
UNIVERSITY OF CALIFORNIA,

IRVINE

Exploiting Graph Cutsets for
Sampling-Based Approximations in Bayesian Networks

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Bozhena Petrovna Bidyuk

Dissertation Committee:
Professor Rina Dechter, Chair

Professor Padhraic Smyth
Professor Max Welling

2006



c© 2006 Bozhena Petrovna Bidyuk
All Rights Reserved.



The dissertation of Bozhena Petrovna Bidyuk
is approved and is acceptable in quality
and form for publication on microfilm:

Committee Chair

University of California, Irvine
2006

ii



To My Parents
To My Husband and My Children

To All Cats

iii



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . xii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . xiv

CURRICULUM VITAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . xv

ABSTRACT OF THE DISSERTATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . xvi

Chapter 1: Introduction and Overview 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

1.2 Background and Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

1.2.1 Bayesian networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4

1.3 Algorithms for Exact Inference . . . . . . . . . . . . . . . . . . . . .. . . . . 8

1.3.1 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 8

1.3.2 Cutset Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14

1.4 Sampling methods for Bayesian networks . . . . . . . . . . . . . . .. . . . . 17

1.4.1 Importance Sampling Algorithms . . . . . . . . . . . . . . . . . .. . . . . 20

1.4.2 Gibbs sampling for Bayesian networks . . . . . . . . . . . . . . .. . . . . . 27

iv



1.5 Variance Reduction Schemes . . . . . . . . . . . . . . . . . . . . . . . . .. . 33

1.6 Thesis overview and Results . . . . . . . . . . . . . . . . . . . . . . . . .. . 38

1.6.1 w-cutset Sampling (Chapter 2) . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.6.2 Finding Minimumw-cutset (Chapter 3) . . . . . . . . . . . . . . . . . . . . 41

1.6.3 Any-Time Bounds (Chapter 4) . . . . . . . . . . . . . . . . . . . . . . . .. 42

Chapter 2: Cutset sampling for Bayesian networks 45

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

2.2 Cutset Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.2.1 Cutset sampling algorithm . . . . . . . . . . . . . . . . . . . . . . . .. . . 50

2.2.2 Estimating Posterior Marginals . . . . . . . . . . . . . . . . . .. . . . . . . 53

2.2.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.4 Optimizing cutset sampling performance . . . . . . . . . . .. . . . . . . . 57

2.2.5 On findingw-cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.3 Rao-Blackwellised Likelihood Weighting . . . . . . . . . . . . . .. . . . . . 64

2.3.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.4 Caching Sampling on a Cutset . . . . . . . . . . . . . . . . . . . . . . . . . .68

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.2 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.5.3 Results for Loop-Cutset Sampling . . . . . . . . . . . . . . . . . . .. . . . 77

2.5.4 w-cutset Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

v



2.5.5 Computing an Error Bound . . . . . . . . . . . . . . . . . . . . . . . . . . .95

2.5.6 Likelihood Weighting on a Cutset . . . . . . . . . . . . . . . . . . .. . . . 99

2.5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

2.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

2.7 Summary and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

Chapter 3: On finding minimal w-cutset 116

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

3.2 Minimalw-cutset of a Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.3 w-cutset and Tree-Decompositions . . . . . . . . . . . . . . . . . . . . . .. . 120

3.4 Hardness of Minimalw-Cutset of a Tree Decomposition . . . . . . . . . . . . 123

3.5 Algorithms for minimalw-cutset of a tree-decomposition . . . . . . . . . . . . 126

3.5.1 An exact algorithm for minimalw-cutset of a tree-decomposition . . . . . . 126

3.5.2 Algorithm GWC for minimum costw-cutset . . . . . . . . . . . . . . . . . 128

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

3.6.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6.3 Sequencew-cutset Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.6.4 Monotonousw-cutset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3.7 Related Work and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . .. 139

3.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



Chapter 4: Any-Time Bounding Scheme for Belief Updating 141

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .141

4.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.2.1 Bounded Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144

4.2.2 Bound Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148

4.3 Architecture for Any-Time Bounds . . . . . . . . . . . . . . . . . . . .. . . . 152

4.3.1 Bounding the Number of Processed Tuples . . . . . . . . . . . . .. . . . . 154

4.3.2 Bounding the Probability over the Truncated Tuples . . .. . . . . . . . . . . 156

4.3.3 Comparison of Bounding Schemes . . . . . . . . . . . . . . . . . . . . .. . 164

4.4 Incorporating Bound Propagation intoATB . . . . . . . . . . . . . . . . . . . 168

4.4.1 BoundingP (c1:q, e) andP (xl, c1:q, e) using Bound Propagation . . . . . . . 169

4.4.2 Optimizing Variable Processing Order . . . . . . . . . . . . .. . . . . . . . 170

4.4.3 Improving Bound Propagation . . . . . . . . . . . . . . . . . . . . . .. . . 173

4.4.4 Approximating the LP in Bound Propagation . . . . . . . . . . .. . . . . . 175

4.4.5 AlgorithmBBdP+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

4.5 Searching for High-Probability Tuples . . . . . . . . . . . . . .. . . . . . . . 183

4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

4.6.1 Methodology and Algorithms . . . . . . . . . . . . . . . . . . . . . .. . . 188

4.6.2 Measures of Performance . . . . . . . . . . . . . . . . . . . . . . . . .. . . 190

4.6.3 Reporting of the Results . . . . . . . . . . . . . . . . . . . . . . . . . . .. 191

4.6.4 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

vii



4.6.5 Results withBdP Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

4.6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . .. . 220

Chapter 5: Conclusions 224

5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Appendix A: KL-distance between target and sampling distribution 236

Appendix B: Analysis of Bounded Conditioning 241

Appendix C: Bounding posteriors of cutset nodes 243

Appendix D: Proofs for Chapter 4, Section 4.3 247

Appendix E: Proof of Optimality of Greedy Algorithm 251

viii



LIST OF FIGURES

Figure 1.1 A sample Bayesian network (left) and its moral graph (right). . . . . 6

Figure 1.2 Propagation of messages in belief propagation. .. . . . . . . . . . . 9

Figure 1.3 Triangulated Bayesian network . . . . . . . . . . . . . . . .. . . . 11

Figure 1.4 Sample Bayesian network, its moral graph, and equivalent poly-tree. 14

Figure 1.5 A genericImportance SamplingScheme . . . . . . . . . . . . . . . 23

Figure 1.6 AGibbs samplingAlgorithm . . . . . . . . . . . . . . . . . . . . . 28

Figure 2.1 w-Cutset samplingAlgorithm . . . . . . . . . . . . . . . . . . . . . 51

Figure 2.2 Breaking loops by instantiating loop-cutset nodes. . . . . . . . . . . 52

Figure 2.3 A Bayesian network (top) and a corresponding cluster-tree (bottom). 58

Figure 2.4 A cluster-tree rooted in clusterR. . . . . . . . . . . . . . . . . . . . 59

Figure 2.5 Message-propagation and sample generation in a join-tree. . . . . . 61

Figure 2.6 Algorithm likelihood weighting on a cutset (LWLC).. . . . . . . . 65

Figure 2.7 Proportion of unique tuples and convergence of loop-cutset sam-

pling in cpcs360b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 2.8 Performance of loop-cutset sampling in cpcs54. .. . . . . . . . . . 78

Figure 2.9 Performance of loop-cutset sampling in cpcs179.. . . . . . . . . . 79

Figure 2.10 Performance of loop-cutset sampling in cpcs360b. . . . . . . . . . . 80

Figure 2.11 Performance of loop-cutset sampling in cpcs422b. . . . . . . . . . . 81

Figure 2.12 Performance of loop-cutset sampling in random networks. . . . . . . 83

ix



Figure 2.13 Performance of loop-cutset sampling in Hailfinder network. . . . . . 84

Figure 2.14 Performance ofw-cutset sampling in cpcs54. . . . . . . . . . . . . . 88

Figure 2.15 Performance ofw-cutset sampling in cpcs179. . . . . . . . . . . . . 88

Figure 2.16 Performance ofw-cutset sampling in cpcs360b. . . . . . . . . . . . 89

Figure 2.17 Performance ofw-cutset sampling in cpcs422b. . . . . . . . . . . . 89

Figure 2.18 Performance ofw-cutset sampling in random networks. . . . . . . . 92

Figure 2.19 Performance ofw-cutset sampling in grid networks. . . . . . . . . . 93

Figure 2.20 Performance ofw-cutset sampling in coding networks. . . . . . . . 94

Figure 2.21 Average rejection rate of LWLC in Pathfinder 1 and Pathfinder2. . . 103

Figure 2.22 Performance of likelihood weighting on a cutsetin PathFinder1,

Pathfinder2, and Link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Figure 2.23 Performance of likelihood weighting on a cutsetover cpcs360b

without evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

Figure 2.24 Performance of likelihood weighting on a cutsetin cpcs360b with

evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Figure 2.25 Performance of likelihood weighting on a cutsetin cpcs422b. . . . . 108

Figure 3.1 Sample graph and its tree-decomposition conditioned on one node. . 122

Figure 3.2 A sample set multi-cover problem and corresponding tree-decomposition.124

Figure 3.3 Recursive minimum sizew-cutset algorithm. . . . . . . . . . . . . . 128

Figure 3.4 A tree-decomposition and corresponding set multi-cover problem. . 129

Figure 3.5 Greedy w-cuset Algorithm. . . . . . . . . . . . . . . . . . . .. . . 130

x



Figure 4.1 Bound Propagation (BdP ) Algorithm . . . . . . . . . . . . . . . . 151

Figure 4.2 A sample truncated cutset search tree. . . . . . . . . .. . . . . . . 155

Figure 4.3 Any-Time Bounds Architecture . . . . . . . . . . . . . . . . .. . . 161

Figure 4.4 Greedy algorithm for fractional MKP problem. . . .. . . . . . . . . 181

Figure 4.5 Number of unique samples as a function of Gibbs samples in cpcs179

and cpcs360b. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Figure 4.6 w-Cutset samplingAlgorithm . . . . . . . . . . . . . . . . . . . . . 186

Figure 4.7 Searching for heavy tuples via cutset sampling inan instance of

Barley network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Figure 4.8 Average bounds length forBdP+ algorithm over cpcs360b opti-

mizing LP by fractional packing with 1 and many knapsacks. . .. . . . . . 198

Figure 4.9 Average bounds length forATB with a bound propagation plugin

optimizing LP by fractional packing with 1 and many knapsacks. . . . . . . 200

Figure 4.10 Barley bounds as a function ofh and time. . . . . . . . . . . . . . . 203

Figure 4.11 Barley bounds as a function ofh and time. . . . . . . . . . . . . . . 205

Figure 4.12 cpcs54 bounds as a function ofh and time. . . . . . . . . . . . . . . 208

Figure 4.13 cpcs179 bounds as a function ofh and time. . . . . . . . . . . . . . 210

Figure 4.14 cpcs360b bounds as a function ofh and time. . . . . . . . . . . . . 212

Figure 4.15 cpcs422b bounds as a function ofh and time. . . . . . . . . . . . . 214

Figure 4.16 Munin3 bounds as a function ofh and time. . . . . . . . . . . . . . 217

Figure 4.17 Munin4 bounds as a function ofh and time. . . . . . . . . . . . . . 218

xi



LIST OF TABLES

Table 2.1 Sampling benchmarks’ characteristics. . . . . . . . .. . . . . . . . . 74

Table 2.2 Markov chain sampling set size as a function ofw. . . . . . . . . . . 87

Table 2.3 Average number of samples generated per second as afunction ofw. 87

Table 2.4 Individual Markov chain length as a function ofw. The length of

each chainM was adjusted for each sampling scheme for each benchmark

so that the total processing time across all sampling algorithms was the same. 96

Table 2.5 Average absolute error∆ (measured) and estimated confidence in-

terval∆0.9 as a function ofw over 20 Markov Chains. . . . . . . . . . . . . 97

Table 2.6 Sample generation speed of full likelihood weighting and likelihood

weighting on a cutset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Table 2.7 Rejection rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Table 3.1 The size ofw-cutset obtained via different greedy schemes. . . . . . 134

Table 3.2 Functionf(i) for cpcs364b, cpcs422b, and random networks. . . . . 135

Table 3.3 The size of monotonousw-cutset obtained by different greedy schemes.138

Table 4.1 Benchmarks’ characteristics. . . . . . . . . . . . . . . . . .. . . . . 192

Table 4.2 Performance of two variants of bound propagation in networks with-

out evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Table 4.3 Performance of two variants of bound propagation in networks with

evidence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

xii



Table 4.4 Average bounds interval for bound propagation using the simplex

solver and approximate greedy algorithm. . . . . . . . . . . . . . . .. . . 199

Table 4.5 Average bounds interval in Alarm network. . . . . . . .. . . . . . . 204

Table 4.6 Average bounds interval in Barley network. . . . . . . .. . . . . . . 206

Table 4.7 Average bounds interval in cpcs54. . . . . . . . . . . . . .. . . . . 207

Table 4.8 Average bounds interval in cpcs179. . . . . . . . . . . . .. . . . . . 209

Table 4.9 Average bounds interval in cpcs360b. . . . . . . . . . . .. . . . . . 211

Table 4.10 Average bounds interval in cpcs422b. . . . . . . . . . .. . . . . . . 215

Table 4.11 Average bounds interval in Munin3. . . . . . . . . . . . .. . . . . . 216

Table 4.12 Average bounds interval in Munin4. . . . . . . . . . . . .. . . . . . 216

xiii



ACKNOWLEDGEMENT

It has been a great pleasure working with the faculty, staff,and students at the Uni-

versity of California, Irvine, during my tenure as a doctoralstudent. This work would

never have been possible if it were not for the freedom I was given to pursue my own

research interests, thanks in large part to the guidance, mentoring, and constructive crit-

icism provided by my advisor and committee chair Rina Dechter. Also many thanks to

David Eppstein for his input on the matters of algorithmic theory. I also wish to express

my gratitude to Kris Bolcer and Milena Wypchlak, our wonderful graduate student ad-

visors, and to all ICS faculty for creating and inspiring environment in our department,

especially Mike Dillencourt, Lubomir Bic, Sandra Irani, andGeorge Lueker. Thanks

also to my fellow AI researchers at UCI including Robert Mateescu, Radu Marinescu,

and Vibhav Gogate for many insightful discussions.

xiv



CURRICULUM VITAE

Bozhena Petrovna Bidyuk

1996 B.S. Summa Cum Laude, Information and Computer Science
University of California-Irvine

1998 M.S., Information and Computer Science
School of Information and Computer Science
University of California-Irvine

2006 Ph.D., Information and Computer Science
University of California-Irvine
Dissertation: “Exploiting Graph Cutsets for Sampling-Based
Approximations in Bayesian Networks”
Advisor: Rina Dechter

xv



ABSTRACT OF THE DISSERTATION

Exploiting Graph Cutsets for Sampling-Based Approximationsin Bayesian Networks

By

Bozhena Petrovna Bidyuk

Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 2006

Professor Rina Dechter, Chair

Automated reasoning with graphical models has found many practical applications in

domains such as planning, vision, speech recognition, genetic linkage analysis, diag-

nostics, and many others. Graphical models, combining graph theory and probability

theory, facilitate a compact and structured representation for problems with uncertainty

and provide a mechanism for answering queries such as computing the probability of

an event given observations.

Several exact algorithms for reasoning with graphical models exist. However,

exact computation is not always possible due to prohibitivetime and memory de-

mands. In general, computing exact posterior marginals andeven approximating pos-

terior marginals within a desired degree of precision is NP-hard. In practice, we often

choose methods that can quickly compute approximate answers to Bayesian queries,

trading accuracy for speed. Approximation methods includealgorithms for approxi-

mate inference, stochastic sampling, network simplifications (simplifying the structure

of the underlying graph), and variational approximations.We often obtain a more flex-

xvi



ible computation scheme, balancing complexity and accuracy, by combining exact and

approximate computation. This dissertation focuses on combining search with exist-

ing sampling and bounding methods yielding two new schemes for approximating and

bounding posterior marginals in Bayesian networks. Those two new schemes, cutset

sampling and any-time bounds, exploit the network structure to bound the complexity

of exact computation.

Cutset sampling for computing approximate posterior marginals samples only a

subset of variables, a cutset of the underlying graph. Sincereducing the size of the sam-

pling set results in lower sampling variance, cutset-basedsampling converges faster

than sampling on a full set of variables. Two variants of cutset sampling algorithm

were developed. One, based on Gibbs sampling, is a general approach tocollapsed

Gibbs sampling in Bayesian networks. The second algorithm implements the likeli-

hood weighting on a cutset. The proposed any-time bounds framework is an any-time

scheme for computing bounds on posterior marginals. It enumerates a subset of cutset

tuples and performs exact inference over these tuples and then bounds the remaining

probability mass.

Both methods exploit the problem’s underlying network structure to control the

time and space complexity of the computations. They focus onfinding a cutset of the

graph such that the complexity of exact reasoning is boundedwhen the cutset variables

are assigned. The dissertation proposes a new algorithm forfinding a minimum cost

cutset that yields the specified complexity bound on exact inference.

xvii



Chapter 1

Introduction and Overview

1.1 Introduction

The ability to establish cause-effect relationships is thecornerstone of human cognitive

development. One of the first cause-effect relationships a child learns, for example, is that

a toy falls down when released. Furthermore, the child learns that when a toy falls down,

the mother rushes to pick it up. Arranging the two learned relationship into a hierarchy,

the child can predict and plan a sequence of events such as invent a delightful game of

throw-and-pick-up-the-toy. As time goes on, the child learns more complex relationships

between the elements in the surrounding world, yet, the tendency to connect the events into

a network of cause-effect relationships remains.

The attraction of Bayesian networks [96] is that they allow usto express the cause-

effect relationships or the direction of influence between components of the systems using

graph representation. Namely, the nodes in the graph are thevariables representing the

elements of the system and the edges show the direction of influence. The hierarchy of

relationships in a network allows us to model interactions in large complex systems in a

compact way that is easy for a human brain to relate to.

The cause-effect relationships are not always deterministic though. While the law of

1



gravity reinforces the child’s learning that all solid objects fall down without support, he or

she also discovers, for example, that the dark clouds sometimes bring the rain and some-

times pass by without a drop of water. Thus, the notion of the uncertainty of the outcome

emerges. As the learned relationships become more complex,and perhaps more variables

are taken into consideration, the model of the world becomesmore refined and predictions

more accurate. With the help of the satellite imaging and computer simulations, we can

predict weather better, but the element of uncertainty usually remains as it is often either

impractical or impossible to take into account “everything”. Bayesian networks accommo-

date this inherent uncertainty in our life as well. It is expressed in the form of conditional

probability tables or probability density functions describing the relationships between the

variables.

Thus, Bayesian networks draw from the same fundamental principles as the hu-

man learning and knowledge representation. Unlike human brain, which takes millions

of years of evolution to develop the neural connections necessary to support any new mod-

els, Bayesian networks can be learned and analyzed quickly with the aid of the computers.

Providing Bayesian network as input, we can delegate to the computers the task of “rea-

soning” about the probability of the outcome, thus, automating the “thinking” process and

enabling the processing of large volumes of data.

The only trouble remaining is that, as we refine our models of the world, the com-

plexity of the computation spirals out of control. While the prediction of rain based on the

color of the cloud might not be always accurate, it is easy to obtain. The forecast based

2



on the analysis of the weather system over the area is more rerfined, but may require a

distributed computer simulation.

Since even powerful supercomputers have limited resources, computing exact an-

swers in complex models becomes simply infeasible. Then, our options are to either sim-

plify the model or to apply an algorithm that computes the answer faster, but with less

precision. Both approaches have been investigated by many researchers in the last decade.

This dissertation contributes to the area of research devoted to the development of approxi-

mate algorithms. It defines two new algorithms, one for approximating and one for bound-

ing the answers to queries over Bayesian networks with discrete variables. Exploiting the

structural properties of the networks and combining the search and exact computation, the

proposed algorithms improves over existing methods.

In the remainder of this chapter, we define essential terminology and provide back-

ground information on Bayesian networks followed by overview of the thesis and summary

of the results.

1.2 Background and Overview

In this section, we define essential terminology and providebackground information on

Bayesian networks. We use upper case letters without subscripts, such as X, to denote sets

of variables and lower case letters without subscripts to denote an instantiation of a group of

variables (e.g.x indicates that each variable in setX is assigned a value). We use an upper

case letter with a subscript, such asXi, to denote a single variable and a lower case letter

3



with a subscript, such asxi, to denote an instantiated variable (e.g.xi denotes an arbitrary

value in the domain ofXi and meansXi = xi). Given a set of variablesx = {x1, ..., xi, ...},

we usex−i = x\xi to denotex with elementxi removed.D(Xi) denotes the domain of

variableXi. A superscript in a subscripted lower case letter would be used to distinguish

different specific values for a variable, i.e.,D(Xi) = {x1
i , x

2
i , ...}.

1.2.1 Bayesian networks

DEFINITION 1.2.1 (graph concepts)A directed graph is a pairD =<V,E>, whereV =
{X1, ..., Xn} is a set of nodes, or variables, andE = {(Xi, Xj)|Xi, Xj ∈ V } is the set
of edges. A directed graph isacyclic if it has no directed cycles; that is, for any nodeXi,
there is no nonempty directed path starting and ending onXi.

Given (Xi, Xj) ∈ E, Xi is called aparent of Xj, andXj is called achild of

Xi. The set ofXi’s parents is denotedpa(Xi), or pai, while the set ofXi’s children is

denotedch(Xi), or chi. The family of Xi includesXi and its parents. Themoral graph

of a directed graphD is the undirected graph obtained by connecting the parents of all the

nodes inD and removing the arrows. A nodeYj is adescendantof nodeXi if there is a

directed path from nodeXi to nodeYj. A nodeYj is anancestorof nodeXi if there is a

directed path from nodeYj to nodeXi. A nodeXi in a directed graphD is called aroot if

no edges are directed intoXi. A nodeXi in a directed graphD is called aleaf if all of its

adjacent edges are directed intoXi.

DEFINITION 1.2.2 (cycle-cutset)The underlying graphG of a directed graphD is the
undirected graph formed by ignoring the directions of the edges inD. A cycle in an undi-
rected graph G is a path whose two end-points coincide. A graph issingly connected(also

4



called apoly-tree), if its underlying undirected graph has no cycles. Otherwise, it is called
multiply connected. A cycle-cutsetof an undirected graph is a subset of nodes in the
graph that, when removed, results in a graph without cycles.

DEFINITION 1.2.3 (loop-cutset)A loop in a directed graphD is a subgraph ofD whose
underlying graph is a cycle. A vertexv is a sink with respect to loopL if the two edges
adjacent tov in L are directed intov. A vertex that is not a sink with respect to a loopL is
called anallowedvertex with respect toL. A loop-cutsetof a directed graphD is a set of
vertices that contains at least one allowed vertex with respect to each loop inD.

DEFINITION 1.2.4 (belief networks)LetX = {X1, ..., Xn} be a set of random variables
over multi-valued domainsD(X1), ...,D(Xn). A belief network (BN)is a pair< G,P >
whereG is a directed acyclic graph onX andP = {P (Xi|pai)|i = 1, ..., n} is a set of
conditional probability tables (CPTs) associated with eachXi. P (Xi|pai) is a conditional
probability distribution ofXi conditional on parent instantiationpai. The BN represents a
joint probability distribution having the product form:

P (x1, ...., xn) =
n

∏

i=1

P (xi|xpa(Xi))

An evidencee is an instantiated subset of variables E.

Bayesian networks facilitate a compact representation of the joint probability distri-

bution over a set of variablesX. Instead of enumerating all possible instantiations ofX,

we only enumerate the instantiations of parents of each nodeXi in corresponding con-

ditional probability table (CPT). Thus, the storage requirement is reduced fromd|X| to

|X| ∗ dmaxi|pa(Xi)| whered is the maximum domain size. A sample Bayesian network and

corresponding moral graph are shown in Figure 1.1.

The structure of the directed acyclic graph reflects the dependencies between the

variables. The parents of a variableXi together with its children and parents of its chil-

dren form aMarkov blanketmai of nodeXi. Given its Markov blanket, the probability

5



x4

x8x5x2 

x3

x9x7 

x6 x1 x1 

x8x5x2

x3

x9 x7

x6 

x4

Figure 1.1: A sample Bayesian network (left) and its moral graph (right).

distribution ofXi is independent from the rest of the variables in the network.Namely,

P (xi|x−i) = P (xi|mai). For more information see [96].

Also important in practice is the notion of a relevant subnetwork of Xi. In many

algorithms, we can reduce the complexity of computation by limiting the computation to

the subgraph that is the relevant subnetwork forXi.

DEFINITION 1.2.5 (Relevant Subnetwork)A variableXi in DAGG overX is irrelevant
(barren) w.r.t. a subsetZ⊂X if Xi /∈Z andXi only has irrelevant descendants (if any).
The relevant subnetwork ofG w.r.t. a subsetZ is the subgraph ofG obtained by removing
all variables that are irrelevant w.r.tZ.

We will sometimes refer to the relevant subnetwork w.r.t. variableXi and evidence

E as the relevant subnetwork ofXi.

Other graph representations of reasoning problems (including Bayesian networks)

can be useful in the analysis of the complexity of the algorithms for Bayesian networks.

6



DEFINITION 1.2.6 (Primal-, dual-,hypergraph of a problem) Theprimal graphG=<X,E>of
a reasoning problem<X,F> has the variablesX as its nodes and an arc connects two
nodes if they appear in the scope of the same functionf ∈ F . A dual graph of a reasoning
problem has the scopes of the functions as the nodes and an arcconnects two nodes if the
corresponding scopes share a variable. The arcs are labelled by the shared variables. The
hypergraph of a reasoning problem has the variablesX as nodes and the scopes as edges.
There is a one-to-one correspondence between the hypergraphand the dual graphs of a
problem.

The primary queries over Bayesian networks are:

1. Belief Updating: given evidencee and a variableXi ∈ X, find the posterior probability

distributionP (Xi|e);

2. Belief Revision (MPE): find mostprobableexplanation for evidencee of E, namely, find

a maximum probability assignment to the unobserved variablesY = X\E:

y ← arg max
y
P (y|e)

3. MAP: find maximuma posteriori hypothesis, namely find a maximum probability as-

signment to a subset of unobserved variablesY ⊂ X\E given evidenceE = e:

y ← arg max
y
P (y|e)

This collection of queries are often referred to as the “inference” task in Bayesian networks.

Exact inference in Bayesian networks is NP-hard [22, 111]. Furthermore, finding an

approximate solution for any of the tasks above with a fixed error bound is also NP-hard

[24, 4]. More recent results have demonstrated that betweenthe three tasks, belief updating

is harder than belief revision, and MAP is the hardest:

MPE < BeliefUpdating < MAP

7



To be exact, MPE remainsNP -complete, Belief Updating was shown to be#P -complete

[107] as the task is similar to that of counting the number of solutions, and MAP was shown

to beNP PP -complete [92]. MPE and belief updating can be solved in linear time when the

network is singly-connected (has no loops) using a belief propagation algorithm proposed

by Pearl [96]. However, as Park [92, 94] showed, MAP task remains hard even when MPE

and belief updating become easy (for example, in poly-tree networks).

This work is focused on the Belief Updating task, in particular, on finding posterior

marginals of singleton variablesP (xi|e). Next, we review the exact methods for belief

updating in Bayesian networks.

1.3 Algorithms for Exact Inference

In this section we briefly review exact computation methods for answering Bayesian net-

work queries. There are two primary types of algorithms for Bayesian queries: inference-

based and search-based. We review inference-based methodsin subsection 1.3.1. The

search-based cutset conditioning is presented in subsection 1.3.2.

1.3.1 Inference Algorithms

Belief propagation algorithm performs belief updating in singly-connected Bayesian net-

works in time and space linear in the size of the input [96]. Inloopy networks, the two

main approaches for belief updating arecutset conditioning[96] andtree clustering[75].

We will introduce the principles of belief propagation in Section 1.3.1 followed by a brief

8



description of clustering algorithms in Section 1.3.1 and the conditioning method in Sec-

tion 1.3.2.

Iterative Belief Propagation (IBP)

Belief propagation (BP) is an iterative message-passing algorithm that performs exact in-

ference for singly-connected (poly-trees) Bayesian networks [96]. In each iteration, every

nodeXi sends a messageπj(Xi) to each childXj and receives a messageλj(Xi) from each

childXj:

πj(xi) = α
∏

k 6=j

λk(xi)
∑

pai

P (xi | pai)
∏

ul∈pai

πi(ul) (1.1)

λj(xi) = α
∑

xj∈D(Xj)

∏

k

λk(xj)
∑

paj\xi

P (xj | paj)
∏

ul∈paj\xi

πi(ul) (1.2)

whereα is a normalization constant. Figure 1.2 shows the exchange of messages between

a variableXi, its parentsU1, ..., Un and its childrenY1, ..., Ym.

…

Un

…

Y1

Y2 Y j

Ym

…

…

�
x(Ui) � x(Ui)

�
yj
(X)� yj

(X)

X i

U2
U1

Ui

Figure 1.2: Propagation of messages in belief propagation.

9



Upon convergence, we obtain posterior marginalP (xi|e) as follows:

P (xi|e) = α
∏

k

λk(xi)
∑

pai

P (xi | pai)
∏

ul∈pai

πi(ul)

The message-passing order can be organized so that BP converges in two iterations. Ap-

plied to Bayesian networks with loops, the algorithm usuallyiterates longer (until it may

converge) and hence, is known as Iterative Belief Propagation (IBP) or loopy belief prop-

agation. IBP provides no guarantees on convergence or quality of approximate posterior

marginals but was shown to perform well in practice [104, 91]. It is considered the best al-

gorithm for inference in coding networks [39, 71] where finding the most probable variable

values equals the decoding process [88]. Algorithm IBP requires linear space and usually

converges fast if it converges. In our benchmarks, IBP converged within 25 iterations or

less (see Section 2.5).

Clustering Methods

The join-tree clustering approach (JTC) refers to a family ofalgorithms including join-

tree propagation [75, 59] and bucket-tree elimination [29,28]. The idea is to first obtain a

tree decomposition of the network into clusters of functions connected as a tree and then

propagate messages between the clusters in the tree. We can obtain a tree decomposition

of the graph by first, moralizing the graph (connect all parents of each node and drop the

edge direction), and then eliminating nodes in some order from last to first, connecting all

of its preceding neighbors. The complexity of the resultinggraph is characterized by the

graph’s induced width.

10



DEFINITION 1.3.1 (induced-width) Thewidth of a node in an ordered undirected graph
is the number of the node’s neighbors that precede it in the ordering. Thewidth of an
ordering d, denotedw(d), is the width over all nodes. Theinduced width of an ordered
graph,w∗(d), is the width of the ordered graph obtained by processing the nodes from last
to first. When node X is processed, all its preceding neighbors are connected. The resulting
graph is calledinduced graphor triangulated graph.

x9 x8 x7 x1 x3 x2 x4 x5x6

Figure 1.3: Induced graph for a sample Bayesian network shownin Figure 1.1 along order-
ing d={X5,X4,X6,X2,X3,X1,X7,X8,X9}, w∗ = 4, with added edge{X2, X6}.

For the sample network in Figure 1.1, along ordering{X5, X4, X6, X2, X3, X1, X7,

X8, X9}, the induced widthw∗ = 4 after we add edge{X2, X6}. The induced ordered

graph is shown in Figure 1.3.

A tree-decomposition is a singly-connected undirected graph whose nodes, also called

clusters, contain subsets of variables and input functionsdefined over those variables. A

tree-decomposition must contain each function once and satisfy running intersection prop-

erty [86]. Formally:

DEFINITION 1.3.2 (tree-decomp., cluster-tree, tree-width)LetR =<X,D, F> be a rea-
soning problem with its hypergraphH =<X,F>. (We abuse notation when we identify
a function with its scope). Atree-decompositionfor R (resp., its hypergraphH) is a
triple < T, χ, ψ >, whereT=<V,E> is a tree, andχ andψ are labelling functions which
associate with each vertexv ∈ V two sets,χ(v) ⊆ X andψ(v) ⊆ F such that:

11



1. For each functionfi ∈ F , there isexactlyone vertexv ∈ V such thatfi ∈ ψ(v), and
scope(fi) ⊆ χ(v).

2. For each variableXi ∈ X, the set{v ∈ V |Xi ∈ χ(v)} induces a connected subtree of
T . This is also called the running intersection property.

Given two adjacent verticesVi andVj of a tree-decomposition, theseparatorof Vi andVj

is defined assep(i, j) = χ(Vi) ∩ χ(Vj).

We will often refer to a node and its functions as acluster and use the termtree

decompositionandcluster treeinterchangeably.

For a unifying perspective of tree-decomposition schemes see [63]. We will outline

the approach next.

Given a tree-decompositionT of the network, the message propagation over this

tree can be synchronized. We select any one cluster as the root of the tree and propagate

messages up and down the tree. A messagemi,j from clusterVi to neighborVj is a function

over the separator setsep(i, j) that is a marginalization of the product of all functions inVi

and all messages thatVi received from its neighbors besidesVj:

mi,j =⇓sep(i,j) (
⊗

f∈cluster(u),f 6=mj,i

f) (1.3)

wherecluster(u) = ψ(u) ∪ {mj,k|(Vj, Vk) ∈ T}.

We compute the posteriors for eachXk ∈ Vi by taking a product of all functions in

the clusterVi and marginalising out all other variables:

P (Xk, e) =⇓Xk
(

⊗

f∈cluster(u)

f) (1.4)

Assuming that the maximum number of variables in a cluster isw + 1 and maxi-

mum domain size isd, the time and space required to process one cluster isO(d(w+1)).

12



Since the maximum number of clusters is bounded by|X| = n, the complexity of variable-

elimination algorithms and cluster-tree propagation schemes is time and spaceO(N ·d(w+1)).

The parameterw, the maximum cluster size minus 1, is called the tree-width of the tree de-

composition.

DEFINITION 1.3.3 (tree-width) The tree-width of a tree-decomposition< T, χ, ψ > is
the maximum size of nodeχi minus1, i.e.,maxv∈V |χ(v)|-1 [6]. The tree width of a graph
G denotedtw(G) is the minimum width over all possible tree decompositions ofG [6].

