraint). (N,K,R,P) defines the belief netwamid (N,K,C,S,t) defines the
constraint network. We report the time in seconds, numbapdés expanded and number
of dead-ends encountered (in thousands), and the numbensistent tuples of the mixed
network ¢sol). In tablesw* is the induced width andl is the height of the legal tree.

We compared four algorithms: 1) AND-ORPE, denoted here AO-C; 2) AO-FC and
3) AO-RFC (described in previous section); 4) BE - bucket edeion (which is equivalent

to join tree clustering) on the auxiliary network; the verswe used is the basic one for
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Table 3.2: AND/OR Search Algorithms (1)

N=40, K=2, R=2, P=2, C=10, S=4, 20 instances, w*=12, h=19 ]

t] i Time Nodes (*1000) ||Dead-ends (*100Q) #sol
AO- AO- AO-

C RC | RFC|| C | FC |RFC|| C | FC |RFC
20| Of| 0.671 0.056| 0.022| 153 4 1 95 3 1||2E+05|

3|| 0.619 0.053 0.019| 101 3 1 95 3 1

6|| 0.479 0.055 0.022| 75 3 1 57 3 1

9|| 0.297| 0.053 0.019| 52 3 1 10 3 1

12|| 0.103 0.044{ 0.016| 17 2 1 3 2 0
40| O|| 2.877| 0.791] 1.094| 775 168 158| 240 40| 36(/8E+07

3|| 2.426| 0.663 0.894| 330 57| 52| 240, 40| 36

6|| 1.409 0.445 0.544/| 183 35 32| 107 28| 24

9|| 0.739 0.301] 0.338| 119 24| 21 20| 12| 10

12|| 0.189 0.142) 0.149| 28 9 7 3 4 3
60| O|| 6.827| 4.717| 7.427|1,9751,1591,148| 362| 163| 159||6E+09

3|| 5.560 3.908 6.018| 673| 351 346| 362 163 159

6|| 2.809 2.219 3.149| 347| 184| 180|| 151 89| 86

9|| 1.334 1.196 1.535| 204| 106| 102|| 19| 25| 23

12|| 0.255 0.331] 0.425| 36| 23] 22 3 5 5
80| 0/14.181§14.19921.791|4,283 3,704/3,703| 370| 278| 277||1E+11

3|{11.33411.797/17.916|1,320 1,109 1,107|| 370 278 277

6|| 5.305 6.286 9.061| 626 519 518|| 128 98| 97

9|| 2.204 2.890 3.725| 336 274| 273|| 17| 21| 20

12|| 0.318 0.543| 0.714/| 44| 40| 40 1 3 3
100| 0((23.59527.12941.744|7,4517,451/ 7,451 0 0 0|[1E+12

3/|19.05022.84234.800|2,161/2,161/ 2,161 0 0 0

6|| 8.32511.52816.636| 957| 957| 957 0 0 0

9|| 3.153 4.863 6.255| 484| 484| 484 0 0 0

12|| 0.366 0.681 0.884| 51| 51| 51 0 0 0

belief networks, without any constraint propagation anyg eonstraint testing. For the
search algorithms we tried different levels of caching,aded in the tables by (i-bound,
this is the maximum scope size of the tables that are stofed)) stands for linear space
search. Caching is implemented based on context as desariBedtior 3.4.

Table[3.1 gives a brief account for our choice of using AND/§fRace instead of the
traditional OR space. Given the same ordering, an algoritrahonly checks constraints
(without constraint propagation) always expands less siodthe AND/OR space.

Tabled 3.2, 33, arild 3.4 show a comparison of the linear spateaching algorithms
exploring the AND/OR space. We ran a large number of casethésis a typical sample.

Table[3.2 shows a medium sized mixed network, across thedingle of tightness for
the constraint network. For linear spa¢e< 0), we see that more constraint propagation
helps for tighter networkst (= 20), AO-RFC being faster than AO-FC. As the constraint

network becomes loose, the effort of AO-RFC does not pay offreore. When almost all
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Table 3.3: AND/OR Search Algorithms (2)

tf i Time Nodes (*1000) | Dead-ends (*100Q¥sol
AO-FCJ[AO-RFC|AO-FC]AO-RFC[AO-FC[ AO-RFC|
N=100, K=2, R=10, P=2, C=30, S=3, 20 instances, w*=28, h=38
10{ 0| 1.743 1.743 15 15 15 15| 0
10| 1.748 1.746 15 15 15 15
20| 1.773 1.784 15 15 15 15
20| 0| 3.193 3.201 28 28 28 28 O
10| 3.195 3.200 28 28 28 28
20| 3.276 3.273 28 28 28 28
30| O] 69.585 62.911 805 659 805 659 0
10| 69.803 62.90§ 805 659 805 659
20| 69.275 63.055 805 659 687 659
N=100, K=2, R=5, P=3, C=40, S=3, 20 instances, w*=41, h=51
10{ 0| 1.251] 0.382 7 2 7 2l 0
10| 1.249] 0.379 7 2 7 2
20| 1.265 0.386 7 2 7 2
20| O] 22.992 15.955 164 113 163 111 O
10| 22.994 15.97§ 162 110] 162 111
20| 22.999 16.047 162 110 162 110
30| 0]253.289 43.255 2093 351 2046 304 O
10|254.25Q0 42.858 2026 283 2032 289
20|253.439 43.228 2020 278 2026 283

tuples become consistent, any form of constraint propagasi not cost effective, AO-C
being the best choice in such cases=( 80, 100). For each type of algorithm, caching
improves the performance. We can see the general trend lgyvéire bolded figures.

Table[3.8 shows results for large mixed networks & 28,41). These problems have
an inconsistent constraint portion= 10, 20, 30). AO-C was much slower in this case, so
we only include results for AO-FC and AO-RFC. For the smalldwoek (w* = 28), AO-
RFC is only slightly better than AO-FC. For the larger on€ & 41), we see that more
propagation helps. Caching doesn’'t improve either of therélgns here. This means
that for these inconsistent problems, constraint propagas able to detect many of the
no-goods easily, so the overhead of caching cancels ougrisfits (only no-goods can be
cached for inconsistent problems). Note that these prabkm infeasible for BE due to
high induced width.

Table[3.4 shows a comparison between search algorithms anéIBistances for
t < 40 were inconsistent and the AO algorithms were much faster Bfa, even with

linear space. Between= 40 — 60 we see that BE becomes more efficient than AO, and
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Table 3.4: AND/OR Search vs. Bucket Elimination

t i Time Nodes (*1000) | Dead-ends (*100Q) #sol
BE[AO-FC[AO-RFC AO-FC[AO-RFC AO-FC[ AO-RFC
N=70, K=2, R=5, P=2, C=30, S=3, 20 instances, w*=22, h=30
40| 0/26.4 2.0 13 49 21 35 19 0
10 1.9 1.2 30 18 29 18
20 1.9 1.3 26 17 21 16
50| 0 30.7 35.6] 2,883 2,708 1,096 1,032 1E+12
10 18.6 18.9] 557 512 342 302
20 12.4 12.1] 245 216 146 130
60| O 396.8 511.4{ 51,223 50,089 13,200 12,845 7E+14
10 167.9 182.5 5,881 5,708 2,319 2,241
20 80.5] 83.6] 1,723 1,655 718 697
N=60, K=2, R=5, P=2, C=40, S=3, 20 instances, w*=23, h=31
40| 0(67.3 0.7 0.6 9 9 8 7 0
10 0.6 0.6 6 5 5 5
20 0.6 0.6 5 5 4 4
50| 0 3.2 3.0 58 55 41 38| 6E+04|
10 3.0 2.8 31 28 28 25
20 2.7 2.6 25 23 20 18
60| O 65.2 70.2] 2,302 2,292 1,206 1,195 8E+08
10 54.1] 56.4 791 781 660 649
20 39.6] 40.7] 459 449 319 309

may be comparable only if AO is given the same amount of spa@&ta

There is an expected trend with respect to the size of thersad space and the dead-
ends encountered. We see that the more advanced the congtogiagation technique, the
less nodes the algorithm expands, and the less dead-emd®itrgers. More caching also

has a similar effect.

3.5 Conclusion to Chapter 8

We presented the new frameworkmoixed networkgDeterministic-Probabilistic networks)
which combines belief and constraint networks. It allowsdanore efficient and flexi-
ble exploitation of probabilistic and deterministic infieation by borrowing the specific
strengths of each formalism that it builds upon. Tdm-separatiorextends in a natural
way the d-separation in belief networks, and we show thatwides a criterion for char-
acterizing the minimal I-mapness of the mixed networks.

Propositior. T4 which defines the equivalence of mixed nets/gives the motivation

for using the deterministic information by constraint paigption methods, rather than in-
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corporating it in probability tables.

A number of algorithms based primarily on variable elimioatand search are dis-
cussed. Many different tasks can be addresed by making ordll shanges to these algo-
rithms, dictated by the operation that has to be performed gaimmation, maximization).
The time and space complexities of these algorithms do rditate a clear hierarchy.
Rather, the problem itself may hint on which might be a bettardodate, by the relative
complexity of the belief network and constraint network.

The belief networks algorithms can benefit from the mixedesentation in a number
of ways. (1) Constraint propagation techniques can be appli@ightforwardly, main-
taining their properties of convergence and fixed point.T{23 semantics is much clearer
by separating probabilistic and deterministic informati¢3) The algorithms can be made
more efficient. It is often the case that search based atgositan benefit from pruning in
the context of determinism, or when the number of solutisrsnall.

The relative advantages of the different algorithms pressehere remain to be inves-
tigated empirically in future work. A wide variety of hybralgorithms can be designed,
based on search and variable elimination. Finally, theyatsm be adapted for the case of

approximate computation.
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Chapter 4

Iterative Algorithms for Mixed

Networks

4.1 Introduction

Probabilistic inference is the principal task in Bayesiatwogks, and it is known to be
an NP-hard problem [21]. Most of the commonly used exactralyns such as join-tree
clustering [66/ 57] or variable-elimination [28, 103], éoib the network structure. Yet,
they are time and space exponential in treewidthof the graph, rendering them essen-
tially intractable even for moderate size problems. Apprate algorithms are therefore
necessary for most of the practical problems, althoughaqmation within given error
bounds is also NP-hard [22,192].

The research presented in this chapter is focused prin@rityraph algorithms for the
task of belief updating. They are inspired by Pearl’'s beliefpagation algorithm [86],
which is known to be exact for poly-trees, and by Mini-Buckalgorithm [43], which
performs bounded inference and is an anytime version oal&iElimination. As a dis-
tributed algorithm, belief propagation is also well defifiednetworks that contain cycles,

and it can be applied iteratively in the form of Iterative B&IPropagation (IBP), also
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known as loopy belief propagation. When the networks cortgates, IBP is no longer
guaranteed to be exact, but in many cases it provides veny ggroximations upon con-
vergence, most notably in the case of coding networks [8@]satisfiability [69].

We are especially interested in the behavior of belief pgagian algorithm on mixed
networks, specifically on networks that contain zero, oresre (close to zero or one)

probabilities.

4.1.1 Contributions

In this chapter, we investigate: (1) the quality of boundef@rence in anytime schemes
such as Mini-Clustering, which is a generalization of MinidRats to arbitrary tree-
decompositions; (2) the virtues of iterating messageslieflq@opagation type algorithms,
and the result of combining bounded inference with iteeativessage-passing in Iterative
Join-Graph Propagation (IJGP); (3) we make connections wéll understood consis-
tency enforcing algorithms for constraint satisfactiovjrgg strong support for iterating
messages, and helping identify cases of strong and weaknde power for IBP and IJGP.
Section 4.2 contains the Mini-Clustering (MC) algorithm, ahis inspired by Mini-
Buckets algorithm[[43]. It is a message-passing algorithmdepl by a user adjustable
parameter calledbound offering a flexible tradeoff between accuracy and efficyeimc
anytime style (in general the higher the i-bound, the betteraccuracy). MC algorithm
operates on a tree-decomposition, and similar to Peaiisflpggopagation algorithim [86]
it converges in two passes, up and down the tree. Our cotitnbbeyond other works in
this areal[4B, 34] is in: (1) Extending the partition-baspdraximation for belief updating
from mini-buckets to general tree-decompositions, thisaahg the computation of the
updated beliefs for all the variables at once. This extensigimilar to the one proposed
in [34] but replaces optimization with probabilistic inégrce. (2) Providing for the first
time empirical evaluation demonstrating the effectivenesthe partition-based idea for

belief updating.
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We were motivated by the success of Iterative Belief PropaiggtBP) in trying to
make MC benefit from the apparent virtues of iterating. Tisailteng algorithm, Iterative
Join-Graph Propagation (IJGP) is described in Se€tidnld@P is also a messages-passing
algorithm, but it operates on a general join-graph decoimtipasvhich may contain cycles.
It still provides a user adjustabldoundthat defines the maximum cluster size of the graph
(and hence the complexity), so it is both anytime and iteeatSince both MC and IJGP
are approximate schemes, empirical results on variousedasf problems are included,
shedding light on their average case performance.

Section 4.4 is based on some some simple observations tlyashmed light on IBP’s
behavior, and on the more general class of IJGP algorither®-Beliefs are variable-value
pairs that have zero conditional probability given the ewice. We show that: (1) if a value
of a variable is assessed as having zero-belief in anyiberaf IBP, it remains a zero-belief
in all subsequent iterations; (2) that IBP converges in asfimitmber of iterations relative to
its set of zero-beliefs; and, most importantly (3) that teeas zero-beliefs decided by any
of the iterative belief propagation methods is sound. Ngraely zero-belief determined
by IBP corresponds to a true zero conditional probabilitatred to the given probability
distribution expressed by the Bayesian network. While ea¢hexfe claims can be proved
directly, our approach is to associate a belief network &ittonstraint network and show
a correspondence between IBP applied to the belief netwatlaararc-consistency algo-
rithm applied to the corresponding constraint network.c8iarc-consistency algorithms
are well understood this correspondence not only provés aigay the targeted claims, but
may provide additional insight into the behavior of IBP an@®RJ In particular, not only it
immediately justifies the iterative application of beliebpagation algorithms on one hand,
but it also illuminates its “distance” from being completa, the other.

The research presented in this chapter is based in part pB3736].
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4.2 Mini-Clustering

In this section we present a parameterized anytime appeiiamscheme for probabilistic
inference calledVini-Clustering (MC) which extends the partition-based approximation
offered by mini-bucket elimination [43], to general treedmpositions. The benefit of this
algorithm is that all single-variable beliefs are computagproximately) at once, using a
two-phase message-passing process along the clusterTiheeresulting approximation
scheme allows adjustable levels of accuracy and efficiancgnytime style. Empirical
evaluation against competing algorithms such as Iter&e#ef Propagation and Gibbs
Sampling demonstrates the potential of the Mini-Clusteapgroximation scheme: on
several classes of problems (e.g. random noisy-or, gridarés and CPCS networks)
Mini-Clustering exhibited superior performance. A simizheme was presented in a
general way in[[58], and for optimization tasks in[34]. Here adapt the scheme for the
specific task of belief updating, and present the first emmglievaluation for this specific

task, showing its effectiveness.

4.2.1 Tree-Decomposition Schemes

We will describe our algorithms relative to a unifying tréeeomposition framework based
on |52]. It generalizes tree-decompositions to include-foees, bucket-trees and other

variants applicable to both constraint processing andaiitibtic inference.

DEFINITION 4.2.1 (tree-decomposition, cluster treelet BN =< X,D,G,P > be a
belief network. Aree-decompositiofor BN is a triple < T, x, v >, whereT = (V, E)
is a tree, andy and are labeling functions which associate with each vertex V' two

sets,x(v) C X andy(v) C P satisfying:

1. For each functiom; € P, there isexactlyone vertex» € V such thap; € ¢(v), and

scope(pi) < x(v).
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2. For each variableX; € X, the sef{v € V|X; € x(v)} induces a connected subtree

of T'. This is also called the running intersection property.

We will often refer to a node and its functions aschkuster and use the terniree-

decompositiorand cluster treanterchangeably.

DEFINITION 4.2.2 (treewidth, hypertreewidth, separator, eliminato) The treewidth
[3] of a tree-decomposition< Ty, > is maz,cv|x(v)|, and its hypertreewidthis
max,cv|Y(v)|. Given two adjacent verticesandv of a tree-decomposition, theeparator

of u andw is defined asep(u, v) = x(u) N x(v), and theeliminatorof « with respect ta

is elim(u,v) = x(u) — x(v).

Join-Trees and Cluster Tree Elimination

In both Bayesian network and constraint satisfaction comtiesnthe most used tree de-
composition method is called join-tree decompositionl l6F, Such decompositions can
be generated by embedding the network’s moral gréphin a chordal graph, often using
a triangulation algorithm and using its maximal cliques @des in the join-tree. The trian-
gulation algorithm assembles a join-tree by connectingriagimal cliques in the chordal
graph in a tree. Subsequently, every CRTs placed in one clique containing its scope.
Using the previous terminology, a join-tree decompositibra belief network(G, P) is
atreeT = (V, E), whereV is the set of cliques of a chordal gragh that containg?,
andFE is a set of edges that form a tree between cliques, satisflggngunning intersection
property [70]. Such a join-tree satisfies the propertiesed-decomposition, therefore our
derivation using cluster trees is immediately applicablpin-trees.

There are a few variants for processing join-trees for belpglating [57,/94]. The
variant which we use here, (similar o [34]), called clugtee-elimination (CTE) is appli-
cable to tree-decompositions in general and is geared tosypaace savings. Itis a message

passing algorithm (either two-phase message passing,asyimchronous mode). , where
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xW={ABC}
@@ ={p(a), p(b|a), p(c|ab)} h(m)(bvc) = z p(a)Op(b|a)Op(c|a,b)
O=(BCD.F) oy (0,0 =3, p(d 16) Bp(f |c,d) sy, (b, F)

w@={p(d|b), p(f |c,d}
has (b, 1) =3, p(d[b)Cp(f [c,d) th,,(b,c)

G d
haa (b f)=2 pelb, f)h, (e f)

e X ={B,E,F}

@) ={p(e|b, )}

h(a,a)(ev f)= Z p(elb, f) Eh(z‘g)(bv f)
b

h(4,3)(ev f)=p(G=g.lef)

X@=EF.G)
© (@) yw=totole
(a) (b) (©)

Figure 4.1:a) A belief network;b) A join-tree decomposition;)Execution of CTE-BU;
no individual functions appear in this case

messages are computed by summation over the eliminatoebetthe two clusters of the
product of functions in the originating cluster. Algorith@TE for belief updating denoted
CTE-BU is given in Figuré 4]2. The algorithm pays a speciardton to the processing of
observed variables since the presence of evidence is atemtnponent in belief updating.
When a cluster sends a message to a neighbor, the algorithiategpen all the functions
in the cluster except the message from that particular beighThe message contains a
singlecombinedunction andindividual functions that do not share variables with the rel-
evant eliminator. All the non-individual functions atembinedn a product and summed

over the eliminator.

Example 4.2.1 Figure[4.1 describes a belief network (a) and a join-tree deposition for

it (b). Figure[4.1c shows the trace of running CTE-BU. In thiseao individual functions
appear between any of the clusters. To keep the figure simpleniywshow the combined
functionsh, ., (each of them being in fact the only element of thé&gt,) that represents

the corresponding message between clusiersdv).

THEOREM4.2.2 (Complexity of CTE-BU) [34, 58] The time complexity of CTE-BU is
O(deg-(n+ N)-d¥ ') and the space complexity@y N - d*??), where deg is the maximum
degree of a node in the tree, n is the number of variables, Neis\umber of nodes in the
tree decomposition, d is the maximum domain size of a vajabl is the treewidth and

sep is the maximum separator size.
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Algorithm CTE for Belief-Updating (CTE-BU)

Input: A tree decompositior< 7', x,v >, T = (V,E) for BN =< X,D,G,P >.
Evidence variablesar (e).

Output: An augmented tree whose nodes are clusters containing the original C&T
the messages received from neighbdtéX;, e), VX, € X.

Denote byH(, ., the message from vertex to v, ne,(u) the neighbors ofu in T
excludinguv.

cluster(u) = (u) U {H | (v,u) € E}.

cluster,(u) = cluster(u) excluding message fromto u.

e Compute messages:
For every node. in T', onceu has received messages fromsadl, (u), compute message
to nodev:

1. Process observed variables:
Assign relevant evidence to al] € ¥ (u)
2. Compute the combined function:

h(u,v) = Z H f

elim(u,v) fEA

whereA is the set of functions inluster,(u) whose scope intersect&im (u, v).
Add h, . to H(, ) and add all the individual functions ittuster, (u) — A
SendH |, ., to nodev.

e Compute P(Xj, e):
For everyX; € X letu be a vertex irll” such thatX; € x(u). ComputeP(X;,e) =
ZX(U)_{Xi}(HfECluster(u) f)

Figure 4.2: Algorithm Cluster-Tree-Elimination for Belieppdating (CTE-BU)

4.2.2 Mini-Clustering for Belief Updating

The time, and especially the space complexity of CTE-BU resittee algorithm infe

a partition-based anytime algorithm which computes apprate values or bound

P(X;,e) for every variableX; in the network. It is a natural extension of the
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ble for problems with large treewidth. In this section weddluce the Mini-Clustering,

S on

mini-

bucket idea to tree-decompositions. Rather than computmgini-bucket approximation
n times, one for each variable as would be required by the mioket approach, the algo-

rithm performs an equivalent computation with just two naggspassings along each arc



ProcedurevIC for Belief Updating (MC-BU( 7))

2. Compute the combined mini-functions:
Make an )-size mini-clusters partitioning afuster,(u), {mc(1),...,mc(p)};
1 —
h(u,v) - Zelim(u,v) HfEmc(l) f
hl(uvv) = MaXelim(u,v) Hmec(i) foi=2...p

add{hzw) |Z =1,... ,p} to H(u,v)' SendH(W)) tov.

Compute upper bounds onP(X;, e):
For everyX; € X letu € V be a cluster such that; € x(u). Make ¢) mini-clusters
from cluster(u), {mc(1), ..., mc(p)}; Compute

(Zx(u)—Xi ermc(l) f) ’ (H£:2 maXy (u)-X; ermc(k) f)

Figure 4.3: Procedure Mini-Clustering for Belief Updating@MBU)

of the cluster tree. The idea is to partition each cluster mini-clusters having at most
1 variables, where is an accuracy parameter. Nodepartitions its cluster intg mini-
clustersme(1), ..., me(p). Instead of computing o) = >_ciinun) i1 [ remer) f @S
in CTE-BU, we can compute an upper bound by migrating the suromaperator into
each mini-cluster. However, this would giYg;_, > ;i) [ remer) £ Which is an un-
necessarily large upper bound ép, . in which eacthemc(k) f is bounded by its sum
overelim(u,v). Instead, we rewrité ...y = > i) L remey ) - (Tliza I remeqi) f)-
Subsequently, instead of boundiby;,,.,, f, (i > 2) by summation over the eliminator,
we bound it by its maximum over the eliminator, which yield@s ;... ., [ rcine) ) -
115 o (maXeim uw) HfEmC(k) f). Therefore, if we are interested in an upper bound, we
marginalize one mini-cluster by summation and the othenmayimization. Note that the
summation in the first mini-cluster must be oadirvariables in the eliminator, even if some
of them might not appear in the scope of functiongie(1).

Consequently, the combined functions are approximated inactusters, as follows.
Suppose: € V has received messages from all its neighbors othertlidre message from

v is ignored even if received). The functionsdhuster,(u) that are to be combined are
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partitioned into mini-cluster§émc(1), ..., mc(p)}, each one containing at mastariables.
One of the mini-clusters is processed by summation and trer®©by maximization over
the eliminator, and the resulting combined functions ad asehll the individual functions

are sent ta.

Lower Bounds and Mean Approximations

We can also derive a lower-bound on beliefs by replacingrtlae operator withmin
operator (see above derivation for rationale). This allawgrinciple, computing both an
upper bound and a lower bound on the joint beliefs. Altevedyj if we yield the idea
of deriving a bound (and indeed the empirical evaluatioroareges that) we can replace
mazx by amean operator (taking the sum and dividing by the number of eldmanthe
sum), deriving an approximation of the joint belief.

Algorithm MC-BU for upper bounds can be obtained from CTE-BUréplacing step
2 of the main loop and the final part of computing the upper kdguwm the joint belief by

the procedure given in Figure 4.3.

Partitioning Strategies

In the implementation we used for the experiments reporéed, the partitioning was done
in greedy brute-force manner guided only by the sizes of tinetfons, and the choice of
the first mini-cluster for upper bound computation was randd his had the advantage
of adding a very small overhead to the Mini-Clustering aldion. Clearly, more informed

schemes that take into account the actual information irtdbhkes of the functions may

improve the overall accuracy.

Example 4.2.3 Figure[4.4 shows the trace of running MC-BU(3) on the problerffigure
4.1. First, evidencé& = g, is assigned in all CPTs. There are no individual functions to
be sent from cluster to cluster2. Clusterl contains only 3 variablesy(1) = {A, B, C},

therefore it is not partitioned. The combined functib)m)(b, c) = >, pa) - pla) -
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Figure 4.4: Execution of MC-BU foi = 3

p(cla,b) is computed and the messalg, ») = {h%m)(b, c¢)} is sent to nod@. Now, node
2 can send its message to natleAgain, there are no individual functions. Clustecon-
tains 4 variablesy(2) = {B,C, D, F'}, and a partitioning is necessary: MC-BU(3) can
choosemc(1l) = {p(d|b), h(1,2)(b,c)} andmc(2) = {p(f|c,d)}. The combined functions
hiaz)(0) = D20 ap(d[b) - h12) (b, ) andh, 5 (f) = max..qp(f|c, d) are computed and the
messagel sz = {N(y4 (), hi,4(f)} is sent to node. The algorithm continues until
every node has received messages from all its neighborspper tbbound omp(a, G = g.)
can now be computed by choosing clustewhich contains variabled. It doesn’'t need
partitioning, so the algorithm just comput®s, . p(a) - p(bla) - p(cla, b) - hiy 1y(b) - hy 1) ().
Notice that unlike CTE-BU which processes 4 variables in ctust&C-BU(3) never pro-

cesses more than 3 variables at a time.

4.2.3 Properties of Mini-Clustering

THEOREM4.2.4 Algorithm MC-BU(i) withmax (respectivelymin) computes an upper
(respectively lower) bound on the joint probabil( X, e) of each variable and each of its

values.

A similar mini-clustering scheme for combinatorial opteaiion was developed ih [34]

having similar performance properties as MC-BU.
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THEOREM4.2.5 (Complexity of MC-BU()) [34] The time and space complexity of MC-
BU(i) is O(n - hw* - d') where n is the number of variables, d is the maximum domain size

of a variable andhw* = max,|{ f|scope(f) N x(u) # ¢}|, which bounds the number of

functions that may travel to a neighboring cluster via mggspassing.

Accuracy

For a given, the accuracy of MC-BUJ can be shown to be not worse than that of executing
the mini-bucket algorithm MB] » times, once for each variable (an algorithm that we call
nMB(7)). Given a specific execution of MC-BY( we can show that for every variahlg,
there exists an ordering of the variables and a correspgrgiirtitioning such that MBJ
computes the same approximation value RgrX;, e) as doesV/C' — BU(z). In empirical

analysis|[58] it is shown that MC-BU has an up to linear spegdwver nMB().

Normalization

The MC-BU algorithm usingraz operator computes an upper bouRdX;, e) on the joint
probability P(X;, e). However, deriving a bound on the conditional probabiftyX;|e) is
not easy when the exact value Bfe) is not available. If we just try to divide (multiply)
P(X;,e) by a constant, the result is not necessarily an upper bourfél(&ile). In prin-
ciple, if we can derive a lower bouné(e) on P(e), then we can computB(X;,e)/P(e)

as an upper bound oR(X;|e). However, due to compound error, it is likely to be inef-
fective. In our empirical evaluation we experimented withrmalizing the upper bound
asP(X;,e)/>y, P(Xi,e) over the values of(;. The result is not necessarily an upper
bound on RX;|e). Similarly, we can also normalize the values when usingn or min
operators. It is easy to show that normalization with theazn operator is identical to

normalization of MC-BU output when applying the summatioreigtor in all the mini-

clusters.
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Figure 4.5: Convergence of IBP

4.2.4 Experimental Evaluation

We tested the performance of our scheme on random noisytaories, random coding
networks, general random networks, grid networks, ancetbemchmark CPCS files with
54, 360 and 422 variables respectively (these are beligfarks for medicine, derived
from the Computer based Patient Case Simulation system, kimwe hard for belief
updating). On each type of network we ran Iterative Beliefg@dgation (IBP) - set to run
at most 30 iterations, Gibbs Sampling (GS) and MC-BUgith i from 2 to the treewidth
w* to capture the anytime behavior of MC-BU.

We immediately observed that the quality of MC-BU in provglinpper or lower
bounds on the joinP(X;, ) was ineffective. Although the upper bound decreases as the
accuracy parameteincreases, it still is in most cases greater than 1. Therefollowing
the ideas explained in the previous subsedtion 4.2.3 wetrdporesults with normalizing
the upper bounds (calledax) and normalizing the mean (calledean). We notice that
MC-BU using themean operator is doing consistently better.

For noisy-or networks, general random networks, grid nete/and for the CPCS net-
works we computed the exact solution and used three diffeneasures of accuracy: 1.

