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ABSTRACT OF THE DISSERTATION

Exploiting Graph Cutsets for Sampling-Based ApproximationBayesian Networks
By
Bozhena Petrovna Bidyuk
Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 2006

Professor Rina Dechter, Chair

Automated reasoning with graphical models has found maagtigal applications in
domains such as planning, vision, speech recognition,tigelivkage analysis, diag-
nostics, and many others. Graphical models, combininghgttagory and probability
theory, facilitate a compact and structured represemédioproblems with uncertainty
and provide a mechanism for answering queries such as comgphe probability of

an event given observations.

Several exact algorithms for reasoning with graphical n®égist. However,
exact computation is not always possible due to prohibitiree and memory de-
mands. In general, computing exact posterior marginalseaad approximating pos-
terior marginals within a desired degree of precision ishdird. In practice, we often
choose methods that can quickly compute approximate assdewddayesian queries,
trading accuracy for speed. Approximation methods inclalderithms for approxi-
mate inference, stochastic sampling, network simplifoceti(simplifying the structure

of the underlying graph), and variational approximationg. often obtain a more flex-

XVi



ible computation scheme, balancing complexity and acgulgccombining exact and
approximate computation. This dissertation focuses onbaaimg search with exist-
ing sampling and bounding methods yielding two new schemesdproximating and
bounding posterior marginals in Bayesian networks. Thogertew schemes, cutset
sampling and any-time bounds, exploit the network strgctarbound the complexity

of exact computation.

Cutset sampling for computing approximate posterior matgisamples only a
subset of variables, a cutset of the underlying graph. Seubécing the size of the sam-
pling set results in lower sampling variance, cutset-basadpling converges faster
than sampling on a full set of variables. Two variants of eutampling algorithm
were developed. One, based on Gibbs sampling, is a gengmadamh tocollapsed
Gibbs sampling in Bayesian networks. The second algorithpiements the likeli-
hood weighting on a cutset. The proposed any-time boundsefnerk is an any-time
scheme for computing bounds on posterior marginals. It @émates a subset of cutset
tuples and performs exact inference over these tuples amdbunds the remaining

probability mass.

Both methods exploit the problem’s underlying network dinee to control the
time and space complexity of the computations. They focusnaling a cutset of the
graph such that the complexity of exact reasoning is boundhesh the cutset variables
are assigned. The dissertation proposes a new algorithfimfbng a minimum cost

cutset that yields the specified complexity bound on exdetemce.
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Chapter 1

Introduction and Overview

1.1 Introduction

The ability to establish cause-effect relationships isdbmerstone of human cognitive
development. One of the first cause-effect relationshigsld arns, for example, is that
a toy falls down when released. Furthermore, the child E#rat when a toy falls down,
the mother rushes to pick it up. Arranging the two learnedti@hship into a hierarchy,
the child can predict and plan a sequence of events such astiavdelightful game of
throw-and-pick-up-the-toy. As time goes on, the child tsamore complex relationships
between the elements in the surrounding world, yet, thesieeydto connect the events into
a network of cause-effect relationships remains.

The attraction of Bayesian networks [96] is that they allowaisxpress the cause-
effect relationships or the direction of influence betweemponents of the systems using
graph representation. Namely, the nodes in the graph areatibles representing the
elements of the system and the edges show the direction oéirde. The hierarchy of
relationships in a network allows us to model interactiantarge complex systems in a
compact way that is easy for a human brain to relate to.

The cause-effect relationships are not always deterrnarstugh. While the law of



gravity reinforces the child’s learning that all solid otfie fall down without support, he or

she also discovers, for example, that the dark clouds sprastbring the rain and some-
times pass by without a drop of water. Thus, the notion of theeuainty of the outcome

emerges. As the learned relationships become more congiexperhaps more variables
are taken into consideration, the model of the world becama® refined and predictions
more accurate. With the help of the satellite imaging andmaer simulations, we can

predict weather better, but the element of uncertainty lystamains as it is often either

impractical or impossible to take into account “everythirgayesian networks accommo-
date this inherent uncertainty in our life as well. It is exgged in the form of conditional

probability tables or probability density functions debuorg the relationships between the
variables.

Thus, Bayesian networks draw from the same fundamental ipkéscas the hu-
man learning and knowledge representation. Unlike humampwhich takes millions
of years of evolution to develop the neural connections s&ary to support any new mod-
els, Bayesian networks can be learned and analyzed quickiythe aid of the computers.
Providing Bayesian network as input, we can delegate to thgpaters the task of “rea-
soning” about the probability of the outcome, thus, autanggathe “thinking” process and
enabling the processing of large volumes of data.

The only trouble remaining is that, as we refine our modelfefworld, the com-
plexity of the computation spirals out of control. While thregiction of rain based on the

color of the cloud might not be always accurate, it is easyhti@iao. The forecast based



on the analysis of the weather system over the area is mdieegkr but may require a
distributed computer simulation.

Since even powerful supercomputers have limited resouamaputing exact an-
swers in complex models becomes simply infeasible. Thengptions are to either sim-
plify the model or to apply an algorithm that computes thewaarsfaster, but with less
precision. Both approaches have been investigated by maagnehers in the last decade.
This dissertation contributes to the area of research ddvotthe development of approxi-
mate algorithms. It defines two new algorithms, one for apipnating and one for bound-
ing the answers to queries over Bayesian networks with deseegiables. Exploiting the
structural properties of the networks and combining thecdeand exact computation, the
proposed algorithms improves over existing methods.

In the remainder of this chapter, we define essential terimgyoand provide back-
ground information on Bayesian networks followed by ovemwad the thesis and summary

of the results.

1.2 Background and Overview

In this section, we define essential terminology and prowdekground information on
Bayesian networks. We use upper case letters without spbscuch as X, to denote sets
of variables and lower case letters without subscripts tmtiean instantiation of a group of
variables (e.gz indicates that each variable in s€tis assigned a value). We use an upper

case letter with a subscript, such_ds to denote a single variable and a lower case letter



with a subscript, such asg, to denote an instantiated variable (ergdenotes an arbitrary
value in the domain ok; and means(; = z;). Given a set of variables = {1, ..., z;, ...},
we user_; = z\z; to denoter with elementz; removed.D(X;) denotes the domain of
variable X;. A superscript in a subscripted lower case letter would el s distinguish

different specific values for a variable, i.®(X;) = {z}, 22, ...}.

1))

1.2.1 Bayesian networks

DEFINITION 1.2.1 (graph concepts)A directed graphis a pair D =<V, E>, wherel/ =
{Xi,...,X,} is a set of nodes, or variables, aid = {(X;, X,)|X;, X; € V} is the set
of edges. A directed graph &yclicif it has no directed cycles; that is, for any node,
there is no nonempty directed path starting and endind(gn

Given (X;, X;) € FE, X, is called aparent of X;, and X; is called achild of
X;. The set ofX,’s parents is denotega(X;), or pa;, while the set ofX;’s children is
denotedch(X;), or ch;. Thefamily of X; includesX; and its parents. Theoral graph
of a directed grapl® is the undirected graph obtained by connecting the pardai the
nodes inD and removing the arrows. A nod¢ is adescendantof nodeX; if there is a
directed path from nodg; to nodeY;. A nodeY; is anancestorof node.; if there is a
directed path from nodg; to nodeX;. A nodeX; in a directed graplb is called aroot if
no edges are directed info;. A nodeX; in a directed graplb is called deaf if all of its

adjacent edges are directed in{o.

DEFINITION 1.2.2 (cycle-cutset)The underlying graphG of a directed graphD is the
undirected graph formed by ignoring the directions of thgedinD. A cyclein an undi-
rected graph G is a path whose two end-points coincide. A grapimgly connectedalso

4



called apoly-tree), if its underlying undirected graph has no cycles. Otheewisis called
multiply connected. A cycle-cutsetof an undirected graph is a subset of nodes in the
graph that, when removed, results in a graph without cycles.

DEFINITION 1.2.3 (loop-cutset)A loop in a directed graphD is a subgraph of) whose
underlying graph is a cycle. A vertexis a sink with respect to loopC if the two edges
adjacent tov in £ are directed intaw. A vertex that is not a sink with respect to a lo6s
called anallowedvertex with respect td. A loop-cutsetof a directed graphD is a set of
vertices that contains at least one allowed vertex with resfpegach loop inD.

DEFINITION 1.2.4 (belief networks)Let X = {X1, ..., X,,} be a set of random variables
over multi-valued domain®(X,), ..., D(X,,). Abelief network (BN)is a pair< G, P >
whereG is a directed acyclic graph oX and P = {P(X;|pa;)|i = 1,...,n} is a set of
conditional probability tables (CPTs) associated with each P(.X;|pa;) is a conditional
probability distribution ofX; conditional on parent instantiatiopa;. The BN represents a
joint probability distribution having the product form:

n

P(zy,.c,xy) = Hp@i‘xpa(Xi))

=1
An evidence is an instantiated subset of variables E.
Bayesian networks facilitate a compact representationejdimt probability distri-
bution over a set of variableX. Instead of enumerating all possible instantiationsof
we only enumerate the instantiations of parents of each dgde corresponding con-
ditional probability table (CPT). Thus, the storage requieet is reduced frond*! to
| X | % dmaeilpa(X0l whered is the maximum domain size. A sample Bayesian network and

corresponding moral graph are shown in Figure 1.1.

The structure of the directed acyclic graph reflects the wiégecies between the
variables. The parents of a variablg together with its children and parents of its chil-

dren form aMarkov blanketna; of node X;. Given its Markov blanket, the probability



Figure 1.1: A sample Bayesian network (left) and its morapgréight).

distribution of X; is independent from the rest of the variables in the netwdtamely,
P(z;|x_;) = P(x;lma;). For more information see [96].

Also important in practice is the notion of a relevant sulamek of X;. In many
algorithms, we can reduce the complexity of computationitoyting the computation to

the subgraph that is the relevant subnetworkXer

DEFINITION 1.2.5 (Relevant Subnetwork)A variable X; in DAG GG over X isirrelevant
(barren) w.r.t. a subsetZC X if X;¢Z and X; only has irrelevant descendants (if any).
The relevant subnetwork 6f w.r.t. a subset is the subgraph ofr obtained by removing
all variables that are irrelevant w.r.z.

We will sometimes refer to the relevant subnetwork w.r.tialsle X; and evidence
E as the relevant subnetwork &f;.
Other graph representations of reasoning problems (imguBayesian networks)

can be useful in the analysis of the complexity of the alhong for Bayesian networks.



DEFINITION 1.2.6 (Primal-, dual-,hypergraph of a problem) Theprimal graphG=<X,E>of
a reasoning problemx X ,F'> has the variablesX as its nodes and an arc connects two
nodes if they appear in the scope of the same fungtienF’. A dual graph of a reasoning
problem has the scopes of the functions as the nodes and ao@nects two nodes if the
corresponding scopes share a variable. The arcs are lathéllethe shared variables. The
hypergraph of a reasoning problem has the variabl&sas nodes and the scopes as edges.
There is a one-to-one correspondence between the hypergiraghlthe dual graphs of a
problem.

The primary queries over Bayesian networks are:

1. Belief Updating given evidence and a variableX; € X, find the posterior probability
distribution P(X;|e);
2. Belief Revision (MPE)ind mostprobableexplanation for evidence of £, namely, find

a maximum probability assignment to the unobserved vag&bl= X\ £:

y < argmax P(y|e)
y

3. MAP: find maximuma posteriori hypothesis, namely find a maximum probability as-

signment to a subset of unobserved variables X\ £ given evidenceZ = e:

y < argmax P(yle)
y

This collection of queries are often referred to as the fiefee” task in Bayesian networks.
Exact inference in Bayesian networks is NP-hard [22, 111ithfeumore, finding an

approximate solution for any of the tasks above with a fixedrdsound is also NP-hard

[24, 4]. More recent results have demonstrated that bettiecthree tasks, belief updating

is harder than belief revision, and MAP is the hardest:

MPE < BeliefUpdating < M AP

7



To be exact, MPE remain§ P-complete, Belief Updating was shown to #4°-complete
[107] as the task is similar to that of counting the numbeoddtons, and MAP was shown
to be N P”P-complete [92]. MPE and belief updating can be solved irdirtene when the
network is singly-connected (has no loops) using a beliepagation algorithm proposed
by Pearl [96]. However, as Park [92, 94] showed, MAP task iesiaard even when MPE
and belief updating become easy (for example, in poly-tete/orks).

This work is focused on the Belief Updating task, in particuten finding posterior
marginals of singleton variableB(x;|e). Next, we review the exact methods for belief

updating in Bayesian networks.

1.3 Algorithms for Exact Inference

In this section we briefly review exact computation methamsahswering Bayesian net-
work queries. There are two primary types of algorithms foydan queries: inference-
based and search-based. We review inference-based methedBsection 1.3.1. The

search-based cutset conditioning is presented in subeekc.2.

1.3.1 Inference Algorithms

Belief propagation algorithm performs belief updating ingdy-connected Bayesian net-
works in time and space linear in the size of the input [96].lolopy networks, the two
main approaches for belief updating awgset conditioning96] andtree clustering75].

We will introduce the principles of belief propagation incBen 1.3.1 followed by a brief
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description of clustering algorithms in Section 1.3.1 amel ¢conditioning method in Sec-

tion 1.3.2.

Iterative Belief Propagation (IBP)

Belief propagation (BP) is an iterative message-passingittigo that performs exact in-
ference for singly-connected (poly-trees) Bayesian néks/{86]. In each iteration, every

nodeX; sends a message(X;) to each child; and receives a messagg X;) from each

child X
mi(x) = a] MY Plai [ pa;) J] mi(w) (1.1)

k#j pa; w €pa;
Ni(z) = «a Z HAk ;) ZP&:J pa;) H () (1.2)

xz;€D(X pa;\x; u €pa;\x;

whereq is a normalization constant. Figure 1.2 shows the exchahgessages between

a variableX;, its parentd/y, ..., U,, and its childrert?, ..., Y,,..

@\y) //ﬂm@
//

m, (X)

Figure 1.2: Propagation of messages in belief propagation.



Upon convergence, we obtain posterior margiRét;|e) as follows:

P(z;le) = ozH)\k(xi) ZP(LUZ | pa;) H ()

pa; w Epa;

The message-passing order can be organized so that BP ceswvertyvo iterations. Ap-
plied to Bayesian networks with loops, the algorithm usuaéyates longer (until it may
converge) and hence, is known as Iterative Belief Propag#&i®P) or loopy belief prop-
agation. IBP provides no guarantees on convergence or yjoélgpproximate posterior
marginals but was shown to perform well in practice [104, %tk considered the best al-
gorithm for inference in coding networks [39, 71] where fmglthe most probable variable
values equals the decoding process [88]. Algorithm IBP meguinear space and usually
converges fast if it converges. In our benchmarks, IBP cgadwithin 25 iterations or

less (see Section 2.5).

Clustering Methods

The join-tree clustering approach (JTC) refers to a famihalgorithms including join-
tree propagation [75, 59] and bucket-tree elimination &, The idea is to first obtain a
tree decomposition of the network into clusters of functiconnected as a tree and then
propagate messages between the clusters in the tree. Wdizam @ tree decomposition
of the graph by first, moralizing the graph (connect all pts@i each node and drop the
edge direction), and then eliminating nodes in some oraen fast to first, connecting all
of its preceding neighbors. The complexity of the resulyngph is characterized by the

graph’s induced width.
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DEFINITION 1.3.1 (induced-width) Thewidth of a node in an ordered undirected graph
is the number of the node’s neighbors that precede it in tlikering. Thewidth of an
ordering d, denotedw(d), is the width over all nodes. Theduced width of an ordered
graph,w*(d), is the width of the ordered graph obtained by processing tten from last
to first. When node X is processed, all its preceding neighlm connected. The resulting
graph is callednduced graph or triangulated graph.

Figure 1.3: Induced graph for a sample Bayesian network shoWwigure 1.1 along order-
ing d={ X5, X4, X¢, Xo, X3, X1, X7, Xg, Xo}, w* = 4, with added edg¢ X», X¢}.

For the sample network in Figure 1.1, along ordedi, X4, Xg, Xo, X3, X3, X7,
Xs, Xy}, the induced widthv* = 4 after we add edg€ X, X¢}. The induced ordered
graph is shown in Figure 1.3.

A tree-decomposition is a singly-connected undirecteglyrehose nodes, also called
clusters, contain subsets of variables and input functil@imed over those variables. A
tree-decomposition must contain each function once amghgatinning intersection prop-

erty [86]. Formally:

DEFINITION 1.3.2 (tree-decomp., cluster-tree, tree-widthl et R =< X, D, F'’> be area-
soning problem with its hypergraphl =<X, F'>. (We abuse notation when we identify
a function with its scope). Aee-decompositionfor R (resp., its hypergraph) is a
triple < T', x,v >, whereT'=<V, E> is a tree, andy and are labelling functions which
associate with each vertexc V two setsy(v) C X and(v) C F such that:

11



1. For each functionf; € F, there isexactlyone vertexo € V' such thatf; € ¢ (v), and
scope(f;) C x(v).

2. For each variableX; € X, the set{fv € V|X; € x(v)} induces a connected subtree of
T'. This is also called the running intersection property.

Given two adjacent verticelg, and V; of a tree-decomposition, theeparatoof V; and V;
is defined asep(i, j) = x (Vi) N x(V}).

We will often refer to a node and its functions aslasterand use the ternree
decompositiomndcluster treeinterchangeably.

For a unifying perspective of tree-decomposition scherseqd&3]. We will outline
the approach next.

Given a tree-decompositioh of the network, the message propagation over this
tree can be synchronized. We select any one cluster as thefrtee tree and propagate
messages up and down the tree. A messagerom clusterV; to neighborV; is a function
over the separator setp(i, 7) that is a marginalization of the product of all functionsgin
and all messages th&t received from its neighbors besidgs

my 5 :‘usep(i,j) ( ® f) (1-3)

fecluster(u), f#m; ;

wherecluster(u) = (u) U {m; | (V;, Vi) € T}.
We compute the posteriors for ea&h € V; by taking a product of all functions in

the clustel; and marginalising out all other variables:

P(Xpe)=lx, ( @ /) (1.4)

fecluster(u)

Assuming that the maximum number of variables in a cluster is 1 and maxi-
mum domain size ig, the time and space required to process one clusterd’+1)).
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Since the maximum number of clusters is boundey= n, the complexity of variable-
elimination algorithms and cluster-tree propagation suis time and spacg( N -d“+1),
The parametew, the maximum cluster size minus 1, is called the tree-width@tree de-

composition.

DEFINITION 1.3.3 (tree-width) The tree-width of a tree-decompositior: T, x, ¢ > is
the maximum size of noge minusl, i.e.,max,cy|x(v)|-1 [6]. Thetree width of a graph
G denotedw(G) is the minimum width over all possible tree decompositiors (6.

We will sometimes denote the optimal tree-width of a graply It is well known
that the tree-width of a graph is identical to its inducediii We use the notation of
tree-width and induced-width interchangeably.

The task of finding the tree-width of a graph is NP-complete [B the past 2
decades, substantial research focused on designing exhetparoximate algorithms for
finding the tree-width [10, 112, 49].

Bucket elimination is a special case of join-tree clusteviigre messages are passed
from leaves to root along a bucket-tree [29, 28]. Given aalde ordering, the algorithm
partitions functions into buckets, each associated witimgles variable, corresponding to
clusters in a join-tree. A function is placed in the bucketiteflatest argument in the
ordering. The algorithm processes each bucket, top-dowm the last variable to the first,
by a variable elimination procedure that computes a newtinmaising combination and
marginalization operators. The new function is placed e dlosest lower bucket whose
variable appears in the new function’s scope. In a genecktimination scheme, known
as bucket-tree elimination, a second pass along the bueetan update every bucket in
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the tree [23, 63].

1.3.2 Cutset Conditioning

When the tree-widthv of the Bayesian network is too large, (e.g., when the requergaof
inference schemes such as bucket elimination and joincttetering (JTC) exceed avail-
able memory), we can switch to the alternatorgset conditioningscheme presented in
[96, 109, 97]. The idea of this scheme is to select a subsetrahlesC' ¢ X\ E, called a
cutsetf and obtain posterior marginals for any naliee X\C, E by:

P(zile) = Y P(ailc,e)P(cle) (1.5)

ceD(0)
Eqg. (1.5) implies that we can enumerate all instantiatiores 6, perform exact inference
via a join-tree algorithm for each cutset instantiaticio obtainP(x;|c, ¢) and P(c|e) and

then sum up the results.

Figure 1.4: Bayesian network (left), its moral graph(centand conditioned poly-tree
(right) (conditioned orC' = { X5, X5}).

K)(y

Observations break down the dependencies in a BayesiannketWben a nodeX;
is observed (conditioned on), we can transform the netwahke preserving all dependen-

cies, as follows. We first remove all directed edges betwkemodeX; and its children.
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Then, for each childh;(X;), create a copy;; of nodeX; and add a directed edge from
X;; to ch;(X;). If instantiated nodes form a loop-cutset, then the Bayesework can
be transformed into an equivalent singly-connected ndtwdihe graph on the right in
Figure 1.4 shows a poly-tree network that is equivalent édtiginal network, shown in
Figure 1.4 on the left, conditioned on loop-cutéet= { X,, X;5}.

Hence, when loop-cutset nodes are observed, probabilitiegc, ¢) and P(c|e) can
be computed via BP in time and space linear in the size of thearmkt The total computa-
tion time is exponential in the size of the loop-cutset beeane have to enumerate all the
cutset instantiations.

To minimize the cutset-conditioning time, we usually tryfiod a minimal loop-
cutset, i.e., the one that contains the smallest numberr@iblas. The problem is NP-hard
since the minimal vertex cover, which is known to be NP-ha#],[ can be reduced to
the minimal loop-cutset problem [114]. A factor 4 approxtoa algorithm for finding a
minimum loop-cutset was proposed in [7], i.e., the algonithuarantees that the resulting
loop-cutset is no more than a factor of 4 larger than optimamore refined version of
the problem is to find a loop-cutset with the smallest numlbéumles. Becker and Geiger
[9] showed that it can be reduced to finding the minimum weidhtertex feedback set
(MWVFES) where the weight of a variable equals the size of itmdim. Of course, it is also
NP-hard [61]. Using the reduction to MWVFES, Becker and Gei@mpfoposed a factor

2 approximate algorithinfor finding the minimum weight loop-cutset, thus, improving

1In UAI proceedings, it is stated that the algorithm is a fadtoHowever, it was re-evaluated later.
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on the result of Bar-Yehuda et. al. [7]. Subsequently, theysd that their deterministic
algorithm can be improved by randomizing the greedy selaeciep and running algorithm
multiple times [8, 3].

It is well-known that the minimum induced width* of the network is always less
than the size of the smallest loop-cutset [13, 29]. Namely+ 1 < |C| for any C.
Thus, inference algorithms (e.g., bucket elimination) ra@eer worse and often are better
than cutset conditioning time-wise. However, whehis large we must resort to cutset
conditioning search, trading space for time. The optiméltgm is a hybrid search and
inference approach that conditions on the smallest catseich that the induced width-
of the graph conditioned afi is small enough to perform exact inference whose complexity

is bounded exponentially by

DEFINITION 1.3.4 (v-cutset) Given a Bayesian netwotR over X and evidencé/C X, a
subset of nodeS'C X'\ £ is aw-cutsetin B if the induced width oB conditioned orC, £
IS w.

If C'is aw-cutset, the quantitieB(x;|c, e) and P(c|e) can be computed in time and
space exponential in. The resulting scheme requires memory exponential and time
O(dI®l- N - d®+1)) whereN is the size of the network antlis the maximum domain size.
The w-cutset conditioning scheme generalizes loop-cutsetitonohg and allows tuning
the performance to the available system memory resource.via

In [51] the idea is applied to the Pathfinder system [53], whbe conditioning set
is restricted to the set of diseases. Hybrid scheme conticamditioning with cluster-

ing algorithms has been explored further in [109]. Rish andHder [102, 103] proposed
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a scheme for combining conditioning and variable elimwmratior propositional theories.
They combined Directional Resolution, a variable elimioatscheme for SAT, with the
Davis-Putnam search procedure. In [74], Larrosa and Deelttended that approach to
general constraint optimization tasks. An alternativerltd/bcheme combining condition-
ing and elimination in the computations in a single clustex dique-tree was proposed by
Dechter and Fattah [30].

Givenw, finding a minimakho-cutset for the hybrid scheme is hard. Several greedy

heuristic approaches can be found in [43, 15, 16]. We elabonare in Section 2.2.5.

1.4 Sampling methods for Bayesian networks

When the complexity of exact algorithms for answering Bayesjaeries renders those
methods infeasible in practice, we resort to approximatéhaus. Sampling algorithms
are commonly used for approximate reasoning in Bayesianamnksmas they require linear
amount of memory and guarantee convergence to exact valtiesme. In this section, we
review briefly sampling methods for Bayesian networks fawgigin likelihood weighting
and Gibbs sampling.

Consider a Bayesian netwotkover X . Let £ denote a subset of evidence variables
ande denote the observed values. A sample is an assignment to all the variables in
X. Superscriptt denotes a sample number aﬂl@ is the value ofX; in samplet. Let
P(X) denote the probability distribution defined 8y Since we want to sample from

distribution P(X), it is also calledargetdistribution. Letf(X) denote a function of in-
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terest over variableX'. Functionf(X) can represent any of the typical Bayesian queries,
including the posterior marginal distributiad?(X;|e). Given a set ofl’ independent and
identically distributed (i.i.d.) sampleg?, z(?), ..., (™) from distribution P(X), the ex-

pectationE[f(X)] = fr(X) of f(X) is defined as follows:

- 1

fr(X) =2 f) (1.6)
t=1

For conciseness, we uge to denotefT(x) and f to denotef(z). Following thelaw of

large numbersit can be shown that:
i fr=1
The convergence rate is derived from central limit theorétar|):
\/T(fT — f) = N(0,07)

whereo? = Var{f(x)}. As aresult, the “error term” iff- is proportional ta)(7-'/2) and
does not depend on the dimensionalityX0f This makes sampling methods attractive for
solving problems that are otherwise intractable, inclgdirference in complex Bayesian
networks. The limiting factors are the increase in samplisgance with the dimensional-
ity of X and the difficulty in generating samples directly from thstidbution P(X'). We
will address the variance reduction techniques in SectibnNext, we will summarize the
basic sampling schemes for Bayesian networks.

In the absence of evidence, we can sample from the targeibdistn P(X) using

Logic sampling [54] described as follows. We sample vagahh topological order of the
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network. Namely, each node is processed after its paremts, We sample the values of
the root nodes from their priors. Any subsequent variablés sampled fromP(X;|pa;)
wherepa; denotes the set of parents of variable. Since the parents of nodg; are
sampled first, their values are fixed by the time we need to kangde X;. Thus, we
only need to look upP(X;|pa;) in the CPT of nodeX;. The samples produced that way
are independent and drawn froR{.X) and the value of functiorf(X') can be estimated
using expression (1.6). In particular,fif X) is the posterior margind?(z;), the estimator
computation is reduced to counting the portion of samplesraN; = x;.

When evidence is present, the target distributitfrk') in a Bayesian network is the
posterior joint distributionP(X|e) and it is typically unavailable. We can, in principle,
apply Logic sampling ignoring evidence, but we have to diddaeject) samples where
sampled values conflict with actual evidence values. Theltieg scheme is referred to
as Rejection sampling [48]. In this case, many samples maydsted, especially if the
probability of evidence is small. Two families of algoritsmaddressing this issue have
evolved. One is importance sampling scheme [110] and ther @HMarkov Chain Monte
Carlo sampling.

The main idea behind importance sampling is that we sampta &asamplingdis-
tribution Q(X) that is different from the target distributioR(X|e) and then weigh the
samples. The convergence speed and the accuracy of thaestiobtained by importance
sampling depend on how close the sampling distribufX ) is to the target distribution

P(X|e). We review importance sampling in more detail and describeaf its simplest
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variants, likelihood weighting, in Section 1.4.1.

An alternative approach is to generate dependent sampregsMarkov Chain Monte
Carlo (MCMC) sampling. In this case, each sample representstéite of the system
and generating a sampté+?) after samplec(*) is equivalent to a system state transition.
The key is to define the state transition function such thatstiationary distribution of
the Markov Chain converges to the target distributiofX |e). We will describe MCMC

methods further in Section 1.4.2 with focus on Gibbs sangplin

1.4.1 Importance Sampling Algorithms

As already mentioned, importance sampling schemes dragperient samples from a
trial distribution@ (X ), which is different from target distributioR (.X'). GenerallyQ(X)
is selected so that it will be easy to compute.

Samples drawn frory(.X) are weighed against the target distributi®QX) in order
to obtain an estimate of a function of interg$fX'). The weight of a sample can be obtained
by first computing the expectation ¢f.X):

Ep[f(X)] = > fl@)P(x)= ) f(ﬂf)%Q(w)zEQ[f(X)—}

TeX\E TEX\E

Consequently, giveit’ samples fron)(.X'), we can estimat¢(X) as follows:

A 1 p(x(t))
X)==— E (t) _
The Eq. (1.7) above defines anbiasedestimator off (X ). The ratiow® = %ﬁg; is the



weight of sample:®. So, we can re-write Eq. (1.7) as follows:

1 £y, ()
fX) =5 flaw (1.8)
In many cases, hiasedestimator is used instead:

. T ) p®)
for) = 2 1.9)

The biased estimator may be preferred because it allows rfpete the weightso®
only up to a normalization constant. For example, when edtirg posterior marginals
in Bayesian networks, our target distribution usually?igX |e), but computing posterior
probability P(z*) |e) maybe hard. Instead, we can compute a joint probabftity®, e)

yielding a sample weight within constaR{e):

w® = ffﬁfffiLfl =
Q(z")
Additionally, biased estimator in Eq. (1.9) often has a $enahean squared error [81].
A common query of interest in Bayesian networks is to find thabability of evi-

denceP(e). LetY = X\ E. Then, the expectation @f(¢) can be expressed as follows:

_ P(y,e)
_;P(yv ZQ EQ[Q(y,e)]

Using importance sampling approach, we can difawamples from some distribution
Q(X), weigh them againsP(X, ¢) and obtain the followinginbiasedestimateP(e) of

P(e):

1 Pz e) 1 d
—?Z o) Zw(t) (1.10)

t=1 t=1
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In a similar manner, but counting only those samples whére= x;, we can obtain an

expression for the sampling estimatéz;, e) of P(z;, ) for X; € X\ E by:

T

- 1
P(z;,€) = - Z wW§(z;, ™)

t=1

()

whered(z;, ")) is the Dirac delta function. Namely(z;, z®) = 1if »; = z;” and
§(z;, ) = 0 otherwise.
Another query is to compute posterior marginal distribuiti®( X;|e) which can be

estimated using the ratio:

P = T
ElP@lo] = “pped

Substituting the unbiased estimators fez;, ¢) and P(e) defined above, we get:

T
% Zt:l w(t)é(xh x(t)) Zthl w(t)é(xi, x(t))

P(xile) = = (1.11)
% Z?:l w® 23:1 w®)
We can rewrite the above as:
T
P(xile) = a Y wd(x;, ) (1.12)

where « is a normalization constant. Note that in Eq. (1.11) and2)l.We reuse the
samples generated to estimdée) in estimatingP(z;, ). It is also possible to estimate
P(e) and P(z;, e) using two separate sets of samples [19, 25, 26]. The reg@dstimate
of P(z;|e) was shown to have a lower variance, but at the cost of douliagamount
of computation required. Consequently, in this work, we m@hythe estimation method
defined by Eq. (1.11) and (1.12).
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The above importance sampling estimators are guarantexxht@rge to their target
values as long as the conditidi(z|e) # 0 = Q(z) # 0 holds. While maintaining the
condition above, it is desirable th@{( X) reflects as many zeros &f( X |e) as possible. If
the distributionP(X') has many zeros whil§(X) remains positive, the algorithm often

generates many samples haviRgX ) = 0 which are then discarded.

Generic Importance Sampling Scheme
Input: A belief network B, variablesX = (Xj,...,X,), evidenceE = e, initial importance
function Pr°( X\ E), the desired number of sampl&sthe updating interval, and the score arrays
for every node.
Output: A set of samplegz()},t = 1...T.
1. Generate sampler order of the nodes.
2. Initialize: k — 0, S = {}, VX, € X\E, Va; € D(X;), w(z\") = 0.
3. Compute Samples:
Fort «— 1to T do:
3.1 z® — generate a sample accordingRo” (X \ F)
32 S—SJz®
3.3  w® — compute weight of sample(*)
3.4 Update score arrays:
VX, € X\E, w(a:z(-t)) — w(a:ﬁt)) + w®
35 if(tmodi == 0) then

3.6 k—k+1

3.7 update importance functidr* X'\ E based orf
3.8 end if

End For

4. Normalize the score arrays for every node:
VX; € X\E, P(Xi|e) = aw(z")

Figure 1.5: A generitmportance Samplin§cheme

A generic importance sampling scheme is defined in FigureSté&p 1 of the algo-
rithm is to create a sampling order. The schemes sampling tine prior distribution, such

as Logic sampling and Rejection sampling process nodes oidgigal order. However,
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a different sampling order may be selected to obtain a bs#epling distribution that is
closer to the target distribution. For example, backward@eng [41] attempts to change
the sampling order so that evidence variables are sampikereb [49] and [90] the vari-
ables are sampled in reverse elimination order; the samplistribution of a variable is
obtained by computing a product of all the functions in thealae’s bucket and summing
out all other variables. Gogate and Dechter [49] initiabzekets with functions obtained
by Iterative Join-Graph Propagation (IJGP) [31]. Moral &adimeron [90] utilize standard
bucket elimination procedure but they approximate largetions by a probability tree.

In step 2, we initialize sample counters and set of samglek steps 3.1 and 3.2,
we generate a new sampl&) and add it to the set of samplés In step 3.3, we compute
the sample weight'® and, subsequently, update individual score arrays of eadhble
X; € X\ Einstep 3.4. Finally, steps 3.5-3.8 describe the optionafation of updating the
sampling distribution based on generated samples. Theingddep is performed every
samples whereis usually selected heuristically or empirically. In Logiampling and Re-
jection sampling, this step is omitted. However, sincaahgampling distribution is often
very different from the target distribution, dynamic ugdgtcan substantially improve the
convergence speed of importance sampling. The algorithatdricorporate the updating
operation in steps 3.5-3.8 are often referred t@daptiveor dynamicimportance sam-
pling and include such methods as self-importance sampiiagristic importance sam-
pling [110], and, more recently, AIS-BN [21] and EPIS-BN [123} dynamic updating

step is also incorporated in the algorithm of Moral and Satmé¢90]. The procedures for
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updating the sampling probabilities vary. We describe timecples of adaptive importance
sampling on the example of AIS-BN algorithm.

AIS-BN algorithm is based on the observation that if we cowdhple each node
in topological order from distributiorP(X;|pa;, €), then the resulting sample would be
drawn from target distributio®( X'|e). Since this distribution is unknown for any variable
that has observed descendants, AIS-BN initializes impoedanction to some”r?(X)
defined by a collection of sampling distributioRs®( X;|pa;, €). In the paper [21], authors
experimented with settingr®(X;|pa;, ¢) equal toP(X;|pa;) and a uniform distribution.
They reported better convergence rates when the initiritalision is uniform.

The objective of AIS-BN is to update each distributiBn® ( X;|pa;, ¢) so that the next
sampling distributionPr**1(X;|pa;, e) will be closer toP(X;|pa;, ¢) than Pr*(X;|pa;, e).

The updating formula, applied after generating evesgmples, is as follows:
Pritt(a|pas, e) = Pr¥(z|pa;, ) +n(k) - (Pr'(xi|pas, e) — Pr¥(x|pas, e))

wheren(k) is a positive function that determines the learning rate Badx;|pa;, ¢) is
an estimate ofP(z;|pa;, ) based on the lagtsamples. Whem(k) = 0 (lower bound),
the importance function is not updated. Whgi) = 1 (upper bound), the old function
is discarded so tha®r***(z;|pa;, e) = Pr'(x;|pa;,e). The convergence speed is directly
related ton(k). If it is small, the convergence will be slow due to the largenber of
updating steps needed to reach a local minimum.

Next, we describe likelihood weighting [40, 110]. Itis a pi@importance sampling
algorithm that does not attempt to modify sampling disttidny, but illustrates the core
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principles of importance sampling.

Likelihood Weighting

Likelihood weighting [40, 110] samples from a distributithrat is close to prior. It begins
with a network without evidence and assigns values to nategpblogical order, similar to
Rejection sampling. The unobserved nodes are assignediieergay as in logic sampling.
First, root nodes are sampled from their prior distribusio hen, all other node&’; €
X\ E are sampled from distributioR(X;|pa;).However, ifX; € E, thenX; is assigned
its observed value. The sampling distribution of likelidomeighting can be described as
follows:

Q) =[] P(Xilpas) -
Consequently, the weight®) of each samplé can be computed as follows:

0 _ Plae)  llie Plailpa)

whereVz; € z\e, Q(x;|pa;) = P(x;|pa;) andve; € e, Q(z;|pa;) = 1. Since fovz; € z\e,
the factors in the numerator and denominator of the fractidhcancel out, leaving the

following expression forw®:

w = H P(ei|pas)

e;€e

When sampling, we initialize weight¥ = 1. As we process nodes, whenever we
encounter an evidence variable with observed value;, we compute its probability
P(e;|pal”) conditional on the current assignment of values to its gager)”, fix its value

E; = e;, and update the current sample weight = w® - P(e; |pa§t)).
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Likelihood weighting has lower rejection rate than Rejattgampling because it
simply fixes the evidence node values. Hence, it convergaerfaHowever, it usually
converges slower then any of the adaptive importance sagiptihemes, especially when

probability of evidenceP(e) is small.

1.4.2 Gibbs sampling for Bayesian networks

The basic idea behind all Markov Chain Monte Carlo (MCMC) methoududing Gibbs
sampling, is to simulate a Markov chain in the state spac& of {X3,..., X,,} so that
the stationary distribution of the chain is the target distion P(.X). Hence, the number
of states corresponds to the number of possible instammtf sampled variables and is
exponential in the number of variables. The transition fisiater®) = {xgﬂ, ...,xﬁf)} to
statex’ = {z/, ..., 2} is defined by a transition probability functidi(z*), z') = P(z =
2'|x®). Markov chain-based sampling was first proposed by Metisgtlal. [89] and is
known as Metropolis sampling. The only requirement of Metides algorithm is that the

state transition function is symmetric, which can be exggdsnathematically as follows:

That is, the transition rule is restricted to a subset ofditeon functions where the chance
of obtainingz’ from z is equal to the chance of samplingrom «’. Hastings generalized
the algorithm [52] so that the transition function is not@gsarily symmetric. In Hastings’
generalization, the main requirement on the transitiorction is that7'(z,y) > 0 if and
only if T(y,x) > 0. The generalized scheme is known as Metropolis-Hastirggsighm.
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Gibbs sampling is a special MCMC scheme introduced by GemaGaman [45]. It uses
the conditional distributiorP(z;|x_;, e) as state transition rule which guarantees that the

stationary distribution of the Markov chain i3 X |e).

Ordered Gibbs Sampler
Input: A belief networkB, variablesX = { X}, ..., X,,}, and evidencé C X, E = e.
Output: A set of samplegz()},t = 1...T.
1. Initialize: Assign random valuego) to each variableX; € X\ E from D(X;). Assign evidence
variables their observed values.
2. Generate samples:
Fort=1to T, generate a new sampié:
For eachX; = X\ F, compute a new valuez(t):
Compute distributiorP(Xi\xfﬁ)ai) and sample:l(.t) — P(Xi|x,(7’§)ai).
SetX; = I'Et)
End (for i)
End (for t)

Figure 1.6: AGibbs samplingflgorithm

Given a Bayesian network over the variablEs= {X;,..., X,,}, and evidence,
Gibbs sampling [45, 47, 85] generates a set of samfi€s} from P(X|e) as follows.
The values of the evidence variables remain fixed. Given Eanr}ﬁ (the current state
of Markov chain), a new value for variablg; can be sampled from probability distribu-
tion P(X,»|x(_tz~), denotedr; «— P(Xi|:z:(_t2). The first sample can be initialized at random.
The next sample:E”” is generated from the previous samp)Eé? following one of two
schemes.

Random Scan Gibbs Sampling.Given a sample:(® at iterationt, pick a variable
X; at random and sample a new valuydrom the conditional distribution; « P(Xi\x(fz)
leaving other variables unchanged.
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Systematic Scan (Ordered) Gibbs SamplingGiven a sample:®, sample a new

value for each variable in some order:

P(Xl\xgt), xgt), )

r1 < n
Ty P(X2|x§t+1),x§t), oz
z; — P(X|2", ...,xgil),xgl, )
Ty — P(Xn\wgtﬂ), wgtﬂ), s :L’nt_ll))
For conciseness, we can wrik{z;[z")) = Pz, |2, . 2D 20 2P). In

Bayesian networks, the conditional distributiBhXi]x(_tZ) is dependent only on the assign-
ment to the Markov blanket.a; of variable X;. Thus,P(xi|x(j):P(xi|x§f3ai) wherez%,,
is the restriction ofr™® to ma;. Given a Markov blanket off;, we obtain the sampling
probability distributionP(Xi|x£§Li) by computing the conditional probabilit};?(xi|x§,i)ai)
for eachz; € D(X), as defined in [96]:
P(ailely,) = aP(xlaf)) [ Plalaf) (1.13)
{41, €ch;}

where« is a normalization constant.

Thus, generating a complete new sample requives: ) multiplication steps where
r is the maximum family size and is the number of variables.

A two-component Gibbs sampler, with componeitsand X, sampled in turnsX;
from P(X;|z,) and X, from P(X;|x,), is known aslata augmentation scheme

Gibbs sampling distribution converges®gd X |e) as the number of samples increases
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as long as the corresponding Markov chairergodic namely it isaperiodicandirre-

ducible[96, 44, 85].

DEFINITION 1.4.1 (Aperiodic) A Markov chain is said to baperiodicif the maximum
common divider of the number of steps it takes for the chagoione back to the starting
point (any) is equal to one. [81]

DEFINITION 1.4.2 (Irreducible) A Markov chain isirreducibleif the chain has nonzero
probability (density) to move from one position in the stace to any other position in a
finite number of steps. [81]

DEFINITION 1.4.3 (Ergodic) An aperiodic, irreducible Markov chain is callestgodic

The aperiodicity means that the chain does not have regutgusiwhere every;
steps we return to stat&. The irreducibility guarantees that we can get to any sfate
from any stateS; with non-zero probability and thus, will be able to visit (@smber of
samples increasds — oo) all statistically important regions of state space. Theditoons
are almost always satisfied as long as all probabilities esttipe [117]. If a finite-state
Markov chain is irreducible and aperiodic, then it convergeits stationary distribution
regardless of the initial state. Thus, the Markov chain aetuby Gibbs sampler is guar-
anteed to converge to the target distributi®fX |e) regardless of its initial state as long as
all probabilities are positive.