We will sometimes denote the optimal tree-width of a graph bytw∗. It is well known

that the tree-width of a graph is identical to its induced-width. We use the notation of

tree-width and induced-width interchangeably.

The task of finding the tree-width of a graph is NP-complete [6]. In the past 2

decades, substantial research focused on designing exact and approximate algorithms for

finding the tree-width [10, 112, 49].

Bucket elimination is a special case of join-tree clusteringwhere messages are passed

from leaves to root along a bucket-tree [29, 28]. Given a variable ordering, the algorithm

partitions functions into buckets, each associated with a single variable, corresponding to

clusters in a join-tree. A function is placed in the bucket ofits latest argument in the

ordering. The algorithm processes each bucket, top-down, from the last variable to the first,

by a variable elimination procedure that computes a new function using combination and

marginalization operators. The new function is placed in the closest lower bucket whose

variable appears in the new function’s scope. In a generalized elimination scheme, known

as bucket-tree elimination, a second pass along the bucket tree can update every bucket in

13



the tree [23, 63].

1.3.2 Cutset Conditioning

When the tree-widthw of the Bayesian network is too large, (e.g., when the requirements of

inference schemes such as bucket elimination and join-treeclustering (JTC) exceed avail-

able memory), we can switch to the alternativecutset conditioningscheme presented in

[96, 109, 97]. The idea of this scheme is to select a subset of variablesC ⊂ X\E, called a

cutset, and obtain posterior marginals for any nodeXi ∈ X\C,E by:

P (xi|e) =
∑

c∈D(C)

P (xi|c, e)P (c|e) (1.5)

Eq. (1.5) implies that we can enumerate all instantiations overC, perform exact inference

via a join-tree algorithm for each cutset instantiationc to obtainP (xi|c, e) andP (c|e) and

then sum up the results.

� �� � � � � �� � � � � � � 	� 
� � � � � 
 � �� � � � � �� � � �� �� �
Figure 1.4: Bayesian network (left), its moral graph(center), and conditioned poly-tree
(right) (conditioned onC = {X2, X5}).

Observations break down the dependencies in a Bayesian network. When a nodeXi

is observed (conditioned on), we can transform the network,while preserving all dependen-

cies, as follows. We first remove all directed edges between the nodeXi and its children.

14



Then, for each childchj(Xi), create a copyXij of nodeXi and add a directed edge from

Xij to chj(Xi). If instantiated nodes form a loop-cutset, then the Bayesiannetwork can

be transformed into an equivalent singly-connected network. The graph on the right in

Figure 1.4 shows a poly-tree network that is equivalent to the original network, shown in

Figure 1.4 on the left, conditioned on loop-cutsetC = {X2, X5}.

Hence, when loop-cutset nodes are observed, probabilitiesP (xi|c, e) andP (c|e) can

be computed via BP in time and space linear in the size of the network. The total computa-

tion time is exponential in the size of the loop-cutset because we have to enumerate all the

cutset instantiations.

To minimize the cutset-conditioning time, we usually try tofind a minimal loop-

cutset, i.e., the one that contains the smallest number of variables. The problem is NP-hard

since the minimal vertex cover, which is known to be NP-hard [42], can be reduced to

the minimal loop-cutset problem [114]. A factor 4 approximation algorithm for finding a

minimum loop-cutset was proposed in [7], i.e., the algorithm guarantees that the resulting

loop-cutset is no more than a factor of 4 larger than optimal.A more refined version of

the problem is to find a loop-cutset with the smallest number of tuples. Becker and Geiger

[9] showed that it can be reduced to finding the minimum weighted vertex feedback set

(MWVFS) where the weight of a variable equals the size of its domain. Of course, it is also

NP-hard [61]. Using the reduction to MWVFS, Becker and Geiger [9] proposed a factor

2 approximate algorithm1 for finding the minimum weight loop-cutset, thus, improving
1In UAI proceedings, it is stated that the algorithm is a factor 4. However, it was re-evaluated later.

15



on the result of Bar-Yehuda et. al. [7]. Subsequently, they showed that their deterministic

algorithm can be improved by randomizing the greedy selection step and running algorithm

multiple times [8, 3].

It is well-known that the minimum induced widthw∗ of the network is always less

than the size of the smallest loop-cutset [13, 29]. Namely,w∗ + 1 ≤ |C| for any C.

Thus, inference algorithms (e.g., bucket elimination) arenever worse and often are better

than cutset conditioning time-wise. However, whenw∗ is large we must resort to cutset

conditioning search, trading space for time. The optimal solution is a hybrid search and

inference approach that conditions on the smallest cutsetC such that the induced widthwC

of the graph conditioned onC is small enough to perform exact inference whose complexity

is bounded exponentially bywC .

DEFINITION 1.3.4 (w-cutset) Given a Bayesian networkB overX and evidenceE⊂X, a
subset of nodesC⊂X\E is aw-cutset in B if the induced width ofB conditioned onC,E
isw.

If C is aw-cutset, the quantitiesP (xi|c, e) andP (c|e) can be computed in time and

space exponential inw. The resulting scheme requires memory exponential inw and time

O(d|C| ·N · d(w+1)) whereN is the size of the network andd is the maximum domain size.

Thew-cutset conditioning scheme generalizes loop-cutset conditioning and allows tuning

the performance to the available system memory resource viaw.

In [51] the idea is applied to the Pathfinder system [53], where the conditioning set

is restricted to the set of diseases. Hybrid scheme combining conditioning with cluster-

ing algorithms has been explored further in [109]. Rish and Dechter [102, 103] proposed

16



a scheme for combining conditioning and variable elimination for propositional theories.

They combined Directional Resolution, a variable elimination scheme for SAT, with the

Davis-Putnam search procedure. In [74], Larrosa and Dechter extended that approach to

general constraint optimization tasks. An alternative hybrid scheme combining condition-

ing and elimination in the computations in a single cluster of a clique-tree was proposed by

Dechter and Fattah [30].

Givenw, finding a minimalw-cutset for the hybrid scheme is hard. Several greedy

heuristic approaches can be found in [43, 15, 16]. We elaborate more in Section 2.2.5.

1.4 Sampling methods for Bayesian networks

When the complexity of exact algorithms for answering Bayesian queries renders those

methods infeasible in practice, we resort to approximate methods. Sampling algorithms

are commonly used for approximate reasoning in Bayesian networks as they require linear

amount of memory and guarantee convergence to exact values with time. In this section, we

review briefly sampling methods for Bayesian networks focusing on likelihood weighting

and Gibbs sampling.

Consider a Bayesian networkB overX. LetE denote a subset of evidence variables

ande denote the observed values. A samplex(t) is an assignment to all the variables in

X. Superscriptt denotes a sample number andx(t)
i is the value ofXi in samplet. Let

P (X) denote the probability distribution defined byB. Since we want to sample from

distributionP (X), it is also calledtarget distribution. Letf(X) denote a function of in-

17



terest over variablesX. Functionf(X) can represent any of the typical Bayesian queries,

including the posterior marginal distributionP (Xi|e). Given a set ofT independent and

identically distributed (i.i.d.) samplesx(1), x(2), ..., x(T ) from distributionP (X), the ex-

pectationE[f(X)] = f̂T (X) of f(X) is defined as follows:

f̂T (X) =
1

T

T
∑

t=1

f(x(t)) (1.6)

For conciseness, we usêfT to denotef̂T (x) andf to denotef(x). Following thelaw of

large numbers, it can be shown that:

lim
T→∞

f̂T = f

The convergence rate is derived from central limit theorem (CLT):

√
T (f̂T − f)→ N(0, σ2)

whereσ2 = V ar{f(x)}. As a result, the “error term” in̂fT is proportional toO(T−1/2) and

does not depend on the dimensionality ofX. This makes sampling methods attractive for

solving problems that are otherwise intractable, including inference in complex Bayesian

networks. The limiting factors are the increase in samplingvariance with the dimensional-

ity of X and the difficulty in generating samples directly from the distributionP (X). We

will address the variance reduction techniques in Section 1.5. Next, we will summarize the

basic sampling schemes for Bayesian networks.

In the absence of evidence, we can sample from the target distribution P (X) using

Logic sampling [54] described as follows. We sample variables in topological order of the

18



network. Namely, each node is processed after its parents. First, we sample the values of

the root nodes from their priors. Any subsequent variableXi is sampled fromP (Xi|pai)

wherepai denotes the set of parents of variableXi. Since the parents of nodeXi are

sampled first, their values are fixed by the time we need to sample nodeXi. Thus, we

only need to look upP (Xi|pai) in the CPT of nodeXi. The samples produced that way

are independent and drawn fromP (X) and the value of functionf(X) can be estimated

using expression (1.6). In particular, iff(X) is the posterior marginalP (xi), the estimator

computation is reduced to counting the portion of samples whereXi = xi.

When evidence is present, the target distributionP (X) in a Bayesian network is the

posterior joint distributionP (X|e) and it is typically unavailable. We can, in principle,

apply Logic sampling ignoring evidence, but we have to discard (reject) samples where

sampled values conflict with actual evidence values. The resulting scheme is referred to

as Rejection sampling [48]. In this case, many samples may be wasted, especially if the

probability of evidence is small. Two families of algorithms addressing this issue have

evolved. One is importance sampling scheme [110] and the other is Markov Chain Monte

Carlo sampling.

The main idea behind importance sampling is that we sample from asamplingdis-

tribution Q(X) that is different from the target distributionP (X|e) and then weigh the

samples. The convergence speed and the accuracy of the estimates obtained by importance

sampling depend on how close the sampling distributionQ(X) is to the target distribution

P (X|e). We review importance sampling in more detail and describe one of its simplest

19



variants, likelihood weighting, in Section 1.4.1.

An alternative approach is to generate dependent samples using Markov Chain Monte

Carlo (MCMC) sampling. In this case, each sample represents thestate of the system

and generating a samplex(t+1) after samplex(t) is equivalent to a system state transition.

The key is to define the state transition function such that the stationary distribution of

the Markov Chain converges to the target distributionP (X|e). We will describe MCMC

methods further in Section 1.4.2 with focus on Gibbs sampling.

1.4.1 Importance Sampling Algorithms

As already mentioned, importance sampling schemes draw independent samples from a

trial distributionQ(X), which is different from target distributionP (X). Generally,Q(X)

is selected so that it will be easy to compute.

Samples drawn fromQ(X) are weighed against the target distributionP (X) in order

to obtain an estimate of a function of interestf(X). The weight of a sample can be obtained

by first computing the expectation off(X):

EP [f(X)] =
∑

x∈X\E

f(x)P (x) =
∑

x∈X\E

f(x)
P (x)

Q(x)
Q(x) = EQ[f(X)

P (X)

Q(X)
]

Consequently, givenT samples fromQ(X), we can estimatef(X) as follows:

f̂(X) =
1

T

T
∑

t=1

P (x(t))

Q(x(t))
f(x(t)) (1.7)

The Eq. (1.7) above defines anunbiasedestimator off(X). The ratiow(t) = P (x(t))

Q(x(t))
is the

20



weight of samplex(t). So, we can re-write Eq. (1.7) as follows:

f̂(X) =
1

T

T
∑

t=1

f(xt)w(t) (1.8)

In many cases, abiasedestimator is used instead:

f̂(X) =

∑T
t=1 f(xt)w(t)

∑T
t=1w

(t)
(1.9)

The biased estimator may be preferred because it allows to compute the weightsw(t)

only up to a normalization constant. For example, when estimating posterior marginals

in Bayesian networks, our target distribution usually isP (X|e), but computing posterior

probabilityP (x(t)|e) maybe hard. Instead, we can compute a joint probabilityP (x(t), e)

yielding a sample weight within constantP (e):

w(t) =
P (x(t), e)

Q(x(t))
= P (e)

P (x(t)|e)
Q(x(t))

Additionally, biased estimator in Eq. (1.9) often has a smaller mean squared error [81].

A common query of interest in Bayesian networks is to find the probability of evi-

denceP (e). LetY = X\E. Then, the expectation ofP (e) can be expressed as follows:

EP [P (e)] =
∑

y

P (y, e) =
∑

y

P (y, e)

Q(y, e)
Q(y, e) = EQ[

P (y, e)

Q(y, e)
]

Using importance sampling approach, we can drawT samples from some distribution

Q(X), weigh them againstP (X, e) and obtain the followingunbiasedestimateP̂ (e) of

P (e):

P̂ (e) =
1

T

T
∑

t=1

P (x(t), e)

Q(x(t))
=

1

T

T
∑

t=1

w(t) (1.10)

21



In a similar manner, but counting only those samples whereXi = xi, we can obtain an

expression for the sampling estimateP̂ (xi, e) of P (xi, e) for Xi ∈ X\E by:

P̂ (xi, e) =
1

T

T
∑

t=1

w(t)δ(xi, x
(t))

whereδ(xi, x
(t)) is the Dirac delta function. Namely,δ(xi, x

(t)) = 1 if xi = x
(t)
i and

δ(xi, x
(t)) = 0 otherwise.

Another query is to compute posterior marginal distribution P (Xi|e) which can be

estimated using the ratio:

P (Xi|e) =
P (Xi, e)

P (e)

E[P (xi|e)] =
E[P (xi, e)]

E[P (e)]

Substituting the unbiased estimators forP (xi, e) andP (e) defined above, we get:

P̂ (xi|e) =
1
T

∑T
t=1w

(t)δ(xi, x
(t))

1
T

∑T
t=1w

(t)
=

∑T
t=1w

(t)δ(xi, x
(t))

∑T
t=1w

(t)
(1.11)

We can rewrite the above as:

P̂ (xi|e) = α
T

∑

t=1

w
(t)
i δ(xi, x

(t)) (1.12)

whereα is a normalization constant. Note that in Eq. (1.11) and (1.12), we reuse the

samples generated to estimateP (e) in estimatingP (xi, e). It is also possible to estimate

P (e) andP (xi, e) using two separate sets of samples [19, 25, 26]. The resulting estimate

of P (xi|e) was shown to have a lower variance, but at the cost of doublingthe amount

of computation required. Consequently, in this work, we relyon the estimation method

defined by Eq. (1.11) and (1.12).

22



The above importance sampling estimators are guaranteed toconverge to their target

values as long as the conditionP (x|e) 6= 0 ⇒ Q(x) 6= 0 holds. While maintaining the

condition above, it is desirable thatQ(X) reflects as many zeros ofP (X|e) as possible. If

the distributionP (X) has many zeros whileQ(X) remains positive, the algorithm often

generates many samples havingP (X) = 0 which are then discarded.

Generic Importance Sampling Scheme
Input: A belief networkB, variablesX = (X1, ..., Xn), evidenceE = e, initial importance
functionPr0(X\E), the desired number of samplesT , the updating intervall, and the score arrays
for every node.
Output: A set of samples{x(t)}, t = 1...T .
1. Generate sampler order of the nodes.
2. Initialize: k ← 0, S = {}, ∀Xi ∈ X\E, ∀xi ∈ D(Xi), w(x

(t)
i ) = 0.

3. Compute Samples:
For t← 1 to T do:
3.1 x(t) ← generate a sample according toPrk(X\E)
3.2 S ← S

⋃

x(t)

3.3 w(t) ← compute weight of samplex(t)

3.4 Update score arrays:
∀Xi ∈ X\E, w(x

(t)
i )← w(x

(t)
i ) + w(t)

3.5 if (t modl == 0) then
3.6 k ← k + 1
3.7 update importance functionPrkX\E based onS
3.8 end if
End For
4. Normalize the score arrays for every node:
∀Xi ∈ X\E, P (Xi|e) = αw(x

(t)
i )

Figure 1.5: A genericImportance SamplingScheme

A generic importance sampling scheme is defined in Figure 1.5. Step 1 of the algo-

rithm is to create a sampling order. The schemes sampling from the prior distribution, such

as Logic sampling and Rejection sampling process nodes in topological order. However,

23



a different sampling order may be selected to obtain a bettersampling distribution that is

closer to the target distribution. For example, backward sampling [41] attempts to change

the sampling order so that evidence variables are sampled earlier. In [49] and [90] the vari-

ables are sampled in reverse elimination order; the sampling distribution of a variable is

obtained by computing a product of all the functions in the variable’s bucket and summing

out all other variables. Gogate and Dechter [49] initializebuckets with functions obtained

by Iterative Join-Graph Propagation (IJGP) [31]. Moral andSalmeron [90] utilize standard

bucket elimination procedure but they approximate large functions by a probability tree.

In step 2, we initialize sample counters and set of samplesS. In steps 3.1 and 3.2,

we generate a new samplex(t) and add it to the set of samplesS. In step 3.3, we compute

the sample weightw(t) and, subsequently, update individual score arrays of each variable

Xi ∈ X\E in step 3.4. Finally, steps 3.5-3.8 describe the optional operation of updating the

sampling distribution based on generated samples. The updating step is performed everyl

samples wherel is usually selected heuristically or empirically. In Logicsampling and Re-

jection sampling, this step is omitted. However, since initial sampling distribution is often

very different from the target distribution, dynamic updating can substantially improve the

convergence speed of importance sampling. The algorithms that incorporate the updating

operation in steps 3.5-3.8 are often referred to asadaptiveor dynamicimportance sam-

pling and include such methods as self-importance sampling, heuristic importance sam-

pling [110], and, more recently, AIS-BN [21] and EPIS-BN [120]. A dynamic updating

step is also incorporated in the algorithm of Moral and Salmeron [90]. The procedures for

24



updating the sampling probabilities vary. We describe the principles of adaptive importance

sampling on the example of AIS-BN algorithm.

AIS-BN algorithm is based on the observation that if we could sample each node

in topological order from distributionP (Xi|pai, e), then the resulting sample would be

drawn from target distributionP (X|e). Since this distribution is unknown for any variable

that has observed descendants, AIS-BN initializes importance function to somePr0(X)

defined by a collection of sampling distributionsPr0(Xi|pai, e). In the paper [21], authors

experimented with settingPr0(Xi|pai, e) equal toP (Xi|pai) and a uniform distribution.

They reported better convergence rates when the initial distribution is uniform.

The objective of AIS-BN is to update each distributionPrk(Xi|pai, e) so that the next

sampling distributionPrk+1(Xi|pai, e) will be closer toP (Xi|pai, e) thanPrk(Xi|pai, e).

The updating formula, applied after generating everyl samples, is as follows:

Prk+1(xi|pai, e) = Prk(xi|pai, e) + η(k) · (Pr′(xi|pai, e)− Prk(xi|pai, e))

whereη(k) is a positive function that determines the learning rate andPr′(xi|pai, e) is

an estimate ofP (xi|pai, e) based on the lastl samples. Whenη(k) = 0 (lower bound),

the importance function is not updated. Whenη(k) = 1 (upper bound), the old function

is discarded so thatPrk+1(xi|pai, e) = Pr′(xi|pai, e). The convergence speed is directly

related toη(k). If it is small, the convergence will be slow due to the large number of

updating steps needed to reach a local minimum.

Next, we describe likelihood weighting [40, 110]. It is a simple importance sampling

algorithm that does not attempt to modify sampling distribution, but illustrates the core

25



principles of importance sampling.

Likelihood Weighting

Likelihood weighting [40, 110] samples from a distributionthat is close to prior. It begins

with a network without evidence and assigns values to nodes in topological order, similar to

Rejection sampling. The unobserved nodes are assigned the same way as in logic sampling.

First, root nodes are sampled from their prior distributions. Then, all other nodesXi ∈

X\E are sampled from distributionP (Xi|pai).However, ifXi ∈ E, thenXi is assigned

its observed value. The sampling distribution of likelihood weighting can be described as

follows:

Q(X) =
∏

i

P (Xi|pai) |E=e

Consequently, the weightw(t) of each samplet can be computed as follows:

w(t) =
P (x, e)

Q(x)
=

∏

xi∈x P (xi|pai)
∏

xi∈xQ(xi|pai)

where∀xi ∈ x\e,Q(xi|pai) = P (xi|pai) and∀ei ∈ e,Q(xi|pai) = 1. Since for∀xi ∈ x\e,

the factors in the numerator and denominator of the fractionwill cancel out, leaving the

following expression forw(t):

w(t) =
∏

ei∈e

P (ei|pai)

When sampling, we initialize weightw(t) = 1. As we process nodes, whenever we

encounter an evidence variableEi with observed valueei, we compute its probability

P (ei|pa(t)
i ) conditional on the current assignment of values to its parentspa(t)

i , fix its value

Ei = ei, and update the current sample weightw(t) = w(t) · P (ei|pa(t)
i ).

26



Likelihood weighting has lower rejection rate than Rejection sampling because it

simply fixes the evidence node values. Hence, it converges faster. However, it usually

converges slower then any of the adaptive importance sampling schemes, especially when

probability of evidenceP (e) is small.

1.4.2 Gibbs sampling for Bayesian networks

The basic idea behind all Markov Chain Monte Carlo (MCMC) methods, including Gibbs

sampling, is to simulate a Markov chain in the state space ofX = {X1, ..., Xn} so that

the stationary distribution of the chain is the target distributionP (X). Hence, the number

of states corresponds to the number of possible instantiations of sampled variables and is

exponential in the number of variables. The transition fromstatex(t) = {x(t)
1 , ..., x

(t)
n } to

statex′ = {x′1, ..., x′n} is defined by a transition probability functionT (x(t), x′) = P (x =

x′|x(t)). Markov chain-based sampling was first proposed by Metropolis et al. [89] and is

known as Metropolis sampling. The only requirement of Metropolis algorithm is that the

state transition function is symmetric, which can be expressed mathematically as follows:

T (x, x′) = T (x′, x)

That is, the transition rule is restricted to a subset of transition functions where the chance

of obtainingx′ from x is equal to the chance of samplingx from x′. Hastings generalized

the algorithm [52] so that the transition function is not necessarily symmetric. In Hastings’

generalization, the main requirement on the transition function is thatT (x, y) > 0 if and

only if T (y, x) > 0. The generalized scheme is known as Metropolis-Hastings algorithm.

27



Gibbs sampling is a special MCMC scheme introduced by Geman and Geman [45]. It uses

the conditional distributionP (xi|x−i, e) as state transition rule which guarantees that the

stationary distribution of the Markov chain isP (X|e).

Ordered Gibbs Sampler
Input: A belief networkB, variablesX = {X1, ..., Xn}, and evidenceE ⊂ X, E = e.
Output: A set of samples{x(t)}, t = 1...T .

1. Initialize: Assign random valuex(0)
i to each variableXi ∈ X\E fromD(Xi). Assign evidence

variables their observed values.
2. Generate samples:
For t = 1 to T, generate a new samplex(t):

For eachXi = X\E, compute a new valuex(t)
i :

Compute distributionP (Xi|x(t)
mai) and samplex(t)

i ← P (Xi|x(t)
mai).

SetXi = x
(t)
i .

End (for i)
End (for t)

Figure 1.6: AGibbs samplingAlgorithm

Given a Bayesian network over the variablesX = {X1, ..., Xn}, and evidencee,

Gibbs sampling [45, 47, 85] generates a set of samples{x(t)} from P (X|e) as follows.

The values of the evidence variables remain fixed. Given sample x(t)
i (the current state

of Markov chain), a new value for variableXi can be sampled from probability distribu-

tion P (Xi|x(t)
−i), denotedxi ← P (Xi|x(t)

−i). The first sample can be initialized at random.

The next samplex(t+1)
i is generated from the previous samplex(t)

i following one of two

schemes.

Random Scan Gibbs Sampling.Given a samplex(t) at iterationt, pick a variable

Xi at random and sample a new valuexi from the conditional distributionxi ← P (Xi|x(t)
−i)

leaving other variables unchanged.

28



Systematic Scan (Ordered) Gibbs Sampling.Given a samplex(t), sample a new

value for each variable in some order:

x1 ← P (X1|x(t)
2 , x

(t)
3 , ..., x

(t)
n )

x2 ← P (X2|x(t+1)
1 , x

(t)
3 , ..., x

(t)
n )

...

xi ← P (Xi|x(t+1)
1 , ..., x

(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n )

...

xn ← P (Xn|x(t+1)
1 , x

(t+1)
2 , ..., x

(t+1)
n−1 )

For conciseness, we can writeP (xi|x(t)
−i) = P (xi|x(t+1)

1 , ..., x
(t+1)
i−1 , x

(t)
i+1, ..., x

(t)
n ). In

Bayesian networks, the conditional distributionP (Xi|x(t)
−i) is dependent only on the assign-

ment to the Markov blanketmai of variableXi. Thus,P (xi|x(t)
−i)=P (xi|x(t)

mai) wherex(t)
mai

is the restriction ofx(t) to mai. Given a Markov blanket ofXi, we obtain the sampling

probability distributionP (Xi|x(t)
mai) by computing the conditional probabilityP (xi|x(t)

mai)

for eachxi ∈ D(X), as defined in [96]:

P (xi|x(t)
mai

) = αP (xi|x(t)
pai

)
∏

{j|Xj∈chj}

P (x
(t)
j |x(t)

paj
) (1.13)

whereα is a normalization constant.

Thus, generating a complete new sample requiresO(n · r) multiplication steps where

r is the maximum family size andn is the number of variables.

A two-component Gibbs sampler, with componentsX1 andX2 sampled in turns,X1

from P (X1|x2) andX2 from P (X2|x1), is known asdata augmentation scheme.

Gibbs sampling distribution converges toP (X|e) as the number of samples increases

29



as long as the corresponding Markov chain isergodic, namely it isaperiodic and irre-

ducible[96, 44, 85].

DEFINITION 1.4.1 (Aperiodic) A Markov chain is said to beaperiodicif the maximum
common divider of the number of steps it takes for the chain tocome back to the starting
point (any) is equal to one. [81]

DEFINITION 1.4.2 (Irreducible) A Markov chain isirreducible if the chain has nonzero
probability (density) to move from one position in the statespace to any other position in a
finite number of steps. [81]

DEFINITION 1.4.3 (Ergodic) An aperiodic, irreducible Markov chain is calledergodic.

The aperiodicity means that the chain does not have regular loops where everyki

steps we return to stateSi. The irreducibility guarantees that we can get to any stateSj

from any stateSi with non-zero probability and thus, will be able to visit (asnumber of

samples increasesT →∞) all statistically important regions of state space. The conditions

are almost always satisfied as long as all probabilities are positive [117]. If a finite-state

Markov chain is irreducible and aperiodic, then it converges to its stationary distribution

regardless of the initial state. Thus, the Markov chain induced by Gibbs sampler is guar-

anteed to converge to the target distributionP (X|e) regardless of its initial state as long as

all probabilities are positive.

Assuming it takes≈ K samples for a Markov chain to converge to its stationary

distribution, the firstK samples may be discarded to ensure that the collected samples

properly represent distributionP (X|e). The time spent computingK discarded samples is

referred to as “burn-in” time. However, determiningK is hard [60]. In general, the “burn-

30



in” is optional in the sense that the convergence of the estimates to the correct posterior

marginals does not depend on it. Gibbs sampling algorithm isgiven in Figure 1.6.

The estimatêfT (X) of any functionf(X) overT samples can be computed using an

ergodic average:

f̂T (X) =
1

T

T
∑

t=1

f(xt) (1.14)

When the convergence conditions are satisfied,f̂T (X) is guaranteed to converge to the

exact valuef(X). In other words,|f̂T (x)− f(x)| → 0 asT →∞.

Our focus is on computing the posterior marginal distributionP (Xi|e) for eachXi ∈

X\E. The posterior marginals can be estimated using either ahistogram estimator:

P̂ (Xi = xi|e) =
1

T

T
∑

t=1

δ(xi, x
(t)) (1.15)

or amixture estimator:

P̃ (Xi = xi|e) =
1

T

T
∑

t=1

P (xi|x(t)
−i) (1.16)

The histogram estimator corresponds to counting samples whereXi = xi, namely,δ(xi, x
(t)) =

1 if x(t)
i = xi and equals 0 otherwise. The name “mixture” stems from the fact that ex-

pression (1.16) is a mixture of posterior distributions. SinceP (xi|x(t)
−i) =P (xi|x(t)

mai), the

mixture estimator is simply an average of the conditional probabilities:

P̂ (xi|e) =
1

T

T
∑

t=1

P (xi|x(t)
mai

) (1.17)

Gelfand and Smith [44] have pointed out that since the mixture estimator is based

on estimating conditional expectation, its sampling variance is smaller due to the Rao-

Blackwell theorem. However, their proof was based on the assumption that the samples

31



are independent which is clearly not true in the case of Gibbssampling. Liu, Wong, and

Kong [79] proved the variance reduction in the case of Gibbs sampler using the notion of

auto-covariance, which can be defined as follows:

THEOREM 1.4.1 ([81], Theorem 6.6.2, p.145)Letx(0), ..., x
(T )
n be consecutive samples gen-

erated by the random scan under stationarity, and leti be the random variable representing
the random index in the updating scheme. Forf(x) ∈ L2(P (X)), the lag-n autocovariance
betweenf(x(0)) andf(x(n)) is a non-negative monotone decreasing function ofn. It can
be written as:

cov[f(x(0)), f(x(T ))] = V ar[E[E...[E[f(x)|i, x−i]|x]...]] (1.18)

where there areT conditional expectations taken alternately oni, x−i andx.

Subsequently, we can obtain the following expressions for the variances of the esti-

mates expressed in Eq. (1.15) and (1.16):

m2V ar(Î) = mσ2
0 + 2(m− 1)σ2

1 + ...+ 2σ2
m−1 (1.19)

m2V ar(Ĩ) = mσ2
1 + 2(m− 1)σ2

2 + ...+ 2σ2
m (1.20)

whereσ2
k = cov[f(x(0), x(k)]. Comparing the two variances, it is clear that each term in

(1.20) is exactly one lag behind the corresponding term in (1.19). Because covariances are

non-negative and monotonous, it follows thatV ar[Ĩ] ≤ V ar[Î].

As mentioned above, when the Markov chain is ergodic,P̂ (Xi|e) will converge to

the exact posterior marginalP (Xi|e) as the number of samples increases. It was shown

in [105] that the random scan Gibbs sampler can be expected toconverge faster than the

systematic scan Gibbs sampler. Ultimately, the convergence rate of Gibbs sampler depends

on the correlation between two consecutive samples [77, 108, 79].

32



1.5 Variance Reduction Schemes

All sampling schemes are known to benefit from reducing the dimensionality of sampling

space which leads to the reduction in the sampling variance and requires fewer samples to

achieve the same accuracy of the estimates. LetX denote a set of all sampling variables.

Assume we can decomposeX into two subsetsY andZ. Then, we can decompose the

sampling probabilityP (X|e) as follows:

P (x|e) = P (y, z|e) = P (z|y, e)P (y|e)

If the probabilityP (z|y, e) is easy to compute, then we can easily estimateP (x|e) using

the estimate ofP (y|e) . In the case of importance sampling, our target distribution becomes

P (Y |e) and our sampling distribution is some distributionQ(Y ). The sample weightw(t)

can be computed as:

w(t) =
P (y(t), e)

Q(y(t))

yielding the following estimators for the posterior marginals:

P̂ (yi|e) = α
T

∑

t=1

w(t)δ(yi, y
(t))

P̂ (zi|e) = α

T
∑

t=1

w(t)P (zi|y(t), e)

We can show that the estimates obtained by marginalising a subset of variablesZ have

lower variance and require fewer samples to achieve the sameaccuracy:

33



THEOREM 1.5.1 ([83], Theorem 6.3, p. 13)Let P (y, z) and Q(y, z) be two probability
distributions such that the support ofP is a subset of that ofQ. Then:

V arQ[
P (Y, Z)

Q(Y, Z)
] ≥ V arQ[

P (Y )

Q(Y )
]

whereP (Y ) =
∑

z P (Y, Z) andQ(Y ) =
∑

z Q(Y, Z) are marginal distributions. The
variances are taken with respect toQ.

A proof, due to Rao-Blackwell theorem, can be found in [36] and [83]. Subsequently,

importance sampling on a subset of variables is often referred to as Rao-Blackwellised

importance sampling [34, 83].

Integrating out a subset of variables also improves the convergence of MCMC schemes.

Reducing the number of sampled variables in Gibbs sampler is known ascollapsingthe

Gibbs sampler. Intuitively, since the convergence rate of Gibbs sampler is determined by

the maximal correlation between the states of two consecutive Gibbs iterations, removing

strongly correlated variables from the sampling set reduces the correlation between sam-

ples. Alternatively, the convergence rate of Gibbs samplercan be improved byblocking,

i.e., grouping variables together and sampling them simultaneously. If two variables are

strongly correlated, we can reduce the correlation by sampling them together. Efficient

blocking scheme for Bayesian networks have been investigated in [57, 67].

Given a joint probability distribution over three random variablesX, Y , andZ, the

two variance-reduction schemes for Gibbs sampler can be illustrated as follows:

1. Standard Gibbs:
x(t+1) ← P (X|y(t), z(t)) (1.21)

y(t+1) ← P (Y |x(t+1), z(t)) (1.22)

z(t+1) ← P (Z|x(t+1), y(t+1)) (1.23)

34



2. Collapsed (variable Z is marginalized):

x(t+1) ← P (X|y(t)) (1.24)

y(t+1) ← P (Y |x(t+1)) (1.25)

3. Blocking by grouping X and Y together:

(x(t+1), y(t+1)) ← P (X,Y |z(t)) (1.26)

z(t+1) ← P (Z|x(t+1), y(t+1)) (1.27)

Although both blocking and collapsing improve convergenceof Gibbs sampler, col-

lapsing usually yields an estimator with smaller variance than blocking. Liu, Wong, and

Kong [79] showed that for a Gibbs sampler with three variables the varianceV arc of the

estimator in a collapsed Gibbs sampler is smaller than the varianceV arb of the estimator

in a blocking Gibbs sampler. Both collapsed and blocking Gibbs sampler estimates have

smaller variances than the varianceV arg of the full Gibbs sampler. We get:

V arc ≤ V arb ≤ V arg

We can extend the argument for the case of Gibbs sampler withn variables by examining

the properties of the forward operatorF:

Fh(X) =

∫

T (x, y)h(y) dy

over a Hilbert spaceL2(π). TheT (x, y) is a Markov Chain transition function. The proof,

which will not provide here as it requires an elaborate analysis of the operator properties, is

based on the fact that the norm of operatorF is known to be related to the convergence rate

of the Markov chain. It is possible to show that the norm of theoperatorFc, corresponding

to the collapsed Gibbs sampler, is smaller than the norm of the operatorFb, corresponding

35



to the blocking Gibbs sampler, both of which are smaller thanthe norm of the operatorFg

corresponding to the standard Gibbs sampling scheme:

||Fc|| ≤ ||Fb|| ≤ ||Fg||

Subsequently, we can expect the collapsed Gibbs sampler to converge faster than blocking

Gibbs sampler or the standard sampling scheme. Further analysis of the collapsed Gibbs

sampler can be found in [38, 84, 80, 81].