Normalized Hamming Distance (NHD) - We picked the most lkedlue for each variable

120



Noisy-OR networks, w*=10 Noisy-OR networks, w*=16

[ N=50, P=2, 50 instances ] N=50, P=3, 25 instances ]
0] NHD Abs. Error Rel. Error Time 10[ NHD Abs. Error Rel. Error Time
|e| 10 le| 20
20[max[mean max | mean | max | mean | max [mean 30[max[mean max | mean | max | mean | max [ mean|
0 9.0E-09 1.1E-05 0.102] 0 1.3E-04 7.9E-01] 0.242
IBP o] 3.4E-04 4.2E-01 0.081] IBP 0 3.6E-04 2.2E+00 0.184
0 9.6E-04 1.2E+00 0.062 0 6.8E-04 4.2E+00) 0.121
0 0 |[1.6E-03 1.1E-03 1.9E+0Q 1.3E+00 0.056(0.057| 0 0 |1.3E-03]9.6E-04 8.2E+00| 5.8E+00| 0.107| 0.108|
MC-BU(2)| 0 0 |1.1E-03 8.4E-04 1.4E+00 1.0E+00| 0.048|0.049| MC-BU(2)| 0 0 |5.3E-04|4.0E-04) 3.1E+00| 2.4E+00| 0.077| 0.077|
0 0 |5.7E-04/4.8E-04 7.1E-01| 5.9E-01| 0.039| 0.039 0 0 |2.3E-04|1.9E-04| 1.4E+00| 1.2E+00| 0.064| 0.064
0 0 |[1.1E-039.4E-04 1.4E+00 1.2E+00] 0.070| 0.072| 0 0 |[1.0E-03|8.3E-04| 6.4E+00| 5.1E+00 0.133] 0.133
MC-BU(5)| 0 0 |7.7E-04] 6.9E-04 9.3E-01| 8.4E-01| 0.063| 0.066| MC-BU(5)| 0O 0 |4.6E-04|4.1E-04) 2.7E+00| 2.4E+00) 0.104| 0.105
0 0 |2.8E-04] 2.7E-04 3.5E-01| 3.3E-01|0.058| 0.057| 0 0 |2.0E-04{ 1.9E-04| 1.2E+00| 1.2E+00 0.098| 0.095
0 0 |3.6E-04]3.2E-04| 4.4E-01| 3.9E-01|0.214|0.221] 0 0 |6.6E-04]5.7E-04] 4.0E+00| 3.5E+00| 0.498| 0.509
MC-BU(8)| 0 0 |1.7E-04] 1.5E-04] 2.0E-01| 1.9E-01|0.184|0.190 MC-BU(8)| 0 0 |1.8E-04|1.8E-04| 1.1E+00| 1.0E+00| 0.394| 0.406
0 0 |3.5E-05| 3.5E-05| 4.3E-02| 4.3E-02|0.123(0.127| 0 0 |3.4E-05|3.4E-05| 2.1E-01| 2.1E-01|0.300( 0.308
0 0 |2.6E-04|2.4E-04| 1.6E+00| 1.5E+00] 2.339| 2.378
MC-BU(11)| O 0 |3.8E-05|3.8E-05| 2.3E-01| 2.3E-01|1.421|1.439
0 0 |6.4E-07|6.4E-07| 4.0E-03| 4.0E-03|0.613| 0.624
0 0 |4.2E-05|4.1E-05| 2.5E-01| 2.4E-01| 7.805| 7.875
MC-BU(14)| 0O 0 0 0 0 0 2.075|2.093
0 0 0 0 0 0 0.630( 0.638|
Table 4.1: Performance on Noisy-OR networks;
Noisy-OR networks, N=50, P=3, evid=10, w*=16, 25 instances Noisy-OR networks, N=50, P=3, evid=20, w*=16, 25 instances
1e+0 1e+0
le-l —8— MC le-1 —e— MC
— I1BP — 1BP
—— Gibbs Sampling —— Gibbs Sampling
g le2 g le2
- £
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Figure 4.6: Absolute error for noisy-OR networks

for the approximate and for the exact, took the ratio betwtkemumber of disagreements
and the total number of variables, and averaged over the auofiproblems that we ran for
each class. 2. Absolute Error (Abs. Error) - is the absolateesof the difference between
the approximate and the exact, averaged over all valueséch variable), all variables
and all problems. 3. Relative Error (Rel. Error) - is the abtolalue of the difference
between the approximate and the exact, divided by the exaetaged over all values (for
each variable), all variables and all problems. For codietyvorks, we report only one
measure, Bit Error Rate (BER). In terms of the measures defineceaB&R is the nor-
malized Hamming distance between the approximate (cordpayt@n algorithm) and the
actual input (which in the case of coding networks may beadkifit from the solution given
by exact algorithms), so we denote them differently to maketemantic distinction. We

also show the time taken by each algorithm.
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Random networks, w*=10 Random networks, w*=16

[ N=50, P=2, 50 instances ] N=50, P=3, 25 instances ]
0 NHD Abs. Error Rel. Error Time 0 NHD Abs. Error Rel. Error Time
le] 10 le] 10

20 max | mean | max | mean | max | mean | max | mean| 20 max | mean | max | mean | max | mean | max |mean|
0.01840 0.00696 0.01505 0.100 0.03652 0.00907 0.01894 0.298
IBP 0.19550 0.09022 0.34608 0.080 IBP 0.25200 0.08319 0.22335 0.240
0.27467 0.13588 3.13327 0.062 0.34000Q 0.13995 0.91671 0.183

0.50400 0.10715 0.26621] 13.023] 0.17304 0.04377| 0.09395 0.140
GS 0.51400 0.15214 0.57262 12.978| MC-BU(2) |0.17600 0.11600 0.05930 0.04558 0.14706 0.11034 0.100 | 0.103|
0.51267] 0.18066 4.71805 13.321 0.15067 0.14000 0.07658 0.06683 0.23155 0.19538 0.075 | 0.078|

0.11400 0.08080 0.03598 0.02564 0.07950 0.05628 0.055| 0.055| 0.15652 0.04380 0.09398 0.158
MC-BU(2)| 0.10600 0.08800 0.04897 0.039570.12919 0.10579 0.047| 0.048 MC-BU(5) | 0.15600 0.11800 0.05665 0.0432( 0.13484 0.10221] 0.124 |0.129|
0.08667 0.07333 0.04443 0.03639 0.13096 0.10694 0.041| 0.042] 0.09467 0.09467 0.05545 0.05049 0.15000 0.13706 0.105 |0.107|

0.10120 0.06480 0.03392 0.022420.07493 0.04937 0.071] 0.072 0.16783 0.04166 0.08904 0.602
MC-BU(5) | 0.06950 0.05850 0.03254 0.02723 0.08613 0.07313 0.063| 0.065)| MC-BU(8) | 0.09800 0.08100 0.04051| 0.03254 0.09923 0.07942 0.481 |0.491|
0.03933 0.03400 0.02022 0.01831] 0.05533 0.04984 0.059| 0.060| 0.05467 0.04533 0.02939 0.02691 0.07865 0.07237 0.385 |0.393

0.0508( 0.02680 0.018720.01030 0.04103 0.02262 0.216( 0.221 0.12087| 0.03076 0.06550 2.986
MC-BU(8)| 0.01550 0.01450 0.00743 0.00587 0.01945 0.01547/0.178{ 0.180| |MC-BU(11)|0.05500 0.04700 0.02425 0.01946 0.05644 0.04533 2.307 | 2.345
0.00600 0.00400 0.00228 0.00200 0.00597 0.00542 0.129| 0.134 0.00800 0.00533 0.00483 0.00431 0.01307 0.01156 1.564 | 1.585|

0.06348 0.01910 0.04071 14.910|
MC-BU(14)|0.01400 0.01200 0.00542 0.00434 0.01350 0.01108 8.548 |8.578|
0.00000 0.00000 0.00089 0.00089 0.00212 0.00211] 3.656 | 3.676

Table 4.2: Performance on random networks

Random networks, N=50, P=2, k=2, evid=0, w*=10, 50 instances Random networks, N=50, P=2, k=2, evid=10, w*=10, 50 instances

0.14 4 —e— MC 0.14 4 —e— MC
—— Gibbs Sampling —— Gibbs Sampling
012 4 — 18P 0.12 4 — 18P

Absolute error
Absolute error

0 2 4 6 8 10 0 2 4 6 8 10

i-bound i-bound

Figure 4.7: Absolute error for random networks

In Figure[4.5 we show that IBP converges after about 5 itamatidSo, while in our
experiments we report its time for 30 iterations, its timeven better when sophisticated
termination is used. These results are typical of all runs.

The random noisy-or networks and the random networks wearergéed using param-
eters (N,K,C,P), where N is the number of variables (a squaegér for grid networks),
K is their domain size (we used only K=2), C is the number ofdibonal probability
matrices and P is the number of parents in each conditiomdlaility matrix. The grid
networks have the structure of a square, with edges direéotéarm a diagonal flow (all
parallel edges have the same direction). They were genebgtspecifying N (a square
integer) and K (we used K=2). We also varied the number ofeawid nodes, denoted by
le| in the tables. The parameter values are reported in each tabl

Comment: We should note that since our evaluation measures are basedngparing
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o= .22 | o= .26 | o = .32 | o = .40 | o = .51 ]
BER| max [ mean| max [ mean| max [ mean| max [ mean| max [ mean| Time
N=100, P=3, 50 instances, w*=7

1BP | 0.000] 0.000] 0.000| 0.000] 0.002| 0.002| 0.022| 0.022] 0.088| 0.088| 0.00
GS]0.483] 0.483] 0.483] 0.483] 0.483| 0.483| 0.483] 0.483 0.483| 0.483| 31.36
MC-BU(2) [ 0.002] 0.002] 0.004| 0.004| 0.024] 0.024] 0.068| 0.068| 0.132[ 0.131| 0.08
MC-BU(4)|0.001| 0.001| 0.002( 0.002| 0.018( 0.018| 0.046| 0.045| 0.110| 0.110| 0.08
MC-BU(6) [ 0.000] 0.000| 0.000| 0.000| 0.004| 0.004| 0.038| 0.038| 0.106| 0.106| 0.12
MC-BU(8)[0.000] 0.000] 0.000] 0.000] 0.002] 0.002[ 0.023] 0.023] 0.091[0.091] 0.19
N=100, P=4, 50 instances, w*=11
IBP | 0.000| 0.000| 0.000| 0.000| 0.002| 0.002| 0.013| 0.013| 0.075(0.075| 0.00
GSJ0.506] 0.506] 0.506( 0.506| 0.506| 0.506| 0.506| 0.506( 0.506| 0.506] 39.85
MC-BU(2) [ 0.006| 0.006] 0.015| 0.015] 0.043] 0.043[ 0.093| 0.094] 0.157| 0.157| 0.19
MC-BU(4) [ 0.006] 0.006] 0.017] 0.017] 0.049] 0.049[ 0.104] 0.102] 0.158[ 0.158] 0.19
MC-BU(6) | 0.005| 0.005/0.011{0.011| 0.035{ 0.034{ 0.071| 0.074| 0.151| 0.150| 0.29
MC-BU(8) [0.002] 0.002| 0.004] 0.004| 0.022] 0.022] 0.059| 0.059] 0.121|0.122| 0.71
MC-BU(10)[0.001] 0.001] 0.001] 0.001] 0.008] 0.008] 0.033] 0.032] 0.101]0.102| 1.87

Table 4.3: BER for coding networks

Coding networks, N=100, P=4, sigma=.22, w*=12, 50 instances Coding networks, N=100, P=4, sigma=.51, w*=12, 50 instances
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Figure 4.8: BER for coding networks

against exact figures, we had to restrict the instances telatvely small or sparse enough
to be managed by exact algorithms.
For all the problems, Gibbs sampling performed consistgmtlorly so we only include

part of the results in the following tables and figures.

Random noisy-or networks results are summarized in Table 4.1 and Figlrel 4.6. For
NHD, both IBP and MC-BU gave perfect results. For the other mness we noticed that
IBP is more accurate for no evidence by about an order of madgitHowever, as evidence
is added, IBP’s accuracy decreases, while MC-BU'’s increasgtheey give similar results.
We also notice that MC-BU gets better as the accuracy parametzeases, which shows
its anytime behavior. We also observed a similar patterrebflsior when experimenting

with smaller noisy-or networks, generated with P=2 (w*=10)
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Grid 13x13, w*=21 Grid 15x15, w*=22

[ N=169, 25 instancesnean operator ] [ N=225, 10 instancesn.ean operator ]
|e] =0, 10, 20, 30 NHD [ Abs. Error| Rel. Error| Time |le] =0, 10, 20, 3Q NHD [ Abs. Error| Rel. Error| Time
IBP|0.0102] 0.0038 0.0083 |0.053 0.0094 0.0037 0.0080 | 0.071
0.0745 0.0323 0.0865 |0.047 IBP|0.0665 0.0665 0.0761 | 0.070

0.1350, 0.0551 0.3652 |0.044 0.1205 0.0463 0.1894 | 0.068

0.1672] 0.0759 0.2910 |0.044 0.1462| 0.0632 0.1976 | 0.062

GS|0.5172] 0.1111 0.2892 |6.634 0.5178 0.1096 0.2688 | 9.339

0.4901 0.1229 0.3393 |6.667 GS|[0.5047| 0.5047 0.3200 | 9.392

0.5205 0.1316 0.7320 |6.787 0.4849 0.1232 0.4009 | 9.524

0.4921 0.1431 0.5455 |6.806 0.4692 0.1335 0.4156 | 9.220
MC-BU(2)|0.1330, 0.0464 0.1034 (0.044 0.1256| 0.0474 0.1071 | 0.049
0.1263| 0.0482 0.1103 |0.028 MC-BU(2)|0.1312] 0.1312 0.1070 | 0.041

0.1388 0.0479 0.1117 |0.026 0.1371] 0.0523 0.1205 | 0.042

0.1168 0.0513 0.1256 |0.024 0.1287| 0.0512 0.1201 | 0.053
MC-BU(6)|0.1001] 0.0337 0.0731 [0.044 0.1050, 0.0356 0.0775 | 0.217
0.0863 0.0313 0.0697 |0.040 MC-BU(6) | 0.0944| 0.0944 0.0720 | 0.064

0.0805 0.0268 0.0605 |0.041 0.0844 0.0313 0.0701 | 0.059

0.0581 0.0263 0.0610 |0.036 0.0759, 0.0286 0.0652 | 0.120
MC-BU(10)[0.0402/ 0.0144 0.0310 [0.235 0.0406| 0.0146 0.0313 | 0.500
0.0330| 0.0115 0.0252 |0.220 MC-BU(10)|0.0358 0.0358 0.0288 | 0.368

0.0223] 0.0092 0.0211 |0.206 0.0337| 0.0122 0.0272 | 0.484

0.0224] 0.0086 0.0195 [0.191 0.0256 0.0116 0.0265 | 0.468
MC-BU(14)[0.0151] 0.0056 0.0123 |1.246 0.0233 0.0081 0.0173 | 2.315
0.0151] 0.0051 0.0113 [1.340 MC-BU(14)|0.0209 0.0209 0.0152 | 2.342

0.0137| 0.0044 0.0101 |1.306 0.0146/ 0.0055 0.0126 | 2.225

0.0124] 0.0032 0.0073 |1.256 0.0118 0.0046 0.0105 | 2.350

MC-BU(17)[0.0088 0.0027 0.0059 (6.916 0.0089 0.0031 0.0065 |10.990|

0.0045 0.0018 0.0040 |5.889 MC-BU(17)|0.0116] 0.0116 0.0069 |10.105|

0.0030| 0.0010 0.0022 |5.219 0.0063 0.0022 0.0048 | 9.381

0.0023 0.0008 0.0018 |4.354 0.0036/ 0.0017 0.0038 | 9.573

Table 4.4: Performance on grid networks;

General random networks results are summarized in Table 4.2 and Figlrel 4.7. They
are in general similar to those for random noisy-or netwolidD is non-zero in this case.
Again, IBP has the best result only for few evidence varialites remarkable how quickly
MC-BU surpasses the performance of IBP as evidence is addedlsd/experimented with

larger networks generated with P=3 (w*=16) and observeddasi behavior.

Random coding networks results are given in Tablé 413 and Figure 4.8. The instances
fall within the class of linear block codes; (s the channel noise level). Itis known that IBP
is very accurate for this class. Indeed, these are the onlyiggns that we experimented
with where IBP outperformed MC-BU throughout. The anytimedwatr of MC-BU can

again be seen in the variation of numbers in each column.

Grid networks results  are given in Table 4]4 and Figure 4.9. We only report resuitts w
mean operator for a 15x15 grid for which the induced width is w*=2"e notice that IBP

is more accurate for no evidence and MC is better as more resédis added. The same
behavior was consistently manifested for smaller grid neéta that we experimented with

(from 7x7 up to 14x14).
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Grid 15x15, evid=10, w*=22, 10 instances Grid 15x15, evid=10, w*=22, 10 instances
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Figure 4.9: Absolute error and time for grid networks

[ N=54, 50 instances ]

0 NHD Abs. Error Rel. Error Time
|e| 10

20 max | mean | max | mean | max | mean | max [ mean|
0.01852 0.00032 0.00064 2.450
IBP 0.15727 0.03307] 0.07349 2.191
0.20765 0.05934 0.14202 1.561
0.49444 0.07797 0.18034 17.247|
GS 0.51409 0.09002 0.21298 17.208|
0.48706 0.10608 0.26853 17.335

0.16667 0.074070.027220.01221| 0.05648 0.02520 0.154| 0.153|
MC-BU(2) | 0.11636 0.07636 0.02623 0.01843 0.05581| 0.03943 0.096| 0.095|
0.10529 0.07941] 0.02876 0.02196 0.06357 0.04878 0.067| 0.067
0.18519 0.09259 0.02488 0.01183 0.05128 0.02454 0.157| 0.155|
MC-BU(5) | 0.10727 0.07682 0.02464 0.01703 0.05239 0.03628 0.112|0.112
0.08059 0.059410.02174 0.01705 0.0479( 0.03778 0.090| 0.087|
0.12963 0.07407 0.01487 0.00619 0.03047 0.01273 0.438| 0.446)
MC-BU(8) | 0.06591 0.05000 0.01590 0.0104( 0.03394 0.02227) 0.369| 0.370
0.03235 0.02588 0.00977 0.00770 0.02165 0.01707 0.292| 0.294
0.11111/0.07407/0.01133 0.00688 0.02369 0.01434 2.038 2.032
MC-BU(11)|0.02818 0.01500 0.00600 0.00398 0.01295 0.00869 1.567| 1.571]
0.00353 0.00353 0.00124 0.00101} 0.00285 0.00236 0.867| 0.869

Table 4.5: Performance on CPCS54 network, w*=15

CPCS networks results We also tested on three CPCS benchmark files. The results are
given in Tables 4]5 and 4.6 and in Figure 4.10. It is intengsto notice that the MC
scheme scales up even to fairly large networks, like the lifeabxample of CPCS422
(induced width 23). IBP is again slightly better for no evidenbut is quickly surpassed

by MC when evidence is added.

4.2.5 Discussion

We presented in this section an approximation scheme fgibstic inference, one of the
most important task over belief networks. The scheme,@alimi-Clustering, is governed
by a controlling parameter that allows adjustable levelaaduracy and efficiency in an

anytime style.
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CPCS360, w*=20 CPCS422, w*=23

[ N=360, 5 instancesypean operator ] [ N=422, 1 instancemean operator ]
|le] =0, 20, 40 NHD [Abs. Error| Rel. Error| Time |e] =0, 20, 400 NHD [ Abs. Error| Rel. Error| Time

0.0000| 0.0027 0.0054 | 82 0.0024] 0.0062 0.0150 |2838

IBP|0.0112] 0.0256 3.4427 | 76 IBP|0.0721] 0.0562 7.5626 |2367

0.0363| 0.0629 | 736.1080| 60 0.0654 0.0744 | 37.5096 | 2150

0.0056| 0.0125 0.0861 | 16 0.0687| 0.0455 1.4341 | 161
MC-BU(8)| 0.0041] 0.0079 0.0785 | 14 MC-BU(3)|0.0373 0.0379 0.9792 | 85
0.0113] 0.0109 0.2997 9 0.0366| 0.0233 2.8384 | 48

0.0000| 0.0080 0.0636 | 38 0.0545 0.0354 0.1531 | 146
MC-BU(11)|0.0000| 0.0048 0.0604 | 39 MC-BU(7)|0.0249 0.0253 0.3112 | 77
0.0088 0.0102 0.1733 | 33 0.0262] 0.0164 0.5781 | 45

0.0000| 0.0030 0.0192 | 224 0.0166| 0.0175 0.0738 | 152
MC-BU(14)(0.0012| 0.0045 0.0502 | 232 MC-BU(11)|0.0448/ 0.0352 0.6113 | 95
0.0056| 0.0070 0.0693 | 200 0.0340, 0.0237 0.6978 | 63

0.0000| 0.0016 0.0073 [1433 0.0024] 0.0039 0.0145 | 526

MC-BU(17)| 0.0006| 0.0026 0.0266 |1455 MC-BU(15)|0.0398 0.0278 0.5338 | 564
0.0013] 0.0006 0.0045 | 904 0.0183 0.0113 0.5248 | 547

Table 4.6: Performance on CPCS360 and CPCS422 networks

CPCS 422, evid=0, w*=23, 1 instance CPCS 422, evid=10, w*=23, 1 instance

—8— MC
— 18P 004 4 —e— MC
— IBP

Absolute error
Absolute error

i-bound i-bound

Figure 4.10: Absolute error for CPCS422

We presented empirical evaluation of mini-cluster appration on several classes of
networks, comparing its anytime performance with competitgorithms such as Gibbs
Sampling and Iterative Belief Propagation, over benchmafk®isy-or random networks,
general random networks, grid networks, coding networks@RCS type networks. Our
results show that, as expected, IBP is superior to all othgroxgmations for coding net-
works. However, for random noisy-or, general random neta/ogrid networks and the
CPCS networks, in the presence of evidence, the mini-clagtscgheme is often superior
even in its weakest form. Gibbs sampling was particularlg bad we believe that en-
hanced variants of the Monte Carlo approach, such as likadieeighting and importance
sampling, should be compared with [17]. The empirical rssate particularly encour-
aging as we use an unoptimized scheme that exploits a uaivanisciple applicable to
many reasoning tasks. Our contribution beyond recent workkis areal[48, 34] is in:

1. Extending the partition-based approximation for belipflating from mini-buckets to
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general tree-decompositions, thus allowing the compartatf the updated beliefs for all
the variables at once. This extension is similar to the onpgsed in[[34] but replaces op-
timization with probabilistic inference. 2. Providing ftire first time empirical evaluation
demonstrating the effectiveness of the partition-based fdr belief updating.

There are many potential ways for improving the MC schemeoAgrthe most impor-
tant, the partitioning step can be further elaborated. énwbrk presented here, we used
only a brute-force approach for partitioning.

One extension of this work [39] is an iterative version of Mélled Iterative Join-
Graph Propagation (IJGP), which is both anytime and itezadnd belongs to the class of
generalized belief propagation methods [|102]. Rather tisgoraing an underlying join-
tree, IJGP works on a join-graph that may contain loops. li#3@€lated to MC in a similar
way as IBP is related to BP (Pearl’s belief propagation). Expental work shows that in
most cases iterating improves the quality of the MC appraxiom even further, especially

for low i-bounds. We will discuss this algorithm in detail in SecfbB.

4.3 lterative Join-Graph Propagation

This section contains our work on lIterative Join-Graph Bgapion. The original moti-
vation for designing this algorithm was in trying to combthe anytime feature of Mini-
Clustering (MC) and the iterative virtues of Iterative Beligbpagation (IBP). MC is an
anytime algorithm but it works on tree-decompositions arabnverges in two passes, so
iterating doesn’t change the messages. IBP is an iteratyegitim that converges in most
cases, and when it converges it does so very fast. Allowingpite time doesn’t improve
the accuracy. IJGP was designed to benefit from both thesetidins. It works on a gen-
eral join-graph which may contain cycles. The cluster sizhe graph is user adjustable
by thei-bound (providing the anytime nature), and the cycles in the grdjghvaterating.

The precise mechanics of the algorithm are given in thevioilg sections. Empirical re-
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sults are also provided, showing that in many cases 1IJGPperisu to both MC and IBP

on several classes of problems.

4.3.1 Join-Graphs

We will describe our algorithms relative to a join-graph deposition framework using
recent notation proposed by [52]. The notion of join-treeatepositions was introduced

in relational databases [70].

DEFINITION 4.3.1 (join-graph decompositions)A  join-graph  decomposition for
BN =< X,D,G,P > is atriple D =< JG,x,v¥ >, whereJG = (V,E) is a
graph, andy and are labeling functions which associate with each vertex V' two

sets,x(v) C X andy(v) C P such that:

1. For eachp; € P, there isexactly one vertexv € V such thatp;, € (v), and
scope(p;) € x(v).

2. (connectedness) For each variabte € X, the set{v € V|X; € x(v)} induces a
connected subgraph éf. The connectedness requirement is also called the running

intersection property.

We will often refer to a node and its CPT functions adusteH and use the tergoin-
graph-decompositioand cluster graphinterchangeably. Aoin-tree-decompositionr a

cluster trees the special case when the join-gralfhis a tree.

Join-Tree Propagation

The well known join-tree clustering algorithm first conwettie belief network into a cluster

tree and then sends messages between clusters. We calttimel seessage passing phase

INote that a node may be associated with an empty set of CPTs
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join-tree propagation The complexity of join-tree clustering is exponential Iretnum-
ber of variables in a cluster (treewidth), and the numberasfables in the intersections

between adjacent clusters (separator-width), as defined/be

DEFINITION 4.3.2 (treewidth, separator-width) Let D =< JT,x,v¢ > be a tree de-
composition of a belief network G, P >. Thetreewidthof D [B] is maz,eyv|x(v)|.
The treewidth ok G, P > is the minimum treewidth over all its join-tree decomposi-
tions. Given two adjacent verticesand v of JT', the separatoof « andv is defined as

sep(u,v) = x(u) N x(v), and theseparator-widthis mazx . |sep(u, v)|.

The minimum treewidth of a grapgh can be shown to be identical to a related parameter
calledinduced-width A join-graph decompositio® is arc-minimalif none of its arcs can
be removed while still satisfying the connectedness ptgméDefinition[4.3.1. If a graph-
decomposition is not arc-minimal it is easy to remove som#soércs until it becomes
arc-minimal. In our preliminary experiments we observethiediately that when applying
join-tree propagation on a join-graph iteratively, it isicial to avoid cycling messages
relative to every single variable. The property of arc-mmality is not sufficient to ensure
such acyclicity though. What is required is that, for everded’, the arc-subgraph that

containsX be a tree.

Example 4.3.1 The example in Figurle 4.11a shows an arc minimal join-graptctviebn-
tains a cycle relative to variablé, with arcs labeled with separators. Notice however that
if we remove variabld from the label of one arc we will have no cycles (relative to Eng

variables) while the connectedness property will still bemteined.

To allow more flexible notions of connectedness we refine #fmition of join-graph

decompositions, when arcs can be labeled with a subsetiottygarator.

DEFINITION 4.3.3 ((minimal) arc-labeled join-graph decompositions)An arc-labeled

decompositiorfor BN =< X,D,G, P > is a four-tupleD =< JG, x,v,0 >, where
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Figure 4.11: An arc-labeled decomposition

JG = (V, E) is a graph,y andt associate with each vertexc V' the setsy(v) C X and

¥(v) C P and#d associates with each edge, u) C E the set)((v,u)) C X such that:

1. For each functiom,; € P, there isexactlyone vertex € Vsuch that,; € ¢(v), and
scope(p;) € x(v).

2. (arc-connectedness) For each darc v), 0(u,v) C sep(u,v), such thatvX; € X,
any two clusters containing’; can be connected by a path whose every arc’s label

includesX;.

Finally, an arc-labeled join-graph isninimal if no variable can be deleted from any label

while still satisfying the arc-connectedness property.

DEFINITION 4.3.4 (separator, eliminator) Given two adjacent vertices and v of JG,
the separatoof v and v is defined asep(u,v) = 6((u,v)), and theeliminatorof « with

respect ta is elim(u,v) = x(u) — 0((u,v)).

Arc-labeled join-graphs can be made minimal by deletingaides from the labels. It
is easy to see thatrainimal arc-labeled join-grapliloes not contain any cycle relative to
any single variable. That is, any two clusters containirgggame variable are connected

by exactly one path labeled with that variable.

4.3.2 Algorithm [JGP

Applying join-tree propagation iteratively to join-graplyields algorithmiterative Join-
Graph Propagation (IJGPglescribed in Figure 4.12. One iteration of the algorithmliagp

message-passing in a topological order over the join-grapvard and back.
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Algorithm Iterative Join Graph Propagation (1JGP)

Input An arc-labeled join-graph decompositien JG, x,v¢,0 >, JG = (V,E) for BN =<
X,D,G, P >. Evidence variablesar(e).
Output An augmented graph whose nodes are clusters containingitiiead CPTs and the mes-
sages received from neighbors. Approximation®¢X;|e), VX; € X.

Denote byh, ., the message from vertexto v, ne, (u) the neighbors ofi in JG excludingo.
cluster(u) = (u) U {h(yu)l(v,u) € E}.
cluster,(u) = cluster(u) excluding message fromto w.

e One iteration of IJGP:
For every node. in JG in some topological ordet and back,do

1. Process observed variables:
Assign relevant evidence to al] € ¢ (u) x(u) := x(u) —var(e), Yu e V
2. Compute individual functions:
Include inH(, , each function ircluster, (u) whose scope does not contain variables in
elim(u, v). Denote byA the remaining functions.
3. Compute and send tov the combined function: hy,.) = >_ im(u,0) [ ea /-
Sendh, ., and the individual functions/(,, .,y to nodev.

Endfor
e Compute P(X;, e):

For everyX; € X letu be a vertex irll” such thatX; € x(u).
ComPUteP(Xi|e) =a Zx(u)—{Xi}(HfEcluster(u) f)

Figure 4.12: Algorithm Iterative Join-Graph PropagatitlsP)

When nodei sends a message (or messages) to a neighbor jnidgperates on all
the CPTs in its cluster and on all the messages sent from gflneis excluding the ones
received fromj. First, all individual functions that share no variableshathe eliminator
are collected and sent to All the rest of the functions areombinedin a product and
summed over the eliminator betwegeand;.

It is known that:

THEOREM4.3.2 1. [66] If IJGP is applied to a join-tree decomposition it reduces to
join-tree clustering and it therefore is guaranteed to conethe exact beliefs in one
iteration.

2. [64] The time complexity of one iteration of IIGP&deg - (n + N) - d*"*1) and
its space complexity i©(N - d?), where deg is the maximum degree of a node in

the join-graph, n is the number of variables, N is the numldaraales in the graph
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decomposition, d is the maximum domain sizeis the maximum cluster size afd

is the maximum label size.

However, when applied to a join-graph the algorithm is rezitjuaranteed to converge
nor to find the exact posterior.
Proof. The number of cliques in the chordal graghcorresponding t@ is at mostz, So
the number of nodes in the join-tree is at mesThe complexity of processing a nodén
the join-tree isleg, - (|¢(u)| +deg, —1)-dX®!, wheredeg, is the degree of. By bounding
deg, by deg, | (u)| by n andy(u) by w* + 1 and knowing thatleg < N, by summing over
all nodes, we can bound the entire time complexitytyicg - (n + N) - d¥ 1).

For each edge JTC records functions. Since the number ofedd®unded by: and

the size of each message is bounded % we get space complexity &¥(n - d*?). O

4.3.3 |-Mappness of Arc-Labeled Join-Graphs

The success of IJGP, no doubt, will depend on the choice stalgraphs it operates on.
The following paragraphs provide some rationale to our@hof minimal arc-labeled join-
graphs. First, we are committed to the use of an underlyiaglystructure that captures as
many of the distribution independence relations as passithout introducing new ones.
That is, we restrict attention to cluster graphs that arapsofP [86]. Second, we wish
to avoid cycles as much as possible in order to minimize cdationmal over-counting.
Indeed, it can be shown that any join-graph of a belief netwsran I-map of the

underlying probability distribution relative to node-segtion. It turns out that arc-labeled

join-graphs display a richer set of independencies reddat\arc-separation.

DEFINITION 4.3.5 (arc-separation in (arc-labeled) join-graphs) Let D =<
JG,x,v,0 >, JG = (V,E) be an arc-labeled decomposition. L&y, Ny C V
be two sets of nodes, anfi; C F be a set of edges idG. Let W,Y, Z be their

corresponding sets of variable$i{ = Uyen,, x(v), Z = Uecg,0(e)). Ez arc-separates
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Ny and Ny in D if there is no path betweeNy, and Ny in the graphJG with the edges
in E£; removed. In this case we also say thHtis separatedrom Y givenZ in D, and
write < W|Z|Y >p. Arc-separation in a regular join-graph is defined relatite its

separators.

THEOREM4.3.3 Any arc-labeled join-graph decompositidn =< JG, x,v,0 > of a

belief networkBN =< X, D, G, P > is an I-map ofP relative to arc-separation.

Proof. Let MG be the moral graph aBN. SinceM G is an I-map ofP, it is enough to
prove that/G is and I-map ofM/ G.
Let Ny, Nz, Ny be three disjoint set of nodes itG, andIV, Z, Y be their correspond-

ing sets of variables in/ G. We will prove:

< Nw|Nz|Ny >j6=< W|Z|Y >nc

by contradiction.

Since the setd/, Z, Y may not be disjoint, we will actually prove thatW — Z|Z|Y —
Z >¢ holds, this being equivalent toa W |Z|Y >¢.

Supposing< W — Z|Z|Y — Z >, is false, then there exists a path =
V1,725 - - -y Vo1, 3 = Yn IN MG that goes from some variable= v, € W — Z to some
variableg = v, € Y — Z without intersecting variables i#.

Let NV, be the set of all nodes IAG that contain variable € X, and let’s consider the
set of nodes:

S = UL, — Ny

We argue that forms a connected sub-graph.iig:.

First, the running intersection property ensures thatyeyer,: = 1,...,n, remains
connected inJG after pulling out the nodes iV, (otherwise, it must be that there was a
path between the two disconnected parts in the origidglwhich implies that ay; is part

of Z, which is a contradiction).
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Second, the fact thaty;, v;.1),7 = 1,...,n — 1, is an edge in the moral grapli G im-
plies that there is a conditional probability table (CPT) othby; and~;,1,i =1,...,n—1
(and perhaps other variables). From property 1 of the deimdf the join-graph, it follows
that foralli = 1,...,n — 1 there exists a node in JG that contains bgtAnd~; ;. This
proves the existence of a path in the mutilated join-graghwi&h N pulled out) from a
node inNy, containinga = ; to the node containing both and~, (V,, is connected),
then from that node to the one containing bettand~s; (V. is connected), and so on until
we reach a node ifVy containingg = 7,,.

This shows thak Ny |Nz|Ny > ¢ is false, concluding the proof by contradiction.

Interestingly however, removing arcs or labels from atielad join-graphs whose clus-
ters are fixed will not increase the independencies caphyedc-labeled join-graphs. That
is:

Proposition 16 Any two (arc-labeled) join-graphs defined on the same set usdteis,
sharing (/, x ¥), express exactly the same set of independencies relatare-separation.

Consequently, all such decomposition ecgrectand are isomorphic I-maps.