Assuming it takesz K samples for a Markov chain to converge to its stationary
distribution, the firstk’ samples may be discarded to ensure that the collected sample
properly represent distributioR( X |e). The time spent computing discarded samples is

referred to as “burn-in” time. However, determinifgis hard [60]. In general, the “burn-
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in” is optional in the sense that the convergence of the esémto the correct posterior
marginals does not depend on it. Gibbs sampling algorithgiven in Figure 1.6.

The estimate/,(X) of any functionf(X) overT samples can be computed using an
ergodic average

Fr(X) = 23 fa) (1.14)

When the convergence conditions are satisfiféd,X ) is guaranteed to converge to the
exact valuef (X). In other words| fr(z) — f(z)| — 0 asT — ooc.

Our focus is on computing the posterior marginal distrimut? (X, |e) for eachX; €

X\E. The posterior marginals can be estimated using eithéstagram estimator

T

. 1

P(X; = wile) = 7 3 o(ai,2") (1.15)
t=1

or amixture estimatar

. 1 &

P(Xi=mile) = 7 ) Plaa) (1.16)
t=1

The histogram estimator corresponds to counting samplesas) = z;, namelyj(z;, z)) =
1if xgt) = x; and equals 0 otherwise. The name “mixture” stems from thetfet ex-

pression (1.16) is a mixture of posterior distributionsn(féiP(:z:i\a:(_tz) :P(xi|x$,?ai), the
mixture estimator is simply an average of the conditionabgabilities:
1 T
P(x;le) = = > Paglf),) (1.17)

t=1

Gelfand and Smith [44] have pointed out that since the mestimator is based
on estimating conditional expectation, its sampling vace&is smaller due to the Rao-
Blackwell theorem. However, their proof was based on therapfion that the samples
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are independent which is clearly not true in the case of Gdalmspling. Liu, Wong, and
Kong [79] proved the variance reduction in the case of Gilams@er using the notion of

auto-covariance, which can be defined as follows:

THEOREM1.4.1 ([81], Theorem 6.6.2, p.145) etz ..., 27 be consecutive samples gen-
erated by the random scan under stationarity, and ket the random variable representing
the random index in the updating scheme. For) € L?*(P(X)), the lag-n autocovariance
betweenf(z(®) and f(z™) is a non-negative monotone decreasing function.oft can

be written as:

cov[f(z), f(2)] = Var[E[E...[E[f ()i, z_]|x]..]] (1.18)
where there ard’ conditional expectations taken alternatelyomn_; andx.
Subsequently, we can obtain the following expressionshieariances of the esti-

mates expressed in Eq. (1.15) and (1.16):

m*Var(I) = mo2+2(m— 1o+ ...+ 202, (1.19)

m?Var(I) = mo? +2(m —1)o? + ... 4+ 202, (1.20)

whereo? = cov[f(z(?), 2®]. Comparing the two variances, it is clear that each term in
(1.20) is exactly one lag behind the corresponding term.it9)1 Because covariances are
non-negative and monotonous, it follows thétr[1] < Var[I].

As mentioned above, when the Markov chain is ergoficX;|e) will converge to
the exact posterior margindt(X;|e) as the number of samples increases. It was shown
in [105] that the random scan Gibbs sampler can be expectednteerge faster than the

systematic scan Gibbs sampler. Ultimately, the convergeste of Gibbs sampler depends

on the correlation between two consecutive samples [77,719)8

32



1.5 Variance Reduction Schemes

All sampling schemes are known to benefit from reducing theedisionality of sampling
space which leads to the reduction in the sampling variandeequires fewer samples to
achieve the same accuracy of the estimates.X eenote a set of all sampling variables.
Assume we can decomposg into two subsets” and Z. Then, we can decompose the

sampling probability? (X |e) as follows:
P(zle) = P(y, zle) = P(zly,e)P(yle)

If the probability P(z|y, e) is easy to compute, then we can easily estinfate|e) using
the estimate oP(y|e) . In the case of importance sampling, our target distrilsuiecomes
P(Y|e) and our sampling distribution is some distributi@Y’). The sample weight:®

can be computed as:

L0 = Pwe)
Qy")

yielding the following estimators for the posterior ma@s

T
Pyle) = ) wPs(y;,y")
t=1

T
P(zle) = « Z wYP(z|y?, e)
=1

We can show that the estimates obtained by marginalisindpseswf variablesZ have

lower variance and require fewer samples to achieve the aameacy:

33



THEOREM1.5.1 ([83], Theorem 6.3, p. 13) et P(y, z) and Q(y, z) be two probability
distributions such that the support 6fis a subset of that a). Then:

P(Y, 2) P(Y)

ow.z) =V elgy)

whereP(Y) = >  P(Y,Z)andQ(Y) = > . Q(Y, Z) are marginal distributions. The
variances are taken with respectdb

Vargl

A proof, due to Rao-Blackwell theorem, can be found in [36] 888].[ Subsequently,
importance sampling on a subset of variables is often mdeto as Rao-Blackwellised
importance sampling [34, 83].

Integrating out a subset of variables also improves theerg@nce of MCMC schemes.
Reducing the number of sampled variables in Gibbs samplenasik ascollapsingthe
Gibbs sampler. Intuitively, since the convergence rate ibb& sampler is determined by
the maximal correlation between the states of two consex@ibbs iterations, removing
strongly correlated variables from the sampling set resltlee correlation between sam-
ples. Alternatively, the convergence rate of Gibbs samgder be improved bylocking
i.e., grouping variables together and sampling them sanelbusly. If two variables are
strongly correlated, we can reduce the correlation by sagphem together. Efficient
blocking scheme for Bayesian networks have been investigai®7, 67].

Given a joint probability distribution over three randonriahles X, Y, andZ, the

two variance-reduction schemes for Gibbs sampler canumsridited as follows:

1. Standard Gibbs:

2D PX|y®, 20 (1.21)
Yyt Py |ty 0) (1.22)
LD P72 D) (1.23)
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2. Collapsed (variable Z is marginalized):

e P(X|y®) (1.24)
Yyt P(Y)2®Y) (1.25)

3. Blocking by grouping X and Y together:
(2, ) PX,Y]Y) (1.26)

2D P(Z]a U )y (1.27)
Although both blocking and collapsing improve convergeot&ibbs sampler, col-
lapsing usually yields an estimator with smaller variartf@ntblocking. Liu, Wong, and
Kong [79] showed that for a Gibbs sampler with three variglhe variancé/ ar,. of the
estimator in a collapsed Gibbs sampler is smaller than than@eV ar, of the estimator
in a blocking Gibbs sampler. Both collapsed and blocking Gisémpler estimates have

smaller variances than the variaricer, of the full Gibbs sampler. We get:
Var, < Var, < Var,

We can extend the argument for the case of Gibbs samplenwititiables by examining

the properties of the forward operaier

Fh(X) = / T(e, y)h(y) dy

over a Hilbert spacé?(r). TheT(z,y) is a Markov Chain transition function. The proof,
which will not provide here as it requires an elaborate asialgf the operator properties, is
based on the fact that the norm of operatas known to be related to the convergence rate
of the Markov chain. It is possible to show that the norm ofdperatorF,, corresponding

to the collapsed Gibbs sampler, is smaller than the normeobgieratorF;,, corresponding
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to the blocking Gibbs sampler, both of which are smaller tteenorm of the operataf,

corresponding to the standard Gibbs sampling scheme:
[LEe[| < [[F]] < [1Fl|

Subsequently, we can expect the collapsed Gibbs samplenteige faster than blocking
Gibbs sampler or the standard sampling scheme. Furtheysimalf the collapsed Gibbs
sampler can be found in [38, 84, 80, 81].

Collapsed Gibbs sampler is sometimes referred to as Rao-Bédicded Gibbs sam-
pler [106] although the Rao-Blackwellised estimates are atlynobtained from samples
in the space ofX = Y U Z by restricting the conditioning set 6. That is the variables
in Y are assigned their sampled values while the variablésane marginalised out. For
example, a Rao-Blackwellised estimate of functjftX’) overl" samples fromX can be

computed as follows:

1 T

fr(X) = 2 3 Elf(@)ly")
t=1
wherey® is a restriction of assignment® to Y, 4y c z®. A special case of Rao-
Blackwellised estimator is the Gibbs mixture estimator esped in Eq. (1.16).

There are instances of problems where introducing a claveliay variable can
actually improve the performance of Gibbs sampler. Thi©iessdase of Swendsen-Wang
algorithm [115] for Monte Carlo simulation from Ising mod&\Vhile the model is defined
over a set of variableX’, the algorithm introduces an auxiliary varialdlesuch that all
variables inX are conditionally independent whénis observed. As a result, the variables
in X are sampled together as a block. The algorithm of SwendsargWen can be viewed
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as a data augmentation scheme iterating between sammimg(b|«) and P(x|b) where

b is an expectation function af [37, 55, 116]. The Swendsen-Wang algorithm using
a “decoupling” auxiliary variablé/ outperforms plain Monte Carlo sampling over Ising
model [115] and in statistical image processing [55].

It is worth noting that introducing a decoupling variableedmot always improve
convergence of the Gibbs sampler. It was shown that integratit the decoupling variable
from the bivariate Gaussian inference problem [81] or Gitmlagif finding algorithm [78]
actually improves their convergence rates.

The efficiency of sampling from a lower-dimensional spaclkeath importance sam-
pling and Gibbs sampling is hindered by the computation lezad incurred from com-
puting the necessary sampling probabilities. In the cadgayksian networks, the task
of marginalising out some variables is equivalent to baljdflating where evidence vari-
ables and sampling variables are observed. Its time compiextherefore, exponential
in the induced width of the network conditioned on instaetiavariables (evidence and
sampled). Consequently, so far, the collapsed sampling ilage been applied in the
context of Gibbs and importance sampling for only a few @assf Bayesian networks

[36, 34, 5, 106] by exploiting the special properties of thebedded distributions.
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1.6 Thesis overview and Results

Research is what I'm doing when | don’t know what I'm doing.
-Wernher Von Braun

The central theme of this thesis is that efficiency can begghlty combining search
and exact inference when answering queries in Bayesian rietwt is well-known that
an assignment of values to a subset of variables, a cutsetedace the complexity of
exact inference over the conditioned network. We call theamf assigning values to
variables “conditioning.” By enumerating all cutset instas and performing exact infer-
ence for each instance, we can obtain exact answers to Baygs#ies such as exact
posterior marginals. However, enumerating all cutseesid infeasible when the cutset is
large since the number of tuples grows exponentially withrtbmber of variables in the
cutset. This dissertation seeks to improve the efficienaxadting algorithms for approx-
imating and bounding posterior marginals by enumeratinlg arsubset of cutset tuples.

We investigated three aspects of the problem:

1. Combining conditioning and exact inference for efficiearnpling over a subset of vari-
ables (Chapter 2). We propose two cutset sampling schemiglss-®asea-cutset sam-
pling and likelihood weighting on a loop-cutset, that expietwork structure to bound
the complexity of computing a sample in the cutset spaceguskact inference. The
schemes produce estimates with lower sampling variancdaater convergence rates
compared to sampling over a full set of variables. From thatpaf view of cutset con-
ditioning, we enumerate only those cutset tuples that anerg¢ed by sampling. The
probability of a cutset tuple is estimated by its frequemcthie set of samples. In case of
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likelihood weighting, the frequency is also weighted toeeflthe fact that the sampling

distribution is different from the target distribution.

2. Finding a minimal cutset that reduces the induced widtihemnetwork (Chapter 3) that

can be used as a sampling set in Chapter 2 and as a conditi@biimgCGhapter 4.

3. Using conditioning to compute bounds on posterior malgitChapter 4). We derive
the expressions for lower and upper bounds that yield a fraorlethat computes ex-
actly probabilities for a subset of cutset tuples and bouhesest using a combination
of exact inference and off-the-shelf bounding scheme. Eiselting bounds converge
to exact posterior marginals as the number of computed tctiipkes increases. The
scheme outperforms previously proposed bounded conghiaigorithm [56] using the
bound propagation plug-in [76]. It outperforms the boundpagation algorithm after

processing a few thousand cutset tuples out of millionseuin the loop-cutset space.

The following three subsections summarize our contrilmgio

1.6.1 w-cutset Sampling (Chapter 2)

All sampling algorithms converge slowly in high-dimensabispaces due to an increase
in sampling variance. By reducing the number of variables sample, we reduce the
sampling variance and, consequently, require fewer sanpleonverge. The challenging

task is to be able to sample a subset of variables in a timagegftimanner.
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Contributions

Our contribution is in presenting a general, structureedasheme which samples a subset
of variables, a cutset, as opposed to sampling all unobderagables. Sampling over
a cutset in a Bayesian network requires computing the sagpliobabilities by exact
inference. Inference methods such as bucket eliminatidrtr@e-clustering are time and
space exponential in the induced widthof the network. We exploit the property that
conditioning on a subset of variables simplifies the netvgstucture reducing its induced
width and allowing efficient query processing by inferentfghe cutsetC' is aw-cutset,
namely a subset of nodes such that when assigned, the indud#dof the conditioned
network isw, the time and space complexity of computing the next sangpdxponential
inw.

Sampling over a cutset improves sampling efficiency (reslwegiance) by reducing
the size of the sampling space at the cost of more demandang @Xerence. Thus, we
can control the time-space trade-offs between samplinge&adt inference by selecting a
cutset having desired properties.

We demonstrate the effectiveness of cutset sampling usinigsGampling and like-
lihood weighting (LW). We compared the accuracy of the esd@®@aroduced by sampling
over a cutset against sampling over all unassigned vasasea function of time. We
showed that the cutset-based estimates usually convestgr thespite the incurred com-
putation overhead. Specifically, Gibbs sampling on a loaiget outperformed full Gibbs

sampling in all benchmarks but one. Gibbs sampling enautset outperformed full Gibbs
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sampling for a range ab values. Likelihood weighting on a cutset was outperformgd b
full likelihood weighting only in a network without evideaavhere the LW sampling dis-
tribution equals the target distribution.

Sampling over a cutset offers additional benefits when th&ark contains determin-
istic probabilities. In this case, plain Gibbs sampling sloet converge; however, Gibbs
sampling over a cutset converges as long as the Markov chairtlte cutset is ergodic. In
case of likelihood weighting, we observed that sampling eveutset often results in lower

rejection rates.

1.6.2 Finding Minimum w-cutset (Chapter 3)

The size of thew-cutset affects the performance of bathcutset sampling and-cutset
conditioning. Given induced width bound, it is preferable to select a minimal-cutset
for both w-cutset sampling and fap-cutset conditioning. The focus of Chapter 3 is on

developing new techniques for finding the minimunrcutset.

Contributions

Since a network conditioned omn-cutset yields a tree-decomposition having tree width
w, we propose to start with a good tree-decomposifionof the network and seek the
minimumuw-cutset of/’'r. We prove that the problem of finding a minimadcutset of tree-
decomposition is NP-hard because any minimum set multicproblem (SMC) can be

reduced to solving a minimum-cutset problem. We also show that amycutset problem
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can be reduced to set multi-cover problem which allows usiapta well-known greedy
algorithm for solving minimum SMC (or minimum-cost SMC) toding a minimumuw-
cutset (or minimum-cosb-cutset).

We investigate empirically several variants of the greelgprthm for SMC and
show that it consistently finds:a-cutset that is the same size or smaller than the cutset ob-
tained by the well-performing loop-cutset algorithm [1@§iapted to the-cutset problem)

and thew-cutset algorithm proposed in [43].

1.6.3 Any-Time Bounds (Chapter 4)

Chapter 4 investigates how enumerating a subset of cutdestapn be used to improve
existing bounding algorithms, building upon the approacbe[56] and [76]. Our ap-
proach is to exploit properties of the distributi®iC, e), wheree is evidence, over cutset
C when a small subset of cutset tuples contains most of theapility mass ofP(e) =
>cency P(c,e). A distribution that exhibits such properties is sometimeferred to as
a peaked distribution. The idea is to find all the cutset wiplgh high probability mass
P(c, e) and bound the probability mass distributed over the remgihiples. The resulting
scheme is any-time in the sense that the lower and upper baxamtinue to improve with
time as more cutset tuples are explored. The bounds arergeadato converge to exact
posterior marginals. The successful realization of thige@ch depends on solving the two

subproblems of finding the high probability tuples and bongdhe unexplored tuples.
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Contributions

Our contribution is a bounding framework, Any Time Bound&/(B), that defines new
expressions for the lower and upper bounds, derived fromgdimsciples, and allows one
to plug-in any off-the-shelf bounding algorithm to boune throbability mass over the
unexplored cutset tuples. It extends the ideas that areotivedftion of the bounded con-
ditioning algorithm where the probability mass of the uriexgd tuples was bounded by
the sum of their priors. The prior distribution was also useduide the selection of high
probability tuples. Our approach uses a more sophisticatieeme for selecting high prob-
ability tuples, namely, cutset sampling, and a more aceuratinding algorithm, namely,
bound propagation, to bound the missing probability mass.

To improve the performance of the resulting combinatioresod, we improve bound
propagation in several ways. We exploit the relevant swiort properties of each node
and also propose an algorithm for approximately solvindittear optimization problems,
which are part of bound propagation algorithm, in order thuee computation time. Thus,
we plug into our bounding framework a version of bound prapieeg that exploits network
properties to its advantage but relaxes the linear optitoizgoroblems and solves them
without using the simplex solver.

We evaluate the performance of the resulting hybrid boumdcheme and bound
propagation over a number of benchmarks. The results shaiwthen the distribution
P(C,e) (or, equivalently,P(C|e)) indeed has a peaked shape, Any Time Bounts 8)

outperforms bound propagation after exploring a few humdngset tuples. Even when
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the distribution is relatively flatA7T' B outperforms bound propagation after exploring a
few thousand tuples. The results also show that cutset gagriplindeed effective at dis-
covering high probability tuples. Using cutset conditimpito generate cutset tuples, we
were able to accumulate over 90% of the weighPg€) in a few hundred to a few thou-
sand tuples in several networks from UAI repository. In othetworks, we accumulated
up to 20-30% of probability mass d@?(e) after generating just a few hundred out of sev-
eral millions of cutset tuples. The details are providedhi& ¢xperimental section 4.6 of

Chapter 4.
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Chapter 2

Cutset sampling for Bayesian networks

The chapter presents a new sampling methodology for Bayestmorks that samples
only a subset of variables and applies exact inference taeie Cutset sampling is a
network structure-exploiting application of the Rao-Blaeligation principle to sampling
in Bayesian networks. It improves convergence by exploitimgmory-based inference
algorithms. It can also be viewed as an anytime approximati@xact cutset-conditioning
algorithm [96]. Cutset sampling can be implemented effityamhen the sampled variables
constitute a loop-cutset of the Bayesian network and, monergdly, when the induced
width of the network’s graph conditioned on the observed@advariables is bounded
by a constantv. We demonstrate empirically the benefit of this scheme omgeraf

benchmarks.

2.1 Introduction

We have already defined basic principles of sampling in Bayasetwork in Chapter 1 and
introduced two families of sampling algorithms, Markov Gh&lonte Carlo and impor-
tance sampling. When exact inference is impractical duedbipitive time and memory
demands, sampling is often the only feasible approach tfeasperformance guarantees.

Given a Bayesian network over the variabfés= {Xj, ..., X,,}, evidenceE = ¢, and a
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set of samplegx®} from P(X|e), a functionf(X) can be estimated using the generated

samples viargodic average

I

Bf(XOl = 3 f) (2.1

whereT" is the number of samples. The estimate can be shown to centerpe exact
value asl’ increases. The central query of interest over Bayesian mk$we computing
the posterior marginalB(z;|e) for each value:; of variableX;, also calledelief-updating
For this query, the above equation reduces to counting #utidn of occurrences of; =
x; in the samples.

As we mentioned previously, a significant limitation of ahspling schemes is that
the statistical variance increases when the number ofhlasan the network grows and
therefore the number of samples necessary for accurateagstn increases. In this chap-
ter, we present a sampling scheme for Bayesian networksetates the sampling vari-
ance by sampling from a subset of the variables, cellapsingthe sampling set. This
technique is also sometimes referred tdra®-Blackwellisedampling. The fundamentals
of sampling on a subset were developed in and [79] for Gibbgpsag and in [83, 36] for
importance sampling. A related work on the reduction ofamce in Rao-Blackwellised
estimates was performed in [20] and [44].

The basic collapsed sampling scheme can be described@sgoBuppose we parti-
tion the space of variable¥ into two subset§’ andZ. Subsequently, we can re-write any
function f(X) asf(C, Z). If we can efficiently computé(C|e) and E[f(C, Z)|c, e] (by
summing outZ in both cases), then we can perform sampling on subisetly, generating
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samples:() 2 . «T) and approximating the quantity of interest by:

I

BIf(X) ] & 2 ST BUS(C. 2)e, 22)

If the function f(X) is a posterior marginal of nodd; € X\C, FE, then f(X)le =

P(Xile), E[f(C, Z2)|c®, e] = E[P(X;)|c®, e)] = P(X;|c®, e) and Eq. (2.2) becomes:
P(Xile) = 7 > PO, 2.3)

Rao-Blackwellised estimates have lower sampling variancetla@refore require a
smaller number of samples to converge to the target disimitbuYet, the cost of generating
each sample may increase. Indeed, the principles of Rao\Bé&dlided sampling have
been applied only in a few classes of probabilistic modeth wpecialized structure and
probability distributions [69, 38, 84, 80, 32, 5, 106].

The contribution in this chapter is in presenting a genesaijcture-based scheme
which applies the Rao-Blackwellisation principle to Bayesmatworks. The idea is to
exploit the property that conditioning on a subset of vdaalsimplifies the network’s
structure allowing efficient query processing by inferealgorithms. In general, exact in-
ference by variable elimination [28, 29] or join-tree alfoms [75, 59] is time and space
exponential in the induced-width of the network. However, when a subset of the vari-
ables is assigned (i.e., conditioned upon) the inducedhwatithe conditioned network is
reduced.

The idea of cutset sampling is to choose a subset of variabksch that condition-

ing onC' yields a sparse enough Bayesian network having a small idduih to allow
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exact inference. Since a sample is an assignment to a sibhsetables, we can generate
a new sample over the cutset variables efficiently over timeliioned network where the
computation ofP(c|e) and P(X;|c, ) can be bounded. In particular, if the sampling Set
cuts all the cycles in the network (i.e., it is a loop-cutsetjerence over the conditioned
network becomes linear. In general(ifis aw-cutset, namely a subset of nodes such that
when assigned, the induced-width of the conditioned nétwgar, the time and space com-
plexity of computing the next sample is proportionat2¢/“*!) whered is the maximum
domain size.

The idea of exploiting properties of conditioning on a sulifevariables has been
first proposed for exact belief updating in the context ofsetstconditioning [96]. This
scheme requires enumerating all instantiations of cutseales. Therefore, if the size
of the cutset is too big, sampling over the cutset space maghdeight compromise.
Thus, sampling on a cutset can also be viewed as an anytimexapjation of the cutset-
conditioning approach.

Collapsing of a sampling set can be applied in the context gfsampling algo-
rithm. We will introduce the principles of cutset samplimglhe context of Gibbs sampling
[45, 47, 85], a Markov Chain Monte Carlo sampling method for B networks, and
likelihood weighting [40, 110], an instance of importaneenpling. The resulting cutset
sampling algorithms are our main contribution in this cleapExtension to any other sam-
pling approach or any other graphical model, such as Markdwarks, should be straight

forward.
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The chapter defines and analyzes the cutset sampling schetrievastigates em-
pirically the trade-offs between sampling and exact infeesover a variety of randomly
generated networks, grid structure networks as well as kneal-life benchmarks such
as CPCS networks and coding networks. We show that cutset isgntpinverges faster
than pure sampling in terms of the number of samples as déctay theory and is also
almost always time-wise cost effective on all the benchmniked. We also demonstrate
the applicability of this scheme to some networks with detaistic probabilities, such
as Hailfinder network and coding networks, where Markov clggnerated by full Gibbs
sampling is non-ergodic.

The contribution of the chapter presenting the cutset saggtarts in Section 2.2.
Section 2.5 presents the empirical evaluation of cutsepbag: We also present an em-
pirical evaluation of the sampling variance and the resglgtandard error based on the
method ofbatch meangfor more details, see [46]). In section 2.6, we review poasi

application of Rao-Blackwellisation and section 2.7 progidammary and conclusions.

2.2 Cutset Sampling

As we discussed above, the convergence rate of Gibbs saogpidye improved via col-
lapsing. Cutset sampling scheme is an efficient way of sagflom a subset of variables
C C X, tying the complexity of sample generation to the structfréhe Bayesian net-

work.
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2.2.1 Cutset sampling algorithm

The cutset sampling scheme partitions the variableXs@tto two subsets C and’\C'
The objective is to generate samples from spaegC,, Cs, ..., C,, } where each sample
<" is an instantiation of all the variables in C. Following thebi@ sampling principles,
we generate a new sampi® by sampling a valuez(t) from the probability distribution
P(Ci|eM)y = P(Cylel™ DD D). We will use left arrow to denote

that value; is drawn from distributionP(C;|c™)):

Ci — P(C’Z-|c(_tz, e) (2.4)

(t)

If we can computeP(C;|c;, e) efficiently for each sampling variablg; € C, then
we can generate samples efficiently. The relevant conditidistributions can be com-
puted by exact inference whose complexity is tied to the agtwstructure. We denote by
JTC(B,X;,e) ageneric algorithm in the class of variable-eliminabo join-tree clustering
algorithms which, given a belief netwotkand evidence, outputs the posterior probabil-
ities P(X;|e) for variableX; € X [75, 59, 28]. When the network’s identity is clear, we

will use JTC (X, e).

Therefore, for each sampling varialtleand for each value, € D(C;), we can com-
puteP(C;, c(fz, e)viaJTC(C;, c(fz, e)and obtainP(Ci|c(3, e) via normalizationP(C’i]c(j, e) =
aP(Cy, " e).

Cutset sampling algorithm that uses systematic scan Gilshplsais given in Fig-

ure 2.1. Clearly, it can be adapted to be used with the randamGibbs sampler as well.
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Cutset Sampling
Input: A belief networks, a cutseC' = {C1, ..., Cy, }, evidence e.
Output: A set of samples!,t =1...T.
1. Initialize: Assign random value? to eachC; € C and assign e.
2. Generate samples:

Fort = 1to T, generate a new sampté™? as follows:

Fori = 1 tom, compute new valuegt) for variableC; as follows:
a. Compute/TC(C;, c(t)i, e).

b. ComputeP(Ci|c(3,e) = aP(Ci,C(t2>€)-
c. Sample:

Y — PGyl e) (2.5)

End For i
End For t

Figure 2.1:w-Cutset samplind\lgorithm

Steps (a)-(c) demonstrate how the algorithm generateslsdtnp1) from sample(t). For
every variableC; € C' in sequence, the main computation is in step (a), where the di
tribution P(C;, 6(27 e) over C; is generated. This requires executing JTC for every value
¢; € D(C;) separately. In step (b), the conditional distribution is\cedl by normalization.
Finally, step (c) samples a new value from the obtainedibigion. Note that we only use
P(Cy|c"") e) as a short-hand notation faP(Ci|c\"™, ..., 0 Y P e). Namely,
when we sample a new value for variallg the values of variableS; throughC;_; have
already been updated.

We will next demonstrate the process using the special ddsem cutset (the notion

of loop-cutset is given in Definition 1.2.1).

Example 2.2.1Consider the belief network shown in Figure 2.2. The subgetD} is a loop-
cutset of the network. Assume that ndde= e is observed. Then, when sampling from the
cutset{A, D}, we need to compute for the + 1) sample the probabilitiesP(A|d"),e) and
P(D|a*t1) ¢). Since the conditioned network is a poly-tree (Figure 2.2, right), JTCaeslio
Pearl’s belief propagation algorithm and the distributions can be computdidéar time.
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Figure 2.2: When nodes A and D in the loopy Bayesian networK @eé instantiated, the
network can be transformed into an equivalent singly-cotetenetwork (right). In the
transformation process, a replica of an observed node ésaztdor each child node.

Specifically, assumé and D are bi-valued variables with domain®, 1}. We begin the
sampling process by initializing sampling variables:#8 andd(?). Next, we compute new sample
valuesaM), dV) as follows:

1. a. ComputeP (A, d© ) usingJTC(A,d e).
b. P(A|d?,e) = aP(A, ), e) where:

1
P(a=0,d9e)+ Pla=1,d0 )

o =

2. Sample the new value valu€) from P(A|d© e):
aM — P(A|d?, e)
3. a. Compute?(D]aM), e) usingJTC(C,aV e).
b. P(D|aV),e) = aP(D,aV, ) where:

1
P(d=0, a), e)+ P(d=1, a®), e)

o =
4. Sample the next sample valil¢) from P(D|a™), e):
d — P(D|a™M e)

The process above corresponds to two iterations of the inner loop ind-Ryar Steps 1-2, where we
sample a new value for variablé, correspond to steps (a)-(c) of the first iteration. In the second
iteration, steps 3-4, we sample a new value for variable
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2.2.2 Estimating Posterior Marginals

Once a set of samples over a subset of variablés generated, we can estimate the pos-
terior marginals of any variable in the network using migtwstimator. For sampling

variables, the estimator takes the form:

P(Cle) = 7= 3 PG ¢) (26)

t=1

For variables inX\C, the posterior marginal estimator is:

1 T
Z P(X;|c®e) (2.7)
t:l

where we can usé7C(X;,c® e) to obtain the distributionP(X;|c®, e) over the input
Bayesian network conditioned eff) ande as shown before.

If we maintain a running sum of the computed distributiét{s’; |c_1, e) andP(X;|c® e)
during sample generation (Eq. (2.4)), the sums in the rightlrside of Eq. (2.6) and (2.7)
will be readily available. As we noted before, the estimatB{C;|e) and P(X;|e) are
guaranteed to converge to their corresponding exact postearginals ag’ increases as
long as the Markov Chain over the cutgets ergodic.

While for the cutset variables the estimator is a simple emyaderage, forX; €

X\C, E the convergence can be easily derived from first principles:

THEOREM2.2.2 Given a Bayesian netwotk over X, evidence variables, and cutset”,
and given a set of T samples), ¢, ..., ¢") obtained via Gibbs sampling fro(Cle),
then for anyX; € X\C, E assuming?(X;|E) is defined by Eq. (2.7R(X;|e) — P(X;e)
asT — oo.
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Proof. By definition:
T
- 1
le) = — 1O
P(X;le) T ;21 P(X;|c""e) (2.8)

Instead of summing over samples, we can rewrite the expresdlove to sum over all
possible tuples € D(C') and group together the samples corresponding to the saree tup
instancer. Let ¢(c) denote the number of times a tuggle= ¢ occurs in the set of samples.

It is easy to see that:

PXle)= 3 P(Xife,e) L9 2.9)
ceD(C) T

sinceZceD(O) q(c) = T. And since the fractioﬁ% is a sampling estimator for the poste-
rior marginal P(c|e), we get:

P(Xile)= Y P(Xi|c.e)P(cle) (2.10)
ceD(C)

Since the Markov chain corresponding to Gibbs sampling 6Vvés ergodic,ﬁ’(c|e) —
P(c|e) asT — oo and therefore:

P(X;le) — Z P(X;|c,e)P(cle) = P(X;le)

ceD(C)

2.2.3 Complexity

The time and space complexity of generating samples andatstig the posterior marginals
via cutset sampling is dominated by the complexity/afC' in line (a) of the algorithm.
Only linear amount of additional memory is required to maimtthe running sum of

P(Ci|c(fz, e) or P(X;|c®, e) used in the posterior marginal estimators.
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Sample Generation Complexity

Clearly, when JTC is applied to the netwdskconditioned on all the cutset variabl€sand

evidence variableg, its complexity is time and space exponential in the induegtih w

of the conditioned network. It i©®(N - d“*1) whenC' is aw-cutset (see Definition 1.3.4).
Using the notion ofw-cutset, we can balance sampling and exact inference. At one

end of the spectrum we have plain Gibbs sampling where sagepleration is fast, requir-

ing linear space, but may have high variance. At the other eedhave exact inference

requiring time and space exponential in the induced widtthefmoral graph. In between

these two extremes, we can control the time and space coityplsingw as follows.

THEOREM2.2.3 (Complexity of sample generation)Given a networl3 over X, evidence
E, and aw-cutset C, the complexity of generating a new sample is tirdespaceO(|C/| -
N - d™*2)) whered bounds the variables domain size aNd= | X|.

Proof. If C' is aw-cutset andd is the maximum domain size, then the complexity of
computing distributiorP(Ci]c@, e) over the conditioned network (N - d“*V). Since
this operation must be repeated for eachte D(C;), the complexity of processing one
variable isO(N - d - d®@+1)) = O(N - d®*?). Finally, since ordered Gibbs sampling
requires sampling each variable in the cutset, generatingsample i©)(|C| - N - d+2)).

Complexity of estimator computation

Posterior marginals for any cutset varialilec C are easily obtained at the end of sam-
pling process without incurring additional computatioredwad. As mentioned earlier,
we only need to maintain a running sum B(C’i\c(t) e) computed when a new value of

—
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variableC; is sampled. Estimating(X;|e), X; € X\C, E, using Eq. (2.7) requires com-
puting P(X;|c®, e) once a sample!®) is generated. We can obtai(X;|c®, e) for all
X; € X\C, E by applyingJTC. We summarize the complexity of generatifiggamples

and estimating all posterior marginals in the followingdrem.

THEOREM2.2.4 (Computing Marginals) Given aw-cutset C, the complexity of comput-
ing posteriors for all variablesX; € X\ E using7 samples over the cutset variables is
O(T -[|C| +d] - N - d™+V),

Proof. As we showed in Theorem 2.2.3, the complexity of generatirgsample i©)(|C|-
N - d™*2), Once a sample® is generated, the computation of the posterior marginals
for the remaining variables requires computiRgX;|c"), e) via JTC(X;, ¢, e) which is
O(N - d™*1). The combined computation time for one sampl®i$C| - N - d“+?) +
N -d@™)) = O([|C| +d] - N - d*V). Repeating the computation for T samples, yields
O(T - [|C|+d] - N - dw+D). n

Note that the space complexity ofcutset sampling is bounded By N - d“+Y),

Complexity of loop-cutset.

When the cutset’ is a loop-cutset, algorithmdT'C' reduces to belief propagation [96] that
computes the joint probabiliti? (C;, c(fz, e) in linear time. We will refer to the special case
asloop-cutset samplingnd to the general as-cutset sampling

A loop-cutset is also a-cutset wherev equals the maximum number of unobserved
parents. However, since processing poly-trees is lineam &w largew, the induced width
does not capture its complexity properly. The notion of lkeopset could be better cap-
tured via the hyperwidth of the network [50, 63]. The hypeithiof a poly-tree is 1 and

therefore, a loop-cutset can be defined as a 1-hypercutietnatively, we can express the
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complexity via the input sizé/ referring to the total size of conditional probability tabl

to be processed as follows:

THEOREM2.2.5 (Complexity of loop-cutset sample generationlf C is a loop-cutset, the
complexity of generating each samplei§C| - d - M) where)M is the size of the input.

Proof. When a loop-cutset of a network is observed, JTC or beliefggapon (BP) can
compute the joint probability’(c;, Y e) in linear timeO (M) [96] yielding total time and

—17)

space oD(|C| - d - M) for each sample. |

2.2.4 Optimizing cutset sampling performance

Our analysis of the complexity of generating samples (Téwa2.2.3) is overly pessimistic
in assuming that each computation of the sampling disiobufor each variable in the
cutset is independent. While all variables may change a wahegn moving from one
sample to the next, the change occurs one variable at a tistme sequence so that much
of the computation can be retained when moving from one beri the next.

We will now show that sampling all the cutset variables caddxee more efficiently
reducing the factor oN - |C'| in Theorem 2.2.3 tON + |C'| - 6) whered bounds the number
of clusters in the tree decomposition used by JTC that costany node”; € C. We

assume that we can control the order by which cutset vagatkesampled.

Consider the following simple network with variableés = {X;,... Xy}, YV =

{Y1,...,Yy_1} and CPTsP(X;;1|X;,Y;) and P(Y;;:|X;) for everyi, as shown in Fig-
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o o)

Figure 2.3: A Bayesian network (top) and a correspondingeittsee (bottom).

ure 2.3, top. The join-tree of this networks is a chain ofwdig of size 3 given in Figure 2.3,
bottom. Sinc&” is a loop-cutset, we will sample variables¥n Let's assume that we use
the orderingYy, Y3, ...Yy_1 t0o generate a sample. Given the current sample, all thetcutse
variables are assigned and we are ready to generate theangxes We then apply JTC (or
bucket-elimination) to the network whose cutset variablesassigned. This makes the net-
work effectively singly-connected, namely, the actual bemof variables in a cluster is 2.
The algorithm sends message from the cluster contailigdgowards the cluster contain-
ing X;. When cluster X, X», Y1) gets the relevant message from clust€s, (X3, Y3) we
can samplé’. This can be accomplished kjlinear computations in cliqueX;, X, Y;)
for eachy; € D(Y;) yielding the desired distributioR(Y7|.) (we can multiply all functions
and incoming messages in this cluster, sumXduand X, and normalize). If the cutset is
aw-cutset, each computation in a single cliqueig/+1)).

Once we have’(Y]|-), Y; is sampled and assigned a valyg,Cluster( X, X5, Y] =
y1) then sends a message to clugt®s, X3, Y>) which now has all the information neces-

sary to compute”(Ys].) in O(d“+2)). OnceP(Y,|.) is available, a new valuk, = vy, is



sampled. The cluster than computes and sends a messagste ks, X4, Y3), and so
on. At the end, we obtain a full sample via two message pass&gdioe conditioned net-
work having computation complexity @@(N - d+2)). This example can be generalized

as follows.

THEOREM2.2.6 Given a Bayesian network having N variableg;-8utset”' a tree-decomposition
used by JTC, and given a samplg ..., c/c, a new sample can be generatedf(N +
|C| - 6) - d™+?)) whered is the maximum number of clusters containing any nGde C.

Proof. Given aw-cutsetC', by definition, there exists a tree-decompositigrof the net-
work (that includes the cutset variables) such that whectteet variableg’ are removed
the number of variables remaining in each cluster,o bounded byw + 1. Let’'s impose
directionality on7, starting at an arbitrary cluster that we c&llas shown in Figure 2.4.
Let 7, denote the connected subtreelofwhose clusters includ€;. In Figure 2.4, for
clarity, we collapse the subtree ov&rinto a single node. We will assume that cutset nodes
are sampled in depth-first traversal order dictated by thetef tree rooted irk.

Figure 2.4: A cluster-tree rooted in clustBrwhere a subtree over each cutset noglés
collapsed into a single node markég. .

Given a sample:?, JTC will send messages from leavesToftowards the root
cluster. We can assume without loss of generality fhaiontains cutset nod€; which
is the first to be sampled iff**!). JTC will now pass messages from root down only to
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clusters restricted t@., (note thatk € T,). Based on these messageg”; = cl,c(_t)l)

can be computed i®(d*)). We will repeat this computation for each other valuepf
involving only clusters irf;, and obtain the distributio®(C,|-) in O(d®*?) and sample

a new value forC;. Thus, if ¢, appears iny clusters, the number of message passing
computations (after the initi& (V) pass) i9D(d) and we can generate the first distribution
P(C1|-) in O(5 - d+2).

The next node in the depth-first traversal ordéfis and thus, the second variable to
be sampled i§’;. The distance between variabtésandC’, denotedlist, », is the shortest
path alondl’. from a cluster that contains, to a cluster that contains,. We apply JTC's
mesage-passing along that path only which will take at rolggist, , - d“*+Y). Then, to
obtain the conditional distributiof?(C5|-), we will recompute messages in the subtree of
T, for each value, € D(Cy) in O(J - d*2)). We continue the computation in similar
manner for other cutset nodes.

If JTC traverses the tree in the depth-first order, it onlydsde pass messages along
each edge twice (see Figure 2.4). Thus, the sum of all diessanaveled |§j'£‘2 dist; ;-1 =
O(N). What may be repeated is the computation for each value ofaimpled variable.
This, however, can be accomplished via message-passingtextto individual variable’s
subtrees and is bounded by dtsWe can conclude that a new full sample can be generated
in O((N +|C| - 0) - d@*2). |

It is worthwhile noting that the complexity of generatingaargple can be further re-

duced by a factor of /(d — 1) (which amounts to a factor of 2 when d=2) by noticing that

(t+1) t+1) (8 (t)
1 j &

whenever we move from variablé to C; 1, the joint probabilityP(c s GGty s Cy)

is already available from the previous round and should raelbomputed. We only need
to computeP (¢! . " ¢y, .., D) for ¢4y # ). Buffering the last computed

joint probability, we only need to apply JTC algorithin— 1 times. Therefore, the total

complexity of generating a new sampled$(N + |C| - 6) - (d — 1) - d®@+Y),

Figure 2.5 demonstrates the application of the enhancemdedussed. It depicts the

moral graph (a) and the corresponding join-tree (b) for thgeB&n network in Figure 2.2.
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AC AC
P(LHA),P(CIA), P(0A),P(CIA).
P(A) P(A)

CF CF
P(F|8,C),P(d|bt) P(F|8,C),P(d|b")

AC
P(BHA),P(CIA),
P(A)

AC
P(L|A),P(CIA),

ABC
o P(BIA),P(CIA),

CF

P(F|8,C),P(d|t°) P(F|8,C),P(d|b")

e FG FG FG FG
PEIAF).PGIF)) ( PEIEF.PGIF) ( PEIdF).PGIF) ( PEI®F).PGIF)
DFGE
e P(EID,F),P(GIF.
B=b°, D=cP, E=e B=bB D=dt D=d°

(@) (b) (©) (d) (e) ()

Figure 2.5: A join-tree of width 2 (b) for a moral graph (a) iarisformed into a join-tree
of width 1 (c) when evidence variable and cutset variable® and D are instantiated
(in the process, clusteBD F and BC'F' are merged into cluster F'). The clusters con-
tain variables and functions from the original network. Adldes have domains of size 2,
D(B) = {1°,b'}, D(D) = {d° d'}. Starting with a samplét®, "}, messages are propa-
gated in (c)-(e) to first, sample a new value of variaBléd) and then variabl® (e). After
that, messages are propagated up the tree to compute postarginalsP(-|b', ¢!, e) for
the rest of the variables (f).
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With evidence variablé’ removed, variable® and D form a 1-cutset. The join-tree of the
network with cutset and evidence variables removed is showigure 2.5 (c). Assuming
that cutset variables have domains of size 2, we can imigdi= ° andD = d°.

Selecting clustetAC' as the root of the tree, JTC first propagates messages from
leaves to the root as shown in Figure 2.5 (c) and then comptés d°,e) in cluster
AC. After settingB = b', updating all functions containing variahlg, and propagating
messages through the subtreemf(clustersAC and C'F' in Figure 2.5 (d)), we obtain
P(b',d° e). Normalizing the two joint probabilities, we obtaifi(b|d’, e) and sample a
new value ofB. Assume we sampled valué.

Next we sample a new value for variable Thus, we need to compufe(D|b!, e).