Collapsed Gibbs sampler is sometimes referred to as Rao-Blackwellised Gibbs sam-

pler [106] although the Rao-Blackwellised estimates are normally obtained from samples

in the space ofX = Y ∪ Z by restricting the conditioning set toY . That is the variables

in Y are assigned their sampled values while the variables inZ are marginalised out. For

example, a Rao-Blackwellised estimate of functionf(X) overT samples fromX can be

computed as follows:

f̂T (X) =
1

T

T
∑

t=1

E[f(x)|y(t)]

wherey(t) is a restriction of assignmentx(t) to Y , y(t) ⊂ x(t). A special case of Rao-

Blackwellised estimator is the Gibbs mixture estimator expressed in Eq. (1.16).

There are instances of problems where introducing a clever auxiliary variable can

actually improve the performance of Gibbs sampler. This is the case of Swendsen-Wang

algorithm [115] for Monte Carlo simulation from Ising model.While the model is defined

over a set of variablesX, the algorithm introduces an auxiliary variableU such that all

variables inX are conditionally independent whenU is observed. As a result, the variables

inX are sampled together as a block. The algorithm of Swendsen-Wang then can be viewed

36



as a data augmentation scheme iterating between sampling fromP (b|x) andP (x|b) where

b is an expectation function ofu [37, 55, 116]. The Swendsen-Wang algorithm using

a “decoupling” auxiliary variableU outperforms plain Monte Carlo sampling over Ising

model [115] and in statistical image processing [55].

It is worth noting that introducing a decoupling variable does not always improve

convergence of the Gibbs sampler. It was shown that integrating out the decoupling variable

from the bivariate Gaussian inference problem [81] or Gibbsmotif finding algorithm [78]

actually improves their convergence rates.

The efficiency of sampling from a lower-dimensional space inboth importance sam-

pling and Gibbs sampling is hindered by the computation overhead incurred from com-

puting the necessary sampling probabilities. In the case ofBayesian networks, the task

of marginalising out some variables is equivalent to beliefupdating where evidence vari-

ables and sampling variables are observed. Its time complexity is, therefore, exponential

in the induced width of the network conditioned on instantiated variables (evidence and

sampled). Consequently, so far, the collapsed sampling ideas have been applied in the

context of Gibbs and importance sampling for only a few classes of Bayesian networks

[36, 34, 5, 106] by exploiting the special properties of the embedded distributions.

37



1.6 Thesis overview and Results

Research is what I’m doing when I don’t know what I’m doing.
-Wernher Von Braun

The central theme of this thesis is that efficiency can be gained by combining search

and exact inference when answering queries in Bayesian networks. It is well-known that

an assignment of values to a subset of variables, a cutset, can reduce the complexity of

exact inference over the conditioned network. We call the action of assigning values to

variables “conditioning.” By enumerating all cutset instances and performing exact infer-

ence for each instance, we can obtain exact answers to Bayesian queries such as exact

posterior marginals. However, enumerating all cutset tuples is infeasible when the cutset is

large since the number of tuples grows exponentially with the number of variables in the

cutset. This dissertation seeks to improve the efficiency ofexisting algorithms for approx-

imating and bounding posterior marginals by enumerating only a subset of cutset tuples.

We investigated three aspects of the problem:

1. Combining conditioning and exact inference for efficient sampling over a subset of vari-

ables (Chapter 2). We propose two cutset sampling schemes, Gibbs-basedw-cutset sam-

pling and likelihood weighting on a loop-cutset, that exploit network structure to bound

the complexity of computing a sample in the cutset space using exact inference. The

schemes produce estimates with lower sampling variance andfaster convergence rates

compared to sampling over a full set of variables. From the point of view of cutset con-

ditioning, we enumerate only those cutset tuples that are generated by sampling. The

probability of a cutset tuple is estimated by its frequency in the set of samples. In case of

38



likelihood weighting, the frequency is also weighted to reflect the fact that the sampling

distribution is different from the target distribution.

2. Finding a minimal cutset that reduces the induced width ofthe network (Chapter 3) that

can be used as a sampling set in Chapter 2 and as a conditioning set in Chapter 4.

3. Using conditioning to compute bounds on posterior marginals (Chapter 4). We derive

the expressions for lower and upper bounds that yield a framework that computes ex-

actly probabilities for a subset of cutset tuples and boundsthe rest using a combination

of exact inference and off-the-shelf bounding scheme. The resulting bounds converge

to exact posterior marginals as the number of computed cutset tuples increases. The

scheme outperforms previously proposed bounded conditioning algorithm [56] using the

bound propagation plug-in [76]. It outperforms the bound propagation algorithm after

processing a few thousand cutset tuples out of millions of tuples in the loop-cutset space.

The following three subsections summarize our contributions.

1.6.1 w-cutset Sampling (Chapter 2)

All sampling algorithms converge slowly in high-dimensional spaces due to an increase

in sampling variance. By reducing the number of variables in asample, we reduce the

sampling variance and, consequently, require fewer samples to converge. The challenging

task is to be able to sample a subset of variables in a time-efficient manner.

39



Contributions

Our contribution is in presenting a general, structure-based scheme which samples a subset

of variables, a cutset, as opposed to sampling all unobserved variables. Sampling over

a cutset in a Bayesian network requires computing the sampling probabilities by exact

inference. Inference methods such as bucket elimination and tree-clustering are time and

space exponential in the induced widthw of the network. We exploit the property that

conditioning on a subset of variables simplifies the network’s structure reducing its induced

width and allowing efficient query processing by inference.If the cutsetC is aw-cutset,

namely a subset of nodes such that when assigned, the induced-width of the conditioned

network isw, the time and space complexity of computing the next sample is exponential

in w.

Sampling over a cutset improves sampling efficiency (reduces variance) by reducing

the size of the sampling space at the cost of more demanding exact inference. Thus, we

can control the time-space trade-offs between sampling andexact inference by selecting a

cutset having desired properties.

We demonstrate the effectiveness of cutset sampling using Gibbs sampling and like-

lihood weighting (LW). We compared the accuracy of the estimates produced by sampling

over a cutset against sampling over all unassigned variables as a function of time. We

showed that the cutset-based estimates usually converge faster despite the incurred com-

putation overhead. Specifically, Gibbs sampling on a loop-cutset outperformed full Gibbs

sampling in all benchmarks but one. Gibbs sampling on aw-cutset outperformed full Gibbs

40



sampling for a range ofw values. Likelihood weighting on a cutset was outperformed by

full likelihood weighting only in a network without evidence where the LW sampling dis-

tribution equals the target distribution.

Sampling over a cutset offers additional benefits when the network contains determin-

istic probabilities. In this case, plain Gibbs sampling does not converge; however, Gibbs

sampling over a cutset converges as long as the Markov chain over the cutset is ergodic. In

case of likelihood weighting, we observed that sampling over a cutset often results in lower

rejection rates.

1.6.2 Finding Minimum w-cutset (Chapter 3)

The size of thew-cutset affects the performance of bothw-cutset sampling andw-cutset

conditioning. Given induced width boundw, it is preferable to select a minimalw-cutset

for bothw-cutset sampling and forw-cutset conditioning. The focus of Chapter 3 is on

developing new techniques for finding the minimumw-cutset.

Contributions

Since a network conditioned onw-cutset yields a tree-decomposition having tree width

w, we propose to start with a good tree-decompositionTr of the network and seek the

minimumw-cutset ofTr. We prove that the problem of finding a minimalw-cutset of tree-

decomposition is NP-hard because any minimum set multi-cover problem (SMC) can be

reduced to solving a minimumw-cutset problem. We also show that anyw-cutset problem

41



can be reduced to set multi-cover problem which allows us to adapt a well-known greedy

algorithm for solving minimum SMC (or minimum-cost SMC) to finding a minimumw-

cutset (or minimum-costw-cutset).

We investigate empirically several variants of the greedy algorithm for SMC and

show that it consistently finds aw-cutset that is the same size or smaller than the cutset ob-

tained by the well-performing loop-cutset algorithm [10] (adapted to thew-cutset problem)

and thew-cutset algorithm proposed in [43].

1.6.3 Any-Time Bounds (Chapter 4)

Chapter 4 investigates how enumerating a subset of cutset tuples can be used to improve

existing bounding algorithms, building upon the approaches of [56] and [76]. Our ap-

proach is to exploit properties of the distributionP (C, e), wheree is evidence, over cutset

C when a small subset of cutset tuples contains most of the probability mass ofP (e) =

∑

c∈D(C) P (c, e). A distribution that exhibits such properties is sometimesreferred to as

a peaked distribution. The idea is to find all the cutset tuples with high probability mass

P (c, e) and bound the probability mass distributed over the remaining tuples. The resulting

scheme is any-time in the sense that the lower and upper bounds continue to improve with

time as more cutset tuples are explored. The bounds are guaranteed to converge to exact

posterior marginals. The successful realization of this approach depends on solving the two

subproblems of finding the high probability tuples and bounding the unexplored tuples.

42



Contributions

Our contribution is a bounding framework, Any Time Bounds (ATB), that defines new

expressions for the lower and upper bounds, derived from first principles, and allows one

to plug-in any off-the-shelf bounding algorithm to bound the probability mass over the

unexplored cutset tuples. It extends the ideas that are the foundation of the bounded con-

ditioning algorithm where the probability mass of the unexplored tuples was bounded by

the sum of their priors. The prior distribution was also usedto guide the selection of high

probability tuples. Our approach uses a more sophisticatedscheme for selecting high prob-

ability tuples, namely, cutset sampling, and a more accurate bounding algorithm, namely,

bound propagation, to bound the missing probability mass.

To improve the performance of the resulting combination scheme, we improve bound

propagation in several ways. We exploit the relevant subnetwork properties of each node

and also propose an algorithm for approximately solving thelinear optimization problems,

which are part of bound propagation algorithm, in order to reduce computation time. Thus,

we plug into our bounding framework a version of bound propagation that exploits network

properties to its advantage but relaxes the linear optimization problems and solves them

without using the simplex solver.

We evaluate the performance of the resulting hybrid bounding scheme and bound

propagation over a number of benchmarks. The results show that when the distribution

P (C, e) (or, equivalently,P (C|e)) indeed has a peaked shape, Any Time Bounds (ATB)

outperforms bound propagation after exploring a few hundred cutset tuples. Even when

43



the distribution is relatively flat,ATB outperforms bound propagation after exploring a

few thousand tuples. The results also show that cutset sampling is indeed effective at dis-

covering high probability tuples. Using cutset conditioning to generate cutset tuples, we

were able to accumulate over 90% of the weight ofP (e) in a few hundred to a few thou-

sand tuples in several networks from UAI repository. In other networks, we accumulated

up to 20-30% of probability mass ofP (e) after generating just a few hundred out of sev-

eral millions of cutset tuples. The details are provided in the experimental section 4.6 of

Chapter 4.

44



Chapter 2

Cutset sampling for Bayesian networks

The chapter presents a new sampling methodology for Bayesiannetworks that samples

only a subset of variables and applies exact inference to therest. Cutset sampling is a

network structure-exploiting application of the Rao-Blackwellisation principle to sampling

in Bayesian networks. It improves convergence by exploitingmemory-based inference

algorithms. It can also be viewed as an anytime approximation of exact cutset-conditioning

algorithm [96]. Cutset sampling can be implemented efficiently when the sampled variables

constitute a loop-cutset of the Bayesian network and, more generally, when the induced

width of the network’s graph conditioned on the observed sampled variables is bounded

by a constantw. We demonstrate empirically the benefit of this scheme on a range of

benchmarks.

2.1 Introduction

We have already defined basic principles of sampling in Bayesian network in Chapter 1 and

introduced two families of sampling algorithms, Markov Chain Monte Carlo and impor-

tance sampling. When exact inference is impractical due to prohibitive time and memory

demands, sampling is often the only feasible approach that offers performance guarantees.

Given a Bayesian network over the variablesX = {X1, ..., Xn}, evidenceE = e, and a

45



set of samples{x(t)} from P (X|e), a functionf(X) can be estimated using the generated

samples viaergodic average:

E[f(X)|e] ∼= 1

T

∑

t

f(x(t)) (2.1)

whereT is the number of samples. The estimate can be shown to converge to the exact

value asT increases. The central query of interest over Bayesian networks is computing

the posterior marginalsP (xi|e) for each valuexi of variableXi, also calledbelief-updating.

For this query, the above equation reduces to counting the fraction of occurrences ofXi =

xi in the samples.

As we mentioned previously, a significant limitation of all sampling schemes is that

the statistical variance increases when the number of variables in the network grows and

therefore the number of samples necessary for accurate estimation increases. In this chap-

ter, we present a sampling scheme for Bayesian networks that reduces the sampling vari-

ance by sampling from a subset of the variables, i.e.,collapsingthe sampling set. This

technique is also sometimes referred to asRao-Blackwellisedsampling. The fundamentals

of sampling on a subset were developed in and [79] for Gibbs sampling and in [83, 36] for

importance sampling. A related work on the reduction of variance in Rao-Blackwellised

estimates was performed in [20] and [44].

The basic collapsed sampling scheme can be described as follows. Suppose we parti-

tion the space of variablesX into two subsetsC andZ. Subsequently, we can re-write any

functionf(X) asf(C,Z). If we can efficiently computeP (C|e) andE[f(C,Z)|c, e] (by

summing outZ in both cases), then we can perform sampling on subsetC only, generating

46



samplesc(1), c(2), ..., c(T ) and approximating the quantity of interest by:

E[f(X) |e] ∼=
1

T

∑

t

E[f(C,Z)|c(t), e] (2.2)

If the function f(X) is a posterior marginal of nodeXi ∈ X\C,E, then f(X)|e =

P (Xi|e), E[f(C,Z)|c(t), e] = E[P (Xi)|c(t), e)] = P (Xi|c(t), e) and Eq. (2.2) becomes:

P (Xi|e) =
1

T

∑

t

P (Xi|c(t), e) (2.3)

Rao-Blackwellised estimates have lower sampling variance and therefore require a

smaller number of samples to converge to the target distribution. Yet, the cost of generating

each sample may increase. Indeed, the principles of Rao-Blackwellised sampling have

been applied only in a few classes of probabilistic models with specialized structure and

probability distributions [69, 38, 84, 80, 32, 5, 106].

The contribution in this chapter is in presenting a general,structure-based scheme

which applies the Rao-Blackwellisation principle to Bayesiannetworks. The idea is to

exploit the property that conditioning on a subset of variables simplifies the network’s

structure allowing efficient query processing by inferencealgorithms. In general, exact in-

ference by variable elimination [28, 29] or join-tree algorithms [75, 59] is time and space

exponential in the induced-widthw of the network. However, when a subset of the vari-

ables is assigned (i.e., conditioned upon) the induced-width of the conditioned network is

reduced.

The idea of cutset sampling is to choose a subset of variablesC such that condition-

ing onC yields a sparse enough Bayesian network having a small induced width to allow

47



exact inference. Since a sample is an assignment to a subset of variables, we can generate

a new sample over the cutset variables efficiently over the conditioned network where the

computation ofP (c|e) andP (Xi|c, e) can be bounded. In particular, if the sampling setC

cuts all the cycles in the network (i.e., it is a loop-cutset), inference over the conditioned

network becomes linear. In general, ifC is aw-cutset, namely a subset of nodes such that

when assigned, the induced-width of the conditioned network isw, the time and space com-

plexity of computing the next sample is proportional toO(dw+1) whered is the maximum

domain size.

The idea of exploiting properties of conditioning on a subset of variables has been

first proposed for exact belief updating in the context of cutset-conditioning [96]. This

scheme requires enumerating all instantiations of cutset variables. Therefore, if the size

of the cutset is too big, sampling over the cutset space may bethe right compromise.

Thus, sampling on a cutset can also be viewed as an anytime approximation of the cutset-

conditioning approach.

Collapsing of a sampling set can be applied in the context of any sampling algo-

rithm. We will introduce the principles of cutset sampling in the context of Gibbs sampling

[45, 47, 85], a Markov Chain Monte Carlo sampling method for Bayesian networks, and

likelihood weighting [40, 110], an instance of importance sampling. The resulting cutset

sampling algorithms are our main contribution in this chapter. Extension to any other sam-

pling approach or any other graphical model, such as Markov networks, should be straight

forward.

48



The chapter defines and analyzes the cutset sampling scheme and investigates em-

pirically the trade-offs between sampling and exact inference over a variety of randomly

generated networks, grid structure networks as well as known real-life benchmarks such

as CPCS networks and coding networks. We show that cutset sampling converges faster

than pure sampling in terms of the number of samples as dictated by theory and is also

almost always time-wise cost effective on all the benchmarks tried. We also demonstrate

the applicability of this scheme to some networks with deterministic probabilities, such

as Hailfinder network and coding networks, where Markov chain generated by full Gibbs

sampling is non-ergodic.

The contribution of the chapter presenting the cutset sampling starts in Section 2.2.

Section 2.5 presents the empirical evaluation of cutset sampling. We also present an em-

pirical evaluation of the sampling variance and the resulting standard error based on the

method ofbatch means(for more details, see [46]). In section 2.6, we review previous

application of Rao-Blackwellisation and section 2.7 provides summary and conclusions.

2.2 Cutset Sampling

As we discussed above, the convergence rate of Gibbs samplercan be improved via col-

lapsing. Cutset sampling scheme is an efficient way of sampling from a subset of variables

C ⊂ X, tying the complexity of sample generation to the structureof the Bayesian net-

work.

49



2.2.1 Cutset sampling algorithm

The cutset sampling scheme partitions the variable setX into two subsets C andX\C.

The objective is to generate samples from spaceC={C1, C2, ..., Cm} where each sample

c(t) is an instantiation of all the variables in C. Following the Gibbs sampling principles,

we generate a new samplec(t) by sampling a valuec(t)i from the probability distribution

P (Ci|c(t)−i) = P (Ci|c(t+1)
1 , c

(t+1)
2 , ..., c

(t+1)
i−1 , c

(t)
i+1, ..., c

(t)
m ). We will use left arrow to denote

that valueci is drawn from distributionP (Ci|c(t)−i):

ci ← P (Ci|c(t)−i, e) (2.4)

If we can computeP (Ci|c(t)−i, e) efficiently for each sampling variableCi ∈ C, then

we can generate samples efficiently. The relevant conditional distributions can be com-

puted by exact inference whose complexity is tied to the network structure. We denote by

JTC(B,Xi,e) a generic algorithm in the class of variable-elimination or join-tree clustering

algorithms which, given a belief networkB and evidencee, outputs the posterior probabil-

itiesP (Xi|e) for variableXi ∈ X [75, 59, 28]. When the network’s identity is clear, we

will useJTC(Xi, e).

Therefore, for each sampling variableCi and for each valueci ∈ D(Ci), we can com-

puteP (Ci, c
(t)
−i, e) viaJTC(Ci, c

(t)
−i, e) and obtainP (Ci|c(t)−i, e) via normalization:P (Ci|c(t)−i, e) =

αP (Ci, c
(t)
−i, e).

Cutset sampling algorithm that uses systematic scan Gibbs sampler is given in Fig-

ure 2.1. Clearly, it can be adapted to be used with the random scan Gibbs sampler as well.

50



Cutset Sampling
Input: A belief networkB, a cutsetC = {C1, ..., Cm}, evidence e.
Output: A set of samplesct, t = 1...T .
1. Initialize: Assign random valuec0

i to eachCi ∈ C and assign e.
2. Generate samples:

For t = 1 to T , generate a new samplec(t+1) as follows:
For i = 1 to m, compute new valuec(t)

i for variableCi as follows:

a. ComputeJTC(Ci, c
(t)
−i, e).

b. ComputeP (Ci|c(t)
−i, e) = αP (Ci, c

(t)
−i, e).

c. Sample:
c
(t+1)
i ← P (Ci|c(t)

−i, e) (2.5)
End For i

End For t

Figure 2.1:w-Cutset samplingAlgorithm

Steps (a)-(c) demonstrate how the algorithm generates sample (t+ 1) from sample(t). For

every variableCi ∈ C in sequence, the main computation is in step (a), where the dis-

tribution P (Ci, c
(t)
−i, e) overCi is generated. This requires executing JTC for every value

ci ∈ D(Ci) separately. In step (b), the conditional distribution is derived by normalization.

Finally, step (c) samples a new value from the obtained distribution. Note that we only use

P (Ci|c(t)−i, e) as a short-hand notation forP (Ci|c(t+1)
1 , ..., c

(t+1)
i−1 , c

(t)
i+1, ..., c

(t)
k , e). Namely,

when we sample a new value for variableCi, the values of variablesC1 throughCi−1 have

already been updated.

We will next demonstrate the process using the special case of loop-cutset (the notion

of loop-cutset is given in Definition 1.2.1).

Example 2.2.1Consider the belief network shown in Figure 2.2. The subset{A, D} is a loop-
cutset of the network. Assume that nodeE = e is observed. Then, when sampling from the
cutset{A, D}, we need to compute for the(t + 1) sample the probabilitiesP (A|d(t), e) and
P (D|a(t+1), e). Since the conditioned network is a poly-tree (Figure 2.2, right), JTC reduces to
Pearl’s belief propagation algorithm and the distributions can be computed inlinear time.

51



� �� ��
� �� ��

� �
� �

� �
Figure 2.2: When nodes A and D in the loopy Bayesian network (left) are instantiated, the
network can be transformed into an equivalent singly-connected network (right). In the
transformation process, a replica of an observed node is created for each child node.

Specifically, assumeA and D are bi-valued variables with domains{0, 1}. We begin the
sampling process by initializing sampling variables toa(0) andd(0). Next, we compute new sample
valuesa(1), d(1) as follows:

1. a. ComputeP (A, d(0), e) usingJTC(A, d(0), e).
b. P (A|d(0), e) = αP (A, c(0), e) where:

α =
1

P (a = 0, d(0), e) + P (a = 1, d(0), e)

2. Sample the new value valuea(1) fromP (A|d(0), e):

a(1) ← P (A|d(0), e)

3. a. ComputeP (D|a(1), e) usingJTC(C, a(1), e).
b. P (D|a(1), e) = αP (D, a(1), e) where:

α =
1

P (d = 0, a(1), e) + P (d = 1, a(1), e)

4. Sample the next sample valued(1) fromP (D|a(1), e):

d(1) ← P (D|a(1), e)

The process above corresponds to two iterations of the inner loop in Figure 2.1. Steps 1-2, where we
sample a new value for variableA, correspond to steps (a)-(c) of the first iteration. In the second
iteration, steps 3-4, we sample a new value for variableD.

52



2.2.2 Estimating Posterior Marginals

Once a set of samples over a subset of variablesC is generated, we can estimate the pos-

terior marginals of any variable in the network using mixture estimator. For sampling

variables, the estimator takes the form:

P̂ (Ci|e) =
1

T

T
∑

t=1

P (Ci|c(t)−i, e) (2.6)

For variables inX\C, the posterior marginal estimator is:

P̂ (Xi|e) =
1

T

T
∑

t=1

P (Xi|c(t), e) (2.7)

where we can useJTC(Xi, c
(t), e) to obtain the distributionP (Xi|c(t), e) over the input

Bayesian network conditioned onc(t) ande as shown before.

If we maintain a running sum of the computed distributionsP (Ci|c(t)−i, e) andP (Xi|c(t), e)

during sample generation (Eq. (2.4)), the sums in the right hand side of Eq. (2.6) and (2.7)

will be readily available. As we noted before, the estimators P̂ (Ci|e) and P̂ (Xi|e) are

guaranteed to converge to their corresponding exact posterior marginals asT increases as

long as the Markov Chain over the cutsetC is ergodic.

While for the cutset variables the estimator is a simple ergodic average, forXi ∈

X\C,E the convergence can be easily derived from first principles:

THEOREM 2.2.2 Given a Bayesian networkB over X, evidence variablesE, and cutsetC,
and given a set of T samplesc(1), c(2), ..., c(T ) obtained via Gibbs sampling fromP (C|e),
then for anyXi ∈ X\C,E assumingP̂ (Xi|E) is defined by Eq. (2.7),̂P (Xi|e)→ P (Xi|e)
asT →∞ .

53



Proof. By definition:

P̂ (Xi|e) =
1

T

T
∑

t=1

P (Xi|c(t), e) (2.8)

Instead of summing over samples, we can rewrite the expression above to sum over all
possible tuplesc ∈ D(C) and group together the samples corresponding to the same tuple
instancec. Let q(c) denote the number of times a tupleC = c occurs in the set of samples.
It is easy to see that:

P̂ (Xi|e) =
∑

c∈D(C)

P (Xi|c, e)
q(c)

T
(2.9)

since
∑

c∈D(C) q(c) = T . And since the fractionq(c)
T

is a sampling estimator for the poste-

rior marginalP̂ (c|e), we get:

P̂ (Xi|e) =
∑

c∈D(C)

P (Xi|c, e)P̂ (c|e) (2.10)

Since the Markov chain corresponding to Gibbs sampling overC is ergodic,P̂ (c|e) →
P (c|e) asT →∞ and therefore:

P̂ (Xi|e)→
∑

c∈D(C)

P (Xi|c, e)P (c|e) = P (Xi|e)

2.2.3 Complexity

The time and space complexity of generating samples and estimating the posterior marginals

via cutset sampling is dominated by the complexity ofJTC in line (a) of the algorithm.

Only linear amount of additional memory is required to maintain the running sum of

P (Ci|c(t)−i, e) or P (Xi|c(t), e) used in the posterior marginal estimators.

54



Sample Generation Complexity

Clearly, when JTC is applied to the networkB conditioned on all the cutset variablesC and

evidence variablesE, its complexity is time and space exponential in the inducedwidthw

of the conditioned network. It isO(N · d(w+1)) whenC is aw-cutset (see Definition 1.3.4).

Using the notion ofw-cutset, we can balance sampling and exact inference. At one

end of the spectrum we have plain Gibbs sampling where samplegeneration is fast, requir-

ing linear space, but may have high variance. At the other end, we have exact inference

requiring time and space exponential in the induced width ofthe moral graph. In between

these two extremes, we can control the time and space complexity usingw as follows.

THEOREM 2.2.3 (Complexity of sample generation)Given a networkB over X, evidence
E, and aw-cutset C, the complexity of generating a new sample is time and spaceO(|C| ·
N · d(w+2)) whered bounds the variables domain size andN = |X|.

Proof. If C is a w-cutset andd is the maximum domain size, then the complexity of
computing distributionP (Ci|c(t)−i, e) over the conditioned network isO(N · d(w+1)). Since
this operation must be repeated for eachci ∈ D(Ci), the complexity of processing one
variable isO(N · d · d(w+1)) = O(N · d(w+2)). Finally, since ordered Gibbs sampling
requires sampling each variable in the cutset, generating one sample isO(|C| ·N · d(w+2)).

Complexity of estimator computation

Posterior marginals for any cutset variableCi ∈ C are easily obtained at the end of sam-

pling process without incurring additional computation overhead. As mentioned earlier,

we only need to maintain a running sum ofP (Ci|c(t)−i, e) computed when a new value of

55



variableCi is sampled. EstimatingP (Xi|e), Xi ∈ X\C,E, using Eq. (2.7) requires com-

putingP (Xi|c(t), e) once a samplec(t) is generated. We can obtainP (Xi|c(t), e) for all

Xi ∈ X\C,E by applyingJTC. We summarize the complexity of generatingT samples

and estimating all posterior marginals in the following theorem.

THEOREM 2.2.4 (Computing Marginals) Given aw-cutset C, the complexity of comput-
ing posteriors for all variablesXi ∈ X\E usingT samples over the cutset variables is
O(T · [|C|+ d] ·N · d(w+1)).

Proof. As we showed in Theorem 2.2.3, the complexity of generating one sample isO(|C|·
N · d(w+2)). Once a samplec(t) is generated, the computation of the posterior marginals
for the remaining variables requires computingP (Xi|c(t), e) via JTC(Xi, c

(t), e) which is
O(N · d(w+1)). The combined computation time for one sample isO(|C| · N · d(w+2) +
N · d(w+1)) = O([|C| + d] ·N · d(w+1)). Repeating the computation for T samples, yields
O(T · [|C|+ d] ·N · d(w+1)).

Note that the space complexity ofw-cutset sampling is bounded byO(N · d(w+1)).

Complexity of loop-cutset.

When the cutsetC is a loop-cutset, algorithmJTC reduces to belief propagation [96] that

computes the joint probabilityP (Ci, c
(t)
−i, e) in linear time. We will refer to the special case

asloop-cutset samplingand to the general asw-cutset sampling.

A loop-cutset is also aw-cutset wherew equals the maximum number of unobserved

parents. However, since processing poly-trees is linear even for largew, the induced width

does not capture its complexity properly. The notion of loop-cutset could be better cap-

tured via the hyperwidth of the network [50, 63]. The hyperwidth of a poly-tree is 1 and

therefore, a loop-cutset can be defined as a 1-hypercutset. Alternatively, we can express the

56



complexity via the input sizeM referring to the total size of conditional probability tables

to be processed as follows:

THEOREM 2.2.5 (Complexity of loop-cutset sample generation)If C is a loop-cutset, the
complexity of generating each sample isO(|C| · d ·M) whereM is the size of the input.

Proof. When a loop-cutset of a network is observed, JTC or belief propagation (BP) can
compute the joint probabilityP (ci, c

(t)
−i, e) in linear timeO(M) [96] yielding total time and

space ofO(|C| · d ·M) for each sample.

2.2.4 Optimizing cutset sampling performance

Our analysis of the complexity of generating samples (Theorem 2.2.3) is overly pessimistic

in assuming that each computation of the sampling distribution for each variable in the

cutset is independent. While all variables may change a valuewhen moving from one

sample to the next, the change occurs one variable at a time insome sequence so that much

of the computation can be retained when moving from one variable to the next.

We will now show that sampling all the cutset variables can bedone more efficiently

reducing the factor ofN · |C| in Theorem 2.2.3 to(N + |C| · δ) whereδ bounds the number

of clusters in the tree decomposition used by JTC that contains any nodeCi ∈ C. We

assume that we can control the order by which cutset variables are sampled.

Consider the following simple network with variablesX = {X1, ....XN}, Y =

{Y1, ..., YN−1} and CPTsP (Xi+1|Xi, Yi) andP (Yi+1|Xi) for every i, as shown in Fig-

57



� � � �� � � �� � � � � �� � � � � � � �� �
X1X2Y1 X2X3Y2 X3X4Y3 Xn-1XnYn-1 

Figure 2.3: A Bayesian network (top) and a corresponding cluster-tree (bottom).

ure 2.3, top. The join-tree of this networks is a chain of cliques of size 3 given in Figure 2.3,

bottom. SinceY is a loop-cutset, we will sample variables inY . Let’s assume that we use

the orderingY1, Y2, ...YN−1 to generate a sample. Given the current sample, all the cutset

variables are assigned and we are ready to generate the next sample. We then apply JTC (or

bucket-elimination) to the network whose cutset variablesare assigned. This makes the net-

work effectively singly-connected, namely, the actual number of variables in a cluster is 2.

The algorithm sends message from the cluster containingXN towards the cluster contain-

ingX1. When cluster (X1, X2, Y1) gets the relevant message from cluster (X2, X3, Y2) we

can sampleY1. This can be accomplished byd linear computations in clique(X1, X2, Y1)

for eachyi ∈ D(Yi) yielding the desired distributionP (Y1|.) (we can multiply all functions

and incoming messages in this cluster, sum outX1 andX2 and normalize). If the cutset is

aw-cutset, each computation in a single clique isO(d(w+1)).

Once we haveP (Y1|·), Y1 is sampled and assigned a value,y1. Cluster(X1, X2, Y1 =

y1) then sends a message to cluster(X2, X3, Y2) which now has all the information neces-

sary to computeP (Y2|.) in O(d(w+2)). OnceP (Y2|.) is available, a new valueY2 = y2 is

58



sampled. The cluster than computes and sends a message to cluster(X3, X4, Y3), and so

on. At the end, we obtain a full sample via two message passes over the conditioned net-

work having computation complexity ofO(N · d(w+2)). This example can be generalized

as follows.

THEOREM 2.2.6 Given a Bayesian network having N variables, aw-cutsetC a tree-decomposition
used by JTC, and given a samplec1, ..., c|C|, a new sample can be generated inO((N +
|C| · δ) · d(w+2)) whereδ is the maximum number of clusters containing any nodeCi ∈ C.

Proof. Given aw-cutsetC, by definition, there exists a tree-decompositionTr of the net-
work (that includes the cutset variables) such that when thecutset variablesC are removed
the number of variables remaining in each cluster ofTr is bounded byw+ 1. Let’s impose
directionality onTr starting at an arbitrary cluster that we callR as shown in Figure 2.4.
Let TCi

denote the connected subtree ofTr whose clusters includeCi. In Figure 2.4, for
clarity, we collapse the subtree overCi into a single node. We will assume that cutset nodes
are sampled in depth-first traversal order dictated by the cluster tree rooted inR.

TC6

TCk

TC4

TC5

TC3

TC2

TC1 R

Figure 2.4: A cluster-tree rooted in clusterR where a subtree over each cutset nodeCi is
collapsed into a single node markedTCi

.

Given a samplec(t), JTC will send messages from leaves ofTr towards the root
cluster. We can assume without loss of generality thatR contains cutset nodeC1 which
is the first to be sampled inc(t+1). JTC will now pass messages from root down only to

59



clusters restricted toTC1 (note thatR ∈ TC1). Based on these messagesP (C1 = c1, c
(t)
−1)

can be computed inO(d(w+1)). We will repeat this computation for each other value ofC1

involving only clusters inTC1 and obtain the distributionP (C1|·) in O(d(w+2)) and sample
a new value forC1. Thus, ifC1 appears inδ clusters, the number of message passing
computations (after the initialO(N) pass) isO(δ) and we can generate the first distribution
P (C1|·) in O(δ · d(w+2)).