THEOREM4.3.4 Any arc-labeled join-graph decomposition of a belief netwBrN =<

X, D, G, P >isaminimal I-map ofP relative to arc-separation.

Hence, the issue of minimizing computational over-cougtioe to cycles appears to be
orthogonal to maximizing independencies via minimal I-pagss. Nevertheless, to avoid
over-counting as much as possible, we still prefer joipgsathat minimize cycles relative

to each variable. That is, we prefer to apply IJGPriaimalarc-labeled join-graphs.

4.3.4 Bounded Join-Graphs

Since we want to control the complexity of IJGP we will defiberi decompositions having

bounded cluster size. If the number of variables in a clustbounded by, the time and
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Algorithm Join-Graph Structuring( i)
1. Apply procedure schematic mini-buckigt(

2. Associate each resulting mini-bucket with a node in tive-gwaph, the variables
of the nodes are those appearing in the mini-bucket, thénatifunctions are
those in the mini-bucket.

3. Keep the arcs created by the procedure (called out-edgddabel them by the
regular separator.

4. Connect the mini-bucket clusters belonging to the sanoiditin a chain by
in-edges labeled by the single variable of the bucket.

Figure 4.13: Algorithm Join-Graph Structurimy(

Procedure&schematic Mini-Bucket()

1. Order the variables fronX; to X,, minimizing (heuristically) induced-width,
and associate a bucket for each variable.

2. Place each CPT in the bucket of the highest index varialite scope.

3. Forj =ntoldo:
Partition the functions ibucket(X;) into mini-buckets having at mostvari-
ables.
For each mini-buckeinb create a new scope-function (messageyhere
scope(f) = {X|X € mb} —{X,} and place scope(f) in the bucket of its highes
variable. Maintain an arc betweemb and the mini-bucket (created later) ff

—

Figure 4.14: Procedure Schematic Mini-BucKet(

space complexity of one full iteration of IJGP(i) is expotiahin i. How can good graph-
decompositions of bounded cluster size be generated?

Since we want the join-graph to be as close as possible t@aanel since a tree has a
treewidth 1, we may try to find a join-graph of bounded cluster size whose treewidth
(as a graph) is minimized. While we will not attempt to optimalolve this task, we will

propose one method for generating i-bounded graph-decsitigs.

DEFINITION 4.3.6 (external and internal widths) Given an arc-labeled join-graph de-
compositionD =< JG, x,v,0 > of a network< G, P >, the internal width ofD is

max,ev|x(v)|, while the external width ab is the treewidth of/G as a graph.

Clearly, if D is a tree-decomposition its external width is 1 and its imadéwidth equals
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its treewidth. For example, an edge minimal dual decomjpoditas an internal width equal
to the maximum scope of each function, and external widtho* which is the treewidth
of the moral graph ofy. On the other hand, a tree-decomposition has internal vt
and external width of 1.

Using this terminology we can now state our target decontiposinore clearly. Given
a graphG, and a bounding parametewe wish to find a join-graph decomposition Gf
whose internal width is bounded byand whose external width is minimized. The bound
controls the complexity of one iteration 6/ G P while the external width provides some
measure of its accuracy.

One class of such decompositions is partition-based. ttssteom a given tree-
decomposition and then partitions the clusters until trewd®gosition has clusters bounded
by i. The opposite approach is grouping-based. It starts fromresminimal dual-graph
decomposition (where each cluster contains a single CPTysngs clusters into larger
clusters as long as the resulting clusters do not exceeditka gound. In both meth-
ods we should attempt to reduce the treewidth of the gertegatgh-decomposition. Our
partition-based approach inspired by the mini-bucket [d&is as follows.

Given a bound, algorithmjoin-graph structuring(i)applies procedurschematic mini-
bucket(i) described in Figure 4.14. The procedure only traces theescof the functions
that would be generated by the full mini-bucket proceduvejcing actual computation.
The algorithm then connects the mini-buckets’ scopes natijnto obtain the running

intersection property, as described in Figure ¥.13.

Example 4.3.5 Figure[4.15a shows the trace of procedure schematic minkdx(®) ap-
plied to the problem described in Figure %.1a. The decontiposin Figure[4.15b is cre-
ated by the algorithm graph structuring. The only clustertpi@ned is that ofF’ into two

scopes (FCD) and (BF), connected by an in-edge labeled with F.

Procedure schematic mini-bucket ends with a collectiomasfs rooted in mini-buckets

of the first variable. Each of these trees is minimally atielad. Thenin-edgesare labeled

136



G: (GFE) PoIFE)
E: (EBF)™ (EF)
%/—/
F: (FCD) ™ (BF)
e
D: (DB) ™* (CD
C: (CAB) *(CB)

B: (BA) ‘(AB) (B)

Al (A) (A)

@ ®

Figure 4.15: Join-graph decompositions

more accuracy

A

less complexity

Figure 4.16: Join-graphs

with only one variable, and they are added only to obtain timming intersection property

between branches of these trees. It can be shown that:

Proposition 17 Algorithm join-graph structuring(i), generates a mininzat-labeled join-

graph decomposition having bound

Example 4.3.6 Figure[4.16 shows a range of arc-labeled join-graphs. On #fedxtreme
we have a graph with smaller clusters, but more cycles. Thikastype of graph IBP
works on. On the right extreme we have a tree decompositionhwias no cycles but
has bigger clusters. In between, there could be a number efgmphs where maximum

cluster size can be traded for number of cycles. Intuitiviélg graphs on the left present

137



Table 4.7: Random networks: N=50, K=2, C=45, P=3, 100 inssnet=16

Absolute error Relative error KL distance Time

IBP 1JGP IBP JGP IBP JGP IBP JGP
#evid =2 1=5 =8 =2 =5 =8 1=2 =5 =8 =2 1=5 =8

0 [0.02988 0.03055 0.02623 0.02940 0.06388 0.15694] 0.05677 0.07153 0.00213 0.00391] 0.00208 0.00277 0.0017| 0.0036] 0.0058| 0.0295
1 5 |0.06178 0.04434 0.04201| 0.04554 0.15005 0.12340 0.12056 0.11154] 0.00812 0.00582 0.00478 0.00558 0.0013| 0.0040| 0.0052| 0.0200)
10 |0.087620.05777 0.05409 0.05910 0.237770.18071] 0.14278 0.15686 0.01547 0.00915 0.00768 0.00899 0.0013| 0.0040| 0.0036| 0.0121|
0 [0.00829 0.00636 0.00592 0.00669 0.01726 0.0132€[ 0.01239 0.01398 0.00021] 0.00014| 0.00015 0.00018 0.0066] 0.0145] 0.0226] 0.1219
5 5 |0.051820.00886 0.00886 0.01123 0.12589 0.01967] 0.01965 0.02494] 0.00658 0.00024| 0.00026 0.00044| 0.0060| 0.0120| 0.0185| 0.0840
10 |0.08039 0.01155 0.01073 0.01399 0.21781) 0.03014] 0.02553 0.03279 0.01382 0.00055 0.00042 0.00073 0.0048| 0.0100| 0.0138| 0.0536)
0 |0.00828 0.00584 0.00514 0.00495 0.01725 0.01216(0.01069 0.01030 0.00021} 0.00012 0.00010 0.00010 0.0130( 0.0254{ 0.0436( 0.2383|
10 5 ]0.051820.00774 0.00732 0.00708 0.12590 0.01727/0.01628 0.01575/ 0.00658 0.00018 0.00017 0.00016 0.0121{ 0.0223| 0.0355| 0.1639)
10 |0.08040 0.00892 0.00808 0.00855 0.217820.02101{ 0.01907 0.02005 0.01382 0.00028 0.00024 0.00029 0.0109| 0.0191| 0.0271| 0.1062

#

=

0 0.04044 0.04287 0.03748 0.08811/0.09342 0.08117 0.00403 0.00435 0.00369 0.0159 0.0173 0.0552
MC| 5 0.05303 0.05171) 0.0425(Q 0.123750.11775 0.09596 0.00659 0.00636 0.00477| 0.0146 0.0158 0.0532
10 0.06033 0.05489 0.04264 0.14702/0.13219 0.10074 0.00841] 0.00729 0.00503 0.01190.0143 0.0470

less complexity for IJGP because the cluster size is smatlltHey are also likely to be
less accurate. The graphs on the right side are computallipn@ore complex, because of

larger cluster size, but are likely to be more accurate.

MC(i) vs. IJGP(i). As can be hinted by our structuring of a bounded join-gramdrd is a
close relationship between MC(i) and IJGP(i). In particubeue iteration of IJGP(i) is sim-
ilar to MC(i) (MC(i) is an algorithm that approximates joiretr clustering and was shown
to be competitive with IBP and Gibbs Sampling[[79]). Indeetilewe view IJGP(i) as an
iterative version of MC(i), the two algorithms differ in seaétechnical points, some may
be superficial, due to implementation, others may be moreipled. We will leave the
discussion at that and will observe the comparison of theapmroaches in the empirical

section.

4.3.5 Experimental Evaluation

We tested the performance of IJGP(i) on random networks, eoyN grids, on two
benchmark CPCS files with 54 and 360 variables, respectiviebsét are belief networks
for medicine, derived from the Computer based Patient Casal&iion system, known to
be hard for belief updating) and on coding networks. On egph bf networks, we ran
Iterative Belief Propagation (IBP), MC(i) and 1JGP(i), whilevigg IBP and IJGP(i) the

same number of iterations.
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Random networks, N=50, K=2, P=3, evid=5, w*=16 Random networks, N=50, K=2, P=3, evid=5, w*=16
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Figure 4.17: Random networks: KL distance

Random networks, N=50, K=2, P=3, evid=5, w*=16
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Figure 4.18: Random networks: Time

We use the partitioning method described in Sedtion ¥.3cbtstruct a join-graph. To
determine the order of message computation, we recurgiwekyan edge (u,v), such that
node u has the fewest incoming messages missing.

For each network except coding, we compute the exact solatid compare the accu-
racy of algorithms using: 1. Absolute error - the absoluteeaf the difference between
the approximate and the exact, averaged over all valuegadibles and all problems. 2.
Relative error - the absolute value of the difference betwherapproximate and the ex-
act, divided by the exact, averaged over all values, albwdes and all problems. 3. KL
(Kullback-Leibler) distance £.,,.:(X = a) - l0g(Pegact(X = @)/ Papprogimation(X = a))
averaged over all values, all variables and all problems.alsle report the time taken by
each algorithm. For coding networks we report Bit Error RateRB&omputed as follows:
for each approximate algorithm we pick the most likely valoeeach variable, take the

number of disagreements with the exact input, divide by oked humber of variables, and
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average over all the instances of the problem. We also répuet

The random networks were generated using parameters (W) Mhere N is the num-
ber of variables, K is their domain size, C is the number ofdtiional probability tables
(CPTs) and P is the number of parents in each CPT. Parents inC#aClare picked ran-
domly and each CPT is filled randomly. In grid networks, N is assg number and each
CPT is filled randomly. In each problem class, we also test#drdnt numbers of evi-
dence variables. The coding networks are from the classeéatiblock codes, where
is the channel noise level. Note that we are limited to redltismall and sparse problem

instances since our evaluation measured are based on éogiggainst exact figures.

Random network results with networks of N=50, K=2, C=45 and P=3 are given inida
4.7 and Figures 4.17 and 4118. For IJGP(i) and MC(i) we repdiffd8rent values of i-
bound: 2, 5, 8; for IBP and IJGP(i) we report 3 different valoésiumber of iterations:
1, 5, 10; for all algorithms we report 3 different values ohrher of evidence: 0, 5, 10.
We notice that IJGP(i) is always better than IBP (except wh@€rand number of iterations
is 1), sometimes as much as an order of magnitude, in termssofwie and relative error
and KL distance. IBP rarely changes after 5 iterations, wasetd@GP(i) solution can be
improved up to 15-20 iterations. As we predicted, IJGP(@hsut equal to MC(i) in terms
of accuracy for one iteration. But IJGP(i) improves as the benof iterations increases,
and is eventually better than MC(i) by as much as an order ohrmadg, although it clearly
takes more time when the i-bound is large.

Figurel4.1Va shows a comparison of all algorithms with déifé numbers of iterations,
using the KL distance. Because the network structure chamigeslifferent i-bounds, we
do not see monotonic improvement of IJGP with i-bound foneginumber of iterations
(as is the case with MC). Figure 4117b shows how IJGP convevigkesteration to smaller
KL distance than IBP. As expected, the time taken by IJGP (a@d %ries exponentially
with the i-bound (see Figute 4]18).
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Table 4.8: 9x9 grid, K=2, 100 instances, w*=12

Absolute error Relative error KL distance Time
IBP 1JGP IBP 1JGP IBP 1JGP IBP 1JGP
#it | #evid =2 =5 =8 =2 =5 =8 =2 7=5 =8 =2 | =5 | =8

0 [0.035240.0555( 0.04292 0.03318 0.08075 0.13533 0.10252 0.07904; 0.00289 0.00859 0.00602 0.00454 0.0010| 0.0053] 0.0106{ 0.0426|
1 5 ]0.053750.05284 0.04012 0.03661 0.16380 0.13225 0.09889 0.09116 0.00725 0.00802 0.00570 0.00549 0.0016 0.0041] 0.0092| 0.0315|
10 |0.07094 0.05453 0.04304 0.03966 0.23624 0.14588 0.12492 0.12202 0.01232 0.00905 0.00681} 0.00653 0.0013] 0.0038) 0.0072 0.0256|
0 [0.00358 0.00393 0.00325 0.00284 0.00775 0.00849 0.00702 0.00634{ 0.00005 0.00006 0.00007 0.00010 0.0049( 0.0152( 0.0347| 0.1462|
5 5 [0.032240.00379 0.00319 0.00296 0.11299 0.00844 0.00710 0.00669 0.00483 0.00006 0.00007 0.00010 0.0053( 0.0131{ 0.0309/0.1127|
10 |0.05503 0.00364 0.00316 0.00314 0.19403 0.00841{ 0.00756 0.01313 0.00994 0.00006 0.00009 0.00019 0.0036| 0.0127| 0.0271| 0.0913|
0 [0.003520.00352 0.00232 0.00136 0.00760 0.00760 0.00502 0.00293 0.00005 0.00005 0.00003 0.00001] 0.0090| 0.0277| 0.0671] 0.2776|
10| 5 [0.032220.00357 0.00248 0.00149 0.11295 0.00796( 0.00549 0.00330 0.00483 0.00005 0.00003 0.00002 0.0096| 0.0246( 0.0558| 0.2149
10 |0.05503 0.00347 0.00239 0.00141] 0.19401} 0.00804f 0.00556 0.00328 0.00994 0.00005 0.00003 0.00001 0.0090| 0.0223| 0.0495| 0.1716|

0 0.05827 0.0403§ 0.01579 0.13204 0.08833 0.0344( 0.00650] 0.00387 0.00105 0.0106]0.01420.0382
MC| 5 0.05973 0.03692 0.01355 0.13831{0.08213 0.03001) 0.00696( 0.00348 0.00099 0.0102(0.0130/ 0.0342
10 0.05866 0.03416 0.01075 0.141200.07791 0.02488 0.00694| 0.00326 0.00075 0.0099| 0.0116/ 0.0321
Grid network, N=81, K=2, evid=5, w*=12 Grid network, N=81, K=2, evid=5, w*=12
0.010 7e-5
——— WGP1it —=— 1JGP 20 iterations
WGP 2t (at convergence)
el
* — -m— GPI0it
——o—— MC 5e-5
0.006 ——4—— IBP1it
g 3 9
8 ST bsi £ s
2 0004 ———-—— IBP5it il
° ——@—=- IBP10it T
z 2. 3e-5
0.002
2e-5
0.000 le-5
1 0
o 1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11
i-bound i-bound
a) Performance vs. i-bound b) Fine granularity for KL

Figure 4.19: Grid 9x9: KL distance

Grid network  results with networks of N=81, K=2, 100 instances are vemilar to

those of random networks. They are reported in Table 4.8 maurfdgure[4.1D, where we
can see the impact of having evidence (0 and 5 evidence l@g)abn the algorithms.
IJGP at convergence gives the best performance in both,cakéde IBP’s performance

deteriorates with more evidence and is surpassed by MC vitund 5 or larger.

CPCS network results with CPCS54 and CPCS360 are given in Table 4.9 and Figure
4.20, and are even more pronounced than those of random @hdegworks. When evi-
dence is added, IJGP(i) is more accurate than MC(i), whichageraccurate than IBP, as

can be seen in Figure 4]20a.

Coding network results are given in Table 4]10. We tested on large netwdrko

variables, with treewidth w*=43, with IJGP and IBP set to runiterations (this is more
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Table 4.9: CPCS54 50 instances, w*=15; CPCS360 10 instance0n*=

Absolute error Relative error KL distance Time

1BP | 1JGP BP | 1JGP IBP | JGP BP | 1JGP

#it [#evid [ =2 ] 1=5 ] =8 [ 1=2 ] 1=5 ] =8 [ =2 ] =5 ] 1=8 [ =2 ] 1=5 ] 1=8
CPCS54
0.013240.037470.03183 0.02233 0.02716] 0.08966] 0.07761[ 0.05616] 0.00041]0.00583 0.00512 0.00378 0.00970.0137] 0.0146] 0.0275|
0.02684 0.03739 0.03124] 0.02337 0.05736| 0.09007| 0.07676| 0.05856| 0.00199|0.00573 0.00493 0.00366 0.0072|0.0094| 0.0087|0.0169
0.03915 0.03843 0.03426 0.02747 0.08475| 0.09156| 0.08246| 0.06687| 0.00357|0.00567 0.00506 0.00390 0.005 |0.0047| 0.00520.0115|
0.00031 0.00016 0.00123 0.0011( 0.00064| 0.00033| 0.00255| 0.00225| 7.75e-7|0.00000 0.00002 0.00001] 0.0371]0.0334] 0.0384]0.0912]
0.01874 0.00058 0.00092| 0.00098 0.04067| 0.00124| 0.00194| 0.00203| 0.00161|0.00000 0.00001 0.00001f 0.0337 | 0.0215| 0.0260| 0.0631|
0.03348 0.00101 0.00139 0.00144 0.07302| 0.00215| 0.00298| 0.00302| 0.00321|0.00001{ 0.00003 0.00002 0.0290|0.0144| 0.0178|0.0378
0.00031] 0.00009 0.00014) 0.00015 0.00064| 0.00018| 0.00029| 0.00031| 7.75e-7| 0.0000|0.00000 0.00000 0.0736|0.0587| 0.0667(0.1720|
0.01874 0.00037 0.000341 0.00038 0.04067| 0.00078| 0.00071| 0.00080| 0.00161|0.00000 0.0000Q 0.00000 0.0633|0.0389 0.0471/0.1178
0.03348 0.00058 0.00051] 0.00057 0.07302| 0.00123| 0.00109| 0.00122| 0.00321| 4.0e-6 | 3.0e-6 | 4.0e-6 | 0.0575|0.0251] 0.0297|0.0723
0.02721) 0.024870.01486 0.05648| 0.05128( 0.03047 0.00218 0.00171 0.00076 0.0144 0.0125/ 0.0333
0.02702 0.02522/0.01760 0.05687| 0.05314| 0.03713 0.00201 0.00186 0.00098 0.0103 0.0126|0.0346
0.02825 0.025041 0.01600 0.06002| 0.05318( 0.03409 0.00216 0.00177 0.00091) 0.0094] 0.0090| 0.0295

CPCS360
1 | 10 |0.26421{0.142220.13907/0.14334 7.78167| 2119.20| 2132.78| 2133.84| 0.17974|0.09297/0.09151 0.09255 0.7172|0.5486| 0.5282 0.4593
20 |0.26326 0.128670.129370.13665 370.444|28720.34 30704.93 31689.59 0.17845|0.08212 0.08269 0.08568 0.6794 | 0.5547| 0.5250| 0.4578|
10 | 10 [0.017720.00694 0.001210.00258 1.06933| 6.07399| 0.01005| 0.04330(0.01771§ 0.00203 0.00019 0.0011§ 7.2205|4.7781 4.51913.7906
20 |0.02413 0.00466 0.001150.00138 62.9931( 26.04308 0.00886| 0.01353| 0.02027|0.00118 0.00015 0.00036 7.0830 | 4.8705| 4.6468| 3.8392,
20 | 10 |0.017720.00003 3.0e-6 | 3.0e-6 | 1.06933| 0.00044| 8.0e-6 | 7.0e-6 | 0.01771| 5.0e-6| 0.0 0.0 [14.43799.5783 9.0770] 7.6017|
20 |0.02413 0.00001 9.0e-6 | 9.0e-6 | 62.9931| 0.00014| 0.00013| 0.00004| 0.02027| 0.0 0.0 0.0 |13.6064 9.45829.0423| 7.4453

10

MC

= = = =
SuoBuolBuolguo

MC| 10 0.03389 0.01984] 0.01402 0.65600( 0.20023| 0.11990 0.01299 0.00590 0.00390 2.8077|2.7112|2.5188
20 0.02715 0.01543 0.00957| 0.81401| 0.17345( 0.09113 0.01007) 0.00444 0.00234 2.85322.7032| 2.5297
CPCS360, evid=10, w*=20 CPCS360, evid=10, w*=20
0.20 4 6e-6
——— WUGP1it —e— 1JGP 20 iterations
0.18 4 L o. GP 10it (at convergence)
——-%—— NGP20it 5e-6
0.16 4 —g— - MC
0.14 1 j:}i }‘;E 1;'« 4e-6
© 0.12 1 ——¢—— IBP20it °
8 3
S 0104 g 36
5 0084 3 2e6
* 0.06 X
0.04 le-6
0.02 q ¢ o
0.00 S—
o 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 11
i-bound i-bound
a) Performance vs. i-bound b) Fine granularity for KL

Figure 4.20: CPCS360: KL distance

than enough to ensure convergence). IBP is known to be veryatecfor this class of
problems and it is indeed better than MC. It is remarkable kewthat IJGP converges
to smaller BER than IBP even for small values of the i-bound. Bbéhcoding network
and CPCS360 show the scalability of IJGP for large size prohleNotice that here the

anytime behavior of IJGP is not clear.

4.3.6 Discussion

In this section we presented an iterative anytime appratkamalgorithm called Iterative

Join-Graph Propagation (IJGP(i)), that applies the mespagsing algorithm of join-tree
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Table 4.10: Coding networks: N=400, P=4, 500 instances e3atibns, w*=43

Bit Error Rate
i-bound

o 2 4 6 8 10 IBP
0.22| 1JGP| 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005
MC | 0.00501} 0.00800 0.00586 0.00462 0.00392)
0.28| 1JGP| 0.00062 0.00062 0.00062 0.00062 0.00062 0.00064
MC |0.02170 0.02968 0.02492 0.02048 0.01840
0.32[1JGP| 0.00238 0.00238 0.0023§ 0.00238 0.00238 0.00242
MC |0.04018 0.05004 0.04480 0.03878 0.03558
0.40[1JGP|0.01202 0.01188 0.01194 0.01210/ 0.01192 0.01220
MC |0.087260.09762 0.09272 0.08766 0.08334|
0.51[1JGP|0.07664 0.07498 0.07524 0.07578 0.07554 0.07816
MC |0.15396 0.16048 0.15710 0.15452 0.15180
0.65| 1JGP|0.19070 0.19056 0.19016 0.19030 0.1905¢ 0.19142
MC |0.21890 0.22056 0.21928 0.21904 0.21830

Time
1JGP[0.36262 0.41695 0.86213 2.62307 9.23610[ 0.01975;
MC |0.25281{ 0.21816 0.31094 0.74851] 2.3325

clustering to join-graphs rather than join-trees, iteyi. The algorithm borrows the it-
erative feature from Iterative Belief Propagation (IBP) o ¢vand and is inspired by the
anytime virtues of mini-clustering MC(i) on the other. We shihat the success of IJGP is
facilitated by extending the notion of join-graphs to miainarc-labeled join-graphs, and
provide a structuring algorithm that generates minimallabeled join-graphs of bounded
size.

The empirical results are extremely encouraging. We erparied with randomly gen-
erated networks, grid-like networks, medical diagnosis CiR€8vorks and coding net-
works. We showed that IJGP is almost always superior to bBkth dnd MC(i) and is
sometimes more accurate by an order of several magnitudes. skbuld note that IBP
cannot be improved with more time, while MC(i) requires a éargpound for many hard
and large networks to achieve reasonable accuracy. Thamedsestion that the iterative
application of IJGP is instrumental to its success. In fRBP(2) in isolation appears to
be the most cost effective variant.

One question which we did not answer in this section is whypagating the mes-
sages iteratively helps. Why is IJGP upon convergence, supelJGP with one iteration
and is superior to MC(i)? One clue can be provided when consgleeterministic con-
straint networks which can be viewed as "extreme probaiailisetworks”. It is known

that constraint propagation algorithms, which are analego the messages sent by belief
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propagation, are guaranteed to converge and are guardaataegdrove with convergence.
The propagation scheme presented here works like corispraipagation relative to the
flat network abstraction aP, (where all non-zero entries are normalized to a positive co
stant), and is guaranteed to be more accurate for that atistraat least. It is precisely

these issues that we address in Sedfioh 4.4.

4.4 The Inference Power of Iterative Belief Propagation

A good fraction of our current research is devoted to stuglyite properties ofterative
Belief Propagation (IBP)and of the generalized belief propagation verdterative Join-
Graph Propagation (IJGR)We are particularly interested in making connections td we
known algorithms from constraint networks, like Arc-catency, which may help explain
when and why IBP has strong or weak inference power.

The belief propagation algorithm is a distributed algaritthat computes posterior be-
liefs for tree-structured Bayesian networks (poly-tre&§)[ However, in recent years it
was shown to work surprisingly well in many applicationsdtwng networks with loops,
including turbo codes, when applied iteratively[89]. Anet recent resuli [69] shows im-
pressive performance for an iterative message passingnechsed for very large satisfia-
bility problems. While there is still very little understangd as to why and when IBP works
well, some recent investigation shows that when IBP congiiggeonverges to a stationary
point of the Bethe energy, thus making connections to appraton algorithms developed
in statistical physics and to variational approaches ta@pmate inference [100, 102].
However, these approaches do not explain why IBP is sucdegkére it is, and do not
allow any performance guarantees on accuracy.

The work we present here is based on some some simple ohsesvidtat may shed
light on IBP’s behavior, and on the more general class of 1JI@Brighms. Zero-beliefs

are variable-value pairs that have zero conditional pritibabiven the evidence. We show
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that: if a value of a variable is assessed as having zerefhaliany iteration of IBP, it

remains a zero-belief in all subsequent iterations; that fiBieely converges relative to
its set of zero-beliefs; and, most importantly that the $etevo-beliefs decided by any
of the iterative belief propagation methods is sound. Ngrael zero-belief determined
by IBP corresponds to a true zero conditional probabilitatre to the given probability
distribution expressed by the Bayesian network.

While each of these claims can be proved directly, our appragato associate a be-
lief network with a constraint network and show a correspmug between IBP applied
to the belief network and an arc-consistency algorithmiagdgo the corresponding con-
straint network. Since arc-consistency algorithms aré welerstood this correspondence
not only proves right away the targeted claims, but may pi®wadditional insight into the
behavior of IBP and IJGP. In particular, not only it immedigfestifies the iterative appli-
cation of belief propagation algorithms on one hand, bulsib #dluminates its "distance”

from being complete, on the other.

4.4.1 Arc-Consistency Algorithms

Constraint propagatioralgorithms is a class of polynomial time algorithms thatatrénhe
center of constraint processing techniques. They weresiigaged extensively in the past

three decades and the most well known versiongare path- andi-consistency27].

DEFINITION 4.4.1 (arc-consistency)68] Given a binary constraint networkX, D, C),
the network is arc-consistent iff for every binary consttaiy, € C, every values € D;

has avalue: € D; s.t. (v, u) € R;;.

When a binary constraint network is not arc-consistentcartsistency algorithms can
enforce arc-consistency. The algorithms remove values thee domains of the variables
that violate arc-consistency until an arc-consistent netvis generated. A variety of im-

proved performance arc-consistency algorithms were dpeel over the years, however
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we will consider here a non-optimal distributed version,ickhwe call distributed arc-

consistency

DEFINITION 4.4.2 (distributed arc consistency, DAC)Distributed arc  consistency
(DAC) is a message passing algorithm. Each node maintainsrartiset of viable values
D;. Letne(i) be the set of neighbors df; in the constraint graph. Every nodg; sends

a message to any nodg¥; € ne(i), which consists of the values iki;'s domain that
are consistent with the currerd;, relative to the constraint that they share. Namely, the

message thak’; sends taX;, denoted b)Df, is:
D} « mj(R;i X D) (4.1)

(where, join &) and project {r) are the usual relational operators) and in addition nade
computes:

Di — D,L N (Nkene(i) DZ) (42)

Clearly the algorithm can be synchronized into iterationsesg in each iteration ev-
ery node computes its current domain based on all the messageived so far from its
neighbors (eq[_4l2), and sends a new message to each ne{ghjbgt.l). Alternatively,
equation$ 411 arid 4.2 can be combined. The mes¥agends taX; is:

Di «— Wj(Rji X Dz MkEne(i) DZ‘) (43)

Let us mention again the definition of the dual graphs, whiehwill be using in this

section:

DEFINITION 4.4.3 (dual graphs) Given a set of function$’ = {fi,..., f;} over scopes
Si, ..., S, the dual graph of' is a graphDG = (V, E, L) that associates a node with each

function, namely/ = F' and an arc connects any two nodes whose scope share a variable,
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Figure 4.21: Part of the execution of RDAC algorithm

E=A{(fi, f;)|5:NS; # ¢} . Lis aset of labels for the arcs, each arc being labeled by the

shared variables of its nodes,= {l;; = S; N S;|(i,j) € E}.

The above distributed arc-consistency algorithm can bé&eapio the dual problem of
any non-binary constraint network as well. This is accosf@d by the following rule
applied by each node in the dual graph. We call the algoritblational distributed arc-
consistency (RDAC).

DEFINITION 4.4.4 (relational distributed arc-consistency, RDAC)Let R; and R; be two
constraints sharing scopes, whose arc in the dual graph isl&bbyl;;. The messag®;

sends taR; denoted:! is defined by:
hi =, (Ri X (Mieneqs) i) (4.4)
and each node updates its current relation according to:

Ri — Rz N (Nkéne(i) hZ) (45)

Example 4.4.1 Figure[4.21 describes part of the execution of RDAC for a graploring
problem, having the constraint graph shown on the left. Allaldes have the same do-

main,{1,2,3}, except forC which is 2, and7 which is 3. The arcs correspond tot equal
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constraints, and the relations a4, Rag, Rac, Rasp, Recr, Rprg. The dual graph
of this problem is given on the right side of the figure, andhetble shows the initial
constraints (there are unary, binary and ternary constta)n To initialize the algorithm,
the first messages sent out by each node are universal netativer the labels. For this
example, RDAC actually solves the problem and finds the argglution A=1, B=3, C=2,
D=2, F=1, G=3.

Proposition 18 Relational distributed arc-consistency converges aftét - ) iterations
to the largest arc-consistent network that is equivalentht® original network, where

bounds the number of tuples in each constraint amlthe number of constraints.

Proposition 19 (complexity) The complexity of distributed arc-consistency is

O(r*t*logt).

Proof. One iteration can be accomplished(r - ¢ - logt), and there can be at mast ¢

iterations. O

4.4.2 lterative Belief Propagation over Dual Join-Graphs

Iterative belief propagation (IBP) is an iterative applioatof Pearl’s algorithm that was
defined for poly-trees [86]. Since it is a distributed algfom, it is well defined for any
network. In this section we will present IBP as an instancewf-graph propagation over
variants of thedual graph

Consider a Bayesian netwotk=< X, D, G, P >. As defined earlier, thdual graph
Dg of the Belief networks3, is an arc-labeled graph defined over the CPTs as its functions
Namely, it has a node for each CPT and a labeled arc connectyniyva nodes that share
a variable in the CPT’s scope. The arcs are labeled by thedkar@ables. Adual join-
graphis a labeled arc subgraph &f; whose arc labels are subsets of the label®gf
such that theunning intersection propertyalso callecconnectedness properig satisfied.

The running intersection property requires that any twoesdthat share a variable in the
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Figure 4.22: a) A belief network; b) A dual join-graph witmgleton labels; c) A dual
join-graph which is a join-tree

dual join-graph be connected by a path of arcs whose labeksicothe shared variable.
Clearly the dual graph itself is a dual join-graph. Arc-minimaldual join-graph is a
dual join-graph for which none of the labels can be furtheluced while maintaining the
connectedness property.