The joint probabilityP(d°, b', e) is readily available since it was computed for sampling a
new value ofB. Thus, we seD = d' and compute the second probabilityd*, b*, ¢) up-
dating functions in cluster§'F' and F'G and sending an updated message ftomto F'G
(Figure 2.5 (e)). We obtain distributioR(D|b', ¢) by normalizing the joint probabilities
and sample a new valu® for D. Since the value has changed from latest computation, we
update again functions in the clustéf$’ and F'G and propagate updated messages in the
subtreeC'p (send message frofiF' to F'G).

In order to obtain the distribution8(-|b*, d°, €) for the remaining variabled, C, F,
andG, we only need to send updated messages up the join-tree Ateno C'F' and then
from C'F to AC as shown in Figure 2.5 (f). The last step also serves as ttialization

step for the next sample generation.
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In this example the performance of cutset sampling is sicamfly better than its
worst case. We have sent a total of 5 messages to generatesampie while the worst
case suggests at ledst- |C|-d = 3 -2 -2 = 12 messages (herd] equals the number of

clusters).

2.2.5 On findingw-cutset

Clearly,w-cutset sampling will be effective only when thecutset is small. This calls for
the task of finding a minimum size-cutset. The problem is NP-hard; yet, several heuristic
algorithms have been proposed. We next briefly survey sortteosé proposals.

In [74], w-cutset is obtained when processing variables in the editidn order. The
next node to be eliminated (selected using some trianguldteuristics) is added to the
cutset if its current induced width (or degree) is greatanth. In [43], this idea has been
augmented with various heuristics.

In [15], the variables are selected to be included in theetutsing greedy heuristics
based on the node’s basic graph properties (such as theedefgeenode). One scheme
starts from emptyw-cutset and then heuristically adds nodes to the cutselt auritee-
decomposition of width< w can be obtained. The other scheme starts from@ setX'\ £/
containing all nodes in the network as a cutset and then resmpedes from the set in
some order. The algorithm stops when removing the next naalddmesult in a tree
decomposition of width> w.

In [16], it was proposed to first obtain a tree-decompositbthe network and then
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find the minimako-cutset of the tree-decomposition (also an NP-hard proplesra well-
known greedy algorithm used for set cover problem. This @ggn is shown to yield a
smaller cutset than previously proposed heuristics andes tor findingw-cutset in our
experiments (section 2.5.4) with a modification that a tteeemposition is re-computed

each time a node is removed from the tree and added to-tgset.

2.3 Rao-Blackwellised Likelihood Weighting

Given a Bayesian network over a set of variabtewith evidence? C X, E=e, letCC X\ E
be a subset of variables i¥, Z=C|JE, andm=|Z|. Leto={Z,, ..., Z,,} be a topological
ordering of the variables. We can define likelihood weightmerZ as follows. Processing
variables in ordeo, we sample value, from distributionP(7,), z; from P(Z,|z,), and so
on. For eacl¥Z;cC, we sample a valug, from the distributionP(Z;|z1, ..., z;_1). If Z,€E,
we assigrv; its observed value;. The latter set§)(z;|z1, ...,z;_1) = 1 forall z; € e. The

sampling distributior)(7) is:
Q2) =[] P(Zlz. ... 2i-1) |p=e (2.11)

The weightw® of samplet is given by:

P(Z(t)) . HZieZ P(Zz‘(t)|z§t)7"'vzz(t—)1)

) — — (2.12)
w .
Q) e P 52)
After cancelling out the common factors in denominator amcherator, we get:
w®) = HZieE P(ei]z?),...,zgt_)l) (2.13)

64



During sampling, the weight (initialized to 1) is updateegvtime we encounter an evi-

dence variable; € E with observed value; using:

w® — w® . Plej|z, ..., 1)

A outline of the likelihood weighting on a cutset is given ilg&re 2.6.

(2.14)

Likelihood Weighting on a Cutset

T, and the score arrays for every node.
Output: A set of samplegc®},t =1...7.
1. Initialize: VC; € C\E, Ve; € D(X;), w(c!”) =0,
2. Generate Samples:
Fort «— 1to T do:
Initialize sample weightw®) — 1
Fori = 1 tom sample a new value§t) for a variableZ; € Z:

If Z; € Ethen

w® — w® . P(zi|z1, ., 2i1)
Ji— z; €e

Else

) P(zi), if Ziis aroot
sample z;" { P(zilz1, ..., zi—1), otherwise

i — ZZ-(t)

End If

End For(i)

Update score arrays'C; € C\E, w(c!”) — w(c”) + w®
End For(t)

Input: A Belief network 3, variablesX = (Xi,...,X,), evidenceE = e, cutsetC C X\E,
topological ordering = {71, ..., Z,,} of variables inZ = C' U E, the desired number of sample

(2.15)
(2.16)

(2.17)

(2.18)

Figure 2.6: Algorithm likelihood weighting on a cutset (LWLC)

The main difference between likelihood weighting over etits and sampling over

all variablesX is in computing the sampling distributions. In the latteseghe distribution
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P(X;|xy,...,xi—1) = P(X;|pa;) is readily available in the conditional probability table o

X;. However, the sampling distributid®( Z;|z1, ..., z;_1) for LWLC needs to be computed.
Consider the special case whénJ F is a loop-cutset. In this case, we can com-

pute the probability?(z)=P(c, e) in linear time and space using Pearl’s belief propagation

algorithm. We can show that we can also compBt¢/; |z, ..., z;_1) efficiently if we or-

der the variables ity topologically and restrict our attention to the relevarirseiwork of

v Zs.

THEOREM 2.3.1 Given Bayesian network ovéf, evidence? C X, and cutseC C X\ F,
let Z = C'U E be a loop-cutset. If is topologically ordered, thenZ; € Z the relevant
subnetwork of/;, ..., Z; is singly-connected whet, ..., Z; are observed.

Proof. Proof by contradiction. Assume that the relevant subnétwb(7, , ..., Z; contains
aloopL with sink S. Then, eithelS = Z, or S has a descendaftt, 1 < ¢ < j, (otherwise

S is irrelevant). By definition of loop-cutsefC,,€L s.t. C,,#S andC,, € C C Z.
Therefore (), is an ancestor of,. Since variables are topologically ordered and all loop-
cutset nodes preceding, are observed(;, must be observed, thus, breaking the loop,
yielding a contradiction. ]

Therefore, ifC' is a loop-cutset, we can compute the distributidiis; |21, ..., zi—1)
for everyZ;€Z over the relevant subnetwork &t in linear time and space.
Consequently, the complexity of computing a new sample ip@tenal to the num-

ber of variables ir¥Z and the size of the inpu¥. In summary:

THEOREM 2.3.2 (Complexity) Given a Bayesian network ovét, evidence~, and a loop-
cutsetCC X'\ £, the complexity of generating one sample using likelihooightig over
acutset” isO(|Z| - N) whereZ = C' U E and N is the size of the input network.

When a sample® is generated, we apply belief propagation algorithm onceertm
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obtain the posterior marginal®(X;|c?), e), for each remaining variable. Ongesamples

are generated, we obtain the posterior marginals estifrstesar to Eq. (1.11), by:

Plcile) = aZw (¢i, ™), VC; € C

P(zile) = aZwt)P (zi]c®,e), VX, € X\C, E

2.3.1 Convergence

Likelihood weighting on a loop-cutset (LWLC) has a higher ¢vsxd in computing the
distributions P(Z;|z1, ..., z;_1) for VZ; € Z, compared with sampling on a full variable
set. However, as mentioned earlier, it converges fastecause the estimates obtained
by sampling from a lower-dimensional space have lower nagadue to Rao-Blackwell
theorem. That is:

Py, C)} > Var{m}

Q(Y,C) Q(C)
where P(C) = > P(Y,C) andQ(C) = >, Q(Y,C) [36, 83] A proof can be found

Var{

in [36] and [83]. Consequently, fewer LWLC samples are neededchieve the same
accuracy as LW.

The information distance between target distributift’|e) and sampling distribu-
tion Q(C) in LWLC is smaller than the distance betweR(X |e) and sampling distribution

Q(X). We can show this for the KL-distance [72]:

P(z)

Q(x)

KL(P( Z P(x log (2.19)
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THEOREM2.3.3 (Reduced Information Distance)Given a Bayesian network expressing
probability distribution P(X'), evidenceE=¢, and a cutseC C X\FE, let Q(X) and
Q(C, E) denote the likelihood weighting sampling distribution ovémand overC, E re-
spectively. Then:

KL(P(Cle),Q(C, E)) < KL(P(X|e), Q(X))

The proof is given in Appendix A.

2.4 Caching Sampling on a Cutset

Often, we can reduce the computation time of a sampling sel®ntaching the gener-
ated samples and their probabilities. Caching LW values Igrotfed benefit since it uses
probabilities stored in CPTs. However, in the case of LWLC, cagimay compensate in
part for the computation overhead. A suitable data strector caching is a search-tree
over the cutset’ with a root node”;. As new variable values are sampled and a partial as-
signment to the variables,, ..., C; is generated, LWLC traverses the search tree along the
pathcy, ..., ¢;. Whenever a new value ¢f; is sampled, the corresponding tree branch is ex-
panded and the current sample weight and the samplingmdison P(C; |z, ..., z;_1) are
saved in the nodé€’;. In the future, when generating the same partial assignment ¢;,
LWLC saves on computation by reading saved distributionsiftbe tree. We will use
LWLC-BUF to denote LWLC sampling scheme that uses a memory btdfeache pre-
viously computed probabilities. LWLC-BUF can also update shenpling distributions
P(Ci|z1, ..., zi—1) when dead-ends are discovered. Namely, if the algorithnsfihdt a

partial instantiatiory,, ..., z;, cannot be extended to a full tuple with non-zero probahilit
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then we sef’(C;|z, ..., z;i—1) = 0 and normalize the updated distribution.

Similar considerations apply to Gibbs sampling. The maifedénce is that we only
need to cache joint probabilitig’(c, e) in the leaf nodeg”,, = ¢,,, wherem = |C| and
cm € ¢, corresponding to the instantiatien and we don’t need to cache any computed
values in the inner nodes of the tree. We will denote reylbop-cutset sampling scheme

as LCS-BUF.

2.5 Experiments

In this section, we present empirical studies of cutset $ag@lgorithms for several
classes of problems. We compare Gibbs-cutset samplingreshdoop-cutset sampling
(LCS) andw-cutset sampling, with traditional Gibbs sampling (Gibbs)a full set of vari-
ables. We also compare the performance of full likelihoodywing (LW), sampling over
all the variables, against likelihood weighting on a loapset (LWLC) and buffered like-
lihood weighting on a loop-cutset (LWLC-BUF). In networks lwipositive distributions,
we compare likelihood weighting side by side with Gibbsdshsampling schemes. For

reference, we also report the performance of Iterative BBliepagation (IBP) algorithm.
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2.5.1 Methodology
Sampling Methodology

In all Gibbs-based sampling algorithms we restarted Mafbain everyl’ samples. The

samples from each chain (batdhare averaged separately:

T

A 1
Pn(ile) = = > P(ai]c®e)

t=1

The final estimate is obtained as a sample average over Mhain

. 1 M

P(x;le) = Mmz_lpm(l'i’e)
Restarting Markov chain is known to improve the sampling eogence rate. A single
chain can become “stuck” generating samples from a single-probability region without
ever exploring large number of other high-probability &gl By restarting a Markov chain
at a different random point, sampling algorithm can achiestter coverage of the sampling
space and find other high-probability regions. In our expernts, we did not observe any
significant difference in the estimates obtained from alsietpain of sizeM - T or M
chains of sizel’ and therefore, we only choose to report the results for plaltvarkov
chains. However, we rely on the independence of random sale;;|¢) to estimate 90%
confidence interval foP (z;e).

In our implementation of Gibbs sampling schemes, we use“benm-in” time (see
section 1.4.2). One reason is that no reliable method fanashg burn-in time exists for
discrete Bayesian networks. Second, our experimentaltsesubwed no positive indica-
tion that burn-in time would be beneficial. As we mentionedier the first X' samples
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are thrown away on the assumption that the Markov Chain needs samples to be-
come stationary. Then, the remaining samples can be geaitd be drawn from target
distribution. In practice, this gives the sampling algamta “pre-processing” time to find
the high-probability regions in the distributid(C'|e) in case the algorithm initially spends
disproportionally large period of time in low probabilitggions. Discarding a large number
of low-probability tuples obtained initially, the frequenof the remaining high-probability

tuples is automatically adjusted to better reflect theirghei

Cpcs360b, N=360, |E|=32, w=21 cpcs360b, N=360, |E|=32, |LC|=26, w*=21
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Figure 2.7. Comparing loop-cutset sampling MSE vs. numbesaaiples (left) and and
number of uniqgue samples vs. number of samples (right) is3f@b, 20 instances.

In our benchmarks, we observed that both full Gibbs sam@img) cutset sampling
were able to find high probability tuples fast relative to thember of samples generated.
For example, in one of the benchmarks, cpcs360b, the rater@rgting unique samples,
namely, the ratio of cutset instances that have not beentsetie number of samples,
decreases over time. Specifically, loop-cutset samplimgigges 200 unique tuples after
first 1000 samples, additional 100 unique tuples while getimeg the next 1000 samples,

and then the rate of generating unique tuples slows to 50 @@® $amples in the range
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from 2000 to 10000 samples as shown in Figure 2.7, right. Titestns that after the first
few hundred samples, the algorithm spends most of the tiwisitieg high-probability
tuples. In other benchmarks, the number of unique tuplent&s generated increases
linearly (as in cpcs54) and, thus, the tuples appear to lekdised nearly uniformly. In
this case, there is no need for burn-in because there areomgt-expressed heavy-weight
tuples. Instead of using burn-in times, we sample initialalzle values from the posterior
marginal estimates generated by IBP in all of our experiments

All experiments were performed on 1.8 GHz CPU.

Measures of Performance

For each problem instance defined by a Bayesian network heaimaplesX = {X;,..., X, }
and evidencéy C X, E = e, we derived the exact posterior margin&6X;|e) using
bucket-tree elimination [29, 28] and computed the meanregessior (MSE) of the approx-

imate posterior marginalB(X;|e) where MSE is defined by:

MSE = - |D Z M (zile)]”

X €X\E D(X;)

We averaged MSE over all problem instances, each assoesigtedifferent observation
values.

While the mean square error is our primary accuracy measweaesults are con-
sistent across other well-known measures such as averaghkiaberror, KL-distance, and

squared Hellinger’s distance which we show only for loopsetisampling. The absolute
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error A is averaged over all values of all unobserved variables:

A= ZXeX\E‘D Z Z|le zile)|

X EX\E D(X;)

KL-distanceDy between the distributio®(X;|e) and the estimataP(X;|e) is defined as

follows:

Di(P(XJe), (X)) = 3 Plafe) log i)

DY) Plaile)

For each benchmark instance, we compute the KL-distancesfcn variableX; € X\ E
and then average the results:

~ 1

S Di(P(Xile). P(Xi]e))

XZEX\E

The squared Hellinger’s distandey between the distributio®(X;|e) and the estimator

P(X;]e) is obtained as:

Dy (P(Xile), P(Xile)) = > [v/P(xile) — \/ Plaile)]?
D(X5)

The average squared Hellinger’s distance for a benchmathnnoe is the average of the

distances between posterior distributions of one variable

DH<P7

S Du(P(Xife). P(X/fe)

‘X\ X;eX\E

The average errors for different network instances are #venaged over all instances of
the given network (typically, 20 instances).

We also report the confidence interval for the estim’%t(tez-]e) using approach sim-
ilar to the well-known batch means method [18, 46, 113]. Sickains are restarted in-
dependently, the estimaté}(z;|e) are independent. Thus, the confidence interval can be
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obtained by measuring the variance in the estimaft{rs;|¢). We report results in Sec-

tion 2.5.5.

2.5.2 Benchmarks

We experimented with several different benchmarks from Biayenetwork repository and
also random and coding networks. The characteristics obémehmarks from Bayesian

network repository are summarized in Table 2.1.

Table 2.1: Benchmarks’ characteristicd’-number of nodesy*-induced width,|LC'|-
loop-cutset sizeP(e)-average probability of evidence (over specified numbenstiinces),
Trr-exact computation time by bucket elimination.

| | N|w'||LC||#instances P(e)| Tgg|
cpcs54 54| 15 6 20 0.08 1sec
cpcsl79 179| 8 8 20 | 0.00004 2 sec
cpcs360b || 360 | 21 26 20 5E-8| 20 min
cpcs422b || 422 | 22 47 20| 1.5E-6| 50 min
Hailfinder 56| 5 5 20 0.05] 0.05 sec
Pathfinderl| 109| 6 9 30 0.07 1 sec
Pathfinder2| 135| 4 4 30 0.06| 0.01 sec
Link 724 | 15| 142 30 0.07| 325 sec

CPCS We considered four CPCS networks derived from the ComputssebBatient
Case Simulation system [95, 100]. CPCS network representatimased on INTERNIST
1 [43] and Quick Medical Reference (QMR) [42] expert system&e Tiodes in CPCS
networks correspond to diseases and findings and condifioobabilities describe their
correlations. The exact inference time for cpcs422b is abOumin. cpcs54network
consists ofV = 54 nodes and has a relatively large loop-cutset of Eize| = 15 (> 25%
of the nodes). Its induced width is 18pcs179network consists oV = 179 nodes. Its
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induced width isw* = 8. It has a small loop-cutset of sizeC| = 8 but with a relatively
large corresponding adjusted induced widtly, = 7. cpcs360hbis a larger CPCS network
with 360 nodes, adjusted induced width of 21, and loop-¢Ufsé| = 26. Exact inference
on cpcs360b averaged 30 min. The largest networlgpcs422h consisted of 422 nodes
with induced widthw* = 22 and loop-cutset of size 47.

Hailfinder network is a small network with only 56 nodes. The exact inference in
Hailfinder network is easy since its loop-cutset size is dnlyret, this network has some
zero probabilities and, therefore, is a good benchmark éonahstrating the convergence
of cutset sampling in contrast to Gibbs sampling.

Pathfinder is an expert system for providing assistance with the ifieation of
disorders from lymph node tissue sections [53]. We expartatewith two subsets of the
network. Pathfinderl contains 109 nodes, has induced witith, and a loop-cutset of size
|LC| = 9. The larger network, Pathfinder2, contains 135 nodes, llased widthw* = 4,
and a loop-cutset of size 4. These two networks have manyndigistic probabilities are
only used in evaluation of likelihood weighting schemes.

Link is a model for the linkage between two genes [58]. It has 72#es@nd has
induced widthw* = 15.

Random networks We experimented with several classes of random netwokks: 2
layer networks, random networks, and grid networks. The@annetworks were gener-
ated with N = 200 binary nodes (domains of size 2) af50 root nodes with uniform

priors. The first 100 nodes,X1, ..., X100}, were designated as root nodes. Each non-root
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nodeX; , ¢ > 100, was assigned 3 parents selected randomly from the listeofgmessors
{Xi,...,X;_1}. All nodes were assigned a domain of siz®@X;) = {9, z}}. Evidence
nodes E were selected at random from leaf nodes (nodes withddren). We will re-
fer to this class of random networks as multi-partite rand@tworks to distinguish from
bi-partite (2-layer) random networks.

The random 2-layer networks were generated with 50 rootsi{fdst layer) and 150
leaf nodes (second layer), yielding a total of 200 nodes.nddes had domains of size 2.
Each non-root node (second layer) was assigned 1-3 pasedattexi at random from the
root nodes. Evidence nodes were selected at random amongrikh®ot nodes. For both
2-layer and multi-partite random networks, the root nodesewassigned uniform priors
while conditional probabilities were chosen randomly. N&meach value”(z?|pa;) was
drawn from uniform distribution over intervgl, 1) and used to compute the complimen-
tary probability value”(x}|pa;) = 1 — P(2?|pa;). The conditional probability table values
were chosen randomly.

The grid networks of size 15x30 with 450 nodes were also coastd with uniform
priors (on the single root node) and random conditional abdlity tables. Those networks
had an average induced width of size 20 (exact inference isioket elimination required
about 30 minutes). Those networks had the most regulartstauof all and the largest
loop-cutset containing nearly a half of all the unobservedas. The evidence nodes were

selected at random.

Coding networks. We experimented with coding networks having 200 nodes (50
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coding bits, 50 parity check bits). Those networks have amaae loop-cutset size of 26
and induced width of 21. The parity check matrix was randeaiizach parity check bit
had three parents. The Markov chains generated by Gibbdisgnoper coding networks
are not ergodic due to the deterministic parity check funmctiAs a result, Gibbs sampling
does not converge. However, the Markov chain resulting {@hibs sampling over a subset
of coding bits is ergodic and, thus, all of the cutset sangpichemes have converged as
we will show in the next two sections.

In coding networks, all coding bits were observed (theiuealselected at random).
In grid networks, evidence variables were selected at rarmnong all network variables.
In all other benchmarks, evidence nodes were selectedddmaamong the leaf nodes. For
each benchmark, we report on the chart title the number adsiotthe networkV, average
number of evidence nodég)|, size of loop-cutsetLC|, and average induced width of the
input instancew*. We denote the induced width of the input@s$ to distinguish from

induced widthw of the network adjusted for its-cutset.

2.5.3 Results for Loop-Cutset Sampling

In this section we compare loop-cutset sampling with pureb&isampling and IBP. In
all benchmarks, the cutset was selected so that the evidenteampling nodes together
constitute a loop-cutset of the network using the algorigmoposed in [8]. We show the

accuracy of Gibbs and loop-cutset sampling as a functiom.t
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Figure 2.8: Comparing loop-cutset sampling (LCS), Gibbs dmg@and IBP on cpcs54
network, averaged over 20 instances each, showing MSE asctdn of the number of
samples (top left) and time (top right) and KL-distance (dhedleft), squared Hellinger’s
distance (middle right), and an average error (bottom) asetion of time.
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Figure 2.9: Comparing loop-cutset sampling (LCS), Gibbs $amg@nd IBP on cpcs179
network, averaged over 20 instances each, showing MSE ascédn of the number of
samples (top left) and time (top right) and KL-distance (d@hedleft), squared Hellinger’s
distance (middle right), and an average error (bottom) asetion of time.
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Figure 2.10: Comparing loop-cutset sampling (LCS), Gibbsdengand IBP on cpcs360b
network, averaged over 20 instances each, showing MSE ascddn of the number of
samples (top left) and time (top right) and KL-distance (dhedleft), squared Hellinger’s
distance (middle right), and an average error (bottom) asetion of time.
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Figure 2.11: Comparing loop-cutset sampling (LCS), Gibbgdisng and IBP on cpcs422b
network, averaged over 10 instances, showing MSE as a &umetithe number of samples
(left) and as a function of time (right).

CPCS networks. The results are summarized in Figures 2.14-2.11. Each ttiart

specifies network name, number of nodes in the network N,it@ecd evidence setr

size of loop-cutset (sampling set)C|, and induced widtho* of the network instance
(not taking into account either E or C). The loop-cutset curveach chart is denoted
LCS (for Loop Cutset Sampling). The induced width of the nelwworwhen loop-cutset
nodes are observed appears next to the name. It is iderditiaé tlargest family size in
the poly-tree generated when cutset variables are remowél plot the time on the x-
axis and the accuracy (MSE) on the y-axis. IBP curve is alwastsagght horizontal line
because IBP reaches convergence fast (within seconds) anesthits do not change after
that. The curves corresponding to Gibbs sampling and lagpet sampling demonstrate
the convergence of the sampling schemes with time. In thr&&Sdketworks we observed
that loop-cutset sampling converges much faster than Giatvpling. The only exception
is cpcs422b (Figure 2.11, right) where loop-cutset sargmienerates samples very slowly

(2 samples/second) compared to Gibbs sampling (300 satsgdesnd). The reason for
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this discrepancy is that the induced width of the condittbsengly-connected network
remains high#{ = 14) due to large family sizes. Since computing sampling distron

is exponential inw, sampling a single variable i9(2'*) (all variables have domains of
size 2). As a result, although loop-cutset sampling shogsifstant reduction in MSE
when comparing the accuracy of two sampling schemes as adoraf the number of
samples (Figure 2.11, left), it is not enough to compensatthe two orders of magnitude
difference in the loop-cutset rate of sample generation.cpos54 (Figure 2.8), cpcs179
(Figure 2.9), and cpcs360b (Figure 2.10) loop-cutset sag@ichieves greater accuracy
than IBP within 10 seconds or less. Note that our samplingititiedes the pre-processing

time of IBP.

Random networks. In random multi-part networks (Figure 2.12, top) and random
2-layer networks (Figure 2.12, middle), loop-cutset sangpalways converged faster than
Gibbs sampling. The results are averaged over 10 instarfceacb network type. In
both cases, loop-cutset sampling achieved accuracy of IRBétonds or less. In 2-layer
networks, Iterative Belief Propagation performed paracylpoorly. Both Gibbs sampling
and loop-cutset sampling obtained more accurate resuéssithan a second.

Coding Networks. The results for coding networks are shown in Figure 2.1%, bo
tom. We computed MSE over all coding bits and averaged overet®orks. As we noted
earlier, coding networks contain deterministic parityah®inctions and as a result, Gibbs
sampling does not converge while the Markov chain corregipgnto sampling over a

subspace of code bits only is ergodic and therefore, lodgetgampling over a subset of

82



random, N=200, |E|=20, |LC|=30, w*=22 | —#—Gibbs

1.8E-04 5—IBP
1.5E-04 L —a—LCS, w=3
1.2E-04 -

w
) 9.0E-05
= \\

6.0E-05 ‘M

3.0E-05 -

0.0E+00 ‘ : : : ‘

0 5 10 15 20 25 30
Time (sec)

2-layer, N=200, |E|=16, |LC|=17, w*=16| —=— Gibbs
1.0E-01 =— IBP
——LCS, w=3

1.0E-02
LL] D (]l il (m (]l (m (]l (m (]l 0
" 1.0E-03 e ..o
=

1.0E-04 ‘\A\ﬁm

1.0E-05 ‘ : ‘ ‘ ‘

0 2 4 6 8 10 12
Time (sec)

coding, N=200, P=3, [LC|=26, w*=21 | —=— Gibbs
1.0E-01 —o— IBP

—a—LCS,w=3

e ./.\-_\\.\WL&—IM

1.0E-03

MSE

1.0E-05 : : ‘
0 5 10 15 20

Time(sec)

Figure 2.12: Comparing loop-cutset sampling, Gibbs sargpind IBP on random net-
works (top), 2-layer random networks (middle), and codimgworks, c=0.4 (bottom),
averaged over 10 instances each. MSE as a function of time.
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coding bits converges and even achieves higher accuracyBRawith time. In reality, IBP
is certainly preferable for coding networks since the sizée loop-cutset grows linearly

with the number of code bits.

HailFinder, N=56, |C|=5, |E|=1 —a— Cutset
1 —a— Gibbs
0.1
= = = = = = = - = -
0.01
0.001 - ‘\r"“‘\t—‘\‘\‘_‘—’_‘
0.0001
1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 2.13: Comparing loop-cutset sampling and Gibbs sagph Hailfinder network,
1 instance. MSE as a function of time.

Hailfinder network is easy to solve exactly. We used this benchmark as an exam-
ple of a network where Gibbs sampling fails while cutset dargponverges to posterior
marginals. Hailfinder network contains many determinisgiationships. Consequently,
Markov chain generated by Gibbs sampling is non-ergodic@ibthbs sampling does not
converge. However, it turns out the Markov chain correspumntb loop-cutset sampling is
ergodic and, therefore, loop-cutset sampling convergésetexact posterior marginals, as
we can see in Figure 2.13.

In summary, the empirical results demonstrate that lodpetusampling is cost-

effective time-wise and superior to Gibbs sampling. We e the ratioR = % of
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the number of sample¥/, generated by Gibbs to the number of sampl&sgenerated by
loop-cutset sampling in the same time period (it is reldyienstant for any given net-
work and only changes slightly between problem instancatsdiffer with observations).
For cpcsb4, cpcsl79, cpcs360b, and cpcs422b the ratioscaeespondingly 2.5, 3.75,
0.7, and 150. We also obtaindtl = 2.0 for random networks and R=0.3 for random 2-
layer networks. The ratio values 1 indicate that Gibbs sampler generates samples faster
than loop-cutset sampling which is usually the case. Indhnstances, variance reduc-
tion compensates for the increased computation time bedau®r samples are needed to
converge resulting in the overall better performance oploatset sampling compared to
Gibbs sampling. In some cases, however, the reduction seiimple size also compensates
for the overhead computation in the sampling of one variahlee so that loop-cutset sam-
pling generates samples faster than Gibbs yielding rddtia 1. Then, the improvement
in the accuracy of cutset sampling is due to both larger nurabsamples and variance

reduction.

2.5.4 w-cutset Sampling

In this section, we compare the genexatutset scheme for different valueswfagainst
Gibbs sampling. The main goal is to study how the performarice-cutset sampling
varies withw. For completeness sake, we include results of loop-cussepkng shown in
section 2.5.3.

In this empirical study, we used the greedy algorithm forcseter problem, men-
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tioned in section 2.2.5, for finding minimai-cutset. We apply algorithm in such a manner
that each(w + 1)-cutset is a proper subset ofuacutset and, thus, can be expected to
have a lower variance and converge faster than sampling-ouatset in terms of number
of samples required (following the Rao-Blackwellisationatyg. We focus the empirical
study on the trade-offs between cutset size reduction andgsbociated increase in sample
generation time as we gradually increase the baund

We used the same benchmarks as before and included alscetyudriks. All sam-
pling algorithms were given a fixed time bound. When samplimgls networks, such
as cpcsb4y* = 15) and cpesl79y* = 8), where exact inference is easy, sampling al-
gorithms were allocated 10 seconds and 20 seconds resggctior larger networks we
allocated 100-200 seconds depending on the complexityeoh¢ttwork which was only a
fraction of exact computation time.

Table 2.2 reports the size of the sampling set used by eachitaly where each
column reports the size of the correspondingutset. For example, for cpcs360b, the
average size of Gibbs sample (all nodes except evidence)ZistBe loop-cutset size is
26, the size of 2-cutset is 22, and so on. Table 2.3 shows th@fgample generation by
different algorithms per second. The table shows that inesgpecial cases cutset sampling
generated samples faster than Gibbs sampler. For examulpde360b, we see that loop-
cutset sampling and 2-cutset sampling were able to geng®@@tesamples per second while
Gibbs sampler was able to generate only 400 samples. Weuttthis to the size of cutset

sample (26 nodes or less as reported in Table 2.2) compatied size of the Gibbs sample
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Table 2.2: Markov chain sampling set size as a functiom.of
Sampling Set Size
Gibbs| LC |w=2 | w=3| w=4 | w=5 | w=6 | w=7 | w=8
cpcshH4 51| 16| 17| 15| 11 9 8 - -
cpcsl79 162 8 11 9 7 5 - - -
cpcs360b 342 26| 22| 19| 16| 15| 14| 13 -
cpcs422b 392| 47| 65| 57| 50| 45| 40| 35 -
grid15x30|| 410|169| 163| 119| 95| 75| 60| 50| 13

random 190| 30| 61| 26| 25| 24| 18| 17 -
2layer 185| 17 22 15 13 13 11 - -
coding 100| 26| 38| 23| 18| 18 - - -

Table 2.3: Average number of samples generated per secanfiiastion ofw.
No. of Samples
Gibbs | LC | w=2| w=3| w=4 | w=5| w=6 [ w=7 | w=8
cpcsh4 5000 2000, w=4| 3000| 2400| 800| 500 | 300 - -
cpcsl79 1500| 400,w=7| 400| 150, 40| 10 - - -
cpcs360b 400| 600,w=3| 600| 400| 160| 100| 40| =20 -
cpcs422b 300 2,w=14| 200| 150| 90| 50| 30| 15 -
grid15x30|| 2000| 500,w=2| 300| 260| 150| 105| 60| 35| 20
random 2000| 1000, w=3| 1400| 700| 450| 300| 140| 75 -
2layer 200| 700,w=3| 900| 320| 150| 75| 40 - -
coding 650| 450,w=3| 800| 600| 250| 150| 100 - -

(over 300 nodes).

CPCS networks. We present two charts. One chart demonstrates the conwergen
over time for several values af. The second chart depicts the change in the quality
of approximation (MSE) as a function af for two time points, at the half of the total

sampling time and at the end of total sampling time. The perémce of Gibbs sampling
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Figure 2.14. MSE as a function of time (left) and(right) in cpcs54, 20 instances, time
bound=12 seconds.
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Figure 2.15: MSE as a function of time (left) and(right) in cpcs179, 20 instances, time
bound=12 seconds. Y-scale is exponential due to largetivarian performance of Gibbs
and cutset sampling.

and cutset sampling for cpcs54 is shown in Figure 2.14. Thelteare averaged over
20 instances with number of evidence variables in rahge4. The graph on the left in
Figure 2.14 shows the mean square error of the posteriorinadggas a function of time
for Gibbs sampling, loop-cutset sampling, amecutset sampling fow=2, 3, 4, and 5.
The second chart shows accuracy as a function.of he first point corresponds to Gibbs
sampling, other points correspond to cutset sampling witAnging from 2 to 6. The loop-
cutset result is embedded with thecutset values at = 4. As explained in section 2.2.3,

the loop-cutset corresponds to thecutset wherew is the maximum number of parents in
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Figure 2.16: MSE as a function of time (left) and(right) in cpcs360b, 20 instances, time
bound=60 seconds. Y-scale is exponential due to largetivarian performance of Gibbs
and cutset sampling.
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Figure 2.17: MSE as a function of time (left) and(right) in cpcs422b, 20 instances, time
bound=200 seconds. Y-scale is exponential due to largati@riin performance of Gibbs
and cutset sampling.

the network. Clearly, the best results were obtained by 2-3aadtset sampling followed
by the loop-cutset sampling.

The results for cpcs179 are reported in Figure 2.15. The dmeathe left shows that
2- and 3-cutset sampling are the most accurate having thestdWSE curves. The loop-
cutset curve falls in between 2- and 3-cutset at first and ipestormed by both 2- and
3-cutset after 12 seconds. The 4- and 5-cutset samplinjgésilow closely behind. Four
curves corresponding to loop-cutset sampling and 2-, 3-4aogtset sampling fall below

the IBP line which means that all three algorithm outperfoBPR in the first seconds of
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execution (IBP converges in less than a second). The 5-cuigatrforms IBP after about
12 seconds. All cutset sampling algorithms are superionbb$sampling. In Figure 2.15
on the right, we see the accuracy results for all samplingratgns after 10 seconds and 20
seconds. Clearly, the loop-cutset sampling andutset sampling fow in range from 2 to
5 achieve greater accuracy than Gibbs at both checkpomparticular, while Gibbs MSE
remains on the order of 1E-02, the MSE for 3-cutset sampliggrithms falls below 1E-
04, in the range of 1E-05 after 12 seconds showing two ordarseagnitude improvement
over Gibbs. Those results are similar to AIS-BN sampling €édasn importance sampling
principles) results for cpcs179 reported in [21] (factgrinto account the difference in
the processor speed). Gibbs sampling usually cannot cemyp#t importance sampling
algorithms. Although it samples from the target distribatP (X |e), it generates samples
slower and does not achieve the same accuracy as importangeirsg. The results for
cpcsl79 indicate that cutset sampling can compete with tite-ef-the-art importance
sampling algorithms.

In cpcs360b (Figure 2.16), loop-cutset sampling and 2- andt8et sampling have
similar performance. The accuracy of the estimates sloetyades as increases. Loop-
cutset samplingy-cutset sampling substantially outperforms Gibbs sarggdin all values
w and exceed the accuracy of IBP within 1 minute.

cpcs422b is the largest of the CPCS networks with 422 nodedodipecutset size
|LC| = 47, and induced widthv* = 22. The results are shown in Figure 2.17. The network

contains several large CPTs so that the minimum cluster siaay tree-decomposition is
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15 unless the nodes in those large functions are observedeAsported in section 2.5.3,
its loop-cutset is relatively smalL.C'|=47 but the adjusted induced width of the network
conditioned on the loop-cutset is 14 and thus, samplinggnstnew loop-cutset variable
value is exponential in the big adjusted induced width. Assult, loop-cutset sampling
computes only 2 samples per second while the 2-, 3- and £tcuikich are only slightly
larger having 65, 57, and 50 nodes respectively (see Tabjecdmpute samples consider-
ably faster at rates of 200, 150, and 90 samples per secandigbte 2.3). Thé-cutset that

is closest to loop-cutset in sizg/;| = 45, computes 50 samples per second which is more
than an order of magnitude more than loop-cutset samplimgceSoop-cutset sampling
generated very small number of samples in the time bound @fs2@onds, it performed
worse than any other sampling algorithm, including Gibbsging (Figure 2.17, left).
However, thew-cutset in cpcs422b was able to take advantage of the netstarkture

to be time-wise cost-effective. The chart on the right inUfg2.17 shows that-cutset
performed well in range abh = 2 — 7 and is far superior to Gibbs sampling. When allowed
enough timew-cutset sampling outperformed IBP as well. The IBP convergesl sec-
onds. The 2-cutset and 3-cutset improved over IBP after 20nsisc the 4-cutset after 30

seconds, and the 5-cutset after 50 seconds.

Random networks. Results from random multi-partite and 2-layer networks, 10
instances each, are shown in Figure 2.18. As we canuseeiset sampling substantially
improves over Gibbs sampling and IBP reaching optimal peréorce forw = 2 — 3 for

both classes of networks. In this range, its performancémdas to that of loop-cutset
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Figure 2.18: Random multi-partite networks (top) and 2-tayetworks (bottom), 200

nodes, 10 instances. MSE as a function of the number of sar(ipf® andw (right).
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Figure 2.19: Random networks, 450 nodes, 10 instances. M&Eastion of the number
of samples (left) ana (right).

sampling. In case of 2-layer networks, the accuracy of boltb&sampling and IBP is an
order-of-magnitude less compared to cutset sampling (Eigu.8, bottom right). The poor

convergence and accuracy of IBP on 2-layer networks was wax$@reviously [91].

Grid networks. Grid networks having 450 nodes (15x30) were the only class of
benchmarks where full Gibbs sampling was able to produc®atds comparable to cutset-
sampling (Figure 2.19). With respect to accuracy, Gibbgdamoop-cutset sampling, and
3-cutset sampling were best performers and achieved siragalts. Loop-cutset sampling
was the fastest and most accurate among cutset samplingeshé8itill, it generated sam-
ples about 4 times slower compared to Gibbs sampling (Tal3esihce loop-cutset in
this case is relatively large containing about half of a#l titodes excluding the evidence.
Thus, the reduction in variance compensates for sample ai@tiqgn overhead but it is not
enough to outperform Gibbs sampling. The accuracy of laggat sampling was closely
followed by 2-, 3- and 4-cutset sampling slowly degradinguamcreased further. Grid

networks are an example of benchmarks with regular grapltsie (that cutset sampling
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cannot exploit to its advantage) and small CPTs (in a two-dsimal grid network each

node has at most 3 parents) where Gibbs sampling is strong.
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Figure 2.20: Coding networks, 50 code bits, 50 parity chetk, bi=0.4, 100 instances,
time bound=6 minutes.

Coding Networks. The cutset sampling results for coding networks are shown in
Figure 2.20. Here, the induced width varied from 18 to 22veilhg for exact inference.
However, we additionally tested and observed that the cexitglof the network grows
exponentially with the number of coding bits (even after alnmcrease in the number
of coding bits to 60 yielding a total of 240 nodes after cqumegling adjustments to the
number of parity-checking bits and transmitted code size,induced width exceeds 24)
while the time for each sample generation scales up line&vy collected results for 10
networks (10 different parity check matrices) with 10 diéfet evidence instantiations (to-
tal of 100 instances). In decoding, the Bit Error Rate (BER) isaaddrd error measure.
However, we computed MSE over all unobserved nodes to eealba quality of approx-
imate results more precisely. As mentioned before, sindengmetworks are not ergodic

Gibbs sampling does not converge and is left off the chatie.Charts in Figure 2.20 show
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that loop-cutset is an optimal cutset for the coding netwavkose performance is closely

followed by 2-cutset sampling. As we saw earlier, cutsetarg outperforms IBP.

2.5.5 Computing an Error Bound

Second to the issue of convergence of sampling scheme igsatiwa problem of predict-
ing the quality of the estimates and deciding when to stopthis section, we compare
empirically the error intervals for Gibbs and cutset sampkstimates.

Gibbs sampling and cutset sampling are guaranteed to @mverthe correct pos-
terior distribution in networks with positive distributis. However, it is hard to estimate
how many samples are needed to achieve a certain degreevefrgence. It is possible to
derive bounds on the absolute error based on sample varfi@anasy sampling method if
the samples are independent. In Gibbs and other MCMC metbadwles are dependent
and we cannot apply the confidence interval estimate dyteletlcase of Gibbs sampling,
we can apply thdatch meansnethod that is a special case sihndardized time series

method and is used by the BUGS software package (for morésjetze [18, 46, 113]).

The main idea is to “split” a Markov chain of lengiif - 7" into M chains of lengthy".
Let P,,(x;|e) be an estimate derived from a single chaire [1, ..., M] of lengthT (mean-
ing, containingl” samples) as defined in equations (2.6)-(2.7). The estiniatés|c) are
assumeda@pproximatelyindependent for large enoughi. Assuming that convergence con-
ditions are satisfied and the central limit theorem holdsFh(z|e) is distributed according

to N(E[P(z;|e)], o?) so that the posterior margin&l(X;|e) is obtained as an average of
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Table 2.4: Individual Markov chain length as a functiomaf The length of each chain
M was adjusted for each sampling scheme for each benchmahmktsihé total processing
time across all sampling algorithms was the same.

Markov Chain Length T

Time | Gibbs| LC| w=2| w=3| w=4| w=5| w=6
cpcs54 20 sec | 5000| 2000 | 3000| 2400| 800| 500 -
cpcsl79 || 40sec| 1500 400| 400| 150| 40| 10 -
cpcs360b || 100 sec| 2000| 3000| 3000| 2000| 800| 500| 200
cpcs422b || 200 sec| 3000| 20| 2000| 1500 900| 500| 250
grid15x30|| 100 sec| 2000| 500| 300| 260| 150| 105| 60
random 50sec| 2000| 1000| 1400| 700| 450| 300 | 140
2layer 20 sec 200| 700| 900| 320| 150| 75| 40
coding 20 sec 650| 450| 800| 600| 250| 150| 100

the M results obtained from each chain, namely:

. 1 M.
Plxle) = — > Pulxle) (2.20)

and the sampling variance is computed as usually:

o 1 =< - 2
o’ = W1 Z(Pm(x|e)—P(x|e))

m=1

An equivalent expression for the sampling variance is:

M p2 P2
P — MP
0'2 = Zm:l m(&?‘@)_ 1 (x]e) (221)

wheres? is easy to compute incrementally storing only the runninglsofﬁm(ﬂe) and
P2(zl|e). Therefore, we can compute the confidence interval inLttié1 — o) percentile

used for random variables with normal distribution for drsampling set sizes. Namely:

R 2
P | P(zle) € [P(z]e) £ta (1) UM] =1—-a (2.22)

whereta (/1) is a table value from t distribution with/ — 1) degrees of freedom.
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We used the batch means approach to estimate the confidéealim the posterior

marginals with one modification. Since we were working wighatively small sample

sets (a few thousand samples) and the notiolamgfe enoughM is not well defined, we

restarted the chain after every T samples to guarantee hhaéstimates?,,(z|e) were

truly independent. The method of batch means only provideanimgful error estimates

assuming that the samples are drawn from the stationanybdison. We assume that in

our problems the chains mix fast enough so that the sampéedrawn from the target

distribution.