The next node in the depth-first traversal order isTC2 and thus, the second variable to
be sampled isC2. The distance between variablesC1 andC2, denoteddist1,2, is the shortest
path alongTr from a cluster that containsC1 to a cluster that containsC2. We apply JTC’s
mesage-passing along that path only which will take at mostO(dist1,2 · d(w+1)). Then, to
obtain the conditional distributionP (C2|·), we will recompute messages in the subtree of
TC2 for each valuec2 ∈ D(C2) in O(δ · d(w+2)). We continue the computation in similar
manner for other cutset nodes.

If JTC traverses the tree in the depth-first order, it only needs to pass messages along
each edge twice (see Figure 2.4). Thus, the sum of all distances traveled is

∑|C|
i=2 disti,i−1 =

O(N). What may be repeated is the computation for each value of the sampled variable.
This, however, can be accomplished via message-passing restricted to individual variable’s
subtrees and is bounded by itsδ. We can conclude that a new full sample can be generated
in O((N + |C| · δ) · d(w+2)).

It is worthwhile noting that the complexity of generating a sample can be further re-

duced by a factor ofd/(d− 1) (which amounts to a factor of 2 when d=2) by noticing that

whenever we move from variableCi toCi+1, the joint probabilityP (c
(t+1)
1 , ..., c

(t+1)
i , c

(t)
i+1, ..., c

(t)
k )

is already available from the previous round and should not be recomputed. We only need

to computeP (c
(t+1)
1 , ..., c

(t+1)
i , ci+1, ..., c

(t)
k ) for ci+1 6= c

(t)
i+1. Buffering the last computed

joint probability, we only need to apply JTC algorithmd − 1 times. Therefore, the total

complexity of generating a new sample isO((N + |C| · δ) · (d− 1) · d(w+1)).

Figure 2.5 demonstrates the application of the enhancements discussed. It depicts the

moral graph (a) and the corresponding join-tree (b) for the Bayesian network in Figure 2.2.

60



ABC
P(B|A),P(C|A),

P(A)

BCF
P(F|B,C)

A

B
C

F

D

G

E

BDF
P(D|B)

DFGE
P(E|D,F),P(G|F)

AC
P(b0|A),P(C|A),

P(A)

CF
P(F|b0,C),P(d0|b0)

FG
P(E|d0,F),P(G|F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d0|b1)

FG
P(E|d0,F),P(G|F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d1|b1)

FG
P(E|d1,F),P(G|F)

AC
P(b1|A),P(C|A),

P(A)

CF
P(F|b1,C),P(d0|b1)

FG
P(E|d0,F),P(G|F)

(a) (b) (c) (d) (e) (f)

B=b0, D=d0, E=e B=b1 D=d1 D=d0

Figure 2.5: A join-tree of width 2 (b) for a moral graph (a) is transformed into a join-tree
of width 1 (c) when evidence variableE and cutset variablesB andD are instantiated
(in the process, clustersBDF andBCF are merged into clusterCF ). The clusters con-
tain variables and functions from the original network. Allnodes have domains of size 2,
D(B) = {b0, b1}, D(D) = {d0, d1}. Starting with a sample{b0, d0}, messages are propa-
gated in (c)-(e) to first, sample a new value of variableB (d) and then variableD (e). After
that, messages are propagated up the tree to compute posterior marginalsP (·|b1, c1, e) for
the rest of the variables (f).

61



With evidence variableE removed, variablesB andD form a 1-cutset. The join-tree of the

network with cutset and evidence variables removed is shownin Figure 2.5 (c). Assuming

that cutset variables have domains of size 2, we can initializeB = b0 andD = d0.

Selecting clusterAC as the root of the tree, JTC first propagates messages from

leaves to the root as shown in Figure 2.5 (c) and then computesP (b0, d0, e) in cluster

AC. After settingB = b1, updating all functions containing variableB, and propagating

messages through the subtree ofB (clustersAC andCF in Figure 2.5 (d)), we obtain

P (b1, d0, e). Normalizing the two joint probabilities, we obtainP (b|d0, e) and sample a

new value ofB. Assume we sampled valueb1.

Next we sample a new value for variableD. Thus, we need to computeP (D|b1, e).

The joint probabilityP (d0, b1, e) is readily available since it was computed for sampling a

new value ofB. Thus, we setD = d1 and compute the second probabilityP (d1, b1, e) up-

dating functions in clustersCF andFG and sending an updated message fromCF toFG

(Figure 2.5 (e)). We obtain distributionP (D|b1, e) by normalizing the joint probabilities

and sample a new valued0 for D. Since the value has changed from latest computation, we

update again functions in the clustersCF andFG and propagate updated messages in the

subtreeCD (send message fromCF to FG).

In order to obtain the distributionsP (·|b1, d0, e) for the remaining variablesA, C, F ,

andG, we only need to send updated messages up the join-tree, fromFG toCF and then

from CF to AC as shown in Figure 2.5 (f). The last step also serves as the initialization

step for the next sample generation.

62



In this example the performance of cutset sampling is significantly better than its

worst case. We have sent a total of 5 messages to generate a newsample while the worst

case suggests at leastN · |C| · d = 3 · 2 · 2 = 12 messages (here,N equals the number of

clusters).

2.2.5 On findingw-cutset

Clearly,w-cutset sampling will be effective only when thew-cutset is small. This calls for

the task of finding a minimum sizew-cutset. The problem is NP-hard; yet, several heuristic

algorithms have been proposed. We next briefly survey some ofthose proposals.

In [74], w-cutset is obtained when processing variables in the elimination order. The

next node to be eliminated (selected using some triangulation heuristics) is added to the

cutset if its current induced width (or degree) is greater thanw. In [43], this idea has been

augmented with various heuristics.

In [15], the variables are selected to be included in the cutset using greedy heuristics

based on the node’s basic graph properties (such as the degree of a node). One scheme

starts from emptyw-cutset and then heuristically adds nodes to the cutset until a tree-

decomposition of width≤ w can be obtained. The other scheme starts from a setC = X\E

containing all nodes in the network as a cutset and then removes nodes from the set in

some order. The algorithm stops when removing the next node would result in a tree

decomposition of width> w.

In [16], it was proposed to first obtain a tree-decompositionof the network and then

63



find the minimalw-cutset of the tree-decomposition (also an NP-hard problem) via a well-

known greedy algorithm used for set cover problem. This approach is shown to yield a

smaller cutset than previously proposed heuristics and is used for findingw-cutset in our

experiments (section 2.5.4) with a modification that a tree-decomposition is re-computed

each time a node is removed from the tree and added to thew-cutset.

2.3 Rao-Blackwellised Likelihood Weighting

Given a Bayesian network over a set of variablesX with evidenceE⊂X,E=e, letC⊂X\E

be a subset of variables inX, Z=C
⋃

E, andm=|Z|. Let o={Z1, ..., Zm} be a topological

ordering of the variables. We can define likelihood weighting overZ as follows. Processing

variables in ordero, we sample valuez1 from distributionP (Z1), z2 fromP (Z2|z1), and so

on. For eachZi∈C, we sample a valuezi from the distributionP (Zi|z1, ..., zi−1). If Zi∈E,

we assignZi its observed valuezi. The latter setsQ(zi|z1, ..., zi−1) = 1 for all zi ∈ e. The

sampling distributionQ(Z) is:

Q(Z) =
∏

Zi∈C

P (Zi|z1, ..., zi−1) |E=e (2.11)

The weightw(t) of samplet is given by:

w(t) =
P (z(t))

Q(z(t))
=

∏

Zi∈Z P (z
(t)
i |z(t)

1 , ..., z
(t)
i−1)

∏

Zi∈C P (z
(t)
i |z(t)

1 , ..., z
(t)
i−1)

(2.12)

After cancelling out the common factors in denominator and numerator, we get:

w(t) =
∏

Zi∈E P (ei|z(t)
1 , ..., z

(t)
i−1) (2.13)

64



During sampling, the weight (initialized to 1) is updated every time we encounter an evi-

dence variableZi ∈ E with observed valueei using:

w(t) ← w(t) · P (ei|z1, ..., zi−1) (2.14)

A outline of the likelihood weighting on a cutset is given in Figure 2.6.

Likelihood Weighting on a Cutset
Input: A Belief networkB, variablesX = (X1, ..., Xn), evidenceE = e, cutsetC ⊂ X\E,
topological orderingo = {Z1, ..., Zm} of variables inZ = C ∪ E, the desired number of samples
T , and the score arrays for every node.
Output: A set of samples{c(t)}, t = 1...T .

1. Initialize: ∀Ci ∈ C\E, ∀ci ∈ D(Xi), w(c
(t)
i ) = 0.

2. Generate Samples:
For t← 1 to T do:

Initialize sample weight:w(t) ← 1

For i = 1 to m sample a new valuez(t)
i for a variableZi ∈ Z:

If Zi ∈ E then

w(t) ← w(t) · P (zi|z1, ..., zi−1) (2.15)

Zi ← zi ∈ e (2.16)

Else

sample z
(t)
i ←

{

P (zi), if Zi is a root
P (zi|z1, ..., zi−1), otherwise

(2.17)

Zi ← z
(t)
i (2.18)

End If
End For(i)
Update score arrays:∀Ci ∈ C\E, w(c

(t)
i )← w(c

(t)
i ) + w(t)

End For(t)

Figure 2.6: Algorithm likelihood weighting on a cutset (LWLC).

The main difference between likelihood weighting over cutsetC and sampling over

all variablesX is in computing the sampling distributions. In the latter case, the distribution

65



P (Xi|x1, ..., xi−1) = P (Xi|pai) is readily available in the conditional probability table of

Xi. However, the sampling distributionP (Zi|z1, ..., zi−1) for LWLC needs to be computed.

Consider the special case whenC ∪ E is a loop-cutset. In this case, we can com-

pute the probabilityP (z)=P (c, e) in linear time and space using Pearl’s belief propagation

algorithm. We can show that we can also computeP (Zi|z1, ..., zi−1) efficiently if we or-

der the variables inZ topologically and restrict our attention to the relevant subnetwork of

Z1, ..., Zi.

THEOREM 2.3.1 Given Bayesian network overX, evidenceE ⊂ X, and cutsetC ⊂ X\E,
let Z = C ∪ E be a loop-cutset. IfZ is topologically ordered, then∀Zj ∈ Z the relevant
subnetwork ofZ1, ..., Zj is singly-connected whenZ1, ..., Zj are observed.

Proof. Proof by contradiction. Assume that the relevant subnetwork of Z1, ..., Zj contains
a loopL with sinkS. Then, eitherS = Zq orS has a descendantZq, 1 ≤ q ≤ j, (otherwise
S is irrelevant). By definition of loop-cutset,∃Cm∈L s.t. Cm 6=S andCm ∈ C ⊂ Z.
Therefore,Cm is an ancestor ofZq. Since variables are topologically ordered and all loop-
cutset nodes precedingZq are observed,Cm must be observed, thus, breaking the loop,
yielding a contradiction.

Therefore, ifC is a loop-cutset, we can compute the distributionsP (Zi|z1, ..., zi−1)

for everyZi∈Z over the relevant subnetwork ofZi in linear time and space.

Consequently, the complexity of computing a new sample is proportional to the num-

ber of variables inZ and the size of the inputN . In summary:

THEOREM 2.3.2 (Complexity) Given a Bayesian network overX, evidenceE, and a loop-
cutsetC⊂X\E, the complexity of generating one sample using likelihood weighting over
a cutsetC isO(|Z| ·N) whereZ = C ∪ E andN is the size of the input network.

When a samplec(t) is generated, we apply belief propagation algorithm once more to

66



obtain the posterior marginals,P (Xi|c(t), e), for each remaining variable. OnceT samples

are generated, we obtain the posterior marginals estimates, similar to Eq. (1.11), by:

P̂ (ci|e) = α
T

∑

t=1

w(t)δ(ci, c
(t)), ∀Ci ∈ C

P̂ (xi|e) = α

T
∑

t=1

w(t)P (xi|c(t), e), ∀Xi ∈ X\C,E

2.3.1 Convergence

Likelihood weighting on a loop-cutset (LWLC) has a higher overhead in computing the

distributionsP (Zi|z1, ..., zi−1) for ∀Zi ∈ Z, compared with sampling on a full variable

set. However, as mentioned earlier, it converges faster. because the estimates obtained

by sampling from a lower-dimensional space have lower variance due to Rao-Blackwell

theorem. That is:

V ar{P (Y,C)

Q(Y,C)
} ≥ V ar{P (C)

Q(C)
}

whereP (C) =
∑

y P (Y,C) andQ(C) =
∑

y Q(Y,C) [36, 83] A proof can be found

in [36] and [83]. Consequently, fewer LWLC samples are needed to achieve the same

accuracy as LW.

The information distance between target distributionP (C|e) and sampling distribu-

tionQ(C) in LWLC is smaller than the distance betweenP (X|e) and sampling distribution

Q(X). We can show this for the KL-distance [72]:

KL(P (X), Q(X)) =
∑

x

P (x) log
P (x)

Q(x)
(2.19)

67



THEOREM 2.3.3 (Reduced Information Distance)Given a Bayesian network expressing
probability distributionP (X), evidenceE=e, and a cutsetC ⊂ X\E, let Q(X) and
Q(C,E) denote the likelihood weighting sampling distribution overX and overC,E re-
spectively. Then:

KL(P (C|e), Q(C,E)) ≤ KL(P (X|e), Q(X))

The proof is given in Appendix A.

2.4 Caching Sampling on a Cutset

Often, we can reduce the computation time of a sampling scheme by caching the gener-

ated samples and their probabilities. Caching LW values is oflimited benefit since it uses

probabilities stored in CPTs. However, in the case of LWLC, caching may compensate in

part for the computation overhead. A suitable data structure for caching is a search-tree

over the cutsetC with a root nodeC1. As new variable values are sampled and a partial as-

signment to the variablesC1, ..., Ci is generated, LWLC traverses the search tree along the

pathc1, ..., ci. Whenever a new value ofCi is sampled, the corresponding tree branch is ex-

panded and the current sample weight and the sampling distributionP (Ci|z1, ..., zi−1) are

saved in the nodeCi. In the future, when generating the same partial assignmentc1, ..., ci,

LWLC saves on computation by reading saved distributions from the tree. We will use

LWLC-BUF to denote LWLC sampling scheme that uses a memory buffer to cache pre-

viously computed probabilities. LWLC-BUF can also update thesampling distributions

P (Ci|z1, ..., zi−1) when dead-ends are discovered. Namely, if the algorithm finds that a

partial instantiationz1, ..., zi, cannot be extended to a full tuple with non-zero probability,

68



then we setP (Ci|z1, ..., zi−1) = 0 and normalize the updated distribution.

Similar considerations apply to Gibbs sampling. The main difference is that we only

need to cache joint probabilitiesP (c, e) in the leaf nodesCm = cm, wherem = |C| and

cm ∈ c, corresponding to the instantiationc, and we don’t need to cache any computed

values in the inner nodes of the tree. We will denote resulting loop-cutset sampling scheme

as LCS-BUF.

2.5 Experiments

In this section, we present empirical studies of cutset sampling algorithms for several

classes of problems. We compare Gibbs-cutset sampling schemes, loop-cutset sampling

(LCS) andw-cutset sampling, with traditional Gibbs sampling (Gibbs)on a full set of vari-

ables. We also compare the performance of full likelihood weighting (LW), sampling over

all the variables, against likelihood weighting on a loop-cutset (LWLC) and buffered like-

lihood weighting on a loop-cutset (LWLC-BUF). In networks with positive distributions,

we compare likelihood weighting side by side with Gibbs-based sampling schemes. For

reference, we also report the performance of Iterative Belief Propagation (IBP) algorithm.

69



2.5.1 Methodology

Sampling Methodology

In all Gibbs-based sampling algorithms we restarted MarkovChain everyT samples. The

samples from each chain (batch)k are averaged separately:

P̂m(xi|e) =
1

T

T
∑

t=1

P (xi|c(t), e)

The final estimate is obtained as a sample average over M chains:

P̂ (xi|e) =
1

M

M
∑

m=1

P̂m(xi|e)

Restarting Markov chain is known to improve the sampling convergence rate. A single

chain can become “stuck” generating samples from a single high-probability region without

ever exploring large number of other high-probability tuples. By restarting a Markov chain

at a different random point, sampling algorithm can achievebetter coverage of the sampling

space and find other high-probability regions. In our experiments, we did not observe any

significant difference in the estimates obtained from a single chain of sizeM · T or M

chains of sizeT and therefore, we only choose to report the results for multiple Markov

chains. However, we rely on the independence of random values P̂k(xi|e) to estimate 90%

confidence interval for̂P (xi|e).

In our implementation of Gibbs sampling schemes, we use zero“burn-in” time (see

section 1.4.2). One reason is that no reliable method for estimating burn-in time exists for

discrete Bayesian networks. Second, our experimental results showed no positive indica-

tion that burn-in time would be beneficial. As we mentioned earlier, the firstK samples

70



are thrown away on the assumption that the Markov Chain needs≈ K samples to be-

come stationary. Then, the remaining samples can be guaranteed to be drawn from target

distribution. In practice, this gives the sampling algorithm a “pre-processing” time to find

the high-probability regions in the distributionP (C|e) in case the algorithm initially spends

disproportionally large period of time in low probability regions. Discarding a large number

of low-probability tuples obtained initially, the frequency of the remaining high-probability

tuples is automatically adjusted to better reflect their weight.

cpcs360b, N=360, |E|=32, w*=21

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

1.20E-04

1.40E-04

1.60E-04

0 2000 4000 6000 8000 10000

# samples

M
S

E

LCS
cpcs360b, N=360, |E|=32, |LC|=26, w*=21

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000

# samples

# 
u

n
iq

u
e 

sa
m

p
le

s 

LCS

Figure 2.7: Comparing loop-cutset sampling MSE vs. number ofsamples (left) and and
number of unique samples vs. number of samples (right) in cpcs360b, 20 instances.

In our benchmarks, we observed that both full Gibbs samplingand cutset sampling

were able to find high probability tuples fast relative to thenumber of samples generated.

For example, in one of the benchmarks, cpcs360b, the rate of generating unique samples,

namely, the ratio of cutset instances that have not been seento the number of samples,

decreases over time. Specifically, loop-cutset sampling generates 200 unique tuples after

first 1000 samples, additional 100 unique tuples while generating the next 1000 samples,

and then the rate of generating unique tuples slows to 50 per 1000 samples in the range

71



from 2000 to 10000 samples as shown in Figure 2.7, right. Thatmeans that after the first

few hundred samples, the algorithm spends most of the time revisiting high-probability

tuples. In other benchmarks, the number of unique tuple instances generated increases

linearly (as in cpcs54) and, thus, the tuples appear to be distributed nearly uniformly. In

this case, there is no need for burn-in because there are no strongly-expressed heavy-weight

tuples. Instead of using burn-in times, we sample initial variable values from the posterior

marginal estimates generated by IBP in all of our experiments.

All experiments were performed on 1.8 GHz CPU.

Measures of Performance

For each problem instance defined by a Bayesian network havingvariablesX = {X1, ..., Xn}

and evidenceE ⊂ X, E = e, we derived the exact posterior marginalsP (Xi|e) using

bucket-tree elimination [29, 28] and computed the mean square error (MSE) of the approx-

imate posterior marginalŝP (Xi|e) where MSE is defined by:

MSE =
1

∑

Xi∈X\E |D(Xi)|
∑

Xi∈X\E

∑

D(Xi)

[P (xi|e)− P̂ (xi|e)]2

We averaged MSE over all problem instances, each associatedwith different observation

values.

While the mean square error is our primary accuracy measure, the results are con-

sistent across other well-known measures such as average absolute error, KL-distance, and

squared Hellinger’s distance which we show only for loop-cutset sampling. The absolute

72



error∆ is averaged over all values of all unobserved variables:

∆ =
1

∑

Xi∈X\E |D(Xi)|
∑

Xi∈X\E

∑

D(Xi)

|P (xi|e)− P̂ (xi|e)|

KL-distanceDK between the distributionP (Xi|e) and the estimator̂P (Xi|e) is defined as

follows:

DK(P (Xi|e), P̂ (Xi|e)) =
∑

D(Xi)

P (xi|e) log
P (xi|e)
P̂ (xi|e)

For each benchmark instance, we compute the KL-distance foreach variableXi ∈ X\E

and then average the results:

DK(P, P̂ ) =
1

|X\E|
∑

Xi∈X\E

DK(P (Xi|e), P̂ (Xi|e))

The squared Hellinger’s distanceDH between the distributionP (Xi|e) and the estimator

P̂ (Xi|e) is obtained as:

DH(P (Xi|e), P̂ (Xi|e)) =
∑

D(Xi)

[
√

P (xi|e)−
√

P̂ (xi|e)]2

The average squared Hellinger’s distance for a benchmark instance is the average of the

distances between posterior distributions of one variable:

DH(P, P̂ ) =
1

|X\E|
∑

Xi∈X\E

DH(P (Xi|e), P̂ (Xi|e))

The average errors for different network instances are thenaveraged over all instances of

the given network (typically, 20 instances).

We also report the confidence interval for the estimateP̂ (xi|e) using approach sim-

ilar to the well-known batch means method [18, 46, 113]. Since chains are restarted in-

dependently, the estimateŝPk(xi|e) are independent. Thus, the confidence interval can be

73



obtained by measuring the variance in the estimatorsP̂ (Xi|e). We report results in Sec-

tion 2.5.5.

2.5.2 Benchmarks

We experimented with several different benchmarks from Bayesian network repository and

also random and coding networks. The characteristics of thebenchmarks from Bayesian

network repository are summarized in Table 2.1.

Table 2.1: Benchmarks’ characteristics:N -number of nodes,w∗-induced width,|LC|-
loop-cutset size,P (e)-average probability of evidence (over specified number of instances),
TBE-exact computation time by bucket elimination.

N w
∗ |LC| # instances P(e) TBE

cpcs54 54 15 6 20 0.08 1 sec
cpcs179 179 8 8 20 0.00004 2 sec
cpcs360b 360 21 26 20 5E-8 20 min
cpcs422b 422 22 47 20 1.5E-6 50 min
Hailfinder 56 5 5 20 0.05 0.05 sec
Pathfinder1 109 6 9 30 0.07 1 sec
Pathfinder2 135 4 4 30 0.06 0.01 sec
Link 724 15 142 30 0.07 325 sec

CPCS. We considered four CPCS networks derived from the Computer-based Patient

Case Simulation system [95, 100]. CPCS network representationis based on INTERNIST

1 [43] and Quick Medical Reference (QMR) [42] expert systems. The nodes in CPCS

networks correspond to diseases and findings and conditional probabilities describe their

correlations. The exact inference time for cpcs422b is about 50 min. cpcs54network

consists ofN = 54 nodes and has a relatively large loop-cutset of size|LC| = 15 (> 25%

of the nodes). Its induced width is 15.cpcs179network consists ofN = 179 nodes. Its

74



induced width isw∗ = 8. It has a small loop-cutset of size|LC| = 8 but with a relatively

large corresponding adjusted induced widthwLC = 7. cpcs360bis a larger CPCS network

with 360 nodes, adjusted induced width of 21, and loop-cutset |LC| = 26. Exact inference

on cpcs360b averaged∼ 30 min. The largest network,cpcs422b, consisted of 422 nodes

with induced widthw∗ = 22 and loop-cutset of size 47.

Hailfinder network is a small network with only 56 nodes. The exact inference in

Hailfinder network is easy since its loop-cutset size is only5. Yet, this network has some

zero probabilities and, therefore, is a good benchmark for demonstrating the convergence

of cutset sampling in contrast to Gibbs sampling.

Pathfinder is an expert system for providing assistance with the identification of

disorders from lymph node tissue sections [53]. We experimented with two subsets of the

network. Pathfinder1 contains 109 nodes, has induced widthw∗=6, and a loop-cutset of size

|LC| = 9. The larger network, Pathfinder2, contains 135 nodes, has induced widthw∗ = 4,

and a loop-cutset of size 4. These two networks have many deterministic probabilities are

only used in evaluation of likelihood weighting schemes.

Link is a model for the linkage between two genes [58]. It has 724 nodes and has

induced widthw∗ = 15.

Random networks. We experimented with several classes of random networks: 2-

layer networks, random networks, and grid networks. The random networks were gener-

ated withN = 200 binary nodes (domains of size 2) andR=50 root nodes with uniform

priors. The first 100 nodes,{X1, ..., X100}, were designated as root nodes. Each non-root

75



nodeXi , i > 100, was assigned 3 parents selected randomly from the list of predecessors

{X1, ..., Xi−1}. All nodes were assigned a domain of size 2D(Xi) = {x0
i , x

1
i }. Evidence

nodes E were selected at random from leaf nodes (nodes without children). We will re-

fer to this class of random networks as multi-partite randomnetworks to distinguish from

bi-partite (2-layer) random networks.

The random 2-layer networks were generated with 50 root nodes (first layer) and 150

leaf nodes (second layer), yielding a total of 200 nodes. Allnodes had domains of size 2.

Each non-root node (second layer) was assigned 1-3 parents selected at random from the

root nodes. Evidence nodes were selected at random among thenon-root nodes. For both

2-layer and multi-partite random networks, the root nodes were assigned uniform priors

while conditional probabilities were chosen randomly. Namely, each valueP (x0
i |pai) was

drawn from uniform distribution over interval(0, 1) and used to compute the complimen-

tary probability valueP (x1
i |pai) = 1−P (x0

i |pai). The conditional probability table values

were chosen randomly.

The grid networks of size 15x30 with 450 nodes were also constructed with uniform

priors (on the single root node) and random conditional probability tables. Those networks

had an average induced width of size 20 (exact inference using bucket elimination required

about 30 minutes). Those networks had the most regular structure of all and the largest

loop-cutset containing nearly a half of all the unobserved nodes. The evidence nodes were

selected at random.

Coding networks. We experimented with coding networks having 200 nodes (50

76



coding bits, 50 parity check bits). Those networks have an average loop-cutset size of 26

and induced width of 21. The parity check matrix was randomized; each parity check bit

had three parents. The Markov chains generated by Gibbs sampling over coding networks

are not ergodic due to the deterministic parity check function. As a result, Gibbs sampling

does not converge. However, the Markov chain resulting fromGibbs sampling over a subset

of coding bits is ergodic and, thus, all of the cutset sampling schemes have converged as

we will show in the next two sections.

In coding networks, all coding bits were observed (their values selected at random).

In grid networks, evidence variables were selected at random among all network variables.

In all other benchmarks, evidence nodes were selected at random among the leaf nodes. For

each benchmark, we report on the chart title the number of nodes in the networkN , average

number of evidence nodes|E|, size of loop-cutset|LC|, and average induced width of the

input instancew∗. We denote the induced width of the input asw∗ to distinguish from

induced widthw of the network adjusted for itsw-cutset.

2.5.3 Results for Loop-Cutset Sampling

In this section we compare loop-cutset sampling with pure Gibbs sampling and IBP. In

all benchmarks, the cutset was selected so that the evidenceand sampling nodes together

constitute a loop-cutset of the network using the algorithmproposed in [8]. We show the

accuracy of Gibbs and loop-cutset sampling as a function of time.

77



cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 10000 20000 30000 40000 50000 60000 70000

# samples

M
S

E

Gibbs

IBP

LCS,w =4

cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

Gibbs

IBP

LCS,w =4

cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

2.0E-06

4.0E-06

6.0E-06

8.0E-06

1.0E-05

1.2E-05

1.4E-05

0 2 4 6 8 10 12 14

Time (sec)

K
L

-d
is

ta
n

ce

Gibbs

IBP

LCS,w =4

cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

1.0E-06

2.0E-06

3.0E-06

4.0E-06

5.0E-06

6.0E-06

7.0E-06

0 2 4 6 8 10 12 14

Time (sec)

H
el

lin
g

er
-d

is
ta

n
ce

Gibbs

IBP

LCS,w =4

cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

4.0E-04

8.0E-04

1.2E-03

1.6E-03

2.0E-03

0 2 4 6 8 10 12 14

Time (sec)

A
b

so
lu

te
 E

rr
o

r

Gibbs

IBP

LCS,w =4

Figure 2.8: Comparing loop-cutset sampling (LCS), Gibbs sampling and IBP on cpcs54
network, averaged over 20 instances each, showing MSE as a function of the number of
samples (top left) and time (top right) and KL-distance (middle left), squared Hellinger’s
distance (middle right), and an average error (bottom) as a function of time.

78



cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 2000 4000 6000 8000 10000

# samples

M
S

E

Gibbs

IBP

LCS,w =7

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 5 10 15 20

Time (sec)

M
S

E

Gibbs

IBP

LCS,w =7

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 5 10 15 20

Time (sec)

K
L

-D
is

ta
n

ce

Gibbs

IBP

LCS,w =7

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 5 10 15 20

Time (sec)

H
el

lin
g

er
 D

is
ta

n
ce

Gibbs

IBP

LCS,w =7

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 5 10 15 20

Time (sec)

A
b

so
lu

te
 E

rr
o

r

Gibbs

IBP

LCS,w =7

Figure 2.9: Comparing loop-cutset sampling (LCS), Gibbs sampling and IBP on cpcs179
network, averaged over 20 instances each, showing MSE as a function of the number of
samples (top left) and time (top right) and KL-distance (middle left), squared Hellinger’s
distance (middle right), and an average error (bottom) as a function of time.

79



cpcs360b, N=360, |LC|=26, w*=21, |E|=18

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 5000 10000 15000 20000

# samples

M
S

E

Gibbs

IBP

LCS,w =3

cpcs360b, N=360, |LC|=26, w*=21, |E|=18

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

1.8E-04

0 10 20 30 40 50 60 70

Time (sec)

M
S

E

Gibbs

IBP

LCS,w =3

cpcs360b, N=360, |LC|=26, w*=21, |E|=18

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

0 10 20 30 40 50 60 70

Time (sec)

K
L

-d
is

ta
n

ce

Gibbs

IBP

LCS,w =3

cpcs360b, N=360, |LC|=26, w*=21, |E|=18

1.0E-07

1.0E-06

1.0E-05

1.0E-04

1.0E-03

0 10 20 30 40 50 60 70

Time (sec)

H
el

lin
g

er
-d

is
ta

n
ce

Gibbs

IBP

LCS,w =3

cpcs360b, N=360, |LC|=26, w*=21, |E|=18

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 10 20 30 40 50 60 70

Time (sec)

A
b

so
lu

te
 E

rr
o

r

Gibbs

IBP

LCS,w =3

Figure 2.10: Comparing loop-cutset sampling (LCS), Gibbs sampling and IBP on cpcs360b
network, averaged over 20 instances each, showing MSE as a function of the number of
samples (top left) and time (top right) and KL-distance (middle left), squared Hellinger’s
distance (middle right), and an average error (bottom) as a function of time.

80



cpcs422b, N=422, |LC|=47, w*=22, |E|=28

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

3.5E-04

4.0E-04

0 1000 2000 3000 4000 5000 6000

# samples

M
S

E

Gibbs

IBP

LCS,w =14

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

0.0E+00

1.0E-04

2.0E-04

3.0E-04

4.0E-04

5.0E-04

0 20 40 60 80 100 120 140

Time (sec)

M
S

E

Gibbs

IBP

LCS,w =14

Figure 2.11: Comparing loop-cutset sampling (LCS), Gibbs sampling and IBP on cpcs422b
network, averaged over 10 instances, showing MSE as a function of the number of samples
(left) and as a function of time (right).

CPCS networks.The results are summarized in Figures 2.14-2.11. Each charttitle

specifies network name, number of nodes in the network N, the size of evidence set|E|,

size of loop-cutset (sampling set)|LC|, and induced widthw∗ of the network instance

(not taking into account either E or C). The loop-cutset curvein each chart is denoted

LCS (for Loop Cutset Sampling). The induced width of the network w when loop-cutset

nodes are observed appears next to the name. It is identical to the largest family size in

the poly-tree generated when cutset variables are removed.We plot the time on the x-

axis and the accuracy (MSE) on the y-axis. IBP curve is always astraight horizontal line

because IBP reaches convergence fast (within seconds) and the results do not change after

that. The curves corresponding to Gibbs sampling and loop-cutset sampling demonstrate

the convergence of the sampling schemes with time. In three CPCS networks we observed

that loop-cutset sampling converges much faster than Gibbssampling. The only exception

is cpcs422b (Figure 2.11, right) where loop-cutset sampling generates samples very slowly

(2 samples/second) compared to Gibbs sampling (300 samples/second). The reason for

81



this discrepancy is that the induced width of the conditioned singly-connected network

remains high (w = 14) due to large family sizes. Since computing sampling distribution

is exponential inw, sampling a single variable isO(214) (all variables have domains of

size 2). As a result, although loop-cutset sampling shows significant reduction in MSE

when comparing the accuracy of two sampling schemes as a function of the number of

samples (Figure 2.11, left), it is not enough to compensate for the two orders of magnitude

difference in the loop-cutset rate of sample generation. For cpcs54 (Figure 2.8), cpcs179

(Figure 2.9), and cpcs360b (Figure 2.10) loop-cutset sampling achieves greater accuracy

than IBP within 10 seconds or less. Note that our sampling timeincludes the pre-processing

time of IBP.

Random networks. In random multi-part networks (Figure 2.12, top) and random

2-layer networks (Figure 2.12, middle), loop-cutset sampling always converged faster than

Gibbs sampling. The results are averaged over 10 instances of each network type. In

both cases, loop-cutset sampling achieved accuracy of IBP in2 seconds or less. In 2-layer

networks, Iterative Belief Propagation performed particularly poorly. Both Gibbs sampling

and loop-cutset sampling obtained more accurate results inless than a second.