Interestingly, there are many dual join-graphs of the sanaé graph and many of them
are arc-minimal. We define lterative Belief Propagation omual gbin-graph. Each node
sends a message over an arc whose scope is identical to ¢hetettat arc. Since Pearl’s
algorithm sends messages whose scopes are singletonlesraily, we highlight arc-
minimal singleton dual join-graph. One such graph can besttoated directly from the
graph of the Bayesian network, labeling each arc with thempasriable. It can be shown

that:

Proposition 20 The dual graph of any Bayesian network has an arc-minimal ¢hiat

graph where each arc is labeled by a single variable.

Example 4.4.2 Consider the belief network on 3 variabled, B,C with CPTs
1.P(C|A, B), 2.P(B|A) and 3P(A), given in Figurd 4.2Ra. Figure'4.22b shows a dual
graph with singleton labels on the arcs. Figlire 4.22c showsa draph which is a join
tree, on which belief propagation can solve the problem dxatbne iteration (two passes

up and down the tree).

For complete reference, we will next present IBP algorithat ik applicable to any

dual join-graph (Figure 4.23). The algorithm is a specialecaf IJGP introduced in [39].
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Algorithm IBP
Input: An arc-labeled dual join-grapi®®J = (V,E, L) for a Bayesian networlBN =<
X,D,G, P >. Evidencee.
Output: An augmented graph whose nodes include the original CPT thentiessages received
from neighbors. Approximations d?(X;|e), VX, € X. Approximations ofP(F;|e), VF; € B.
Denote by:h? the message from to v; ne(u) the neighbors of, in V; ne, (u) = ne(u) — {v};
Ly the label of(u, v) € E; elim(u,v) = scope(u) — scope(v).
e One iteration of IBP
For every nodes in DJ in a topological order and back, do:
1. Process observed variables
Assign evidence variables to the eagland remove them from the labeled arcs.
2. Compute and send tov the function:

W= > (u- I A

elim(u,v) {h¥i€ne,(u)}

Endfor
e Compute approximations of P(F;le), P(X;|e):
For everyX; € X letu be the vertex of family¥; in D.J,
P(File) = a(th,uene(i) hi') - pu;
P(Xile) = aZscope(u)—{X,;} P(File).

Figure 4.23: Algorithm Iterative Belief Propagation

It is easy to see that one iteration of IBP is time and spaceadimethe size of the belief
network, and when IBP is applied to the singleton labeled duaph it coincides with
Pearl’s belief propagation applied directly to the acygriaph representation. For space
reasons, we do not include the proof here. Also, when the joualgraph is a tree IBP

converges after one iteration (two passes, up and downdhbgtt the exact beliefs.

4.4.3 The Flat Bayesian Network

Given a belief networls we will now define a flattening of the Bayesian network into a
constraint network calledliat(B) where all the zero entries in the CPTs are removed from
the corresponding relationflat(B) is a constraint network defined over the same set of
variables and has the same set of domain valués &ormally, for everyX; and its CPT
P(X;|pa;) € B we define a constrainkg, over the family ofX;, F; = {X;} U pa, as

follows: for every assignment = (z;, z,,,) t0 F;,
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(i, Tpa;) € R, if f P(wi|xpe,) > 0.
The evidence set = {e, ..., e, } is mapped into unary constraints that assign the corre-

sponding values to the evidence variables.

THEOREM4.4.3 Given a belief networl8 and evidence, for any tuplet: Ps(tle) > 0 <

t € sol(flat(B,e)).

Proof. Pg(tle) > 0 < 1L, P(z;|%pa,)

t > 0 Vi, P(x|p,,)

r > 0 Vi, (T4, Tpa;)

t € RFl
&t € sol(flat(B,e)), where|, is the restriction ta. O

We next define an algorithm dependent notion of zero tuples.

DEFINITION 4.4.5 (IBP-zero) Given a CPTP(X;|pa;), an assignment = (x;, ,,,) t0

its family F; is IBP-zeroif some iteration of IBP determines th&{(x;|z,,,, ¢) = 0.

Itis easy to see that when IBP is applied to a constraint n&twbere sum and product
are replaced by join and project, respectively, it becordestical to distributed relational
arc-consistency defined earlier. Therefore, a partiaktigogfemoved from a flat constraint

by arc-consistency iff it is IBP-zero relative to the Bayesiatwork.

THEOREM4.4.4 When IBP is applied in a particular variable ordering to a dyain-
graph of a Bayesian netwot, its trace is identical, relative to zero-tuples generatito
that of RDAC applied to the corresponding flat dual join-gnaplamely, taking a snapshot
at identical steps, any IBP-zero tuple in the Bayesian nétvi®ia removed tuple in the

corresponding step of RDAC over the flat dual join-graph.

Proof. It suffices to prove that the first iteration of IBP and RDAC gees the same
zero tuples and removed tuples, respectively. We prove lthe @y induction over the
topological ordering that defines the order in which message sent in the corresponding
dual graphs.

Base caseBy the definition of the flat network, when algorithms IBP and RDgtart,

every zero probability tuple in one of the CPTFy, in the dual graph of the Bayesian
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network, becomes a removed tuple in the corresponding@onisk -, in the dual graph of
the flat network.

Inductive step:Suppose the claim is true aftercorrespondent messages are sent in IBP
and RDAC. Suppose th@: + 1)th message is scheduled to be the one from node
nodev. Indexing messages by the name of the algorithm, in the daalhgof IBP, node

u containsp,, andh;gpy, i € ne,(u), and in the dual graph of RDAC, nodecontainski,
andhgrpacy,i € ne,(u). By the inductive hypothesis, the zero tuplegjirandh;pp;', i €
ne,(u) are the removed tuples iR, andhrpac;,i € ne,(u), respectively. Therefore, the

zero tuples in the produép,, - (] | h!) correspond to the removed tuples in the join

iEnev(u))
(Ry ™M (Miene, (uy)hy). This proves that the zero tuples in the message of IBP

hiBPy = 2 ctim(uw)(Pu * (I Licne, @) i), cOrrespond to the removed tuples in the message
of RDAC

hrpacy = T, (Bu M (Micne, () i)

The same argument can now be extended for every iteratidrealgorithms. O

Corollary 2 Algorithm IBP zero-converges. Namely, its set of zero tughdbes not change

aftert - r iterations.

Proof. From Theoreni 4.414 any IBP-zero is a no-good removed by arsistency over

the flat network. Since arc-consistency converges, thendialiows. O

THEOREM4.4.5 When IBP is applied to a dual join-graph of a Bayesian netwairky

tuplet that is IBP-zero satisfieBs(t|e) = 0.

Proof. From Theoreri 4.414 if a tupleis IBP zero, it is also removed from the correspond-
ing relation by arc-consistency ovétat(B,e). Therefore this tuple is a no-good of the

network flat(B, e) and, from Theorern 4.4.3 it follows thé&k(t|e) = 0. O
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Figure 4.24: a) A belief network; b) An arc-minimal dual jegnaph
Zeros are Sound for any IJGP

The results for IBP can be extended to the more general cladgarithms calledterative
join-graph propagationlJGP [39]. IJGP can be viewed as a generalized belief padjmag
algorithm and was shown to benefit both from the virtues oattee algorithms and from
the anytime characteristics of bounded inference provimechini-buckets schemes.

The message-passing of IJGP is identical to that of IBP. Tifiereince is in the under-
lying graph that it uses. IJGP typically has an accuracymatar: called i-bound, which
restricts the maximum number of variables that can appeamiode (cluster). Each clus-
ter contains a set of functions. 1IJGP performs messagengass a graph calledhinimal
arc-labeled join-graph

It is easy to define a corresponding RDAC algorithm that opsran a similar minimal
arc-label join-graph. Initially, each cluster of RDAC camtain a number of relations,
which are just the flat correspondents of the CPTs in the ¢ckistdJGP. The identical me-
chanics of the message passing ensure that all the preesulssfor IBP can be extended

to 1IIGP.

The Inference Power of IBP

We will next show that the inference power of IBP is sometimesyJimited and other

times strong, exactly wherever arc-consistency is weakrong.

Cases of weak inference power
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Example 4.4.6 Consider a belief network over 6 variablés, X,, X3, H,, H,, H3 where
the domain of theX variables is{1, 2, 3} and the domain of thé&/ variables is{0, 1} (see
Figurd4.24a). There are three CPTs over the scopsi, X1, Xo}, {H2, Xo, X3}, and
{Hs, X1, X3}. The values of the CPTs for every triplet of variab{é$,, X;, X} are:

Loif 3#x #x;#3);
P(hy = 1|z;, 25) = L, if (z;=x; =3);
0, otherwise ;

P(hy =0|z;,z;) = 1— P(hy = 1|z, x;).

Consider the evidence set= {H; = H, = H3 = 1}. One can see that this Bayesian
network expresses the probability distribution that is cantecated in a single tuple:

Py, 9, 23]¢) = 1, if 1 =20 =123=3;

0, otherwise.

In other words, any tuple containing an assignment of "1” or”#r any X variable has a
zero probability. The flat constraint network of the abovedieletwork is defined over the
scopesS; = {Hy, X1, Xo}, So = {Hs, Xo, X3}, S35 = {Hjs, X1, X3}. The constraints are
defined by:Ry, x, x, = {(1,1,2), (1,2,1), (1,3,3), (0,1,1), (0,1,3), (0,2,2), (0,2,3),
(0,3,1), (0,3,2)}. Also, the prior probabilities forX;'s become unary constraints equal
to the full domain{1,2,3} (assuming the priors are non-zero). An arc-minimal duahjoi
graph which is identical to the constraint network is given igufe[4.24b.

In the flat constraint network, the constraints in each noderastricted after assigning
the evidence values (see Figlre 4.24b). In this case, RDAGssas messages the full
domains of the variables and therefore no tuple is removad finy constraint. Since IBP
infers the same zeros as arc-consistency, IBP will alstinfer any zeros for any family
or any single variable. However, since the true probabilitymmst tuples is zero we can

conclude that the inference power of IBP on this example is weakn-existent.
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The weakness of arc-consistency as demonstrated in thmpdgas not surprising.
Arc-consistency is known to be a weak algorithm in genetainplies the same weakness
for belief propagation and demonstrates that IBP is veryrtanfcompleteness, at least as
long as zero tuples are concerned.

The above example was constructed by taking a specific @amistietwork with known
properties and expressing it as a belief network using a kricamsformation. We associate
each constrainks with a bi-valued new hidden variablé,,, direct arcs from the constraint
variables to this new hidden variahlg,, and create the CPT such that:

P(xp =1|2p,,) =1 ,iff 2pa, € Rs.
while zero otherwis€ [86]. The generated belief networkditioned on all theX;,, vari-

ables being assigned "1” expresses the same set of solatsahe constraint network.

Cases of strong inference power The relationship between IBP and arc-consistency en-
sures that IBP is zero-complete whenever arc-consistendy igeneral, if for a flat con-
straint network of a Bayesian netwolk arc-consistency removes all the inconsistent do-
main values (it creates minimal domains), then IBP will algzaver all the true zeros of
B. We next consider several classes of constraints that amerkto be tractable.

Acyclic belief networks.When the belief network is acyclic, namely when it has a dual
join-graph that is a tree, the flat network is an acyclic caist network that can be shown
to be solvable by relational distributed arc-consisterit®|.[ Note that acyclic Bayesian
networks is a strict superset of polytrees. The solutiomireg only one iteration (two

passes) of IBP. Therefore:

Proposition 21 IBP is complete for acyclic networks, when applied to the trel gbin-

graph (and therefore it is also zero-complete).

Example 4.4.7 We refer back to the example of Figlre 4.22. The network isliadye-
cause there is a dual join-graph that is a tree, given in Fegdr22c, and IBP will be

zero-complete on it. Moreover, IBP is known to be complethigdase.

155



Belief networks with no evidenceAnother interesting case is when the belief network
has no evidence. In this case, the flat network always carnelspto thecausal constraint
networkdefined in [42]. The inconsistent tuples or domain valuesaineady explicitly
described in each relation, and new zeros do not exist. thdeés easy to see (either

directly or through the flat network) that:

Proposition 22 IBP is zero-complete for any Bayesian network with no evidence

In fact, it can be showri [9] that IBP is also complete for norezgosterior beliefs of

many variables when there is no evidence.

Max-closed constraints Consider next the class of Max-closed relations defined las fo
lows. Given a domairD that is linearly ordered lé¥lax be a binary operator that returns
the largest element among 2. The operator can be appliedipestby taking the pair-wise

operation[[56].

DEFINITION 4.4.6 (Max-closed relations)A relation is Max-closed if whenever, t; € R

soisMax(ty,ty). A constraint network is Max-closed if all its constrainte &Max-closed.

It turns out that if a constraint network is Max-closed, ihdze solved by distributed
arc-consistency. Namely, if no domain becomes empty by ttxe@nsistency algorithm,
the network is consistent. While arc-consistency is not gui@ed to generate minimal
domains, thus removing all inconsistent values, it can ggae solution by selecting the
maximal value from the domain of each variable. Accordingliile IBP will not neces-
sarily discover all the zeros, all the largest non-zeroesin the domains of each variable
are true non-zeros.

Therefore, for a belief network whose flat network is Maxseld IBP is likely to be

powerful for generating zero tuples.
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Figure 4.25: a) A belief network that corresponds to a Mapsetl relation; b) An arc-
minimal dual join-graph

Example 4.4.8 Consider the following belief network: There are 5 variables

{V,W, XY, Z} over domaing1, 2, 3,4,5}. and the following CPTs:

P(z|z,y,w) £0, iff 3v+y+z>50+1
Plwly,z) #0, iff wz>2y

P(yl|z) # 0, iff y>z+2

P(v|z) #0 iff 3v<z+1

(

P(Z =i)=1/4, i€{1,2,3,4}

All the other probabilities are zero. Also, the domain of Vsloaot include 3 and the
domain z does not include 5. The problem’s acyclic graphvsmin Figurd 4.2ba. It is
easy to see that the flat network is the set of constraints treeaithove specified domains:
w#3,z#53w<z2z4+1L,y>z2z+2,3x+y+2z>50+1, wz > 2y. An arc-
minimal dual join-graph with singleton labels is given in Big[4.25b. It has 5 nodes, one
for each family in the Bayesian network. If we apply relatiodistributed consistency we
will get that the domains areDy = {1}, Dy = {4}, Dx = {3,4,5}, Dy = {4,5} and
Dz = {2,3}. Since all the constraints are Max-closed and since ther@ismpty domain
the problem has a solution given by the maximal values in dadmain: V' = 1, W = 4,

X =5,Y =5, 7 = 3. The domains are not minimal however: there is no solutionrtayv
X=30rX =4.

Based on the correspondence with arc-consistency, we kndvapipdying IBP to the

157



dual join-graph will indeed infer all the zero domains exctdmise ofX, which validates

that IBP is quite powerful for this example.

The above example is suggested by a general scheme fomgréatief networks that
correspond to Max-closed constraints (or any other langudgonstraints): First, create
an acyclic graph, then, associate with each node and itsifgasemax-closed probability
constraint.

An interesting case for propositional variables is the clakHorn clauses. A Horn
clause can be shown to be Min-closed (by simply checking slets). If we have an
acyclic graph, and we associate every family with a Hornsgeexpressed as a CPT in the
obvious way, then applying Belief propagation on a dual giaph can be shown to be
nothing but the application of unit propagation until theseno change. It is well known
that unit propagation decides the consistency of a set ohldtauses (even if they are
cyclic). However, unit propagation will not necessarilyngeate the minimal domains, and

thus not infer all the zeros, but it is likely to behave well.

Implicational constraints.Finally, a class that is known to be solvable by path-coesist

is implicational constraints, defined as follows:

DEFINITION 4.4.7 A binary network is implicational, iff for every binary relah every
value of one variable is consistent either with only one or witithe values of the other

variable [60]. A Bayesian network is implicational if its flabnstraint networks is.

Clearly, a binary function is an implicational constraintin& IBP is equivalent to
arc-consistency only, we cannot conclude that IBP is zernptete for implicational con-
straints. This raises the question of what corresponds tto-gansistency in belief net-

works, a question which we do not attempt to answer at thistpoi
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Priorfor X | #iter |Bel(X, = 1): Bel(X, = 2): Bel(X; = 3)
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2 49721 49721 .00545
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Figure 4.26: Example of a finite precision problem
A Finite Precision Problem

Algorithms should always be implemented with care on finitecpsion machines. We
mention here a case where IBP’s messages converge in théilanih an infinite number
of iterations), but they do not stabilize in any finite numbénrterations. Consider again
the example in Figure_4.24 with the priors éi)’'s given in Figurd 4.26. If all node#l,,
are set to value 1, the belief for any of the variables as a function of iteration is given in
the table in Figuré 4.26. After about 300 iterations, thedipirecision of our computer is
not able to represent the value Bel(X; = 3), and this appears to be zero, yielding the
final updated belief.5, .5, 0), when in fact the true updated belief should(BeD, 1). This
does not contradict our theory, because mathematidadly(,X; = 3) never becomes a true

zero, and IBP never reaches a quiescent state.

4.4.4 Experimental Evaluation

We tested the performance of IBP and IJGP both on cases ofysamuh weak inference
power. In particular, we looked at networks where probaédiare extreme and checked if

the properties of IBP with respect to zeros also extendstmall beliefs.
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Figure 4.28: 10x10 grids, 100 instances, w*=15

Accuracy of IBP Across Belief Distribution

0.05

We investigated empirically the accuracy of IBP’s predictacross the range of belief
values from 0 to 1. Theoretically, zero values inferred by BE proved correct, and we
hypothesize that this property extends &mall beliefs. That is, if the flat network is easy
for arc-consistency and IBP infers a posterior belief claseero, then it is likely to be
correct.

To capture the accuracy of IBP we computed its absolute emompervals of]0, 1].
Using names inspired by the well known measures in inforonatetrieval, we us®ecall
Absolute Errorand Precision Absolute Errar Recallis the absolute error averaged over
all the exact posterior beliefs that fall into the interviabr Precision the average is taken
over all the approximate posterior belief values computetBl® that fall into the interval.
Our experiments show that the two measures are stronglglated. We also show the

histograms of distribution of belief for each interval, the exact and for IBP, which are
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Figure 4.29: Random, N=80, 100 instances, w*=15

also strongly correlated. The results are given in Figur2@{4.30. The left Y axis corre-
sponds to the histograms (the bars), the right Y axis coordpto the absolute error (the
lines). All problems have binary variables, so the graplessgmmetric about 0.5 and we
only show the interval [0, 0.5]. The number of variables, emof iterations and induced
width w* are reported for each graph.

Coding networks are the famous case where IBP has impressive performancegrdie
lems are from the class of linear block codes, with 50 nodesayer and 3 parent nodes.
Figure[4.2V shows the results for three different valueshahael noise: 0.2, 0.4 and 0.6.
For noise 0.2, all the beliefs computed by IBP are extreme. Réwall and Precision are
very small, of the order af0~!!. So, in this case, all the beliefs are very sma#irpall) and
IBP is able to infer them correctly, resulting in almost petfeccuracy (IBP is indeed per-
fect in this case for the bit error rate). When the noise isgased, the Recall and Precision
tend to get closer to a bell shape, indicating higher ernovétues close to 0.5 and smaller
error for extreme values. The histograms also show thatdeksf values are extreme as
the noise is increased, so all these factors account foremalbdecrease in accuracy as the
channel noise increases.

Grid networks results are given in Figufe 4]28. Contrary to the case of gpdéiworks,
the histograms show higher concentration around 0.5. Thelate error peaks closer to 0
and maintains a plateau, as evidence is increased, intidass accuracy for IBP.

Random networksresults are given in Figufe 4]29. The histograms are sirtoldnose
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of the grids, but the absolute error has a tendency to dexteasrds 0.5 as evidence
increases. This may be due to the fact that the total numbeodads is smaller (80) than
for grids (100), and the evidence can in many cases make tidepn easier for IBP by
breaking many of the loops (in the case of grids evidenced®ssimpact in breaking the
loops).
CPCS networksare belief networks for medicine, derived from the Computeseal Pa-
tient Case Simulation system. We tested on two networks, dtand 360 variables. The
histograms show opposing trends in the distribution ofdégli Although irregular, the ab-
solute error tends to increase towards 0.5 for cpcs54. Fes360 it is smaller around O
and 0.5.

We note that for all these types of networks, IBP has very sataiblute error for values

close to zero, so it is able to infer them correctly.

Graph-coloring type problems

We also tested the behavior of IBP and IJGP on a special clagsobfems which were
designed to be hard for belief propagation algorithms inegain based on the fact that
arc-consistency is poor on the flat network.

We consider a graph coloring problem which is a generabpati examplé 4.416, with
N = 20 X nodes, rather than 3, and a variable numbefl afodes defining the density of

the constraint graphX variables are 3-valued root nodd€,variables are bi-valued and
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Table 4.11: Graph coloring type problems: 20 root variables

[ Absolute error ]
€ |H=40, w*=5|H=60, w*=7|H=80, w*=9
0.0 0.4373 0.4501 0.4115
IBP |0.1| 0.3683 0.4497 0.3869
0.2 0.2288 0.4258 0.3832
0.0 0.1800 0.1800 0.1533
IJGP(2)0.1] 0.3043 0.3694 0.3189
0.2 0.1591 0.3407 0.3022
0.0 0.0000 0.0000 0.0000
IJGP(4)0.1] 0.1211 0.0266 0.0133
0.2 0.0528 0.1370 0.0916
0.0 0.0000 0.0000 0.0000
IJGP(6) 0.1 0.0043 0.0000 0.0132
0.2 0.0123 0.0616 0.0256

each has two parents which akevariables, with the CPTs defined like in example 4.4.6.
EachH CPT actually models a binary constraint between fvoodes. AllH nodes are
assigned valué. The flat network of this kind of problems has only one solutiwhere
every X has value 3. In our experiments we also added noise tditi@PTs, making
probabilitiese and1 — ¢ rather than 0 and 1.

The results are given in Talkle 4111. We varied parametergydlgo directions. One
was increasing the number af nodes, corresponding to higher densities of the constraint
network (the average induced width is reported for each column). The other was in-
creasing the noise parameter We averaged over 50 instances for each combination of
these parameters. In each instance, the priors for n§degsre random uniform, and the
parents for each nodd were chosen randomly. We report the absolute error, avérage
over all values, all variables and all instances. We shoauté that these are fairly small
size networks (w*=5-9), yet they prove to be very hard for IB &)GP, because the flat
network is hard for arc-consistency. It is interesting ttertbat even wheais not extreme
anymore (0.2) the performance is still poor, because thetstre of the network is hard
for arc-consistency. IJGP with higher i-bounds is goodsfer 0 because it is able to infer
some zeros in the bigger clusters, and these propagatemetiverk and in turn infer more

Zeros.
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4.45 Discussion

The work presented in this section investigates the behafibelief propagation algo-
rithms by making analogies to well known and understoodrétlyms from constraint net-
works. By a simple transformation, called flattening of the &agn network, IBP (as
well as any generalized belief propagation algorithm) carstown to work in a manner
that is similar to relational distributed arc-consistenehative to zero tuples generation. In
particular we show that IBP’s inference of zero beliefs coges and is sound.

Theorem 4.4]5 provides a justification for applying the dfefiropagation algorithm
iteratively. We know that arc-consistency algorithms ioya with iteration, generating
the largest arc-consistent network that is equivalent éodhginal network. Therefore
by applying IBP iteratively the set of zero tuples concludeawg monotonically until
convergence.

While the theoretical results presented here are straigtefal, they help identify new
classes of problems that are easy or hard for IBP. Non-erdwalief networks with no
evidence, max-closed or implicational belief networks expected to be cases of strong
inference power for IBP. Based on empirical work, we obserat ¢food performance
of IBP and many small beliefs indicate that the flat networkiksly to be easy for arc-
consistency. On the other hand, when we generated hard mkestfoo arc-consistency, IBP
was very poor in spite of the presence of many zero beliefs.b®leve that the success
of IBP for coding networks can be explained by the presenceasfynextreme beliefs on
one hand, and by an easy-for-arc-consistency flat netwotkeoather. We plan to conduct
more experiments on coding networks and study the influefitee@ood accuracy of IBP

for extreme beliefs combined with thecutset effect described inl[9].
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4.5 Conclusion to Chapterf 4

In this chapter we investigated a family of approximatiogosithms for mixed networks,
that could also be extended to graphical models in genemlstéfted with bounded infer-
ence algorithms and proposed Mini-Clustering (MC) schemegenaralization of Mini-
Buckets to arbitrary tree decompositions. Its power liesemy an anytime algorithm
governed by a user adjustable i-bound parameter. MC canvethar small i-bound and
keep increasing it as long as it is given more time, and itsi@@y usually improves with
more time. If enough time is given to it, it is guaranteed todrae exact.

Inspired by the success of iterative belief propagation (JBF extended MC into an
iterative message-passing algorithm called Iterativa-@riaph Propagation (IJGP). IJGP
operates on general join-graphs that can contain cyclég,ibsill governed by an i-bound
parameter. Unlike IBP, IJGP is guaranteed to become exaweihgnough time.

We also make connections with well understood consistentyr@ng algorithms for
constraint satisfaction, giving strong support for itergtmessages, and helping identify
cases of strong and weak inference power for IBP and IJGP. e stat: (1) if a value of
a variable is assessed as having zero-belief in any iterafitBP, then it remains a zero-
belief in all subsequent iterations; (2) that IBP convergea finite number of iterations
relative to its set of zero-beliefs; and, most importan8y that the set of zero-beliefs
decided by any of the iterative belief propagation methedsound. Namely any zero-
belief determined by IBP corresponds to a true zero conditiprobability relative to the
given probability distribution expressed by the Bayesiamvoe.

Experimental evaluation is provided for all these scheraed,|[JGP emerges as one of

the most powerful approximate algorithms for belief netkgor
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Chapter 5

AND/OR Cutset Conditioning

5.1 Introduction

The complexity of a reasoning task over a graphical modeédédgp on the induced width
of the graph. For inference-type algorithms, the space ¢axiip is exponential in the
induced width in the worst case, which often makes them silida for large and densely
connected problems. In such cases, space can be tradedeapthese of time by condi-
tioning (assigning values to variables).

Search algorithms perform conditioning on all the variable€Cycle cutset schemes
[86,26] only condition on a subset of variables such that#meaining network is singly
connected (i.e., is a tree) and can be solved by infereneatgerithms. The more recent
hybrid w-cutsetscheme[[90, 10] conditions on a subset of variables such wian re-
moved, the remaining network has induced widtbr less, and can be solved by a variable

elimination [29] type algorithm.

5.1.1 Contributions

In this chapter we revisit the well known conditioning medtad cycle cutset and introduce

the new concept AAND/OR cycle cutseiVe show that the AND/OR cycle cutset is a strict
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improvement over the traditional cycle cutset method (&edstame holds for the extended
w-cutset version). The result goes beyond the simple ozgéion of the traditional cutset
in an AND/OR pseudo tree, which would be just the straighttod improvement. The
complexity of exploring the traditional cutset is time ereatial in the number of nodes
in the cutset, and therefore it calls for finding a minimaldiaality cutset, denoted by
C. The complexity of exploring the AND/OR cutset is time expatial in its depth, and
therefore it calls for finding a minimal depiND/OR cutsetdenoted byAO-C. That is,

a set of nodes that can be organized in a start pseudo treenwhahidepth. So, while the
cardinality of the optimal AND/OR cutsetdAO-C|, may be larger than that of the optimal
traditional cutset|C|, the depth ofAO-C is always smaller than or equal fG|.

The research presented in this chapter is based in part pBg}.5

5.2 Traditional Cycle Cutset Explored by AND/OR
Search

The AND/OR paradigm exploits the problem structure, by s@\independent compo-
nents separately. This fundamental idea can also be ajplibé cycle cutset method, or

reasoning by conditioning [86].

DEFINITION 5.2.1 (cycle cutset)Given a graphical modeM = (X, D, F), acycle cutset
is a subseC C X such that the primal graph of1 becomes singly connected (i.e., a tree)
if all the nodes inC are removed from it. Aoptimal cycle cutsas one having the minimum

number of variables.

The cycle cutset method consists of enumerating all theilpessstantiations ofC,
and for each one of them solving the remaining singly coretenetwork by a linear time
and space tree algorithm. The instantiation€oare enumerated by regular OR search,

yielding linear space complexity ar@(exp |C|) time complexity, therefore requiring a
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(b) (©)

Figure 5.1: Traditional cycle cutset viewed as AND/OR tree

minimal cycle cutset to optimize complexity.
A first simple improvement to the traditional cycle cutsehesme described above

would be the enumeration & by AND/OR search.

Example 5.2.1 Figure[5.2.1a shows tw®x 3 grids, connected on the side nodeA cycle
cutset must include at least two nodes from each grid, so thamal cycle cutset contains
three nodes: the common nodeand one more node from each grid, for examplend

C. The traditional way of solving the cycle cutset problem eia®f enumerating all the
assignments of the cycle cutget, B, C'}, as if these variables form the chain pseudo tree
in Figure[5.2.1b. However, il is the first conditioning variable, the remaining subprahle

is split into two independent portions, so the cycle cu{sktB, C'} can be organized as
an AND/OR search space based on the pseudo tree in Higuree5I2 A is the maximum
domain size of variables, the complexity of solving FiguE® isO(k?) while that of
solving Figurd 5.211¢c i®)(k?).

We can improve the general cycle cutset method, based ond¢himps example: first
find the minimal cycle cutsel; then find the minimal deptbtart pseudo treenade of

nodes inC:

DEFINITION 5.2.2 (start pseudo tree)Given an undirected grapff = (X, F), a directed
rooted treeT” = (V, E'), whereV C X, is called astart pseudo tre# it has the same root

and is a subgraph of some pseudo tre&of

If a cycle cutset of cardinalityC| = c is explored by AND/OR search, based on a start

pseudo tred’ over the set’, and the depth of " is m, thenm < c. Therefore,
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Figure 5.2: AND/OR cycle cutset

Proposition 23 Exploring a cycle cutset by AND/OR search is always better,tbathe

same as, exploring it by OR search.

5.3 AND/OR Cycle Cutset

The idea presented in section]5.2 is a straightforward egipdin of the AND/OR paradigm
to cycle cutsets. In the following we will describe a more pokul version of theAND/OR

cycle cutset

DEFINITION 5.3.1 (AND/OR cycle cutset)Given a graphical modeR = (X, D, F'), an
AND/OR cycle cutsetdO-C is a cycle cutset together with an associated start pseudo tre

T r0-c of depthm. Anoptimal AND/OR cycle cutses one having the minimum depti

Example 5.3.1 Figure[5.3.1 shows a network for which thaptimal cycle cutsetontains
fewer nodes than theptimal AND/OR cycle cutsetyet the latter yields an exponential
improvement in time complexity. The network in the exampbased on a complete bi-
nary tree of depthr, the nodes markeﬁ{ shown on a gray background. The upper index
j corresponds to the depth of the node in the binary tree, arddtver index: to the
position in the level. Each of the leaf nodes, frefhto A7, _, is a side node in & x 3
grid. A cycle cutset has to contain at least 2 nodes from eétie@” ! grids. An optimal
cycle cutset i€ = {A7,..., Al _,, Bf,..., B},_.}, containing2” nodes, so the complex-

ity is O(exp |C|]) = O(exp(2")). We should note that the best organizationCofs an
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AND/OR space would yield a pseudo tree of de)th + 1. This is because all the nodes
in {A7,..., Al._,} are connected by the binary tree, so they all must appeargatbe
same path in the pseudo tree (this observation also holdsfgiother optimal cycle cutset
in this example). Exploring by AND/OR search lowers the complexity frahexp(2"))
to O(exp(277 + 1)).

Let’'s now look at the AND/OR cycle cutséD-C = {A{ | j=1,...,m i =
1,..., 27" u{By,..., B} }, containing all theA and B nodes. A pseudo tree in this
case is formed by the binary tree Afnodes, and thé? nodes exactly in the same position

as in the figure. The depth in this case-is- 1, so the complexity i®(exp(r + 1)), even

though the number of nodes|idO-C| = |C| 4+ 2" — 1.