Table 2.5: Average absolute errAr(measured) and estimated confidence intefvg] as
a function ofw over 20 Markov Chains.

Average Error and Confidence Interval

Gibbs | LC| w=2] w=3] w=4| w=5] w=6

cpcsb4 A 0.00056| 0.00036| 0.00030| 0.00030| 0.00040| 0.00036| 0.00067
Apo || 0.00119| 0.00076| 0.00064| 0.00063| 0.00098| 0.00112| 0.00116

cpcsl79 || A 0.01577| 0.00086| 0.00074| 0.00066| 0.00113| 0.00178 -
Ago || 0.02138| 0.00148| 0.00111| 0.00164| 0.00235| 0.00392 -

cpcs360b || A 0.00051| 0.00011| 0.00010| 0.00008| 0.00014| 0.00012| 0.00022
Apg || 0.00113| 0.00022| 0.00023| 0.00021| 0.00030| 0.00028| 0.00046

cpcsd22b || A 0.00055 - | 0.00018| 0.00020| 0.00018| 0.00027| 0.00037
Apyg || 0.00119 - | 0.00033| 0.00035| 0.00043| 0.00060| 0.00074

random A 0.00091| 0.00039| 0.00119| 0.00091| 0.00099| 0.00109| 0.00113
Apg || 0.00199| 0.00080| 0.00247| 0.00205| 0.00225| 0.00222| 0.00239

2layer A 0.00436| 0.00066| 0.00063| 0.00082| 0.00117| 0.00134| 0.00197
Apg || 0.00944| 0.00145| 0.00144| 0.00185| 0.00235| 0.00302| 0.00341

coding A - | 0.00014| 0.00019| 0.00019| 0.000174 - -
Agg - | 0.00030| 0.00035| 0.00034| 0.000356 - -

grid15x30(| A 0.00108| 0.00099| 0.00119| 0.00091| 0.00099| 0.00109| 0.00113
Apg || 0.00248| 0.00214| 0.00247| 0.00205| 0.00225| 0.00222| 0.00239

We applied this approach to estimate error bound in Gibbgkamand cutset sam-

pler. We have computed @% confidence interval for the estimated posterior marginal
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P(z;|e) based on the sampling variance®f,(z;|e) over 20 Markov chains as described
above. We computed sampling variancefrom Eq. (2.21) and0% confidence interval

Ago(z;) from Eqg. (2.22) and averaged over all nodes:

Agg = sz |Z Z A09%

1 x,€D(X;)

The estimated confidence interval can be too large to beipahcthus, we compared o

with the empirical average absolute error

7 xEDX)

The objective of this study was to observe whether the coatpabnfidence interval o
(estimated absolute error) accurately reflects the truelateserrorA, namely, to verify
that A < Ay, and if so, then investigate empirically whether confidemterval for
cutset-sampling estimates will be smaller compared to &#alnpling as we would expect
due to variance reduction.

Table 2.5.5 presents the average confidence interval amdge/absolute error for
our benchmarks. For each benchmark, the first row of resuiigs ) reports the average
absolute error and the second row of results (fayy) reports thed0% confidence interval.
Each column in Table 2.5.5 corresponds to a sampling sché&ime first column reports
results for Gibbs sampling. The second column reports te$ol loop-cutset sampling.
The remaining columns report results forcutset sampling fotv in range2 — 6. The
loop-cutset sampling results for cpcs422b are not incluhlexto statistically insignificant

number of samples generated by loop-cutset sampling. Thbs&Gampling results for
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coding networks are left out because the network contaimgmeaterministic distributions
(as mentioned earlier) and Gibbs sampling does not converge

We can see that for all the networks < A ¢ which validates our method for mea-
suring confidence interval. In most cases the estimatedd=mrde interval is no more than
2-3 times the size of average error and is relatively smallcadse of cutset sampling, the
largest confidence intervalax Aq 9 = 0.00247 is reported in grid networks for loop-cutset
sampling. Thus, we can conclude that confidence intervethatt could be used as a cri-
teria reflecting the quality of the posterior marginal estienby the sampling algorithm
in practice. Subsequently, comparing the results for G#aspling and cutset sampling,
we observe not only a significant reduction in the averagelateserror, but also a sim-
ilar reduction in the estimated confidence interval. Acraé®enchmarks, the estimated
confidence interval of Gibbs sampler remailkg, >0.001. At the same time, for cutset
sampling we obtain\,y <0.001 in 5 out of 8 classes of networks (excluded are cpcs179,

grid, and 2-layer networks).

2.5.6 Likelihood Weighting on a Cutset

Next, we present empirical results comparing performaftkedinood weighting schemes.
We use the same accuracy measures, namely, average alesohutend mean square er-
ror as we did in the case of Gibbs-based sampling schemes.béwhmarks are two

Pathfinder networks, Pathfinderl and Pathfinder2, Link, @odPCS networks, cpcs360b

and cpcs422hb.
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Three of the benchmarks, Pathfinder networks and Link nétwoamtain many de-
terministic probabilities and Gibbs-based sampling esté® do not converge over those
networks. In the case of cpcs360b and cpcs422b, all protedihre positive and, there-
fore, we compare likelihood weighting schemes against@Giflibs sampling (Gibbs) and
Gibbs-based loop-cutset sampling (LCS).

In the Pathfinder and Link networks, the exact posterior matg are easy to com-
pute by bucket elimination since all three networks havellsmduced widths. How-
ever, they are hard for sampling because of the large nunflgeterministic relationships.
Namely, the target sampling distribution has many zerosrgvsampling distribution re-
mains positive. As a result, a large number of generated lesmpn have weight 0. Those
samples do not contribute to the computation of the estisrate will be termedejected
(or discarded). The percentage of the rejected sampldsdcaiejection rate is typically
used to measure the number of discarded samples. Pleadbaidtee ternrejection rate
can have a different connotation when applied to differantging algorithms. For exam-
ple, in Metropolis sampling [89], we discard (reject) a séampits probability is less than
some threshold value.

A high rejection rate can significantly slow down the conesrce of the sampling
estimates. When the evidence is rare, we may need to genevaty &arge number of
samples before we find a single sample of non-zero weight. Vihe¢he generated sam-
ples are rejected, we will say that the rejection rate is 1@@%bcall the network instance

unresolved
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Sampling Speed

We generated 30 instances of each Pathfinder network andhkimbork and 20 instances
of cpcs360b and cpcs422b networks with different randoneagions among the leaf
nodes. We generated more instances of deterministic niedvgince a number of those
instances remained unresolved by full likelihood weightinn Table 2.6, we report the
speed of generating samples using LW, LWLC, and LWLC-BUF sag@rchemes. As
expected, LWLC generates far fewer samples than LW. Not#idyrelative speed of LW
and LWLC remains the same in the two Pathfinder networks andhikhetwork. By the
time LW generate$00, 000 samples, LWLC generates 1200 samples. Table 2.6 also shows
an order of magnitude improvement in the speed of generatingples by LWLC-BUF in
cpcs360b, Pathfinderl, and Pathfinder2, a factor of 2 impnewt in cpcs422b, and no
change in the Link network. The improvement depends on ttie o& unique samples.
The number of unique tuples in Pathfinder networks is ealo of the total number of
samples and, thus, 99% of the computation is redundant. ¥owia Link network, nearly

all samples are unique. Hence, buffering was not beneficial.

Table 2.6: Average # of samples generated by LWLC and LWLC-BUFRhkytime LW
generated00, 000 samples.
| | LW [LWLC | LWLC-BUF |

cpcs360b | 100000( 2400 24000
cpcs422b || 100000 25 50
Pathfinderl| 100000 1200 12000
Pathfinder2| 100000/ 1200 12000
Link 100000f 1200 1200
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Rejection Rates

Table 2.7: Average rejection rates for different benchmeak -# instances, out of 30,
where rejection ratez:100%,R - average rejection rate.

LW LWLC | LW-BUF
K[R(%) | K[R®%) | kK[R(®%)
PF1 | 30| 4730 6 30| 001

PF2 || 28 77 30 26| 30| 0.05
Link || 17 67| 30 16 || 30 16

The rejection rates of the three likelihood weighting schsin Pathfinderl, Pathfinder2,
and Link are summarized in Table 2.7. For each benchmarkepert the number of in-
stances: (out of 30), where the rejection ratel00%. As we can see, LW resolved all 30
instances of Pathfinderl but only 28 instances of Pathfiraled2nly 17 instances of Link.
LWLC and LWLC-BUF resolved all network instances.

Table 2.7 also reports the rejection rdteaveraged over those instances where all
three algorithms generated some samples with non-zer@pildgles. As we can see, LW
has high rejection rates in all benchmarks. The correspgndéVLC rejection rates are
a factor of 3 or more smaller. Although lower rejection ratlena does not guarantee
faster convergence, it helps compensate for generatingr feamples. The rejection rate of
LWLC-BUF is two orders of magnitude lower than LWLC in Pathfindetworks but it is

the same as LWLC in Link network (also because most of the ssvgsk unique).

For a given network instance, the rejection rates of LW and BXemain unchanged.

However, as LWLC-BUF learns zeros of the target distributitarejection rate decreases
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Figure 2.21: LWLC-BUF average rejection rate over 30 netwasdtances in Pathfinderl
and Pahfinder2 as a function of the number of samples.

as the number of samples increases. Figure 2.21 demossthedeon the example of

Pathfinder networks.

Accuracy of the Estimates

Pathfinderl, Pathfinder2, and Link. The accuracy of the approximate posterior marginals
for PathFinderl, Pathfinder2, and Link are shown in FiguB2.2.These three networks
contain many deterministic probabilities and, subsedueneither full Gibbs sampling
nor loop-cutset sampling can be applied. Hence, we only eoenghe likelihood weight-
ing schemes. The charts on the left in Figure 2.22 show theageeabsolute error, the
charts on the right show the average MSE.

The comparative behavior of LW, LWLC, and LWLC-BUF sampling sdles is sim-

ilar in all three networks. LWLC consistently converges éaghan LW and outperforms
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Figure 2.22: Average Error (left) and MSE (right) as a fuotof time for likelihood
weighting (LW) and likelihood weighting on loop-cutset (LWLGInd IBP over 30 in-

stances of Pathfinderl, 28 instances of Pathfinder2, andstighires of Link network.
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IBP within 2 seconds. LW outperforms IBP within 2 seconds irhadlerl and within
8 seconds in Pathfinder2. However, LW is considerably wdraa tBP in Link network.
LWLC-BUF converges faster than LWLC in Pathfinderl and Pathfihdecause it gener-
ates more samples and has a lower rejection rate. In Linkankptheir performance is the
same and, thus, we only show the LWLC curve.

The PathFinder2 network was also used as a benchmark in dheaten of AIS-
BN algorithm [21], an adaptive importance sampling schenléhoigh we experimented
with different network instances, we can make a rough coispar Within 60 seconds,
AIS-BN computes MSEx 0.0005. Adjusting for the difference in processor speed, the
corresponding MSE of LWLC and LWLC-BUF are0.004 and~0.00008, obtained in 6

seconds. Hence, AIS-BN and LWLC-BUF produce comparable sesult

In the case of cpcs360b, we break down the analysis into teciajcases. First, we
compare performance of all the sampling schemes on thenresta the cpcs360b network
without evidence. The results are shown in Figure 2.23. Wtlevidence, the sampling
distribution of likelihood weighting equals the targettdisution which is the prior distri-
bution P(X'). Hence, we can expect that likelihood weighting schemelspeiform very
well. Indeed, we see in Figure 2.23 (top) that full likelimbeveighting outperforms full
Gibbs sampling by wide margin. The loop-cutset samplinggsads, LCS and LWLC, ob-
tain very similar results. They improve over full likelihdaveighting but only slightly as
they compute an order of magnitude fewer samples. Whileikdlihood weighting com-

putes100, 000 samples, LWLC computes abol, 000 samples and LCS computes only
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Figure 2.23: Comparing full Gibbs sampling (Gibbs), fulldikhood weighting (LW),

Gibbs-based loop-cutset sampling (LCS), likelihood werghion loop-cutset (LWLC),

buffered loop-cutset sampling (LCS-BUF), buffered likeldd weighting on loop-cutset
(LWLC-BUF), and IBP over cpcs360b without evidence.
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6,000 samples. Within the same time interval, the cutset-sag@ahemes with caching,

LCS-BUF and LWLC-BUF, generate on the orderlgf 000 samples and, hence, improve

considerably over full likelihood weighting, as shown igéie 2.23, middle, and over the

cutset-sampling schemes without caching, as shown in &igW3, bottom. Again, the

performance of the two buffered cutset sampling schemesryssimilar.
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Figure 2.24: Average Error (left) and MSE (right) as a fuotof time for full Gibbs sam-
pling (Gibbs), likelihood weighting (LW), loop-cutset salimg (LCS), likelihood weight-
ing on loop-cutset (LWLC), buffered loop-cutset sampling (LBSF), buffered likelihood
weighting on a cutset (LWLC-BUF), and IBP over cpcs360b witldence on leaf nodes.
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Figure 2.24 shows results for cpcs360b network with rangiaselected evidence
among the leaf nodes only (nodes without children) avep@ evidence nodes per in-
stance. In this case, the sampling distribution of the iliced weighting remains equal
to prior while the target distribution becomé¥ X'|e). As Figure 2.24 shows, full Gibbs
sampling and likelihood weighting now reverse the rolesatT$, full likelihood weighting
is the worst of all schemes. Full Gibbs sampling outperfofufisiikelihood weighting,
although it generates an order of magnitude fewer sampheisthee accuracy of the cutset
sampling schemes is considerably better than Gibbs. LC®ibeht of the four schemes.

Both cutset sampling schemes improve with caching.
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Figure 2.25: Average Error (left) and MSE (right) as a fuoetof time for full Gibbs
sampling (Gibbs), likelihood weighting (LW), loop-cutseinspling (LCS) and likelihood
weighting on loop-cutset (LWLC) and IBP over cpcs422b with enick on leaf nodes.
The experiments with cpcs422b consisted of 20 instanceleohétwork with the
average of 30 evidence nodes (selected among the leaf quetagstance. The results are
shown in Figure 2.25. Likelihood weighting over loop-cuteatperforms full likelihood

weighting although it still yields to loop-cutset samplingibbs sampling outperforms

loop-cutset sampling (for reasons discussed previousgection 2.5.3) and produces the
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best results of the four schemes.

2.5.7 Summary

Our empirical evaluation of the performance of cutset sarggdemonstrates that, except
for grid networks, sampling on a cutset usually outperfofaiisbs sampling and offers a
considerable anytime improvement over IBP on several n&svaie show that conver-
gence of cutset sampling in terms of number of samples dreatigtimproves as predicted
theoretically. More importantly, the performance of ctits@mpling remains superior to
regular Gibbs sampling in most benchmarks when the sampiling is bounded, even
though cutset sampling usually generates fewer samplagwite given time interval than
Gibbs sampler. The same observations apply in the caseatihldod weighting on a cut-
set. Although cutset-based likelihood weighting compuatesorder of magnitude fewer
samples, it consistently outperforms full likelihood wiedigng.

Experiments clearly show that there exists a range-ohlues wherev-cutset sam-
pling outperforms Gibbs sampler. The performanceafutset deteriorates when increas-
ing w results in only a small reduction in the cutset size. An eXerngpcpcs360b network
where starting withvo=4, increasingv by 1 results in the reduction of the sampling set by
only 1 node (shown in Table 2.2).

We observe that the special case of loop-cutset is a goodebbcutset sampling as
long as the induced width of netwotk; ~ conditioned on loop-cutset is reasonably small.

Whenw;¢ is large (as in cpcs422b) the loop-cutset sampling is |dgsesft themw-cutset
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sampling forw < wyc.

The experiments demonstrate that the relative performahGibbs sampling and
likelihood weighting depends on the properties of the inpetivork. In particular, it de-
pends on the choice of evidence. We considered two extresescan instance of the
network without evidence (most favorable for likelihoodigiging) and multiple instances
of the network with evidence concentrated in the leaf notles least favorable for like-
lihood weighting). As expected, in the former case, liketid weighting performed very
well; in the latter case, it produced the worst results. 8sirgly, in cpcs360b Gibbs-based
loop-cutset sampling is superior not only to full Gibbs séingp but also full likelihood
weighting and it compares favorably to likelihood weiglgtion a loop-cutset even when
the sampling distribution equals the target distributittrseems likely that the increased
distances between the sampled variables in cutset sanmagwgn effect of reducing the de-
pendence among samples and, thus, contributes to thedastasrgence of the loop-cutset

scheme.

2.6 Related Work

We mention here some related work. The idea of marginalisutgsome variables to im-
prove efficiency of Gibbs sampling was first proposed in [18yvas successfully applied
in several special classes of Bayesian models. In [69], psiltg has been applied to the bi-
variate Gaussian problem with missing data. In [78], Gildegling algorithm for finding

repetitive motifs in biological sequences applies colilag®y integrating out two parame-

110



ters from the model. Similarly, Gibbs sampling set is cakegbin [38, 84, 80] for learning
the nonparametric Bayes problem. In all of the instanceselspecial relationships be-
tween problem variables have been exploited to integraterakvariables out resulting in
a collapsed Gibbs sampling approach.

In the case of importance sampling, the effectiveness d&psihg of sampling set
has been demonstrated in the context of Particle Filteriethod for Dynamic Bayesian
networks [33, 35, 34]. It was shown that sampling from a sabsgombined with exact
inference (Rao-Blackwellised Particle Filtering) yieldsedtbr approximation than Particle
Filtering on the full set of variables. However, the studg lheen limited to observation
of the effect in special cases where some of the variablebeamegrated out easily, e.g.,
when the distributions of the marginalised variables cdidadomputed analytically using
a Kalman filter [36, 34, 5] or when the marginalised varialahea factored HMM became
conditionally independent (when sampled variables aremisl) due to the numerical
structure of the CPTs [34].

Compared to this previous research work, our contributian defining a generic
scheme for collapsing Gibbs sampling and likelihood werghin Bayesian networks
which takes advantage of the network’s graph propertiesdaed not depend on the spe-
cific form of the relationships between variables. As theseutelection process can be
automated, the proposed cutset sampling schemes can ledap@ny Bayesian network.

In [57], sampling and exact inference were combined in akitmcGibbs sampling

scheme. Groups of variables were sampled simultaneously agact inference to com-
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pute the needed conditional distributions. Their emplieaults demonstrate a significant
improvement in the convergence of the Gibbs sampler oves.tiviet, in proposed block-
ing Gibbs sampling, the sample contains all variables inngtvork. In contrast, cutset
sampling reduces the set of variables that are sampled. #sl mweviously, collapsing
produces lower variance estimates than blocking and, fivesecutset sampling should
require fewer samples to converge.

A different combination of sampling and exact inferencejéon-trees was described
in [68] and [67]. Both papers proposed to sample the proltgldistribution in each clus-
ter for computing the outgoing messages. In [67], Gibbs $iag@as used only for large
clusters to estimate the joint probability distributiéiiV;),V; C X in clusteri. The es-
timated P(V;) is recorded instead of the true joint distribution to comsenemory. The
motivation is that only high-probability tuples will be m@cded while the remaining low-
probability tuples are assumed to have probability 0. Inlbiiasters, the exact joint
distribution P(V;) is computed and recorded. However, the paper does not @ntilgan-
troduced errors or compare the performance of this schethest@ndard Gibbs sampler or
the exact algorithm. No analysis of error is given nor cornguer with other approaches.

In [68], sampling is used to compute messages sent fromeclugd cluster; and
the posterior joint distributions in a cluster-tree thantaons both discrete and continuous
variables. This approach subsumes [67] and includes ngoaoalysis of the error in the
estimated posterior distributions. The method has ditiiesiwith propagation of evidence.

The empirical evaluation is limited to two hybrid networlstances and compares the qual-

112



ity of the estimates to those of likelihood weighting, antémee of importance sampling

that does not perform well in presence of low-probabilitidewnce.

2.7 Summary and Future Work

The paper presents thecutset sampling scheme, a general scheme for collapsiolgsGi
sampler in Bayesian networks. We showed theoretically angirerally that cutset sam-
pling improves the convergence rate due to sampling fronetedimensional space and al-
lows sampling from networks with deterministic proballt as long as the Markov chain
corresponding to sampling over cutset variables is ergddising the induced widtlhy as

a controlling parametety-cutset sampling provides a mechanism for balancing sagppli
and exact inference.

We studied the power of cutset sampling when the sampling selbop-cutset and,
more generally, when the sampling set ismautset of the network (defined as a subset
of variables such that, when instantiated, the inducednnadthe network is< w). The
performance ofv-cutset sampling was investigated as a function of the sefjusduced
width w. The user can control the trade-offs between sampling dedeince inw-cutset
sampling by examining the performancewfcutset sampling for different values.

We also defined a cutset-based likelihood weighting. By reduthe dimensional-
ity of the sampling space, we achieve reduction in the sargplariance. bbi-lwlc and
also reduce the information distance (KL-distance) behwbe sampling and the target

distributions.
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Due to reduction in sampling variance, (and also KL-distaimcthe case of likeli-
hood weighting), cutset sampling schemes require fewepksto converge than regular
sampling. Our experiments confirm faster convergence detigampling as a function
of the number of samples over a range of randomly generatedesth benchmarks. We
also demonstrate that both cutset sampling schemes, oeé bassibbs sampling and the
other based on likelihood weighting, are superior or as gowbrresponding full sampling
schemes time-wise in all of our benchmarks. The cutseteddsdihood weighting scheme
also has a lower rejection rate as compared to full likelthaeighting in the deterministic
networks.

We improve the performance of cutset-sampling schemesdiyrcgcomputed sam-
ples and their probabilities. In the case of cutset-badediliood weighting, we also use
caching to learn zeros of the target distribution and upttegesampling distributions dy-
namically. Using the same approach, other adaptive impogtaampling techniques could
be incorporated in the cached version of likelihood weigpin the future.

We showed also that while loop-cutset sampling results sually comparable to the
best results ofv-cutset sampling over a range ofvalues, in some instances 2-cutset and
3-cutset are smaller than loop-cutset and offer bettelopmdnce although simple heuris-
tics were used for finding the minimal-cutset. Since the size of cutset and correlations
between variables are two main factors contributing to ped of convergence;-cutset
sampling maybe optimized further with the advancement ahous for finding minimal

w-cutset. Another promising direction for future researioi incorporate the heuristics
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for avoiding selecting strongly-correlated variable®iat cutset since those correlations
are driving factors in the speed of convergence of Gibbs §agiAlternatively, we could
combine sample collapsing with blocking.

In summary,w-cutset sampling scheme is a simple yet powerful extensicaam-
pling in Bayesian networks that is likely to dominate reguidampling for any sampling
method. While we focused on Gibbs sampling with better cayesce characteristics, can

be implemented with the cutset sampling principle.

115



Chapter 3

On finding minimal w-cutset

The complexity of a reasoning task over a graphical modeétastpb the induced width of
the underlying graph. In the previous chapters, we havadjrdiscussed that conditioning
(assigning values) on a subset of variables yields a sulgrobf the reduced complexity.

If the assigned variables constitute a loop-cutset, thefese network is singly-connected
and therefore can be solved by linear propagation algostivMore generally, if the cutset
and evidence variables formea-cutset, then exact inference exponentiakin In this
chapter, we address the problem of finding a minimadutset in a graph. We relate the
problem to that of finding the minimab-cutset of a tree-decomposition. The latter can
be mapped to the well-knowset multi-covemproblem. This relationship yields a proof
of NP-completeness on one hand and a greedy algorithm fan§jratwo-cutset of a tree

decomposition on the other. Empirical evaluation of the@atgms is presented.

3.1 Introduction

Reducing the complexity of exact inference by conditioniags{gning values) on a subset
of variables is the principle at heart of the well-known lemgset conditioning algorithms
for Bayesian networks [96] and for constraint networks [2Zpop-cutset conditioning

exploits the fact that if the assigned variables constaut®p-cutset, the rest of the network
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is singly-connected and can be solved by linear propagatgorithms. Recently, the idea
of cutset-conditioning was extended to accommodate searciny subset of variables
using the notion ofw-cutset, yielding a hybrid algorithmic scheme of conditnghand
inference parametrized by [103]. Thew-cutset is defined as a subset of nodes in the
graph that, when observed, the graph has tree-width afless.

The hybridw-cutset-conditioninglgorithm applies search to the cutset variables and
exact inference (e.g., bucket elimination [28]) to the rammg network.Given aw-cutset
Cy, the algorithm is space exponentialdinand time exponential i + |C,,| [29]. The
scheme was applied successfully in the context of satisfiafl03] and constraint op-
timization [74]. In Chapter 2, the notion of conditioning wasplored for speeding up
sampling algorithms in Bayesian networks in a scheme callgset-sampling The idea
is to restrict sampling ta-cutset variables only (perform inference on the rest) &g t
reduce the sampling variance.

Since the processing time of both search-based and sarfydsgg schemes grows
with the size of thev-cutset, it calls for a secondary optimization task of figdgminimal-
sizew-cutset. Also of interest is the task of finding the full segeezof minimako-cutsets,
wherew ranges from 1 to the problem’s induced-width (or tree-widélo that the user can
select thew that fits his/her resources. We call the former theutset problenand the
latter the sequence-cutset problem The w-cutset problem extends the task of finding
minimum loop-cutset (e.g., a 1-cutset), a problem thativedea fair amount of attention

[9, 8, 119].
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The chapter addresses the minimum sizeutset and, more generally, the minimum
weightw-cutset problem. First, we relate the size af-@utset of a graph to its tree-width
and the properties of its tree-decompositions. Then, weeptioat the problem of finding
a minimalw-cutset of a given tree decomposition is NP-complete by aeoin from the
set multi-covemproblem [119]. Consequently, we apply a well-known greedyoathm
(GWC) for set multi-cover problem to solve the minimucutset problem. The algorithm
findsw-cutset withinO(1 + Inm) of optimal wheremn is the maximum number of clusters
of size greater thaw + 1 sharing the same variable in the input tree decompositioa. W
investigate its performance empirically and show thathwére exceptions, GWC and its
variants find a smallew-cutset than the well-performing MGA loop-cutset algamtiO]

(adapted to thev-cutset problem) and @a-cutset algorithm (DGR) proposed in [43].

3.2 Minimal w-cutset of a Graph

We have defined the-cutset of a graph in Definition 1.3.4 as a subset of variatleh that,
when observed, the induced width of the graph conditioned-autset is< w. Clearly, a
w-cutset is also a’-cutset whenv” > w. Further, ifC' is aw-cutset, then any supersgt

of C, is also aw-cutset. Next, we define the minimalcutset of a graph.
DEFINITION 3.2.1 (minimal w-cutset of a graph) The w-cutsetC,, is minimal if no w-
cutset of smaller size exists.

For completeness, we also define the weightedutset problem that generalizes
minimum w-cutset problem (where all node weights are assumed the) samegives a
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refined definition of the complexity of cutset-based aldons. For example, im-cutset
conditioning, the space requirements of exact inferencddy ) whered,,,. is the max-
imum node domain size in gragh. The total time required to condition an-cutsetC' is

O( |D(C')| where|D(C)] is the size of the cutset domain space. The upper bound

max)

valuedis,. on |D(C)| produces a bound on the computation time of the cutset-tionitig

algorithm: O(d¥ ,.) x X diSh, = O(d%g';cl). In this case, clearly, we want to minimize the

max

size of C. However, a more refined optimization task is to minimize aletual value of

ID(C)]:

o) =[] Ipc

Cc;eC

Since the minimum ofD(C)| corresponds to the minimum &f(|D(C)|), we can solve
this optimization task by assigning each nadecostc; = lg |D(X;)| and minimizing the

cost of cutset:

cost(C) =1g[D(C)| = > 1g|D(Cy)[ = e

C;eC i

Similar considerations apply in case of thecutset sampling algorithm. Here, the space
requirements for the exact inference are the same. The tongred to sample a node

C; e CisO(d¥

maw)

ID(C5)|- The total sampling time i€(d,,,...) X >_c.cc |D(Ci)|. To

minimize the total processing time, we assign each nddeostc; = |D(C;)| and select

the w-cutset of minimum cost:

cost(C) = Y [D(Cy)|

Cc;eC
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DEFINITION 3.2.2 (weightedw-cutset of a graph) Given a reasoning problem X, F'>
where each nod&(; € X has associatedost(X;) = ¢;, the cost of av-cutsetC,, is given
by: cost(Cw) = Y ¢.cc, ¢- The minimum weighb-cutset problem is to find a min-cost
w-cutset.

In practice, we can often assume that all nodes have the sastad solve the
easier minimako-cutset problem which is our focus here. In section 3.3, wabdish
relations between the size ofcutset of a graph and the width of its tree-decomposition.
In section 3.4, we show that the problem is NP-hard even wheimfy a minimumu-cutset

of a chordal graph (corresponding to a tree-decompositiagoaph).

3.3 w-cutset and Tree-Decompositions

In this section, we explore relationship betweeutset of a graph and its tree-decomposition.

THEOREM3.3.1 Given a graphG=< X, E>, if G has aw-cutsetC,,, then there is a tree-
decomposition off having a tree-widthiw < |C,,| + w.

Proof. If there exists av-cutsetC,,,, then we can remov€,, from the graph yielding, by
definition, a subgrapty’ over X\ C,, that has a tree decompositi@hwith clusters of size

at mostw + 1. We can add the sé&t,, to each cluster of" yielding a tree-decomposition
with clusters of size at most + 1 + |C,,| and tree-widtho + |C,,|. |

We can conclude therefore that for any graph < |C;| + ¢ for everyi. Moreover,

THEOREM3.3.2 Given a graph G, it} is the size of a smallest i-cuts€f, andtw™ is its
tree-width, then: = 15> rho> > qis >t (3.1)

Proof. Let us defineA; ;1 = ¢ — ¢, then we claim that\,;; ., > 1. Assume to

)

the contrary that; = c;;4, that isD, ;41=0. SinceC; is an i-cutset, we can build a tree
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decompositiori” with maximum cluster sizéi + 1). Pick someX; € C; and addX; to
every cluster yielding tree decompositi@h with maximum cluster siz¢ + 2). Clearly,
C\X; is an(i + 1)-cutset of sizec; — 1 = ¢}, — 1 which contradicts the minimality of
Cryy. |

Given a graphG = (V, E), the w-cutset sequencproblem seeks a sequence of
minimal j-cutsets wherg ranges from 1 to the graph’s tree-widthy,....C7,... Cipr = ¢.
Let C!, be a subset-minimal-cutset, namely one that does not contain anotfeutset.

If we have aw-cutset sequence, we can reason about whitdhchoose for applying the-
cutset conditioning algorithm ar-cutset sampling. Given @a-cutset sequence we define
a functionf(i) = |C;| + ¢ where: ranges from 1 tgw. This function characterizes the
complexity of thew-cutset conditioning algorithms where for eackhe space complexity
is exponential ini and the time complexity is exponential jf{i). The time-complexity
suggests operating withas large as possible while space consideration suggestdisgl

i as small as possible. Notice that for various intervals, of(i) is constant, if|C;| =
|Ci11] + 1. Thus, given av-cutset sequence, we have that whenei(er = f(i + 1), then

w = ¢ Is preferred overw = ¢ + 1. Alternatively, given a bound on the space-complexity

expressed by, we can select a most preferreg-cutset such that:

wy(r) = arg mjin{r = f(4)}

In the empirical section 3.6, we demonstrate the analysigradtion f (i) and its implica-

tions.
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THEOREM 3.3.3 Given a tree-decompositidhi= (V, E') whereV={V}, ..., V;} is the set of
clusters and given a constamt a minimumw-cutsetC?; of G satisfies:

Col< Y (Vi = (w+1)) (3.2)

i,|Vi|>w+1

Proof. From each clustér; € V' of size larger tham(+1), select a subset of nod€'s C V;
of size|C;| = |V;| — (w + 1) so that| V;\C;| < w + 1. LetC,, = U v, >w+1Ci-

By construction,C,, is a w-cutset of G and: ¢, < |Cy,| = |U; Ci| < Y |G| =
Zi7|Vi|>w+1 Vil = (w + 1). [ |

O

Figure 3.1: (a) Graph; (b) triangulated graph and corredpgntree decomposition of

width 2; (c) graph with 1-cutset nodéd } removed and corresponding tree-decomposition.

Since aw-cutset yields a tree-decomposition having = w, it looks reasonable
when seekingu-cutset to start from a good tree-decomposition and find-itutset (or a
sequence). In particular, this avoids the need to test ibplyhasw = w. This task is

equivalent to finding a-cutset of a chordal (triangulated) graph.

DEFINITION 3.3.1 (Aw-cutset of a tree-decomposition)Given a tree decompositidi= <V, E>

of areasoning problera X, F'> where V is a set of subsets of X th&fi C X is aw-cutset
relative to T if for everyi, |[V;\\CT| < w + 1.

122



We should note upfront, however, that a minimum-sizeutset of7" (even ifT" is

optimal) is not necessarily a minimum-cutset ofG.

Example 3.3.4Consider a graph in Figure 3.1(a). An optimal tree decomposiof width
2 is shown in Figure 3.1(b). This tree-decomposition cleadgsinot have a-cutset of
size< 2. However, the graph has kcutset of size, { D}, as shown in Figurg.1(c).

On the other hand, given a minimumcutset of a grapld-, removing thew-cutset
from the graph yields a graph having* = w. If not, then there exists a tree-decomposition
of G over X\C,, havingtw < w. Select such a tree and select a nodé€’jnthat can be
added to the tree-decomposition without increasing ies-tvath beyondv. Such a node
must exist, contradicting the minimality 6f,,.

It is still an open question if every minimal-cutset of graplt- is aw-cutset of some

minimum-width tree-decomposition 6f.

3.4 Hardness of Minimal w-Cutset of a Tree Decomposi-
tion

While it is obvious that the general-cutset problem is NP-complete (1-cutset is a loop-
cutset and finding the minimal loop-cutset is known to be [dRyalete), it is not clear that
the same holds relative to a given tree-decomposition. We stow that, given a tree-
decompositior?” of a hypergrapht, thew-cutset problem fofl” is NP-complete. We use

a reduction fronset multi-cove(SMC) problem.
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DEFINITION 3.4.1 (Set Cover (SC))Given a pair< U, S > whereU is universal set and
S is a set of subsets={51, ..., S,,} of U, find a minimum set’ C S s.t. each element of
U is covered at least oncelg,ccS; = U.

DEFINITION 3.4.2 (Set Multi-Cover(SMC)) Given a pair< U, S > whereU is a univer-
sal set andS is a set of subsetS = {5, ..., S, } of U, find a minimum cost sét C S s.t.
eachU; € U is covered at least; > 0 times byC'.

The SC is an instance of SMC problem whénr; = 1.

u={U U, Uz}
=2, =2, =1
S;={U 4},
S,={U3},
S={U,, Uy},
S;=~{U,, Uy},
S={Uy, Uy, Ug}
(a) SMC (b) 3-cutset problem

Vs

v,
S350,
Q21’Q22vQ23

V,
S15y,S;,
Q.1Q2Q°

Figure 3.2: (a) A set multi-cover problea/, S> whereU={U,, U, U3}, S={S4, ..., S5},
the covering requiremenis=2, r,=2, r3=1. (b) Corresponding augmented tree decompo-
sitionT'=<V"  E> overS'={S, ..., S5, Q1,Q3,Q3, Q1. Q%, Q3, Q}, Q3}.

THEOREM3.4.1 (NP-completeness] he problem Given a tree-decompositidi=<V, £>
and a constarit, does there exista-cutset ofI’ of size at most: 7’ is NP-complete.

Proof. Given a tree decompositidhi=<V, E> over X and a subset of nodé& X, we can
verify in linear time whether C is a-cutset ofT" by checking itvV; € V, |[V;,\C| < w + 1.
Now we show that the problem is NP-hard by reduction from sdtiraover.

Assume we are given a set multi-cover problei, S>, whereU={ X}, ..., X,,} and
S={S1, ..., Sm}, a covering requirememt > 0 for eachU; € U.

We define a cluster tre€=<V, E> over S where there is a nod€ < V corre-
sponding to each variablg; in U that contains all subsets; € S that cover nodeX;:
V; = {S; € S|X; € S;}. Additionally, there is a nod&s € V that contains all subsets in
S:Vs = S.Thus,V = {V;|U; € U} U Vs. Denote|V;| = f;. The edges are added between
each clustelV; ;., and clustelVs: E = {V;Vs|U; € U} to satisfy running intersection
property in7.
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Define w+1=|S| — min,; r; = m — min,; ;. For eachV ., since|V;|=f; < m and
r; > 0, thenf; — r; < m —min; r; < w + 1. Consequentlyf; < r; +w + 1.

ForeachV; s.t. f; < r;+w+1, defineA,=r; +w+1— f; and augment clustéf, with
a set of node®; = {Q!...Q:'} yielding a clustel; = V;U Q; of size|V/|=f/=r; +w + 1.

We will show now that a set multi-covetU, S> has a solution of sizé iff there
exists aw-cutset of augmented tree decompositidr<V’, E> of the same size.The aug-
mented tree for sample SMC problem in Figure 3.2(a) is showrigure 3.2(b).

Let C be a set multi-cover solution of size Then,VU; € U, |C N V/| > r; which
yields [V/\C| < |V/| = r; = f/ —ri = w+ 1. Since|C| > min;r;, then|Vs\C| <
|Vs| — min; ; = m — min; r;, = w + 1. Therefore(' is aw-cutset of sizé.

Let C,, be aw-cutset problem of sizé. If C, contains a nod€); € Q,, we can
replace it with some nodg, € V; without increasing the size of the cutset. Thus, without
loss of generality, we can assurg, C S. For eachV/ corresponding to somg; € U,
let C; = C, NnV/. By definition of w-cutset,|V/\C,| < w + 1. Therefore,|C;| >
V| —(w+1) = fl — (w+ 1) = r;. By definition, C,, is a cover for the given SMC
problem.

Minimum w-cutset problem is NP-hard by reduction from set multi-cozed is
verifiable in linear time. Therefore, minimum-cutset problem is NP-complete. ]

Example 3.4.2We demonstrate the steps for the SMC problem Wit{ Uy, U,, U3} and
S={5Si, ..., 95} shown in Figure 3.2(a). DefinE=<V, E>, V={V|, V,, V3, V,}, over S:
Vi={51, 82,85}, f1=3, Va={S3, S4, S5}, fo=3,

‘/3:{52, S4, 55}, f3:3, VS={51, ey 55}, f5:5.

Then,w = |S| — 1 —min;r; =5 —1—1 = 3. Augment:

\ A1:U}+1+T1 —f1:4+2-3:3, le{Q%, %,Q?}

Vor Ag=wl+ry — fr=4+2-3=3, Q2={Q3, Q3, Q3 }.

Va: Ag=w+l+rs — f3=4+1-3=2, Qs={Q3, Q3}.

The augmented tree decompositibhis shown in Figure 3.2(b). Any SMC solution such
asC={953, S} is a 3-cutset of" and vice versa.

In summary, we showed that whenis not a constant the-cutset problem is NP-
complete. This implies that the-cutset sequence problem over tree-decompositions is

hard.
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3.5 Algorithms for minimal w-cutset of a tree-decomposition

In this section, we propose two algorithms for finding a miaim-cutset. One is the dy-
namic programming algorithm for finding the optimal soluatithaving exponential com-

plexity). The other is a factor 2 approximation scheme basea simple greedy algorithm.

3.5.1 An exact algorithm for minimal w-cutset of a tree-decomposition

Assume we are given a tree-decompositiGneV, > over X. Assume that the tree-width
of T"is w* and we are given a target bound value w. For each clistet. |V;| > w + 1,
definer; = |V;| — (w + 1). LetC; (T') denote minimum size-cutset of7".

Before we define an algorithm for finding an exact minimum sizeutset, we will
outline a few pre-processing steps that can be taken to 8@vérivial” part of the problem

and reduce its complexity.

THEOREM3.5.1 Given a tree-decompositicfi=<V, E> over X of widthw* and a con-
stantw < w*, assume there is a clustéf € V' s.t. |V;| > w+ 1 andV; is singly-connected
in 7. In other wordsy; = |Vi| — (w + 1) > 0 andV; has onlyl neighbourV;. LetS;; be
the separator betweevi andV;: S;; =V, N V,. If |S;;| < r;, then there is a minimum-size
w-cutsetC (1) such thatS;; C C; (7).

Proof. Assume some nod&);, € S;; is not in the minimum-size cutset. ThefX, € V;
s.t. X, ¢ S;; andX, € C;(T). Such a node must exist to satisfy If X, ¢ S;;, then
Vj # 14, X, ¢ V; and we can replac&, with X}, in the cutset without increasing the size
of thew-cutset. L

As a consequence, whenever we have a singly-connectedrdliyisthose only sepa-
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rator|.S;;| < r;, we can safely add to cutset any subSedf nodes inV; such thatS;; C .S;
and|S;| = r;,. Then, we remove frori’ all nodes inS;; as well as the clustér; and obtain
atreel’=<V' E'> whereV’ = V\S,; whereC} (T') = S; U C(T"). Thus, without loss
of generality, we assume that for any singly-connectedtetdg with somer; > 0, its
separator sizgS;;| > r;.

A similar line of reasoning leads to the conclusion that gie@y singly-connected
clusterV; with neighborV; and their separatd;; where|S;;| > r;, there is a minimum size
cutsetC? (T') that contains; nodes fromsS,;: C: (1) N'V; C S;;. Thus, in our search for
a minimumuw-cutset, we can limit the search fof; (7") N V; to the subsets of;;. That is
the main idea behind the proposed recursive algorithm: veral those singly-connected
clustersV; that haver; < |S;;|, select one of the remaining sinlgy-connected clustérs
that have; > |S;;| enumerate all possible subsgt®f S;; of sizer; and solve thes-cutset

problem for eacli” over X’ = X\ f;. The exactVinSizeCutset(T,w) algorithm is given

in Figure 3.3.

The maximum depth of the recursion of procedufén SizeCutset(T, w) equals the
number of clusters ifi’ whose size> w + 1. At each recursion iteration our state-space is
multiplied by |F;| = (|S;;], ). Since|S;;| < w*, then:

*|
|Fi| < (w*, ;) = m =w'(w —1)..(w—r+1) < (w*)Zm

The total size of state-space explored is bounded by:

Vi

[T = @)=n
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MinSizeCutset(T,w)
1. Remove all singly-connected clusters of sizev + 1.