Coding Networks. The results for coding networks are shown in Figure 2.12, bot-

tom. We computed MSE over all coding bits and averaged over 10networks. As we noted

earlier, coding networks contain deterministic parity check functions and as a result, Gibbs

sampling does not converge while the Markov chain corresponding to sampling over a

subspace of code bits only is ergodic and therefore, loop-cutset sampling over a subset of

82



random, N=200, |E|=20, |LC|=30, w*=22

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

1.8E-04

0 5 10 15 20 25 30

Time (sec)

M
S

E

Gibbs

IBP

LCS, w=3

2-layer, N=200, |E|=16, |LC|=17, w*=16

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 2 4 6 8 10 12

Time (sec)

M
S

E

Gibbs

IBP

LCS, w=3

coding, N=200, P=3, |LC|=26, w*=21

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

0 5 10 15 20

Time(sec)

M
S

E

Gibbs

IBP

LCS,w=3

Figure 2.12: Comparing loop-cutset sampling, Gibbs sampling and IBP on random net-
works (top), 2-layer random networks (middle), and coding networks,σ=0.4 (bottom),
averaged over 10 instances each. MSE as a function of time.

83



coding bits converges and even achieves higher accuracy than IBP with time. In reality, IBP

is certainly preferable for coding networks since the size of the loop-cutset grows linearly

with the number of code bits.

HailFinder, N=56, |C|=5, |E|=1 

0.0001

0.001

0.01

0.1

1

1 2 3 4 5 6 7 8 9 10

Time(sec)

Cutset

Gibbs

Figure 2.13: Comparing loop-cutset sampling and Gibbs sampling on Hailfinder network,
1 instance. MSE as a function of time.

Hailfinder network is easy to solve exactly. We used this benchmark as an exam-

ple of a network where Gibbs sampling fails while cutset sampling converges to posterior

marginals. Hailfinder network contains many deterministicrelationships. Consequently,

Markov chain generated by Gibbs sampling is non-ergodic andGibbs sampling does not

converge. However, it turns out the Markov chain corresponding to loop-cutset sampling is

ergodic and, therefore, loop-cutset sampling converges tothe exact posterior marginals, as

we can see in Figure 2.13.

In summary, the empirical results demonstrate that loop-cutset sampling is cost-

effective time-wise and superior to Gibbs sampling. We measured the ratioR = Mg

Mc
of

84



the number of samplesMg generated by Gibbs to the number of samplesMc generated by

loop-cutset sampling in the same time period (it is relatively constant for any given net-

work and only changes slightly between problem instances that differ with observations).

For cpcs54, cpcs179, cpcs360b, and cpcs422b the ratios werecorrespondingly 2.5, 3.75,

0.7, and 150. We also obtainedR = 2.0 for random networks and R=0.3 for random 2-

layer networks. The ratio values> 1 indicate that Gibbs sampler generates samples faster

than loop-cutset sampling which is usually the case. In those instances, variance reduc-

tion compensates for the increased computation time because fewer samples are needed to

converge resulting in the overall better performance of loop-cutset sampling compared to

Gibbs sampling. In some cases, however, the reduction in thesample size also compensates

for the overhead computation in the sampling of one variablevalue so that loop-cutset sam-

pling generates samples faster than Gibbs yielding ratioR < 1. Then, the improvement

in the accuracy of cutset sampling is due to both larger number of samples and variance

reduction.

2.5.4 w-cutset Sampling

In this section, we compare the generalw-cutset scheme for different values ofw against

Gibbs sampling. The main goal is to study how the performanceof w-cutset sampling

varies withw. For completeness sake, we include results of loop-cutset sampling shown in

section 2.5.3.

In this empirical study, we used the greedy algorithm for setcover problem, men-

85



tioned in section 2.2.5, for finding minimalw-cutset. We apply algorithm in such a manner

that each(w + 1)-cutset is a proper subset of aw-cutset and, thus, can be expected to

have a lower variance and converge faster than sampling onw-cutset in terms of number

of samples required (following the Rao-Blackwellisation theory). We focus the empirical

study on the trade-offs between cutset size reduction and the associated increase in sample

generation time as we gradually increase the boundw.

We used the same benchmarks as before and included also grid networks. All sam-

pling algorithms were given a fixed time bound. When sampling small networks, such

as cpcs54 (w∗ = 15) and cpcs179 (w∗ = 8), where exact inference is easy, sampling al-

gorithms were allocated 10 seconds and 20 seconds respectively. For larger networks we

allocated 100-200 seconds depending on the complexity of the network which was only a

fraction of exact computation time.

Table 2.2 reports the size of the sampling set used by each algorithm where each

column reports the size of the correspondingw-cutset. For example, for cpcs360b, the

average size of Gibbs sample (all nodes except evidence) is 342, the loop-cutset size is

26, the size of 2-cutset is 22, and so on. Table 2.3 shows the rate of sample generation by

different algorithms per second. The table shows that in some special cases cutset sampling

generated samples faster than Gibbs sampler. For example for cpcs360b, we see that loop-

cutset sampling and 2-cutset sampling were able to generate600 samples per second while

Gibbs sampler was able to generate only 400 samples. We attribute this to the size of cutset

sample (26 nodes or less as reported in Table 2.2) compared tothe size of the Gibbs sample

86



Table 2.2: Markov chain sampling set size as a function ofw.
Sampling Set Size

Gibbs LC w=2 w=3 w=4 w=5 w=6 w=7 w=8

cpcs54 51 16 17 15 11 9 8 - -
cpcs179 162 8 11 9 7 5 - - -
cpcs360b 342 26 22 19 16 15 14 13 -
cpcs422b 392 47 65 57 50 45 40 35 -
grid15x30 410 169 163 119 95 75 60 50 13
random 190 30 61 26 25 24 18 17 -
2layer 185 17 22 15 13 13 11 - -
coding 100 26 38 23 18 18 - - -

Table 2.3: Average number of samples generated per second asa function ofw.
No. of Samples

Gibbs LC w=2 w=3 w=4 w=5 w=6 w=7 w=8

cpcs54 5000 2000, w=4 3000 2400 800 500 300 - -
cpcs179 1500 400, w=7 400 150 40 10 - - -
cpcs360b 400 600, w=3 600 400 160 100 40 20 -
cpcs422b 300 2, w=14 200 150 90 50 30 15 -
grid15x30 2000 500, w=2 300 260 150 105 60 35 20
random 2000 1000, w=3 1400 700 450 300 140 75 -
2layer 200 700, w=3 900 320 150 75 40 - -
coding 650 450, w=3 800 600 250 150 100 - -

(over 300 nodes).

CPCS networks. We present two charts. One chart demonstrates the convergence

over time for several values ofw. The second chart depicts the change in the quality

of approximation (MSE) as a function ofw for two time points, at the half of the total

sampling time and at the end of total sampling time. The performance of Gibbs sampling

87



cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

3.0E-04

0 2 4 6 8 10 12 14

Time (sec)

M
S

E

Gibbs

IBP
LCS,w=4

|C|=17,w=2
|C|=15,w=3

|C|=11,w=4
|C|=9,w=5

cpcs54, N=54, |LC|=16, w*=15, |E|=4

0.0E+00

4.0E-05

8.0E-05

1.2E-04

1.6E-04

2.0E-04

Gibbs w=2 w=3 LCS,
w=4

w=4 w=5 w=6

M
S

E

IBP

Cutset, 5 sec

Cutset, 10 sec

Figure 2.14: MSE as a function of time (left) andw (right) in cpcs54, 20 instances, time
bound=12 seconds.

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

0 5 10 15 20

Time (sec)

M
S

E

Gibbs
IBP
LCS,w=7
|C|=11,w=2
|C|=9,w=3
|C|=7,w=4
|C|=5,w=5

cpcs179, N=179, |LC|=8, w*=8, |E|=17

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

Gibbs w=2 w=3 w=4 w=5 LCS,w=7

M
S

E

IBP

Cutset, 10 sec

Cutset, 20 sec

Figure 2.15: MSE as a function of time (left) andw (right) in cpcs179, 20 instances, time
bound=12 seconds. Y-scale is exponential due to large variation in performance of Gibbs
and cutset sampling.

and cutset sampling for cpcs54 is shown in Figure 2.14. The results are averaged over

20 instances with number of evidence variables in range1 − 4. The graph on the left in

Figure 2.14 shows the mean square error of the posterior marginals as a function of time

for Gibbs sampling, loop-cutset sampling, andw-cutset sampling forw=2, 3, 4, and 5.

The second chart shows accuracy as a function ofw. The first point corresponds to Gibbs

sampling, other points correspond to cutset sampling withw ranging from 2 to 6. The loop-

cutset result is embedded with thew-cutset values atw = 4. As explained in section 2.2.3,

the loop-cutset corresponds to thew-cutset wherew is the maximum number of parents in

88



cpcs360b, N=360, |LC|=26, w*=21, |E|=18

1.E-06

1.E-05

1.E-04

1.E-03

0 10 20 30 40 50 60 70

Time (sec)

M
S

E

Gibbs

IBP
LCS,w=3

|C|=23,w=2
|C|=19,w=3

|C|=16,w=4
|C|=15,w=5

cpcs360b, N=360, |E|=18, |LC|=26, w*=18

0.E+00

2.E-05

4.E-05

6.E-05

8.E-05

1.E-04

Gibb
s

w=2

LC
,w

=3 w=3
w=4

w=5
w=6

w=7

M
S

E

IBP

cutset,t=30sec

cutset,t=60sec

Figure 2.16: MSE as a function of time (left) andw (right) in cpcs360b, 20 instances, time
bound=60 seconds. Y-scale is exponential due to large variation in performance of Gibbs
and cutset sampling.

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-05

1.0E-04

1.0E-03

0 20 40 60 80 100 120 140

Time (sec)

M
S

E

Gibbs

IBP
LCS,w=14

|C|=65,w=2
|C|=57,w=3

|C|=50,w=4
|C|=45,w=5

cpcs422b, N=422, |LC|=47, w*=22, |E|=28

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

Gibbs w=2 w=3 w=4 w=5 w=6 w=7

M
S

E

IBP

Cutset, 100 sec

Cutset, 200 sec

Figure 2.17: MSE as a function of time (left) andw (right) in cpcs422b, 20 instances, time
bound=200 seconds. Y-scale is exponential due to large variation in performance of Gibbs
and cutset sampling.

the network. Clearly, the best results were obtained by 2- and3-cutset sampling followed

by the loop-cutset sampling.

The results for cpcs179 are reported in Figure 2.15. The chart on the left shows that

2- and 3-cutset sampling are the most accurate having the lowest MSE curves. The loop-

cutset curve falls in between 2- and 3-cutset at first and is outperformed by both 2- and

3-cutset after 12 seconds. The 4- and 5-cutset sampling results follow closely behind. Four

curves corresponding to loop-cutset sampling and 2-, 3- and4-cutset sampling fall below

the IBP line which means that all three algorithm outperform IBP in the first seconds of

89



execution (IBP converges in less than a second). The 5-cutsetoutperforms IBP after about

12 seconds. All cutset sampling algorithms are superior to Gibbs sampling. In Figure 2.15

on the right, we see the accuracy results for all sampling algorithms after 10 seconds and 20

seconds. Clearly, the loop-cutset sampling andw-cutset sampling forw in range from 2 to

5 achieve greater accuracy than Gibbs at both checkpoints. In particular, while Gibbs MSE

remains on the order of 1E-02, the MSE for 3-cutset sampling algorithms falls below 1E-

04, in the range of 1E-05 after 12 seconds showing two orders of magnitude improvement

over Gibbs. Those results are similar to AIS-BN sampling (based on importance sampling

principles) results for cpcs179 reported in [21] (factoring into account the difference in

the processor speed). Gibbs sampling usually cannot compete with importance sampling

algorithms. Although it samples from the target distributionP (X|e), it generates samples

slower and does not achieve the same accuracy as importance sampling. The results for

cpcs179 indicate that cutset sampling can compete with the state-of-the-art importance

sampling algorithms.

In cpcs360b (Figure 2.16), loop-cutset sampling and 2- and 3-cutset sampling have

similar performance. The accuracy of the estimates slowly degrades asw increases. Loop-

cutset samplingw-cutset sampling substantially outperforms Gibbs sampling for all values

w and exceed the accuracy of IBP within 1 minute.

cpcs422b is the largest of the CPCS networks with 422 nodes, theloop-cutset size

|LC| = 47, and induced widthw∗ = 22. The results are shown in Figure 2.17. The network

contains several large CPTs so that the minimum cluster size in any tree-decomposition is

90



15 unless the nodes in those large functions are observed. Aswe reported in section 2.5.3,

its loop-cutset is relatively small|LC|=47 but the adjusted induced width of the network

conditioned on the loop-cutset is 14 and thus, sampling justone new loop-cutset variable

value is exponential in the big adjusted induced width. As a result, loop-cutset sampling

computes only 2 samples per second while the 2-, 3- and 4-cutset, which are only slightly

larger having 65, 57, and 50 nodes respectively (see Table 2.2), compute samples consider-

ably faster at rates of 200, 150, and 90 samples per second (see Table 2.3). The5-cutset that

is closest to loop-cutset in size,|C5| = 45, computes 50 samples per second which is more

than an order of magnitude more than loop-cutset sampling. Since loop-cutset sampling

generated very small number of samples in the time bound of 200 seconds, it performed

worse than any other sampling algorithm, including Gibbs sampling (Figure 2.17, left).

However, thew-cutset in cpcs422b was able to take advantage of the networkstructure

to be time-wise cost-effective. The chart on the right in Figure 2.17 shows thatw-cutset

performed well in range ofw = 2−7 and is far superior to Gibbs sampling. When allowed

enough time,w-cutset sampling outperformed IBP as well. The IBP converged in 5 sec-

onds. The 2-cutset and 3-cutset improved over IBP after 20 seconds, the 4-cutset after 30

seconds, and the 5-cutset after 50 seconds.

Random networks. Results from random multi-partite and 2-layer networks, 10

instances each, are shown in Figure 2.18. As we can see,w-cutset sampling substantially

improves over Gibbs sampling and IBP reaching optimal performance forw = 2 − 3 for

both classes of networks. In this range, its performance is similar to that of loop-cutset

91



random, R=50, N=200, P=3, |LC|=30, w*=22

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 10 20 30 40 50

Time (sec)

M
S

E

Gibbs
IBP
|LC|=30,w*=3
|C|=61,w*=2
|C|=26,w*=3
|C|=25,w*=4
|C|=24,w*=5

random, R=50, N=200, P=3, |LC|=30, w*=22

0.0E+00

5.0E-05

1.0E-04

1.5E-04

2.0E-04

Gibb
s

w=2
w=3

LC
,w

=3 w=4
w=5

w=6
w=7

M
S

E

IBP

cutset,t=30sec

cutset,t=60sec

2layer, R=50, N=200, P=3, |LC|=17, w*=16

0.00001

0.0001

0.001

0.01

0 5 10 15 20 25

Time (sec)

M
S

E

Gibbs
IBP
|LC|=17,w*=3
|C|=22,w*=2
|C|=15,w*=3
|C|=13,w*=4
|C|=12,w*=5

2layer, R=50, N=200, P=3, |LC|=17, w*=16

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

Gibbs w=2 LC,w=3 w=3 w=4 w=5 w=6

M
S

E

IBP

cutset,t=10sec

cutset,t=20sec

Figure 2.18: Random multi-partite networks (top) and 2-layer networks (bottom), 200
nodes, 10 instances. MSE as a function of the number of samples (left) andw (right).

92



grid, 15x30, |E|=60, |LC|=169, w*=15, MSE

5.0E-05

1.0E-04

1.5E-04

2.0E-04

2.5E-04

0 20 40 60 80 100 120

Time (sec)

M
S

E

Gibbs

IBP

|LC|=169,w*=2

|C|=163,w*=2

|C|=119,w*=3

|C|=95,w*=4

|C|=75,w*=5

grid, 15x30, |E|=40, |LC|=169, w*=20

0.0E+00

3.0E-05

6.0E-05

9.0E-05

1.2E-04

1.5E-04

Gibb
s

w*=
2

LC
,w

*=
2

w*=
3

w*=
4

w*=
5

w*=
6

w*=
7

w*=
8

M
S

E

IBP

cutset,t=50sec

cutset,t=100sec

Figure 2.19: Random networks, 450 nodes, 10 instances. MSE asa function of the number
of samples (left) andw (right).

sampling. In case of 2-layer networks, the accuracy of both Gibbs sampling and IBP is an

order-of-magnitude less compared to cutset sampling (Figure 2.18, bottom right). The poor

convergence and accuracy of IBP on 2-layer networks was observed previously [91].

Grid networks. Grid networks having 450 nodes (15x30) were the only class of

benchmarks where full Gibbs sampling was able to produce estimates comparable to cutset-

sampling (Figure 2.19). With respect to accuracy, Gibbs sampler, loop-cutset sampling, and

3-cutset sampling were best performers and achieved similar results. Loop-cutset sampling

was the fastest and most accurate among cutset sampling schemes. Still, it generated sam-

ples about 4 times slower compared to Gibbs sampling (Table 2.3) since loop-cutset in

this case is relatively large containing about half of all the nodes excluding the evidence.

Thus, the reduction in variance compensates for sample computation overhead but it is not

enough to outperform Gibbs sampling. The accuracy of loop-cutset sampling was closely

followed by 2-, 3- and 4-cutset sampling slowly degrading asw increased further. Grid

networks are an example of benchmarks with regular graph structure (that cutset sampling

93



cannot exploit to its advantage) and small CPTs (in a two-dimensional grid network each

node has at most 3 parents) where Gibbs sampling is strong.

coding 50x50, N=200, P=3, |LC|=26, w*=19

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

0 5 10 15 20

Time (sec)

M
S

E

IBP

|LC|=26,w*=3

|C|=38,w*=2

|C|=21,w*=3

|C|=18,w*=4

coding, 50x50, N=200, P=3, |LC|=26, w*=19 

0.0E+00

2.0E-05

4.0E-05

6.0E-05

8.0E-05

1.0E-04

1.2E-04

1.4E-04

1.6E-04

w=1 w=2 w=3 LC,w=3 w=4 w=5

M
S

E

IBP

cutset,t=9sec

cutset,t=18sec

Figure 2.20: Coding networks, 50 code bits, 50 parity check bits, σ=0.4, 100 instances,
time bound=6 minutes.

Coding Networks. The cutset sampling results for coding networks are shown in

Figure 2.20. Here, the induced width varied from 18 to 22 allowing for exact inference.

However, we additionally tested and observed that the complexity of the network grows

exponentially with the number of coding bits (even after a small increase in the number

of coding bits to 60 yielding a total of 240 nodes after corresponding adjustments to the

number of parity-checking bits and transmitted code size, the induced width exceeds 24)

while the time for each sample generation scales up linearly. We collected results for 10

networks (10 different parity check matrices) with 10 different evidence instantiations (to-

tal of 100 instances). In decoding, the Bit Error Rate (BER) is a standard error measure.

However, we computed MSE over all unobserved nodes to evaluate the quality of approx-

imate results more precisely. As mentioned before, since coding networks are not ergodic

Gibbs sampling does not converge and is left off the charts. The charts in Figure 2.20 show

94



that loop-cutset is an optimal cutset for the coding networks whose performance is closely

followed by 2-cutset sampling. As we saw earlier, cutset sampling outperforms IBP.

2.5.5 Computing an Error Bound

Second to the issue of convergence of sampling scheme is always the problem of predict-

ing the quality of the estimates and deciding when to stop. Inthis section, we compare

empirically the error intervals for Gibbs and cutset sampling estimates.

Gibbs sampling and cutset sampling are guaranteed to converge to the correct pos-

terior distribution in networks with positive distributions. However, it is hard to estimate

how many samples are needed to achieve a certain degree of convergence. It is possible to

derive bounds on the absolute error based on sample variancefor any sampling method if

the samples are independent. In Gibbs and other MCMC methods,samples are dependent

and we cannot apply the confidence interval estimate directly. In case of Gibbs sampling,

we can apply thebatch meansmethod that is a special case ofstandardized time series

method and is used by the BUGS software package (for more details, see [18, 46, 113]).

The main idea is to “split” a Markov chain of lengthM ·T intoM chains of lengthT .

Let P̂m(xi|e) be an estimate derived from a single chainm ∈ [1, ...,M ] of lengthT (mean-

ing, containingT samples) as defined in equations (2.6)-(2.7). The estimatesP̂m(x|e) are

assumedapproximatelyindependent for large enoughM . Assuming that convergence con-

ditions are satisfied and the central limit theorem holds, theP̂m(x|e) is distributed according

to N(E[P (xi|e)], σ2) so that the posterior marginal̂P (Xi|e) is obtained as an average of

95



Table 2.4: Individual Markov chain length as a function ofw. The length of each chain
M was adjusted for each sampling scheme for each benchmark so that the total processing
time across all sampling algorithms was the same.

Markov Chain Length T
Time Gibbs LC w=2 w=3 w=4 w=5 w=6

cpcs54 20 sec 5000 2000 3000 2400 800 500 -
cpcs179 40 sec 1500 400 400 150 40 10 -
cpcs360b 100 sec 2000 3000 3000 2000 800 500 200
cpcs422b 200 sec 3000 20 2000 1500 900 500 250
grid15x30 100 sec 2000 500 300 260 150 105 60
random 50 sec 2000 1000 1400 700 450 300 140
2layer 20 sec 200 700 900 320 150 75 40
coding 20 sec 650 450 800 600 250 150 100

theM results obtained from each chain, namely:

P̂ (x|e) =
1

M

M
∑

m=1

P̂m(x|e) (2.20)

and the sampling variance is computed as usually:

σ2 =
1

M − 1

M
∑

m=1

(P̂m(x|e)− P̂ (x|e))2

An equivalent expression for the sampling variance is:

σ2 =

∑M
m=1 P̂

2
m(x|e)−MP̂ 2(x|e)
M − 1

(2.21)

whereσ2 is easy to compute incrementally storing only the running sums of P̂m(x|e) and

P̂ 2
m(x|e). Therefore, we can compute the confidence interval in the100(1 − α) percentile

used for random variables with normal distribution for small sampling set sizes. Namely:

P

[

P (x|e) ∈ [P̂ (x|e)± tα
2

,(M−1)

√

σ2

M

]

= 1− α (2.22)

wheretα
2

,(M−1) is a table value from t distribution with(M − 1) degrees of freedom.

96



We used the batch means approach to estimate the confidence interval in the posterior

marginals with one modification. Since we were working with relatively small sample

sets (a few thousand samples) and the notion oflarge enoughM is not well defined, we

restarted the chain after every T samples to guarantee that the estimateŝPm(x|e) were

truly independent. The method of batch means only provides meaningful error estimates

assuming that the samples are drawn from the stationary distribution. We assume that in

our problems the chains mix fast enough so that the samples are drawn from the target

distribution.

Table 2.5: Average absolute error∆ (measured) and estimated confidence interval∆0.9 as
a function ofw over 20 Markov Chains.

Average Error and Confidence Interval
Gibbs LC w=2 w=3 w=4 w=5 w=6

cpcs54 ∆ 0.00056 0.00036 0.00030 0.00030 0.00040 0.00036 0.00067
∆0.9 0.00119 0.00076 0.00064 0.00063 0.00098 0.00112 0.00116

cpcs179 ∆ 0.01577 0.00086 0.00074 0.00066 0.00113 0.00178 -
∆0.9 0.02138 0.00148 0.00111 0.00164 0.00235 0.00392 -

cpcs360b ∆ 0.00051 0.00011 0.00010 0.00008 0.00014 0.00012 0.00022
∆0.9 0.00113 0.00022 0.00023 0.00021 0.00030 0.00028 0.00046

cpcs422b ∆ 0.00055 - 0.00018 0.00020 0.00018 0.00027 0.00037
∆0.9 0.00119 - 0.00033 0.00035 0.00043 0.00060 0.00074

random ∆ 0.00091 0.00039 0.00119 0.00091 0.00099 0.00109 0.00113
∆0.9 0.00199 0.00080 0.00247 0.00205 0.00225 0.00222 0.00239

2layer ∆ 0.00436 0.00066 0.00063 0.00082 0.00117 0.00134 0.00197
∆0.9 0.00944 0.00145 0.00144 0.00185 0.00235 0.00302 0.00341

coding ∆ - 0.00014 0.00019 0.00019 0.000174 - -
∆0.9 - 0.00030 0.00035 0.00034 0.000356 - -

grid15x30 ∆ 0.00108 0.00099 0.00119 0.00091 0.00099 0.00109 0.00113
∆0.9 0.00248 0.00214 0.00247 0.00205 0.00225 0.00222 0.00239

We applied this approach to estimate error bound in Gibbs sampler and cutset sam-

pler. We have computed a90% confidence interval for the estimated posterior marginal

97



P (xi|e) based on the sampling variance ofPm(xi|e) over 20 Markov chains as described

above. We computed sampling varianceσ2 from Eq. (2.21) and90% confidence interval

∆0.9(xi) from Eq. (2.22) and averaged over all nodes:

∆0.9 =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

∆0.9(xi)

The estimated confidence interval can be too large to be practical. Thus, we compared∆0.9

with the empirical average absolute error∆:

∆ =
1

N
∑

i |D(Xi)|
∑

i

∑

xi∈D(Xi)

|P̂ (xi|e)− P (xi|e))

The objective of this study was to observe whether the computed confidence interval∆0.9

(estimated absolute error) accurately reflects the true absolute error∆, namely, to verify

that ∆ < ∆0.9, and if so, then investigate empirically whether confidenceinterval for

cutset-sampling estimates will be smaller compared to Gibbs sampling as we would expect

due to variance reduction.

Table 2.5.5 presents the average confidence interval and average absolute error for

our benchmarks. For each benchmark, the first row of results (row ∆) reports the average

absolute error and the second row of results (row∆0.9) reports the90% confidence interval.

Each column in Table 2.5.5 corresponds to a sampling scheme.The first column reports

results for Gibbs sampling. The second column reports results for loop-cutset sampling.

The remaining columns report results forw-cutset sampling forw in range2 − 6. The

loop-cutset sampling results for cpcs422b are not includeddue to statistically insignificant

number of samples generated by loop-cutset sampling. The Gibbs sampling results for

98



coding networks are left out because the network contains many deterministic distributions

(as mentioned earlier) and Gibbs sampling does not converge.

We can see that for all the networks∆ < ∆0.9 which validates our method for mea-

suring confidence interval. In most cases the estimated confidence interval is no more than

2-3 times the size of average error and is relatively small. In case of cutset sampling, the

largest confidence intervalmax ∆0.9 = 0.00247 is reported in grid networks for loop-cutset

sampling. Thus, we can conclude that confidence interval estimate could be used as a cri-

teria reflecting the quality of the posterior marginal estimate by the sampling algorithm

in practice. Subsequently, comparing the results for Gibbssampling and cutset sampling,

we observe not only a significant reduction in the average absolute error, but also a sim-

ilar reduction in the estimated confidence interval. Acrossall benchmarks, the estimated

confidence interval of Gibbs sampler remains∆0.9 >0.001. At the same time, for cutset

sampling we obtain∆0.9 <0.001 in 5 out of 8 classes of networks (excluded are cpcs179,

grid, and 2-layer networks).

2.5.6 Likelihood Weighting on a Cutset

Next, we present empirical results comparing performance of likelihood weighting schemes.

We use the same accuracy measures, namely, average absoluteerror and mean square er-

ror as we did in the case of Gibbs-based sampling schemes. Ourbenchmarks are two

Pathfinder networks, Pathfinder1 and Pathfinder2, Link, and two CPCS networks, cpcs360b

and cpcs422b.

99



Three of the benchmarks, Pathfinder networks and Link network, contain many de-

terministic probabilities and Gibbs-based sampling estimates do not converge over those

networks. In the case of cpcs360b and cpcs422b, all probabilities are positive and, there-

fore, we compare likelihood weighting schemes against fullGibbs sampling (Gibbs) and

Gibbs-based loop-cutset sampling (LCS).

In the Pathfinder and Link networks, the exact posterior marginals are easy to com-

pute by bucket elimination since all three networks have small induced widths. How-

ever, they are hard for sampling because of the large number of deterministic relationships.

Namely, the target sampling distribution has many zeros where sampling distribution re-

mains positive. As a result, a large number of generated samples can have weight 0. Those

samples do not contribute to the computation of the estimates and will be termedrejected

(or discarded). The percentage of the rejected samples, called arejection rate, is typically

used to measure the number of discarded samples. Please notethat the termrejection rate

can have a different connotation when applied to different sampling algorithms. For exam-

ple, in Metropolis sampling [89], we discard (reject) a sample if its probability is less than

some threshold value.

A high rejection rate can significantly slow down the convergence of the sampling

estimates. When the evidence is rare, we may need to generate avery large number of

samples before we find a single sample of non-zero weight. Whenall the generated sam-

ples are rejected, we will say that the rejection rate is 100%and call the network instance

unresolved.

100



Sampling Speed

We generated 30 instances of each Pathfinder network and Linknetwork and 20 instances

of cpcs360b and cpcs422b networks with different random observations among the leaf

nodes. We generated more instances of deterministic networks since a number of those

instances remained unresolved by full likelihood weighting. In Table 2.6, we report the

speed of generating samples using LW, LWLC, and LWLC-BUF sampling schemes. As

expected, LWLC generates far fewer samples than LW. Notably,the relative speed of LW

and LWLC remains the same in the two Pathfinder networks and in Link network. By the

time LW generates100, 000 samples, LWLC generates 1200 samples. Table 2.6 also shows

an order of magnitude improvement in the speed of generatingsamples by LWLC-BUF in

cpcs360b, Pathfinder1, and Pathfinder2, a factor of 2 improvement in cpcs422b, and no

change in the Link network. The improvement depends on the ratio of unique samples.

The number of unique tuples in Pathfinder networks is only≈1% of the total number of

samples and, thus, 99% of the computation is redundant. However, in Link network, nearly

all samples are unique. Hence, buffering was not beneficial.

Table 2.6: Average # of samples generated by LWLC and LWLC-BUF bythe time LW
generates100, 000 samples.

LW LWLC LWLC-BUF
cpcs360b 100000 2400 24000
cpcs422b 100000 25 50
Pathfinder1 100000 1200 12000
Pathfinder2 100000 1200 12000
Link 100000 1200 1200

101



Rejection Rates

Table 2.7: Average rejection rates for different benchmarks: k -# instances, out of 30,
where rejection rate<100%,R - average rejection rate.

LW LWLC LW-BUF
k R(%) k R(%) k R(%)

PF1 30 47 30 6 30 0.01
PF2 28 77 30 26 30 0.05
Link 17 67 30 16 30 16

The rejection rates of the three likelihood weighting schemes in Pathfinder1, Pathfinder2,

and Link are summarized in Table 2.7. For each benchmark, we report the number of in-

stancesk (out of 30), where the rejection rate<100%. As we can see, LW resolved all 30

instances of Pathfinder1 but only 28 instances of Pathfinder2and only 17 instances of Link.

LWLC and LWLC-BUF resolved all network instances.

Table 2.7 also reports the rejection rateR averaged over those instances where all

three algorithms generated some samples with non-zero probabilities. As we can see, LW

has high rejection rates in all benchmarks. The corresponding LWLC rejection rates are

a factor of 3 or more smaller. Although lower rejection rate alone does not guarantee

faster convergence, it helps compensate for generating fewer samples. The rejection rate of

LWLC-BUF is two orders of magnitude lower than LWLC in Pathfindernetworks but it is

the same as LWLC in Link network (also because most of the samples are unique).

For a given network instance, the rejection rates of LW and LWLC remain unchanged.

However, as LWLC-BUF learns zeros of the target distribution,its rejection rate decreases

102



LWLC-BUF Rejection Rates

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5000 10000 15000 20000 25000 30000 35000 40000

# samples

R
ej

ec
ti

o
n

 R
at

e

Pathfinder1

Pathfinder2

Figure 2.21: LWLC-BUF average rejection rate over 30 network instances in Pathfinder1
and Pahfinder2 as a function of the number of samples.

as the number of samples increases. Figure 2.21 demonstrates this on the example of

Pathfinder networks.

Accuracy of the Estimates

Pathfinder1, Pathfinder2, and Link. The accuracy of the approximate posterior marginals

for PathFinder1, Pathfinder2, and Link are shown in Figure 2.22. These three networks

contain many deterministic probabilities and, subsequently, neither full Gibbs sampling

nor loop-cutset sampling can be applied. Hence, we only compare the likelihood weight-

ing schemes. The charts on the left in Figure 2.22 show the average absolute error, the

charts on the right show the average MSE.

The comparative behavior of LW, LWLC, and LWLC-BUF sampling schemes is sim-

ilar in all three networks. LWLC consistently converges faster than LW and outperforms

103



PathFinder1, N=109, |LC|=9, |E|=11

0

0.005

0.01

0.015

0 2 4 6 8 10 12

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC

LWLC-BUF

IBP

PathFinder1, N=109, |LC|=9, |E|=11

0

0.0004

0.0008

0.0012

0.0016

0.002

0 2 4 6 8 10 12

Time (sec)

M
S

E

LW

LWLC

LWLC-BUF

IBP

PathFinder2, N=135, |LC|=4, |E|=17

0

0.01

0.02

0 2 4 6 8 10

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC

LWLC-BUF

IBP

PathFinder2, N=135, |LC|=4, |E|=17

0.000

0.001

0.002

0 2 4 6 8 10

Time (sec)

M
S

E

LW

LWLC

LWLC-BUF

IBP

Link, N=724, w*=15, |LC|=142, |E|=10

0.001

0.01

0.1

1

0 2 4 6 8 10

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC

IBP

Link, N=724, w*=15, |LC|=142, |E|=10

0.000

0.001

0.002

0.003

0 2 4 6 8 10 12

Time (sec)

M
S

E

LW

LWLC

IBP

Figure 2.22: Average Error (left) and MSE (right) as a function of time for likelihood
weighting (LW) and likelihood weighting on loop-cutset (LWLC), and IBP over 30 in-
stances of Pathfinder1, 28 instances of Pathfinder2, and 17 instances of Link network.

104



IBP within 2 seconds. LW outperforms IBP within 2 seconds in Pathfinder1 and within

8 seconds in Pathfinder2. However, LW is considerably worse than IBP in Link network.

LWLC-BUF converges faster than LWLC in Pathfinder1 and Pathfinder2 because it gener-

ates more samples and has a lower rejection rate. In Link network, their performance is the

same and, thus, we only show the LWLC curve.