The previous example highlights the conceptual differeme®veen thecycle cutset
methodand what we will call theAND/OR cycle cutset methodin cycle cutsetthe ob-
jective is to identify the smallest cardinality cutset. Setuently, the exploration can be
improved from OR search to AND/OR search.AND/OR cycle cutsehe objective is to

find a cutset that forms a start pseudo tree of smallest depth.

THEOREM5.3.2 Given a graphical modeR, an optimal cycle cutsét, its corresponding
smallest depth start pseudo trég, and the optimal AND/OR cycle cutséO-C with the

start pseudo treé 4o-c, then:

IC| > depth(Tc) > depth(Tao-c) (5.1)

There exist instances for which the inequalities are strict.

Proof. The leftmost inequality follows from Prop. 23. The rightrhasequality follows
from the definition of AND/OR cycle cutsets. Examjple 513.1ais instance where the
inequalities are strict. O

We should note that strict inequalities in £q.]5.1 couldstare into exponential differ-

ences in time complexities.
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5.4 AND/OR w-Cutset

The principle of cutset conditioning can be generalizedgi$ine notion ofv-cutset A w-
cutsetof a graph is a set of nodes such that, when removed, the remgairaph has induced
width at mostw. A hybrid algorithmic scheme combining conditioning awebounded
inference was presented n [90, 63]. More recenthcutsetsampling was investigated in
[10], and the complexity of finding the minimal-cutsetwas discussed in [11].

The hybridw-cutsetalgorithm performs search on the cutset variables and @xact
ence (e.g., bucket elimination [29]) on each of the condémsubproblems. If the-cutset
C,, is explored by linear space OR search, the time complexi®)(isp(|C,,| + w)), and
the space complexity i@ (exp w).

The AND/OR cycle cutset idea can be extended naturalliNd/OR w-cutset To
show an example of the difference between the traditionalitget and th&ND/OR w-
cutsetwe refer again to the example in Figure 513.1. Consider 8axl8 grid replaced
by a network which has a minimal w-cutséf,. The minimal w-cutset of the whole graph
contains in this casg’ ! - |C,,| nodes. If this w-cutset is explored by OR search, it yields a
time complexity exponential it2" ! - |C,,| + w). If the w-cutset is explored by AND/OR
search it yields a time complexity exponential(i~* + |C,,| + w) (similar to Example
£.3.1). In contrast to this, thtND/OR w-cutsetwhich contains thed nodes and the w-
cutsets of each leaf network, yields a time complexity exgmtial only in(r + |C,,| + w),
or possibly even less if the nodesah), can be organized in a start pseudo tree which is not

a chain (i.e., has depth smaller than, |).

5.5 Algorithm Description

The idea ofw-cutset schemes is to define an algorithm that can run in spécs w). The
AND/OR w-cutset algorithis a hybrid scheme. The cutset portion, which is organized in

start pseudo tree, is explored by AND/OR search. The remginibounded subproblems
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can be solved either by a variable elimination type algarithr by search withw-bounded

caching - in particular, AND/OR search with full cachingéasible for these subproblems.

5.5.1 Adaptive AND/OR Caching Scheme

In [45], the caching scheme of AND/OR search is basedantextq23], which are pre-
computed based on the pseudo tree before search beginsritigodO(i) performs
caching only at the variables for which the context size ialnthan or equal to (called
i-bound.

The cutset principle inspires a more refined caching schem&®, which caches some
values even at nodes with contexts greater thamtioeind Lets assume the context of the
nodeXy is context(Xy) = { X1, ..., Xx}, wherek > i. During the search, when variables
Xi1,...,X,_; are instantiated, they can be regarded as part of a cutseproblem rooted
by X, ;.1 can be solved in isolation, like a subproblem in the cutsbese, after the
variablesX, ..., X;_; are assigned their current values in all the functions. i shb-
problem,context(Xy) = {Xy_i11,-.., Xx}, SO it can be cached withinbounded space.
However, when the search retractsXg_, or above, the cache table for variablg needs
to be purged, and will be used again when a new subproblerad@t; ;. is solved.

This improved caching scheme only increases the spacereewgnts linearly, com-
pared toAO(1), but the time savings can be exponential. We will show rednlsection

5.6.

5.5.2 Algorithm AO-C(7)

We can now define the different versions AND/OR i-cutset algorithnthat we exper-
imented with. We chose to explore the cutset portion eithelireear space AND/OR
search (no caching) or by AND/OR search with improved caghiior thei-bounded sub-
problems, we chose either Bucket Elimination (BE) or AND/ORrsh with full caching

(which coincides with the improved caching on the bounddxgpsablems). The four result-
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ing algorithms are: I1O-LC (i) - linear space cutset and full caching for subproblems; 2)
AO-LC-BE(i) - linear space cutset and BE for subproblem@-C' (i) - improved caching

everywhere; 440-C-BE(i) - improved caching on cutset and BE on subproblems.

5.5.3 Finding a Start Pseudo Tree

The performance aflO-C(7) is influenced by the quality of the start pseudo tree. Finding
the minimal depth start pseudo tree for the giidround is a hard problem, and it is beyond
the scope of this chapter to address its complexity andisalutVe will only describe the
heuristic we used in creating the pseudo trees for our exgeits.

Min-Fill [61] is one of the best and most widely used heuristics foatang small
induced width orderings. The ordering defines a unique pséned. The minimal start
pseudo for ar-bound contains the nodes for which some descendant hastedlgontext
(i.e., context without the variables instantiated on theent path) greater thain Min-Fill
heuristic tends to minimize context size, rather than psdrek depth. Nevertheless, we
chose to try it and discovered that it provides one of the p&stido trees for higher values
of i.

Min-Depth We developed a heuristic to produce a balanced start psezglaésulting
in smaller depth. We start from a Min-Fill tree decompositaind then iteratively search
for the separator that would break the tree in parts thatabakanced as possible, relative
to the following measure: on either side of the separatanieite the separator variables,
count the number of remaining clusters, sayand then add the sizes of the largegin
clusters.

GWC [11] is a greedy algorithm to build a minimal cardinality set. In the process,
we also arranged the minimal cardinality cutset as AND/ORet,ito compare with the

minimal depth cutset that we could find.
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[ CPCS 422 (i) ]

7 1| 2| 3| 4| 5| 6| 7| 8] 9|10 11
d(AO-C) | 3232 |32|32|31|31|31|31|31|30]|29
d(C) 40| 37| 32| 32| 38| 37|36|34|32|30]| 29
|C| 7917116559 |54|50|46|41|37|34]| 32

[GWCA [ 79] 6760|5550 46 42| 38 34| 31| 29|

Table 5.1: CPCS 422 - Cutsets Comparison

5.6 Experimental Evaluation

We investigated two directions. One was to empirically thstquality of the start pseudo

trees, and the other was to compare actual runs of the diffeegsions ofAO-C'(i).

5.6.1 The Quality of Start Pseudo Trees

We report here the results on the CPCS 422b network from the &j#dsitory. It has 422
nodes and induced width 22. Tablel5.1 shows the valug$ipf which expresses the total
complexity of a cutset scheme. For a cardinality cutget, = i + |C| and for an AND/OR
cutset of depthi, f(i) = i + d. The rowd(AO-C) shows the depth of the best AND/OR
cutset we could find.C'| shows the number of nodes in the best cutset found by GWC, and
d(C) shows its depth when organized as AND/OR cutset. GWCA is taken [11]. The
best complexity, expressed by small valueg @, is always given by the AND/OR cutset,
and for smaller values afthey translate into impressive savings over the cardinalitset
C.

In all our experiments described in the following, we refed from comparing the
new cutset scheme with the old cardinality cutset schemav@ent to an OR search on

the cutset), because the latter was too slow.

5.6.2 Performance ofAO-C'(i)

We tested the different version of th)-C'(i) family primarily on Bayesian networks with

strictly positive distributions, for the task of belief ugtthg. This is necessary to grasp the
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N=40, K=3, P=2, 20 instances, w*=7
i | Algorithms d Time(sec) # nodes
MF | MD MF MD MD MF
1 AO(i) | 12 9| 610.14| 27.12| 50,171,141] 1,950,539
AO-LC(i) 174.53| 8.75| 13,335,595| 575,936
AO-C(i) 67.99| 7.61| 4,789,569| 499,391
AO-C-BE(i) 16.95| 2.18 - -
3 AO(i) 7 6 71.68| 8.13| 5,707,323 595,484
AO-LC(i) 5.73| 0.84 501,793 69,357
AO-C(i) 294 | 0.84 248,652 69,357
AO-C-BE(i) 0.69| 0.25 - -
5 AO(i) 4 3 11.28| 2.77 999,441 24,396
AO-LC(i) 0.55| 0.54 50,024 4,670
AO-C(i) 0.55| 0.55 49,991 4,670
AO-C-BE(i) 0.10| 0.04 - -
N=60, K=3, P=2, 20 instances, w*=11
i | Algorithms d Time(sec) # nodes
MF MD MF MD MD MF
6 AO-LC(i) 7 6 | 159.79| 63.01| 14,076,416| 5,165,486
AO-C(i) 112.43| 62.98 | 9,925,855| 5,165,486
AO-C-BE(i) 27.33| 5.50 - -
9 AO-LC(i) 3 3 24.40| 41.45| 2,140,791| 3,509,709
AO-C(i) 24.15| 40.93| 2,140,791| 3,509,709
AO-C-BE(j) 4.27| 2.89 - -
11 AO-LC(i) 0 1 17.39| 38.46| 1,562,111| 3,173,129
AO-C(i) 17.66| 38.22| 1,562,111| 3,173,129
AO-C-BE(j) 1.29| 281 - -

Table 5.2: Random Networks

power of the scheme when no pruning is involved in search.

In all the tables N is the number of nodes, K is the maximum dors&e, P is the
number of parents of a variable; is the induced width; is thei-bound,d is the depth of
thei-cutset. For most problems, we tested a min-fill pseudo{tv#e) and one based on

the depth minimizing heuristic (MD). The time and the numbenodes expanded in the

search are shown for the two pseudo trees correspondingly.

Random networks. Table[5.2 shows results for random networks, generateditzase
N, K and P and averaged over 20 instances. Note that K=3, whadtes the problems
harder, even though* seems small. For N=40 we see that the old scheme AO(i) is alway
outperformed. Using improved caching on the cutset is a@laogys beneficial. Farvery
close towx, caching on the cutset doesn’t save much, and in some casgsnelcaching
is possible, the extra overhead may actually make it skgsitbwer. Also, for strictly

positive distributions, switching to BE is faster than rurqiAO search with caching on

the remaining problems.
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CPCS networks. CPCS are real life networks for medical diagnoses, which aré ha
for belief updating. Table 5.3 shows results for CPCS 360 fawjrig induced width 20.
Fori = 20, AO-C-BE(i) is actually BE. It is interesting to note thdO-LC-BE(i), for
i = 12 is actually faster than BE on the whole problem, while regqginmuch less space
(exp(12) compared t@xp(20)), due to smaller overhead in caching (smaller cache tables)
and a good ordering that doesn’t require recomputing theeganoblems again. We also
mention that AO(i) was much slower on this problem and tleeehot included in the
table.

In the above experiments, the valuegshow that MF heuristic provided a better cutset
for large values of, while the MD heuristic provided good cutsets whemas small.

Genetic linkage network. We include in Tablé 514 results for the genetic linkage net-
work EA4 [47]. This is a large network, with N=1173, but r@laty small induced width,
w* = 15. This network contains a lot of determinism (zero probaptliples). We did not
use in AO search any form of constraint propagation, lingitine algorithm to prune only
the zero value nodes (their subproblems do not contributieetepdated belief). We note
here that fori-bound 13 and 9A0O-C(i) is faster thanAO-C-BE(i) because it is able to
prune the search space. We used a version of BE which is itigerteideterminism.

Large networks. Memory limitations are the main drawback of BE. In Tablel 5.5 we
show results for hard networks, solved RQ)-C-BE (i), wherei = 12 is set to the max-
imum value that we could use on a 2.4 GHz Pentium IV with 1 GB oMRA&or N=100,
the space requirements of BE would be about 100 times biggarttie RAM (note K=3),
yet AO-C-BE(12) could solve it in about six and a half hours, showing the duihitia of
the AND/OR cutset scheme.
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CPCS 360b, N=360, K=2, w* = 20
i| Algorithms|d (MF)| Time # nodeg
1 AO-LC(i) 23(2,507.6406,322,117
AO-LC-BE(i) 1,756.4 -
AO-C(i) 1,495.2243,268,549
AO-C-BE(j) 1,019.4 -
12 AO-LC(i) 8| 186.8 14,209,057
AO-LC-BE(i) 10.3 -
AO-C(i) 185.1] 14,209,057
AO-C-BE(i) 10.4 -
20 AO-LC(i) 0| 167.8 12,046,369
AO-LC-BE(i) 11.5 -
AO-C(i) 170.9 12,046,369
AO-C-BE(i) 11.6 -
Table 5.3: CPCS 360
EA4 - N=1173, K=5, w*=15
i | Algorithms d Time(sec) # nodes
MF | MD MF MD MD MF
6 AO(i) | 23| 21| 10.0| 103.4| 1,855,490| 15,312,582
AO-LC(i) 225| 76.4| 3,157,012] 9,928,754
AO-C(i) 2.0| 51.3| 281,896| 6,666,210
AO-C-BE(i) 84| 823 - -
9 AO() | 18 | 17| 3.3 9.3 410,934| 1,466,338
AO-LC(i) 1.6 4.7 196,662 617,138
AO-C(i) 1.5 4.8 196,662 616,802
AO-C-BE(i) 35 7.0 - -
13 AO(i) 3 8| 20 5.9 | 235,062 887,138
AO-LC(i) 1.4 3.6 172,854 431,458
AO-C(i) 1.6 34 172,854 431,458
AO-C-BE(i) 07| 53 - -

Table 5.4: Genetic Linkage Network
5.7 Conclusion to Chapter b

This section presents tND/OR w-cutset schemeahich combines the newly developed
AND/OR search for graphical models [45] with the w-cutsdtesne [10]. Theoremn 5.3.2
shows that the new scheme is always at least as good as thaggistset schemes, but it
often provides exponential improvements.

The new AND/OR cutset inspired an improved caching schemdahi® AND/OR
search, which is always better than the one used by AQ(j) BEsged on context.

The experimental evaluation showed, first, that the thexale¢xpectations of getting
exponential improvements over the traditional cardigadiitset are actually met in prac-
tice.

Second, it showed the power and flexibility of the new hybdkesme. Our conclusion
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[K=3, P=2; AO-C-BE()), i=12

N{w*|d (MF)| Time(sec
70| 13 2 12
80| 15 3 61
90| 17 6 2,072
100| 18 9 22,529

Table 5.5: Networks with high memory requirements for BE

is that improved caching on the cutset is in most cases ba@alefior the remaining prob-
lems, if the task is belief updating (or counting solutioasyl there is little determinism,
then switching to BE is faster. In the presence of determinsmitving the remaining prob-
lems with search with full caching may be better. We leavdture work the investigation
of using look-ahead and no-good learning in the presencetefihinism for the AND/OR

w-cutset scheme.

Finally, the new scheme is scalable to memory intensive lpnog, where inference

type algorithms are infeasible.
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Chapter 6

AND/OR Search and Inference

Algorithms

6.1 Introduction

It is convenient to classify algorithms that solve reasgrmpnoblems of graphical models
as either searche(g, depth first, branch and bound) or inferenegg( variable elimina-

tion, join-tree clustering). Search is time exponentighi@ number of variables, yet it can
be accomplished in linear memory. Inference exploits thaplgrstructure of the model
and can be accomplished in time and space exponential itraébeidthof the problem.

When the treewidth is big, inference must be augmented walckeo reduce the mem-
ory requirements. In the past three decades search metleydsewhanced with structure
exploiting techniques. These improvements often requibstantial memory, making the
distinction between search and inference fuzzy. Recertyns regarding the superior-
ity of memory-intensive search over inference or vice-aevere made [5]. Our aim is to

clarify this relationship and to create cross-fertilipatusing the strengths of both schemes.

179



6.1.1 Contributions

First, we compare pure search with pure inference algostimgraphical models through
the new framework of AND/OR search. Specifically, we compéadable Elimination
(VE) against memory-intensive AND/OR Search(), and place algorithms such as
graph-based backjumping, no-good and good learning, akddbead schemes [31] within
the AND/OR search framework. We show that there is no priediglifference between
memory-intensive search restricted to fixed variable andeand inference beyond: (1)
different direction of exploring a common search space @opn for search vs. bottom-
up for inference); (2) different assumption of control gy (depth first for search and
breadth first for inference). We also show that those diffees have no practical effect,
except under the presence of determinism. Our analysisnessa fixed variable ordering.
When variable ordering is dynamic in search, some of theselasions may not hold.

Second, we address some long-standing questions regahéiregpmputational merits
of several time-space sensitive algorithms for graphicadabs. In the past ten years, four
types of algorithms have emerged, based on: (1) cycled{catsw-cutset [86] 26]; (2)
alternating conditioning and elimination controlled byluted-widthw [90, 63,/ 47]; (3)
recursive conditioning [23], which was recently recast astext-based AND/OR search
[45]; (4) varied separator-sets for tree decompositio}. [Ihe question is how do all
these methods compare and, in particular, is there onestkapirior? A brute-force anal-
ysis of time and space complexities of the respective schelmes not settle the question.
For example, if we restrict the available space to be linda cycle-cutset scheme is ex-
ponential in the cycle-cutset size while recursive cooditig is exponential in the depth
of the pseudo tree (or d-tree) that drives the computatioowd¥er some graphs have
small cycle-cutset and larger tree depth, while others hage cycle-cutsets and small
tree depth (e.g., grid-like chains). The immediate conctuseems to be that the methods
are not comparable.

We show that by looking at all these schemes side by side, malgzang them using
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the context minimal AND/OR graph data structure![74], eatlthese schemes can be
improved via the AND/OR search principle and by careful aaghto the point that they all
become identically good. Specifically, we show that the nigerighm Adaptive Caching
(AOC(i)), inspired by AND/OR cutset conditioning [I75] (improvingtset, andv-cutset
schemes), can simulate any execution of alternating editiin and conditioning, if the
latter is augmented with AND/OR search over the conditignmariables, and can also
simulate any execution of separator controlled tree-etirg schemes [32], if the clusters
are augmented with AND/OR cutset search, rather than regekarch, as was initially
proposed.

All the analysis is again done assuming that the problemaositno determinism.
When the problem has determinism all these schemes becoomapacable, as was shown
in [74]], because they are all different in their variablearidg approach and this accounts
for differences in exploiting determinism as we observethm simplest case comparing
Variable Elimination to AND/OR search [74].

The research presented in this chapter is based in part pia§738].

6.2 AND/OR Search (AO) vs. Variable Elimination (VE)

We will compare Variable Elimination and search by the morsiof a common search space
that they traverse and record. Since VE’s execution is wtygdefined by a bucket-tree,
and since every bucket tree corresponds to a pseudo tree pmedido tree uniquely defines
the context-minimal AND/OR search graph, we can compare $diemes on this common
search space. Furthermore, we choose the context-miniMBVY@R search graph (CM)
because algorithms that traverse the full CM need memoryisSicomparable to that
used by VE, namely, space exponential in the treewidth of gs2udo/bucket trees.
Algorithm AO denotes any traversal of the CM search graph,¥Ois a depth-first

traversal and AO-BF is a breadth-first traversal. We will canepVE and AO via the
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Figure 6.1: Variable Elimination

portion of this graph that they generate and by the order dergeneration. The task’s
value computation performed during search adds only a anh&ctor.

We distinguish graphical models with or without determimjs:iamely, graphical mod-
els that have inconsistencies vs. those that have none. Weazebrute-forceversions of
VE and AO, as well as versions enhanced by various knownresatuWe assume that the

task requires the examination of all solutions (e.g. beigfating, counting solutions).

6.2.1 AO vs. BE with No Determinism

We start with the simplest case in which the graphical modetains no determinism and

the bucket tree (pseudo tree) is a chain.

OR Search Spaces

Figure[6.1a shows a Bayesian network. Let’s consider therioglé = (D,C, B, A, E)
which has the treewidthu(d) = w* = 2. Figure[6.1b shows the bucket-chain and a
schematic application of VE along this ordering (the buakdt is processed first, and the
bucket of D last). The buckets include the initial CPTs andtnetions that are generated
and sent (as messages) during the processing. Figure @ws e bucket tree.

If we use the chain bucket tree as pseudo tree for the AND/@R:Balongi, we get

thefull CM graphgiven in Figuré 6.2. Since this is an OR space, we can elimitiet OR
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Figure 6.2: Context-minimal AND/OR search space

levels as shown. Each level of the graph corresponds to arabi@ The edges should be
labeled with the product of the values of the functions treatehjust been instantiated on
the current path. We note on the arc just the assignment teekieant variables (e.gB;
denotesB = 1). For example, the edges between C and B in the search grepabaied
with the function valuation o0BC D), namelyP(D|B, C'), where for each individual edge
this function is instantiated as dictated on the arcs.

AO-DF computes the value (e.g., updated belief) of the raatenby generating and
traversing the context-minimal graph in a depth-first maramel accumulating the partial
value (e.g., probabilities) using combination (produetsyl marginalization (summation).
The first two paths generated by AO-DF &fe,, Cy, By, Ao, Ey) and(Dy, Cy, By, Ao, E1),
which allow the first accumulation of value (Ao By) = P(Fo|AoBy)+ P(FE1|AoBy). AO-
DF subsequently generates the two paibg Cy, By, A1, Ey) and(Dy, Cy, By, A1, E1) and
accumulates the next partial valug A, By) = P(FEy|A1By)+ P(E1| A1 By). Subsequently
it computes the summatidn.(ByCy) = P(Ag)- P(Bo|Ao)-P(Co|Ap)-h1(AegBo)+P(A;)-
P(By|Ay) - P(CylAy) - hi(A1By). Notice that due to caching each arc is generated and
traversed just once (in each direction). For example wherpértial path D,, Cy, By) is
created, it is recognized (via context) that the subtreevib@las already explored and its

compiled value will be reused.

183



In contrast, VE generates the full context-minimal graphldyers, from thebottom
of the search graph ypgn a manner that can be viewed as dynamic programming or as
breadth-first search on the explicated search graph. VIEsution can be viewed as first
generating all the edges between E and A (in some order) handall the edges between A
and B (in some order), and so on up to the top. We can see thatare8 edges between E
and A. They correspond to the 8 tuples in the bucket of E (thetfan on(ABFE)). There
are 8 edges between A and B, corresponding to the 8 tuples uttiet of A. And there
are 8 edges between B and C, corresponding to the 8 tupleshtket of B. Similarly, 4
edges between C and D correspond to the 4 tuples in the budcketod 2 edges between
D and the rood correspond to the 2 tuples in the bucket of D.

Since the computation is performed from bottom to top, theeeiscof A store the result
of eliminatingE (namely the functiort; (AB) resulting by summing ouk’). There are 4
nodes labeled with A, corresponding to the 4 tuples in thesages sent by VE from bucket
of E to bucket of A (the message 0AB)). And so on, each level of nodes corresponds to
the number of tuples in the message sent on the separataoftiaon variables) between

two buckets.

AND/OR Search Spaces

The above correspondence betwe&® and VE is also maintained in non-
chain pseudo/bucket trees, as is demonstrated next. We agi@n to the ex-
ample in Figures[ 3.12, and assume the task is belief updating CPTs are
P(A), P(B|A), P(C|A),P(D|B,C), P(E|A, B). The bucket tree in Figure 7.3[c) has
the same structure as the pseudo tree in Figure 3]12(a). Wshew that VE traverses
the AND/OR search graph in Figure 3.12(b) bottom up, while BB traverses the same
graph in depth first manner, top down.

AO-DF first sumshs( Ay, By) = P(Ey|Ag, By) + P(FE1|Ao, By) and then goes depth
first to hy(By, Cy) = P(Dy|By, Co) + P(D1| By, Co) andhy(By, C1) = P(Dg|By, Cy) +
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P(D1|By, Cy). Then it computes, (Ao, By) = (P(Cy|Ag) - hi(Bo, Co)) + (P(Cy|Ap) -
h1(Bo, Ch)). All the computation of AO-DF is precisely the same as the perormed in
the buckets of VE. Namely,; is computed in the bucket dp and placed in the bucket of
C. hy is computed in the bucket @f and placed in the bucket @, h3 is computed in the
bucket of £ and also placed in the bucket Bfand so on, as shown in Figurel7.3b. All this
corresponds to traversing the AND/OR graph from leaves ob. réhus, both algorithms
traverse the same graph, only the control strategy is difiter

We can generalize both the OR and AND/OR examples,

THEOREMG6.2.1 (VE and AO-DF are identical) Given a graphical model having no de-
terminism, and given the same bucket/pseudo tree VE apfidde bucket-tree is a
(breadth-first) bottom-up search that will explore all thdl fdM search graph, while AO-

DF is a depth-first top-down search that explores (and recpotiais full CM graph as well.

Breadth-first on AND/OR Since one important difference between AO search and VE
is the order by which they explore the search space (top-d@wibottom-up) we wish to
remove this distinction and consider a VE-like algorithrattoes top-down. One obvious
choice is breadth-first search, yielding AO-BF. That is, igufe[3.1]l we can process the
layer of variable A first, then B, then E and C, and then D. Geraeddth-firstor best-
first search of AND/OR graphs for computing the optimal cost sotusubtrees are well
defined procedures. The process involves expanding atieokubtrees in layers of depth.
Whenever a new node is generated and added to the searckiftbetvalue of all relevant
partial solution subtrees are updated. A well known Best¥ession of AND/OR spaces

is the AO* algorithm [85]. Algorithm AO-BF can be viewed as gidown inference

algorithm. We can now extend the comparison to AO-BF.

Proposition 24 (VE and AO-BF are identical) Given a graphical model with no deter-

minism and a bucket/pseudo tree, VE and AO-BF explore the $ainCM graph, one
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bottom-up (VE) and the other top-down; both perform identigdue computation.

Terminology for the comparison of algorithms Let A and B be two algorithms over

graphical models, whose performance is determined by aerlymly bucket/pseudo tree.

DEFINITION 6.2.1 (comparison of algorithms) We say that: 1. algorithmsl and B are
identical if for every graphical model and when given the sdmeket-tree they traverse
an identical search space. Namely, every node is explored iffyit is explored byB; 2.
A is weakly better tharB if there exists a graphical model and a bucket-tree, for which
explores a strict subset of the nodes explored3py8. A is better thanB if A is weakly
better thanB but B is not weakly better thad; 4. The relation of "weakly-better” defines
a partial order between algorithmsi and B are not comparabléd they are not comparable

w.r.t to the "weakly-better” partial order.

Clearly, any two algorithms for graphical models are eithedéntical, 2. one is better
than the other, or 3. they are not comparable. We can now suger@ir observations so

far using the new terminology.

THEOREM®6.2.2 For a graphical model having no determinism AO-DF, AO-BF artel

are identical.

Note that our terminology captures the time complexity baymot capture the space

complexity, as we show next.

Space Complexity

To make the complete correspondence between VE and AO se@atan look not only
at the computational effort, but also at the space requBeth VE and AO search traverse
the context minimal graph, but they may require differenbants of memory to do so.
So, we can distinguish between the portion of the graph thaawersed and the portion
that should be recorded and maintained. If the whole grapécisrded, then the space is

O(n - exp(w™*)), which we will call the base case.
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VE can forget layers Sometimes, the task to be solved can allow VE to use less space
by deallocating the memory for messages that are not negemsamore. Forgetting pre-
viously traversed layers of the graph is a well known propeftdynamic programming.

In such a case, the space complexity for VE becoméssr - exp(wx)), wheredpr is

the depthof the bucket tree (assuming constant degree in the budet th most cases,

the above bound is not tight. If the bucket tree is a chaim thg- = n, but forgetting
layers yields arO(n) improvement over the base case. AO-DF cannot take advaafage
this property of VE. It is easy to construct examples wheeshihcket tree is a chain, for

which VE require)(n) less space than AO-DF.

AO dead caches The straightforward way of caching is to have a table for eactable,
recording its context. However, some tables might nevercgehe hits. We call these
dead-cachesIn the AND/OR search graph, dead-caches appear at nodesata only
one incoming arc. AO search needs to record only nodes thdikaty to have additional
incoming arcs, and these nodes can be determined by inspdotim the pseudo tree.
Namely, if the context of a node includes that of its pardr@ntAO need not store anything
for that node, because it would be a dead-cache.

In some cases, VE can also take advantage of dead caches.dédld caches appear
along a chain in the pseudo tree, then avoiding the storagead-caches in AO corre-
sponds to collapsing the subsumed neighboring bucketsibubket tree (remember that
the computation within a bucket can be done with linear spégerithms, while space re-
flects the message size that needs to be communicated. The<iique sizes are bounded
by r and the separators by s, timeeigy(r) while space izp(s)). This results in having
cache tables of the size of the separators, rather thanitheesl The time savings are
within a constant factor from the complexity of solving tladest clique, but the space
complexity can be reduced from exponential in the size ohth&imal cique to exponen-

tial in the maximal separator.
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(b)

Figure 6.3: CM graphs with determinism: a) AO; b) VE

However, if the variables having dead caches form connectedponents that are
subtrees (rather than chains) in the pseudo tree, then #ue §avings of AO cannot be

achieved by VE. Consider the following example:

Example 6.2.3 Let variables{ X1, ..., X, } be divided in three setsd = {X;,..., X= },
B={Xn,... ,X%n} andC = {X%LH, ..., X, }. There are two cliques oA U B and

A U C defined by all possibile binary functions over variableshoge respective cliques.
The input is therefor®(n?). Consider the bucket tree (pseudo tree) defined by the oglerin
d = (Xy,...,X,), whereX, is eliminated first by VE. In this pseudo tree, all the caches
are dead, and as a result the AO search graph coincides witA@hsearch tree. Therefore,
AO can solve the problem using spa(d(a%). VE can collapse some neighboring buckets
(for variables inB and (), but needs to store at least one message on the variablds in
which yields space complexi®y(exp(%)). In this example, AO and VE have the same time
complexity, but AO uses space linear in the number of vamhthile VE needs space

exponential in the number of variables (and exponentiahaihput too).

The above observation is similar to the known propertieseptla-first vs. breadth-first
search in general. When the search space is close to a trasgrbét from the inherent

memory use of breadth-first search is nil.
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VE vs. AND/OR Search with Determinism

When the graphical model contains determinism the AND/OBstend graphs are depen-
dant not only on the primal graph but also on the (flat) comgsanamely on the consis-
tency and inconsistency of certain relationships (no-gogtes) in each relation. In such
cases AO and VE, may explore different portions of the cdmteximal graphs because

the order of variables plays a central role, dictating whiseedeterminism reveals itself.

Example 6.2.4 Let’s consider a problem on four variablest, B, C, D, each having the
domain{1,2, 3,4}, and the constraintsl < B, B < C'andC < D. The primal graph of
the problem is a chain. Let’s consider the natural orderiranf A to D, which gives rise to
a chain pseudo tree (and bucket-tree) rooted at A. Figura 6tbws the full CM graph with
determinism generated by AO search, and Figuré 6.3b thehgggmerated and traversed
by VE in reverse order. The thick lines and the white nodestsreohes traversed. The
dotted lines and the black nodes are not explored (when VEeisuwad fromD, the con-
straint betweerD andC implies thatC' = 4 is pruned, and therefore not further explored).
Note that the intersection of the graphs explored by bothrélyns is thebacktrack-free

AND/OR context graphcorresponding to the unique solution (A=1,B=2,C=3,D=4).

As we saw in the example, AO and VE explore different partbeimnconsistent portion
of the full CM. Therefore, in the presence of determinism, B8-and AO-BF are both un-

comparable to VE, as they differ in the direction they explitre CM space.

THEOREM®6.2.5 Given a graphical model with determinism, then AO-DF and Atai:

identical and both are un-comparable to VE.

This observation is in contrast with claims of superioritypoe scheme or the other [5],
at least for the case when variable ordering is fixed and narambd constraint propagation

schemes are used and assuming no exploitation of contesqpémdience.
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6.2.2 Algorithmic Advances and Their Effect

So far we compared brute-force VE to brute-force AO searck.will now consider the
impact of some enhancements on this relationship. Cleastyy YE and AO explore the
portion of the context-minimal graph that is backtrackefr& hus they can differ only on
the portion that is included in full CM and not in the backtrdoée CM. Indeed, constraint
propagation, backjumping and no-good recording just redloe exploration of that portion
of the graph that isnconsistent Here we compare those schemes against bare VE and

against VE augmented with similar enhancements whenelsard.