2. Solve all singly-connected cluster$ s.t. r; > S;; where S;; is a separator be-
tweenV; and its neighboV/;.

3. Select a singly-connected clustgy. Let S;; be a separator betweelj and its
neighborV;. Let F; be a set of all possible subsets of sizérom S;;.
FOR EACHf; € F; DO

T = T\ f;
fi = MinSizeCutset(T',w)
END FOR

Letm = argming,cp, |ZZ]
ReturnC; (T) = fi U £,

Figure 3.3: Recursive minimum sizecutset algorithm.

If we a looking to answer the decision problébBoes the tree-decompositidfi has aw-
cutset of sizé& ?”, we can stop the recursion when sum of theof the processed clusters

reaches:. Then, the total number of states explored is boundedy*.

3.5.2 Algorithm GWC for minimum cost w-cutset

Next, we show that the problem of finding-cutset can be mapped to that of finding set
multi-cover. The mapping suggests an application of gregabroximation algorithm for
set multi-cover problem to find-cutset of a tree decomposition. When applied to a tree
decompositior’=<V, E> over X, it is guaranteed to find a solution within factof1 +
Inm) of optimal wheren is the maximum of clusters of size- (w+ 1) sharing the same
node. To avoid loss of generality, we consider the weightedion of each problem.

The mapping is as follows. Given any-cutset problem of a tree-decomposition
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T=<V, E> over X, each cluster nodg; € V' of the tree becomes a node of universal set
U. A covering setSx, ={V; € V|X; € V;} is created for each nodg; ¢ X. The cost of
Sx, equals the cost ok;. The cover requirementis = |V;| — (w + 1). Covering a node

in SMC with a setSx, corresponds to removing nodg from each cluster iff". Then, the
solution to a set multi-cover is@-cutset of T. Let”' be a solution to the SMC problem.
For eachlU; € U, the setC contains at least; subsetsSx, that containl/;. Consequently,
sinceU; = V,, then|V; N C| > r; and|V\C| < |Vi| —r; = [Vi| = [Vi] + (w + 1) =

w + 1. By definition, C is aw-cutset. An example is shown in Figure 3.4. This duality
is important because the properties of SC and SMC problemsvall studied and any

algorithms previously developed for SMC can be applied teeso-cutset problem.

U={V .V, V;V,}
r=1,r=1,r~=1

SIC\YRVARVASEIETVIRVIRVAS
Se={V 3, Se={V 1,V Vi,
Sc={V b S={Va

(b)

Figure 3.4: (a) A tree decompositiof=<V,E> where V={V;,...,V,} over
X={A,B,C,D, E,F}, (b) the corresponding set multi-cover probleni/,S> where
U={V1, Vo, V5, V,} and S={S4, Sg, Sc, Sp, Sr}; here, setSx, contains a clusteV iff
X, € V;. The 1-cutset of " is a solution to the set multicover with covering requirefsen
r1=ry=r3=r,=1: when nodé/; € V' is “covered” by setSx,, nodeX; is removed from each
cluster.

A well-known polynomial time greedy algorithm exists for igeted SMC [119] that

chooses repeatedly sgtthat covers the most “live” (covered less thatimes) nodeg; at
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the coste;: a set that minimizes the ratig/ f;. In the context ofv-cutset,f; is the number
of clusters whose size still exceefls + 1) andc; is the cost of nodeX;. As discussed
earlier,c; maybe defined as the size of the domain of nader its log. When applied to
solve thew-cutset problem, we will refer to the algorithm as GWC (Gre&idyCutset). It

is formally defined in Figure 3.5. We define here the approtmnaalgorithm metrics:

DEFINITION 3.5.1 (factoré approximation) An algorithm.A is afactoro, 6 > 0, approx-
imation algorithm for minimization probler® if A is polynomial and for every instance
I € Dp it produces a solutios such that:cost(s) < § x costopr(s),d > 1.

GWC is a factorO(1 + Inm) approximation algorithm [101] where is the maxi-

mum number of clusters sharing the same node (same as themorexset size in SMC).

Greedy w-Cutset Algorithm (GWC)

Input: A set of clusterd” = {V;, ..., V,, } of a tree-decomposition ove¢ = { X1, ..., X, }
whereVV; € V, V; C X; the cost of each nodE,; is c;.
Output : AsetC C X s.t.|V;,\C| < w.

SetC' ={,t=0.

While 3V} s.t. |V;| > w do

1.VX; € X, computef; = [{V;}| s.t. |V;| > wandX; € V.
2. Find nodeX; € X that minimizes the ratio;/ f;.

3. RemoveX; from all clusters¥V; € V| V; = V;\ X;.

4. SetX = X\X;,C =CU{X;}.

End While

Return C

Figure 3.5: Greedy w-cuset Algorithm.

This bound is nearly the best possible for a polynomial atigor due to strong inap-
proximability results for the set cover problem, the splezaage of set multi-cover problem.

Approximation guarantee better théxiln m) is not possible for any polynomial time algo-
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rithm unless P=NP [12, 82]. Furthermot,, A, s.t. for allA > Ay no polynomial-time
algorithm can approximate the optimum within a factotofA — C'InIn A unless P=NP

[118].

3.6 Experiments

We compare empirically performance of the propoSéu C' algorithm (GreedyV -Cutset)
and its variants and two greedy heuristic algorithms, MGA@fied Greedy Algorithm
due to [10]) and DGR (Deterministic Greedy Algorithm due48]).

The GWC algorithm was implemented as described earliermgcki each iteration a
node found in most clusters of sizew + 1 with a secondary heuristics (tie breaking) that
selects the node contained in most of the clusters. Sevaraings of GWC with different
tie breaking heuristics were tested that were allowed tailegla tree decomposition after
removing a cutset node:

GWCA - breaks ties by selecting the node found in most of the dlsistiethe tree decom-
position;

GWCM - breaks ties by selecting the node found in most of the alsistemaximum size;

GWCD - breaks ties by selecting the node of highest degree (theeeeg the node is
computed on the subgraph with all cutset nodes removed aresalting singly-connected
nodes removed). Note that GWC and GWCA only differ in that GWCA ildbwa cluster-

tree after removing a cutset node. Also note that MGA and GWGI2 tzeir primary and

tie-breaking heuristics switched.
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The MGA algorithm is adapted from [10]. It is a factor 2 apgroation algorithm
for finding minimum cost loop-cutset. MGA iteratively remesvall singly-connected nodes
from the graph and adds to cutset the node that minimizeseai&gree ratio. The algo-
rithm stops when remaining subgraph is cycle-free. Howeatean be easily adapted to
finding minimalw-cutset forw > 1. For MGA, the only modification required to find
w-cutset is to stop when original graph with cutset nodes w&@t@an be decomposed into
a cluster tree of widthw or less (using min-fill heuristics). In our implementatidnGA
algorithm uses the GWC heuristics to break ties: if two nodegtihe same degree, the
node found in most of the clusters of sizew is added to the cutset.

The DGR algorithm is the Deterministic Greedy Algorithm fimding an elimination
order of the variables that yields a tree-decompositionaeinided width defined in [43].
DGR obtains aw-cutset while computing the elimination order of the valesb When
eliminating some nod« yields a cluster that is too large (size w + 1), the algorithm
uses greedy heuristics to pick a cutset node among all thesrtbdt are not in the ordering
yet. Specifically, the deterministic algorithm adds to théset a nodeX that maximizes
expression\/\]\f—X|OX, whereNy is a set of neighbours oX that are not eliminated yet
andCx =[]y cn, IP(U:)|. As we ignore domain sizes in this empirical study, we defined
Cx = |Nx| in which case DGR adds to cutset a node of maximum degree suthgraph

over nodes that are not eliminated.
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3.6.1 Benchmarks

We use Bayesian networks as input reasoning problems. Irxpdirienents, we used a
moral graphz of a Bayesian network as the input to the minima#d-cutset problem. The
tree-decomposition af was obtained using min-fill algorithm [66].

Our benchmarks are two CPCS networks from UAI repository, 2p@is with N=360
nodes and induced width*=22 and cpcs422b with N=422 nodes and induced width
w*=27, one instance each. Our other benchmarks are layerddmanetworks, mean-
ing that each node is assigned a set of parents selectedmgnilom previous layer. One
set of random networks consisted4oayers of L = 50 nodes each, total a¥=50x4=200
nodes, each node assignBd= 3 parents. The second set of random networks consisted
of 8 layers of L = 25 nodes each, total aV=25x8=200 nodes, each node was assigned

P = 3 parents. For random networks, the results are averaged @varnstances.

3.6.2 Results

The results are presented in Table 3.1. For each benchrhariglile provides the five rows
of results corresponding to the five algorithms (labellethe second column). Columns
3-12 are thew-cutset sizes for the-value. The upper half of the table entries provides
results forw in range[1, 10]; the lower half of the table provides results forin range
[11,20]. The results for cpcs360b and cpcs422b correspond to aesimgfance of each

network. The result for random networks are averaged oveiriflances. The best entries
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Table 3.1:w-cutset. Networks: I=cpcs360b, ll=cpcs422b, IlI=4-layandom networks,
L=50, N=200, P=3; IV =8-layer random networks, L=25, N=2B&3.

| | w |1 2 3 4 5 6 7 8 9 10

I MGA 30 22 20 18 16 15 14 13 1210
w*=20 || DGR 36 22 19 18 16 14 13 12 11 10
GwC 27 20 17 16 15 14 13 12 11 10
GWCA |27 21 18 16 15 14 13 12 11 10
GWCD |27 21 18 16 15 14 13 12 11 1(
Il MGA 80 70 65 60 54 49 44 41 38
w*=22 || DGR 84 70 63 54 49 43 38 32 27
GwC 78 66 58 52 46 41 36 31 26
GWCA |78 65 57 51 45 40 35 30 25
GWCD |78 65 57 51 45 40 35 30 25
" MGA 87 59 54 52 50 48 47 45 44
w*=49 || DGR 80 57 52 50 48 46 44 43 42
GwC 78 61 53 49 46 44 43 42 41
GWCA | 74 56 50 47 44 42 41 39 38

T OO WRrERPRNWwO

cocoocoocolmlwwssawBws oo W

GWCD |74 56 49 47 44 42 41 39 38 37
IV MGA |99 74 69 66 63 61 59 56 54 51
w*=24 || DGR |90 71 65 61 58 55 52 49 47 44
GWC |93 77 68 63 59 55 52 49 46 43
GWCA |87 70 62 57 54 51 48 45 42 39
GWCD |86 70 62 57 54 51 48 45 42 39
w 11 12 13 14 15 16 17 18 19 20
| MGA | 9 8 7 6 5 4 3 2 1
w=20||DGR | 9 8 7 6 5 4 3 2 1
GWC | 9 8 7 6 5 4 3 2 1
GWCA| 9 8 7 6 5 4 3 2 1
GWCD| 9 8 7 6 5 4 3 2 1
I MGA |33 30 28 9 8 7 6 5 4 2
w=22 | DGR |21 19 16 9 8 7 5 4 3 2
GWC |19 16 13 10 8 6 5 4 3 2
GWCA |18 15 12 9 8 6 5 4 3
GWCD |18 15 12 9 8 6 5 4 3
I MGA |41 40 39 37 36 35 34 33 31
w*=49 | DGR |39 38 36 36 34 33 32 31 30
GWC |38 37 36 35 34 33 32 31 30
GWCA |36 35 34 33 32 31 30 29 28
GWCD |36 34 34 33 32 31 30

v MGA 49 47 44 41 39 36 34 31 28
w*=24 | DGR 41 38 36 33 31 28 25 23 21
GWC |40 37 35 32 29 27 25 23 20
GWCA |37 34 32 30 27 25 23 21 19
GWCD |37 35 32 30 28 25 24 21 19 1

N0 oo N Yo oo

y.
y.
3
2
2
o1
29 28 2
2
1
1
1
7
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for eachw are highlighted.

As Table 3.1 shows, it pays to rebuild a tree decompositioith vare exceptions,
GWCA finds a cutset as small as GWC or smaller. On average, GWCA, GW@H, a
GWCD computed the same-sizecutsets. The results for GWCM are omitted since they
do not vary sufficiently from the others.

The performance of MGA algorithm appears to depend on thearktstructure.

In case of cpcs360Db, it computes the same sizautset as GWC variants fav > 10.
However, in cpcs422b, MGA consistently finds larger cutegtept forw=20. On average,
as reflected in the results for random networks, MGA findsdaaytset than DGR or any
of the GWC-family algorithms. In turn, DGR occasionally findsmaaller cutset compared
to GWC, but always a larger cutset compared to GWCA and GWCD, edlgdoiasmall

values ofw.

Table 3.2: Functiory (i) for i=1...16, GWCA. Networks: I=cpcs360Db, lI=cpcs422b, Bi=
layer random, L=50, N=200, P=3.

f(i) f(i)
1 1 2 3 45 6 7 8 910: ||11 12 13 14 15 16 17 18 19 20
| {[28 23 21 20 20 20 20 20 20 20 |20 20 20 20 20 20 20 20 20 20
Il [|79 67 60 55 50 46 42 38 34 31l |29 27 25 23 23 22 22 22 22 22
11|75 57 53 51 49 48 48 47 47 47 |47 47 47 A7 47 A7 47 47 47 47

A

We measured the GWC algorithm approximation paraméfen all of our bench-
marks. In cpcs360b and cpcs422b we have= 86 and M = 87 yielding approximation
factor of 1 + In M =~ 5.4. In random networks)/ varied from29 to 47 yielding approx-

imation factore [4.3,4.9]. Thus, if C is thew-cutset obtained by GWC ard,,, is the
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minimum sizew-cutset, then on average:

C]
‘00pt| N

3.6.3 Sequenca-cutset Results

Looking at the results as solutions to the sequanaritset problems, we can inspect the
sequence and suggest gaod by analysing the functiorf (i) = |C;| + i as described in
section 3.3. To illustrate this we focus on algorithm GWCA for@384, CPCS424 and
4-layer random networks (See Table 3.2).

For cpcs360b we observe a small range of valuegfor namelyf (i) € {20, 21, 23, 28}.
In this case the point of choiceis = 4 becausef (1) = 28, f(2) = 23, f(3) = 21 while
ati = 4 we obtain reductiorf(4) = 20 which stays constant far> 4. Therefore, we can
have the same time complexity far-cuset as for exact inference{ = 20) while saving
a lot in space, reducing space complexity from exponemntialito exponential in 4 only.
Forw-cutset sampling this implies sampling 20 variables (o86#f) and for each variable
doing inference exponential in 4.

The results are even more interesting for cpcs422b wheregva st decline in time
complexity with relatively slow decline in space complgXir the range = 1, ..., 11. The
decline is more moderate for> 11 but is still cost-effective: foi = 16 we get the same
time performance as= 20 and thereforé = 16 represents a more cost-effective point.

Finally, for the case of 4-layer random networks, on avetagefunctionf (i) de-

creases for = 1...8 and then remains constant. This suggests that if space egitypl
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allows, the best point of operationis= 8.

3.6.4 Monotonousw-cutset

We ran a second set of experiments where we used the samertRksland the same base
algorithms. However, we modified the task of finding a singleimum sizew-cutset for

a fixedw to that of finding a family ofw-cutsets for a range af values. Given a grapy
and its tree decompositidh of tree-widthtw, each algorithm is first assigned an objective
to find aw-cutset forw = tw — 1, then, forw = tw — 2, and so on. As a result, we obtain
a family of cutsets’;,,_1, Cyyy—2, ...,C1 such that'l <i < j <tw —1,C; C Cj.

An important observation is that seekingvacutset of siz¢w — 1 is equivalent to
solving the set cover problem (or its dual, the hitting setbpgm) since we just need to
remove 1 node from each cluster of sizetw + 1. This may be important in practice
and in fact allows us to find a family af-cutsets faster because we do not need to start
each time from the beginning. The results are shown in TalldevBere each algorithm
name is prefixed with ‘M’ to indicate that we are searchingifecutsetmonotonouslyThe
algorithm DGR is not designed to update the cutset once al#eemposition is obtained
and therefore, it is omitted in Table 3.3. Compared to Talle8e observed that most of
the time the monotonous algorithm finds a slightly largesetithan its non-monotonous

equivalent.
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Table 3.3: Monotonous-cutset. Networks: I=cpcs360b, ll=cpcs422b, IlI=4-layan-
dom, L=50, N=200, P=3; IV =6-layer random, L=25, N=150, P=3.
| | w /1 2 3 4 5 6 7 8 9 10

I MMGA 30 22 20 19 17 16 15 14 14 13
w*=22 | MGWC |29 24 21 19 17 16 15 14 13 12
MGWCA |28 21 20 19 18 17 16 16 15 12
MGWCD |27 21 20 19 18 16 15 15 14 12
Il MMGA 80 70 65 60 54 49 44 41 38 36
w*=28 | MGWC |79 68 61 54 48 43 38 34 29 25
MGWCA | 80 67 59 52 47 43 38 33 28 24
GWCD 79 67 60 52 47 42 37 33 28 24
1] MMGA 88 59 53 51 49 48 46 45 43 42
w*=49 | DGR 80 57 52 49 47 46 44 42 41 40
MGWC |79 62 54 50 48 46 44 42 41 40
MGWCA | 74 56 50 47 45 43 42 41 40 39
GWCD 73 56 50 48 46 45 44 43 42 41
A% MMGA 73 51 47 45 43 41 39 38 36 34
w*=34 | MGWC |67 54 48 43 41 38 36 34 31 29
MGWCA |63 49 43 39 37 35 32 30 29 27
MGWCD |61 49 43 40 38 35 33 32 30 28
w 11 12 13 14 15 16 17 18 19 20
I MMGA 12 12 10 8 7 6 5 4 3 2
w*=22 | MGWC |11 10 9 8 7 6 5 4 3 2
MGWCA |11 10 9 8 7 6 5 4 3 2
MéGwCcb |11 10 9 8 7 6 5 4 3 2
Il MMGA 33 30 28 11 10 9 8 7 6 5
w*=28 | MGWC |22 19 16 14 13 12 11 10 9 8
MGWCA |21 19 15 12 10 9 9 8 8 8
MGWCD |21 18 15 12 10 9 8 8 8 8
1l MMGA 42 40 39 38 37 36 34 33 32 31
w*=48 | MGWC |38 37 36 35 34 33 32 31 30 29
MGWCA |38 37 36 35 34 33 32 31 30 29
MGWCD |40 39 38 36 35 34 33 32 31 30
v MMGA 32 31 29 27 26 24 22 21 19 17
MGWC |27 25 23 21 19 17 16 14 12 11
MGWCA |25 23 21 19 17 16 14 13 12 10
MGWCD |26 24 23 21 20 18 17 15 14 12
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3.7 Related Work and Conclusions

In this chapter, we formally defined the minimalcutset problem applicable to any rea-
soning problem with graphical model such as constraint odtsvand Bayesian networks.
The minimumw-cutset problem extends the minimum loop-cutset problemesponding
to w = 1. The motivation for finding a minimab-cutset is to bound the space complexity
of the problem (exponential in the width of the graph) whilmimizing the required addi-
tional processing time (exponential in the width of the drgtus the size of cutset). The
loop-cutset problem corresponds to the well-known weighertex-feedback set problem
and can be approximated within factor 2 of optimal by a pofgiad algorithm. We show
that the minimato-cutset problem is harder by reduction from the set muliec@roblem
[119]: the set multi-cover problem, and subsequently@theutset problem, cannot have
a constant-factor polynomial approximation algorithmassl P=NP. Empirically, we show
that the minimal loop-cutset heuristics based on the degf@enode is not competitive
with the tree-decomposition of the graph.

To our knowledge, only heuristics related to the node elation order were used be-
fore in finding aw-cutset. In [103, 74] and [43], the-cutset is obtained while computing
elimination order of the nodes. The next elimination nodsilded to the cutset in [103, 74]
if its bucket size exceeds the limit. A similar approach wagl@ed in [43] in DGR al-
gorithm (presented in the empirical section) except thatctitset node was chosen heuris-
tically among all the nodes that were not eliminated yet. esémpirical results demon-

strate, DGR usually finds smaller cutset than MGA but biggantGWC/GWCA/GWCD.
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It is possible that the performance of DGR could be improvawas allowed to re-start
building a tree-decomposition after adding a variable &xtlcutset.

The research results presented in this chapter have beéshmabin [16].

3.8 Future Work

The main objective of our future work is to find good heuristior w-cutset problem that
are independent from tree-decomposition of a graph sireenihimalw-cutset of a tree-

decomposition provides only an upper bound on the minimaltset of a graph. So far,
we only looked at the degree of the node as possible hewrestid found empirically that
GWOC heuristics are usually superior. There are also opertigaesemaining regarding
the relationship betweemn-cutset of a graph andwa-cutset of its tree-decomposition. It is
not clear, for example, whether the minimelcutset of a graph is a-cutset of one of its

minimum width tree-decompositions.
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Chapter 4

Any-Time Bounding Scheme for Belief Up-

dating

This section presents an any-time scheme for computingrlewe upper bounds on pos-
terior marginals in Bayesian networks. The scheme draws fvempreviously proposed
methods, bounded conditioning [56] and bound propagaf@éh [Following the principles
of cutset conditioning [96], our method enumerates a sutisetitset tuples and applies
exact reasoning in the network instances conditioned asethgples. The probability mass
of the remaining tuples is bounded using a variant of boummgggation. Our empirical
evaluation demonstrates the power of our new scheme ovdleatoan of benchmarks. In

particular, we show that our new scheme improves on theeeadhemes.

4.1 Introduction

Computing bounds on posterior marginals is a special cas@mbaimating posterior
marginals with a desired degree of precision. The latteblpra is known to be NP-
hard [24]. One way to deal with NP-hard problems is to devaloytime schemes. Such
schemes can provide answers anytime and will give more atcbounds with more time.

Hence, we propose here an anytime bounding framework bastggbgreviously proposed
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bound computation schemes, bounded conditioning and bowapégation.

Bounded conditioning [56] is founded on the principles of the cutset-conditignin
method [96]. Given a Bayesian network ovérand a subset of variabl€s={C, ..., Cy}
(e.g., a loop-cutset), we can obtain exact posterior malgjifor X; € X by enumerating

over all cutset tupleg' € D(C') using the formula:

_ Zﬁl P(‘rh Ci? 6)
P(zle) = Zf\il Ploo) (4.1)

The computation of quantitieB(z;, ¢', ¢) and P(c', e) for any assignment = ¢' is linear
in the network size ifC is a loop-cutset and exponential in if C' is aw-cutset. The
limitation of the cutset-conditioning method is that thewher of cutset tuplesy/, grows
exponentially with the cutset size. Namely, = [[+_, |D(C;)| whereD(C;) is the domain
of nodeC; € C.

In [56], the authors observed that often a small number déssp << M contains
most of the probability mass d?(e) = S, P(¢',e). Thus, they proposed theounded
conditioning method which computes the probabiliti€§z;, ¢, ¢) and P(c’, ¢) exactly
only for theh tuples,1 < i < h, while bounding the rest by their priors. The fitstuples
were selected based on their prior probabilityc’). Bounded conditioning was the first
method to offer any-time properties and to guarantee cgevere to the exact marginals
with time ash — M. Its effectiveness was demonstrated in [56] on the Alarmvoek
with 37 nodes and a loop-cutset of size 5 (M=108). The engliresults demonstrate
convergence of the algorithm asncreases and also indicate that the width of the bounds
interval for a fixedh increases as more evidence is added.
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Bound propagationscheme, proposed recently in [76], obtains bounds by et
solving a linear optimization problem for each variablelstitat the minimum and max-
imum of the objective function correspond to lower and uppeunds on the posterior
marginals. The performance of the scheme was demonstratige d\larm network, Ising
grid network, and regular bi-partite graphs.

In our work here, we propose a framework, which we term Any@Bounds AT B),
that also builds upon the principles of conditioning. Lil@ibded conditioning, it explores
fully A cutset tuples, and bounds the rest of the probability massadpover the unex-
plored tuples. The scheme improves over bounded condigoini several ways. First, it
bounds more accurately the mass of the unexplored tupleslym@mial time. Second,
it uses cutset sampling (see Chapter 2) for finding high-goitibacutset tuples. Finally,
the any-time framework allows to plugin any scheme for bawogpgbint probabilities over
unexplored tuples. In particular, utilizing an improvedigat of bound propagation within
our any-time framework yields greater accuracy as a funaifdime than either bounded
conditioning or bound propagation alone.

Section 4.2 provides background on the previously proposethods of bounded
conditioning and bound propagation. Section 4.3 definesAuB framework. In our
derivation, we tie the computation of bounds on posteriorgmnals to bounding a poly-
nomial number of probabilitie®(z;, ¢1.,, €) and P(cy.,, €) wherecy., = {c1,...,¢,} is an
instantiation of a subset of the cutset variables. Sectibdidcusses implementation issues

concerning bounding aP(z;, ¢1.4, €) and P(cy.4, €) with bound propagation. The search
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for h high-probability cutset tuples using cutset samplingv&giin Section 4.5. We report

on our empirical results in Section 4.6 and draw final conohusin Section 4.7.

4.2 Background

We continue to use the notation defined previously. Nameéyuge upper case letters,
such asX, to denote subsets of variables. In particular, we will 3s& denote a set of
all variables in a Bayesian network aatto denote a subset df. Borrowing terms from
graph theory, we will also refer t0' as a cutset of the network’s graph.

We will use upper case letter with subindex, suchXasto denote a single variable.
We use lower case lettersandzx; to denote an instantiation of a set of variables or a single
variable respectively. We will often denote a specific infion of subset of variables

asc’, using the superindeix

4.2.1 Bounded Conditioning

Bounded conditioning is an any-time scheme for computinggrms bounds in Bayesian
networks [56]. Itis derived from the loop-cutset conditiipmethod (see Eg. (4.1)). Given
a Bayesian network oveX, evidencel' C X, E = e, a loop-cutseC' C X\ F, and some
nodeX; € X, the method computes exacthy(c, e) and P(z;, ", e) for h cutset tuples
with the highest prior weigh(c¢‘) and bounds the rest using prior distribution.

Let M denote the total number of cutset tuples. In [56], the agtlde@rive bounds
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from the following formula:

M h M
P(zle) = ZP(IL’[|Ci,€)P(Ci’e) = ZP(xl]ci,e)P(ci\e) + Z P(z1|¢', e)P(c'|e)
i=1 i=1 i=h+1
(4.2)
Deriving Lower Bound
SettingVi > h, P(x|c',e) = 0 in the Eq. (4.2) yields a lower bound @M z;|e):
h
P(xle) Z (z1]c*, €) P(c'le) 4.3)
SinceP(c'|e) can be expressed as:
P(c'le) = (e, o) (4.4)

Yo P(el€) + 3300 P e)
we can obtain a lower bound df(ci|e) by replacingP(c’,e), j > h, in the denominator

of the Eq. 4.4 with the upper bound val&&c’), yielding:

I P mm— 0 E—
Zj:l P(d,e) +Zj:h+l P(d)

Substituting the right-hand size of Eq. 4.4 #B(c'|e) in Eq. (4.3) yields a lower bound on

P(zye):
P(ce) X P(ulc e)P(ce)
FHale) ZP S G 1 ST P0) S P0he) 5 s PO)
(4.5)

Finally, sinceP(z;|c’, e)P(c!, e) = P(x;, ¢, e), we get:

Zh 1P("L‘laci7€)
PL(g v 4.6
) = S e o+ 2 Ple) (46
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Deriving Upper Bound

Starting again from equation (4.2), an upper bound is obthly settingP(z;|c!,e) = 1
for i > h and replacingP(c’|e) with some upper bound, which we denote &i5(c'|e).

Namely:
h

P(z]e) < Z P(xy|c’,e)PY(c Z PY(c 4.7)

=1 i=h+1

Fori < h, we can obtain an upper bound’(cile) from Eq. (4.4) by dropping the

Zf‘ihﬂ P(c',e) from denominator. Substituting the resulting upper boumdEq. (4.7)

yields:

P(xile) Z (z] ¢, ZP— ZPU (4.8)

i=h+1

FactoringP(z;|c%, e) into the numerator and replacidg)z;|c’, ) P(c%, ) with P(z;, ¢, e),

we transform Eq. (4.8) into:

h i M
Plnfe) < 2z P00 S puy (4.9)

An upper boundP?(c'|e) for i > h can be obtained through a series of transformations

which we detail in Appendix B, yielding the final upper bound®fx;|e):

PY(zle) =

S P(u,ce) | L D PP
. : + P(c) + - 4.10
Z?:l P(cie) i:;—s—l ) Z?:l P(c,e) ( :

Note that in the upper bound derivation in [56], the authefsasate thé tuples into
two groups. The first group contains the tuples for which ld@ahconditioning computes
exactly bothP(c?, ¢) and P(z;|¢", e). The second group contains tuples for which bounded

conditioning only computes exactl(c’, ¢) and uses(x;|c!, e) = 0 in the lower bound
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formulation, andP (z;|c!, e) = 1 in the upper bound formulation. Let, m < h, denote
the number of tuples for which the algorithm compus;|c’, ¢) exactly. Then, the lower

and upper bounds derived in Eq. (4.6) and (4.10) respegtnegdome:

. S Plad )

P~ (x;le = , 411
O = S ) + 3 (@) @1
S Plandie) Yo PEe LY P

Pl = S5 e T e 2 MO

(4.12)

It is clear thatP’(x;le) > P¥(x;|e) and PY(z;le) < PY'(xle). In the future, we use
PL(x)e) in Eq. (4.6) andPY(z;]e) in Eq. (4.10) as the basis for comparison with our
any-time bounds.

Clearly, the bounds expressed in Eq. (4.6) and (4.10) coaverghe exact poste-
rior marginals ass — M. The convergence rate depends on the form of the distritbutio
P(Cle). The scheme was validated in [56] on the example of the Alagtwork with 37
nodes. Its loop-cutset contains 5 nodes and the number sdétduiples equald/ = 108.
Applied to an instance of the network without evidence, lataehconditioning algorithm
produced a small bounds interval, on the order of 0.01 or &&= generating 40 out of 108
cutset instances. However, when evidence was added, pnogdise same 40 cutset tuples,
the bounding intervals length increased. Specificallyh\Bitand 4 evidence variables, the
bounding interval length rose te 0.15. Hence, while the empirical results demonstrated
the convergence of bounded conditioning, they also sholedéterioration in the scheme
as more nodes are observed.

Note also that the upper bound in Eq. (4.10) can become grémte 1. Dropping
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the first two addends from Eq. (4.10), we obtain:

PV o) > Z PO
B Z?:l P<Ci7 e)

And since> " | P(c,e) < S°Y P(c,e) = P(e), we get that:

PY(ile) >

This shows that”? (z;|e), as defined in [56], can become arbitrarily large whg) is

small compared t@(c").

4.2.2 Bound Propagation

Bound propagation (BdP) [76] is an iterative algorithm thaliags the local network
structure to formulate a linear optimization problem focleaodeX; € X such that
the minimum and maximum of the objective function corregsptmthe upper and lower
bounds on the posterior margin&l(z;|e). Let Y denote Markov blanket of nod&;

ma; =Y = {Y1,...,Y;}. The idea is to compute posterior marginals via:

P(zile) = > P(@ilys, - ye) P(ys, -, yele) (4.13)

whereP(x;|y1, ..., yx) IS an entry in the probability table of; conditioned on the instan-
tiation of variables in its Markov blanket, ..., y.. The joint probabilitiesP(y, ..., yx|e)
over the Markov blanket are unknown, but we know that the stiatl probabilities equals
1

> Py yile) =1 (4.14)
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FurtherYy; € D(Y;):

S Pl mle) = Plyle)

Denoting arbitrary lower and upper bounds Bty; |e) by P%(y;|e) and PY(y;|e) respec-

tively, we can write:

Pryile) < D Plyr, . usle) < PY(ygle) (4.15)

YAY;,Yj=y;

Hence, for each variabl&’;, we have a linear optimization problem with the objective
function P(z;|e), defined in Eq. (4.13), that is minimized or maximized witBpect to all
variablesP(yi, ..., yx|e). For each instantiation of the Markov variables= {v1, ..., yx },
the P(y, ..., yx|e) is a variable and(z;|y1, ..., yx ) is a coefficient of the objective function.
Therefore, the number of variables is exponential in the eizthe Markov blanket. The
constraints are defined in Eq. (4.14) (sum-to-1 constraimd) (4.15). For each variable

in the Markov blanket ofX;, there will be|D(Y;)| constraints of type Eq. (4.15). The total

number of constraints equalst ). [D(Y})|.

Example 4.2.1Let X; be bi-valued. Letna;, = {A, B}. LetD(A) = {0,1} andD(B) =
{0,1,2}. Let P(X;|A, B) be defined as follows:

P(zila=0,b=0) = 0.1

P(zia=0,b=1) = 0.2
P(zila=0,b=2) = 0.3
P(zla=1,0=0) = 04
P(zila=1,b=1) = 05
P(zila=1,0=2) = 0.6

Denoting P,,, = P(a = m,b = n|e), the objective function of the linear optimization
problem can be defined as follows:

P(l‘z‘€> = 0.1P00 + 0.2P01 + 0.3P02 + 0.4P10 + O.5P11 + O.6P12
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S.t.
Poo+ FPor + Poe + Pio+ P +Pa=1

PL(a =0le) < Py + Po1 + P < PY(a = 0le)
PX(a = 1le) < Pyy + Py + Py < PY(a = 1e)
P(b=0le) < Py + Pig < PY(b=0le)
PL(b=1le) < Py + Py < PY(b = 1]e)
PL(b=2le) < Py + Pia < PY(b = 2|e)

First, forvVX; € X\FE the algorithm initializesP (x;|e) and PY(z;|e) to 0 and 1.
Then, processing variables one by one in some o#léF, solves linear minimization and
maximization problems for each variable and updates thatdises P~ and PV. This pro-
cessis iterated until convergence (namely, until the beumedonger change). Convergence
is guaranteed since with every iteration the bounds geeckasthe posterior marginals or
do not change.

If we know a priori some lower and upper bound¥ (x;|e) and PV (x;|e) for some
variable X;, we can use those values in the initialization stedf”. However, in this
case, itis no longer guaranteed that the minimum and maxiofuhre linear optimization
problem will be as good or better than the current bound waltence, we have to check
for that before performing an updating step. We incorpothie generalization in the
outline of the bound propagation algorithm in Figure 4.1.

The inputs to the algorithm are a Bayesian network avVer= {Xj,..., X, } and
initial values of lower and upper bound¥ (z;|e) and PY (z;|e) for each variableX;. The

output of the algorithm are the revised lower and upper bsutdz;|e) and PY(z;e)

for each variableX; € X\ E. Inside the repeat loop we define a single iteration of bound
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propagation algorithm. In each iteratianX; € X'\ E the algorithm computes a conditional
probability tableP(X;|ma;) (step 1) and then solves the linear optimization problem for
each valuer; € D(X;) (steps 2 and 3). After computingin andmax of the objective

function, the lower and upper bounéé (z;|e) and PV (x;|e) are updated (step 4).

Bound Propagation
Input: A belief network over variablesX = { X1, ..., X,,}, evidenceE C X.
Input/Output: lower bounds array. B, upper bounds array B.
Repeat:
For everyX; € X\FE do:
For everyz; € D(X;) do:
1. Compute conditional probability table overn, =Y = {Y1,..., Y3 }:

P(xilyy, ..., yi) < aP(xilpa;) [ [ P(chjlpay), ¥y € D(Y)
J

2. Define constraints of a linear optimization problem:

ZP(ylv ,yk|€) =1
Y

Ph(yjle) < > Plyi,ykle) < PY(yjle), ¥Yj € Y, Vy; € D(Y))
YA\Y;,Y;=y;

3. Solve the problem using a standard LP simplex algorithm:

m; <« min Z P(zily1y s Yk, €) P(y1, ...y Yil€) (4.16)
Y1y Uk

M; — max Y P(xilys, .y €)P(y1, ., yile) (4.17)
Ylseeey Yk

4. Update Bounds
if m; > PY(x;|e) thenPL(x;|e) « m;
if M,; < PU(QJZ‘IQ) thenPU(xz-]e) «— M;
Until Converged

Figure 4.1: Bound Propagatio{ P) Algorithm

Each iteration of the algorithm requires solvifg(.X;)| problems for each variable
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X; € X\E (one for each value ak;). The total number of linear problems per iteration
is O(N - d) whereN = | X| andd is the maximum variable domain size. The maximum
problem size isi* variables, wheré: is the maximum number of variables in a Markov
blanket of variableX;, andd - £ + 1 constraints.

The paper [76] showed th&id P performed quite well on Ising grid and regular two-
layer networks. The algorithm was also tested with the Alagtwork without evidence.
Notably, in a network without evidence, the marginal pralidds of root nodes equal their
priors (which are given). In the case of Alarm netwoB P obtained small bounds inter-
val for several variables but did not obtain good boundsdot nodes 11, 12, 13, and 14.
This shows tha3d P exploits local network structure but ignores the globalwek prop-
erties. In general, it is not guaranteed to compute goodd®ewen in a singly-connected
network.

In practice, algorithmBdP as presented in [76] is feasible only for networks having
bounded Markov blanket size, such as grid networks or regatelom networks, since the
number of variables in the optimization problem in Figurg grows exponentially with

the size of the Markov blanket.

4.3 Architecture for Any-Time Bounds

In this section, we outline our any-time bounding schembuilds on the same principles
as bounded conditioning. Namely, given a cuts@ind some method for generatihgnost

probable cutset tuples (with high probabilitieéc|e)), the probabilities of thé tuples are
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evaluated exactly and the rest are upper and lower bounded.

Given a subset of variables C X, letk = |C] and leto = {c4, ..., ¢} denote an
ordering of the cutset variables. Let lower-case {ci, ..., c; } denote an instantiation of
cutsetC'. Let M = |D(C)| denote the number of different cutset tuples. Indexingesifil
through M/, we denote?, 1 < i < M, a particular tuple in that ordering. The symbols
andc’ will always denote an assignment to all variables in theetutd/e use:;., andc,,
to denote a partial instantiation of the cutset variableamily,c,., = {c1, ..., ¢, }, ¢ < |C],
denotes some assignment to the firstriables in cutsef’. The indexi in ¢}, indicates a
particular assignment to the specified subset of cutseiblas.

The algorithm computes exactly the quantitiesr;, ¢’, ), X; € X\ E, andP(c, e)
for 1 <i < hand bounds the sums”, ., P(x;,¢',e) andy ", .| P(c',e) fori > h. We
will refer to our bounds computation framework 4%'B for Any-Time Bounds.

The AT B architecture is founded on two principles. First, given astanth, it
replaces the sums over the tuptés!,...” with a sum over a polynomial number (i)
of partially-instantiated cutset tuples. Details are jpted in Section 4.3.1.

Second, in Section 4.3.2, we develop new expressions f@rlend upper bounds on
posterior marginals as a function of the lower and upper dsum the joint probabilities
P(xy, 1.4, €) andP(cy.4, €). We assume in our derivation that there is an algorithrhat
can compute those bounds.

We defer the problem of selecting high probability cutsgids to Section 4.4 and

the bounding scheme fdt(z;, ¢1.,, €) and P(c;.,, e) to Section 4.4.1.
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4.3.1 Bounding the Number of Processed Tuples

We obtain the any-time bounding scheme starting with theatutonditioning formula,
similar to the way bounded conditioning was developed. Ga®ayesian network over a
set of variablesY, evidencell C X, E = ¢, acutseC C X\E, letM =[], . [D(C;)

be the total number of cutset tuples andidie the number of the generated cutset tuples,
0 < h < M. We can assume without loss of generality that we generatd:ftuples

in some enumeration of all tuples. Then, for a nogewith x; € D(X;), we can re-write

Eqg. (4.1) separating the summation over the generatedstuptheough’. and the rest as:

h i M i
P(.’L‘”e) _ Z’i:l P(.CCE, c 76) + Zi:h+1 P(:C27 c 76) (4.18)

Z?:1 P(ce) +Z££h+l P(ce)

ProbabilitiesP(x}, ¢, e) and P(c',e), 0 < i < h, can be computed in polynomial time if

C'is a loop-cutset and in time and space exponential ihC' is aw-cutset. The question
is how to compute or boun@f‘ihﬂ P(z), ' e) andzij‘ithl P(c, e) without enumerating
all tuplesh + 1 through.

Consider a fully-expanded search tree of dgpthover the cutset search space ex-
panded in the orde,...C, k£ = |C|. A path from the root to the leaf at deptty|
corresponds to a full cutset tuple. Assume that we mark allttbée edges on paths that
correspond to the first generated cutset tuples. Then the unexpanded tuplés> h,
correspond to the unmarked leaves. We can obtain a trunsatedh tree by trimming

unmarked leaves as follows:

DEFINITION 4.3.1 (Truncated Search Tree)Given a search tred’ covering the search
space’H over variablesXy,....X,,, a truncated search treerelative to a subsetS C
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D(X1) x ... x D(X,) of full assignmentsS = {z,...,2'} wherea’ = {2, ..., 27}, is
obtained by marking the edges and nodes associated Svahd then removing all un-
marked edges and nodes except those branching out from dnaokies.

Figure 4.2: A search tree for cutsét= {C1, ..., C, }.

The leaves at depth |C| in the truncated tree correspond to the partially- instdetl
cutset tuples. A path from the ro6t, to a leafC,, ¢ < |C|, is a tuplec;,, = {c1, ..., ¢, }
over a subset of the cutset variables. The full cutset istéehr c;.,, wherek = |C.

An example of a truncated search tree is shown in Figure A2n@ cutse€={C, ..., Cy }
of size 4,D(C1)={0, 1}, D(Cy)={0, 1,2}, D(C5)={0,1}, D(C4)={0,1}, and four fully-
instantiated tuple$0, 1,0,0}, {0,1,0,1}, {0,2,1,0}, {0,2, 1,1}, the remaining partially
instantiated tuples ar®, 0}, {0, 1,1}, {0,2,0}, and{1}.

It is easy to see that the numhefl’ of truncated tuples is bounded BY% - (d — 1) -

|C), whered is the maximum domain size, since every néden the path from root”;
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to leafC}, can have no more thg@ — 1) emanating leaves.

PROPOSITION4.3.1If C' is a cutset,d bounds the domain size, ardis the number of
generated cutset tuples, the number of partially-instetl cutset tuples in the truncated

search three is bounded I6y(h - (d — 1) - |C). [ |

We can enumerate the partially instantiated tuples, degakie;-th tuplec{:qj, 1<j<
M’, whereg; is the tuple’s length. Clearly, the probability mass overdttset tuples”*,

...,c™ can be captured via a sum over the truncated tuples. Namely:

PROPOSITION4.3.2

M M
Z P(c'e) = ZP(C{:qj,e) (4.19)
i=ht1 j=1
M M
Z P(x;>clve) = ZP(%’;,C{;(H,E) (420)
i=h+1 j=1

Therefore, we can bound the sums over tuples1 throughM in Eqg. (4.18) by bounding

a polynomial number of partially-instantiated tuples.