The PathFinder2 network was also used as a benchmark in the evaluation of AIS-

BN algorithm [21], an adaptive importance sampling scheme. Although we experimented

with different network instances, we can make a rough comparison. Within 60 seconds,

AIS-BN computes MSE≈ 0.0005. Adjusting for the difference in processor speed, the

corresponding MSE of LWLC and LWLC-BUF are≈0.004 and≈0.00008, obtained in 6

seconds. Hence, AIS-BN and LWLC-BUF produce comparable results.

In the case of cpcs360b, we break down the analysis into two special cases. First, we

compare performance of all the sampling schemes on the instance of the cpcs360b network

without evidence. The results are shown in Figure 2.23. Without evidence, the sampling

distribution of likelihood weighting equals the target distribution which is the prior distri-

butionP (X). Hence, we can expect that likelihood weighting schemes will perform very

well. Indeed, we see in Figure 2.23 (top) that full likelihood weighting outperforms full

Gibbs sampling by wide margin. The loop-cutset sampling schemes, LCS and LWLC, ob-

tain very similar results. They improve over full likelihood weighting but only slightly as

they compute an order of magnitude fewer samples. While full likelihood weighting com-

putes100, 000 samples, LWLC computes about10, 000 samples and LCS computes only

105



cpcs360b, |E|=0, |LC|=26, w*=21

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 5 10 15 20 25 30 35

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC

Gibbs

LCS

IBP

cpcs360b, |E|=0, |LC|=26, w*=21

1.E-06

1.E-05

1.E-04

1.E-03

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LW

LWLC

Gibbs

LCS

IBP

cpcs360b, |E|=0, |LC|=26, w*=21

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 5 10 15 20 25 30 35

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC-BUF

Gibbs

LCS-BUF

IBP

cpcs360b, |E|=0, |LC|=26, w*=21

1.E-06

1.E-05

1.E-04

1.E-03

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LW

LWLC-BUF

Gibbs

LCS-BUF

IBP

cpcs360b, |E|=0, |LC|=26, w*=21

0.E+00

5.E-05

1.E-04

2.E-04

2.E-04

3.E-04

3.E-04

4.E-04

0 5 10 15 20 25 30 35

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LWLC

LWLC-BUF

LCS

LCS-BUF

IBP

cpcs360b, |E|=0, |LC|=26, w*=21

0.E+00

5.E-06

1.E-05

2.E-05

2.E-05

3.E-05

3.E-05

4.E-05

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LWLC

LWLC-BUF

LCS

LCS-BUF

IBP

Figure 2.23: Comparing full Gibbs sampling (Gibbs), full likelihood weighting (LW),
Gibbs-based loop-cutset sampling (LCS), likelihood weighting on loop-cutset (LWLC),
buffered loop-cutset sampling (LCS-BUF), buffered likelihood weighting on loop-cutset
(LWLC-BUF), and IBP over cpcs360b without evidence.

106



6, 000 samples. Within the same time interval, the cutset-sampling schemes with caching,

LCS-BUF and LWLC-BUF, generate on the order of13, 000 samples and, hence, improve

considerably over full likelihood weighting, as shown in Figure 2.23, middle, and over the

cutset-sampling schemes without caching, as shown in Figure 2.23, bottom. Again, the

performance of the two buffered cutset sampling schemes is very similar.

cpcs360b, N=360, |E|=18, |LC|=26, w*=21

1.E-04

1.E-03

1.E-02

1.E-01

0 5 10 15 20 25 30 35

Time (sec)

A
bs

ol
ut

e 
E

rr
or

LW

LWLC

Gibbs

LCS

IBP

cpcs360b, N=360, |E|=18, |LC|=26, w*=21

1.E-05

1.E-04

1.E-03

1.E-02

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LW

LWLC

Gibbs

LCS

IBP

cpcs360b, |E|=18, N=360, |LC|=26, w*=21

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0 5 10 15 20 25 30 35

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LW

LWLC-BUF

Gibbs

LCS-BUF

IBP

cpcs360b, N=360, |E|=18, |LC|=26, w*=21

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LW

LWLC-BUF

Gibbs

LCS-BUF

IBP

cpcs360b, |E|=18, N=360, |LC|=26, w*=21

0.E+00

2.E-04

4.E-04

6.E-04

8.E-04

1.E-03

1.E-03

1.E-03

0 5 10 15 20 25 30 35

Time (sec)

A
b

so
lu

te
 E

rr
o

r

LWLC

LWLC-BUF

LCS

LCS-BUF

IBP

cpcs360b, N=360, |E|=18, |LC|=26, w*=21

0.E+00

2.E-05

4.E-05

6.E-05

8.E-05

1.E-04

1.E-04

1.E-04

0 5 10 15 20 25 30 35

Time (sec)

M
S

E

LWLC

LWLC-BUF

LCS

LCS-BUF

IBP

Figure 2.24: Average Error (left) and MSE (right) as a function of time for full Gibbs sam-
pling (Gibbs), likelihood weighting (LW), loop-cutset sampling (LCS), likelihood weight-
ing on loop-cutset (LWLC), buffered loop-cutset sampling (LCS-BUF), buffered likelihood
weighting on a cutset (LWLC-BUF), and IBP over cpcs360b with evidence on leaf nodes.

107



Figure 2.24 shows results for cpcs360b network with randomly selected evidence

among the leaf nodes only (nodes without children) averaging 18 evidence nodes per in-

stance. In this case, the sampling distribution of the likelihood weighting remains equal

to prior while the target distribution becomesP (X|e). As Figure 2.24 shows, full Gibbs

sampling and likelihood weighting now reverse the roles. That is, full likelihood weighting

is the worst of all schemes. Full Gibbs sampling outperformsfull likelihood weighting,

although it generates an order of magnitude fewer samples, and the accuracy of the cutset

sampling schemes is considerably better than Gibbs. LCS is the best of the four schemes.

Both cutset sampling schemes improve with caching.

cpcs422b, N=422, |LC|=47, |E|=30

1.E-03

1.E-02

1.E-01

0 10 20 30 40 50 60 70 80

Time (sec)

A
bs

ol
ut

e 
E

rr
or

LW

LWLC

Gibbs

LCS

cpcs422b, N=422, |LC|=47, |E|=30

1.E-05

1.E-04

1.E-03

1.E-02

0 10 20 30 40 50 60 70 80

Time (sec)

M
S

E

LW

LWLC

Gibbs

LCS

Figure 2.25: Average Error (left) and MSE (right) as a function of time for full Gibbs
sampling (Gibbs), likelihood weighting (LW), loop-cutset sampling (LCS) and likelihood
weighting on loop-cutset (LWLC) and IBP over cpcs422b with evidence on leaf nodes.

The experiments with cpcs422b consisted of 20 instances of the network with the

average of 30 evidence nodes (selected among the leaf nodes)per instance. The results are

shown in Figure 2.25. Likelihood weighting over loop-cutset outperforms full likelihood

weighting although it still yields to loop-cutset sampling. Gibbs sampling outperforms

loop-cutset sampling (for reasons discussed previously, in Section 2.5.3) and produces the

108



best results of the four schemes.

2.5.7 Summary

Our empirical evaluation of the performance of cutset sampling demonstrates that, except

for grid networks, sampling on a cutset usually outperformsGibbs sampling and offers a

considerable anytime improvement over IBP on several networks. We show that conver-

gence of cutset sampling in terms of number of samples dramatically improves as predicted

theoretically. More importantly, the performance of cutset sampling remains superior to

regular Gibbs sampling in most benchmarks when the samplingtime is bounded, even

though cutset sampling usually generates fewer samples within the given time interval than

Gibbs sampler. The same observations apply in the case of likelihood weighting on a cut-

set. Although cutset-based likelihood weighting computesan order of magnitude fewer

samples, it consistently outperforms full likelihood weighting.

Experiments clearly show that there exists a range ofw-values wherew-cutset sam-

pling outperforms Gibbs sampler. The performance ofw-cutset deteriorates when increas-

ingw results in only a small reduction in the cutset size. An example is cpcs360b network

where starting withw=4, increasingw by 1 results in the reduction of the sampling set by

only 1 node (shown in Table 2.2).

We observe that the special case of loop-cutset is a good choice of cutset sampling as

long as the induced width of networkwLC conditioned on loop-cutset is reasonably small.

WhenwLC is large (as in cpcs422b) the loop-cutset sampling is less efficient thenw-cutset

109



sampling forw < wLC .

The experiments demonstrate that the relative performanceof Gibbs sampling and

likelihood weighting depends on the properties of the inputnetwork. In particular, it de-

pends on the choice of evidence. We considered two extreme cases, an instance of the

network without evidence (most favorable for likelihood weighting) and multiple instances

of the network with evidence concentrated in the leaf nodes (the least favorable for like-

lihood weighting). As expected, in the former case, likelihood weighting performed very

well; in the latter case, it produced the worst results. Surprisingly, in cpcs360b Gibbs-based

loop-cutset sampling is superior not only to full Gibbs sampling, but also full likelihood

weighting and it compares favorably to likelihood weighting on a loop-cutset even when

the sampling distribution equals the target distribution.It seems likely that the increased

distances between the sampled variables in cutset samplinghas an effect of reducing the de-

pendence among samples and, thus, contributes to the fasterconvergence of the loop-cutset

scheme.

2.6 Related Work

We mention here some related work. The idea of marginalisingout some variables to im-

prove efficiency of Gibbs sampling was first proposed in [79].It was successfully applied

in several special classes of Bayesian models. In [69], collapsing has been applied to the bi-

variate Gaussian problem with missing data. In [78], Gibbs sampling algorithm for finding

repetitive motifs in biological sequences applies collapsing by integrating out two parame-

110



ters from the model. Similarly, Gibbs sampling set is collapsed in [38, 84, 80] for learning

the nonparametric Bayes problem. In all of the instances above, special relationships be-

tween problem variables have been exploited to integrate several variables out resulting in

a collapsed Gibbs sampling approach.

In the case of importance sampling, the effectiveness of collapsing of sampling set

has been demonstrated in the context of Particle Filtering method for Dynamic Bayesian

networks [33, 35, 34]. It was shown that sampling from a subspace combined with exact

inference (Rao-Blackwellised Particle Filtering) yields a better approximation than Particle

Filtering on the full set of variables. However, the study has been limited to observation

of the effect in special cases where some of the variables canbe integrated out easily, e.g.,

when the distributions of the marginalised variables couldbe computed analytically using

a Kalman filter [36, 34, 5] or when the marginalised variablesin a factored HMM became

conditionally independent (when sampled variables are observed) due to the numerical

structure of the CPTs [34].

Compared to this previous research work, our contribution isin defining a generic

scheme for collapsing Gibbs sampling and likelihood weighting in Bayesian networks

which takes advantage of the network’s graph properties anddoes not depend on the spe-

cific form of the relationships between variables. As the cutset selection process can be

automated, the proposed cutset sampling schemes can be applied to any Bayesian network.

In [57], sampling and exact inference were combined in a blocking Gibbs sampling

scheme. Groups of variables were sampled simultaneously using exact inference to com-

111



pute the needed conditional distributions. Their empirical results demonstrate a significant

improvement in the convergence of the Gibbs sampler over time. Yet, in proposed block-

ing Gibbs sampling, the sample contains all variables in thenetwork. In contrast, cutset

sampling reduces the set of variables that are sampled. As noted previously, collapsing

produces lower variance estimates than blocking and, therefore, cutset sampling should

require fewer samples to converge.

A different combination of sampling and exact inference forjoin-trees was described

in [68] and [67]. Both papers proposed to sample the probability distribution in each clus-

ter for computing the outgoing messages. In [67], Gibbs sampling was used only for large

clusters to estimate the joint probability distributionP (Vi), Vi ⊂ X in clusteri. The es-

timatedP̂ (Vi) is recorded instead of the true joint distribution to conserve memory. The

motivation is that only high-probability tuples will be recorded while the remaining low-

probability tuples are assumed to have probability 0. In small clusters, the exact joint

distributionP (Vi) is computed and recorded. However, the paper does not analyze the in-

troduced errors or compare the performance of this scheme with standard Gibbs sampler or

the exact algorithm. No analysis of error is given nor comparison with other approaches.

In [68], sampling is used to compute messages sent from cluster i to clusterj and

the posterior joint distributions in a cluster-tree that contains both discrete and continuous

variables. This approach subsumes [67] and includes rigorous analysis of the error in the

estimated posterior distributions. The method has difficulties with propagation of evidence.

The empirical evaluation is limited to two hybrid network instances and compares the qual-

112



ity of the estimates to those of likelihood weighting, an instance of importance sampling

that does not perform well in presence of low-probability evidence.

2.7 Summary and Future Work

The paper presents thew-cutset sampling scheme, a general scheme for collapsing Gibbs

sampler in Bayesian networks. We showed theoretically and empirically that cutset sam-

pling improves the convergence rate due to sampling from lower-dimensional space and al-

lows sampling from networks with deterministic probabilities as long as the Markov chain

corresponding to sampling over cutset variables is ergodic. Using the induced widthw as

a controlling parameter,w-cutset sampling provides a mechanism for balancing sampling

and exact inference.

We studied the power of cutset sampling when the sampling setis a loop-cutset and,

more generally, when the sampling set is aw-cutset of the network (defined as a subset

of variables such that, when instantiated, the induced width of the network is≤ w). The

performance ofw-cutset sampling was investigated as a function of the adjusted induced

width w. The user can control the trade-offs between sampling and inference inw-cutset

sampling by examining the performance ofw-cutset sampling for differentw values.

We also defined a cutset-based likelihood weighting. By reducing the dimensional-

ity of the sampling space, we achieve reduction in the sampling variance. bbi-lwlc and

also reduce the information distance (KL-distance) between the sampling and the target

distributions.

113



Due to reduction in sampling variance, (and also KL-distance in the case of likeli-

hood weighting), cutset sampling schemes require fewer samples to converge than regular

sampling. Our experiments confirm faster convergence of cutset sampling as a function

of the number of samples over a range of randomly generated and real benchmarks. We

also demonstrate that both cutset sampling schemes, one based on Gibbs sampling and the

other based on likelihood weighting, are superior or as goodas corresponding full sampling

schemes time-wise in all of our benchmarks. The cutset-based likelihood weighting scheme

also has a lower rejection rate as compared to full likelihood weighting in the deterministic

networks.

We improve the performance of cutset-sampling schemes by caching computed sam-

ples and their probabilities. In the case of cutset-based likelihood weighting, we also use

caching to learn zeros of the target distribution and updatethe sampling distributions dy-

namically. Using the same approach, other adaptive importance sampling techniques could

be incorporated in the cached version of likelihood weighting in the future.

We showed also that while loop-cutset sampling results are usually comparable to the

best results ofw-cutset sampling over a range ofw values, in some instances 2-cutset and

3-cutset are smaller than loop-cutset and offer better performance although simple heuris-

tics were used for finding the minimalw-cutset. Since the size of cutset and correlations

between variables are two main factors contributing to the speed of convergence,w-cutset

sampling maybe optimized further with the advancement of methods for finding minimal

w-cutset. Another promising direction for future research is to incorporate the heuristics

114



for avoiding selecting strongly-correlated variables into a cutset since those correlations

are driving factors in the speed of convergence of Gibbs sampling. Alternatively, we could

combine sample collapsing with blocking.

In summary,w-cutset sampling scheme is a simple yet powerful extension of sam-

pling in Bayesian networks that is likely to dominate regularsampling for any sampling

method. While we focused on Gibbs sampling with better convergence characteristics, can

be implemented with the cutset sampling principle.

115



Chapter 3

On finding minimal w-cutset

The complexity of a reasoning task over a graphical model is tied to the induced width of

the underlying graph. In the previous chapters, we have already discussed that conditioning

(assigning values) on a subset of variables yields a subproblem of the reduced complexity.

If the assigned variables constitute a loop-cutset, the rest of the network is singly-connected

and therefore can be solved by linear propagation algorithms. More generally, if the cutset

and evidence variables form aw-cutset, then exact inference exponential inw. In this

chapter, we address the problem of finding a minimalw-cutset in a graph. We relate the

problem to that of finding the minimalw-cutset of a tree-decomposition. The latter can

be mapped to the well-knownset multi-coverproblem. This relationship yields a proof

of NP-completeness on one hand and a greedy algorithm for finding aw-cutset of a tree

decomposition on the other. Empirical evaluation of the algorithms is presented.

3.1 Introduction

Reducing the complexity of exact inference by conditioning (assigning values) on a subset

of variables is the principle at heart of the well-known loop-cutset conditioning algorithms

for Bayesian networks [96] and for constraint networks [27].Loop-cutset conditioning

exploits the fact that if the assigned variables constitutea loop-cutset, the rest of the network

116



is singly-connected and can be solved by linear propagationalgorithms. Recently, the idea

of cutset-conditioning was extended to accommodate searchon any subset of variables

using the notion ofw-cutset, yielding a hybrid algorithmic scheme of conditioning and

inference parametrized byw [103]. Thew-cutset is defined as a subset of nodes in the

graph that, when observed, the graph has tree-width ofw or less.

The hybridw-cutset-conditioningalgorithm applies search to the cutset variables and

exact inference (e.g., bucket elimination [28]) to the remaining network.Given aw-cutset

Cw, the algorithm is space exponential inw and time exponential inw + |Cw| [29]. The

scheme was applied successfully in the context of satisfiability [103] and constraint op-

timization [74]. In Chapter 2, the notion of conditioning wasexplored for speeding up

sampling algorithms in Bayesian networks in a scheme calledcutset-sampling. The idea

is to restrict sampling tow-cutset variables only (perform inference on the rest) and thus

reduce the sampling variance.

Since the processing time of both search-based and sampling-based schemes grows

with the size of thew-cutset, it calls for a secondary optimization task of finding a minimal-

sizew-cutset. Also of interest is the task of finding the full sequence of minimalw-cutsets,

wherew ranges from 1 to the problem’s induced-width (or tree-width), so that the user can

select thew that fits his/her resources. We call the former thew-cutset problemand the

latter the sequencew-cutset problem. Thew-cutset problem extends the task of finding

minimum loop-cutset (e.g., a 1-cutset), a problem that received a fair amount of attention

[9, 8, 119].

117



The chapter addresses the minimum sizew-cutset and, more generally, the minimum

weightw-cutset problem. First, we relate the size of aw-cutset of a graph to its tree-width

and the properties of its tree-decompositions. Then, we prove that the problem of finding

a minimalw-cutset of a given tree decomposition is NP-complete by reduction from the

set multi-coverproblem [119]. Consequently, we apply a well-known greedy algorithm

(GWC) for set multi-cover problem to solve the minimumw-cutset problem. The algorithm

findsw-cutset withinO(1 + lnm) of optimal wherem is the maximum number of clusters

of size greater thanw + 1 sharing the same variable in the input tree decomposition. We

investigate its performance empirically and show that, with rare exceptions, GWC and its

variants find a smallerw-cutset than the well-performing MGA loop-cutset algorithm [9]

(adapted to thew-cutset problem) and aw-cutset algorithm (DGR) proposed in [43].

3.2 Minimal w-cutset of a Graph

We have defined thew-cutset of a graph in Definition 1.3.4 as a subset of variablessuch that,

when observed, the induced width of the graph conditioned onw-cutset is≤ w. Clearly, a

w-cutset is also aw′-cutset whenw′ ≥ w. Further, ifC is aw-cutset, then any supersetS

of C, is also aw-cutset. Next, we define the minimalw-cutset of a graph.

DEFINITION 3.2.1 (minimalw-cutset of a graph) Thew-cutsetCw is minimal if no w-
cutset of smaller size exists.

For completeness, we also define the weightedw-cutset problem that generalizes

minimumw-cutset problem (where all node weights are assumed the same) and gives a

118



refined definition of the complexity of cutset-based algorithms. For example, inw-cutset

conditioning, the space requirements of exact inference isO(dw
max) wheredmax is the max-

imum node domain size in graphG. The total time required to condition onw-cutsetC is

O(dw
max)× |D(C)| where|D(C)| is the size of the cutset domain space. The upper bound

valued|C|
max on |D(C)| produces a bound on the computation time of the cutset-conditioning

algorithm:O(dw
max) × d|C|

max = O(d
w+|C|
max ). In this case, clearly, we want to minimize the

size ofC. However, a more refined optimization task is to minimize theactual value of

|D(C)|:

|D(C)| =
∏

Ci∈C

|D(Ci)|

Since the minimum of|D(C)| corresponds to the minimum oflg(|D(C)|), we can solve

this optimization task by assigning each nodeCi costci = lg |D(Xi)| and minimizing the

cost of cutset:

cost(C) = lg |D(C)| =
∑

Ci∈C

lg |D(Ci)| =
∑

i

ci

Similar considerations apply in case of thew-cutset sampling algorithm. Here, the space

requirements for the exact inference are the same. The time required to sample a node

Ci ∈ C isO(dw
max) × |D(Ci)|. The total sampling time isO(dw

max) ×
∑

Ci∈C |D(Ci)|. To

minimize the total processing time, we assign each nodeCi costci = |D(Ci)| and select

thew-cutset of minimum cost:

cost(C) =
∑

Ci∈C

|D(Ci)|

119



DEFINITION 3.2.2 (weightedw-cutset of a graph) Given a reasoning problem<X,F>
where each nodeXi ∈ X has associatedcost(Xi) = qi, the cost of aw-cutsetCw is given
by: cost(Cw) =

∑

Ci∈Cw
qi. The minimum weightw-cutset problem is to find a min-cost

w-cutset.

In practice, we can often assume that all nodes have the same cost and solve the

easier minimalw-cutset problem which is our focus here. In section 3.3, we establish

relations between the size ofw-cutset of a graph and the width of its tree-decomposition.

In section 3.4, we show that the problem is NP-hard even when finding a minimumw-cutset

of a chordal graph (corresponding to a tree-decomposition of a graph).

3.3 w-cutset and Tree-Decompositions

In this section, we explore relationship betweenw-cutset of a graph and its tree-decomposition.

THEOREM 3.3.1 Given a graphG=<X,E>, if G has aw-cutsetCw, then there is a tree-
decomposition ofG having a tree-widthtw ≤ |Cw|+ w.

Proof. If there exists aw-cutsetCw, then we can removeCw from the graph yielding, by
definition, a subgraphG′ overX\Cw that has a tree decompositionT with clusters of size
at mostw + 1. We can add the setCw to each cluster ofT yielding a tree-decomposition
with clusters of size at mostw + 1 + |Cw| and tree-widthw + |Cw|.

We can conclude therefore that for any graphtw∗ ≤ |Ci|+ i for everyi. Moreover,

THEOREM 3.3.2 Given a graph G, ifc∗i is the size of a smallest i-cutsetC∗
i , andtw∗ is its

tree-width, then: c∗1 + 1 ≥ c∗2 + 2 ≥ ... ≥ c∗i + i ≥ ... ≥ tw∗ (3.1)

Proof. Let us define∆i,i+1 = c∗i − c∗i+1, then we claim that∆i,i+1 ≥ 1. Assume to
the contrary thatci = ci+1, that isDi,i+1=0. SinceC∗

i is an i-cutset, we can build a tree

120



decompositionT with maximum cluster size(i + 1). Pick someXj ∈ C∗
i and addXj to

every cluster yielding tree decompositionT ′ with maximum cluster size(i + 2). Clearly,
C∗

i \Xj is an(i + 1)-cutset of sizec∗i − 1 = c∗i+1 − 1 which contradicts the minimality of
C∗

i+1.

Given a graphG = (V,E), thew-cutset sequenceproblem seeks a sequence of

minimal j-cutsets wherej ranges from 1 to the graph’s tree-width:C∗
1 ,...,C∗

j ,...,Ctw∗ = φ.

Let C ′
w be a subset-minimalw-cutset, namely one that does not contain anotherw-cutset.

If we have aw-cutset sequence, we can reason about whichw to choose for applying thew-

cutset conditioning algorithm orw-cutset sampling. Given aw-cutset sequence we define

a functionf(i) = |Ci| + i wherei ranges from 1 totw. This function characterizes the

complexity of thew-cutset conditioning algorithms where for eachi, the space complexity

is exponential ini and the time complexity is exponential inf(i). The time-complexity

suggests operating withi as large as possible while space consideration suggests selecting

i as small as possible. Notice that for various intervals ofi, f(i) is constant, if|Ci| =

|Ci+1|+ 1. Thus, given aw-cutset sequence, we have that wheneverf(i) = f(i+ 1), then

w = i is preferred overw = i + 1. Alternatively, given a bound on the space-complexity

expressed byr, we can select a most preferredwp-cutset such that:

wp(r) = arg min
j
{r = f(j)}

In the empirical section 3.6, we demonstrate the analysis offunctionf(i) and its implica-

tions.

121



THEOREM 3.3.3 Given a tree-decompositionT=(V,E) whereV ={V1, ..., Vt} is the set of
clusters and given a constantw, a minimumw-cutsetC∗

w ofG satisfies:

|C∗
w| ≤

∑

i,|Vi|>w+1

(|Vi| − (w + 1)) (3.2)

Proof. From each clusterVi ∈ V of size larger than (w+1), select a subset of nodesCi ⊂ Vi

of size|Ci| = |Vi| − (w + 1) so that|Vi\Ci| ≤ w + 1. LetCw = ∪i,|Vi|>w+1Ci.
By construction,Cw is a w-cutset ofG and: c∗w ≤ |Cw| = | ∪i Ci| ≤

∑

i |Ci| =
∑

i,|Vi|>w+1 |Vi| − (w + 1).

B

ABD

ACE DEF

(a)

ADE

ED

A

C

F

B

(b)

ED

A

C

F

B

(c)

E

A

C

F

CE

AB

AC

EF

Figure 3.1: (a) Graph; (b) triangulated graph and corresponding tree decomposition of
width 2; (c) graph with 1-cutset node{D} removed and corresponding tree-decomposition.

Since aw-cutset yields a tree-decomposition havingtw = w, it looks reasonable

when seekingw-cutset to start from a good tree-decomposition and find itsw-cutset (or a

sequence). In particular, this avoids the need to test if a graph hastw = w. This task is

equivalent to finding aw-cutset of a chordal (triangulated) graph.

DEFINITION 3.3.1 (Aw-cutset of a tree-decomposition)Given a tree decompositionT=<V,E>
of a reasoning problem<X,F>where V is a set of subsets of X thenCT

w ⊂ X is aw-cutset
relative to T if for everyi, |Vi\CT

w | ≤ w + 1.

122



We should note upfront, however, that a minimum-sizew-cutset ofT (even ifT is

optimal) is not necessarily a minimumw-cutset ofG.

Example 3.3.4Consider a graph in Figure 3.1(a). An optimal tree decomposition of width
2 is shown in Figure 3.1(b). This tree-decomposition clearly does not have a1-cutset of
size< 2. However, the graph has a1-cutset of size1, {D}, as shown in Figure3.1(c).

On the other hand, given a minimumw-cutset of a graphG, removing thew-cutset

from the graph yields a graph havingtw∗ = w. If not, then there exists a tree-decomposition

of G overX\Cw havingtw < w. Select such a tree and select a node inCw that can be

added to the tree-decomposition without increasing its tree-width beyondw. Such a node

must exist, contradicting the minimality ofCw.

It is still an open question if every minimalw-cutset of graphG is aw-cutset of some

minimum-width tree-decomposition ofG.

3.4 Hardness of Minimalw-Cutset of a Tree Decomposi-

tion

While it is obvious that the generalw-cutset problem is NP-complete (1-cutset is a loop-

cutset and finding the minimal loop-cutset is known to be NP-complete), it is not clear that

the same holds relative to a given tree-decomposition. We now show that, given a tree-

decompositionT of a hypergraphH, thew-cutset problem forT is NP-complete. We use

a reduction fromset multi-cover(SMC) problem.

123



DEFINITION 3.4.1 (Set Cover (SC))Given a pair< U, S > whereU is universal set and
S is a set of subsetsS={S1, ..., Sm} of U , find a minimum setC ⊂ S s.t. each element of
U is covered at least once:∪Si∈CSi = U .

DEFINITION 3.4.2 (Set Multi-Cover(SMC)) Given a pair< U, S > whereU is a univer-
sal set andS is a set of subsetsS = {S1, ..., Sm} of U , find a minimum cost setC ⊂ S s.t.
eachUi ∈ U is covered at leastri > 0 times byC.

The SC is an instance of SMC problem when∀i, ri = 1.

U={U 1,U2,U3}
r1=2, r2=2, r3=1
S1={U 1},
S2={U 3},
S3={U 1, U2},
S4={U 2, U3},
S5={U 1, U2, U3}

S1,S3,S5,
Q1

1,Q1
2,Q1

3
S3,S4,S5,

Q2
1,Q2

2,Q2
3

S1,S2,S3,S4,S5

S2,S4,S5,
Q3

1,Q3
2

(a) SMC (b)  3-cutset problem

'
1V '

2V
'

3V

'
SV

Figure 3.2: (a) A set multi-cover problem<U, S> whereU={U1, U2, U3}, S={S1, ..., S5},
the covering requirementsr1=2, r2=2, r3=1. (b) Corresponding augmented tree decompo-
sitionT ′=<V ′, E> overS ′={S1, ..., S5, Q

1
1, Q

2
1, Q

3
1, Q

1
2, Q

2
2, Q

3
2, Q

1
3, Q

2
3}.

THEOREM 3.4.1 (NP-completeness)The problem “Given a tree-decompositionT=<V,E>
and a constantk, does there exist aw-cutset ofT of size at mostk ?” is NP-complete.

Proof. Given a tree decompositionT=<V,E> over X and a subset of nodesC∈X, we can
verify in linear time whether C is aw-cutset ofT by checking if∀Vi ∈ V , |Vi\C| ≤ w+ 1.
Now we show that the problem is NP-hard by reduction from set multi-cover.

Assume we are given a set multi-cover problem<U, S>, whereU={X1, ..., Xn} and
S={S1, ..., Sm}, a covering requirementri > 0 for eachUi ∈ U .

We define a cluster treeT=<V,E> over S where there is a nodeVi ∈ V corre-
sponding to each variableUi in U that contains all subsetsSj ∈ S that cover nodeXi:
Vi = {Sj ∈ S|Xi ∈ Sj}. Additionally, there is a nodeVS ∈ V that contains all subsets in
S:VS = S. Thus,V = {Vi|Ui ∈ U} ∪ VS. Denote|Vi| = fi. The edges are added between
each clusterVi,i6=s and clusterVS: E = {ViVS|Ui ∈ U} to satisfy running intersection
property inT .

124



Definew+1=|S| − mini ri = m − mini ri. For eachVi,i6=s, since|Vi|=fi ≤ m and
ri > 0, thenfi − ri ≤ m−mini ri ≤ w + 1. Consequently,fi ≤ ri + w + 1.

For eachVi s.t.fi < ri +w+1, define∆i=ri +w+1−fi and augment clusterVi with
a set of nodesQi = {Q1

i ...Q
∆i

i } yielding a clusterV ′
i = Vi∪Qi of size|V ′

i |=f ′
i=ri +w+1.

We will show now that a set multi-cover<U, S> has a solution of sizek iff there
exists aw-cutset of augmented tree decompositionT ′=<V ′, E> of the same size.The aug-
mented tree for sample SMC problem in Figure 3.2(a) is shown in Figure 3.2(b).

Let C be a set multi-cover solution of sizek. Then,∀Ui ∈ U , |C ∩ V ′
i | ≥ ri which

yields |V ′
i \C| ≤ |V ′

i | − ri = f ′
i − ri = w + 1. Since|C| ≥ mini ri, then |VS\C| ≤

|VS| −mini ri = m−mini ri = w + 1. Therefore,C is aw-cutset of sizek.
Let Cw be aw-cutset problem of sizek. If Cw contains a nodeQj ∈ Qi, we can

replace it with some nodeSp ∈ V ′
i without increasing the size of the cutset. Thus, without

loss of generality, we can assumeCw ⊂ S. For eachV ′
i corresponding to someUi ∈ U ,

let Ci = Cw ∩ V ′
i . By definition ofw-cutset,|V ′

i \Cw| ≤ w + 1. Therefore,|Ci| ≥
|V ′

i | − (w + 1) = f ′
i − (w + 1) = ri. By definition,Cw is a cover for the given SMC

problem.
Minimum w-cutset problem is NP-hard by reduction from set multi-cover and is

verifiable in linear time. Therefore, minimumw-cutset problem is NP-complete.

Example 3.4.2We demonstrate the steps for the SMC problem withU={U1, U2, U3} and
S={S1, ..., S5} shown in Figure 3.2(a). DefineT=<V,E>, V ={V1, V2, V3, Vs}, over S:
V1={S1, S2, S3}, f1=3, V2={S3, S4, S5}, f2=3,
V3={S2, S4, S5}, f3=3, VS={S1, ..., S5}, fS=5.
Then,w = |S| − 1−mini ri = 5− 1− 1 = 3. Augment:
V1: ∆1=w+1+r1 − f1=4+2-3=3,Q1={Q1

1, Q
2
1, Q

3
1}.

V2: ∆2=w+1+r2 − f2=4+2-3=3,Q2={Q1
2, Q

2
2, Q

3
2}.

V3: ∆3=w+1+r3 − f3=4+1-3=2,Q3={Q1
3, Q

2
3}.

The augmented tree decompositionT ′ is shown in Figure 3.2(b). Any SMC solution such
asC={S3, S5} is a 3-cutset ofT and vice versa.

In summary, we showed that whenw is not a constant thew-cutset problem is NP-

complete. This implies that thew-cutset sequence problem over tree-decompositions is

hard.

125



3.5 Algorithms for minimal w-cutset of a tree-decomposition

In this section, we propose two algorithms for finding a minimal w-cutset. One is the dy-

namic programming algorithm for finding the optimal solution (having exponential com-

plexity). The other is a factor 2 approximation scheme basedon a simple greedy algorithm.

3.5.1 An exact algorithm for minimalw-cutset of a tree-decomposition

Assume we are given a tree-decompositionT=<V,E> overX. Assume that the tree-width

of T is w∗ and we are given a target bound value w. For each clusterVi s.t. |Vi| > w + 1,

defineri = |Vi| − (w + 1). LetC∗
w(T ) denote minimum sizew-cutset ofT .

Before we define an algorithm for finding an exact minimum sizew-cutset, we will

outline a few pre-processing steps that can be taken to solvethe “trivial” part of the problem

and reduce its complexity.