VE vs. AND/OR Search with Look-Ahead

In the presence of determinism AO-DF and AO-BF can naturadépmmodate look-ahead
schemes which may avoid parts of the context-minimal segraph using some level
of constraint propagation. It is easy to compare AO-BF agah@DF when both use
the same look-ahead because the notion of constraint pbpagas look-ahead is well
defined for search and because both algorithms explore #relsepace top down. Not
surprisingly when both algorithms have the same level okdabead propagation, they
explore an identical search space.

We can also augment VE with look-ahead constraint propag#é.g., unit resolution,
arc consistency), yielding VE-LAH as follows. Once VE-LAHaggesses a single bucket,
it then applies constraint propagation as dictated by tb&-khead propagation scheme
(bottom-up), then continues with the next bucket applieg thre modified set of functions

and so on. We can show that:

THEOREMG6.2.6 Given a graphical model with determinism and given a lookaahgrop-
agation scheme, AH,
1. AO-DF-LAH and AO-BF-LAH are identical.

2. VE and VE-LAH are each un-comparable with each of AO-DF-laAH AO-BF-LAH.
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Proof. 1. The search graph is traversed in the same direction by AOtDF-LAH and
AO-BF-LAH, so the look-ahead has the same effect for both. 2teBninism can still

impact differently in different variable orderings. O

Graph-Based No-Good Learning

AO search can be augmented with no-good learning [31]. Gbagled no-good learning
means recording that some nodes are inconsistent baseceiorcantext. This is auto-
matically accomplished when we explore the CM graph whichallyt amounts to record-
ing no-goods and goods by their contexts. Therefore AO-DHastical to AO-BF and

both already exploit no-goods, we get that (AO-NG denotesvi® graph-based no-good

learning):

THEOREM®6.2.7 For every graphical model the relationship between AO-NG aB&dis/
the same as the relationship between AO (Depth-first or brefidit) and VE.

Combined no-goods and look-ahead No-goods that are generated during search can
also participate in the constraint propagation of the labkad and strengthen the ability
to prune the search-space further. The graphical modéligsaodified during search and
this affects the rest of the look-ahead. It is interestingate that AO-BF is not able to
simulate the same pruned search space as AO-DF in this ceaadaeof its breadth-first
manner. While AO-DF can discover deep no-goods due to itshelast nature, AO-BF
has no access to such deep no-goods and cannot use themandthiistraint propagation
scheme in shallower levels. However, even when AO explatgoods within its look-
ahead propagation scheme, VE and AO remain un-comparabjeexample that does not

allow effective no-good learning can illustrate this.

Example 6.2.8 Consider a constraint problem overvariables. VariablesX;, ..., X,
have the domaif1,2,...,n — 2, %}, made of n-2 integer values and a specialalue.

Between any pair of the — 1 variables there is a not-equal constraint between the inege
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Figure 6.4: GBJ vs. AND/OR search

and equality between stars. There is an additional variaklewhich has a constraint
with each variable, whose values are consistent only with«tbEthe other n-1 variables.
Clearly if the ordering isd = (X;,...,X,_1,X,), AO may search all the exponential
search space over the firgt— 1 variables (the inconsistent portion) before it reaches the
x of then — th variable. On the other hand, if we apply VE starting from the- th
variable, we will reveal the only solution immediately. No doast propagation, nor

no-good learning can help any AO search in this case.

THEOREM®6.2.9 Given a graphical model with determinism and a particulardezhead
propagation schemeAH:

1. AO-DF-LAH-NG is better than AO-BF-LAH-NG.

2. VE and AO-DF-LAH-NG are not comparable.

Graph-Based Backjumping

Backjumping algorithms [31] are backtracking search apgieethe OR space, which uses
the problem structure to jump back from a dead-end as far&spkssible. Iigraph-based
backjumping{GBJ) each variable maintains a graph-based induced ansestewhich en-

sures that no solutions are missed by jumping back to itsedteariable.
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DFS orderings If the ordering of the OR space is a DFS ordering of the prinnapQ, it
is known [31] that all the backjumps are from a variable t&ES parent. This means that

naive AO-DFautomatically incorporates GBJ jumping-back character.

Pseudo tree orderings In the case of pseudo tree orderings that are not DFS-tiesre, t
is a slight difference between OR-GBJ and AO-DF and GBJ may sorag@erform deeper
backjumps than those implicitly done by AO. Figlre]6.4a sh@wprobabilistic model,
[6.4b a pseudo tree ahd 6.4c a chain driving the OR search @op)d If a deadend is
encountered at variable 3, GBJ retreats to 8[(se€e 6.4c), ndiNe AO-DF retreats to 1, the
pseudo tree parent. When the deadend is encountered at lgotithms backtrack to 3
and then to 1. Therefore, in such cases, augmenting AO withcaB.provide additional
pruning on top of the AND/OR structure. In other words, GBJ dh€pace along a pseudo
tree is never stronger than GBJ on AND/OR and it is sometimedkere

GBJ can be applied using an arbitrary orddor the OR space. The orderinigcan be
used to generate a pseudo tree. In this case, however, t@ 1GiBid ond, the AO traversal
will be controlled byd. In Figure[6.4d we show an arbitrary ordéee= (8,1,3,5,4,2,7,6)
which generates the pseudo treeid 6.4b. When AO search seaghgoes in a breadth first
manner to 5, according t It can be shown that GBJ in ordéion OR space corresponds
to the GBJ-based AND/OR search based on the associated pseedall the backjumps
have a one to one correspondence.

Since VE is not comparable with AO-DF, it is also un-compératith AO-DF-GBJ.

Note that backjumping is not relevant to AO-BF or VE. In sumynar

THEOREM®6.2.10 1. When the pseudo tree is a DFS tree AO-DF is identical to A2-D
GBJ. This is also true when the AND/OR seatae is explored (rather than the CM-
graph). 2. AO-DF-GBJ is superior to AO-DF for general pseudo tre&s VE is not
comparable to AO-DF-GBJ.

Proof. 1. For DFS trees, backjumps go to DFS parent. 2. See examplgune[6.4b. 3.
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Determinism reveals itself differently in reversed ordgs. O

6.2.3 Discussion

In this section we compare search and inference in grapimicdéls through the new frame-
work of AND/OR search spaces. We show that there is no pilietigifference between
memory-intensive search with fixed variable ordering aridrance beyond: (1) different
direction of exploring a common search space (top down farcdevs. bottom-up for infer-
ence); (2) different assumption of control strategy (ddpst for search and breadth-first
for inference). We also show that those differences occlyriarthe presence of determin-
ism. We show the relationship between algorithms such gshgbased backjumping and
no-good learning [31] within the AND/OR search space. ANR/€earch spaces can also
accommodate dynamic variable and value ordering which ffaatalgorithmic efficiency
significantly. Variable Elimination and general inferemmoethods however require static

variable ordering. This issue will be addressed in futurekwo

6.3 A Comparison of Hybrid Time-Space Schemes

6.3.1 Defining the Algorithms

In this section we describe the three algorithms that wikkbmpared. They are all param-
eterized memory intensive algorithms that need to use Spameler to achieve the worst
case time complexity of)(n k*"), wherek bounds domain size, and* is the treewidth
of the primal graph. The task that we consider is one that ikat# (e.g., belief updating
in Bayesian networks, counting solutions in SAT or constragiworks). We also assume
that the model has no determinism (i.e., all tuples have&lgtpositive probability).

The algorithms we discuss work by processing variableseibly eliminationor by

conditioning These operations have an impact on the primal graph of thtdgm. When

194



a variable is eliminated, it is removed from the graph alotify ws incident edges, and its
neighbors are connected in a cligue. When it is conditiortesl simply removed from the
graph along with its incident edges.

The algorithms we discuss typically depend on a variablerimd d = (X3, ..., X,,).
Search proceeds by instantiating variables ftdnto X,,, while Variable Elimination pro-
cesses the variables backwards, framto X;. Given a graphG and an ordering/, an
elimination tree, denoted by (G, d), is uniquely defined by the Variable Elimination pro-
cess.7 (G, d) is also a valid pseudo tree to drive the AND/OR search. Notecher that

several orderings can give rise to the same elimination tree

AND/OR Cutset Conditioning - AOCutset(i)

AND/OR Cutset ConditioningAOCutset(i)) [75] is a search algorithm that combines
AND/OR search spaces with cutset conditioning. The coowiitig (cutset) variables form
a start pseudo tree. The remaining variables (not belonging to titget), have bounded

conditioned context size that can fit in memory.

DEFINITION 6.3.1 (start pseudo tree)Given a primal graphz and a pseudo tre@ of G,

a start pseudo treg,,,,; is a connected subgraph @f that contains the root of .

Algorithm AOCutset(i) depends on a parameter i that bounds the maximum size of
a context that can fit in memory. Given a graphical model andeaugo tree/, we first
find a start pseudo tre€,,,,; such that the context of any node not7g,,; contains at
most i variables that are not ih,,,;. This can be done by starting with the rootBbfand
then including as many descendants as necessary in thpstaro tree until the previous
condition is met.7,,,,» now forms the cutset, and when its variables are instaatiae
remaining conditioned subproblem has induced width bodrmei. The cutset variables
can be explored by linear space (no caching) AND/OR seanththte remaining variables

by using full caching, of size bounded by i. The cache tablkesdnto be deleted and
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reallocated for each new conditioned subproblem (i.e h @aev instantiation of the cutset

variables).

Algorithm AOC(i) - Adaptive Caching

The cutset principle inspires a new algorithm, based on @&medimed caching scheme for
AND/OR search, which we calAdaptive Caching AOC(i) (in the sense that it adapts to
the available memory), that caches some values even at motfesontexts greater than
the bound i that defines the memory limit. Lets assume dhatext(X) = [X; ... X4
andk > i. During search, when variables,, ..., X;_; are instantiated, they can be
regarded as part of a cutset. The problem rooted’hy;.; can be solved in isolation, like
a subproblem in the cutset scheme, after varialdles. . , X,._; are assigned their current
values in all the functions. In this subproblemntert(X) = [Xi_i11... Xi], SO it can
be cached within space bounded by i. However, when the segtreltts taX,_; or above,
the cache table foK needs to be deleted and will be reallocated when a new sulepmob

rooted atX,_;,, is solved.

DEFINITION 6.3.2 (i-context, flag) Given a graphical model, a pseudo trée a variable

X andcontext(X) = [X; ... X, thei-contextof X is:

Xp—ig1... Xg], if i<k
i-context(X) = K- d
context(X), if i>k

X, is called theflag of i-context(X).

The high level pseudocode fétfOC(i) is given here. The algorithm works similar
to AND/OR search based on full context. The difference ishm thanagement of cache
tables. Whenever a variabl€ is instantiated (when an AND node is reached), the cache
table is purged (reinitialized with a neutral value) for amriableY such thatX is the

flag of i-context(Y') (line[@). Otherwise, the search proceeds as usual, reigexalues
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Algorithm AOC(i)

input : M=(X,D,F); G=(X,E);d=(X1,...,X,); i

output: Updated belief forX;
1 LetT =7(G,d) /'l create elimnation tree for eachX € X do
| allocate a table foi-context(X)

N

Initialize search with root of;
while search not finishedo
Pick next successor not yet visited /1 EXPAND;
Purge cache tables that are not valid;
if value in cachdhen
L retrieve value; mark successors as visited;

9 while all successors visitedo /1 PROPAGATE
10 Save value in cache;
11 Propagate value to parent;

o N o o b~ W

from cache if possible (ling 8) or else continuing to expard] propagating the values up
when the search is completed for subproblem below [lide Wi§.do not detail here the

alternation of OR and AND type of nodes.

Example 6.3.1 We will clarify here the distinction between AND/OR with full lcig,
AND/OR Cutset and AND/OR Adaptive Caching. We should note thattipe of a cache
table is always a subset of the variables on the current pathempseudo tree. Therefore,
the caching method (e.qg., full caching based on contexdetabnditioning cache, adaptive
caching) is an orthogonal issue to that of the search spacemeosition. We will show an
example based on an OR search space (pseudo tree is a chaihdhea results will carry
over to the AND/OR search space.

Figure[6.5 shows a pseudo tree, with binary valued variables, dontext for each
variable, and the context minimal graph. If we assume the 8oun 2, some of the cache
tables don't fitin memory. We could in this case A&Cutset(2) shown in Figuré 67, that
takes more time, but can execute in the bounded memory. T$et quthis case is made
of variablesA and B, and we see four conditioned subproblems, the four colurhas, t

are solved independently from one another (there is no sijasf subgraphs). Figurle 8.6
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Figure 6.6:A0C(2) graph (Adaptive Caching)

showsAOC(2), which falls between the previous two. It uses bounded menaégs tmore
time than full caching (as expected), but less time th@tCutset(2)because the graph is
smaller). This can be achieved because Adaptive Cachingsliioe sharing of subgraphs.

Note that the cache table éf has the scop&3(G|, which allows merging.

Variable Elimination and Conditioning -VEC(i)

Variable Elimination and Conditioning/E€C) [90,[63] is an algorithm that combines the

virtues of both inference and search. One of its remarkaltgessful applications is the
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Algorithm VEC-OR(i)
input : M =(X,D,F);d=(Xy,...,X,)
output: Updated belief forX;

1 if (context(X,,) < 7) then

2 eliminateX;;

3 call VEC-OR(i) on reduced problem

4 else foreachz,, € D,, do
assignx,, = x,;
6 | callVEC-OR(i) on the conditioned subproblem

genetic linkage analysis software Superlink! [4AVEC works by interleaving elimination
and conditioning of variables. Typically, given an ordeyint prefers the elimination of
a variable whenever possible, and switches to conditioningnever space limitations re-
quire it, and continues in the same manner until all vargbleve been processed. We say
that the conditioning variables formanditioning setor cutset(this can be regarded as
aw-cutsef where thew defines the induced width of the problems that can be handled b
elimination). The pseudocode for the vanilla version,edEC-OR(i) because the cutset
is explored by OR search rather than AND/OR, is shown below:

When there are no conditioning variablggC becomes the well known Variable Elim-
ination (VE) algorithm. In this cas@OC also becomes the usual AND/OR graph search
(AO), and it was shown in Theorem 6.R.1 théE andAO are identical.
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Tree Decomposition with Conditioning - TDC

One of the most widely used methods of processing graphicalets, especially belief
networks, is tree clustering (also known as join tree or fianctree algorithm([66]). The
work in [32] presents an algorithm calledrectional join tree clusteringthat corresponds
to an inward pass of messages towards a root in the reguéaclustering algorithm. If
space is not sufficient for the separators in the tree decsitiqg, then[[32] proposes the
use of secondary join trees, which simply combine any twggiring clusters whose
separator is too big to be stored. The resulting algorithat tises less memory at the
expense of more time is callegpace based join tree clustering

The computation in each cluster can be done by any suitalileotheThe obvious one
would be to simply enumerate all the instantiations of thuster, which corresponds to an
OR search over the variables of the cluster. A more advan@ttad advocated by [32]
is the use of cycle cutset inside each cluster. We can imgraveycle cutset scheme first
by using an AND/OR search space, and second by using Adapéeling bounded by
1, rather than simple AND/OR Cutset in each cluster. We callrésailting methodree

decomposition with conditioning DC(i)).

6.3.2 AOC(i) Compared to VEC(i)

We will begin by following an example. Consider the graphicaldel given in Figure 618a
having binary variables, the orderiadg = (A, B,E,J,R,H,L,N,O,K,D,P,C, M, F-

, G), and the space limitatioh= 2. The pseudo tree corresponding to this ordering is given
in Figure[6.8b. The context of each node is shown in squarekbts.

If we applyVEC alongd; (eliminating from last to first), variables, F' andM can be
eliminated. However(' cannot be eliminated, because it would produce a functidh wi
scope equal to its conteXtd BE H LK D P], violating the bound = 2. VEC switches to
conditioning onC' and all the functions that remain to be processed are moditiedrd-

ingly, by instantiatingC'. The primal graph has two connected components now, shown
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Figure 6.9: Components after conditioning©n

in Figure[6.9. Notice that the pseudo trees are based on ¢hisgnaph, and their shape
changes from the original pseudo tree.

Continuing with the orderingP and D can be eliminated (one variable from each
component), but the®& cannot be eliminated. After conditioning dt, variablesO, N
and L can be eliminated (all from the same component), tHeis conditioned (from the
other component) and the rest of the variables are elimidndi@highlight the conditioning
set, we will box its variables when writing the ordering,= (A, B, E, J, R,H, L, N, O-

,Kl,D,P,[C,M,F,G).
If we take the conditioning st/ X C] in the order imposed on it by, reverse it and
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Figure 6.10: Pseudo tree f800C(2)

put it at the beginning of the ordering, then we obtain:

dy = ( , . [A.B.EJR] , LNO| ,D,P} ,M,F,G>
C

where the indexed squared brackets together with the unédgnepresent subproblems
that need to be solved multiple times, for each instantiadicthe index variable.

So we started witld; and bound = 2, then we identified the corresponding condition-
ing set[H K C] for VEC, and from this we arrived at,. We are now going to usé, to
build the pseudo tree that guid&®C(2), given in Figuré 6.10. The outer box corresponds
to the conditioning of”. The inner boxes correspond to conditioningférand H, respec-
tively. The context of each node is given in square bracketd, the2-contextis on the
right side of the dash. For examplentext(J) = [C H-AE], and2-context(J) = [AE].
The context minimal graph corresponding to the executioA@E€(2) is shown in Figure
6.11.

We can follow the execution of bothOC andVEC along this context minimal graph.
After conditioning onC', VEC solves two subproblems (one for each value’df which
are the ones shown on the large rectangles. The vanillaovev&C-OR is less efficient

thanAOC, because it uses an OR search over the cutset variables, ttadim AND/OR. In
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Figure 6.11: Context minimal graph

our example, the subproblem oh B, E, J, R would be solved eight times BYyEC-OR,
once for each instantiation of, K and H, rather than four times. It is now easy to make
the first improvement t&/EC, so that it uses an AND/OR search over the conditioning

variables, an algorithm we calEC-AQ(i) , by changing line 6 of/EC-OR to:
Algorithm VEC-AO(i)

6 callVEC-AO(i) on each connect ed conponent of conditioned

subproblem separately;

Let's look at one more condition that needs to be satisfiedHertwo algorithms to
be identical. If we change the orderingde = (A, B, E,J,R,H|, L, N,O,K], D, P, F-
,G,[C, M), (F andG are eliminated after conditioning at), then the pseudo tree is the
same as before, and the context minimal graphAOC is still the one shown in Figure
[6.11. HoweverVEC-AO would require more effort, because the eliminatiorGodnd F’
is done twice now (once for each instantiation(gf rather than once as was for ordering
d,. This shortcoming can be eliminated by defining a pseudodased version fovEC,
rather than one based on an ordering. The final algoritHaC (i) is given below (where

Nq(X;) is the set of neighbors of; in the graphz). Note that the guiding pseudo tree is
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regenerated after each conditioning.
Algorithm VEC(i)
input : M=(X,D.F); G=(X,E); d=(Xy,...,X,);

output: Updated belief forX;

ket7 =7 (G, d) Il create elimnation tree;
while 7 not emptydo

3 Iif (3X; leaf inT)A(|Ng(X;)| <1i)) then eliminate X; elsepick X; leaf from7;

4 for eachx; € D; do

5 assignx; = x;;
6 call VEC(i) on each connected component of conditioned subproblem
7 break;

Based on the previous example, we can prove:

THEOREM6.3.2 (AOC(i) simulates VEC(i)) Given a graphical modeM = (X, D, F)
with no determinism and an execution\®EC(i), there exists a pseudo tree that guides

an execution oAOC(i) that traverses the same context minimal graph.

Proof. The pseudo tree A&OC(i) is obtained by reversing the conditioning seM&EC(i)
and placing it at the beginning of the ordering. The proofyisrigluction on the number of
conditioning variables, by comparing the correspondingexts of each variable.

Basis steplf there is no conditioning variable, Theorém 6]2.1 appliéshere is only
one conditioning variable. Given the orderidg= (X;,...,X;,...,X,), let's sayX; is
the conditioning variable.

a) ConsiderX € {Xj4,...,X,}. The function recorded byEC(i) when eliminating
X has the scope equal to the contextofn AOC(i).

b) For X, bothVEC(i) andAOC(i) will enumerate its domain, thus making the same
effort.

c) After X; is instantiated byWEC(i), the reduced subproblem (which may contain
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multiple connected components) can be solved by varialrteredtion alone. By Theorem
[6.2.1, variable elimination on this portion is identical®blD/OR search with full caching,
which is exactihWEC(i) on the reduced subproblem.

From a), b) and c) it follows that EC(i) andAOC(i) are identical if there is only one
conditioning variable.

Inductive step.We assume tha?EC(i) and AOC(i) are identical for any graphical
model if there are at mogtconditioning variables, and have to prove that the sameiés tr
for k + 1 conditioning variables.

If the ordering isd = (X3, ..., Xj,..., X,,) andXj is the last conditioning variable in
the ordering, it follows (similar to the basis step) tW&C(i) andAOC(i) traverse the same
search space with respect to variabl{es;;, ..., X, }, and also forX;. The remaining
conditioned subproblem now falls under the inductive higpets, which concludes the
proof. Note that it is essential thefEC(i) uses AND/OR over cutset, and is pseudo tree

based, otherwisAOC(i) is better. O

6.3.3 AOC(i) Compared to TDC(i)

We will look again at the example from Figurles 8.10 and 6. ht), the orderingl,. It is

well known that a tree decomposition corresponding,toan be obtained by inducing the
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graph alongd, (from last to first), and then picking as clusters each nodetteer with
its parents in the induced graph, and connecting each clissthat of its latest (in the
ordering) induced parent. Because the induced parent sga# t the context of a node,
the method above is equivalent to creating a cluster for eade in the pseudo tree from
Figurel6.10, and labeling it with the variable and its coht@ke result is shown in Figure
[6.12a. A better way to build a tree decomposition is to picky dine maximal cliques in
the induced graph, and this is equivalent to collapsinghi®mgng subsumed clusters from
Figure[6.1Pa, resulting in the tree decomposition in Figui&b. If we want to ruiDC
with bound: = 2, some of the separators are bigger than 2, so a secondary tieined
by merging clusters adjacent to large separators, obtathintree in Figure 6.123.DC(2)
now runs by sending messages upwards, toward the root. dtuigan, when augmented
with AND/OR cutset in each cluster, can also be followed andbntext minimal graph
in Figure[6.11. The separatod F'], [AR] and[C D] correspond to the contexts 6f, I’
and M. The root clustefC HABE.JDR] corresponds to the part of the context minimal
graph that contains all these variables. If this clusterldidse processed by enumeration
(OR search), it would result in a tree witfi = 256 leaves. However, when explored by
AND/OR search with adaptive caching the context minimapgraf the cluster is much
smaller, as can be seen in Figlre 6.11. By comparing the wmagrtontext minimal

graphs, it can be shown that:

THEOREM6.3.3 Given a graphical modeM = (X, D, F) with no determinism, and an
execution ofTDC(i), there exists a pseudo tree that guides an executiohQi (i) that

traverses the same context minimal graph.

Proof. Algorithm TDC(i) is already designed to be an improvement apgace based join
tree clusteringSectioni6.3.11), in that it uses AND/OR Adaptive Cachingheathan cutset
conditioning) inside each cluster to compute the messdggsate sentTDC(i) is based

on a rooted tree decomposition, which can serve as the skdiat the underlying pseudo

tree. Each cluster has its own pseudo tree to guide the ANDX@d&ptive Caching. Each
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message sent between neighboring clusters couples alhttables in its scope, therefore
the scope variables have to appear on a chain at the top okthalp tree of the cluster
where the message is generated, and also they have to appeahain in the pseudo tree
of the cluster where the message is received. This impligstéto neighboring clusters
can agree on an ordering of the common variables (since wenagsso determinism, the
order of variables on a chain doesn’t change the size of theegkbminimal graph). All this
allows us to build a common pseudo tree for two neighboringtekrs, by superimposing
the common variables in their respective pseudo trees fwdrie the variables in the sepa-
rator between the clusters). In this way we can build the ggsénee for the entire problem.
Now, for any variableX; in the problem pseudo treécontext(X;) is the same as it was
in the highest cluster (closest to the root of the tree deasitipn) whereX; is mentioned.
From this, it follows thalAOC(i) based on the pseudo tree for the entire problem traverses

the same context minimal graph&8C(i). O

6.3.4 Discussion

We have compared three parameterized algorithmic schemngsaphical models that can
accommodate time-space trade-offs. They have all emergeddeemingly different prin-
ciples: AOC(i) is search based,DC(i) is inference based andEC(i) combines search
and inference.

We show that if the graphical models contain no determinis@C(i) can have a
smaller time complexity than the vanilla versions of b¥BC(i) andTDC(i). This is due
to a more efficient exploitation of the graphical structuréhe problem through AND/OR
search, and the adaptive caching scheme that benefits feocatdet principle. These ideas
can be used to enhan@&C(i) andTDC(i). We show that iVEC(i) uses AND/OR search
over the conditioning set and is guided by the pseudo treeestaicture, then there exists
an execution oAOC(i) that is identical to it. We also show thatTDC(i) processes clus-

ters by AND/OR search with adaptive caching, then therete®s execution oAOC(i)
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identical to it. AND/OR search with adaptive cachirJC(i)) emerges therefore as a
unifying scheme, never worse than the other two. All the ysialwas done by using the
context minimal data structure, which provides a powerfatimdology for comparing the
algorithms.

When the graphical model contains determinism, all the alsocthemes become in-
comparable. This is due to the fact that they process vasablreverse orderings, and will

encounter and exploit deterministic information diffetign

6.4 Conclusion to Chapter 6

This chapter was dedicated to the analysis of search aneide algorithms in graphical
models. Analogies between top down and bottom up traveo$alsree or graph go a long
way back and appear in many areas of computer science.

Our main contribution in this chapter was the comparison BDAOR search (as a
top down method) with inference algorithms (as bottom uphmes) in graphical models.
We develop a methodology of comparison by describingcthr@ext minimal grap{CM
graph). Memory intensive AND/OR search (i.e., with full éext-based caching) traverses
the CM graph top down, in a depth first (DFS) manner. Variabimightion, on the other
hand, can be shown to traverse the same CM graph, if the eliovinarder is the reverse of
the DFS traversal of the pseduo tree that guides the AND/@R:Be Each multiplication
and summation performed by Variable Elimination can be @ased with the traversal
of and edge in the CM graph. We show that there is no principlédrence between
memory-intensive search with fixed variable ordering aridrance beyond: (1) different
direction of exploring a common search space (top down farckevs. bottom-up for
inference); (2) different assumption of control stratedggth-first for search and breadth-
first for inference). We also show that those differencesupcomly in the presence of

determinism.
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We also extend the same type of analysis to hybrid algorithhe combine search
and inference. We propose tAeaptive Cachinglgorithm AOC(i)) as the most efficient
AND/OR search algorithm, that exploits the available mgmnorthe best way. We show
that AOC(i) is never worse than two other schem@gC(i) that interleaves elimination

and conditioning, andDC(i) that is based on tree decompositions.
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Chapter 7

AND/OR Multi-Valued Decision
Diagrams (AOMDDSs)

7.1 Introduction

The work presented in this chapter is based on two existiagnéworks: (1) AND/OR
search spaces for graphical models (see Chhapter 2) and (Rjotediagrams (DD).
Decision diagrams are widely used in many areas of reseasg®cially in software
and hardware verification [18, 81]. A BDD represents a Boolemttion by a directed
acyclic graph with two sink nodes (labeled 0 and 1), and evmgrnal node is labeled
with a variable and has exactly two childrdaw for O andhighfor 1. If isomorphic nodes
were not merged, on one extreme we would have the full seerehalso called Shannon
tree, which is the usual full tree explored by backtrackitgpdathm. The tree can be
ordered if we impose that variables be encountered in the sader along every branch.
It can then be compressed by merging isomorphic nodes \{iith,the same label and
identical children), and by eliminating redundant nodes (whosdow andhigh children
are identical). The result is the celebrateduced ordered binary decision diagrammr

OBDD for short, introduced by Bryant [16]. However, the ungiery structure is OR,
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because the initial Shannon tree is an OR tree. If AND/ORcéetaees are reduced by
node merging and redundant nodes elimination we get a cdraparch graph that can be

viewed as a BDD representation augmented with AND nodes.

7.1.1 Contributions

We combine here the ideas of AND/OR search and decisionahagrin order to create a
decision diagram that has an AND/OR structure, thus exptpjproblem decomposition.

As a detail, the number of values is also increased from twangoconstant, but this is

less significant for the algorithms. Our proposal is closelated to two earlier research
lines within the BDD literature. The first is the work on DigjpiSupport Decompositions
(DSD) investigated within the area of design automatiorj, [tfat were proposed recently
as enhancements for BDDs aimed at exploiting function deositipn [8]. The second is

the work on BDDs trees [82]. Another related proposal is tleeméwork by Fargier and

Vilarem [46] on compiling CSPs into tree-driven automata.

A decision diagram offers a compilation of a problem. It tadly requires an extended
offline effort in order to be able to support polynomial (ia #ize) or constant time online
gueries. In the context of constraint networks, it could beduto represent the whole set
of solutions, to give the solutions count or solution enuatien and to test satisfiability or
equivalence of constraint networks. The benefit of moviegflOR structure to AND/OR
is in a lower complexity of the algorithms and size of the cdatpstructure. It typically
moves from being bounded exponentiallypiathwidthpw™*, which is characteristic to chain
decompositions or linear structures, to being expondytiaunded irtreewidthw*, which
is characteristic of tree structures (it always holds thiak pw* andpw* < w* -logn). In
both cases, the compactness achieved in practice is oftemtiller than what the bounds
suggest.

The contributions made in this chapter are the following:

(1) We formally describe the AND/OR Multi-Valued Decisiomdgram (AOMDD) and

211



prove that it is a canonical representation for constragtvorks.

(2) We extend the AOMDD to general weighted graphical madels

(3) We give a compilation algorithm based on AND/OR searisht saves the trace of
the memory intensive search (which is a subset of the comti@itmal graph), and then
reduces it in one bottom up pass.

(4) We describe theppLY operator that combines two AOMDDs by an operation, and
show that its complexity is at most quadratic in the input.

(5) We give a scheduling of building the AOMDD of a graphicabahel starting with
the AOMDDs of its functions. It is based on an ordering of &htes, which gives rise to a
pseudo tree according to the execution of Variable Elinmmadélgorithm. This guarantees
that the complexity is at most exponential in theithduced widthalong the ordering (equal
to the treewidth of the corresponding decomposition).

(6) We show how AOMDDs relate to various earlier and recemhmitation frame-
works, providing a unifying perspective for all these metho

(7) We also introduce the conceptsgmantic treewidthwhich helps explain why the
size of a decision diagram is often much smaller than thetwaise bound.

The research presented in this chapter is based in part pia {7688/ 73].

7.2 Motivation

Before we proceed with the technical details, we provide tlogvation for compilinga
graphical model, and give examples of how it would be uséftthout elaborating on the
definition now, what we mean bgompilationis a compact representation of a graphical
model, which allows fast response time to queries.

The first aim is to divide of the computational effort betwearoffline and anonline
phase. Most of the work is pushed offline, with the tradedf tinline responses to querries

are be fast. The second purpose of compilation is that ofimbtathe most compact

212



representation possible for a function (or graphical mp@eid to have efficient operations
between functions. This can have an impact on any existga ig#hm that can benefit from
such a compact and efficient data structure.

A typical example where one would want to divide the work betw offline computa-
tion and online query answering might be product configaratimagine a user that choses
sequential options to configure a product. There may be gles@nstraints that do not per-
mit certain combinations. In a naive system, the user woeldllowed to choose any valid
option at the current level based only on the initial constsa until either the product is
configured, or else, when a dead-end is encountered, thensysbuld backtrack to some
previous state and continue from there. This would in facalsearch through the space
of possible partial configurations. Needless to say, it @dnd very unpractical, and would
offer the user no guarantee of finishing in a limited time. Atseyn based on compilation
would actually build thébacktrack-freesearch space in the offline phase, and represent it
in a compact manner. In the online phase, only valid parbafigurations (i.e., that can
be extended to a full valid configuration) are allowed, angesigling on the query type,
response time guarantees can be offered in terms of thefdize compiled structure.