4.3.2 Bounding the Probability over the Truncated Tuples

Now we will derive the expressions for bounding the postemarginals. Replacing the
summation over tupleg + 1 through M with summation over the partially-instantiated

tuplesl throughM’ in EqQ. (4.18), we get:

P(l‘l 6) o Zzhzl P("EL Ci7 6) + Zj\il P(l’;, C{:qﬁe)
l - . 7 .
2?:1 P<CZ7 6) + Z]J\/il P(C{:qﬁ 6)

Assume that we have an algorithuh that, for any partial assignment.,, can generate

(4.21)

lower and upper boundBf (c1.q, ¢) and P{ (1.4, €) and P*(x;, ¢4, , e) and PY (x, ¢l , €)
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for any valuer; € D(X;) of any unobserved variabl&; s.t. Pi(ci.,,¢e) < P(crge) <
PY(c1.q,€) and P (zy, c1.,€) < P(x1, 1, €) < PY (21, ¢1,4,€). In the future derivations,

we sometimes drop the algorithm’s name.

Deriving Lower Bounds

A brute force lower bound expression of Eq. (4.21) can beiobthby replacing each
P(zy, c{:qj , e) with its lower bound (reducing numerator) and ezﬂ(l@{:qj, e) with its upper

bound (increasing denominator) yielding expressin:

h M’
Z P(xj, ¢, e) + Z P£($;7 C{:qj ,€)
P(z)le) > = = 2 phi(xlle) (4.22)

h

Y P e)+ ) Pilcly, )

i=1 j=1
However, a tighter bound can be obtained if we apply addifitransformations to Eq. (4.21)
and prove a helpful lemma. First, we decompﬁ.{e{:qj, e),0 < j < M’ as follows:

lqj ZP xla 1:q; € —P($2,C{:qj,6)+ Z P(xl,d:qj,e) (423)
1 #£T]

ReplacingP(c{:qj ,e) in Eq. (4.21) with the right-hand size expression in Eq.3}.%e get:

h M’

ZP(xE,ci,e) —I—Zp(x;,c{:qj,e)
P(zle) = — = = (4.24)
Z ce+ZPa:l, Lig; € +ZZPCEZ,
=1 gg,;ég;l] 1

We will use the following two lemmas:

LEMMA 4.3.1 Given positive numbers> 0,b > 0,6 > 0, if a < b, then: § < ‘;Ig ]
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LEMMA 4.3.2 Given positive numbers b, ¢, ¢, ¢V, if a < bandc! < ¢ < &Y, then:

L U
a—+c <a~|—c<a+c
b+cl —b4+c b4V

The proof of both lemmas is straight forward. Lemma 4.3.Zghwt if the sums in nu-
merator and denominator have some compomrent common, then replacing with a
larger value in both numerator and denominator yields aldigction. Replacing with
a smaller value in both places yields a smaller fraction.

Observe now that in Eq. (4.24) the sums in both numerator andrdinator contain

P(z),

1.q,- €)- Hence, we can apply Lemma 4.3.2. We will obtain a lower bobyde-

placing P(z;, d...e),1<j <M, inEq. (4.24) with corresponding lower bounds in both

l:q;°

numerator and denominator, yielding:

h M’

> P(aj,ce)+ Y Pil(a) o €)
=1 =1
SO )+ D0 Phh )+ 30D Plan )
i=1 j=1 a#£z) j=1
Subsequently, we replad®(z;, ¢!, ¢ €)s 1 # xp, With its upper bound, yielding:
h M’ _
> Pl e)+ Y Pilag cly,e)
P(ajle) > — = 2 P (aile)
3P+ Y. Phlahclye) + S P e
i=1 j=1 zyFx) J=1

(4.26)
Hence, we have obtained two expressions for lower bound@rj|e), PL* defined in
Eq. (4.22) andP*2 defined in Eqg. (4.26). Both schemes are defined as a functioppafru
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and lower bounds derived by an algorithth Neither bound dominates the other. In
Section 4.3.3, we will define conditions under whieh? is tighter thanP’*. In particular,

we will show thatP’2 is always better tha®’! if |D(X;)| = 2.

Deriving the Upper Bound Expression

The upper bound formulation can be obtained in a similar raanince both numera-
tor and denominator in Eg. (4.24) contain addeﬁ’cdsl, iq, e), using Lemma 4.3.2 we
replace eactP(z;, ], , ¢) with an upper boundy (z7, ., , ) yielding:

h M’

Z P(x, ¢, e) + Z Pi{(:v;, C{:q]-ae)

i=1 j=1

P(xjle) < (4.27)
l h M/

S P+ 3 Py + X S P,

=1 7j=1 xl;ézlj 1

Subsequently, replacing(z;, c{:qj ,e), x # z', with a lower bound (reducing denominator),

we obtain a new upper bound expressiBf:, on P(z}|e):

h M’

Z P(z),c',e) + Z PY (), c{:qj, e)

i=1 =1
3 Pe) + 3 Pileh g )+ 3 Y Phlrn o
=1 ] 1 mlgézlj 1
(4.28)

The derived boundsP%:, P2, and P, are never worse than those obtained by bounded
conditioning, as we will show in Section 4.3.3. In partiaulanlike the derivation in
bounded conditioning, the upper bound above is guarantebd £ 1 for any lower and

upper bounds o (z;, c{:qj, e), even if we plugin the trivial 0 and 1 bounds.
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Deriving Bounds for Cutset Nodes

The main difference in the formulation of the bounds for asetthodeC; is that only
a subset of thé: cutset tuples will have”; = ¢;. Therefore, the number of partially-
instantiated tuples for different values @f may differ. Thus, we use Dira&function in
the denominator to indicate that summation is only overdlmsgset tuples wher€, = ;.
i.e., (¢, ¢j) = 1iff the value of variableC; in a tuplec’ equalsc;. We use subindey; in
M, to denote the number of partially-instantiated tuples wii@ér= ;. We provide the
detailed derivation in Appendix C. Here, we only summarizerésults. For anyg; € C,

the following is an upper bound expression fofc)|e):

M,
> a(e )P e) + Z P (cly,€)

PU(d)le) = = ' (4.29)

Z ¢t e—i—ZPA lig; € —i—ZZPA 1ig;0 €

=1 Cﬁécl j=1

The two expressions for lower bounds, corresponding’to(z;|e) and PX2(z,|e) are:

PR (dle) = - = (4.30)

P2(cle) = ‘ | (4.31)

Z ¢ e—i—ZPA Lig;» € +ZZPA 1iq;0 €

=1 C 7£Cl ] 1
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Any-Time Bounds Architecture
Input: A belief network(B), variablesX, evidencel) C X, cutsetC' C X\ E, constant,
algorithm.4 for computing lower and upper bounds.
Output: lower boundsP”, upper bound$?.
1. Generaté cutset tuples.
2. Compute:
S — Yi, P(de)
Sy S P(xy,ée), Vo e D(X)), VX, € X\(C,E)
3. Traverse partially-instantiated tuples:

3.1 Generate the truncated tree associated witth theples and let},, , ..., c{‘?q'M, be
the M’ partial assignments.
3.2 Compute:

S~ zjj\/ill P.El](c{:qj?e)

LBu(z;) — Y10, P(a, Clgpr€)s Yo € D(X)), VX, € X\(C,E)

UBua(z1) < >)%, PY(x1,¢],, . €), Vo € D(X)), VX; € X\(C, E)
4. Compute bounds:

Si+LBa(zy)
!

PL(z)|e) = max s Si+LBa(z}) (4.32)
S+LB_A(17;)+Z$Z#Z; UB_A(:EZ)

B Si+ UBa(x))
S FUBA]) + Syypag EBA)

PY(z}le) (4.33)

Figure 4.3: Any-Time Bounds Architecture
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Properties of AT B

The any-time bounding scheme is summarized in Figure 4.8tejps 1 and 2, we generate
h fully-instantiated cutset tuples and compute exactly philities P(c’, ¢) and P( X, ¢!, e)
fori < h,VX;, € X\(C, E). In step 3, we compute bounds on partially instantiateceipl
using algorithmA. In step 4, we compute the bounds on the posterior margiGalen the
lower and upper bounds computed using algorithpthe upper bound is computed using
expression (4.33). The lower bound is defined by the maximtitheotwo lower bound

expressions in Eq. (4.32).

Example 4.3.1Consider again a Bayesian netwaBkfrom previous example. Recall that

it has a cutsetC’ = {C1, ..., Cy} with domainsD(C;) = D(C3) = D(Cy) = {0,1} and
D(Cy) = {0,1,2}. The total number of cutset tuplesig = 24. Let X, be a variable in

B. We will compute bounds af(z)|e). Assume we generated the same four cutset tuples
(h = 4) as before:

¢! ={0,1,0,0},
> =1{0,1,0,1},
¢ =10,2,1,0},
t=1{0,2,1,1}

The corresponding truncated search tree is shown in Figuze Bor the tuple{0, 1,0, 0},
we compute exactly the probabiliti¢3(x;,0,1,0,0,e) and P(0,1,0,0). Similarly, we
obtain exact probabilities?(z},0,1,0,1) and P(0, 1,0, 1) for the second cutset instance
{0,1,0,1}. Sinceh = 4, .1 | P(x},¢’,e) and " | P(&, e) are:

4
S Plapce) = Plalce)+ Plale) + Plai ) + Plai )

Z P(c',e) = P(c',e)+ P(c* e)+ P(c e) + P(c*,e)

The remaining partial tuples areil , = {0,0}, 25 = {0,1,1}, ¢5.; = {0,2,0}, andc] ; =
{1}. Since these 4 tuples are not full cutsets, we compute bourttieiojoint probabilities.
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Using the same notation as in Figure 4.3, the sums over thegligrinstantiated tuples
will have the form:

UBA(xl) = Pg(xlv C%:Qv 6) + PX(Ib C%:EH 6) + Pf[{(Il? C?:?ﬁ 6) + Pg('rl? 6411:17 6)

LBA(xl) = PI{XJ(IE C%z2> 6) + Pj(l‘lv C%:B? 6) + PI{((IE C?:B? 6) + Pj(xlv 0411:17 6)
From Eq. (4.28) we get:

PUl(xHe) - — Z?:l P(a], ' e)+ UB(x))
>im Plcte) + UBa(x)) + Zmﬁéx; LBa(x1)

From Eg. (4.22 and (4.26) we get:
>iny Plar ¢’ e) + LBa())
Yia Plee) + 305 P(cly, )

PL2 (I”e) — - Z?:l P(xl7 Ci? 6) + LBA(‘”E)
S P(eiye) + LBaal) + 300y UBalw1)

The total number of tuples processedis = 4 + 4 = 8 << 24.

PP (af]e) =

If C is a loop-cutset, then computing the exact probabilift¢s, ¢) and P(z;, ¢!, )
takesO(N), whereN is the size of the input, and the total complexity of compgtihe

exact probabilities foh tuples isO(N - h). We can conclude:

THEOREM4.3.2 (Complexity as a function of loop-cutset)Given an algorithmA4 that com-
putes lower and upper bounds on the joint probabiliti&s;.,,, ) and P(z, ¢y, €) in time
O(T), if C'is a loop-cutset thedlT'B expressions (4.22), (4.26), and (4.28) can be com-
puted inO(h- N +T-h-(d—1)-|C|) whered is the maximum domain size and N is the
problem input size.

Theorem 4.3.2 follows immediately from Proposition 4.3ltlshows that since the
number of partially observed cutset tuples grows polyntyweath &, the AT B scheme is

polynomial if the plug-in bounding algorithid is polynomial.
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4.3.3 Comparison of Bounding Schemes

Next, we compare the lower bound expressions (4.22) ané)4u&d provide conditions

under which the lower boun&?’2 is tighter thanP’,

Comparing Expressions for Lower Bounds

We will show that under certain conditions the lower bouﬁﬁi value givenin Eq. (4.26) is
larger than the value of the brute force lower boU?ﬁj given in Eq. (4.22). In particular,

P} is guaranteed to dominafe;' when nodeX; has domain of size 2.

THEOREM4.3.3 (Lower Bound Dominancel)Assume an algorithml computes bounds
P*(ci,,,e) and PY(c],, ,e) on P(c},, ,e) and boundsP” (z;|c,,., e) and PY(z|c],, . €)
on P(z|cf,,,, e) for 1 < j < M’ andVa; € D(X)). Let:

l:q;> 1:q;° l:q;°

P! (1,1, €) = PH(ailcl,, e) PE(cly,  €)

g5

PU(xhC{:qjve) = PU($I|C{:q]-7€)PU(C{:qj7€)

PH(a)|c], e) < 1= )" PY(xild,,.€) (4.34)
w1,
then
PY (z1]e) < P'2(ajle)

whereP™ (x]|e) and P'2(z]|e) are defined in Eq. (4.22) and Eq. (4.26) respectively.
The proof is provided in Appendix D.

COROLLARY 4.3.1 (Lower Bound Dominance2)Assume an algorithid computes bounds

PL(c].,. ,e)andPY(c]., ,e)onP(c]

l:g;0 1:q;0 l:gj>

e) and boundsP*(z,|c},, , e) and PV (x| ¢, , €) on

P(z|c., e) for1 < j < M’ andVax; € D(X)). Let:

P! (21, ¢l €) = PH(ailcl,, e) PE (el )

g5
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PY(21,¢],,, ) = PY(w|cl.,, )PV (el )

If D(X;) = 2thenP(zj|e) < P2 (x)|e) where P*1(x}|e) and PL2(z]|e) are defined in
EqQ. (4.22) and (4.26) respectively.
The corollary follows from observation that the conditioqpeessed in Eq. (4.34) in Theo-
rem 4.3.3 can be always enforced in nodes with domains oPsikamely, for anyX; € X
with domainD(X;) = {z}, '}, if P*(xj|c,, . e) > 1 — PY(x]|cl,,, e), then we can adjust
upper bound valué®V (z}|ci,, ,e) to 1 — P*(xj|c}., .e). For nodes with domains of size
> 2, we should compute both bounds and pick the highest value.

Next, we continue investigating the propertiesAf B bounds by comparing them

to the bounds obtained by bounded conditioning [56].

Comparing AT B framework with Bounded Conditioning

In AT B framework, the lower bounds are defined by expressions 422 (4.26). Let
us denote by BF a brute-force algorithm that trivially insiates P (z;, c{':qj, e) = 0 and
PY(x),c],,,,e) = 1for Vo, € D(X)) and also set$V(c],, ,e¢) = P(c],,). Then, from
Eq. (4.22), we get:

Zh 1P(q;§)ci7@) Z}-Z:1 P(xgvciae>
i — i — - 7‘ i - (435)
Zz P e) + Zj:l P(ﬁ;qj) > P(ce) + Zj:thl P(d)
Using algorithm BF with lower boun@’2 in Eqg. (4.26), we get:
Zh 1 P(ZEE, Ci 6) Z}'lzl P([E;, Cia 6)
h - iV = = ‘ - — (4.36)
Zi:l P(ct,e) + Z P( ) Zi:1 P(cte) + Zj:h—‘,—l P(cd)
The right hand side in the equations (4.35) and (4.36) eqnelexpression for the bounded

Pyp(aile) =

Py (xile) =

conditioning lower bound in Eq. (4.6). NameR;L (z)|e) = Pk (x)|e) = P*(2)|e) where
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PL(x}]e) is obtained via Eq. (4.6). SincBy* > PjL(z)le) and P> > PLi(x)le), then
Py, Pi? > Ph(ale).

We can prove in a similar manner that tHé" B upper bound”" (z/e) is as good
or better than the upper bound obtained by bounded conttijonApplying the brute-
force algorithm BF, defined above, to boufdz;, ¢/ 1,0 €)s andP(c{q ,e), we get from
Eq. (4.28):

Z?:l P(ZEE, Ci 6) + + ZM/ ( A j) _ Z?:l P($27 Civ 6) + ZjM:h—l-l P(Cj)
Sy P(ee) + 3250 Plel,) iy P(ee) + 50,0, P(ed)
(4.37)

Ppp(xile) =

The expression foP}}, gives us the worst-case upper bound that can be obtaingd 8y
from Eq. (4.28). In the next theorem, we prove that the uppent PS5, (z|e) is as good
or better than the bounded conditioning upper bound. Nam}é;fy dominates bounded

conditioning as long a®¥ (z;, c]. a0

¢) < PY(cl,,,):

THEOREM4.3.4 Given an algorithmA that computes lower and upper bourds(z;, c]. 0 ,€)
and PY{(z;, ], ,e) such thatvj, P{(z;, c],,,e) < P(cl,,) then P (zle) < PY(ze)

1:qj7
where P{ (z;]e) is given in Eq. (4.28) and®V (z,|e) is the bounded conditioning expres-
sion given in Eq. (4.10).

The proof is given in Appendix D.

Weak AT B Bounds Framework (AT B")

In this section, we derive bounds expressions fareakform of AT B, denotedAT B*.
We assume here that we plug-in a bounding schefribat only computes upper bound
PY(c1.4,€) On P(c14,€). We assume that algorithtA either cannot compute bounds on
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P(z;,c1.4,€) Or incurs a lot of computational overhead doing so. In pcagtive may want
to avoid this overhead and use the time to generate moret tupdes (increasea).

Following our assumption that cannot produce non-trivial lower bounds #®(z;, ¢1.4, €),
it instantiatesP%(z;, c14,¢) = 0 and, sinceP(z;,c1q4,e) < P(c14,€), it instantiates
PY(x,c1.4,€) = PY(c1.4,€). Plugging in lower bound 0 and upper bouf (c;., e)

for P(x, c1.4,€) in EQ. (4.22), we get:

PLS (.T ‘ ) Z?:l P(x27 Ci? 6) i (438)
4 e Zz 1 P(CZ ) + Zj]\i/h—o—l P.AU(Ci:q]w 6)

Similarly, replacing the lower and upper boundsid;, ci.,, ) with 0 andPY (1., €)

in the upper bound expression in Eq. (4.28), we obtain:

Zz 1P(xl’c 6)+ZM P_A<C{q] e)

) S e o+ s Pl .0

(4.39)

Note that the expressions for lower and upper bounds in E88)4nd (4.39) above depend
only on the values?(c*, ¢) and P(x;, ¢’, ¢) obtained via exact computation over the fiist

cutset tuples and the upper bound valu&§c,.,, ¢) for the partially instantiated cutset
tuples. The penalty for using these more relaxed plug-imteus that there exists a lower

bound on the computed bounds interval length:

THEOREM4.3.5 Given an algorithmA that can compute an upper bound é*c;.,, e),
wherecy., is a partial cutset instantiation, and givenfully-instantiated cutset tuples,
1 <1 < h, then:
h .
- P(ce)
pUs _ pla » 2uiz P(C€)
SR 20

whereP%?* and P}* are expressed in Eq. (4.38) and Eq. (4.39) respectively.
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Despite these weakening simplification&]' B" is guaranteed to produce as good
or better bounds as those obtained by bounded conditionlitnge proof is obtained by
plugging intoAT' B" the brute-force bounding scheme BF described in Sectio.4.3.

We will investigate empirically the trade-offs betweengging in tighter bounds into

AT B framework vs. computing more cutset tuples usingAl&3™ framework.

4.4 Incorporating Bound Propagation into AT B

In Section 4.3 we defined the Any-Time Bounds framework. Fedneh the conditioning
principles, the framework computes exacilyz;, ¢, e) and P(c, e) for h cutset tuples and
then uses precomputed bounds B, ¢1.,, €) and P(cy.,, €) for the remaining partially
instantiated cutset tuples which will be plugged into theregponding expressions. In
Section 4.4.1, we present a method for bounding proba@silRi(z;, c;.,, ) and P(cy.,, )
that is based on bound propagation. Then, in Section 4.4 8lescribe a simple improve-
ment to the bound propagation algorithiBa/P. Section 4.4.4 describes an approximate
algorithm for solving the linear programming subproblemshe context of bound prop-
agation, without using the simplex solver. As we will showil the resulting bounds
are not as tight, the scheme is an order of magnitude fasteitlzrefore, may present the
right trade-off between time and accuracy when used wittiiiB. Finally, Section 4.4.5

presents an additional improvement using#¥éB bounds as inputs to bound propagation.
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4.4.1 BoundingP(ci.,e) and P(x;, c1.4, €) using Bound Propagation

We cannot use the bare outputs of bound propagation dinectly/’ B because3d P com-
putes bounds on the conditional probabilitié&r; |e) rather than on the joint. In order to
useBdP, we denoteZ = (., U E and factorize the joint probability’(c,.,, e) = P(z) as

follows:

P(z) = [ P(zlz1, . 1)

Zj€EZ

Each factorP(z;|2, ..., zj_1) can be bounded bigd P, yielding:

P(z) = H Prap(2j|21, s 2j-1) £ Ppgp(2) (4.40)
zZ;€2

P(z) < H Pgdp<zj|zla s Zj-1) 2 Ppap(2) (4.41)
zZj€2

Processing variables in some order {7, ..., Z, }, we first apply algorithmBdP to the
network without any observations and bouR¢:;). Then, we assigy; = z; and apply
algorithm Bd P again to compute lower and upper bounds R, |z;), and so on. For
eachZ; € Z, we runBdP and obtain bound$5,,(z;|z1, ..., zj—1). Depending on the
ordering of the variables, some of the factét§:; |z, ..., z;_1) may be computed exactly
if the relevant subnetwork of;, ..., z; is singly-connected.

Similarly, the joint probabilityP(z;, ¢1.4, €) can be factorized as:

P(%l, Cl:q7 6) = P(xllclzq: e)P(Clzqa 6)

Using the decomposition above, we can obtain lower and uppends onP(x;, ¢1.4, €) as
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well:

Pédp(mla C1:q) e) = P]édP(xl’Cl:m e)PédP(cliqv e) (4.42)

PgdP(ml’ Cl:qy 6) = PgdP(wl’CMN e)PgdP(cliqa 6) (4-43)

where P%,5(1]c1., €) and PY,p(z1|c1.,, €) are obtained by algorithnd P directly and

PLp(crq,€) and Py, 5(c1.,,, €) are obtained from Eq. (4.40) and Eq. (4.41).

4.4.2 Optimizing Variable Processing Order

The factorization order of the variables fhmay affect the efficiency of computation, i.e.,
BdP computation time and the tightness of the resulting bouridmay also affect the
number of factors’(z;|#1, ..., zj_1) that can be computed exactly. Here, we analyze two
factorization strategies.

One possible strategy is to process evidence variablesNiashely, compute:

P(e)hap =[] Pharleiler. ez (4.44)
ej€e

P(e)fap = [ Pharleiler, i) (4.45)
ej€e

Then, the lower and upper bound #c, .., e) can be obtained by:

PjédP<Cltqa e) = Pgap C]|Cl7 - Gi—1, G)PjédP(e) (4.46)

PBUdP(Clzqa e) Ppap C]‘Cb = Ci—1, e)PBUdP(e> (4.47)

17
ﬁ
where bounds orP(cjcy, ..., c;_1,¢) are computed directly by3dP and P%,.(e) and

PY,»(e) are obtained from Eq. (4.44) and (4.45). In the above scenag can precom-
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pute P}, (e) and PY,(e) before we start bounding truncated tuples. Then, for eart tr
cated tuplec;.,, we will only need to runBd P algorithmg + 1 times, one time for each
P(cjley, ..., cj_1,€), and one more time to bourf¥(x;|c,.,, €). The complexity of the above

computation scheme is as follows:

THEOREM4.4.1 (complexity 1) Given a Bayesian network over a set of variahlésvith
the maximum domain sizeand loop-cutset”, the complexity ofA7'B with bounds pre-
computed byBd P using the variable factorization order = {E£,C} is O(|E| - Tpap +
|C|?- h-(d—1) - Tgqp) When the time complexity &fdP is O(Tgyp ).

Proof. The complexity of precomputing bounds &e) usingBdP is O(|E|-Tqp) Since
we execute algorithm once for each evidence variable. Theplaxity of bounding one
truncated tuple is at mosk(|C| - Tsqp) Since a truncated tuple can contain updg — 1
cutset variables. Since there &@¢|C| - h - (d — 1)) truncated tuples (Proposition 4.3.1),
the result follows. ]

An alternative strategy is to process variables in topalagrder. Leb = {7, ..., Z,,}
be a topological order of variablesin Let Z~ = {Z,, ..., Z,,| Z,, = C,}, namely, letZ~
denote a subset of variablesinthat includes all cutset variabl€g throughC, and evi-
dence variables that prece@lgin topological order. LeE~ = ENZ~ andE"™ = E\Z~.
That is, the subseb~ contains the evidence variables precedingin topological order
(included inZ~) and E* contains the remaining evidence variables (not includedin
We factorize the joint probability’(c;.,, e) as follows:

P(ci.q,€) = P(z7,e") = H P(ejler,...,ej—1,27)P(z7)

ej€e+

We know that it is easy to compuf®(c, e) if C' U E form a loop-cutset. It turns out that
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computing probabilityP(z~) = P(c14,¢”) is easy too. The result follows from Theo-
rem 2.3.1 (proved in section 2.3 of chapter 2) which staf&sen Bayesian network over
X, evidence? C X, and cutset’ C X\ FE, letZ = C' U E be a loop-cutset. I¥ is topo-
logically ordered, thervZ; € Z the relevant subnetwork dfy, ..., Z; is singly-connected
whenZ,, ..., Z; are observed.

By definition, subse¥ ~ satisfies the conditions of Theorem 2.3.1. Therefore:

COROLLARY 4.4.1 Since the relevant subnetwork ovef, ande™ is singly-connected, we
can compute joint probability’(c;.,, e”) in linear time.

We can now apply algorithnisd P to the network conditioned oa., ande™ and
obtain bounds ot (e, |y, e7) for e; € e, then onP(esley, ¢1,4) for es € e, and in se-
quence get boundB}, . (¢;le1, ..., ej_1, 14, €7 ) ANAPY, p(€5]e1, ..., €1, c1.4, € ) fOr each

e; € e. Thus:

P(egie) > [ Phap(esler o1, crgs € )Plerg €7) £ Phgp(crg, ¢) (4.48)

€; cet

P(cliq7 e) < H PgdP(ej|elv 03 €1, ClLigy 6_)P(Cliq> 6_) = PgdP(clim 6) (4-49)

€; cet

The complexity of AT B when usingBdP as described above to precompute the input

bounds is given next:

THEOREM4.4.2 (Complexity 2) Given a Bayesian network over a set of variablesvith
maximum domain sizé and loop-cutseC, the complexity ofAT'B with bounds precom-
puted byBdP using the topological variable factorization order (N + Tgqp - (1 +
|E|))-h-(d—1)-|C|) whenN bounds the size of the input network and the time complexity
of BdP is O(Tde).

Proof. For each tuple;.,, we computeP(c,.,,e¢~) in O(N) and applyBdP |E*| times to
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compute bounds o (e|ci.4, e, €1, ..., e;_1) for each evidence variable ii*. We need

to apply Bd P one more time to compute bounds Bfiz;|cy.,, €). In the worst casdE | =

|E| and we execut&d P a total of(1+|E|) times for each truncated tuple. Hence, the total
complexity of bounding one partially-instantiated cutsgtie iSO(N + (1 + |E|) - Tgap)-
Since the total number of partially-instantiated cutsplds is bounded b§)(|C|-h-(d—1))
(Proposition 4.3.1), the total cost of bounding the prolighinass of the truncated cutset
tuples isO((N + Tgap - (L + |E|)) - h- (d —1) - |C)). |

In our experiments, we bound probabilities of the truncatgdes using topological vari-
able order in the factorization d?(c,.,, ). Although a better ordering, producing tighter
bounds onP(cy.,, e) in less time, may exist, the topological ordering of the ablés guar-

antees that the upper bound on the probability mass of thedtead tuples does not exceed

the prior probability mass of those tuples.

4.4.3 Improving Bound Propagation

Here, we describe how we can improve the accuracy and timedad? by taking into
account the network structure.

Since we plan to plug-iBd P into our AT B scheme, we must pay a special attention
to its performance. As showmdP’s complexity is exponential in the size of Markov

blanket.

Restricting Markov blankets

We will control the computation time of bound propagatiorréstricting the Markov blan-
ket space (or table size). The bounds of variables whose ddslkanket size exceeds

maximum will not be updated and, thus, will remain equal tirtmput values (usually O
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and 1). In turn, it will affect the quality of the bounds forigkboring nodes. As explained,
each nod€’; in the Markov blanket ofX induces a linear constraint of the form:

P (yle) < > Py, yxle) < PY(yjle) (4.50)

y\y;,Y;=y;

When the lower and upper bound¥ (y;|e) and PY(y;|e) are 0 and 1 respectively, then
the constraint expressed in Eq. (4.50) is redundant andyaltvalds. We can control the
trade-offs between computation time and tightness of thentd® using a parametérto

specify the maximum Markov blanket size, thus, obtainingr@metrized version of bound

propagationBd P (k).

Exploiting Relevant Subnetwork Properties

Next, we show how we can reduce the effective Markov blankst By restricting the
Markov blanket of a node to its relevant subnetwork (see &finl.2.5 in Section 1.2.1).

It is easy to see that the set of linear inequalities in EQH}can be restricted only to
the “relevant” portion of the Markov blanket of nodé. Therefore, for every nod&;, the
application of BdP can be made more efficient and will often include only thealalg’s
parent set.

Removing irrelevant nodes (and their parents) from the Maitianket whenever
possible results in a smaller Markov blanket size, shoengutation time, and more ac-
curate bounds as we will demonstrate empirically. In palaic if the relevant subnetwork
of node X is singly-connected then its posteriors can be computedtlgxale denote

by Bd P+ the bound propagation algorithm that exploits the idea lgfvent subnetwork
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structure.

In the next section, we present a greedy algorithm for sglthie linear programming
subproblems in bound propagation which computes suboptimmamum and maximum
of the objective function but substantially reduces the potation time. By replacing the
simplex solver with the proposed fast greedy algorithm, ttain an approximate bouvvnd

propagation scheme.

4.4.4 Approximating the LP in Bound Propagation

WhenBd P+ scheme is plugged into th&l’' B framework, we need to bound a large num-
ber of truncated tuples. We need to invoke bound propagatigorithm1 + |E| times
to bound one tuple (as we showed in the proof of Theorem 4.412a single iteration
of BdP+, we need to solvé® (| X\ E| - d), whered is the maximum domain size, linear
optimization problems (a different optimization problear €ach value of each variable).
Thus, theAT B framework requires to solve thousands if not hundreds afighnds of
linear optimization problems implied bid P+. Therefore, using the simplex method for
each problem becomes impractical.

It turns out that the linear optimization problems formathby bound propagation
fall into a class of linear packing and covering problemse $tandard fractional packing

and covering problem can be defined as follows:
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min ¢’ 7 (4.51)
s.t. (4.52)

AT > | (4.53)

B < m (4.54)

x; >0,V (4.55)

The problem without Eq. (4.54) is calledfiactional covering problem. The problem
without Eq. (4.53) is called fractional packing problem. As the constraints expressed in
Eqg. (4.15) have both lower and upper bounds, the linear agaiion problems inBd P+
contain both covering and packing constraints whére B and A is a 0/1 matrix. There-

fore, the bound propagation LP minimization problem candscdbed as follows:

min ¢’ T (4.56)

sty xj=1 (4.57)
j

1< AT >m (4.58)

0<z; <1,V (4.59)

where each pair of valuésandm; corresponds to lower and upper bound values on
someP(yx|e) andVi, j, a;; € {0, 1}.

Fractional packing and covering problems often rise asidtreksolving a relaxation
of combinatorial packing and covering problems. The fatsolution is then used as a
starting point for finding an integer solution. In the abopgplecation, the precision of the
fractional solution is often less important then the speecbmputation. Subsequently, a

number of approximation methods have been developed feingalhose classes of prob-
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lems [17]. However, those algorithms solve either packingavering problems, but not
both and not with the additional sum-to-1 constraint. Weré¢fore, resort to solving a
relaxed version of the bound propagation LP problems.

There are many possibilities for relaxing the constraifthe original problem. We
looked at two alternative relaxations. One is a relaxatdretctional knapsack packingnd
the other is a relaxation to what could be viewedrastional multiple knapsack packing

with lower bounds

Fractional Knapsack Packing

Knapsack Packings a well known problem. Given a set of itermssuch that each item
x; € T has an associated profitand a size;, the objective is to select a subset of items
that maximizes the profit such that the total size of the seteitems does not exceed the
knapsack capacity. In the fractional version of the problara can select a portion of
the itemuz;; in this caseu; becomes an upper bound on how muchepfve can take.
For fractional packing, we can always fill the knapsack td ¢apacity and therefore the
packing problem can be solved exactly in a greedy fashion.

In the bound propagation LP problem, the sum-to-1 congta@n be interpreted
as specifying the “knapsack” capacity. Hence, we maintaénsum-to-1 constraint in the
relaxed version of the problem. We drop the lower bound caimgs completely. The upper
bound on a sum of variables is replaced with the upper bounddividual variables, i.e.,

for each variable:; we specify an upper bound = min; ,,,—; m; which is the minimum
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upper bound value of all the constraints in which variablgarticipates. We obtain the

following relaxed LP problem, which is an instance of fraoal knapsack packing:

max ¢’ T (4.60)
sty mi=1 (4.61)

The problem can be solved exactly by ordering nodes by thefit@nd then assign-
ing each node its maximum value until the sum of all node \&é&gials 1. The complexity
of the algorithm isO(nlog n), wheren is the number of variables, due to the complexity

of sorting.

Fractional Knapsack Packing with Multiple Knapsacks

The Multiple Knapsaclkproblem (MKP) is a natural generalization of the single lsagk
problem defined as follows. The main difference is that we hewe not one knapsack,
but a set of bins (knapsacks) of varying capacity.

In the relaxation of the bound propagation LP problem, wenta&n the sum-to-1
constraint and the constraints induced by a single nodeeivitrkov blanket. The rest of
the constraints are dropped after computing individualkeufgoundu, for each variable:;
as we did before for fractional packing with single knapsadkthout loss of generality,
we can assume that the selected Markov blanket notig i$hen, the relaxed version of

the problem can be formulated as follows:
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max ¢’ T (4.63)

sty m o= 1 (4.64)
LB(y,) < Y 6(ygwi)a: < UB(y,), Yy, € D(Y,) (4.65)
0 < z; <y (4.66)

whered(yx, z;) = 1 if the valuey, of the variableY, matches the instantiation of
Yy in z; (recall thatz; = P(yy, ..., y,le)) andd(yx, z;) = 0 otherwise. We can view the
problem as the one of packin@(Y;)| knapsacks, where each knapsack corresponds to
some valuey, of variableY, and has capacity B(y, ).

Our problem has additional special properties though. Eaepsack has not only
upper bound, but also a lower bound on the size of the load. slineto-1 constraint
specifies the total size of the load. Further, the domainefconstraints induced by
variableY; are disjoint. Namely, each variabie will participate in only one constraint of
the type expressed in EqQ. (4.65). The latter can be intexgpras each knapsack having a
separate list of items that can be packed in it.

We can obtain a more general formulation of the problem if e aidouble indek;
with each variable;; to indicate that it is the quantity gth item that is placed in knapsack

i. Then, we can re-formulate the problem as follows:
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max Ciiyi 4.67)
> cigti (

5]
st.Y wy =1 (4.68)
(2]
LS my <, Vi (4.69)
J
0 <z < uy (4.70)

If it was not for the sum-to-1 constraint in Eq. (4.64), we kcbgplve each knapsack-
packing problem independently. Still, the greedy approaolks. Figure 4.4 defines an

algorithm for solving the LP described in Eq. (4.67)-(4.70)

For maximization problem, first, we order variables by tludtjective function coef-
ficient value from largest to smallest (step 1 in Figure 4nt) mitialize all variable values
to O (step 2). Then, we make two passes. On the first pass, wg asch node the
minimum value necessary to satisfy lower bounds (step 3)male a second pass incre-
menting each node value to the maximum, within the condtlmnnds, until the sum of
all variables equals 1 (step 4). The solution to the minitezeproblem is the same except
variables are ordered by their objective function coeffitialue from smallest to largest.
We prove the correctness of the algorithm in Appendix E. Tdragexity of the algorithm
is O(nlogn) wheren = |z|. In the contex of bound propagation~= |D(Y")|, namely, the
size of the Markov conditional probability table.

Since we cannot predict which nodle € Y will yield the LP problem with the small-
est maximum of the objective function, we solve separatéhaetional MKP problem for
eachY; € Y and pick the smallest value. Then, the total complexity afifig lower and
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Greedy Multiple Knapsack With Lower Bounds
Input:

max Z Cij X5
,J
s.t. Zl’ij =1
,J
l; < Zl’ij <, Vi
J
0 <z < uyj

Output: f = max Zi,j CijTij

1. Sortz; by coefficients:; (profit) from largest to smallest.

2. Initialize: Vi, z; < 0
3. Satisfy lower bounds
Fori « 1to|D(Y)| do:
Tij < min{li, uij}
Uij < Uij — Tij
li — li — Tij
Us < Uj — Ty
S 8§ — Tyj
J—f+cijxi
End For
4.4. Maximize
Fori =1to|D(Y)| do:
if (s =0) break
0 = min{u;, uj, s}
Tij < Tgj + )
uij — Uij -0
Ui < U; — )

S+ 8s—0
fi—=Jfitey-o
End For

(4.71)

(4.72)

(4.73)

(4.74)

Figure 4.4: Greedy algorithm for fractional MKP problem.
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upper bounds for a single variable valu€i§Y'| - n log n). We denote a bound propagation
scheme which solves the linear optimization problems apprately by A Bd P+ for ap-
proximateBdP+. We will compare the performance dfBd P+ using fractional packing

with single knapsack and multiple knapsacks in the empiseetion.

4.4.5 Algorithm BBdP+

ABdP+ and BdP+ performance depends on the initial values of the lower angeup
bounds, usually set to 0 and 1. We can boost the performanégiff by using the
bounds computed byiT' B, instead of 0 and 1, to initialize its lower and upper bounds.
As we mentioned earlier, the tightness of the bounds on tls¢egor marginals of the
nodes in the Markov blanket of variahlé affects the tightness of the constraints in the LP
optimization problems foX;. If AT'B computes tighter bounds thdhi P+ (starting with
0/1 initial bounds) for some variables, then bound progagatay be able to compute
tighter bounds on the neighboring nodes. An analogy can lokewaere tightening some
of the bolts holding together the elements of a complex siraaestricts the movement
of the remaining elements. We can think of usiA@' B bounds as the input t&dP+

or ABdP+ as “boosting” bound propagation. We will show results witostedBd P+,

denotedB Bd P+, in the empirical section.
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4.5 Searching for High-Probability Tuples

We can expect a better performance frafi B (faster convergence with) when the se-
lectedh cutset tuples are thiehighest probability tuples. The task of finding théighest
probability tuples is related to the MAP problem of findings tthaximum probability in-
stantiation of a subset of variables. For= 1, the two tasks are equivalent. For> 1,
MAP is a subproblem since the maximum probability tuple s thember of the set of
the h highest probability tuples. MAP problem # P-hard [94] (the decision version is
NPFPP-hard). In fact, it remains NP-hard even in polytrees whemguting the posterior
marginals is easy. Therefore, finding théighest probability tuples is also hard.

We can search for the highest probability cutset tuples using, for example, lloca
greedy search [62, 93, 94].

In [62], local search algorithm is used to find an approxinslition to the MPE
problem. In [93] and [94], the same idea is applied to the MA&bfem. Another option
is to use stochastic simulation such as Gibbs sampling.igie approach we take here.

Given a problem with a set of random variabeés= {C, ..., C,,,} and observations
E, we usually apply Gibbs sampling to generate a set of santples {c\”)} such that
the frequency of a tuple’ € S reflects its probability mas®(c’|e) in the posterior dis-
tribution P(Cle). Gibbs sampling can also be viewed as a search algorithninigdir
high-probability tuples. It performs a guided random walkhe multi-dimentional space

of all instances.
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Figure 4.5: The number of unique samples generated by a Gdohpler sampling over
a loop-cutset is plotted against the total number of sanfplesvo benchmarks, cpcs179
and cpcs360b. The results are averaged over 20 instancastobenchmark with different

evidence values.

We propose to generate the cutset tuples using cutset senip#, 15] that applies

Gibbs sampling over a subset of the variables. Specificakyfocus on the loop-cutset

sampling. We used first an ordered Gibbs sampler. It wastaféefor two of our bench-

marks, cpcs179 and cps360b, where a small number of cugdesttontained over 99% of

the probability mass oP(e). Figure 4.5 shows the number of unique tuples as a function

of the number of samples in cpcs179 and cpcs360b networks. r83ults are averaged

over 20 instances for each benchmark. As we can see, thesaméogarithmic. Namely,

the algorithm found most of the high probability tuples dalycand then mostly revisited

previously observed tuples.

However, in other benchmarks, cutset sampling often reguoo long to find enough

“heavy” tuples. This was observed previously in [62] where effectiveness of Gibbs

sampler and local greedy search in finding the MPE solutiorewempared. The main
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difference between Gibbs sampleing and greedy local seartthat, given distribution
P(X;|z_;), Gibbs sampling draws the new value for a variable from thEgidution while
greedy local search picks the most likely valueXgf In [62] it was shown that a combina-
tion of Gibbs sampling and greedy local search is more efiethhan either method alone.
In our implementation, without modifying Gibbs sampler, maximize the value of the
output it produced by maintaining a list of thenighest probability tuples encountered. We
elaborate on the options in the next two paragraphs.

In order to obtain the distributioR(C;|c_;) for a discrete cutset variabl&, Gibbs-
based cutset sampling normally computes probab#tity;, c¢_;), for eache;eD(C;). Once
a new value for variabl€’; is sampled fromP(C;|c_;), all those probabilites are discarded.
However, the sampled value is not always the most probal@dend the tuples with higher
probability P(c;,c_;) may be discarded. Maintaining a list afhighest probability tu-
ples computed during sampling (even if the Markov chain ditlacttually visit them), we

optimize Gibbs sampling for search. We denote resultingsehas>opt.

Figure 4.6 presents the ordered Gibbs sampling scheme thataims the list of
h highest probability tuples. We usé) = {c{" & .. "} to denote sample. Each
samplecl) is some instantiation’ € D(C). A list L stores pairs< ¢, P(c,e) > wherec
is the cutset tuple an®(c, e) is its corresponding probability. The scheme in Figure 4.6
only differs from regular Gibbs sampler in that we add st&pvithere we update list. If
L contains tuples, we do nothing. Otherwise, if the size bfis less thark andc ¢ L, we

addc to L. If the size ofL equalsh andc ¢ L, we find a tuple’ € L whose probability

185



Algorithm Gopt
Input: Bayesian networl3 over X, evidenceE C X, cutsetC C X\F, and
integerh < |D(C)|, integerT.
Output: list L of h high probability tuples.
L {}
Initialize: Assign random value! to eachC; € C and assign e.
Generate samples:
Fort=1to T, generate a new samplé"?) as follows:
For EachC; € C, compute a new valuét) for variableC; as follows:
1. For Each; € D(C;) do:

1.1. Computh(ci,c(f)-,e).

1.2.1f¢ = {c;, )} ¢ L Then
If |[L| < h Then
L—L| <d,P(,e)>
Else
¢* «— argmin.cy, P(c,e)
If P(c*,e) < P(c,e) Then
L — L\ <c*"P(c*,e)>
L—L\J<dP(e)>
End If
End If
1.3End If
2. End For Eachy;
3. P(Ci\c(_tzje) — ozP(Ci,c(_t)» e).
4. Sample new value:

D P(Cﬂc@-, e) (4.75)

(2

End ForC;
End For t

Figure 4.6:w-Cutset samplind\lgorithm
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P(c,e) is the smallest. IfP°(¢, e) < P(c,e), then we replace with c.