THEOREM 3.5.1 Given a tree-decompositionT=<V,E> overX of widthw∗ and a con-
stantw < w∗, assume there is a clusterVi ∈ V s.t. |Vi| > w+1 andVi is singly-connected
in T . In other words,ri = |Vi| − (w + 1) > 0 andVi has only1 neighbourVj. LetSij be
the separator betweenVi andVj: Sij = Vi ∩ Vj. If |Sij| ≤ ri, then there is a minimum-size
w-cutsetC∗

w(T ) such thatSij ⊂ C∗
w(T ).

Proof. Assume some nodeXk ∈ Sij is not in the minimum-size cutset. Then,∃Xq ∈ Vi

s.t. Xq /∈ Sij andXq ∈ C∗
w(T ). Such a node must exist to satisfyri. If Xq /∈ Sij, then

∀j 6= i, Xq /∈ Vj and we can replaceXq with Xk in the cutset without increasing the size
of thew-cutset.

As a consequence, whenever we have a singly-connected clusterVi whose only sepa-

126



rator |Sij| ≤ ri, we can safely add to cutset any subsetSi of nodes inVi such thatSij ⊂ Si

and|Si| = ri. Then, we remove fromT all nodes inSij as well as the clusterVi and obtain

a treeT ′=<V ′, E ′> whereV ′ = V \Sij whereC∗
w(T ) = Si ∪ C∗

w(T ′). Thus, without loss

of generality, we assume that for any singly-connected cluster Vi with someri > 0, its

separator size|Sij| > ri.

A similar line of reasoning leads to the conclusion that given any singly-connected

clusterVi with neighborVj and their separatorSij where|Sij| > ri, there is a minimum size

cutsetC∗
w(T ) that containsri nodes fromSij: C∗

w(T ) ∩ Vi ⊂ Sij. Thus, in our search for

a minimumw-cutset, we can limit the search forC∗
w(T ) ∩ Vi to the subsets ofSij. That is

the main idea behind the proposed recursive algorithm: remove all those singly-connected

clustersVi that haveri ≤ |Sij|, select one of the remaining sinlgy-connected clustersVi

that haveri > |Sij| enumerate all possible subsetsfi of Sij of sizeri and solve thew-cutset

problem for eachT ′ overX ′ = X\fi. The exactMinSizeCutset(T,w) algorithm is given

in Figure 3.3.

The maximum depth of the recursion of procedureMinSizeCutset(T,w) equals the

number of clusters inT whose size> w + 1. At each recursion iteration our state-space is

multiplied by|Fi| = (|Sij|, ri). Since|Sij| ≤ w∗, then:

|Fi| ≤ (w∗, ri) =
w∗!

(w∗ − ri)!ri!
= w∗(w∗ − 1)...(w∗ − ri + 1) ≤ (w∗)

P
i ri

The total size of state-space explored is bounded by:

|V |
∏

i=1

(w∗)ri = (w∗)
P

i ri

127



MinSizeCutset(T,w)
1. Remove all singly-connected clusters of size≤ w + 1.

2. Solve all singly-connected clustersVi s.t. ri ≥ Sij whereSij is a separator be-
tweenVi and its neighborVj.

3. Select a singly-connected clusterVi. Let Sij be a separator betweenVi and its
neighborVj. LetFi be a set of all possible subsets of sizeri from Sij.
FOR EACHfi ∈ Fi DO

T ′ = T\fi

f i = MinSizeCutset(T ′, w)
END FOR
Letm = arg minfi∈Fi

|f i|.
ReturnC∗

w(T ) = fm ∪ fm.

Figure 3.3: Recursive minimum sizew-cutset algorithm.

If we a looking to answer the decision problem“Does the tree-decompositionT has aw-

cutset of sizek ?” , we can stop the recursion when sum of ther′is of the processed clusters

reachesk. Then, the total number of states explored is bounded by(w∗)k.

3.5.2 Algorithm GWC for minimum cost w-cutset

Next, we show that the problem of findingw-cutset can be mapped to that of finding set

multi-cover. The mapping suggests an application of greedyapproximation algorithm for

set multi-cover problem to findw-cutset of a tree decomposition. When applied to a tree

decompositionT=<V,E> overX, it is guaranteed to find a solution within factorO(1 +

lnm) of optimal wherem is the maximum# of clusters of size> (w+1) sharing the same

node. To avoid loss of generality, we consider the weighted version of each problem.

The mapping is as follows. Given anyw-cutset problem of a tree-decomposition

128



T=<V,E> overX, each cluster nodeVi ∈ V of the tree becomes a node of universal set

U . A covering setSXj
={Vi ∈ V |Xj ∈ Vi} is created for each nodeXj ∈ X. The cost of

SXj
equals the cost ofXj. The cover requirement isri = |Vi| − (w + 1). Covering a node

in SMC with a setSXj
corresponds to removing nodeXj from each cluster inT . Then, the

solution to a set multi-cover is aw-cutset of T. LetC be a solution to the SMC problem.

For eachUi ∈ U , the setC contains at leastri subsetsSXj
that containUi. Consequently,

sinceUi = Vi, then |Vi ∩ C| ≥ ri and |Vi\C| ≤ |Vi| − ri = |Vi| − |Vi| + (w + 1) =

w + 1. By definition, C is aw-cutset. An example is shown in Figure 3.4. This duality

is important because the properties of SC and SMC problems are well studied and any

algorithms previously developed for SMC can be applied to solvew-cutset problem.

(a)

V1={ACE}
V2={ADE}
V3={ABD}
V4={DEF}

U={V 1,V2,V3 ,V4}
r1=1, r2=1, r3=1

SA={V 1,V2,V3}, 
SB={V 3},
SC={V 1}, 

ACE DEF

(b)

ADE

ABD

SD={V 2,V3,V4},
SE={V 1,V2,V4},
SF={V 4}

Figure 3.4: (a) A tree decompositionT=<V ,E> where V ={V1, ..., V4} over
X={A,B,C,D,E, F}; (b) the corresponding set multi-cover problem<U ,S> where
U={V1, V2, V3, V4} andS={SA, SB, SC , SD, SF}; here, setSXi

contains a clusterVj iff
Xi ∈ Vj. The 1-cutset ofT is a solution to the set multicover with covering requirements
r1=r2=r3=r4=1: when nodeVi ∈ V is “covered” by setSXi

, nodeXi is removed from each
cluster.

A well-known polynomial time greedy algorithm exists for weighted SMC [119] that

chooses repeatedly setSi that covers the most “live” (covered less thanri times) nodesfi at

129



the costci: a set that minimizes the ratioci/fi. In the context ofw-cutset,fi is the number

of clusters whose size still exceeds(w + 1) andci is the cost of nodeXi. As discussed

earlier,ci maybe defined as the size of the domain of nodeXi or its log. When applied to

solve thew-cutset problem, we will refer to the algorithm as GWC (GreedyW -Cutset). It

is formally defined in Figure 3.5. We define here the approximation algorithm metrics:

DEFINITION 3.5.1 (factorδ approximation) An algorithmA is a factorδ, δ > 0, approx-
imation algorithm for minimization problemP if A is polynomial and for every instance
I ∈ DP it produces a solutions such that:cost(s) ≤ δ ∗ costOPT (s), δ > 1.

GWC is a factorO(1 + lnm) approximation algorithm [101] wherem is the maxi-

mum number of clusters sharing the same node (same as the maximum set size in SMC).

Greedyw-Cutset Algorithm (GWC)
Input: A set of clustersV = {V1, ..., Vm} of a tree-decomposition overX = {X1, ..., Xn}
where∀Vi ∈ V , Vi ⊂ X; the cost of each nodeXi is ci.
Output : A setC ⊂ X s.t. |Vi\C| ≤ w.
SetC = ∅, t = 0.
While ∃Vi s.t. |Vi| > w do
1. ∀Xi ∈ X, computefi = |{Vj}| s.t. |Vj| > w andXi ∈ Vj.
2. Find nodeXi ∈ X that minimizes the ratioci/fi.
3. RemoveXi from all clusters:∀Vi ∈ V, Vi = Vi\Xi.
4. SetX = X\Xi, C = C ∪ {Xi}.
End While
Return C

Figure 3.5: Greedy w-cuset Algorithm.

This bound is nearly the best possible for a polynomial algorithm due to strong inap-

proximability results for the set cover problem, the special case of set multi-cover problem.

Approximation guarantee better thanO(lnm) is not possible for any polynomial time algo-

130



rithm unless P=NP [12, 82]. Furthermore,∃C,∆0 s.t. for all∆ ≥ ∆0 no polynomial-time

algorithm can approximate the optimum within a factor ofln ∆ − C ln ln ∆ unless P=NP

[118].

3.6 Experiments

We compare empirically performance of the proposedGWC algorithm (GreedyW -Cutset)

and its variants and two greedy heuristic algorithms, MGA (Modified Greedy Algorithm

due to [10]) and DGR (Deterministic Greedy Algorithm due to [43]).

The GWC algorithm was implemented as described earlier picking at each iteration a

node found in most clusters of size> w + 1 with a secondary heuristics (tie breaking) that

selects the node contained in most of the clusters. Several variants of GWC with different

tie breaking heuristics were tested that were allowed to rebuild a tree decomposition after

removing a cutset node:

GWCA - breaks ties by selecting the node found in most of the clusters of the tree decom-

position;

GWCM - breaks ties by selecting the node found in most of the clusters of maximum size;

GWCD - breaks ties by selecting the node of highest degree (the degree of the node is

computed on the subgraph with all cutset nodes removed and all resulting singly-connected

nodes removed). Note that GWC and GWCA only differ in that GWCA rebuilds a cluster-

tree after removing a cutset node. Also note that MGA and GWCD have their primary and

tie-breaking heuristics switched.

131



The MGA algorithm is adapted from [10]. It is a factor 2 approximation algorithm

for finding minimum cost loop-cutset. MGA iteratively removes all singly-connected nodes

from the graph and adds to cutset the node that minimizes costto degree ratio. The algo-

rithm stops when remaining subgraph is cycle-free. However, it can be easily adapted to

finding minimalw-cutset forw > 1. For MGA, the only modification required to find

w-cutset is to stop when original graph with cutset nodes removed can be decomposed into

a cluster tree of widthw or less (using min-fill heuristics). In our implementation,MGA

algorithm uses the GWC heuristics to break ties: if two nodes have the same degree, the

node found in most of the clusters of size> w is added to the cutset.

The DGR algorithm is the Deterministic Greedy Algorithm forfinding an elimination

order of the variables that yields a tree-decomposition of bounded width defined in [43].

DGR obtains aw-cutset while computing the elimination order of the variables. When

eliminating some nodeX yields a cluster that is too large (size> w + 1), the algorithm

uses greedy heuristics to pick a cutset node among all the nodes that are not in the ordering

yet. Specifically, the deterministic algorithm adds to the cutset a nodeX that maximizes

expression
√

|NX |CX , whereNX is a set of neighbours ofX that are not eliminated yet

andCX =
∏

Ui∈NX
|D(Ui)|. As we ignore domain sizes in this empirical study, we defined

CX = |NX | in which case DGR adds to cutset a node of maximum degree in thesubgraph

over nodes that are not eliminated.

132



3.6.1 Benchmarks

We use Bayesian networks as input reasoning problems. In all experiments, we used a

moral graphG of a Bayesian networkB as the input to the minimalw-cutset problem. The

tree-decomposition ofG was obtained using min-fill algorithm [66].

Our benchmarks are two CPCS networks from UAI repository, cpcs360b with N=360

nodes and induced widthw∗=22 and cpcs422b with N=422 nodes and induced width

w∗=27, one instance each. Our other benchmarks are layered random networks, mean-

ing that each node is assigned a set of parents selected randomly from previous layer. One

set of random networks consisted of4 layers ofL = 50 nodes each, total ofN=50x4=200

nodes, each node assignedP = 3 parents. The second set of random networks consisted

of 8 layers ofL = 25 nodes each, total ofN=25x8=200 nodes, each node was assigned

P = 3 parents. For random networks, the results are averaged over100 instances.

3.6.2 Results

The results are presented in Table 3.1. For each benchmark, the table provides the five rows

of results corresponding to the five algorithms (labelled inthe second column). Columns

3-12 are thew-cutset sizes for thew-value. The upper half of the table entries provides

results forw in range[1, 10]; the lower half of the table provides results forw in range

[11, 20]. The results for cpcs360b and cpcs422b correspond to a single instance of each

network. The result for random networks are averaged over 100 instances. The best entries

133



Table 3.1:w-cutset. Networks: I=cpcs360b, II=cpcs422b, III=4-layerrandom networks,
L=50, N=200, P=3; IV =8-layer random networks, L=25, N=200,P=3.

w 1 2 3 4 5 6 7 8 9 10

I MGA 30 22 20 18 16 15 14 13 1210
w*=20 DGR 36 22 19 18 16 14 13 12 11 10

GWC 27 20 17 16 15 14 13 12 11 10
GWCA 27 21 18 16 15 14 13 12 11 10
GWCD 27 21 18 16 15 14 13 12 11 10

II MGA 80 70 65 60 54 49 44 41 38 36
w*=22 DGR 84 70 63 54 49 43 38 32 27 23

GWC 78 66 58 52 46 41 36 31 26 22
GWCA 78 65 57 51 45 40 35 30 25 21
GWCD 78 65 57 51 45 40 35 30 25 21

III MGA 87 59 54 52 50 48 47 45 44 43
w*=49 DGR 80 57 52 50 48 46 44 43 42 40

GWC 78 61 53 49 46 44 43 42 41 39
GWCA 74 56 50 47 44 42 41 39 38 37
GWCD 74 56 49 47 44 42 41 39 38 37

IV MGA 99 74 69 66 63 61 59 56 54 51
w*=24 DGR 90 71 65 61 58 55 52 49 47 44

GWC 93 77 68 63 59 55 52 49 46 43
GWCA 87 70 62 57 54 51 48 45 42 39
GWCD 86 70 62 57 54 51 48 45 42 39
w 11 12 13 14 15 16 17 18 19 20

I MGA 9 8 7 6 5 4 3 2 1 0
w*=20 DGR 9 8 7 6 5 4 3 2 1 0

GWC 9 8 7 6 5 4 3 2 1 0
GWCA 9 8 7 6 5 4 3 2 1 0
GWCD 9 8 7 6 5 4 3 2 1 0

II MGA 33 30 28 9 8 7 6 5 4 2
w*=22 DGR 21 19 16 9 8 7 5 4 3 2

GWC 19 16 13 10 8 6 5 4 3 2
GWCA 18 15 12 9 8 6 5 4 3 2
GWCD 18 15 12 9 8 6 5 4 3 2

III MGA 41 40 39 37 36 35 34 33 31 30
w*=49 DGR 39 38 36 36 34 33 32 31 30 29

GWC 38 37 36 35 34 33 32 31 30 29
GWCA 36 35 34 33 32 31 30 29 28 27
GWCD 36 34 34 33 32 31 30 29 28 27

IV MGA 49 47 44 41 39 36 34 31 28 26
w*=24 DGR 41 38 36 33 31 28 25 23 21 19

GWC 40 37 35 32 29 27 25 23 20 18
GWCA 37 34 32 30 27 25 23 21 19 17
GWCD 37 35 32 30 28 25 24 21 19 17

134



for eachw are highlighted.

As Table 3.1 shows, it pays to rebuild a tree decomposition: with rare exceptions,

GWCA finds a cutset as small as GWC or smaller. On average, GWCA, GWCM, and

GWCD computed the same-sizew-cutsets. The results for GWCM are omitted since they

do not vary sufficiently from the others.

The performance of MGA algorithm appears to depend on the network structure.

In case of cpcs360b, it computes the same sizew-cutset as GWC variants forw ≥ 10.

However, in cpcs422b, MGA consistently finds larger cutsetsexcept forw=20. On average,

as reflected in the results for random networks, MGA finds larger cutset than DGR or any

of the GWC-family algorithms. In turn, DGR occasionally finds asmaller cutset compared

to GWC, but always a larger cutset compared to GWCA and GWCD, especially for small

values ofw.

Table 3.2: Functionf(i) for i=1...16, GWCA. Networks: I=cpcs360b, II=cpcs422b, III=4-
layer random, L=50, N=200, P=3.

f(i)
i 1 2 3 4 5 6 7 8 9 10

I 28 23 21 20 20 20 20 20 20 20
II 79 67 60 55 50 46 42 38 34 31
III 75 57 53 51 49 48 48 47 47 47

f(i)
i 11 12 13 14 15 16 17 18 19 20

I 20 20 20 20 20 20 20 20 20 20
II 29 27 25 23 23 22 22 22 22 22
III 47 47 47 47 47 47 47 47 47 47

We measured the GWC algorithm approximation parameterM in all of our bench-

marks. In cpcs360b and cpcs422b we haveM = 86 andM = 87 yielding approximation

factor of1 + lnM ≈ 5.4. In random networks,M varied from29 to 47 yielding approx-

imation factor∈ [4.3, 4.9]. Thus, ifC is thew-cutset obtained by GWC andCopt is the

135



minimum sizew-cutset, then on average:

|C|
|Copt|

≤ 5

3.6.3 Sequencew-cutset Results

Looking at the results as solutions to the sequencew-cutset problems, we can inspect the

sequence and suggest goodw’s by analysing the functionf(i) = |Ci| + i as described in

section 3.3. To illustrate this we focus on algorithm GWCA for CPC364, CPCS424 and

4-layer random networks (See Table 3.2).

For cpcs360b we observe a small range of values forf(i), namelyf(i) ∈ {20, 21, 23, 28}.

In this case the point of choice isw = 4 becausef(1) = 28, f(2) = 23, f(3) = 21 while

at i = 4 we obtain reductionf(4) = 20 which stays constant fori ≥ 4. Therefore, we can

have the same time complexity forw-cuset as for exact inference (w∗ = 20) while saving

a lot in space, reducing space complexity from exponential in 20 to exponential in 4 only.

Forw-cutset sampling this implies sampling 20 variables (out of360) and for each variable

doing inference exponential in 4.

The results are even more interesting for cpcs422b where we see a fast decline in time

complexity with relatively slow decline in space complexity for the rangei = 1, ..., 11. The

decline is more moderate fori ≥ 11 but is still cost-effective: fori = 16 we get the same

time performance asi = 20 and thereforei = 16 represents a more cost-effective point.

Finally, for the case of 4-layer random networks, on averagethe functionf(i) de-

creases fori = 1...8 and then remains constant. This suggests that if space complexity

136



allows, the best point of operation isw = 8.

3.6.4 Monotonousw-cutset

We ran a second set of experiments where we used the same benchmarks and the same base

algorithms. However, we modified the task of finding a single minimum sizew-cutset for

a fixedw to that of finding a family ofw-cutsets for a range ofw values. Given a graphG

and its tree decompositionT of tree-widthtw, each algorithm is first assigned an objective

to find aw-cutset forw = tw − 1, then, forw = tw − 2, and so on. As a result, we obtain

a family of cutsetsCtw−1, Ctw−2, ...,C1 such that∀1 ≤ i < j ≤ tw − 1, Ci ⊂ Cj.

An important observation is that seeking aw-cutset of sizetw − 1 is equivalent to

solving the set cover problem (or its dual, the hitting set problem) since we just need to

remove 1 node from each cluster of size> tw + 1. This may be important in practice

and in fact allows us to find a family ofw-cutsets faster because we do not need to start

each time from the beginning. The results are shown in Table 3.3 where each algorithm

name is prefixed with ’M’ to indicate that we are searching forw-cutsetmonotonously. The

algorithm DGR is not designed to update the cutset once a tree-decomposition is obtained

and therefore, it is omitted in Table 3.3. Compared to Table 3.1, we observed that most of

the time the monotonous algorithm finds a slightly larger cutset than its non-monotonous

equivalent.

137



Table 3.3: Monotonousw-cutset. Networks: I=cpcs360b, II=cpcs422b, III=4-layerran-
dom, L=50, N=200, P=3; IV =6-layer random, L=25, N=150, P=3.

w 1 2 3 4 5 6 7 8 9 10

I MMGA 30 22 20 19 17 16 15 14 14 13
w*=22 MGWC 29 24 21 19 17 16 15 14 13 12

MGWCA 28 21 20 19 18 17 16 16 15 12
MGWCD 27 21 20 19 18 16 15 15 14 12

II MMGA 80 70 65 60 54 49 44 41 38 36
w*=28 MGWC 79 68 61 54 48 43 38 34 29 25

MGWCA 80 67 59 52 47 43 38 33 28 24
GWCD 79 67 60 52 47 42 37 33 28 24

III MMGA 88 59 53 51 49 48 46 45 43 42
w*=49 DGR 80 57 52 49 47 46 44 42 41 40

MGWC 79 62 54 50 48 46 44 42 41 40
MGWCA 74 56 50 47 45 43 42 41 40 39
GWCD 73 56 50 48 46 45 44 43 42 41

IV MMGA 73 51 47 45 43 41 39 38 36 34
w*=34 MGWC 67 54 48 43 41 38 36 34 31 29

MGWCA 63 49 43 39 37 35 32 30 29 27
MGWCD 61 49 43 40 38 35 33 32 30 28
w 11 12 13 14 15 16 17 18 19 20

I MMGA 12 12 10 8 7 6 5 4 3 2
w*=22 MGWC 11 10 9 8 7 6 5 4 3 2

MGWCA 11 10 9 8 7 6 5 4 3 2
MGWCD 11 10 9 8 7 6 5 4 3 2

II MMGA 33 30 28 11 10 9 8 7 6 5
w*=28 MGWC 22 19 16 14 13 12 11 10 9 8

MGWCA 21 19 15 12 10 9 9 8 8 8
MGWCD 21 18 15 12 10 9 8 8 8 8

III MMGA 42 40 39 38 37 36 34 33 32 31
w*=48 MGWC 38 37 36 35 34 33 32 31 30 29

MGWCA 38 37 36 35 34 33 32 31 30 29
MGWCD 40 39 38 36 35 34 33 32 31 30

IV MMGA 32 31 29 27 26 24 22 21 19 17
MGWC 27 25 23 21 19 17 16 14 12 11
MGWCA 25 23 21 19 17 16 14 13 12 10
MGWCD 26 24 23 21 20 18 17 15 14 12

138



3.7 Related Work and Conclusions

In this chapter, we formally defined the minimalw-cutset problem applicable to any rea-

soning problem with graphical model such as constraint networks and Bayesian networks.

The minimumw-cutset problem extends the minimum loop-cutset problem corresponding

tow = 1. The motivation for finding a minimalw-cutset is to bound the space complexity

of the problem (exponential in the width of the graph) while minimizing the required addi-

tional processing time (exponential in the width of the graph plus the size of cutset). The

loop-cutset problem corresponds to the well-known weighted vertex-feedback set problem

and can be approximated within factor 2 of optimal by a polynomial algorithm. We show

that the minimalw-cutset problem is harder by reduction from the set multi-cover problem

[119]: the set multi-cover problem, and subsequently thew-cutset problem, cannot have

a constant-factor polynomial approximation algorithm unless P=NP. Empirically, we show

that the minimal loop-cutset heuristics based on the degreeof a node is not competitive

with the tree-decomposition of the graph.

To our knowledge, only heuristics related to the node elimination order were used be-

fore in finding aw-cutset. In [103, 74] and [43], thew-cutset is obtained while computing

elimination order of the nodes. The next elimination node isadded to the cutset in [103, 74]

if its bucket size exceeds the limit. A similar approach was explored in [43] in DGR al-

gorithm (presented in the empirical section) except that the cutset node was chosen heuris-

tically among all the nodes that were not eliminated yet. As the empirical results demon-

strate, DGR usually finds smaller cutset than MGA but bigger than GWC/GWCA/GWCD.

139



It is possible that the performance of DGR could be improved if it was allowed to re-start

building a tree-decomposition after adding a variable to thew-cutset.

The research results presented in this chapter have been published in [16].

3.8 Future Work

The main objective of our future work is to find good heuristics forw-cutset problem that

are independent from tree-decomposition of a graph since the minimalw-cutset of a tree-

decomposition provides only an upper bound on the minimalw-cutset of a graph. So far,

we only looked at the degree of the node as possible heuristics and found empirically that

GWC heuristics are usually superior. There are also open questions remaining regarding

the relationship betweenw-cutset of a graph and aw-cutset of its tree-decomposition. It is

not clear, for example, whether the minimalw-cutset of a graph is aw-cutset of one of its

minimum width tree-decompositions.

140



Chapter 4

Any-Time Bounding Scheme for Belief Up-

dating

This section presents an any-time scheme for computing lower and upper bounds on pos-

terior marginals in Bayesian networks. The scheme draws fromtwo previously proposed

methods, bounded conditioning [56] and bound propagation [76]. Following the principles

of cutset conditioning [96], our method enumerates a subsetof cutset tuples and applies

exact reasoning in the network instances conditioned on those tuples. The probability mass

of the remaining tuples is bounded using a variant of bound propagation. Our empirical

evaluation demonstrates the power of our new scheme over a collection of benchmarks. In

particular, we show that our new scheme improves on the earlier schemes.

4.1 Introduction

Computing bounds on posterior marginals is a special case of approximating posterior

marginals with a desired degree of precision. The latter problem is known to be NP-

hard [24]. One way to deal with NP-hard problems is to developanytime schemes. Such

schemes can provide answers anytime and will give more accurate bounds with more time.

Hence, we propose here an anytime bounding framework based on two previously proposed

141



bound computation schemes, bounded conditioning and boundpropagation.

Bounded conditioning [56] is founded on the principles of the cutset-conditioning

method [96]. Given a Bayesian network overX and a subset of variablesC ={C1, ..., Ck}

(e.g., a loop-cutset), we can obtain exact posterior marginals forXl ∈ X by enumerating

over all cutset tuplesci ∈ D(C) using the formula:

P (xl|e) =

∑M
i=1 P (xl, c

i, e)
∑M

i=1 P (ci, e)
(4.1)

The computation of quantitiesP (xl, c
i, e) andP (ci, e) for any assignmentc = ci is linear

in the network size ifC is a loop-cutset and exponential inw if C is aw-cutset. The

limitation of the cutset-conditioning method is that the number of cutset tuples,M , grows

exponentially with the cutset size. Namely,M =
∏k

i=1 |D(Ci)| whereD(Ci) is the domain

of nodeCi ∈ C.

In [56], the authors observed that often a small number of tuplesh << M contains

most of the probability mass ofP (e) =
∑M

i=1 P (ci, e). Thus, they proposed thebounded

conditioning method which computes the probabilitiesP (xl, c
i, e) andP (ci, e) exactly

only for theh tuples,1 ≤ i ≤ h, while bounding the rest by their priors. The firsth tuples

were selected based on their prior probabilityP (ci). Bounded conditioning was the first

method to offer any-time properties and to guarantee convergence to the exact marginals

with time ash → M . Its effectiveness was demonstrated in [56] on the Alarm network

with 37 nodes and a loop-cutset of size 5 (M=108). The empirical results demonstrate

convergence of the algorithm ash increases and also indicate that the width of the bounds

interval for a fixedh increases as more evidence is added.

142



Bound propagationscheme, proposed recently in [76], obtains bounds by iteratively

solving a linear optimization problem for each variable such that the minimum and max-

imum of the objective function correspond to lower and upperbounds on the posterior

marginals. The performance of the scheme was demonstrated on the Alarm network, Ising

grid network, and regular bi-partite graphs.

In our work here, we propose a framework, which we term Any Time Bounds (ATB),

that also builds upon the principles of conditioning. Like bounded conditioning, it explores

fully h cutset tuples, and bounds the rest of the probability mass spread over the unex-

plored tuples. The scheme improves over bounded conditioning in several ways. First, it

bounds more accurately the mass of the unexplored tuples in polynomial time. Second,

it uses cutset sampling (see Chapter 2) for finding high-probability cutset tuples. Finally,

the any-time framework allows to plugin any scheme for bounding joint probabilities over

unexplored tuples. In particular, utilizing an improved variant of bound propagation within

our any-time framework yields greater accuracy as a function of time than either bounded

conditioning or bound propagation alone.

Section 4.2 provides background on the previously proposedmethods of bounded

conditioning and bound propagation. Section 4.3 defines ourATB framework. In our

derivation, we tie the computation of bounds on posterior marginals to bounding a poly-

nomial number of probabilitiesP (xl, c1:q, e) andP (c1:q, e) wherec1:q = {c1, ..., cq} is an

instantiation of a subset of the cutset variables. Section 4.4 discusses implementation issues

concerning bounding ofP (xl, c1:q, e) andP (c1:q, e) with bound propagation. The search

143



for h high-probability cutset tuples using cutset sampling is given in Section 4.5. We report

on our empirical results in Section 4.6 and draw final conclusions in Section 4.7.

4.2 Background

We continue to use the notation defined previously. Namely, we use upper case letters,

such asX, to denote subsets of variables. In particular, we will useX to denote a set of

all variables in a Bayesian network andC to denote a subset ofX. Borrowing terms from

graph theory, we will also refer toC as a cutset of the network’s graph.

We will use upper case letter with subindex, such asXl, to denote a single variable.

We use lower case lettersx andxl to denote an instantiation of a set of variables or a single

variable respectively. We will often denote a specific instantiation of subset of variablesC

asci, using the superindexi.

4.2.1 Bounded Conditioning

Bounded conditioning is an any-time scheme for computing posterior bounds in Bayesian

networks [56]. It is derived from the loop-cutset conditioning method (see Eq. (4.1)). Given

a Bayesian network overX, evidenceE ⊂ X, E = e, a loop-cutsetC ⊂ X\E, and some

nodeXl ∈ X, the method computes exactlyP (ci, e) andP (xl, c
i, e) for h cutset tuples

with the highest prior weightP (ci) and bounds the rest using prior distribution.

Let M denote the total number of cutset tuples. In [56], the authors derive bounds

144



from the following formula:

P (xl|e) =
M

∑

i=1

P (xl|ci, e)P (ci|e) =
h

∑

i=1

P (xl|ci, e)P (ci|e) +
M

∑

i=h+1

P (xl|ci, e)P (ci|e)

(4.2)

Deriving Lower Bound

Setting∀i > h, P (xl|ci, e) = 0 in the Eq. (4.2) yields a lower bound onP (xl|e):

P (xl|e) ≥
h

∑

i=1

P (xl|ci, e)P (ci|e) (4.3)

SinceP (ci|e) can be expressed as:

P (ci|e) =
P (ci, e)

∑h
j=1 P (cj, e) +

∑M
j=h+1 P (cj, e)

(4.4)

we can obtain a lower bound onP (ci|e) by replacingP (cj, e), j > h, in the denominator

of the Eq. 4.4 with the upper bound valueP (cj), yielding:

P (ci|e) ≥ P (ci, e)
∑h

j=1 P (cj, e) +
∑M

j=h+1 P (cj)

Substituting the right-hand size of Eq. 4.4 forP (ci|e) in Eq. (4.3) yields a lower bound on

P (xl|e):

PL(xl|e) ,

h
∑

i=1

P (xl|ci, e)
P (ci, e)

∑h
j=1 P (cj, e) +

∑M
j=h+1 P (cj)

=

∑h
i=1 P (xl|ci, e)P (ci, e)

∑h
j=1 P (cj, e) +

∑M
j=h+1 P (cj)

(4.5)

Finally, sinceP (xl|ci, e)P (ci, e) = P (xl, c
i, e), we get:

PL(xl|e) =

∑h
i=1 P (xl, c

i, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
(4.6)

145



Deriving Upper Bound

Starting again from equation (4.2), an upper bound is obtained by settingP (xl|ci, e) = 1

for i > h and replacingP (ci|e) with some upper bound, which we denote asPU(ci|e).

Namely:

P (xl|e) ≤
h

∑

i=1

P (xl|ci, e)PU(ci|e) +
M

∑

i=h+1

PU(ci|e) (4.7)

For i ≤ h, we can obtain an upper boundPU(ci|e) from Eq. (4.4) by dropping the

∑M
i=h+1 P (ci, e) from denominator. Substituting the resulting upper bound in Eq. (4.7)

yields:

P (xl|e) ≤
h

∑

i=1

P (xl|ci, e)
P (ci, e)

∑h
j=1 P (cj, e)

+
M

∑

i=h+1

PU(ci|e) (4.8)

FactoringP (xl|ci, e) into the numerator and replacingP (xl|ci, e)P (ci, e) with P (xl, c
i, e),

we transform Eq. (4.8) into:

P (xl|e) ≤
∑h

i=1 P (xl, c
i, e)

∑h
i=1 P (ci, e)

+
M

∑

i=h+1

PU(ci|e) (4.9)

An upper boundPU(ci|e) for i > h can be obtained through a series of transformations

which we detail in Appendix B, yielding the final upper bound onP (xl|e):

PU(xl|e) =

∑h
i=1 P (xl, c

i, e)
∑h

i=1 P (ci, e)
+

M
∑

i=h+1

P (ci) +
[
∑M

i=h+1 P (ci)]2
∑h

i=1 P (ci, e)
(4.10)

Note that in the upper bound derivation in [56], the authors separate theh tuples into

two groups. The first group contains the tuples for which bounded conditioning computes

exactly bothP (ci, e) andP (xl|ci, e). The second group contains tuples for which bounded

conditioning only computes exactlyP (ci, e) and usesPL(xl|ci, e) = 0 in the lower bound

146



formulation, andPU(xl|ci, e) = 1 in the upper bound formulation. Letm, m < h, denote

the number of tuples for which the algorithm computesP (xl|ci, e) exactly. Then, the lower

and upper bounds derived in Eq. (4.6) and (4.10) respectively become:

PL′

(xl|e) =

∑m
i=1 P (xl, c

i, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci)
(4.11)

PU ′

(xl|e) =

∑m
i=1 P (xl, c

i, e)
∑h

i=1 P (ci, e)
+

∑h
i=m+1 P (ci, e)

∑h
i=1 P (ci, e)

+
M

∑

i=h+1

P (ci) +
[
∑M

i=h+1 P (ci)]2
∑h

i=1 P (ci, e)

(4.12)

It is clear thatPL(xl|e) ≥ PL′

(xl|e) andPU(xl|e) ≤ PU ′

(xl|e). In the future, we use

PL(xl|e) in Eq. (4.6) andPU(xl|e) in Eq. (4.10) as the basis for comparison with our

any-time bounds.