There are numerous other examples that can be formulatedhpkical models, and
where compilation would be useful. In diagnosis, the protiketo detect the possible faults
or explanations for some unusual behaviour. Planning probican also be formulated as
graphical models, and a compilation would alow swift adjusits according to changes in
the environment. Probabilistic models are one of the masd tigoes of graphical models,
and the basic query is to compute conditional probabiliitesome variables given the
evidence. A compact compilation of a probabilistic modeltdoallow fast response for
any change in the evidence along time.

Formal verification is another example where compilatiohaavily used to compare
equivalence of circuit design, or to check the behaviour afeuit. Binary Decision Dia-

gram(BDD) [16] are arguably the most widely known and used congpsieucture.
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Figure 7.1: Boolean function representations

7.3 Binary Decision Diagrams Review

Decision diagrams are widely used in many areas of researokptesent decision pro-
cesses. In particular, they can be used to represent fasctiDue to the fundamental
importance of Boolean functions, a lot of effort has been ckéd to the study dBinary
Decision DiagramgBDDs), which are extensively used in software and hardware v
fication [18,81]. The earliest work on BDDs is due to Leel [67honntroduced binary-
decisionprograms that can be understood as a linear representation of a BQD éedepth
first search ordering of the nodes), where each node is alirenmstruction indicating
the address of the next instruction for both the 0 and the devaf the test variable. Ak-
ers [1] presented the actual graphical representationuatitef developed the BDD idea.
However, it was Bryant [16] that introduced what is now calleeOrdered Binary Deci-
sion Diagram(OBDD). He restricted the order of variables along any patthefdiagram,
and presented algorithms (most importantly épgly procedure, that combines two OB-
DDs by an operation) that have time complexity at most quadirathe sizes of the input
diagrams. OBDDs are fundamental for applications with ldnigary functions, especially
because in many practical cases they provide very compa@sentations.

A BDD is a representation of a Boolean function. Giv8n= {0, 1}, a Boolean func-
tion f : B® — B, hasn arguments Xy, ---, X,,, which are Boolean variables, and takes

Boolean values.

Example 7.3.1 Figure[7.1(a) shows a table representation of a Boolean fanabf three
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(a) Isomorphic nodes (b) Redundant nodes (c) OBDD

Figure 7.2: Reduction rules

variables. This explicit representation is the most stndfigrward, but also the most costly
due to its exponential requirements. The same function Isanee represented by a binary
tree, shown in Figurg 7.1(p), that has the same exponentialinithe number of variables.
The internal round nodes represent the variables, the saliges are the 1 (or high) value,
and the dotted edges are the 0 (or low) value. The leaf squatesishow the value of the
function for each assignment along a path. The tree shoyri{pyis unordered, because

variables do not appear in the same order along each path.

In building an OBDD, the first condition is to have variablepear in the same order
(A,B,C) along every path from root to leaves. Figlre 7]1(cmahan ordered binary tree
for our function. Once an order is imposed, there are twocatal rules that transform a
decision diagram into an equivalent one:

(1) isomorphismmerge nodes that have the same label and the same children.
(2) redundancy:eliminate nodes whose low and high edges point to the same, aod
connect parent of removed node directly to child of remowvedien

Applying the two reduction rules exhaustively yieldeeducedOBDD, sometimes de-

noted rOBDD. We will just use OBDD and assume that it is compteeruced.

Example 7.3.2 Figure[7.2(a) shows the binary tree from Figlire 7.1(c) aftex isomorphic

terminal nodes (leaves) have been merged. The highlightdds) labeled with C, are
also isomomorphic, and Figufe 7.2[b) shows the result aftey tare merged. Now, the
highlighted nodes labeled with C and B are redundant, and xengathem gives the OBDD

in Figure[7.2(c).

215



7.4 Bucket Elimination (BE)

Bucket Elimination BE) [29] is a well known variable elimination algorithm for grfence
in graphical models. We will describe it using the termirgyidor constraint networks,
but BE can also be applied to any graphical model. Consider a camstr@work R =
(X,D, C) and an ordering = (X3, X», ..., X,). The ordering/ dictates an elimination
order forVE, from last to first. Each variable is associated with a buckech constraint
from C is placed in the bucket of its latest variablednBuckets are processed froi,
to X; by eliminating the bucket variable (the constraints regjdn the bucket are joined
together, and the bucket variable is projected out) andmajabe resulting constraint (also
calledmessaggin the bucket of its latest variable ih After its executionVE renders the
network backtrack free, and a solution can be produced hgrasg variables alond. VE
can also produce the solutions count if marginalizatiorosedby summation (rather than
projection) over the functional representation of the t@msts, and join is substituted by
multiplication.

VE also constructs a bucket tree, by linking the bucket of e&¢clo the destination
bucket of its message (called the parent bucket). A nodeerbtitket tree typically has
a bucket variable a collection of constraintsand ascope(the union of the scopes of its
constraints). If the nodes of the bucket tree are replaceldyrespective bucket variables,

it is easy to see that we obtain a pseudo tree.

Example 7.4.1 Figure[7.3(a) shows a network with four constraints. Figuré@j3hows
the execution of Bucket Elimination alodg- (A, B, E, C, D). The buckets are processed
from D to AH. Figure[7.3(c) shows the bucket tree. The pseudo tree camelpg to the
orderd is given in Fig{ 3.11(H).

1The representation in Figure V.3 reverses the top down bpeeessing described in earlier papers.
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(c) Bucket tree

Figure 7.3: Bucket Elimination

7.5 AND/OR Multi-Valued Decision Diagrams

(AOMDDs)

The context minimalAND/OR graph (Definitiori_2.319) offers an effective way o&iti-
fying some unifiable nodes during the execution of the sealgbrithm. Namely, context
unifiable nodes are discovered based only on their paths fihennoot, without actually
solving their corresponding subproblems. However, mergismsed on context is not com-
plete, which means that there may still exist unifiable nadethe search graph that do
not have identical contexts. Moreover, some of the noddsarcontext minimal AND/OR
graph may be redundant, for example when the set of solutawied at variabléeX; is not
dependant on the specific value assignedidthis situation is not detectable based on
context). This is sometimes termed as “interchangeablesgalor “symmetrical values”.
As overviewed earlier, in [45] we defined the completmimal AND/OR graphvhich
is an AND/OR graph whose all unifiable nodes are merged andseepaoved canonicity
[38]. Here we propose to augment the minimal AND/OR searéiplgmwith removing

redundant variables as is common in OBDD representation 4saw@dopt some nota-
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tional conventions common in this community. This yieldsadadstructure that we call
AND/OR BDD, that exploits decomposition by using AND nodese esent the exten-
sion over multi-valued variables yielding AND/OR MDD or AGMD and define them for
general weighted graphical models. We will also presentaigorithms for compiling the
canonical AOMDD of a graphical model: the first is search das@ed used the memory
intensive AND/OR graph search to generate the context nalhAND/OR graph, and then
reduces it bottom up by applying reduction rules; the sedsmference based, and uses
a Bucket Elimination schedule to combine the AOMDDs of initianctions byAPPLY op-
erations (similar to thepply for OBDDs). As we will show, both approaches have the
same worst case complexity as the AND/OR graph search wittegbbased caching, and
also the same complexity as Bucket Elimination, namely timespace exponential in the

treewidth of the problem)(n k*").

7.5.1 From AND/OR Search Graphs to Decision Diagrams

An AND/OR search graply of a graphical modeM = (X, D, F, ®) represents the set
of all possible assignments to the problem variables (diitems and their costs). In
this sensey can be viewed as representing the functjpn= ®y,cr f; that defines the
universal equivalent graphical modelM) (Definition[1.2.6). For each full assignment
r = (x1,...,1,), if  forms a solution subtrelg thenf(z) = w(t) = Qccaresryw(e) (Def-
inition [2.2.7); otherwisef (x) = 0 (the assignment is inconsistent). The solution subtree
of a consistent assignmentan be read frorg in linear time by following the assignments
from the root. Ifx is inconsistent, then a deadend is encounterggwhen attempting to
read the solution subtréeandf(z) = 0. ThereforeG can be viewed as a decision diagram
that determines the values fffor every complete assignment

We will now see how we can process an AND/OR search graph hyctied rules
similar to the case of OBDDs, in order to obtain a represemadf minimal size. In

the case of OBDDs, a node is labeled with a variable name, fample A, and thelow
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(a) OBDD (b) MDD

Figure 7.4: Decision diagram nodes (OR)

(a) AOBDD (b) AOMDD

Figure 7.5: Decision diagram nodes (AND/OR)

(dotted line) anchigh (solid line) outgoing arcs capture the restriction of thedtion to

the assignmentd = 0 or A = 1. To determine the value of the function, one needs to
follow either one or the other (but not both) of the outgoingsdrom A (see Figuré 7.4(R)).
The straightforward extension of OBDDs to multi-valued shtes (multi-valued decision
diagrams, or MDDs) was presented|in[97], and the nodeshiegtuse are given in Figure
[7.4(b). Here, each outgoing arc is associated with one of tlues of variabled.

In this chapter we generalize the OBDD and MDD representstiorFigure§ 7.4(&)
and[7.4(0) by allowing each outgoing arc of a node to be an ARD an AND arc
connects a node to a set of nodes, and captures the decampadithe problem into
independent components. The number of AND arcs emanatang & node is two in the
case of AOBDDs (Figurg 7.5(a)), or the domain size of the ¥éeidgn the general case
(Figure[7.5(0)). For a given nodé, each of itsk AND arcs can connect it to possibly
different number of nodes, depending on how the problem meoses based on each
particular assignment od. The AND arcs are depicted by a shaded sector that connects
the outgoing lines corresponding to the independent coetsn

We derive the AND/OR Decision Diagram representation basedND/OR search

graphs. We find that it is useful to maintain the semanticdgfife[7.% especially when we
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(a) Nonterminal meta-node (b) Terminal meta-nodeé (c) Terminal meta-nodé&

Figure 7.6: Meta-nodes

need to express the redundancy of nodes, and therefore mdune themeta-nodedata
structure, which defines small portions of any AND/OR grdysed on a an OR node and

its AND children:

DEFINITION 7.5.1 (meta-node)A meta-node: in an AND/OR search graph consists of
an OR node labeled” (thereforevar(u) = X) and itsk AND children labeled:, . . ., =y
that correspond to the value assignments{ofEach AND node labeled; stores a list of
pointers to child meta-nodes, denoted:byhildren;. In the case of weighted graphical

models, the AND node, also stores the OR-to-AND arc weight X, z;).

The rectangle in Figure 7.6{a) is a meta-node for variabléhat has a domain of size
k. Note that this is very similar to Figure T.5, with the smafilatence that the information
about the value ofl that corresponds to each outgoing AND arc is now stored i\t
nodes of the meta-node. We are not showing the weights irfithak. A larger example
of an AND/OR graph with meta-nodes appears later in FiguBe 7.

We also define two special meta-nodes, that will play the obkbae terminal nodes in
OBDDs. The terminal meta-nodk shown in Figuré¢ 7.6(b), indicates inconsistent assign-
ments, while the terminal meta-not@leshown in figuré 7.6(¢) indicates consistent ones.

Any AND/OR search graph can now be viewed as a diagram of madas, simply by
grouping OR nodes with their AND children, and adding thenieal meta-nodes appro-
priately.

Once we have defined the meta-nodes, it is easier to see whaetahlg is redundant

with respect to the outcome of the function based on the stpatial assignment. Intu-
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itiveley, any assignment to a redundant variable should teghe same set of solutions.

DEFINITION 7.5.2 (redundant meta-node)Given a weighted AND/OR search graph

represented with meta-nodes, a meta-nedeth var(u) = X and|D(X)| = k is redun-

dantiff:
(@) w.children, = ... = u.children, and
(b) w(X,z1) =... =w(X,xy).

An AND/OR graphg, that contains a redundant meta-naedean be transformed into
an equivalent grap§i’ by replacing any incoming arc intowith its common list of children
u.childreny, absorbing the common weight{ X, z; ) by combination into the weight of the
parent meta-node corresponding to the incoming arc, amdrémeovingu and its outgoing
arcs fromg. If u is the root of the graph, then the common weightX, z;) has to be
stored separateley as a constant.

The notion of isomorphism is extended naturally from AND/@fphs to meta-nodes.

DEFINITION 7.5.3 (isomorphic meta-nodes)Given a weighted AND/OR search gragh
represented with meta-nodes, two meta-nadasdv havingvar(u) = var(v) = X and
|D(X)| = k areisomorphiciff:

(@) u.children; = v.children; ¥i € {1,...,k} and

(b) w*(X,z;) = w’(X,z;) Vi € {1,...,k}, (Wherew", w” are the weights of, and
).

Naturally, the AND/OR graph obtained by merging isomorphieta-nodes is equiva-
lent to the original one.

We can now define the AND/OR Multi-Valued Decision Diagram:

DEFINITION 7.5.4 (AOMDD) An AND/OR Multi-Valued Decision Diagram (AOMDD) is
a weighted AND/OR search graph that is completely reduceddmgasphic merging and

redundancy removal, namely:
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(1) it contains no isomorphic meta-nodes; and
(2) it contains no redundant meta-nodes.

The AOMDD of a functiorf is denoted by §>™%.

Examples of AOMDDs appear in Figures]7.8 7.9. We will rdigtuss two ap-
proaches for generating the AOMDD of a graphical model: inti®a[7.6 we present a
search based algorithm, that performs AND/OR search amdpglies the reduction rules
(Definitions[7.5.2 and 7.5.3) bottom up to the trace of thedef.e., the traversed space)
to obtain the AOMDD:; in Section 7.7 we present an inferengerthm based on a Bucket
Elimination schedule, that uses thePLy operation inside each bucket to combine the

AOMDDs of the graphical model functions.

7.6 Using AND/OR Search to Generate AOMDDs

In Sectior 7Z.51 we described how we can transform an AND/@Rtginto an AOMDD
by applying reduction rules. In this section we describeetk@icit algorithm that takes as
input a graphical model, performs AND/OR search with conbt&sed caching to obtain
the context minimal AND/OR graph, and then applies the reédaaules bottom up to
obtain the AOMDD.

7.6.1 AND/OR Search Algorithm

For completeness, Algorithid 7 shows the AND/OR search dhgor[38]. The input is a
graphical modeM and a pseudo treg. Algorithm[7 associates a value to each node in the
AND/OR search space. This is necessary when solving a reastaisk, but can be avoided
when we just need to generate an AOMDD fbt. The only important information that
needs to be propagated in the backtrack phase of the seaerhgeherating an AOMDD

is the distinction between consistent and inconsistengasgnts, namely to propagate the

dead-ends up to the highest level. Therefore, an AOMDD doéseed to be associated
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with a reasoning task, since it represents the universatitumof M, and as such can be
traversed to obtain answers to different reasoning prokldtris up to the user to decide
if more information is stored in each meta-node, for exantipdevalue corresponding to a
reasoning task restricted to its subproblem.

Algorithm [4 describes both a depth first tree AND/OR searath amgraph AND/OR
search. The switch is realized through the varialalehing, which we set tdrue to obtain
the memory intensive version. Each variallleghas an associated cache table, whose scope
is the context ofX; in 7. This will ensure that the trace of the search is the cont@ximal
AND/OR graph.

We will also use a list for each variable, to save pointers éasmodes corresponding
to that variable level. The lists will be used by the procedimat performs the bottom
up traversal, per layers of the AND/OR graph, to apply theucddn rules. The list for
variableX; is denoted byListX:.

The fringe of the search is maintained on a stack calegN. The current node is
denoted by, its parent byp, and the current path by,. The children of the current node
are denoted byuccessors(n).

The algorithm is based on two mutually recursive steps: BEXPAnd PROPAGATE,
which call each other (or themselves) until the search teaies.

Since we only use OR caching, before expanding an OR nodmakee table is checked
(line[8). If the same context was encountered before, the mod its value are retrieved
from cache, anduccessors(n) is set to the empty set, which will trigger the PROPAGATE
step.

If a node is not found in cache, it is expanded in the usual @wegending on whether
it is an AND or OR node (lines_10-19). In our description, wewmse a sum-product
reasoning task (e.g., belief updating in belief networksadutions counting in constraint
networks). For belief updating, the value of an AND node ig8ahzed to the bucket value

for the current assignment, namely the weight of the OR-tdAdMc (line[15). When
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an OR node is expanded, its possible variable assignmemtshacked for consistency
(line[14). The deterministic information (inconsistensigeaments) inM can be extracted
to form a constraint network. Any level of constraint propagn can be performed in
this step (e.g., look ahead, arc consistency, path consigteconsistency etc.). At the
minimum, a value(X;, ;) together with the current path assignemesyn(r,) can be
checked to be consistent with the initial functionginAs long as the current node is not
a dead-end and still has unevaluated successors, one atdsssors is chosen (which is
also the top node ODPEN), and the expansion step is repeated.

The bottom up propagation of values is triggered when a nadeam empty set of
successors (note that, as each successor is evaluatedntiged from the set of successors
in line[34). This means that all its children have been evatliaand its final value can now
be computed. If the current node is the root, then the searatiriates with its value (line
[22). If itis an OR node, its value is saved in cache before ggaping it up (liné_24). Ih
is OR, then its parent is AND andp updates its value by multiplication with the value of
n (line[217). If the newly updated value ¢fis 0 (line[28), therp is a dead-end, and none
of its other successors needs to be evaluated. An AND nqatepagates its value to its
parentp in a similar way, only by summation (liie 33). Finally, ther@nt noden is set
to its parent (line[33), becausa was completely evaluated. The search continues either
with a propagation step (if conditions are met) or with anasgion step.

When AlgorithnY terminates, the context minimal AND/OR drag M is obtained,
and can also be viewed as the trace of the search algorithravoid cluttering the algo-
rithm, we did not describe explicitly how pointers are mained between OR and AND
nodes, and how meta-nodes are formed, but this is strargfatbfrom the execution of the
depth first search. A list.” contains all the metanodes &f, that appear in the context

minimal AND/OR graph.
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Algorithm 7: AND/OR SEARCH

input : A graphical modeM = (X, D, F); a pseudo treg of the primal graph, rooted &; ; parentgpa;
(OR-context) for every variabl&’;; caching set totrue.
output : The context minimal graph ofA1.

1 if caching == true then /Il Initialize cache tables
2 L Initialize cache tables with entries of1”
3 v(X1) < 0; 0PEN — {X} /1 Initialize the stack OPEN
4 while OPEN # ¢ do
5 n — top(OPEN); removen from OPEN
6 if caching == true andn is OR, labeledX; and Cache(asgn(my)[pa;]) # —1 then /1 1f in cache
7 v(n) « Cache(asgn(my)[pa;)]) /1l Retrieve val ue
8 successors(n) «— ¢ /1 No need to expand bel ow
9 else /| EXPAND (forward)
10 if nis an OR node labeled’; then /1 OR-expand
11 successors(n) «— ¢
12 forall z; € D; do /| Constraint Propagation
13 if (X, ;) is consistenwith 7, then
14 L successors(n) <« successors(n) U (X, z;)
v({ X, zi)) — 11 f(asgn(mn)[pai]), forall (X;,x;) € successors(n)
15 L feBT(X;)
16 if nis an AND node labeledX;, z;) then /1 AND- expand
17 successors(n) « childrens (X;)
18 | v(X;) < Oforall X; € successors(n)
19 | Add successors(n) to top of OPEN
20 while successors(n) == ¢ do /| UPDATE VALUES (backtrack)
21 if nis an OR node labeled’; then
22 if X; == X then /1 Search is conplete
23 | return v(n)
24 if caching == true then
25 Cache(asgn(my)[pai]) < v(n) /1 Save in cache
26 Add meta-node of to list L
27 v(p) — v(p) * v(c)
28 if v(p) == 0then /1 Check if pis dead-end
29 removesuccessors(p) from OPEN
30 successors(p) «— ¢
31 if n is an AND node labeledX;, z;) then
32 let p be the parent of
33 | () — vl(p) + v(a);
34 removen from successors(p)
35 | n<p

36 return trace of search and meta-nodes ligt§':

7.6.2 Reducing the Context Minimal AND/OR Graph to an AOMDD

We describe in Proceduré 8 the bottom up reduction of theegbntinimal graph, and will
prove that the result is the AOMDD o¢¥1.

Proceduré]8 processes the variables bottom up relativeetpgbudo tre€. We use
the depth first traversal ordering @f (line[d), but any other bottom up ordering is as good.
The outer for loop (starting at lifie 1L0) goes through all elaekl of the context minimal

AND/OR graph. For efficiency, and to ensure the complexitgrgatees that we will prove,
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a hash table, initially empty, is used for each level. Theirfor loop (starting at line_10)
goes through all the metanodes of a level, that are also gawvedinters to them are saved)
inthe listL:. For each new meta-noden the list, if it was already encountered before (as
meta-nodep, namely if it is found in the cache table, thems merged withp. Otherwise,

if the new meta-node is redundant, then it is eliminated from the AND/OR grapmdhe

of the previous two conditions is met, then the new meta-madéashed into the tablg.

Procedure[8: Bottom Up Reducti on
input : A graphical modeM = (X, D, F); a pseudo tre@ of the primal graph, rooted &;
Context minimal AND/OR graph, and lisfs*: of meta-nodes for each leva;.

output : AOMDD of M.

Letd = {X;,..., X, } be the depth first traversal orderingDf

for i «— n downto1do

Let H be a hash table, initially empty

forall meta-nodea in L do

if H(X;,n.childreny, ... ,n.childreny,, w"(X;, z1),...,w*(Xy,,zx,)) returnsp then
| mergen with p in the AND/OR graph

else ifn is redundanthen
L eliminaten from the AND/OR graph

else
L H(X;,n.childreny,...,n.childreny,,w*(X;,z1),...,w*(Xk,, zr,)) < p

© o o 0 b~ WN B

iy
o

return reduced AND/OR graph

=
=

Proposition 25 The output of Proceduid 8 is the AOMDD.® along the pseudo treg,

namely the resulting AND/OR graph is completely reduced.

Proof. Consider the level of variabl&’;,, and the meta-nodes in the li&t:. After one
pass through the meta-nodesIifti (the inner for loop), there can be no two meta-nodes
at the level ofX; in the AND/OR graph that are isomorphic, because they woakkh
been merged in lingl 6. Also, during the same pass through éta-nodes in.X: all the
redundant meta-nodes iix*: are eliminated in lin€l8. Processing the meta-nodes in the
level of X; will not create new redundant or isomorphic meta-nodeseridtiels that have
been processed before. It follows that the resulting ANDg2&ph is completely reduced.

O
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Note that we explicated Procedlre 8 separately only foitglatn practice, it can
actually be included in Algorithiin 7. We can maintain a hasitetéor each variable, during
the AND/OR search, to store pointers to meta-nodes. Whenetlre!s backtracks out of
an OR node (in the Update value phase), it can already chedlettundancy of that meta-
node, and also look up in the hash table to check for isomsnphT herefore, the reduction
of the AND/OR graph can be done during the AND/OR search, hattput will be the
AOMDD of M.

From Theorem 2.318 and Propositior 25 we can conclude:

THEOREM7.6.1 Given a graphical modeM and a pseudo tre€ of its primal graph
G, the AOMDD of M corresponding td7” has size bounded b9 (n £*7(%)) and it can
be computed by the AND/OR search algorithm in tifie £*7(%), wherews(G) is the

induced width of> over the depth first traversal @f, andk bounds the domain size.

Proof. The bound on the size follows directly from Theorem 2.3.8e HOMDD size can
only be smaller than the size of the context minimal AND/ORgjr, which is bounded by
O(n k*7(©)), To prove the time bound, we have to rely on the use of hask,tabld the
assumption that an efficient implementation allows an actiese that we assume to be
constant. The time bound of Algorithim 7 @&(n k*7(%), from Theoreni 2.318, because it
takes time linear in the output (we assume here that no @nspropagation is performed
during search). Procedure]25 takes time linear in the siggeofontext minimal AND/OR
graph. Therefore, the AOMDD can be computed in tidie £*7(%)), and the result is the

same for the algorithm that performs the reduction durimgstharch. O

7.7 Using Bucket Elimination to Generate AOMDDs

In this section we propose to use a Bucket EliminatiBE) type algorithm to guide the
compilation of a graphical model into an AOMDD. The basicadeto express the graph-

ical model functions as AOMDDs, and then combine them witPLY operations based
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Figure 7.7: (a) Constraint graph fét= {C4,...,Cy}, whereC, = FVH,Cy = AV—-H,
C3=A@B&G C,=FVG,C;=BVF,Cg=AVE C;=CVE (Cs=C&®D,
Cy = BV C; (b) Pseudo tree (bucket tree) for orderihg- (A, B,C, D, E, F,G, H)
on aBE schedule. TheaPPLY is very similar to that from OBDDs [16], but it is adapted to
AND/OR search graphs. It takes as input two functions represi as AOMDDs based on
the same pseudo tree, and outputs the combination of ifutigtions, also represented as
an AOMDD based on the same pseudo tree. We will describe gtaildn Section 7.7]2.
We will start with an example based on constraint networkss 16 easier to understand

because the weights on the arcs are all 1 or 0, and theref®egicted in the figures by

solid and dashed lines, respectively.

Example 7.7.1 Consider the network defined By= {A,B,...,H}, Dy = ... = Dy =
{0,1} and the constraints (where denotes XOR)C, = FV H,Cy = AV —H, C3 =
ApB@®G,Cy=FVG,C;=BVF,Cg=AVE C,=CVE Cs=CoD,

Cy = BV C. The constraint graph is shown in Figure I7.7(a). Consider treeong
d=(A,B,C,D,E,F,G, H). The pseudo tree (or bucket tree) inducedlisygiven in Fig.
[74(b). Figure7.B shows the executionu# with AOMDDs along orderingl. Initially,

the constraints”; through Cy are represented as AOMDDs and placed in the bucket of
their latest variable ind. The scope of any original constraint always appears on a path
from root to a leaf in the pseudo tree. Therefore, eadhjinal constraint is represented by
an AOMDD based on a chain. (i.e. there is no branching intepehdent components at
any point). The chain is just the scope of the constraintemd according tal. For bi-
valued variables, the original constraints are represenby OBDDs, for multiple-valued

variables they are MDDs. Note that we depict meta-nodes: one@R and its two AND
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Figure 7.8: Execution of VE with AOMDDs

children, that appear inside each gray node. The dotted etdgesponds to the 0 value
(the low edge in OBDDs), the solid edge to the 1 value (tigh edge). We have some
redundancy in our notation, keeping both AND value nodes acwtiypes (doted arcs from

“0” and solid arcs from “1”).

The VE scheduling is used to process the buckets in reverse ordér &f bucket is
processed byoining all the AOMDDs inside it, using thePpLY operator. However, the
step of elimination of the bucket variable is omitted beeaws want to generate the full
AOMDD. In our example, the messages = C > Cy andmy = C5 <1 Cy are still based
on chains, so they are still OBDDs. Note that they still camtidie variablesH and G,
which have not been eliminated. However, the message- C'5 < m; <1 ms IS NOt an
OBDD anymore. We can see that it follows the structure of tleeighs tree, wheré” has
two children,GG and H. Some of the nodes correspondingitdhave two outgoing edges
for value 1.

The processing continues in the same manner The final ouftplue @lgorithm, which
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Figure 7.9: (a) The final AOMDD:; (b) The OBDD correspondingito

coincides withmy, is shown in Figuré 719(a). The OBDD based on the same ordeting
is shown in FigL. 79(b). Notice that the AOMDD has 18 nonteriinimales and 47 edges,

while the OBDD has 27 nonterminal nodes and 54 edges.

7.7.1 Algorithm VE-AOMDD

Given an orderingl, the structural information captured in the primal graptotigh the
scopes of the functionB = {f1, ..., f,} can be used to create the unique pseudo tree that
corresponds td. This is precisely the bucket tree (or elimination treeattis created by

BE (when variables are processed in revefseThe same pseudo tree can be created by
conditioning on the primal graph, and processing varialig¢le orderd, as described in
Procedurél9GeneratePseudoTreeln the following,d|s, is the restriction of the ordet

to the nodes of the gragh,.

Each constrain€; is compiled into an AOMDD that is compatible with and placed
into the appropriate bucket. The buckets are processedl&siwvariable to first as usual.
Each bucket contains AOMDDs that are either initial constsaor AOMDDs received
from previously processed buckets. The scope of all thebbes that are mentioned in a
bucket includeelevantvariables, i.e. the ones whose buckets were not yet pratésste
that they are identical to the OR context), augherfluousariables, the ones whose buckets

had been proceessed. The number of relevant variables m&lbdby the induced width
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Procedure[9: Gener at ePseudoTr ee( G, d)
input : graphG = (X, E); orderd = (X4,...,X,)
output: Pseudo tre@
Make X the root of7;
2 Condition onX; (eliminateX; and its incident edges fro). LetG,, ..., G, be
the resulting connected componentshf
fori=1topdo
7, = Cener at ePseudoTr ee (G;,d|g,);
L Make root of7; a child of X;

6 return 7;

=

g b~ W

Algorithm 10: BE-AOMDD
input : Graphical modeM = (X, D, F), whereX = {X},..., X,},
F={f,...,f.};orderd = (Xy,..., X,)
output: AOMDD representing®;cr f;
1 7 = GeneratePseudoTree(G,d);
2 fori — 1tor do /'l place functions in buckets
3 | placeG{™* in the bucket of its latest variable ih

4 for i «— ndownto1 do /'l process buckets
5 | message(X;) « Ggomdd [l initialize with AOVDD of 1;
6 while bucket(X;) # ¢ do /'l conmbi ne AOMDDs in bucket of X;
7 pick G4 from bucket(X;);
8 bucket(X;) « bucket(X;) \ {GFom};
9 message(X;) < APPLY(message(X;), G§om)

10 | addmessage(X;) to the bucket of the parent of; in 7

11 return message(X)

(because so is the OR context). It is easy to see that any twWwaNOs in a bucket only
have in common relevant variables, which reside on the t@mncportion of the bucket
pseudo tree. The superfluous variables appear in disjoamiches of the bucket pseudo
tree. These observations will be important later on when resgnt theappLY algorithm,
and analyze the complexity.

Algorithm[10Q, calledBE-AOMDD, creates the AOMDD of a graphical model by us-
ing aBE schedule fompPLY operations. Given an orddrof the variables, first a pseudo
tree is created based on the primal graph. Each initial fongt is then represented as an

AOMDD, denoted byG*"*, and placed in its bucket. To obtain the AOMDD of a func-
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tion, the scope of the function is ordered according,ta search tree (based on a chain)
that representg; is generated, and then reduced by Procedure 8. The algagpithceeds
exactly likeBE, with the only difference that combination is realized bg #PPLY algo-
rithm, and variables are not eliminated but carried arroenthe destination bucket. We
defer the complexity analysis until we present ArPLY algorithm, and just observe that
the complexity is bounded by that BE (namely exponential in treewidth), provided that
APPLY is an efficient operation. This will also become clear afterpvove the canonic-
ity of the AOMDD, since the complexity bounds were alreadyegi by the search based

generation algorithm in Sectign 7.6.

7.7.2 The AOMDD ApPPLY Operation

We describe here how to combine two AOMDDs. The apply opetales as input two
AOMDDs representing functiong and f, and returns an AOMDD representirfg® fs.

In OBDDs theapplyoperator combines two input diagrams based on the samélaria
ordering. Likewise, in order to combine two AOMDDs we assuilmat their backbone
pseudo trees ardentical This condition is satisfied by any two AOMDDs in the same
bucket ofVE-AOMDD . However, it we present here a versionagfPLY that is more gen-
eral, by relaxing the previous condition fragenticalto compatiblepsedo trees. Namely,
there should be a pseudo tree in which both can be embeddegtnaral, a pseudo tree
induces a strict partial order between the variables whesgent node always precedes its

child nodes.

DEFINITION 7.7.1 (compatible pseudo treesA strict partial orderd; = (X, <;) over
a setX is consistentwith a strict partial orderd, = (Y, <») over a setY, if for all
T, T2 € XNY,if 21 <5 x5 thenz; <; zo. Two partial ordersi; andd, are compatibleff
there exists a partial orded that is consistent with both. Two pseudo trees@mpatible

iff the partial orders induced via the parent-child relatiship, are compatible.
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For simplicity, we focus on a more restricted notion of cotifpbty, which is sufficient
when using &/E like schedule for thepply operator to combine the input AOMDDs (as
described in Sectidn_4.7). Ttaplyalgorithm that we will present can be extended to the

more general notion of compatibility.