%of P(e) accumulated —=— %P(e)-G Average ATBw interval length [—s— aTBw-G
12 —B8— %P(e)-Gopt 0.51 —8— ATBw -Gopt
10 | 05
\-.\.\.
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Figure 4.7: Performance of regular Gibbs cutset samplingd&ecting: cutset tuples with
highest probabilities among generated samples, and @etthior search (Gopt), selecting
h tuples among all computed tuples, in an instance of Barleyar&t The left chart shows
the percent ofP(e) covered by thé: tuples as a function ofi. The right chart shows the
average bounds interval length computedAiBw as a function of time when using
(AT Bw-G) andGopt (AT Bw-Gopt) to find h highest probability tuples.

Figure 4.7 demonstrates empirically a typical improvemanhe performance of
Gopt over regular Gibbs sampling, denotéq on an instance of Barley network with 7
evidence nodes anbl(e) = 3£ — 06. The chart on the left measures the efficiency of the
search process by the percent of the probability ni4s$ covered by the generated tuples,
namely:

h .
P
ZZ:I (C ) e) 100%

You may recall it provides a lower bound on the bounds inteemgth for AT B¥. As

we can see, the percent Bfe) covered grows much faster whéns selected among alll
computed tuples usinGopt. The chart on the right in Figure 4.7 shows the average bounds
interval length computed by A7 B™ using theh highest probability tuples generated by
Gibbs sampling AT Bw-G) and byGopt (AT Bw-Gopt).
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In other experiments, usingopt, we accumulated over 90% of the weight®fe)
in a few thousand tuples in Munin3, cpcs179, and cpcs36@b28r80% in cpcs422b and
Munin4. In the case of Barley network, we generated up te 2000 cutset tuples, that is

less thar).0002% of over 2 million tuples, that covered 1% of the weight ofP(e).

4.6 Experiments

In this section, we compare empirically the performancesotsal bounding schemes dis-

cussed in this paper.

4.6.1 Methodology and Algorithms
Algorithms

We evaluate empirically the quality of the bounds obtaingdiifferent variants of bound
propagation and ATB framework with different plug-in boumgischemes. Our algorithms

are:

e BdP - an original bound propagation algorithm that initializdkvariables’ lower and
upper bounds to 0 and 1 and then iteratively updates the Isausidg the simplex solver
to find the minimum and maximum of the objective function o tlnear optimization

problem over the Markov blanket of each variable;

e BdP+ - an improved bound propagation algorithm that restrictsNfarkov blanket of

a variable to a relevant subnetwork w.r.t. the set contgitiis variable and evidence
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and pre-computes the posterior marginals of nodes whoseargl subnetwork is singly-

connected;

e ABdP+F P1 -an approximate bound propagation algorithm that usesalgragorithm

to solve the relaxation of the LP problem to fractional pagkwith a single knapsack;

e ABdP+FPM - same asABdP+F P1 except it uses an LP relaxation with multiple

knapsacks;

e ATB-FP1- AT B framework usingA Bd P+F P1 plug-in;

e ATB-FPM or ATB - AT B framework usingABdP+F PM plug-in; unless stated

otherwise, we reserve the namé& B for AT B-FPM;

e AT B" - a weak form ofAT' B using ABdP+F PM plug-in; recall that, giverh fully-
instantiated tuplesAd7T B* bounds the remaining probability mass faster tWanB be-

cause it only computes an upper boundefa;.,, e);

e BBdP+ - boostedBdP+ that uses thedT' B bounds to initialize the starting bounds

values for all variables.

The results are organized as follows. First, we compare ¢hpnance of the two
bound propagation algorithm#&dP and BdP+. Next, we compare bound propagation
using the simplex solveR3d P+, and the two variants of the approximate bound propagat-
ing, ABdP+F P1 andABdP+F PM. Subsequently, we also compare the performance of

AT B using the two variants ol Bd P+ as plug-ins, i.e.ABdP+FP1 andABdP+FPM.
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Finally, we compare side-by-side the performance of thé lb@snd propagation schemes
BdP+, AT B using the best of the two approximate bound propagatiomsebg Bd P+-
FPM as aplug-inAT B* using the same plug-in, and boostedP+. Where applicable,

we also compare our bounds with those in [73].

4.6.2 Measures of Performance

We measure the quality of the bounds via the average lendtieohterval between lower

and upper bound:

S Sy (PY(aile) — PHile))
- S, ()] (4.76)

We approximate posterior marginal as the midpoint betweerel and upper bound in

~l

order to show whether the bounds are well-centered arowngdsterior marginaP(z|e).

Namely:
R PY(z]e) + P (zle)
P(zle) = 5 (4.77)
and then measure average absolute ekr@rith respect to that approximation:
; 5| Plxile) — P x;le
A S Doy |Paile) = Plaife) @)

> [D(i)|
All exact posterior marginals, used to evaluate the pregisif the estimate expressed in
Eq. (4.77), were obtained by bucket elimination [28] usimg min-fill heuristics for order-
ing variables.
We implemented bound propagation algorithm using simpiéxes from COIN-OR

libraries [1]. The experiments were conducted on 1.8Ghz CRU512 MB RAM.
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4.6.3 Reporting of the Results

In all benchmarksAT B and AT B enumerate the tuples of a loop cutégthat is gener-
ated by thenga algorithm [10]. The results faAT B and AT B* schemes are reported as a
function ofh, the number of fully instantiated cutset tuples, and timecaRehat the upper
bound on the number of partial cutset tuples is proportitmal(see Theorem 4.3.1). Con-
sequently, the worst case computation timed@B and AT B* grows ash increases (see
Theorem 4.4.2). Of course, avecomes close to the total number of cutset tuplésthe
number of truncated tuples decreases. However, in our iexeets,/ is small compared
to the total number of cutset tuples. Hence, computatioa timareases monotonously with
h.

As described, we control the time and memory of bound prajpagday restricting
the maximum size: of the conditional probability table for a variable and itsaiMov
blanket. AlgorithmsBdP, BdP+, and ABdP+ are parametrized by. For the plug-ins
used withAT B and AT B, the maximum Markov CPT size was fixedkat 1025.

We also fixed the parametér = 1025 for BBdP+. The computation time of
BBdP+ includes bound propagation time add'B time. For a constant parameter
the computation time of bound propagation remains neanhstamt for a given network
instance and only the computation timeAif’ B changes. SincdT B time is a function of

h, BBdP+ time is a function of: as well.
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4.6.4 Benchmarks

Table 4.1: Complexity characteristics of the benchmarksftdAl repository: N-number
of nodesw*-induced width,| LC|-number of nodes in a loop-cutséR (LC')|-loop-cutset
state space size, Time(BE)-exact computation time via ldukeination, Time(LC)-exact
computation time via loop-cutset conditioning.

| network | N | w*|[LC|||D(LC)| | Time(BE) | Time(LC) |
Alarm 37| 4 5 108| 0.01sec 0.05 sec]
Barley 48| 7 12| >2E+6 50 sec >22 hrg
cpcs54 54| 15 6 32768 1 sec 22 sec
cpcsl79 179| 8 8 49152 2 sec 37 sec
cpcs360b| 360| 21| 26 226 20 min > 8 hrs
cpcs422b| 422 | 22 47 247 50 min | > 2E+9 hrs
Munin3 || 1044 7| 30 > 230 8 sec| > 1700 hrs
Munin4 || 1041| 8| 49 > 249 70 sec| > 1E+8 hrs

Our benchmarks are Alarm network, CPCS networks (cpcs54,1¢pcepcs360Db,
and cpcs422hb), Barley network, and Munin3 and Munin4 neta/émim UAI repository.
The summary of benchmarks and their characteristics is ishowable 4.6.4. For each
network, the table specifies the number of variablleghe induced widthox, the size of

loop cutset LC|, the number of loop-cutset tupl¢®(LC')|, and the time needed to com-

pute the exact posterior marginals by bucket-tree elironagexponential in the induced
width w=x), and by cutset conditioning (exponential in the size oplaotset).

The Alarm network models the monitoring of patients in irsiga care [11]. The
Barley network is a part of the decision-support system fongng malting barley devel-
oped in [70]. We have performed experiments with four CPCS ordsv cpcs54, cpcs179,

cpcs360b, and cpcs422b. CPCS networks are derived from the @enipased Patient

Times are extrapolated.
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Care Simulation system and based on INTERNIST-1 and Quick éaéBeference Expert
systems [100]. The last two benchmarks are Munin3 and Mytivsubsets of the Munin
network which is a part of the expert system for computeeaielectromyography [2].

Computing posterior marginals is easy in Alarm network, 8g¢csind cpcs179 using
either bucket elimination or cutset conditioning sinceythave small induced and a small
loop-cutset. We include those benchmarks as a proof of pbrocdy. Several other net-
works, Barley, Munin3, and Munin4, also have small inducedtivand, hence, their exact
posterior marginals can be obtained by bucket elimination.

However, for a fair comparisom7' B should be compared against linear-space schemes
such as cutset-conditioning. From this perspective, Bakemin3, and Munin4 are hard.
For example, Barley network has only 48 variables, its indwelth isw* = 7, and exact
inference by bucket elimination takes only 30 seconds. ddgdcutset contains only 12
variables, but the number of loop-cutset tuples exceeddlbmbecause some variables
have large domain sizes (up to 67 values). Enumerating amgwiing all cutset tuples, at
a rate of about 1000 tuples per second, would take over 2Zh@&imilar considerations
apply in case of Munin3 and Munin4 networks.

For most benchmarks, the results for each network are asgrager 20 instances

instantiated with different evidence.
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4.6.5 Results withBdP Variants

Here, we report the bounds intervals obtainedday (k) and BdP+(k) as a function of
k, the maximum Markov CPT length, far € [2!°) 2] on various benchmarks with and
without evidence. Fok > 2!% the computation demands exceeded available memory.
The computation time oBd P and BdP+ is a function oft and the number of iterations
needed to converge. Since the algorithms usually convergeds than 20 iterations, we
fixed the maximum number of iterations at 20.

In Table 4.2 and Table 4.3 we report the average error, agdragnds interval length,
and computation times faBdP and BdP+ as a function of maximum Markov blanket
tuple countt. Each row corresponds to a set of experiments with a singleteark with
a fixedk. Columns 3-5 specify the accuracy and computation timésidP (see Eq. (4.76-
(4.78)), while columns 6-7 specify the accuracy and contputaime for BdP+. We
explore the range of values bf= 2™ for m € [10, 11, ..., 20]. The results are separated for

networks without evidence (Table 4.2) and networks witlderce (Table 4.2).

Analysis: BdP+ always computes tighter bounds and requires less computati
time thanBdP. The performance gap is wider in the networks without eviggiTable 4.2)
where the Markov blanket of each node, restricted to itsvagie subnetwork, contains
node’s parents only an®#d P+ converges after one iteration when processing nodes in
topological order. For the largest benchmark, cpcs422th, 422 nodes and* = 21, the

average bounds interval length is 0.23 &/ P and 0.008 forBd P+. At the same time,
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Table 4.2: Average errof\, length of the bounds intervdl, and computation time for
BdP and BdP+ as a function of the maximum size of the Markov blanket stp@ee T
in networks without evidence.

BAP(K) BdP+(K)

k I A | time I A | time
Alarm 16384 | 0.637| 0.1677 14| 0.075| 0.0076| 0.1
cpcs54 16384 | 0.425| 0.0229 24| 0.091| 0.0049| 0.1
32768 | 0.417| 0.0224 721 0.091| 0.0049| 0.1
65536 | 0.417| 0.0224 721 0.091| 0.0049| 0.1
131072| 0.417| 0.0224 72| 0.091| 0.0049| 0.1
262145| 0.415| 0.0221| 265| 0.091| 0.0049|, 0.1
cpcsl79 | 16384 | 0.576| 0.2213 30| 0.0006/| 0.00002| 0.3
32768 | 0.576| 0.2213 30| 0.0006/| 0.00002| 0.3
65536 | 0.576| 0.2213 30| 0.0006/| 0.00002| 0.3
cpcs360b| 16384 | 0.151| 0.0649 64 | 0.0006| 0.0002| 1.2
32768 | 0.149| 0.0641 80| 0.0006| 0.0002| 1.2
cpcs422b| 16384 | 0.237| 0.0756 28| 0.008| 0.0008 8
262145| 0.236| 0.0751 33| 0.008| 0.0008 8

BdP computations take 190 sec whil&/ P+ only takes 16 sec.

Both BdP and Bd P+ bounds interval becomes larger and computation takes tonge
when some nodes are observed, as shown in Table 4.3. I5iR4 remains superior to
BdP. Consider the results for cpcs360b network with 360 nodesiaged over 20 in-
stances of the network with number of assigned ndd8sanging from 11 to 23. For
h = 16384, BdP computes the average lower and upper bound interval of led$38
and requires 68 second€3d P+ computes an average bounds interval of 0.064 and re-
quires only 15 seconds. We observe similar results for dieachmarks. Note that, &s
increases, the computation time of bdtd P and Bd P+ increases fast, while the bounds

interval decreases only a little.
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Table 4.3: Average errak, length of the bounds interval and computation time faBd P
and BdP+ as a function of the maximum size of the Markov blanket stqp@eel” in
networks with evidence.

BAP(K) BdP+(K)
k T\ A\time 7\ A\time
Alarm 1024 | 0.828| 0.2661 13| 0.611| 0.2151| 4.2

|E|=3-6 524288| 0.828| 0.2661| 13| 0.611| 0.2151| 4.2
cpcs54 1024 | 0.616| 0.0469| 6.6| 0.367| 0.0232| 2.1
|E|=2-6 4096 | 0.616| 0.0469| 6.6| 0.360| 0.0219, 3.4
16384 | 0.595| 0.0458| 30| 0.353| 0.0210, 7.9
32768 | 0.591| 0.0451| 49 0.353| 0.0210| 9.3
65536 | 0.589| 0.0450| 66| 0.353| 0.0210| 13
131072| 0.588| 0.0449| 88| 0.353| 0.0209| 23
262144| 0.587| 0.0447| 166 | 0.352| 0.0207| 52
524288| 0.587| 0.0447| 260| 0.352| 0.0207| 54
cpcsl/9 1024 | 0.604| 0.2228| 30| 0.230| 0.0783| 5.3
|E|=12-24| 4096 | 0.603| 0.2227| 31| 0.160| 0.0520| 9.3
16384 | 0.603| 0.2227| 30| 0.119| 0.0366| 19
32768 | 0.603| 0.2227| 30| 0.111] 0.0331| 28
65536 | 0.598| 0.2214| 90| 0.073| 0.0203| 80
524288| 0.592| 0.2113| 260 | 0.055| 0.0149| 413
cpcs360b | 1024 | 0.361| 0.1532| 15| 0.124| 0.0516|, 4.2
|F|=11-23| 2048 | 0.357| 0.1528| 18| 0.113| 0.0468| 4.7
4096 | 0.356| 0.1522] 19| 0.099| 0.0408 6
8192 | 0.352] 0.1504| 23| 0.083| 0.0330 8
16384 | 0.338| 0.1423| 68| 0.064| 0.0247| 15
32768 | 0.337| 0.1419| 85| 0.055| 0.0215| 24
65536 | 0.143| 0.3367| 120| 0.050| 0.0192| 36
131072| 0.143| 0.3366| 128| 0.043| 0.0160| 80
262144 0.143| 0.3364| 190| 0.038| 0.0137| 130
cpcs422b | 1025 | 0.351| 0.1195| 16| 0.231| 0.0740 7
|E|=6-11 8192 | 0.337| 0.1175| 34| 0.217| 0.0677| 18
16384 | 0.337| 0.1175| 34| 0.214| 0.0665| 24
32768 | 0.329| 0.1081| 80| 0.203| 0.0617| 74
65536 | 0.317| 0.1023| 195| 0.182| 0.0467| 150
131072| 0.289| 0.0881| 1192| 0.155| 0.0401| 1097
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Results for ABd P+ using two variants of Fractional Packing

Figure 4.8 presents the average bounds interval lengthneotdy Bd P+ algorithm and
ABd P+ with two different approximation schemes, denotefdd P+F P1 andABdP+F PM,
in cpcs54 cpcs360h andcpes422bnetworks. The charts on the left show average bounds
length as a function of», wherek = 10™ determines the maximum Markov blanket size.
As we can see from the charts on the left, for the sam{samek), average bounds interval
of BdP+ is smaller than the bounds interval 8l P+F PM, which, in turn, is smaller
than that ofBdP+F P1, as expected. The charts on the right show average boungt len
as a function of time. The computation time of all three sceemrows asn increases.
Thus, each point on the right-hand chart corresponds totecplar m. The charts show
that ABdP+F PM incurs a negligible amount of overhead compared & P+F P1, but
computes considerably tighter bound8d P+ outperformsABdP+F PM when given
enough time. However, for the sarhe Bd P+ requires an order of magnitude more time
than ABdP+. For example, in cpcs54, fdr = 21°, ABdP+FPM computes bounds in
<0.01 seconds whil&d P+ requires a few seconds. Roughlyd P+ requires as much
time to compute bounds fon = 10 (i.e., k = 2°) asABdP+FPM for k = 217 — 219,
As a result,Bd P+ begins to outperformd BdP+F P M only aftera~2 seconds in cpcs54
and only after 10 seconds in cpcs360b. Hence, in short teentan obtain more accurate
bounds usingBdP+F P M.

Comparing the smallest bounds intervals obtaine@by+ and ABdP+F P M (for
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Figure 4.8: Bounds interval length fd#dP+, BdP+F P1, and BdP+F PM, averaged
over 20 instances of cpcs54, cpcsl79, cpcs360b, and cpxsd®a function ofn and
time, wherem bounds the maximum Markov table size2™.
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maximumm), we see that the difference is small in most networks. IrsBpcthe differ-
ence is about 0.04 which i 1% of the interval length. We observed the largest difference
in the case of cpcs360b, where the smallegP+ bounds interval length is a factor of 2

smaller thanABdP+FPM.

Table 4.4: Average bounds interval f&d P+, ABdP+F P1, and ABdP+F PM for the
maximum value ok = 2™ tried, m € [10, 19], averaged over 20 instances of each bench-
mark.

BdP+ BdP+-FPM || BdP+-FP1
network m I | Time 1| Time I | Time
Alarm >10| 0.611, 4.2| 0.611| 0.08| 0.67| 0.02
Barley >10 | 0.231 1.5 0.251| 0.05} 0.29| 0.03
cpcs54 19 || 0.352 53| 0.392 1.3} 0.42| 0.60
cpcsl79 19| 0.055| 413| 0.109 51 0.19| 15.3
cpcs360b) 19| 0.033| 270 0.085 51 0.11 2.7
cpcs422b) 17 || 0.155| 1027 0.173 9.4 0.19 8.9
Munin3 19| 0.255 9 || 0.258 0.7 0.32 0.2
Munin4 19| 0.228 13| 0.232 1.0|| 0.31 0.2

We observe similar results in other networks. Table 4.4 sanmes the average
bounds interval results for the maximuinfor each benchmark. IBarley, ABdP+-
FPM computes average bounds interval of 0.25 in 0.05 sec, vwhilB+ computes only
slightly smaller average bounds interval of 0.23 in 1.7 sktcpcs422b, fork = 217,
Ipar+—rpy = 0.17 and takes 23 seconds to compute whilgp, = 0.15 and takes 1025

seconds.
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Figure 4.9: Average bounds length fafl’ B with a bound propagation plugin optimizing
LP by fractional packing with 147 B-F P1) and many knapsacksi({'B-F'PM).
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Experimenting with AT B Variants

In Figure 4.9 we compare the performanceldfB framework with two plug-insABdP+F P1
and ABdP+FPM. The resulting algorithms are denotdd”B-F' P1 and AT B-FPM.
We use three representative benchmarks, Barley, cpcs360lwpas422b, which are also
the largest of our benchmarks. For each algorithm, the tesné averaged over 20 in-
stances of each network. We see thatAiéB-F' P M line is consistently lower thadT B-
FP1. Hence AT B-F PM not only computes tighter bounds, but it is also timewiseamor
efficient thanAT B-F P1. We also observe that the difference between the resultseof t
two schemes becomes larger with time. This is more notiesabihe case of cpcs360b
(Figure 4.9, middle) and cpcs422b (Figure 4.9, bottom).sTiservation points out that
the tightness of the bounds on the unexplored tuples syaifgcts thedT B convergence

speed.

Results for AT BY, AT B, BdP+ and BBdP+

This section provides our main evaluation of the propoddd3 scheme against bound
propagation. We use the superior variants of those schevaasely, we have showed that
BdP+ always outperfrom®d P and thatA BdP+F P M is the superior variant of approx-
imate bound propagation, used either stand-alone or agampia AT B framework. We
compareAT B and AT B¥ with ABdP+F PM plug-in againstBdP+. In addition, we
show the results of boosted bound propagatidsd P+ using AT B results as input.

For reference, we also computed the minimum length of badindeditioning bounds
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interval by plugging into the framework the brute force 0 évwbounds and prioP(c)
upper bounds. The computed bounds interval length remailosa to 0.75 for Munin
benchmarks and 0.95 for the others; hence, those resultsvateed in the remainder of
the section.

We summarize the results for each benchmarks in a tabularatoand charts. The
tables report the average bounds intefvalverage erraA, computation time (in seconds),
and percent of probability of evidend®(e) covered by the fully-instantiated cutset tuples
generated byAT B*, AT B, and BBdP+ algorithms as a function oi. Since BdP+
results do not depend dn they are not included in the tables here. The result&ioP+
were reported in Table 4.3. We highlight in bold face the f§tB data point where
the average bounds interval is as good or better thédR+. We use charts to show the
convergence of bounds interval length as a functioh ahd time.

Results for Alarm network. The Alarm network hasv = 37 nodes and a loop-
cutset of size LC'| = 5 with the cutset state-space of siZ&”'| = 108. The exact posterior
marginals in the Alarm network can be obtained using buchketiration or exact cutset
conditioning in less than a second. We present the resutiedier to relate to the bounds
reported previously for bounded conditioning [56] and foubd propagation [76]. The

results are reported in Table 4.5 and Figure 4.10.

As expected, the average bounds interval generatedlby* and AT B decreases

ash increases, demonstrating the any-time propertg©68 with respect to:. For a fixed
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Aarm, N=37, w*=5, |LC|=8, [E|=1-4
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Figure 4.10: Results for Alarm network as a functiorhgfop) and a function of time (bot-
tom), averaged over 20 instances. Exact inference usingebetimination is 30 seconds.
Exact inference using cutset conditioning-22 hours.
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Table 4.5: Average errah, bounds interval, and computation timefor BdP+ , AT B,

and BBdP+ over 20 instances of Alarm network as functionof
Alarm, N=37,w*=5, |LC|=8,|D.|=108,|E|=1-4

AT BY ATB BBdP+

h || %P(e) 1 A | time I A | time I A | time
25 86| 0.51| 0.16| 0.021| 0.41| 0.12| 0.038| 0.35| 0.10| 3.4
34 93| 0.38| 0.12| 0.022|| 0.31| 0.09| 0.039| 0.27| 0.08| 2.3
40 96 | 0.31| 0.10| 0.025|| 0.25| 0.07| 0.044| 0.22| 0.06| 2.1
48 97 | 0.20| 0.09| 0.035|| 0.24| 0.05| 0.051 0.15| 0.04| 1.5
50 98| 0.16| 0.06| 0.036|| 0.16| 0.04| 0.052| 0.12| 0.03| 1.2
54 99 | 0.12] 0.05| 0.044 || 0.13| 0.03| 0.059| 0.09| 0.02| 0.86

h, AT B* bounds interval is always larger than that4if' B, as predicted. However, the
picture is different time-wise. For examplé] B computes bounds interval ¢fi;gw =
0.12 within 0.044 secondsh(= 54), while AT B only computed 4,5 = 0.25 within the
same time § = 40).

Both any-time schemes perform better tiahP+. Recall that folk > 65536 Bd P+
obtained an average interval length of 0.65 within 4 secdndksle 4.3). BothAT' B" and
AT B compute more accurate bounds starting with the first datat pbi, = 25. In the
second row of Table 4.9,475+» = 0.41 and 4r5 = 0.51, and require respectively 0.021
and 0.038 seconds, an order of magnitude less théR+. Using AT'B bounds as input
to bound propagation i Bd P+ considerably improves tha7 B results. For the same
h = 25, I pgar+ = 0.35. However,BBdP+ is not efficient time wise compared 7' B
since the bound propagation time is considerably largen that of AT B. Yet, since
BBdP+ computation time on average is less tha@P+, it outperformsBd P+ starting

with h = 25, similar to AT B and AT BY.
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Barley, N=48, w*=7, |LC|=12, |E|=4-8 —+—ATBW
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Figure 4.11: Results for Barley network as a functior ¢fop) and a function of time (bot-
tom), averaged over 20 instances. Exact inference usingebetimination is 30 seconds.
Exact inference using cutset conditioning-22 hours.
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Table 4.6: Results for Barley network.
Barley, N=48,w*=7,|LC|=12,|D1¢c| >2E+6,|F|=4-8

ATBY ATB BBdP+
h %P(e) 1 A | time 1 A | time I A | time
278 0.005( 0.501| 0.194| 0.4 | 0.282| 0.099 51 0.168| 0.047 7
562 0.01| 0.501| 0.194| 0.8 0.279]| 0.097 91 0.167| 0.047| 10

1394 0.03| 0.500| 0.194| 2.0 0.263| 0.090| 23| 0.162| 0.045| 25
2722 0.06{ 0.500| 0.194| 4.0 0.247| 0.084| 43| 0.154| 0.042| 45
4429 0.14{ 0.500| 0.193| 6.3 | 0.235| 0.079| 65| 0.147| 0.040| 67
6016 0.22|| 0.499| 0.193| 8.6 0.230| 0.078| 86| 0.145| 0.040| 88
7950 0.33| 0.499| 0.193| 11.0|| 0.228| 0.077| 99 || 0.145| 0.040| 101
9297 0.40{ 0.499| 0.193| 12.8| 0.224| 0.075| 111 0.143| 0.039| 113
12478| 0.52| 0.498| 0.193| 17.3| 0.219| 0.073| 139 0.142| 0.038| 141

Results for Barley network. We applied the bounding algorithms to 20 instances of
Barley network with different evidence picked at random agithe input nodes as defined
in [70]. We compare the performance of different boundinigesces within 100 seconds
time interval. The results are reported in Table 4.6 andreigull. The top chart shows
the convergence o7 B"*, AT B, and BBdP+ bounds interval withh (since BBdP+
bounds are never worse thafl’ B, the bounds converge with). The bottom chart shows
the average interval a7’ B", AT B, BdP+, and BBdP+ as a function of time. We
see thatBd P+ converges quickly yielding an average bounds length of th28ss than
2 seconds but does not improve any more with tid&.B*, AT B, and BBdP+ clearly
improve ash increases. However, the convergence is slow Wwitand with time. For
example, averagd7 B" bounds interval length remains close to 0.5 whll€ B bounds
interval decreases from 0.28, obtained in 5 seconds, tce®t@2139 seconds. It takes'B
about 86 seconds to achieve the same accuradydaést-. Overall, the winning scheme

time-wise isBBdP+. The bound propagation time &fBd P+ is negligible compared to
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AT B computation time. UsinglT B results to jump-start bound propagation substantially

improvesAT B bounds, computing = 0.168 in 7 seconds and = 0.142 in 141 seconds.

Table 4.7: Results for cpcs54.
cpcs54,N=54,|LC|=15,w*=15,|D|=32678,|F|=2-8

ATBY ATB BBdP+
h %P(e) I A | time 1 A | time 1 A | time
513 10 0.84| 0.062| 0.4 0.51/0.027] 09| 0.34| 0.011] 3.1

1114 19| 0.78| 0.055| 0.7] 0.45|0.023| 15| 0.32| 0.010| 3.1
1343 25| 0.76| 0.054| 09| 0.44|0.023| 1.7| 0.32] 0.010| 3.3
1581 291 0.74]0.052| 1.0|0.420.021| 19| 0.31| 0.009| 3.4
1933 34| 0.71| 0.049| 1.3 0.40| 0.020| 2.2 0.30| 0.009| 3.6
2290 40| 0.68| 0.047| 1.5 0.38| 0.019| 2.4 0.30| 0.008| 3.9
2609 46 | 0.66| 0.045| 1.8 0.37]0.018| 2.7 0.29]| 0.007| 4.0
3219 53| 0.62] 0.041| 2.1 0.34|0.016| 3.2| 0.27| 0.007| 4.5
3926 59 0.57]0.038| 2.7\ 0.31|0.014, 3.8| 0.25| 0.006| 5.2
6199 63| 0.46| 0.029| 45| 0.23|0.010, 59| 0.20| 0.006| 6.6
1274 68| 0.41| 0.026| 5.4 0.20| 0.008| 6.9| 0.17| 0.006| 7.3

Results for CPCS networks. Results for cpcs54 are given in Table 4.7 and Fig-
ure 4.12, for cpcsl179 in Table 4.8 and Figure 4.13, for cp@is36 Table 4.9 and Fig-
ure 4.14, for cpcs422b in Table 4.10 and Figure 4.15.

cpcs54.We focus on cpcs54 first, the smallest of CPCS networks, withoiésand
induced widthw* = 15. Its loop cutset size is 16 and yields 65538 cutset tuples. Exact
inference in cpcs54 by bucket elimination takes less thatarsd while cutset conditioning
requires 15 seconds. ThedP+ scheme obtains the bounds interval of 0.35 with the
maximum Markov table size df = 4096 and hardly changes at all &sincreases up to
the memory limit (see Figure 4.3)AT B outperformsBd P+ within 3 seconds.AT B
also outperformsAT B* by a wide margin with respect to (Figure 4.12, top) and time-
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cpcs54, N=54, |LC|=15, w*=15, |E|=2-8
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Figure 4.12: Results for cpcs54 network as a functioi ¢fop) and a function of time
(bottom), averaged over 20 instances. Exact inferenceg bsicket elimination is 1 second.
Exact inference using cutset conditioning is 15 seconds.
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wise (Figure 4.12, bottom).BBdP+ improves theAT B result as a function of, as
shown in Table 4.7 and Figure 4.12, top. For examplehfet 513, 14,75 = 0.51 while
Ispar+ = 0.34. However, the improvement is not enough to compensate fditianal

computation time as we see in Figure 4.12, bottom.

Table 4.8: Results for cpcs179.

cpcs179N=179,w*=8, [LC|=8, | Do |=49152,E|=12-24
AT BY ATB BBdP+
h %P(e) 1 A | time I A | time 1 A | time
242 70| 0.533| 0.205| 2.5 0.224| 0.067 4| 0.092| 0.029| 11
334 751 0.392| 0.151| 3.5 0.123]| 0.033 6| 0.054| 0.016| 13
406 78| 0.323| 0.124| 3.8 0.092| 0.024 71 0.037| 0.010| 13
483 80| 0.286| 0.110| 4.3| 0.080| 0.021 8] 0.034| 0.009| 15
574 82| 0.256| 0.099| 4.8 | 0.070| 0.018 91 0.029| 0.008| 15
683 84 0.219| 0.084| 5.4 0.061| 0.015| 10| 0.024| 0.007| 17
801 851 0.195| 0.075| 5.8| 0.054| 0.014| 10| 0.022| 0.006| 17
908 86| 0.167| 0.064| 6.3| 0.044| 0.011| 11| 0.019| 0.005| 18
996 87 0.151| 0.058| 6.6| 0.040| 0.010| 12| 0.017| 0.005| 18
1130 88 0.124| 0.048| 6.8 0.032| 0.008| 12| 0.014| 0.004| 19
1285 88| 0.104| 0.040| 7.8| 0.026| 0.006| 13| 0.012| 0.003| 20
1493 89| 0.078| 0.030| 9.0 0.019| 0.004| 15| 0.009| 0.003| 21
1669 90 || 0.064| 0.024| 9.7 | 0.015| 0.003| 16| 0.007| 0.002| 22

cpcsl79 The results for cpcs179 network are shown in Table 4.8 agdr€i4.13.
The results folAT B, AT B*, and BBd P+ as a function of time are similar and speak for
themselves. The first data point fBd P+ in Figure 4.13, corresponding fo= 1024, is
1 = 0.23 and takes 5.3 seconds to compute.kABcreases, the average bounds interval of
BdP+ decreases slowly. Within 20 seconds, the best resudd?+ is I = 0.12. AT B
and AT B* computer tighter bounds thald P+ after the first 5 seconds. Comparing
the two any-time schemes, we see tlatB’s curve is considerably lower thaAdT B"
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Figure 4.13: Results for cpcs179 network as a functioh @bp) and a function of time
(bottom), averaged over 20 instances. Exact inferenceyusinket elimination is 2 sec-
onds. Exact inference using cutset conditioning is 37 sg@gon
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at first. However, at the end of 20 second interval, their esifvyecomes very close. The
performance ofB BdP+ as a function of time is lagging behind ba#¥’'B* and AT B.
The averageB Bd P+ computation time per network instance is 8 seconds. Sukségu
althoughB Bd P+ improves the result ofi7' B as shown in the Figure 4.13, top,Bd P+

is not cost-effective here.

Table 4.9: Results for cpcs360b.
cpcs360b, N=360y* = 21, |LC| = 26, |E|=11-23

ATBY ATB BBdP+
h %P(e) 1 A | time 1 A | time 1 A | time
121 831 0.235| 0.098 31 0.0486| 1.6E-2 5| 0.0274| 1.0E-2 7
282 921 0.086| 0.035 71 0.0046| 9.0E-4| 10| 0.0032| 8.5E-4| 12
409 95| 0.057| 0.023 91 0.0028| 5.6E-4| 13| 0.0020| 5.3E-4| 15
501 96| 0.044/ 0.018| 10| 0.0020| 3.6E-4| 15| 0.0014| 3.5E-4| 17
722 97| 0.029|0.012| 13| 0.0012| 2.4E-4| 19| 0.0009| 2.3E-4| 21
831 98| 0.024| 0.010| 16| 0.0008| 1.2E-4| 22| 0.0006| 1.2E-4| 25
938 98| 0.020| 0.008| 18] 0.0006| 8.4E-5| 25| 0.0004| 7.8E-5| 27

1027 98| 0.018| 0.007| 19| 0.0006| 8.1E-5| 26| 0.0004| 7.5E-5| 29
1168 98 || 0.015| 0.006| 22| 0.0005| 7.5E-5| 29| 0.0004| 6.9E-5| 31
1271 99/ 0.013| 0.005| 24| 0.0004| 6.7E-5| 32| 0.0003| 6.1E-5| 34
1388 99| 0.012| 0.005| 26| 0.0004|5.9E-5| 35| 0.0003| 5.4E-5| 37
1486 99| 0.011) 0.004| 28| 0.0003|5.8E-5| 37| 0.0003| 5.3E-5| 39
1582 99| 0.010| 0.004| 30| 0.0003|5.3E-5| 39| 0.0002| 4.8E-5| 41
1674 99/ 0.009| 0.004, 32| 0.0003| 5.0E-5| 41| 0.0002| 4.6E-5| 43
1757 99/ 0.008| 0.003| 34| 0.0003| 4.7E-5| 43| 0.0002| 4.4E-5| 46

cpcs360doop-cutset hag?® cutset tuples, prohibitively many for complete enumer-
ation. The exact computation time for cpcs360b by bucketiaktion is about 20 minutes.
We experimented with 20 instances of the network with the memof evidence nodes
ranging from 11 to 23. We have compared the performance @dallbounding algorithms
within 40 seconds, that is only a fraction of time necessagompute posterior marginals
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Figure 4.14: Results for cpcs360b as a function @op) averaged over 20 instances. Evi-
dence is chosen randomly among leaf nodes only. Exact mfenesing bucket elimination
is 20 minutes. Exact inference using cutset conditioning &hours.
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exactly. The results for cpcs360b are summarized in TaBledd Figure 4.14.

The convergence of all conditioning-based schemes wasfastyn cpcs360b. At
h ~ 700, the h cutset tuples contained on average about 98% of the praiyaiihss of
P(e). The results are overall similartAT B algorithm converges fast decreasing from
1 = 0.24 for h = 121 (3 seconds) td = 0.008 for h = 1757 (33 seconds). HowevedT B
and, consequently3 BdP+ converge considerably faster. In 30 seconds, their average
bounds interval decreases to 0.003. Although the overheadund propagation time in
BBdP+ is relatively small,~2 seconds, the performance 41'B and BBdP+ is very
similar timewise. As we seedT B, AT B, and BBdP+ schemes outperformedd P+.
Larkin's algorithm [73], when applied to cpcs360b benchmarchieved average bounds
interval length of 0.03 in 10 seconds. Within the same tith&,3 computes an average
bounds interval ok 0.005. However, the comparison is not on the same instances since

the evidence nodes are not the same.

cpcs422b. The result for the fourth and the largest cpcs network, c@2isdare
shown in Table 4.10 and Figure 4.15. Cpcs422b is challengingry inference scheme
as it has large induced width af* = 22 and2*" loop-cutset tuples. Exact inference by
bucket elimination requires about 50 minutes. The estichatgset conditioning time is
over2FE + 9 hours.

From Table 4.10, we see thafl’ B outperformsAT B* by a wide margin and® Bd P+

improves a little ove AT B. AT B outperformsAT B" as a function o, and time as shown
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cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10
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Figure 4.15: cpcs422b average bounds length as a functiarn(top) and time (bottom),
averaged over 20 instances. Exact inference using budk@hation is 50 minutes. Exact
inference using cutset conditioningis2E + 9 hours.
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Table 4.10: Results for cpcs422b.
cpcs422b|E|=6-11

ATB" ATB BBdP+
h %P(e) 1 A | time 1 A | time I A | time
253 1.7 0.79]| 0.326| 14 0.28| 0.090| 27| 0.17|0.056| 37
381 20| 0.79|/0.325| 16| 0.24| 0.076| 33| 0.16| 0.050| 42
563 26| 0.79/0.323| 17| 0.23|0.073| 37| 0.15| 0.049| 47
688 29| 0.78/0.322| 19| 0.21|0.066| 40| 0.14| 0.046| 50
867 3.4 0.78/0.321| 21| 0.20|0.062| 44| 0.14| 0.044| 53
1171 45| 0.77] 0.318| 22| 0.19| 0.059| 49| 0.14| 0.043| 58
1472 54| 0.7710.315| 26| 0.18| 0.054| 55| 0.13| 0.040| 64
1779 6.5| 0.76| 0.312| 27| 0.18| 0.054| 59| 0.13| 0.040| 68
2368 8.0 0.75/0.307| 30| 0.17|0.052| 67| 0.12| 0.039| 76
2954 95| 0.74|/0.303| 34| 0.17|0.050| 75| 0.12| 0.038| 84
3654 10.8( 0.73|0.300f 38| 0.16|0.049|, 85| 0.12| 0.038| 94
4429| 12.2| 0.72]| 0.296| 42| 0.16|0.047| 95| 0.12| 0.037| 104
5120 13.7( 0.72]0.292| 44| 0.15|0.044| 101 0.11| 0.035| 110

in Figure 4.15. It outperform&d P+ after 40 seconds. OveralB Bd P+ is the best algo-
rithm. The BBdP+ result forh=5120,1 = 0.1124, is the best of all algorithms for the 2
minute time interval.

Larkin [73] reports an average bounds interval of 0.15, iolethwithin 30 seconds.
AT B and BdP+ obtain comparable results. Within 30 seconds, béihB (h = 379
in Table 4.10) and3dP+ (k = 16384 in Table 4.3) compute average bounds interval of
length~ 0.21. AT B’s bounds interval is reduced to 0.15 after 100 seconds (@ele %.10,

h = 4598). Note also thaf3 BdP+ computesd = 0.15 in 47 seconds.

Munin’s benchmarks. Our last two benchmarks are Munin3 and Munin4. The

evidence in each network instance has been pre-defined. Botforks are large, with
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Table 4.11: Results for Munin3.

Munin3, N=1044w*=7, |LC|=30,|E|=257

ATBY ATB BBdP+
h %P(e) 1 A | time 1 A | time 1 A | time
196 64 | 0.32| 0.133 4 | 0.050/| 0.020 8 || 0.048| 0.020| 16
441 72 | 0.25| 0.100 6| 0.030| 0.011| 12| 0.029| 0.012| 20
882 78| 0.20| 0.078| 10| 0.025| 0.009| 18| 0.025| 0.009| 26
1813 79 0.19| 0.073| 19| 0.020| 0.007| 32| 0.019| 0.007| 40
2695 80 0.17/0.068, 28| 0.018| 0.006| 46| 0.017| 0.007| 54
2891 81| 0.17/0.065 30| 0.017|0.006| 49| 0.016| 0.006| 57
3185 82| 0.16| 0.062| 34| 0.014| 0.005| 54 | 0.014| 0.005| 62
3577 82| 0.16| 0.060| 44| 0.013|0.004| 68| 0.012| 0.004| 76
4312 83 0.15]/ 0.056, 52| 0.011| 0.004| 80| 0.010| 0.004| 88
Table 4.12: Results for Munin4.
Munind, N=1041°=8, | LC|=49, |E|=235
ATBY ATB BBdP+
h %P(e) 1 A | time I| A |time 1 A | time
245 1] 0.87|0.396 310.39|0.16| 14| 0.24| 0.102| 21
441 7| 0.82] 0.372 410.32|0.13| 17 0.22|0.095| 24
1029 11 || 0.78] 0.352 71028012 34| 0.21| 0.089, 44
2058 17 0.73] 0.329| 12| 0.25|0.11| 54| 0.19| 0.082| 65
3087 20 0.70| 0.316| 17 0.22/0.11| 83| 0.18| 0.077| 91
5194 24 0.67|0.301| 27 0.21]/0.09| 134| 0.17| 0.072| 145
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Munin3, N=1044, [LC|=30, w*=7, |[E|=257
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Figure 4.16: Munin3 average bounds length as a functioh @bp) and time (bottom).
Exact inference using bucket elimination is 8 seconds. Exéerence using cutset condi-
tioning is> 1700 hours.
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Munin4, N=1041, |LC|=49, w*=8, |E|=235 —A— ATBW
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Figure 4.17: Munin4 average bounds length as a functioh @bp) and time (bottom).
Exact inference using bucket elimination is 70 seconds cExéerence using cutset con-
ditioning is> 1FE + 8 hours.
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1044 and 1041 nodes. However, their induced widths areivellatsmall. The induced
width of Munin3 isw* = 7 and induced width of Munin4 is* = 8. Subsequently,
exact inference by bucket elimination is fairly easy. As wpart in Table 4.6.4, the exact
computation time of Munin3 is 8 seconds and Munin4 is 70 sdsofhe empirical results
for each network are summarized in Tables 4.11 and 4.12 iwr&$g4.16 and 4.17.

The behavior of the algorithms in Munin3 and Munin4 is simédad is self-explanatory.
First, we take a look at the charts demonstrating the corvesof theAT B, AT B, and
BBdP+ bounds interval witth in Figure 4.16, top, and Figure 4.17, top. TH& B algo-
rithm is the worst. Its performance is especially poor ineccasMunin4. Afterh =~ 1000,
the AT B" bounds interval length remains close to 0.8. Its perforraangroves with
h very slowly. TheAT B bounds interval length is an order of magnitude smaller than
AT B* for Munin3 and a factor of 2 smaller in Munindg Bd P+ improvement oveAT B
is very small in Munin3. Consequently, the two curves are wivge and they are hard to
distinguish on the charts. The improvement is more notiesiakdMunin4.

Now, we look at the performance dfl’B*, AT B, BBdP+, andBdP+ as a func-
tion of time. Bd P+ algorithm computes bounds interval of 0.25 for Munin3 argBGor
Munin4 within 10 and 15 seconds respectively and does natdugpany more. In Munin3,
AT B outperformsBd P+ by a wide margin yielding a bounds interval of 0.05 in 8 sec-
onds. In Munin4, the loop-cutset size is larger and, thusyemence ofAT B is slower;
AT B outperformsBd P+ aftera~70 secondsB Bd P+ performance is very close 47 B

in Munin3 after 20 seconds. In Munin4, Figure 4.17, we obsé¢natB Bd P consistently
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outperformsAT B.

4.6.6 Discussion

We demonstrated that in all benchmarks, except Alarm nétwd?' B converges faster
with time than AT B*. Hence, it is usually cost-effective to invest time into garting
tighter bounds onP(z, ¢4, ¢). The fast convergence of7'B™ bounds in the case of
Alarm network may be attributed to the small number of loopset tuples; there are only
108 tuples to explore.

Comparing the average bounds length to the average absalotérethe estimator,
we observe, across all benchmarks, that the error is ussratijler than half of the interval
length. This indicates that bounds are usually well cedtar®und posterior marginals.
In most cases, the relative error i’ B (absolute error relative to the average bounds
interval) appears larger than itl’B which indicates that computing tighter bounds on
P(z, c1,4, €) produces bounds on posterior marginals that are not orijetidput also better

centered around the exact values.

4.7 Conclusions and Future Work

In this chapter we presented an anytime framework for bowygnthe posterior beliefs of
every variable. The scheme is parametrized by a fixed numbeuteet tuplesh over
which it applies exact computation using cutset conditigniWe used a modified Gibbs

sampling scheme to find high probability tuples. We developed expressions to bound
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the rest of the probability mass. Those expressions faiglithe use of any off-the-shelve
bounding algorithms (worst-case we can plug in 0 and prid¢fsje denote this scheme by
AT By, (A) (usingh cutset tuples and plug-in algoriths), AT B;,(.A) can be viewed as a
boosting scheme fad.

AT B can make any existing bounding scheme anytime and improlrethis paper
we focused on a specific algorithtd=A Bd P+, which is a variant of bound propagation
[76]. ABdP+ is based on the improved bound propagation schésé+, that exploits
the directionality of the network to its advantage, resing variable’s Markov blanket to
its relevant subnetwork. Consequently, &P+ computation time is reduced and tighter
bounds are obtained for the same input parameters which ni@rmoed empirically on
several benchmarks. However, usiBg P+ as a plug-in in the proposed any-time frame-
work was infeasible time-wise. Instead, we chose algorithBi P+ which incorporates
the improvements irBdP+ scheme but uses an approximate greedy solution to the LP
optimization problems rather than the simplex solver. @ithh the resulting bounds are
less accurate, we reduce computation time by more than a&n ofdnagnitude. Since the
framework focuses on enumerating high-probability cutsptes and only uses the plug-in
to bound the remaining probability mass/efe), we can compenstate for the loss of accu-
racy due to usingl Bd P+ plug-in instead ofBd P+ by enumarating more cutset tuples.

We showed that the any-time framework wilBd P+ plug-in outperformedd P+
in all benchmarks after exploring a few hundred to a few thodscutset tuples. In larger

networks, such as cpcs360b and cpcs422BB computed a small bounds interval in a
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fraction of the time needed to compute exact posterior matgiby bucket elimination or
cutset conditioning.

Finally, we showed that for iterative bounding algorithresch asBd P+, another
boosting step is feasible by taking the resultsi@fB and plugging them back intBd P+.

The resulting algorithnB Bd P+ improves results further ovetT' B as we showed.

The main improvements iA7T B framework compared to bounded conditioning are
1) the tighter bound formulation and 2) tighter bounds ongfabability mass of the un-
explored cutset tuplesAdT B approach is also related to the algorithm for estimating and
bounding posterior probabilities proposed by David PonlfB]. In fact, the bounds ex-
pression in [98] is similar tolT' B bounds derived in this paper where the summation over
the truncated cutset tuples #iI'B expressions represents the Poole’s bounding function.
The main difference is that in [98] the enumeration is overrktwork tuples as opposed
to a cutset. Consequently, the approach is more similar tclséaan conditioning. Also,
in [98], the bounding function is updated via conflict coagti while AT B refines the
bounding function and bounds probabilities on individuatiset tuples.

Another approach for computing bounds was proposed in [9@}@/“context-specific”
bounds were obtained by simplifying the conditional praligttables. The method per-
forms a variant of bucket elimination where intermediatgesa are collapsed by grouping
some probability values together. However, since the nietvas validated only on a small
car diagnosis network with 10 variables, it is hard to drawatesions about its effective-

ness. In [73], the bounds are also obtained by simplifyingrmediate probability tables
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in the variable elimination order but, instead of groupimghabilities, the author solves
an optimization problem to find a table decomposition thatimizes the error. A special-
izedlarge deviation boundapproach for layered networks is proposed in [65, 64] and an
elaborate bounding scheme with non-linear objective fonatas proposed in [87].

Of all the methods mentioned, only bounded conditioning W3 offer any-time
properties, namely, improve the bounds given more time jphoeg more cutset instances
and converge to exact posterior marginals. It is also wooting that our approach offers
a complete framework for computing bounds where any bouyndigorithm can be used

to bound P(c,e) and P(x,c,e) for partially-instantiatquds.
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Chapter 5

Conclusions

When it is not in our power to determine what is true,
we ought to follow what is most probable.
-Rene Descartes

In this final chapter, we conclude the dissertation with @uwlsion of contributions
and possible directions for future work.

Our research addresses the problem of answering Bayesiaegjmenetworks whose
induced width is so large that using exact algorithms isasfigle. In such cases, we resort
to using approximation and bounding methods. In this diasen, we showed how ex-
isting approximation and bounding algorithms can be impdolsy combining them with

exact inference.

5.1 Contributions

Our main contributions to Al research are three novel sclsdomreautomated reasoning in

Bayesian networks:

e Cutset samplingln Chapter 2 we proposed a general scheme for sampling orsatsafb
variables using Gibbs sampling and likelihood weightin@ayesian networks resulting
in a faster convergence of the estimates. The proposedtalgsrremain time efficient
by exploiting the network structure to bound the complexityexact inference used to
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computed sampling probabilities.

e Minimumuw-cutset Algorithm The efficiency of any scheme utilizing computation on a
cutset can be improved by minimizing the size of the cutseaftixed induced width
boundw. The problem of finding minimal loop-cutset has been adeéegseviously.

We contribute an algorithm for finding the minimum castutset.

e Any-Time Bounding Framewarkn Chapter 4, we extended the ideas explored in bounded
conditioning resulting in an any-time bounding framewdrattcomputes exactly a subset
of cutset tuples and uses any off-the-shelf method to boagrtobability mass spread
over the remaining cutset tuples. Plugging bound propagyaigorithm into proposed
framework, we obtained a hybrid scheme that is superior tb bounded conditioning

and bound propagation scheme.

The contributions of this dissertation to practical apgiiens are in the area of plan-
ning and on-line decision support systems. Both of the pregheshemes for approximat-
ing and bounding posterior marginals are any-time. and e&gavto the correct posterior
marignals. Sampling estimates improve as the number ofrgeste samples increases.
ATB bounds improve as the number of generated cutset tuptgeases. The any-time
property is important in on-line applications, where thaskecost-effective action is “no
action” and we cannot afford to wait idly for answers to ouedes. We can take initial
action based on the rough estimates and return later for avmgate results. Consider an
autonomous system on board a satellite that has to makeatex@n what information to
send back to the ground. Typical constraints are commuaicéandwidth and commu-
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nication time. The on-board computer can start transmgitiaita based on the preliminary

estimates of their importance while refining the importameasures of the remaining data.

5.2 Future Work

The future work will focus on improving the efficiency of theoposed schemes and ex-
tending their applications to real-time on-line planningtems where new observations
become available during processing. We have already diedugs previous chapters the
possible improvements to the proposed approximation ameding schemes. Incor-

porating new observation into our approximation and boogdichemes is motivated by
scenarios where new information is gained during comparigirocess, possibly as a result
of some action. For example, if a set of actions leads to a daddit is only reasonable

to incorporate this result into our computation so that wendbrepeat the same mistake
again. Of the previously proposed schemes, cutset contlijaaddressed the problem of
incorporating new evidence but the solution implied uptdagll previously visited tuples.

Our objective is to incorporate new observations into tlmppsed sampling and bounding

schemes while minimizing the amount of “recomputation”uieed.
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Appendix A

KL-distance between target and sampling
distribution

LEMMA A.0.1 Given non-negative real weights, ..., w,, S.t. >, w; = 1, and given two
set of non-negative valugs, ..., f, andgs, ..., g, S.t. Vi, g; = fie;, where0 < ¢; < 1, then:

. ZZ w; f39;
= (X2 wifi) (D2, wigi) =

Proof. The proof is based on power means inequality. Using the teefised here, the
r-th weighted power mean of thg is defined as:

ML (f1y ey fo) = (Wi f] + wafy + o+ wn fo)7

The power means inequality states that # s, then:

M < M
Letr = 1 ands = 2. Then we get:
wifi + wafo+ A wofr < (WL fF + wafs 4w fo)'
which is equivalent to:
(w1 fr + wafo+ oo+ wn fr)? S wifT +waf5 + . 4 wa f] (A1)
Deviding both sides of inequality biyo: fi + ws fa + ... + w, fn)?, We get:

| < wy f{ 4+ wafF 4 ...+ wn fr _ > wif?
T (wifitwafo o Fwafa)? (O wifi)?

Letw, = ST Write power means inequality fgfi using weightsu), ..., w!,:

5 €jWj

(A.2)

1< e i

(2 wifi)?

Substitutingzﬂ—“’iw for w!, we get:

j €W

€, W; 2 Zlngff
1 ZZ 25 €W; Ji 2w (Zz Giwiff)(zi €iw;)? - (Z, eiwifz?)(zi €W;)

SR (e (e (S (i)’
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By decomposing the fraction on the right-hand side into a pcodf two fractions, we get:

1 S ZZ Ezwzfz Zz €;W; _ ZZ wzngz Zz €;W; (A3)
Yo €wifi Y, €wifi Do WiGi Y €W f;

We focus on analyzing the factg#i“*-. Since? < 4, then:

i €Wi f b+4’
Zi €;W; < Z, €;W; + ZZ w; fi(1 — €) . ZZ €;W; + Zz w; fi — Zz w; fi€; (A.4)
SoEwifi — Y ewifi+ Y wifi(l—e) Y wifi '
_ Ziwifi+zi€iwi(1_fi) Ziwz’fri-ziwi(l—fi)
= S i, < S f, (A.5)
PV (A.6)

Zi w; fi N Zz w; f;
Substituting right-hand side of Eq. A.6 f jwwf in Eg. A.3, we get:

Yo wigifi Yo €w; < dwigifi 1 > Wigifi
Do Wigi Yo qwifi T Y swigi Yo wifi (o wigi) (Yo wifi)

1< =R

THEOREM2.3.3 (Reduced Information Distance)
Proof. Assume we have a Bayesian netwdtlover X = {X;,..., X,,}. Let lower case
x denote an instantiation of all variables. LBtC X be a subset of evidence variables,
|E| = m. LetC = {C},...,C,,} C X\E denote a subset of variables.The target distri-
bution of Likelihood Weighting is denoteB(X |e). The sampling distribution of Likeli-
hood Weighting is denote@(X). When sampling over cutsét, the target distribution is
P(Cle) and sampling distribution iQ(C').

First, we evaluatéd L(P(Cle), Q(C)), denotedx L.. By definition:

P(cle)

KL.= Z:P(de) log 000 (A7)
= cle)lo —P(C’ ‘)
= 2 Pl es o i (A8)
= " P(cle)log & C;’;) — Y " P(cle)1g P(e) (A.9)
= 3 Plcle)log "5~ log P(e (A10)

To simplify analysis, we focus on evaluatiigL. without constantog P(e). We denote:
P(c,e)
Q(c)

KL, =KL.+log P(e) = > P(cle)log (A.11)
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For each variabler; € E, let ¢y, denote a subset of cutset variables that predéde
in the sampling order. Let;,, = c\c1.4,. Note, thatPQ(fS) = HEZ,EE P(es|cin,, €1:-1)-
Therefore:

KL = ZP cle)log T Pleilcin,. eriz) (A.12)

E,eE

Sincelog of a product equals the sum loks of factors, then we can transform the expres-
sion above into:

KL = ZP cle) Z log P(e;|cyp,, €1:-1) Z ZP(C|€) log P(eilcr;, €1:i-1)

E,eE E,eE c
(A.13)
= Z ZP(CLki7cki+|6) log P(ei|cik,;, €1:i-1) (A.14)
E,eE c¢
Clearly, we can sum out variablesdp ;..
KL, =Y Plcixle)log P(e;|cin,, e14-1) (A.15)

E;eE Cl:k;

Next, we evaluaté{ L(P(X|e), Q(X)), denotedK L,. LetY = X\C, E. By definition:

KL, =Y _P(y,cle)log % (A.16)

ReplacingP(y, c|e) with P(y, c,e)/P(e), similar to K L., we get:

c?y

p
KL, =S P(y.cle)log ﬁ ~log P(e) (A.17)

Y

Again, to simplify notation, we denote:

KL = KL, +log P(e ZP (y, cle) log (3(/’0 ? (A.18)
Yy
Using equalltypyce) [1z,c5 Pleilpas) yields:
KL, = ZP y, cle) log H P(e;|pa;) (A.19)

E,eE

Sincelog of a product equals the sum lois of factors, then we get:

KL, = ZP (y.cle) > log Pleilpa;) = > Y Ply,cle)log P(eilpa;)  (A.20)

E,elE E,eE cy
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Without loss of generality, we can assume thgt andpa; are disjoint. Lety; = (c U
y)\C1.k:, pa;. Then:

KL, = Z Z ZP(Clskiapahyi’e) log P(ei|pa;) (A.21)

Ei€FE c1.k;,Yi pai

Clearly, we can sum out variablesgn

KL, =Y > > Plew,paile) log Pleilpa;) (A.22)
E; cik; pag
=335 Plpaslevs,. €) Plev,|e) log P(ed]pa;) (A.23)

E; cik; pas

= Z Z P(cyy,le) Z P(pa;|ci.k,, €) log P(e;|pa;) (A.24)
E; Clik, pa;
Due to Jensen’s inequality:
Z P(pa;|cik,;, €)log P(e;|pa;) > log Z P(pa;|ci.k,;, €)P(e;|pa;) (A.25)
pa; paq
Consequently:
KL > Z Z P(ci.x,le) log Z P(pa;|cik,;, €)P(pai|cix,;, €) P(ei|pa;) (A.26)
E; Cl:k; pag
Thus:
KL,— KL.= KL, —logP(e)— KL, +1logP(e)= KL, — KL/, (A.27)
> Z Z P(cyy,le) log Z P(pai|ciy,, e) P(e;s|pa;) (A.28)
E;€E c1.k, pa;
- Z ZP(CLI%‘€> log P(ei|cip;, €1:-1) (A.29)
E,eE Cl:k;
= Z ZP(C1;ki|€)[logZP(Pai|01;ki>€)P(€i|pai) —log P(eilcip;, €1:i-1)]
Ei€E ci.k, pa;
(A.30)

Singloga — logb = log 7, then we get :

Zpai P(ei|pa;) P(pailcit,, e)

KLx_KLcZ PC;ielo A.31
%;clz,; ( 1k| ) g P(ei|cl:ki761:i—1) ( )
Let us evaluate thivg:
[ — Epai P(eilpa;) P(pas|cik,, e)

P(€i|c1:ki, 61:¢—1)
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Multiplying the numerator and denominator of the fractign/®c; ,, ) yields:

| — Zpai P(el|pal)P<pau C1l:k; 5 6)
P(e|crn;, erim1) P(cig,, €)

Denotingey.;_1 = {e1, ...,e;_1} ande;.,, = {e;, ..., e }, We can rewrite:

] — Zpai P<ei|pai)P(pai7Cl:kiael:i—laei:m)
P(€i|01;k“ 61:1‘—1)P(C1:k“ €1:i—-1, ei:m)
B Zpai P(eilpai) P(€im|pai, crr;, e1i-1) P(pailcir,, €1:-1) P(ci,, €1:-1)

P(€i|01:ki,61:z‘—1)P(€z‘:m|01:k“61:¢—1)P(C1:ki761:i—1)

(A.32)

(A.33)

The termsP(e;|c1.x,, €1.-1) in the denominator and nominator cancel-out, yielding:

Zpai P(ei|pa;) P(eim|pai, crx;s €1:i-1) P(pailci,, €1:-1)

P(6i|clzki7 elzi—l)P<€i:m|clzki7 61:i—1)

l:

We can apply Lemma A.0.1 tioby letting:

P(eilpai, crr,, eri—1) = P(es|pas)
(€im|pai, cr,, €1:-1)
( )
(

I
e

P

P paz‘|01;k“ el:i—l)

€i+1:m |pai7 Cl:k;5 €14

fi
9i
€
Wy

and also observing that:

Zwifi = Z P(ei|pai7 Cl:k;» 61:1’—1)P(pai‘01:k“ 61;i—1) = P(€i|01:ki, 61;1’—1)
i

pa;

Zwigi = Z P(ei:m‘p@h Cl:k; s 61:1'71)]3(]9@1‘01:1@“ 61:1'71) = P(‘ei:myclzkm e1:1'71)
i

pa;

Therefore, due to Lemma A.0.1, we get:

[>1
Therefore:
lgl > 1
Subsequently:
KL,—KL.>0
Proof is complete. [ |
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Appendix B
Analysis of Bounded Conditioning

In [56], the lower and upper bounds are computed first for cdssvidence e where all
tuplesc’ are explored (bounding from complete state) and then far ofadding new ev-
idence f where only a subset of tuples is explored (boundiogy fincomplete state). We
will disregard here evidence e and bounding from complete siecause our objective is
to avoid ever exploring all tuples, with or without evidencglso, to maintain the same
notation used throughout this paper, we will denote neweswé with e, not f as in [56].
Thus, we consider a simple case where we are given a Bayediaarkea cutset C, ev-
idence e, and some means of selecting h cutset tuples outabMoFollowing the rules
of bounding from incomplete state in [56] while disregagdavidence e in [56], we have
following lower and upper bounds:

h
PE(zle) = ZP(x\ci,e)wiL (B.1)

PY(zle) = ZP x|t e)w! + Zw + Zw (B.2)

i=h+1 i=j+1

Since the sunEf:hJr1 w! in PY(z|e) corresponds in [56] to summing over tuples where
we computeP(c’, e) but not P(z, ¢’, e) and we do not allow this situation to occur (if we
took the trouble of computing(c’, e), it makes sense to compul&z|c’, ¢) and obtain the
P(x,c,e) = P(z|c!, e)P(c, e)), then we set h=j and simplify:

h
Pl(zle) = ZP(:U]ci,e)wiL (B.3)
PY(zle) = ZP (z|c", e)w? + Z w! (B.4)

i=h+1

The weights in the above expressions are defined as follows:

wh = P(c'le) - P(ci,e)M (B.5)
Zk , P(ckle) + Zk h+1 P(ck) > P(c* e) +Zk:h+1 P(c*)
v P(c'ley  P(ce)
YT SR S P o) 9
v P(<) B.7
R S NI ®7)
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We can simplify computation afY" observing that actually:

M U Zilpck,e
S~ = T PEo)

E~ <h o1 N

k=h-+1 > ko1 P(cF e)
and then substituting” with its expanded form, we obtain:
o P P P P e) + Yl P(Y))
' ZL wp +1-1 ZZ=1 wy ZL P(c.e)

Substituting weight formulas in the bounds expressionspltain:

) Z. P(c,e)
Pl(zle) = P(z|c',e M
(z]e) 2; (z] )ZZZI P(ck,e) + 3 ppy P(cF)

>y P(zlc e) P(ce)
ZZ:l P(ck,e) + ZkMzhH P(c*)
Z?:l P(I,Ci,e)
ZZ P, 6)+nyh+1 P(c*)
PY(zle) = ZP z|ct, e)w? + Z w?

i=h+1

h
i=

P(c*))

P(c'e) n Z P(Ci>(2k=1 P(ck,e) + Zk:h+1

= P(x|d, e
zzl: (e’ )Zk 1 P(c,e) i=h+1 2221 P(ck,e)

S Plalc,)P(c'e) | S e P (il P(cF,e) + S0l P(R)

Sy P(cke) Sy P(cke)
Z?:l P(l‘, Ci’ 6) + Zij\thrl P<CZ)<ZZ:1 P(Ck7 6) + chw:hqtl P(Ck>>
22:1 P(Ck7 6) 22:1 P(Ck7 6)
_ TP N~ py Zken PE)

ST DS s e
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Appendix C
Bounding posteriors of cutset nodes

So far, we only considered computation of posterior malgifa variableX ¢ X\C, E.

Now we focus on computing bounds for a cutset n6ilec C. Letc, € D(C') be some
value in domain ofC,. Then, we can compute exact posterior margiRé&t;|e) using
Bayes formula:

P(c] Lo P(c

P(CHG) — (Ck7 6) _ Z (Ck7 ) (C 76) (Cl)
Ple) Zi:l P(c,e)

whered(c,, ¢') is a Dirac delta-function so thatc), ¢') = 1iff ¢i = ¢, andd(c,,c') =0

otherwise. To simplify notation, let = C\Z. Let M, denote the number of tuples in

state-space of. Then we can re-write the numerator as:

M M;,
S 8P ) = 3 Pldh )
=1 =1

and the denominator can be decomposed as:

ZPce Z ZPck,ze

ck€D(Ck) 1=

Then, we can re-write the expression fofc, |e) as follows:
My, i
P
P(dyle) = 2t 2e) c2)
cheD(Ck) Zi:l P(Ck‘7 2t 6)

Let h., be the number of full cutset tuples whefe= ¢,. Then, we can decompose the
numerator in Eq. (C.2) as follows:

My, hck My,
ZP(C;C,ZZ, e) = ZP(C%, Z'e)+ Z P(c,, 2", €)
=1 =1 i=h_ +1
k
Similarly, we can decompose the sums in the denominator:
hey,
S Srada- ¥ Srecar X3 Pado
ck€D(Cy) =1 c,€D(Ck) i=1 CkGD(Ck)Z hck-‘rl

After decomposition, the Eq. (C.2) takes on the form:

, Zz klP(CkaZ 6)+Zz h/+1P(C;cvzi7€)
P(cile) = : T , (C.3)
chE'D(Ck) Zi=1 P(Ck’ Zz’ e) + ZCkED(Ck) ZiZth-‘rl P(Ck7 ZZ? e)
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Now, for conciseness, we can group together all fully instéed tuples in the denominator:

hey

Z ZP Cr, 7' €) ZIP(C ,e)

ck€D(Cy) =1

Then, Eq. (C.3) transforms into:

( /| ) Zz k1P<Ck:7Z 6)"‘22 h/+1 P(C;cvzive) ( )
P Ck €)= h R " C4
ziil P(CZ7 6) + chG'D(Ck) Z’f\iﬁzck-‘,—l P(Ck7 Zla 6)

Now, we can replace each squ‘i’;1 , 41 over unexplored cutset tuples with a sum over
°k

the partially-instantiated cutset tuples. Denoting\gs = M, — h., + 1 the number of
partially instantiated cutset tuples 6}, = ¢, we obtain:

h, 7; M, .
B Zz:’i P(C;c7 Z 76) + Zj:iC P(C;, Z{ZQj’e)
Zizl P(cte) + cheD(Ck) ijf P<C’f72{:qj’e)

In order to obtain lower and upper bounds formulation, we séparate the sum of joint
probabilitiesP(c, 21, ¢) whereCy, = ¢ from the rest:

(C.5)

h s . M,’ 1
> Pch, 2y €) + 20,04 P(ch, 21,0 €)
M/
h . , ; M ‘
Z'L:l P(Cl7 6) —I— ZJ:C{C P(C;g, Z{:qj,e) + ch#ck Z]:f P(CkH Z{:q]-7e)

In the expression above, probabiliti®c;,, 2, ¢) and P(c, e) are computed exactly since
they correspond to full cutset instantiations. Probabgif(c, =i, ¢), however, will be
bounded since only partial cutset is observed. Observiaghtbth numerator and denom-
inator have componerit(c,, 21, , e) and replacing it with an upper bour®’ (¢}, =1, €)

in both numerator and denominator, we will obtain an uppearioon P(c)|e) due to
Lemma 4.3.2:

P(cyle) = (C.6)

Zz klp(ckvz €)+Z i PU(dﬁ'Z{'qwe)
i Ple, )+Z ’“PU(cz,z{}q, &)+ oy, St Pler Hpr0)

Finally, replacingP(ck,z{:qj,e), ck # ¢, with a lower bound (also increasing fraction
value), we obtain:

(C.7)

P(cyle) <

Zz ’“IP(Ck,Z 6>+Z Ck PU(C;c?Z{q 76)
S Pehe) + Xt PU(¢h sy €)+ D el St PE(cy, 2y, )

P(cile) < =P
(C.8)
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The lower bound derivation is similar. Taking Eq. (C.4) aslibsis, we first group together
all partially-instantiated tuples:

M, M
Z Z P(eg, 'y e) = Z P(ce)
RED(Cy) i=he,, +1 i=h+1

transforming Eq. (C.4) into:

Zz klP(Ckaz 6)"’21 h/+1P(C;wZi7€)
P(cile) = : : (C.9)
Sy P(ce) + Zz’:h—H P(ce)
Now, replacing the summation of unexplored fully-instated tuples in Eq. (C.7) with
summation over corresponding partially-instantiatedespwe obtain:

o ; M, ,
2ih P(ehs 7€) + 30501 PG 21,0 €)
h i M’ j
Ziil P(CZ7 6) _'_ Z]:l P(C:][:qj7 e)

We obtain lower bound by replacml@( 1iq; e) in the denominator with an upper bound
andP(c, zlij, e) in the numerator with a lower bound yielding:

P(c,le) = (C.10)

S P 2 e)+Z + PL(cz,Z{q )
Z:z':HD(CZ )+ZJ 1P (C{q ,€)
We can obtain a different lower bound if we start with Eq. (@6l replace’(c;,, 21, €) in

numerator and denominator with a lower bound. Lemma 4.3a2aguiees that the resulting
fraction will be a lower bound o (¢} |e):

P(c}le) > = ph (C.11)

Zz kIP(Ck:vZ €)+Z kPL(C;wZ{:qj?e)
h j M, j
Zi:l P<Cz ) Z i PL(C;N Z{:qj ) 6) + chick Zj:f P(Ck7 Z{:qj ) 6)

Finally, replacingP(cx, z{:q],, e) in Eq. (C.12) with a corresponding upper bound, we obtain
the second lower boung!2:

P(cile) > (C.12)

Zz klp(clwz €)+Z kPL(Ckvzlq 76)
>y P(ce) + Z]!f PE(Cy g0 €) + 2t 2o it PU(ck ey, 0)
(C.13)

The lower bounds$>X and P*2 are respective cutset equivalents of the lower bounds
PLr and P12 obtained in Eq. (4.22) and (4.26). Hence, the result of Téreo4.3.3 and
Corollary 4.3.3 apply.

P(cple) = =P,”
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With respect to computing bounds #¢;, z1.4, €) in EQ. (C.8) and (C.13) in practice,
we distinguish two cases. We demonstrate them on the exarhpfger bound.

In the first case, each partially instantiated tugle that includes nodé€’;,, namely
k < ¢, can be decomposed as, = 2., | ¢} so that:

PU(C;C, 21, €) = PU(clzq, e)

The second case concerns the partially instantiated tuplethat do not include
nodeC', namelyk > ¢. In that case, we compute upper bound by decomposing:

PU(C;le:qae) = PU(Ck|Clsq)PU(Clsqae)
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Appendix D
Proofs for Chapter 4, Section 4.3

THEOREM4.3.3 (Lower Bound Dominancel)Given a Bayesian network with a cutset
C and evidencer, let X be some variable i andz’ be a value in the domain of.
Assume an algorithrd computes bound®” (¢, .;» €) and PY(d], ;2 €) ON P(d]. ;2 €) and
boundsPL(x|c{:qj, e) and PV (x |c{:qj, e) on P(x]c{:qj, e) for1 < j < M’ andVz € D(X).
Let:

Ph(z, el e) = PH(alel, )P (el )

PY(@,cl,, €)= PU(alc],, )PV (el )

If PL(x’|c{:qj, e)<1—=> ., P ($|C{:qi, e) thenPL1(2'|e) < PL2(a'|e)

whereP’ and P’z are defined in Eq. (4.22) and Eq. (4.26) respectively.

Proof. The numerators in Eq. (4.22) and Eqg. (4.26) are the same. i@ only need
to compare denominators. L&t denote denominator i} and D, denote denominator
in PL. Each denominator containsXa/_, P(c’,¢) component which will cancel out in
D, — D,. Therefore, the difference is:

M’ M’ M’
D, — D, = Z PL(x',cil:qi,e)%—Z Z PU(x,cil:qi,e) — Z PU(Cizqi,e)

i=h+1 x#x’ i=h+1 i=h+1
M/
— Z [PL(a!, ¢ e) + Z PY(z, Clugi €) — PU(Cllzqi, e)]
i=h+1 TH#x!
M’
= Y [PH@E ) PH(cly 0) + ) PU(alch,, e) PU(¢ e) = PY(cly, )]
i=h+1 r#z
= Y [PHEE )P e) = PU(E L, e)(1 = Y PY(alcly, )]
i=h+1 x#z!

By theorem conditionP"(2'|ci,, e) < 1 — 3 ... PY(z|c},, ). Therefore, after we
replaceP”(z'|c}.,,,,e) for 1 — 3 ., PY(z|c},, e), we get:

Ml
Dy—Dy < Y [PH@,,. e)P (., €) — PY(Chy, )P (2|ch, )]
= h+1
< Z PL ’01q7 (PL(Clq7 )_PU<CZ'1:qi’€>>§O
i=h+1
Thus,D, < D,. Therefore P+ < plz, ]
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THEOREM4.3.4Given an algorithmd that computes lower and upper bourfels , c{:qj ,e)
andPy (z, ], e) suchthav/j, PV (z, ¢}, ,e) < P(c,,) thenPV (z[e) < PY(z|e) where
PU1(xle) is given in Eq. (4.28) ané’V (x|e) is the bounded conditioning upper bound given
in Eq. (4.10).

Proof. SettingPL(x,c{:qj,e) =0,z # 2/, in Eq. (4.28) and, hence, reducing the denomi-
nator, we obtain:

S Pl ey + 3 PU d, e)

T X P(ee) + 0 PU( )

) Vg0

P (a'le)

By assumptionpPV (z', cl,, . €) < P(c],,,)- Setting the upper bound di(«’, c]., , e) to its

maximum value”(;,,.) in equation above yields:

Sy Pla,ce) + Y00 P(d,)
Sy Plce)+ 300 P(dl,,)

o Z?:l P(x7ci7€)+2?i1 P(Cj) A Us(../

= S ey Py © P73 (a'|e) (D.2)

The boundP"s(2’|e) in Eq. (D.2) represents the maximum valuefdf' (2’|e) under the

assumption thaPV (z’, Clg;€) < P(c{:qj). We will show next that the maximum value of

PUr(2'|e) is always less or equal to the bounded conditioning uppendbou
Rewrite PU (z|e) as a sum of fractions:

Zh P(x,c' e) EM P(c)

PUs (x]e) — §:1 . 'i:h+1 ‘
Z?:l P(c'e) + Zfihﬂ P(c) Z?:l P(c,e) + Zﬁhﬂ P(c")

The first addend iPY3(z|e) is smaller than the first addend in Eq. (4.10):

Z?:l P(m,ci,e) < Z?:l P(1‘7Ci7€)
S P(ce) + Y, P(é) T S, Pl e)

The second addend ifi” (z|e) is smaller then the second addend in Eq. (4.10):

PY'(2'|e) <

(D.1)

Zi]\thrl P(c) < i
P(c
Z?:l P(ce) + Zﬁ‘thrl P(c) = z‘;—i-l )

The theorem follows. [ ]

THEOREM 2.3.11f C is a topologically ordered loop-cutset of a Bayesian mekwand
Ciq ={C1,...,C,} isasubset of, ¢ < |C|, then the relevant subnetwork 6f., consist-
ing of loop-cutset nodes in subsgt., and their ancestors is singly-connected.
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Proof. First, we prove that the relevant subnetwork of any looseldt, is singly-connected
when all loop-cutset precedirtg, in the ordering are assigned. Proof by contradiction. As-
sume(, is observed. If the relevant subnetwork of nadgis not singly-connected, then
there is a loopl with a sink.S s.t. eitherS is observed oS has an observed descendant
amongCy, ..., C,—; or C, is a descendant &f (otherwiseS would be irrelevant). LeC;,

1 < ¢ < ¢ denote the node for whicH is the ancestor (06 = C;). By definition of
loop-cutsetdC,, € L s.t. C,, # S andC,, € C. Then,C,, is ancestor ol’;. Since
cutset is topologically ordered and all cutset nodes piieged; are observed, thef,
must be observed, thus, breaking the loop. Contradictioplyipg the above result recur-
sively, we have: relevant subnetwork@f is singly-connected, relevant subnetwork(f
conditioned on or’y, is singly-connected, and so on. The theorem follows. ]

THEOREM4.3.5Given an algorithmA that can compute an upper bound®fx, ., ¢),
wherecy,, is a partial cutset instantiation, givénfully-instantiated cutset tuples, 1 <
1 < h, then:

h .
: . 2 P(ce)
pUs _ pls > Lui=1~ \"0 7/
A A = P<€)

WherePAL3 ande{3 are expressed in Eq. (4.38) and Eq. (4.39) respectively.
Proof. Let ¢ denote the fraction of the probability mass covered by th@osgd cutset

tuples:

P(e)

Then, the bounds intervafy — P% is always lower bounded by — ¢q. We begin by
computing the bounds interval:

M pU/( i
Py pi_ Zjm P o)
S P(cie) + M PY(de)

We replacer.M:'1 PY (¢, e) in both numerator and denominator with exact probabilitysu
ij‘i/l P(d, e), yielding a lower bound on the bounds interval length:

ij\/; P(c,e)

Sy P(ce)+ 300 P(ce)
Since, they>}", P(cf,¢) = Y, P(c,e), then the Eq. (D.3) transforms into:
M i
Pfa{ pL > Zi:thl P(ce) (D.4)

Y h . M .
Zi:l P<sz 6) + Zi:thl P(Cl> 6)

249



Replacing the sums in denominator in Eq. (D.3) witfe) and replacingzl.]‘ih+1 P(c'e)
in the numerator withP(e) — ZL P(c',e), we get:

P(e) = S, P(¢',e) _ Ple) — qP(e)
P(e) Ple)

Py — P} > =1—9¢q (D.5)
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Appendix E
Proof of Optimality of Greedy Algorithm

Greedy Algorithm For Multiple-Knapsack Packing and Covering with
Sum-to-1 Constraint

The inputs to the problem are a set of variabtes {4, ..., z, }, representing some
type of commodities, and a set of knapsaéks= { K7, ..., K,,,} with minimum required
fill capacity L, and maximum capacity/;. Each variableX; is assigned to some knapsack
K; and cannot be placed in any other knapsack. QetC z, j € [1,m], denote a set of
commodities that can be loaded into knapsagk All subsets); are mutually exclusive.
Each variable:; has an associated payoff (reward)The objective is to pack: knapsacks
S0 as to maximize payoff. The linear program is defined aevid!

max f = ZCZ-X,» (E.1)
st Y mi=1 (E.2)
L; < Z x; < Uj, Vj (E.3)
1,2, €Q;
0<a <z"" Vx,€x (E.4)

A problem is feasible if and only if:
D>,;L;<1
2) Y areq, T 2 L

3) X aex T 2 1.
Therefore, we assume that these conditions always hold.
Sort variables by their coefficients from largest to smélles

1< <. <S¢y

First, we satisfy the lower bound constraints. Initializele variable value to 0. Assign
each variableX; in order:

x; — min{x]"* L;|x; € Q;}
and update corresponding lower and upper bound:
Lj — Lj — T

Uj<—Uj—£Ifi

max max
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We stop when all lower bounds are zero or we reach the end distheDenote the as-

signment to all variables after the first passcas= {29, ..., 2%}. All lower bounds will be

satisfied after processing all variables as long gs.; < 1 andVy, ZMQJ_ g > L.
Let X; = Y; + 2} where0 < Y; < 2" — z!. LetY denote a set of variablés.

Then the new objective function will take a form:
max [ = Zci(Yi +af) = Zczx; + Z ¢Yi

Since ), ¢;z; is constant, it is sufficient to maximize now the sgm, ¢;Y;. Denoting
T=TO=1-32,U =U; =3, co, v andy/"™* = z"* — x;, we obtain a simpler

optimization problem 2 over’:

max f = Z ¢Y; (E.5)
st. Y V=T (E.6)
0< ) Yi<ULVE, (E.7)
1,Y:, €Q;
0<Y; <y, Vy €Y (E.8)

We process the variables in the same order:

y; < min{y;"*", UjaT(i)‘yz’ € Qj}

and update:
e (E.10)
T = 70 _y, (E.11)

We stop whenT(+1) = 0 or after all variables are processed. We can guarantee that
T+ = (0 (which means that sum-to-1 constraint is satisfied) at tlieofprocessing as
longas) . . 7" > 1. Otherwise, feasible solution does not exist. Denote fiolait®n

asz! = {x},....,xl}.

THEOREME.O.1 Algorithm computes a maximum value of the objective f-n

Proof.

1. The obtained solution is feasible As we already mentioned, the lower bounds
are satisfied as long agj'Lj < 1 andVy, Z%e% zy'*" > L;. The upper bounds are
not violated by construction. The sum-to-1 is also satisbgdconstruction as long as

mazx
ZkaX L, > L.
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2. Now we prove that the solution is optimal.

Note: we can assume without loss of generality that all éewl coefficients in any
one knapsacks; are different. If not, we can group several variablesnto one variable
whose upper bound equals the sum of the upper bounds of tistitcents. We are only
interested in the total mass assigned to this subset ofbkasia How the mass is really
distributed among those’s does not affect neither the value of the objective functhor
the total load in knapsack;.

2.1. We prove that any optimal solution will have an assignn@ of values as
defined above.

Letz’ = {x},...,z/,} denote some optimal solution. Assume. € 2’ s.t. ¥} < z?.
Assumer; is assigned to knapsadk. Note that) ., x;, = L;. Sincez; < ) but
> wrer; Tk = Lj (the solution is feasible), then there must exist variable= Q; s.t.
x> 1.

Case 1 ¢ > ¢;. This is impossible. Since we assign values to variablegdero
from largest coefficients to smallest, variablehas been assigned valug prior to z;. By
definition, variabler, is assigned either valuk; or its maximum value. If variable;, was
assigned a maximum valug, then the value:? would be equal to 0 which contradicts our
assumption. If variable; was assigned its maximum valug*, then solutionz’ is not
feasible.

Case 2 ¢; < ¢;. We can reduce the valug down toc? and increase value ef by
the same amount. Lét= ¢, — ¢. Then, we set, = ¢, — § and¢; = ¢; + 4. By doing so,
we preserve the feasibility of solution. We also increagevéilue of the objective function
by (¢; — ¢;)6 which means that’ is not an optimal solution. Hence, this scenario is also
impossible.

Thus, any optimal feasible solution guarantees for alt; € X thatz, > 29. Thus,
the partial assignment of values obtained after first pasayasl can be extended to an
optimal solution. Thenmax f(z) = >, ;&) + max ), ¢;y;. Thus, as long as we can
prove thaty! is optimal, then algorithm A finds an optimal solution.

2.2. We prove that the solution to the optimization problem Zs optimal.

Lety’ be some optimal solution. We need to show that g{im 7,9.

First, consider variablg, in knapsacki’;. Assumey; > yi. Recall how we picked
the value ofy;.

If 49 = T, then it is impossible foy, > yi because solution’ would violate sum-
to-1 constraint.

If 40 = Uy, theny| > y} is also impossible because solutignwould violate sum-
to-1 constraint.

If 49 = y™ma* theny, > yi is also impossible because solutiohwould violate
sum-to-1 constraint.

Thus, consider case of < ).

If yi = T, then since coefficient, is the largest, then,y{ > sum;c;y.. Thus, either
yy = Uy ory) =y,

Since the sum of all variables equals to 1, then there exigsiabley; s.t. y, > v!.
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If y. is in the same knapsack as then we can reducg. from y}, down toy? and increase
11 by the same amount. Since the coefficienypfs the largest, that would increase the
value of the objective function which contradicts assuopthatz’ is optimal. This means
that for all y; in knapsackk, y; < yy. Hence,y, must belong to a different knapsack.
Next we analyze the relationship between coefficien@ndc, of z; andxy.

Case 1 ¢, > ¢;. Impossible. Coefficient; is the largest.

Case 2 ¢;, < ¢;1. Impossible. If that was true, we could shift some weighirfrg. to
¢y in solutionz’ without violating constraints and yield a solution withdar objective f-n
value contradicting assumption thétis optimal.

Thus, the only possibility is thag, = ¢;. But this is impossible too. We use the same
line of reasoning as we used to prove thatannot be greater tha)}. We consider the
possibilities of how we picked the value gf.

If yp = Uj, theny, > y; is also impossible because solutighwould violate sum-
to-1 constraint.

If y) = y"** theny, > y; is also impossible because solutishwould violate
sum-to-1 constraint.

If 42 = 7™, thenx, was the last variable processed. The rest of the variables we
assigned value 0. Then, in solutief, the maximum total load T is distributed over only
variables with maximal coefficients equalscio Then, the value af® is maximal and it is
indeed an optimal solution.

Thus, we proved that either! = =z} or the solutionz® with assignment;; = ¢
is optimal. Either case implies that assignment= z¢ extends to an optimal solution.
Namely, we can re-write our objective f-n as:

f= clx(l) + max E CiT;

i>1

Thus, the problem exhibits optimal substructure. We camgnoa similar manner that the
solution to the subproblem over— 1 variables has the same properties. Namely, we can
show for variabler, that eitherrd = =}, or the solutionz?, ..., 22 with assignment:, = z

is optimal. Continuing recursively in similar manner we pdkat either solutions® and

2’ are identical or’ is optimal. Proof is complete. ]
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