DEFINITION 7.7.2 (strictly compatible pseudo trees)A pseudo tre€; having the set of
nodesX; can beembeddedn a pseudo tred having the set of nodex if X; C X and
7, can be obtained frorfi” by deleting each node iX \ X; and connecting its parent to
each of its descendents. Two pseudo tfBesnd 7, are compatibleif there exists/” such

that both7; andZ; can be embedded ih.

Algorithm[11, calledaprpLy, takes as input one node from"mdd and a list of nodes
from Ggom®, Initially, the node fromG}*" is its, and the list of nodes frogi’** is in
fact just one node, its root. We will sometimes identify anMDD by its root node. The
backbone pseudo treeg, and7, are strictly compatible, having a target pseudo fee

The list of nodes frongjlomdd always has a special property: there is no node in it that
can be the ancestor ih of another (we refer to the variable of the meta-node). Toese
the listwy, . .., w,, from g expresses a decomposition with respect®o all those nodes
appear on different branches. We will employ the usual teghes from OBDDs to make
the operation efficient. First, if one of the argument®,ghen we can safely returo.
Second, a hash tabK, is used to store the nodes that have already been processed, b
on the nodesv;, wy, ..., w,). Therefore, we never need to make multiple recursive calls
on the same arguments. Third, a hash talas used to detect isomorphic nodes. This
is typically split in separate tables for each variable.tlfree end of the recursion, before
returning a value, we discover that a meta-node with the semable, the same children
and the same weights has already been created, then we ded’tmstore it and we simply
return the existing node. And fourth, if at the end of the remn we discover we created

a redundant node (all children are the same and all weighttharsame), then we don't
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Algorithm 11: APPLY(v1; w1, . . ., Wy,)
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input  : AOMDDs G¢°™4? with nodesv; andGg°™ ¢ with nodesw;, based orstrictly compatible
pseudo treegy, 7, that can be embedded i
var(vy) is an ancestor of attar(wy), ..., var(w,) in 7.
var(w;) andvar(w;) are not in ancestor-descendant relatiod’in

output : vy ® (w1 A ... Awy,), based oY .

if Hy(v1,w1,...,wy) # null then return Hy (v, wy, ..., wn); /!l is in cache
if (any ofvy, w1, ..., w,, is0) thenreturn 0
if (v = 1) thenreturn 1
if (m = 0) then return v, /1 nothing to comnbine
create new nonterminal meta-node
var(u) <« var(vy) (call it X;, with domainD; = {z1,..., 2k, })
for j «— 1to k; do
u.children; — ¢ /1 children of the j-th AND node of u
w(X;, ) — w (X, z5) /1 assign weight from v
if ((m =1)and @ar(v;) =var(w;) = X;)) then
temp Children < wy.children;
L wh( X, xj) — w (X, z5) @ w(X;, ;) /1 conbine input weights
else
L temp Children «— {w1, ..., wn}
group nodes from; .children; U temp Children in severav!; w!, ... w"}
for each{v!; w!,...,w"} do
y «— APPLY(vY; wh, ..., w")
if (y = 0) then
L u.children; — 0; break
else
L w.children; «— w.children; U {y}
if (u.children; = ... = u.childreny,) and @*(X;,z1) = ... = w*(X;, zy,)) then
promotew™(X;, z1) to parent
return wu.children; /'l redundancy
if (Ha(X;,u.childreny,... ,u.childreny,,w"(X;,z1), ..., w*(Xk,, zk,)) # null) then
return Ho(X;, u.childreny, ..., u.childreny,, w*(X;, x1),...,w"(Xg,, 2k, ))
/1 isonorphism
Let Hy(v1, w1, ..., W) =u /[l add v to H;
Let Ho(X;, u.childreny, ..., u.childreng,,w"(X;, x1), ..., w" (X, 2r,)) =u [/ add u to
H,
return u

store it, and return instead one of its identical lists ofdiein, and promote the common

weight.

Note thatv; is always an ancestor of all, ..., w,, in 7. We consider a variable if\

to be an ancestor of itself. A few self explaining checks amdqrmed in line§1{44. LinE]2

is specific for multiplication, and needs to be changed foeobperations. The algorithm

creates a new meta-nodewhose variable isar(v,) = X, - recall thatvar (v, ) is highest
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(closest to root) il amongu;, wy, . .., w,,. Then, for each possible value &t, line[7, it
starts building its list of children.

One of the important steps happens in 15. There are si®df meta-nodes, one
from each original AOMDDf and g, and we will refer only to their variables, as they
appear inZ . Each of these lists has the important property mentionedeglthat its nodes
are not ancestors of each other. The union of the two listeoigged into maximal sets of
nodes, such that the highest node in each set is an ancestbtha others. It follows that
the root node in each set belongs to one of the original AOM&AYp! is from f, and the
others, say!, ..., w" are fromg. As an example, suppogeis the pseudo tree from Fig.
[7.4(b), and the two lists afg”, G, H} from f and{E, F'} from g. The grouping from line
13 will create{C; E} and{F; G, H}. Sometimes, it may be the case that a newly created
group contains only one node. This means there is nothing tegpoin in recursive calls,
so the algorithm will return, via lingl4, the single node. farthere on, only one of the
input AOMDDs is traversed, and this is important for the céenjty of APPLY, discussed

below.

7.7.3 Complexity ofAPPLY

An AOMDD along a pseudo tree can be regarded as a union ofaetiDDs, each re-
stricted to a full path from root to a leaf in the pseudo treet it be such a path if.
Based on the definition of strictly compatible pseudo tregeshas corresponding paths
77, in 7y andnz, in 7,. The MDDs from f andg corresponding tor;, andrz, can be
combined using the regular MDBpply. This process can be repeated for every path
The resulting MDDs, one for each path Tn need to be synchronized on their common
parts (on the intersection of the paths). The algorithm vepgsed does all this processing
at once, in a depth first search traversal over the inputs.dB@seur construction, we can
give a first characterization of the complexity of AOMDPPLY as being governed by the

complexity of MDD apply.
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Proposition 26 Letry, ...,  be the set of paths i enumerated from left to right and let
G} andG; be the MDDs restricted to path;, then the size of the output of AOMEPply
is bounded by, |G} - |G;| < n - max;|G}| - |G;|. The time complexity is also bounded by

51631+ 1G] < 0 - mawi|Gil - |G

Proof. The complexity of OBDD (and MDD) apply is known to be quadrati¢he input.
Namely, the number of nodes in the output is at most the ptaofucumber of nodes in
the input. Therefore, the number of nodes that can appeag aoe path in the output
AOMDD can be at most the product of the number of nodes in egulitj along the same
path,|G%| - |G:|. Summing over all the paths i gives the result. O

A second characterization of the complexity can be givanilar to the MDD case, in

terms of total number of nodes of the inputs:

Proposition 27 Given two AOMDDsG$*™* and G5°™% based on strictly compatible

pseudo trees, the size of the outpukeiPLY is at mostO(| Gy | - | Gomdd ),

Proof. The argument is identical to the case of MDDs. The recursiis m APPLY lead
to combinations of one node frogf** and one node frong;*"* (rather than a list of
nodes). The number of total possible such combinatioﬁk{ﬂsj;wmdd | Ggomdd]), O

We can further detail the previous proposition as follows.e@G AOMDDsg;“’mdd and
ng’mdd, based on compatible pseudo trégsandZ, and the common pseudo trge we
define theintersection pseudo treg;~, as being obtained frord by the following two
steps: (1) mark all the subtrees whose nodes belong to &lfther 7, but not to both
(the leaves of each subtree should be leavék)in2) remove the subtrees marked in step
(1) from 7. Steps (1) and (2) are applied just once (that is, not reclydi The part of
AOMDD gjﬁ"mdd corresponding to the variablesTh is denoted b;@jf”g, and similarly for

aomdd i+ i jin
Gy itis denoted byg,"".

Proposition 28 The time complexity oAPPLY and the size of the output arié(\gjf”ﬂ :

|ggj;f"lg| + |g?omdd| + |ggomdd|).
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Proof. The recursive calls ofPPLY can generate one meta-node in the output for each
combination of nodes fror@jf“g and Qgﬁg. Let’'s look at combinations of nodes from
gjf”g andgaomdd \ GIN9. The meta-nodes frogy** \ G/™9 that can participate in such
combinations (let's call this setl) are only those from levels (of variables) right below
Tsny- This is because of the mechanics of the recursive caleLy. Whenever a node
from f that belongs tcﬁj}cmg is combined with a node from that belongs to4, line[15 of
APPLY expands the node frorfi, and the node (or nodes) frosh remain the same. This
will happen until there are no more nodes frgnthat can be combined with the node (or
nodes) fromA, and at that pointPPLY will simply copy the remaining portion of its output
from Goom#. The size ofA is therefore proportional toG/™ | (because it is the layer of
metanodes immediately belfﬂgﬁg). A similar argument is valid for the symmetrical case.
And there are no combinations between nodegjit'* \ G/ andGgom# \ GI"9. The
bound follows from all these arguments.O

Having clarified theaPPLY operation, we can now return to the complexity of YHe-
AOMDD algorithm. Each bucket has an associated bucket pseudoTineetop chain of
the bucket pseudo tree for variablg contains all and only the variables éantext(X;).
For any other variables that appear in the bucket pseudo tthee associated buckets
have already been processed. The original functions thahdp¢o the bucket ofX; have
their scope included inontezt(X;), and therefore their associated AOMDDs are based on
chains. Any other functions that appear in buckek@fare messages received from inde-
pendent branches below. Therefore, any two functions ikdtuaf X; only share variables
in the context(X;), which forms the top chain of the bucket pseudo tree. We caretore

bound the complexity o¥E-AOMDD and the output size:

THEOREM7.7.2 The space complexity BE-AOMDDand the size of the output AOMDD
areO(n k"), wheren is the number of variableg,is the maximum domain size and is
the treewidth of the bucket tree. The time complexity is bedibgO (n k¥ ) andO(r k¥,

wherer is the number of initial functions.
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Proof. The space complexity is governed by thaB&. Since an AOMDD never requires
more space than that of a full exponential table (or a tre&)llows thatBE-AOMDD only
needs spacé®(n k“"). The size of the output AOMDD is also bounded, per layers, by
the number of assignments to the context of that layer (ngrbglthe size of the context
minimal AND/OR graph). Therefore, because context sizeoisnded by treewidth, it
follows that the output has sizeé(n k*"). For the time complexity, thapPpLY could be
modified to combine all the AOMDDs in a bucket at once, rathanttwo at a time. By
an argument similar to that of Proposition 28, the numbeeoiirsive calls is proportional
to the size of the intersection portion of all the AOMDDs inucket, which amounts to
that corresponding to the top chain. Even if the common portan not be reduced at all,
and needs to be represented by a tree, the size of that trdd b®@(k*"), because the
treewidth is equal to the context. The remaining indepenpertions of the AOMDDs are
just copied (or linked through pointers) and need no moregssing. Therefore, the total
time for such an algorithm would b@(n k). If we maintain theaPPLY to process two
AOMDDs at a time, we can observe that we only neexPpPLY operations in total. And
each such operation is again boundedhy:*"), therefore the bound(r k*") follows.

O

7.8 AOMDDs Are Canonical Representations

It is well known that OBDDs are canonical representations ajlBan functions given an
ordering of the variables [16], and this property extend$/@Ds [97]. In the case of
AOBDDs and AOMDDs, the canonicity is with respect to a pseude,tfollowing the
transition from total orders (that correspond to a lineateoing) to partial orders (that
correspond to a pseudo tree ordering).

A pseudo tred of the variablesX defines a partial order relation;, whereX; <7 X;

iff X; is an ancestor ok; in 7.
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Many of the algorithms for graphical models are based onealimrdering/ of vari-
ables. The structural information captured in the primalpgrthrough the scopes of the
functionsF = {f1, ..., f,} can be used to create a natural pseudo tree that corresmonds t
d. This is precisely the bucket tree (or elimination treejt s created bBE(variables are
processed in reversd. The same pseudo tree can be created by conditioning omithalp
graph, and processing variables in the ordleas described in Procedure 9.

We should note that given a graphical model and a pseudd/trekit, there may be
several linear orderings that correspond to it. In fact, tapplogical ordering of the vari-
ables in7 (where ancestors appear before descendants), is a lirteaimay that generates
7. Therefore, once we have structural information for thevewrsial function of a graphical
model F' = ®; f;, given by the scopes of afl, then all the linear orderings & can be
grouped into equivalence classes, based on the pseudbatabdy generate.

We will discuss the canonicity of AOMDD for constraint netike and for general

weighted graphical models separately.

7.8.1 Canonicity of AOMDDs for Constraint Networks

The case of constraint networks is easier, because the twe@ighthe OR-to-AND arcs are

only O or 1.

THEOREM7.8.1 (AOMDDs are canonical for a given pseudo treefsiven a constraint
network, and a pseudo trée of its constraint graph, there is a unique (up to isomorphism

AOMDD that represents it, and it has the minimal number oferraides.

Proof. The proof is by structural induction over the pseudo ffee O

7.8.2 Canonicity of AOMDDs for Weighted Graphical Models

In this section we raise the issue of recognizing nodes dwtAND/OR graphs that repre-

sent the same universal function, even though the grapt@patsentation is different. We
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Figure 7.10: Weighted graphical model
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Figure 7.11: AND/OR search tree and context minimal graph

will see that the AOMDD for a weighted graphical model is notque under the current
definitions, but we can slightly modify them to obtain caruityi again. We have to note
that canonicity of AOMDDs for weighted graphical modelsg(e belief networks) is far
less crucial than in the case of OBDDs that are used in formiélcagion. Even more than
that, sometimes it may be useful not to eliminate the redaiglades, in order to maintain
a simpler semantics of the AND/OR graph that represents tioem
The loss of canonicity of AOMDD for weighted graphical maslean happen because

of the weights on the OR-to-AND arcs, and we suggest a possinfeof re-enforcing it if

a more compact and canonical representation is needed.

Example 7.8.2 Figure[7.10 shows a weighted graphical model, defined by twa)(ftoxc-
tions, f(M, A, B) andg(M, B, C'). Assuming the order (M,A,B,C), Figure 7,11 shows the
AND/OR search tree on the left. The arcs are labeled with fonotalues, and the leaves
show the value of the corresponding full assignment (whi¢hdgproduct of numbers on

the arcs of the path). We can see that either value of M (0 orivigsgrise to the same
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Figure 7.12: Normalizing values bottom up

function (because the leaves in the two subtrees have thessdoes). However, the two
subtrees can not be identified as representing the sameidanoy the usual reduction
rules. The right part of the figure shows the context minimapfgr which has a compact

representation of each subtree, but does not share any nfthes.

What we would like in this case is to have a method of recoggitivat the left and
right subtrees corresponding 3 = 0 and M = 1 represent the same function. We can
do this by normalizing the values in each level, and proogsisottom up. In Figure 7.12
left, the values on the OR-to-AND arcs have been normalizadedch OR variable, and
the normalization constant was promoted up to the OR valaeFidure[7.1P right, the
normalization constant are promoted upwards again by ptigkition. This process does
not change the value of each full assignment, and therefodupes equivalent graphs.

We can see already that some of the nodes labeled by C can nmeriged, producing
the graph in Figure_7.13 on the left. Continuing the same @®oe obtain the AOMDD
for the weighted graph, shown in Figure 4.13 on the right.

THEOREM7.8.3 Given two equivalent weighted graphical models that accepirancon
pseudo treel’, normalizing arc values together with exhaustive applmatof reduction

rules yields the same AND/OR graphs.

Proof. By structural induction over layers of the graph, bottom upJ

241



O 0o w >
o

OmOmOm0)

B|C
114([1]3
411([4]2

Cc|D

O 0o w >
o

o

B
4
1
Second model

~  w]n[e

(a) The two solutions (b) First model (c

Figure 7.14: The 4-queen problem

7.9 Semantic treewidth

A graphical modelM represents a universal functidn = ® f;. The functionF’ may be
represented by different graphical models. Given a pddaiquseudo tred’, that captures
some of the structural information @f, we are interested in all the graphical models that
accept? as a pseudo tree, namely their primal graphs only contaiesetihgit are back-arcs
in 7. Since the size of the AOMDD faF' based or{ is bounded in the worst case by the

induced width of the graphical model alofig we define thesemantic treewidtko be:

DEFINITION 7.9.1 (semantic treewidth) The semantic treewidth of a graphical model
M relative to a pseudo tre€ denoted byswr(M), is defined byswr(M) =
MINR u(R)=uM)WT (R), Whereu(M) is the universal function aM, andwz(R) is the
induced width ofR along7. Thesemantic treewidtbf a graphical modelM, is the min-

imal semantic treewidth over all the pseudo trees that canessgts universal function.
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Computing the semantic treewidth is obviously a hard probldowever, the semantic
treewidth can explain why sometimes the minimal AND/OR ¢rap OBDD are much
smaller than the upper bounds exponential in treewidth thwvgdth. In many cases, there

could be a huge disparity between the treewidtihofand the semantic treewidth alofig

Example 7.9.1 Figure[7.14(&) shows the two solutions of the 4-queen probléra.prob-
lem is expressed by a complete graph of treewidth 3, giverguréfi7.14(0). Figurg 7.14(c)
shows an equivalent problem, which has treewidth 1. The secrteggividth of the 4-queen

problem is 1.

Based on the fact that AOMDDs are canonical representatitimeadiniversal function
of a graphical model, we can conclude that the size of the AOM®bounded exponen-
tially by the semantic treewidth along the pseudo tree gratien the treewidth of the given

graphical model representation.

Proposition 29 The size of the AOMDD of a graphical moddi is bounded by
O(n k*v7M)), wheren is the number of variables; is the maximum domain size and

swr (M) is the semantic treewidth @d¢1 along the pseudo tre€.

Example 7.9.2 Consider a constraint network envariables such that every two variables
are the equality constraintY = Y). One graph representation is a complete graph,
another is a chain and another is a tree. If the problem is g@etas a complete graph,
and if we use a linear order, the OBDD will have a linear size hessathere exists a

representation having a pathwidth of 1 (rather than n).

7.10 Related Work

There are various lines of related research. The formafiwation literature, beginning
with [16] contains a very large number of papers dedicatédegstudy of BDDs. However,

BDDs are in fact OR structures (the underlying pseudo treedsain) and do not take
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advantage of the problem decomposition in an explicit walye Tomplexity bounds for
OBDDs are based goathwidthrather thartreewidth

As noted earlier, the work on Disjoint Support Decomposit{®SD) is related to
AND/OR BDDs in various ways [8]. The main common aspect is th@h approaches
show how structure decomposition can be exploited in a BBB4lepresentation. DSD is
focused on Boolean functions and can exploit more refinedtstral information that is
inherent to Boolean functions. In contrast, AND/OR BDDs asssionly the structure con-
veyed in the constraint graph, they are therefore more lby@gplicable to any constraint
expression and also to graphical models in general. Thewallsimpler and higher level
exposition that yields graph-based bounds on the overal @i the generated AOMDD.
The full relationship between these two formalisms shoeldtodied further.

McMillan introduced the BDD trees [82], along with the op&as for combining
them. For circuits of bounded tree width, BDD trees have lingaper space bound
O(|g|2wz2”), where|g| is the size of the circuiy (typically linear in the number of vari-
ables) andb is the treewidth. This bound hides some very large constawtaim the linear
dependence ojg| whenw is bounded. However, McMillan maintains that when the input
function is a CNF expression BDD-trees have the same boundsiBg2R BDDs, namely
they are exponential in the treewidth only.

Darwiche has done much research on compilation, usinghtssfgom the Al commu-
nity. The AND/OR structure restricted to propositionaldhies is very similar to determin-
istic decomposable negation normal form (d-DNNF) [25]. Blogcently, in[[55], the trace
of the DPLL algorithm is used to generate an OBDD, and compastdthe bottom up
approach of combining the OBDDs of the input function acaggdbd some schedule (as is
typical in formal verification). The structures that aregstigated are still OR. The idea can
nevertheless be extended to AND/OR search. We could rureghith dirst AND/OR search
with caching, generating ttentext minimaAND/OR graph, which can then be processed

bottom up by layers to be reduced even further by eliminasogorphic subgraphs and
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redundant nodes.

McAllester [80] introduced the case factor diagrams (CFD)cwlsubsume Markov
random fields of bounded tree width and probabilistic canfeee grammars (PCFG).
CFDs are very much related to the AND/OR graphs. The CFDs téngeminimal rep-
resentation, by exploiting decomposition (similar to ANDdes) but also by exploiting
context sensitive information and allowing dynamic ordgrof variables based on con-
text. CFDs do not eliminate the redundant nodes, and pareafdbse is that they use zero
suppression. There is no claim about CFDs being a canonial fand also there is no
description of how to combine two CFDs.

More recently, independently and in parallel to our work ddDXOR graphsl[45, 44],
Fargier and Vilarem|[46] proposed the compilation of CSPe tnée-driven automata,
which have many similarities to our work. Their main focughe transition from linear
automata to tree automata (similar to that from OR to AND/CGRY the possible savings
for tree-structured networks and hyper-trees of condsaine to decomposition. Their
compilation approach is guided by a tree-decompositionenduirs is guided by a variable
elimination based algorithm, or by AND/OR search directhnd, it is well known that
Bucket Elimination and cluster-tree decomposition are ingiple, the same [41].

We see that our work using AND/OR search graphs has a unityuagjty that helps

make connections among seemingly different compilatigor@gches.

7.11 Conclusion to Chapter ¥

We propose the AND/OR multi-valued decision diagram (AOMDPWhich emerges from
the study of AND/OR search for graphical modéls [45,44, ] ardered binary decision
diagrams (OBDDs) [16]. This data-structure can be used tgpdemany set of relations
over multi-valued variables as well as any CNF Boolean exmess

The approach we take in this chapter may seem to go againstutinent trend in
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model checking, which moves away from BDD-based algorithmis CSP/SAT based
approaches. However, constraint processing algorith@misate search-based and com-
piled data-structures such as BDDs differ primarily by theioices of time vs memory.
When we move from regular OR search space to an AND/OR seaad® $pe spectrum
of algorithms available is improved for all time vs memorycideons. We believe that the
AND/OR search space clarifies the available choices andlggljgle the user into making
an informed selection of the algorithm that would fit best plagticular query asked, the
specific input function and the available computationabueses.

In summary, the contribution of our work is: (1) We formallgstribe the AOMDD
and prove that it is a canonical representation of a comstregtwork; (2) We describe
the APPLY operator that combines two AOMDDSs by an operation and gaeamplexity
bounded by the product of the sizes of the inputs; (3) We gsehaduling of building the
AOMDD of a constraint network starting with the AOMDDSs of ttenstraints. It is based
on an ordering of variables, which gives rise to a pseudo (meducket tree) according
to the execution of Bucket Elimination algorithm. This githe complexity guarantees in
terms of thanduced widthalong the ordering (equal to the treewidth of the correspand
decomposition); 4) We show how AOMDDs relate to variousieaind recent works,

providing a unifying perspective for all these methods.
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Chapter 8

Software

The main algorithms described in this dissertation haven bewlemented in software
packages developed in C++. This chapter contains a shortieweand description of

the implementation and discusses future directions.

8.1 Iterative Algorithms

The algorithms presented in Chaptér 4, namely Mini-Clusge(MC) and Iterative Join-
Graph Propagation (IJGP), produce approximate resulteldpiming bounded inference
on tree decompositions or on the more general join graphalloived enough resources
(memory and time), they become exact. IJGP is also an weratgorithm, that can be
viewed as generalized belief propagation.

These algorithms have been implemented by Kalev Kask, witiescontributions from
the author. The package, callesr, was originally developed for constraint networks,
and then extended to belief networks and mixed netwods can either load problems
in standard formats (e.g., *.bif for belief networks, *.day CPCS networks), or it can
generate random networks based on user defined parameieexample, it can generate
constraint networks defined byV, the number of variables;, the domain size(, the

number of constraintsP, the size of a function scope. It can also generate linearkblo
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coding networks, based on the length of the block and ther@iamise, or noisy-OR
networks.

Both MC and IJGP work on a decomposition of the interactioplyravhich is derived
based on an ordering of the variables. Typically, the h&anmsin-fill is used to obtain the
ordering, but other options such as min-degree or weighiedithare available.

The csppackage was integrated in tReessystem (Reasoning Engine(s) Evaluation
Shell) developed by Radu Marines®EESIs a software environment to support research
and development in the area of both deterministic and né@renistic reasoningrEES
has a plug-in oriented architecture that promotes reuseisfiry software components
and allows for the comparison and evaluation of alterna&eénologies.

All the experiments presented in Chapter 4 were done usingthpackage integrated
in REES For most of the experiments, an exact result was also regessorder to com-
pute the various measures, such as absolute or relative I€ultback-Leibler divergence,

bit error rate etc. We used a Bucket Elimination algorithmdmpute the exact answer.

8.2 AND/OR Search

The AND/OR search algorithms have been implemented froatatiby Radu Marinescu
and the author, in a package calledLiB. The new system uses its own input format file
(*.simple), but can potentially load any other usual forrfilgt Also, it can still generate
random networks based on user defined parameters.

The AaoLIB package contains a family of algorithms, based on a combmaif
AND/OR search, constraint propagation, AND/OR w-cutsetdittoning, memory limit
and exact inference (Bucket EliminatiomoLIB is especially suitable for mixed networks,
because of the straightforward exploitation of deterntimisformation.

The pseudo tree that guides the AND/OR search is computeccor@ance with the

available resources and the user instructions. If onlyesalimmount of memory is available
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(tree search), the pseudo tree is optimized for depth. Weause-depth heuristic that
creates a balanced tree decomposition, resulting in g lgwahll depth. If more memory is
available, then the heuristic tends to trade the small digpgjet for a smaller context size
(size of a cache table). If full caching is possible (i.ee themory available is exponential
in the treewidth), then we typically use a weighted min-fdLiistic. We have implemented
all these heuristics and reported the results in Chapter &emiie presented the AND/OR
cutset.

The current version ofoLIB runs the Adaptive Caching algorithm, based on the
AND/OR cutset idea. We found that it is the most flexible and/g@dul, taking advan-
tage of the available memory in the most efficient way.

One of the ingredients ofoLIB is the constraint propagation. The user can choose
between different levels of consistency enforcing aldponis, from forward checking, arc
consistency to relational forward checking. Each of thehoé$ guarantees more pruning
of the search space, but at the cost of more computatiorgftreran appropriate level
should be chosen based on the problem.

Finally, AoLiB offers the possibility to combine AND/OR search and infeeealgo-
rithms. When the conditoned subproblem has a sufficientlyl$reawidth, it can be solved
exactly. One option is to continue with AND/OR search with ¢éaching. The other would
be to solve the conditioned subproblem by an inferenceebasethod, such as Bucket
Elimination. They are in principle equivalent as shown in gtea6, unless there is de-
terminism. In practice we discovered that inference-basethods tend to have a smaller
overhead and are faster in the case of no determinism. Theasehoose what method
to use for the conditioned subproblem.

The task thatoLiB addresses is #P-hard. It can report the number of valid rassig
ments, or the probability of the evidence.

The AoLIB system participated in the UAI'06 (Uncertainty in Artifitidntelli-

gence) Evaluation of Probabilistic Inference Systemsh ot the probability of evi-
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dence task (PE) and for maximum probable explanation (MRE3}ults are available at

http://ssli.ee.washington.edubilmes/uaiO6InferenceEvaluation/

8.3 Future Work

The aoLIB package has been the focus of our experimental work. Thera aumber of
future directions that can be explored.

The pseudo tree that guides the AND/OR search can play aatrot in the efficiency
of the algorithms. There is still a lot of potential in invigstting new heuristics for the
generation of the pseudo tree in the context of Adaptive @achi

The constraint propagation also plays an important rolerfeed networks with sub-
stantial deterministic information. The algorithms canieroved by extending the con-
sistency enforcing schemes, possibly by integrating direxisting libraries withoLIB.

The experimental evaluation of AOMDDs (Chapiér 7) is stilbanway. We intend
to have a functional AND/OR BDD package (also with the mudtined version), and to
test it on the existing formal verification benchmarks. Thelga Elimination schedule for
compilation is also promising for the case of genetic lirkagalysis, where the networks
contain a lot of determinism.

All these software packages will be made available onlina ghort time, on the web
page of the research group of Professor Rina Dechter, at tiverdity of California, Irvine

(http://csp.ics.uci.edy/
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Chapter 9

Conclusion

The research presented in this dissertation is concerniadgraphical model algorithms
that leverage the structure of the problem. We investigigetniques that capitalize on
the independencies expressed by the model’'s graph by desimgpthe problem into in-
dependent components, resulting in often exponentiatiyeed computational costs. The
algorithms that we presented can be characterized aloeg thain dimensions: (1) search
vs. dynamic programming methods; (2) deterministic vs.bphilistic information; (3)
approximate vs. exact algorithms.

The first and main contribution of this dissertation is th&zdduction of AND/OR
search spaces for graphical models. In contrast to thetibadi OR search, the new
AND/OR search is sensitive to problem decomposition. Thedr space AND/OR tree
search can be exponentially better (and never worse) tlealiméiar space OR tree search.
The AND/OR search graph is exponential in the treewidthof the graph, while the OR
search graph is exponential in the pathwigth*, and it is known thatv* < pw* <
w* log n, wheren is the number of variables. Therefore, the savings witheessip mem-
ory intensive schemes are more modest when moving from ORND/AR, O(exp w*)
vs. O(exp(w*logn)), but can still be significant in practice wheris large.

The second contribution is the frameworkrafxed networksa new graphical model

251



that combines belief and constraint networks. By keepingptbhbabilistic and determinis-
tic information separate we are able to more efficiently exphem by specific methods.
We describe the primary algorithms for processing such ordsy based on inference and
on AND/OR search. We also present experimental evaluatiowisg the benefit of ex-
ploiting the deterministic information during search, ptad with the efficiency of the
AND/OR scheme.

The third contribution is in the area of approximate aldoris for graphical models,
and mixed networks in particular. We investigated mesgagsing schemes based on
join tree clustering and belief propagation. We introdubéidi-Clustering (MC), which
performs bounded inference on a tree decomposition. Wedbwatine MC with the iter-
ative version of Pearl’s belief propagation (IBP), creatiiegative Join-Graph Propagation
(IJGP). IJGP is both anytime (controlled by a bounding pa@m and iterative, and we
showed empirically that IJGP is one of the most powerful eapipnate schemes for be-
lief networks. Through analogy with arc consistency aldnis from constraint networks,
we proved that IBP and IJGP infer zero-beliefs correctly, amgbirically showed that this
property also extends to extreme beliefs. This gives ana@gpion of why and when iter-
ative algorithm perform well, in particular giving a stroagplanation of their tremendous
performance on coding networks.

The fourth contribution is the application of AND/OR seasyaces to the problem
of cutset and w-cutset conditioning. We showed that the navcept ofAND/OR cutset
(or w-cutset) is a strict improvement over the old one. Rathan trying to minimize the
number of variables that form a cutset, the new method neeasiimize the depth of the
pseudo tree that spans the AND/OR cutset. The new methodhalsices our most flexible
and powerfulAdaptive Cachinglgorithm.

The fifth contribution is the creation of a methodology fag tomparison of algorithms.
Using the context minimal graph traversed by full cachingDX8R search, we compared

pure search and pure dynamic programming algorithms fgotgecal models. We showed
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that there is no principled difference between AND/OR deamcd Variable Elimination
besides different directions of exploring a common seapetts (top down vs. bottom up)
and different control strategies (depth first vs. breadsgt)fir

The sixth contribution is in the domain of compilation of ghécal models. We com-
bined AND/OR search with decision diagrams and created tie/®R Multi-Valued De-
cision Diagram (AOMDD), that is sensitive to function deqausition structure. We gave
two compilation algorithms for AOMDDs, one search basedthedther inference based.
Both algorithms and the size of the AOMDD are bounded expaalgnby the treewidth, in
contrast to the bound exponential in pathwidth known foeoed binary decision diagrams
(OBDDs). We also introduced the concept of semantic tredwighich helps explain why
the size of decision diagrams is often much smaller than tirstvease bound.

The examples that we used throughout the dissertation wermaugly based on con-
straint networks and belief networks. The reasoning taakwle considered was usually
#P-hard, or equivalent to solutions counting or belief upaigtiThe exposition of AND/OR
search spaces was however at a general level, and thera&ilseextendable to other types

of graphical models and reasoning tasks (e.g., optimiza#isks).
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