Clearly, the bounds expressed in Eq. (4.6) and (4.10) converge to the exact poste-

rior marginals ash → M . The convergence rate depends on the form of the distribution

P (C|e). The scheme was validated in [56] on the example of the Alarm network with 37

nodes. Its loop-cutset contains 5 nodes and the number of cutset tuples equalsM = 108.

Applied to an instance of the network without evidence, bounded conditioning algorithm

produced a small bounds interval, on the order of 0.01 or less, after generating 40 out of 108

cutset instances. However, when evidence was added, processing the same 40 cutset tuples,

the bounding intervals length increased. Specifically, with 3 and 4 evidence variables, the

bounding interval length rose to≈ 0.15. Hence, while the empirical results demonstrated

the convergence of bounded conditioning, they also showed the deterioration in the scheme

as more nodes are observed.

Note also that the upper bound in Eq. (4.10) can become greater than 1. Dropping

147



the first two addends from Eq. (4.10), we obtain:

PU(xl|e) ≥
[
∑M

i=h+1 P (ci)]2
∑h

i=1 P (ci, e)

And since
∑h

i=1 P (ci, e) ≤∑M
i=1 P (ci, e) = P (e), we get that:

PU(xl|e) ≥
[
∑M

i=h+1 P (ci)]2

P (e)

This shows thatPU(xl|e), as defined in [56], can become arbitrarily large whenP (e) is

small compared toP (ci).

4.2.2 Bound Propagation

Bound propagation (BdP) [76] is an iterative algorithm that utilizes the local network

structure to formulate a linear optimization problem for each nodeXi ∈ X such that

the minimum and maximum of the objective function correspond to the upper and lower

bounds on the posterior marginalP (xi|e). Let Y denote Markov blanket of nodeXi

mai = Y = {Y1, ..., Yk}. The idea is to compute posterior marginals via:

P (xi|e) =
∑

y1,...,yk

P (xi|y1, ..., yk)P (y1, ..., yk|e) (4.13)

whereP (xi|y1, ..., yk) is an entry in the probability table ofXi conditioned on the instan-

tiation of variables in its Markov blankety1, ..., yk. The joint probabilitiesP (y1, ..., yk|e)

over the Markov blanket are unknown, but we know that the sum of all probabilities equals

1:

∑

y1,...,yk

P (y1, ..., yk|e) = 1 (4.14)

148



Further,∀yj ∈ D(Yj):

∑

Y \Yj ,Yj=yj

P (y1, ..., yk|e) = P (yj|e)

Denoting arbitrary lower and upper bounds onP (yj|e) by PL(yj|e) andPU(yj|e) respec-

tively, we can write:

PL(yj|e) ≤
∑

Y \Yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU(yj|e) (4.15)

Hence, for each variableXi, we have a linear optimization problem with the objective

functionP (xi|e), defined in Eq. (4.13), that is minimized or maximized with respect to all

variablesP (y1, ..., yk|e). For each instantiation of the Markov variablesy = {y1, ..., yk},

theP (y1, ..., yk|e) is a variable andP (xi|y1, ..., yk) is a coefficient of the objective function.

Therefore, the number of variables is exponential in the size of the Markov blanket. The

constraints are defined in Eq. (4.14) (sum-to-1 constraint)and (4.15). For each variableYj

in the Markov blanket ofXi, there will be|D(Yj)| constraints of type Eq. (4.15). The total

number of constraints equals1 +
∑

j |D(Yj)|.

Example 4.2.1LetXi be bi-valued. Letmai = {A,B}. LetD(A) = {0, 1} andD(B) =
{0, 1, 2}. LetP (Xi|A,B) be defined as follows:

P (xi|a = 0, b = 0) = 0.1

P (xi|a = 0, b = 1) = 0.2

P (xi|a = 0, b = 2) = 0.3

P (xi|a = 1, b = 0) = 0.4

P (xi|a = 1, b = 1) = 0.5

P (xi|a = 1, b = 2) = 0.6

DenotingPmn = P (a = m, b = n|e), the objective function of the linear optimization
problem can be defined as follows:

P (xi|e) = 0.1P00 + 0.2P01 + 0.3P02 + 0.4P10 + 0.5P11 + 0.6P12

149



s.t.
P00 + P01 + P02 + P10 + P11 + P12 = 1

PL(a = 0|e) ≤ P00 + P01 + P02 ≤ PU(a = 0|e)
PL(a = 1|e) ≤ P10 + P11 + P12 ≤ PU(a = 1|e)

PL(b = 0|e) ≤ P00 + P10 ≤ PU(b = 0|e)
PL(b = 1|e) ≤ P01 + P11 ≤ PU(b = 1|e)
PL(b = 2|e) ≤ P02 + P12 ≤ PU(b = 2|e)

First, for ∀Xi ∈ X\E the algorithm initializesPL(xi|e) andPU(xi|e) to 0 and 1.

Then, processing variables one by one in some order,BdP solves linear minimization and

maximization problems for each variable and updates the quantitiesPL andPU . This pro-

cess is iterated until convergence (namely, until the bounds no longer change). Convergence

is guaranteed since with every iteration the bounds get closer to the posterior marginals or

do not change.

If we know a priori some lower and upper boundsPL(xi|e) andPU(xi|e) for some

variableXi, we can use those values in the initialization step ofBdP . However, in this

case, it is no longer guaranteed that the minimum and maximumof the linear optimization

problem will be as good or better than the current bound values. Hence, we have to check

for that before performing an updating step. We incorporatethis generalization in the

outline of the bound propagation algorithm in Figure 4.1.

The inputs to the algorithm are a Bayesian network overX = {X1, ..., Xn} and

initial values of lower and upper boundsPL(xi|e) andPU(xi|e) for each variableXi. The

output of the algorithm are the revised lower and upper bounds PL(xi|e) andPU(xi|e)

for each variableXi ∈ X\E. Inside the repeat loop we define a single iteration of bound

150



propagation algorithm. In each iteration,∀Xi ∈ X\E the algorithm computes a conditional

probability tableP (Xi|mai) (step 1) and then solves the linear optimization problem for

each valuexi ∈ D(Xi) (steps 2 and 3). After computingmin andmax of the objective

function, the lower and upper boundsPL(xi|e) andPU(xi|e) are updated (step 4).

Bound Propagation
Input: A belief networkB over variablesX = {X1, ..., Xn}, evidenceE ⊂ X.
Input/Output: lower bounds arrayLB, upper bounds arrayUB.
Repeat:

For everyXi ∈ X\E do:
For everyxi ∈ D(Xi) do:

1. Compute conditional probability table overmai = Y = {Y1, ..., Yk}:

P (xi|y1, ..., yk)← αP (xi|pai)
∏

j

P (chj |paj), ∀y ∈ D(Y)

2. Define constraints of a linear optimization problem:

∑

Y

P (y1, ..., yk|e) = 1

PL(yj |e) ≤
∑

Y \Yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU (yj |e), ∀Yj ∈ Y, ∀yj ∈ D(Yj)

3. Solve the problem using a standard LP simplex algorithm:

mi ← min
∑

y1,...,yk

P (xi|y1, ..., yk, e)P (y1, ..., yk|e) (4.16)

Mi ← max
∑

y1,...,yk

P (xi|y1, ..., yk, e)P (y1, ..., yk|e) (4.17)

4. Update Bounds
if mi > PL(xi|e) thenPL(xi|e)← mi

if Mi < PU (xi|e) thenPU (xi|e)←Mi

Until Converged

Figure 4.1: Bound Propagation (BdP ) Algorithm

Each iteration of the algorithm requires solving|D(Xi)| problems for each variable

151



Xi ∈ X\E (one for each value ofXi). The total number of linear problems per iteration

is O(N · d) whereN = |X| andd is the maximum variable domain size. The maximum

problem size isdk variables, wherek is the maximum number of variables in a Markov

blanket of variableXi, andd · k + 1 constraints.

The paper [76] showed thatBdP performed quite well on Ising grid and regular two-

layer networks. The algorithm was also tested with the Alarmnetwork without evidence.

Notably, in a network without evidence, the marginal probabilities of root nodes equal their

priors (which are given). In the case of Alarm network,BdP obtained small bounds inter-

val for several variables but did not obtain good bounds for root nodes 11, 12, 13, and 14.

This shows thatBdP exploits local network structure but ignores the global network prop-

erties. In general, it is not guaranteed to compute good bounds even in a singly-connected

network.

In practice, algorithmBdP as presented in [76] is feasible only for networks having

bounded Markov blanket size, such as grid networks or regular random networks, since the

number of variables in the optimization problem in Figure 4.1 grows exponentially with

the size of the Markov blanket.

4.3 Architecture for Any-Time Bounds

In this section, we outline our any-time bounding scheme. Itbuilds on the same principles

as bounded conditioning. Namely, given a cutsetC and some method for generatinghmost

probable cutset tuples (with high probabilitiesP (c|e)), the probabilities of theh tuples are

152



evaluated exactly and the rest are upper and lower bounded.

Given a subset of variablesC ⊂ X, let k = |C| and leto = {c1, ..., ck} denote an

ordering of the cutset variables. Let lower-casec = {c1, ..., ck} denote an instantiation of

cutsetC. LetM = |D(C)| denote the number of different cutset tuples. Indexing tuples 1

throughM , we denoteci, 1 ≤ i ≤ M , a particular tuple in that ordering. The symbolsc

andci will always denote an assignment to all variables in the cutset. We usec1:q andci1:q

to denote a partial instantiation of the cutset variables. Namely,c1:q = {c1, ..., cq}, q < |C|,

denotes some assignment to the firstq variables in cutsetC. The indexi in ci1:q indicates a

particular assignment to the specified subset of cutset variables.

The algorithm computes exactly the quantitiesP (xl, c
i, e), Xl ∈ X\E, andP (ci, e)

for 1 ≤ i ≤ h and bounds the sums
∑M

i=h+1 P (xl, c
i, e) and

∑M
i=h+1 P (ci, e) for i > h. We

will refer to our bounds computation framework asATB for Any-Time Bounds.

TheATB architecture is founded on two principles. First, given a constanth, it

replaces the sums over the tuplesch+1,...,cM with a sum over a polynomial number (inh)

of partially-instantiated cutset tuples. Details are provided in Section 4.3.1.

Second, in Section 4.3.2, we develop new expressions for lower and upper bounds on

posterior marginals as a function of the lower and upper bounds on the joint probabilities

P (xl, c1:q, e) andP (c1:q, e). We assume in our derivation that there is an algorithmA that

can compute those bounds.

We defer the problem of selecting high probability cutset tuples to Section 4.4 and

the bounding scheme forP (xl, c1:q, e) andP (c1:q, e) to Section 4.4.1.

153



4.3.1 Bounding the Number of Processed Tuples

We obtain the any-time bounding scheme starting with the cutset conditioning formula,

similar to the way bounded conditioning was developed. Given a Bayesian network over a

set of variablesX, evidenceE ⊂ X, E = e, a cutsetC ⊂ X\E, letM =
∏

Ci∈C |D(Ci)|

be the total number of cutset tuples and leth be the number of the generated cutset tuples,

0 < h < M . We can assume without loss of generality that we generated first h tuples

in some enumeration of all tuples. Then, for a nodeXl with x′l ∈ D(Xl), we can re-write

Eq. (4.1) separating the summation over the generated tuples1 throughh and the rest as:

P (x′l|e) =

∑h
i=1 P (x′l, c

i, e) +
∑M

i=h+1 P (x′l, c
i, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci, e)

(4.18)

ProbabilitiesP (x′l, c
i, e) andP (ci, e), 0 ≤ i ≤ h, can be computed in polynomial time if

C is a loop-cutset and in time and space exponential inw if C is aw-cutset. The question

is how to compute or bound
∑M

i=h+1 P (x′l, c
i, e) and

∑M
i=h+1 P (ci, e) without enumerating

all tuplesh+ 1 throughM .

Consider a fully-expanded search tree of depth|C| over the cutset search space ex-

panded in the orderC1,...,Ck, k = |C|. A path from the root to the leaf at depth|C|

corresponds to a full cutset tuple. Assume that we mark all the tree edges on paths that

correspond to the firsth generated cutset tuples. Then the unexpanded tuplesci, i > h,

correspond to the unmarked leaves. We can obtain a truncatedsearch tree by trimming

unmarked leaves as follows:

DEFINITION 4.3.1 (Truncated Search Tree)Given a search treeT covering the search
spaceH over variablesX1,...,Xn, a truncated search tree relative to a subsetS ⊂

154



D(X1) × ... × D(Xn) of full assignments,S = {x1, ..., xt} wherexj = {xj
1, ..., x

j
n}, is

obtained by marking the edges and nodes associated withS and then removing all un-
marked edges and nodes except those branching out from marked nodes.

0 1

C1

1

C2

0 1

C3

0 1

C4

0 2

0 1

C3

0 1

C4

Figure 4.2: A search tree for cutsetC = {C1, ..., C4}.

The leaves at depth< |C| in the truncated tree correspond to the partially- instantiated

cutset tuples. A path from the rootC1 to a leafCq, q < |C|, is a tuplec1:q = {c1, ..., cq}

over a subset of the cutset variables. The full cutset is denotedc or c1:k, wherek = |C|.

An example of a truncated search tree is shown in Figure 4.2. Given a cutsetC={C1, ..., C4}

of size 4,D(C1)={0, 1}, D(C2)={0, 1, 2}, D(C3)={0, 1}, D(C4)={0, 1}, and four fully-

instantiated tuples{0, 1, 0, 0}, {0, 1, 0, 1}, {0, 2, 1, 0}, {0, 2, 1, 1}, the remaining partially

instantiated tuples are{0, 0}, {0, 1, 1}, {0, 2, 0}, and{1}.

It is easy to see that the numberM ′ of truncated tuples is bounded byO(h · (d− 1) ·

|C|), whered is the maximum domain size, since every nodeCj in the path from rootC1

155



to leafCk can have no more than(d− 1) emanating leaves.

PROPOSITION4.3.1 If C is a cutset,d bounds the domain size, andh is the number of

generated cutset tuples, the number of partially-instantiated cutset tuples in the truncated

search three is bounded byO(h · (d− 1) · |C|).

We can enumerate the partially instantiated tuples, denoting thej-th tuplecj1:qj
, 1 ≤ j ≤

M ′, whereqj is the tuple’s length. Clearly, the probability mass over thecutset tuplesch+1,

..., cM can be captured via a sum over the truncated tuples. Namely:

PROPOSITION4.3.2

M
∑

i=h+1

P (ci, e) =
M ′
∑

j=1

P (cj1:qj
, e) (4.19)

M
∑

i=h+1

P (x′l, c
i, e) =

M ′
∑

j=1

P (x′l, c
j
1:qj
, e) (4.20)

Therefore, we can bound the sums over tuplesh+ 1 throughM in Eq. (4.18) by bounding

a polynomial number of partially-instantiated tuples.

4.3.2 Bounding the Probability over the Truncated Tuples

Now we will derive the expressions for bounding the posterior marginals. Replacing the

summation over tuplesh + 1 throughM with summation over the partially-instantiated

tuples1 throughM ′ in Eq. (4.18), we get:

P (x′l|e) =

∑h
i=1 P (x′l, c

i, e) +
∑M ′

j=1 P (x′l, c
j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P (cj1:qj
, e)

(4.21)

Assume that we have an algorithmA that, for any partial assignmentc1:q, can generate

lower and upper boundsPL
A (c1:q, e) andPU

A (c1:q, e) andPL(xl, c
i
1:qi
, e) andPU(xl, c

i
1:qi
, e)

156



for any valuexl ∈ D(Xl) of any unobserved variableXl s.t. PL
A (c1:q, e) ≤ P (c1:q, e) ≤

PU
A (c1:q, e) andPL

A (xl, c1:q, e) ≤ P (xl, c1:q, e) ≤ PU
A (xl, c1:q, e). In the future derivations,

we sometimes drop the algorithm’s name.

Deriving Lower Bounds

A brute force lower bound expression of Eq. (4.21) can be obtained by replacing each

P (x′l, c
j
1:qj
, e) with its lower bound (reducing numerator) and eachP (cj1:qj

, e) with its upper

bound (increasing denominator) yielding expressionPL1:

P (x′l|e) ≥

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

PL
A(x′l, c

j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PU
A (cj1:qj

, e)

, PL1
A (x′l|e) (4.22)

However, a tighter bound can be obtained if we apply additional transformations to Eq. (4.21)

and prove a helpful lemma. First, we decomposeP (cj1:qj
, e), 0 ≤ j ≤M ′, as follows:

P (cj1:qj
, e) =

∑

xl

P (xl, c
j
1:qj
, e) = P (x′l, c

j
1:qj
, e) +

∑

xl 6=x′
l

P (xl, c
j
1:qj
, e) (4.23)

ReplacingP (cj1:qj
, e) in Eq. (4.21) with the right-hand size expression in Eq. (4.23), we get:

P (x′l|e) =

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

P (x′l, c
j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

P (x′l, c
j
1:qj
, e) +

∑

xl 6=x′
l

M ′
∑

j=1

P (xl, c
j
1:qj
, e)

(4.24)

We will use the following two lemmas:

LEMMA 4.3.1 Given positive numbersa > 0, b > 0, δ ≥ 0, if a < b, then: a
b
≤ a+δ

b+δ
.

157



LEMMA 4.3.2 Given positive numbersa, b, c, cL, cU , if a < b andcL ≤ c ≤ cU , then:

a+ cL

b+ cL
≤ a+ c

b+ c
≤ a+ cU

b+ cU

The proof of both lemmas is straight forward. Lemma 4.3.2 says that if the sums in nu-

merator and denominator have some componentc in common, then replacingc with a

larger value in both numerator and denominator yields a larger fraction. Replacingc with

a smaller value in both places yields a smaller fraction.

Observe now that in Eq. (4.24) the sums in both numerator and denominator contain

P (x′l, c
j
1:qj
, e). Hence, we can apply Lemma 4.3.2. We will obtain a lower boundby re-

placingP (x′l, c
j
1:qj
, e), 1 ≤ j ≤M ′, in Eq. (4.24) with corresponding lower bounds in both

numerator and denominator, yielding:

P (x′l|e) ≥

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

PL
A(x′l, c

j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PL
A(x′l, c

j
1:qj
, e) +

∑

xl 6=x′
l

M ′
∑

j=1

P (xl, c
j
1:qj
, e)

(4.25)

Subsequently, we replaceP (xl, c
j
1:qj
, e), xl 6= x′l, with its upper bound, yielding:

P (x′l|e) ≥

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

PL
A(x′l, c

j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PL
A(x′l, c

j
1:qj
, e) +

∑

xl 6=x′
l

M ′
∑

j=1

PU
A (xl, c

j
1:qj
, e)

, PL2
A (x′l|e)

(4.26)

Hence, we have obtained two expressions for lower bound onP (x′l|e), PL1 defined in

Eq. (4.22) andPL2 defined in Eq. (4.26). Both schemes are defined as a function of upper

158



and lower bounds derived by an algorithmA. Neither bound dominates the other. In

Section 4.3.3, we will define conditions under whichPL2 is tighter thanPL1 . In particular,

we will show thatPL2 is always better thanPL1 if |D(Xl)| = 2.

Deriving the Upper Bound Expression

The upper bound formulation can be obtained in a similar manner. Since both numera-

tor and denominator in Eq. (4.24) contain addendsP (x′l, c
j
1:qj
, e), using Lemma 4.3.2 we

replace eachP (x′l, c
j
1:qj
, e) with an upper boundPU

A (x′l, c
j
1:qj
, e) yielding:

P (x′l|e) ≤

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

PU
A (x′l, c

j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PU
A (x′l, c

j
1:qj
, e) +

∑

xl 6=x′
l

M ′
∑

j=1

P (xl, c
j
1:qj
, e)

(4.27)

Subsequently, replacingP (xl, c
j
1:qj
, e), x 6= x′, with a lower bound (reducing denominator),

we obtain a new upper bound expression,PU1, onP (x′l|e):

P (x′l|e) ≤

h
∑

i=1

P (x′l, c
i, e) +

M ′
∑

j=1

PU
A (x′l, c

j
1:qj
, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PU
A (x′l, c

j
1:qj
, e) +

∑

xl 6=x′
l

M ′
∑

j=1

PL
A(xl, c

j
1:qj
, e)

, PU1
A (x′l|e)

(4.28)

The derived bounds,PL1 , PL2, andPU1, are never worse than those obtained by bounded

conditioning, as we will show in Section 4.3.3. In particular, unlike the derivation in

bounded conditioning, the upper bound above is guaranteed to be≤ 1 for any lower and

upper bounds onP (xl, c
j
1:qj
, e), even if we plugin the trivial 0 and 1 bounds.

159



Deriving Bounds for Cutset Nodes

The main difference in the formulation of the bounds for a cutset nodeCl is that only

a subset of theh cutset tuples will haveCl = c′l. Therefore, the number of partially-

instantiated tuples for different values ofCl may differ. Thus, we use Diracδ-function in

the denominator to indicate that summation is only over those cutset tuples whereCl = c′l.

i.e., δ(ci, c′l) = 1 iff the value of variableCl in a tupleci equalsc′l. We use subindexcl in

M ′
cl

to denote the number of partially-instantiated tuples whereCl = cl. We provide the

detailed derivation in Appendix C. Here, we only summarize the results. For anyCl ∈ C,

the following is an upper bound expression forP (c′l|e):

PU1
A (c′l|e) =

h
∑

i=1

δ(ci, c′l)P (ci, e) +

M ′
c′
l

∑

j=1

PU
A (cj1:qj

, e)

h
∑

i=1

P (ci, e) +

M ′
c′
l

∑

j=1

PU
A (cj1:qj

, e) +
∑

cl 6=c′
l

M ′
cl

∑

j=1

PL
A(cj1:qj

, e)

(4.29)

The two expressions for lower bounds, corresponding toPL1(xl|e) andPL2(xl|e) are:

PL1
A (c′l|e) =

h
∑

i=1

δ(ci, c′l)P (ci, e) +

M ′
c′
l

∑

j=1

PL
A(cj1:qj

, e)

h
∑

i=1

P (ci, e) +
M ′
∑

j=1

PU
A (cj1:qj

, e)

(4.30)

PL2
A (c′l|e) =

h
∑

i=1

δ(ci, c′l)P (ci, e) +

M ′
c′
l

∑

j=1

PL
A(cj1:qj

, e)

h
∑

i=1

P (ci, e) +

M ′
c′
l

∑

j=1

PL
A(cj1:qj

, e) +
∑

cl 6=c′
l

M ′
cl

∑

j=1

PU
A (cj1:qj

, e)

(4.31)

160



Any-Time Bounds Architecture
Input: A belief network(B), variablesX, evidenceE ⊂ X, cutsetC ⊂ X\E, constanth,
algorithmA for computing lower and upper bounds.
Output: lower boundsPL, upper boundsPU .
1. Generateh cutset tuples.
2. Compute:

S ←∑h
i=1 P (ci, e)

Sl ←
∑h

i=1 P (xl, c
i, e), ∀xl ∈ D(Xl), ∀Xl ∈ X\(C, E)

3. Traverse partially-instantiated tuples:
3.1 Generate the truncated tree associated with theh tuples and letc1

1:q1
, ..., cM ′

1:qM′
be

theM ′ partial assignments.
3.2 Compute:

S′ ←∑M ′

j=1 PU
A (cj

1:qj
, e)

LBA(xl)←
∑M ′

j=1 PL
A(xl, c

j
1:qj

, e), ∀xl ∈ D(Xl), ∀Xl ∈ X\(C, E)

UBA(xl)←
∑M ′

j=1 PU
A (xl, c

j
1:qj

, e), ∀xl ∈ D(Xl), ∀Xl ∈ X\(C, E)
4. Compute bounds:

PL(x′
l|e) = max







Sl+LBA(xl)
S+S′

Sl+LBA(x′
l
)

S+LBA(x′
l
)+
P

xl 6=x′
l
UBA(xl)

(4.32)

PU (x′
l|e) =

Sl + UBA(x′
l)

S + UBA(x′
l) +

∑

xl 6=x′
l
LBA(xl)

(4.33)

Figure 4.3: Any-Time Bounds Architecture

161



Properties ofATB

The any-time bounding scheme is summarized in Figure 4.3. Insteps 1 and 2, we generate

h fully-instantiated cutset tuples and compute exactly probabilitiesP (ci, e) andP (Xl, c
i, e)

for i ≤ h, ∀Xl ∈ X\(C,E). In step 3, we compute bounds on partially instantiated tuples

using algorithmA. In step 4, we compute the bounds on the posterior marginals.Given the

lower and upper bounds computed using algorithmA, the upper bound is computed using

expression (4.33). The lower bound is defined by the maximum of the two lower bound

expressions in Eq. (4.32).

Example 4.3.1Consider again a Bayesian networkB from previous example. Recall that
it has a cutsetC = {C1, ..., C4} with domainsD(C1) = D(C3) = D(C4) = {0, 1} and
D(C2) = {0, 1, 2}. The total number of cutset tuples isM = 24. LetXl be a variable in
B. We will compute bounds onP (x′l|e). Assume we generated the same four cutset tuples
(h = 4) as before:

c1 = {0, 1, 0, 0},
c2 = {0, 1, 0, 1},
c3 = {0, 2, 1, 0},
c4 = {0, 2, 1, 1}

The corresponding truncated search tree is shown in Figure 4.2. For the tuple{0, 1, 0, 0},
we compute exactly the probabilitiesP (x′l, 0, 1, 0, 0, e) and P (0, 1, 0, 0). Similarly, we
obtain exact probabilitiesP (x′l, 0, 1, 0, 1) andP (0, 1, 0, 1) for the second cutset instance
{0, 1, 0, 1}. Sinceh = 4,

∑h
i=1 P (x′l, c

i, e) and
∑h

i=1 P (ci, e) are:

4
∑

i=1

P (x′l, c
i, e) = P (x′l, c

1, e) + P (x′l, c
2, e) + P (x′l, c

3, e) + P (x′l, c
4, e)

4
∑

i=1

P (ci, e) = P (c1, e) + P (c2, e) + P (c3, e) + P (c4, e)

The remaining partial tuples are:c11:2 = {0, 0}, c21:3 = {0, 1, 1}, c31:3 = {0, 2, 0}, andc41:1 =
{1}. Since these 4 tuples are not full cutsets, we compute bounds on their joint probabilities.

162



Using the same notation as in Figure 4.3, the sums over the partially instantiated tuples
will have the form:

UBA(xl) , PU
A (xl, c

1
1:2, e) + PU

A (xl, c
2
1:3, e) + PU

A (xl, c
3
1:3, e) + PU

A (xl, c
4
1:1, e)

LBA(xl) , PL
A (xl, c

1
1:2, e) + PL

A (xl, c
2
1:3, e) + PL

A (xl, c
3
1:3, e) + PL

A (xl, c
4
1:1, e)

From Eq. (4.28) we get:

PU1(x′l|e) =

∑4
i=1 P (x′l, c

i, e) + UBA(x′l)
∑4

i=1 P (ci, e) + UBA(x′l) +
∑

xl 6=x′
l
LBA(xl)

From Eq. (4.22 and (4.26) we get:

PL1(x′l|e) =

∑4
i=1 P (xl, c

i, e) + LBA(x′l)
∑4

i=1 P (ci, e) +
∑4

i=1 P
U
A (cj1:qj

, e)

PL2(x′l|e) =

∑4
i=1 P (xl, c

i, e) + LBA(x′l)
∑4

i=1 P (ci, e) + LBA(x′l) +
∑

xl 6=x′
l
UBA(xl)

The total number of tuples processed isM ′ = 4 + 4 = 8 << 24.

If C is a loop-cutset, then computing the exact probabilitiesP (ci, e) andP (xl, c
i, e)

takesO(N), whereN is the size of the input, and the total complexity of computing the

exact probabilities forh tuples isO(N · h). We can conclude:

THEOREM 4.3.2 (Complexity as a function of loop-cutset)Given an algorithmA that com-
putes lower and upper bounds on the joint probabilitiesP (c1:qi

, e) andP (xl, c1:qi
, e) in time

O(T ), if C is a loop-cutset thenATB expressions (4.22), (4.26), and (4.28) can be com-
puted inO(h ·N + T · h · (d− 1) · |C|) whered is the maximum domain size and N is the
problem input size.

Theorem 4.3.2 follows immediately from Proposition 4.3.1.It shows that since the

number of partially observed cutset tuples grows polynomially with h, theATB scheme is

polynomial if the plug-in bounding algorithmA is polynomial.

163



4.3.3 Comparison of Bounding Schemes

Next, we compare the lower bound expressions (4.22) and (4.26) and provide conditions

under which the lower boundPL2 is tighter thanPL1.

Comparing Expressions for Lower Bounds

We will show that under certain conditions the lower boundPL2
A value given in Eq. (4.26) is

larger than the value of the brute force lower boundPL1
A given in Eq. (4.22). In particular,

PL2
A is guaranteed to dominatePL1

A when nodeXl has domain of size 2.

THEOREM 4.3.3 (Lower Bound Dominance1)Assume an algorithmA computes bounds
PL(cj1:qj

, e) andPU(cj1:qj
, e) on P (cj1:qj

, e) and boundsPL(xl|cj1:qj
, e) andPU(xl|cj1:qj

, e)

onP (xl|cj1:qj
, e) for 1 ≤ j ≤M ′ and∀xl ∈ D(Xl). Let:

PL(xl, c
j
1:qj
, e) = PL(xl|cj1:qj

, e)PL(cj1:qj
, e)

PU(xl, c
j
1:qj
, e) = PU(xl|cj1:qj

, e)PU(cj1:qj
, e)

If
PL(x′l|cj1:qj

, e) ≤ 1−
∑

xl 6=x′
l

PU(xl|cj1:qi
, e) (4.34)

then
PL1(x′l|e) ≤ PL2(x′l|e)

wherePL1(x′l|e) andPL2(x′l|e) are defined in Eq. (4.22) and Eq. (4.26) respectively.

The proof is provided in Appendix D.

COROLLARY 4.3.1 (Lower Bound Dominance2)Assume an algorithmA computes bounds

PL(cj1:qj
, e) andPU(cj1:qj

, e) onP (cj1:qj
, e) and boundsPL(xl|cj1:qj

, e) andPU(xl|cj1:qj
, e) on

P (xl|cj1:qj
, e) for 1 ≤ j ≤M ′ and∀xl ∈ D(Xl). Let:

PL(xl, c
j
1:qj
, e) = PL(xl|cj1:qj

, e)PL(cj1:qj
, e)

164



PU(xl, c
j
1:qj
, e) = PU(xl|cj1:qj

, e)PU(cj1:qj
, e)

If D(Xl) = 2 thenPL1(x′l|e) ≤ PL2(x′l|e) wherePL1(x′l|e) andPL2(x′l|e) are defined in

Eq. (4.22) and (4.26) respectively.

The corollary follows from observation that the condition expressed in Eq. (4.34) in Theo-

rem 4.3.3 can be always enforced in nodes with domains of size2. Namely, for anyXl ∈ X

with domainD(Xl) = {x′l, x′′l }, if PL(x′l|ci1:qi
, e) > 1−PU(x′′l |ci1:qi

, e), then we can adjust

upper bound valuePU(x′′l |ci1:qi
, e) to 1 − PL(x′l|ci1:qi

, e). For nodes with domains of size

> 2, we should compute both bounds and pick the highest value.

Next, we continue investigating the properties ofATB bounds by comparing them

to the bounds obtained by bounded conditioning [56].

Comparing ATB framework with Bounded Conditioning

In ATB framework, the lower bounds are defined by expressions (4.22) and (4.26). Let

us denote by BF a brute-force algorithm that trivially instantiatesPL(xl, c
j
1:qj
, e) = 0 and

PU(xl, c
j
1:qj
, e) = 1 for ∀xl ∈ D(Xl) and also setsPU(cj1:qj

, e) = P (cj1:qj
). Then, from

Eq. (4.22), we get:

PL1
BF (x′l|e) =

∑h
i=1 P (x′l, c

i, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj1:qj
)

=

∑h
i=1 P (x′l, c

i, e)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)
(4.35)

Using algorithm BF with lower boundPL2 in Eq. (4.26), we get:

PL2
BF (x′l|e) =

∑h
i=1 P (x′l, c

i, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (cj1:qj
)

=

∑h
i=1 P (x′l, c

i, e)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)
(4.36)

The right hand side in the equations (4.35) and (4.36) equalsthe expression for the bounded

conditioning lower bound in Eq. (4.6). Namely,PL1
BF (x′l|e) = PL1

BF (x′l|e) = PL(x′l|e) where

165



PL(x′l|e) is obtained via Eq. (4.6). SincePL1
A ≥ PL1

BF (x′l|e) andPL2
A ≥ PL2

BF (x′l|e), then

PL1
A , PL2

A ≥ PL(x′l|e).

We can prove in a similar manner that theATB upper boundPU1(x′l|e) is as good

or better than the upper bound obtained by bounded conditioning. Applying the brute-

force algorithm BF, defined above, to boundP (xl, c
j
1:qj
, e), andP (cj1:qj

, e), we get from

Eq. (4.28):

PU1
BF (x′l|e) =

∑h
i=1 P (x′l, c

i, e) + +
∑M ′

j=1 P (cj1:qj
)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P (cj1:qj
)

=

∑h
i=1 P (x′l, c

i, e) +
∑M

j=h+1 P (cj)
∑h

i=1 P (ci, e) +
∑M

j=h+1 P (cj)

(4.37)

The expression forPU1
BF gives us the worst-case upper bound that can be obtained byATB

from Eq. (4.28). In the next theorem, we prove that the upper boundPU1
BF (x′l|e) is as good

or better than the bounded conditioning upper bound. Namely, PU1
A dominates bounded

conditioning as long asPU
A (x′l, c

j
1:qj
, e) ≤ PU(cj1:qj

):

THEOREM 4.3.4 Given an algorithmA that computes lower and upper boundsPL
A (xl, c

j
1:qj
, e)

andPU
A (xl, c

j
1:qj
, e) such that∀j, PU

A (xl, c
j
1:qj
, e) ≤ P (cj1:qj

) thenPU1
A (xl|e) ≤ PU(xl|e)

wherePU1
A (xl|e) is given in Eq. (4.28) andPU(xl|e) is the bounded conditioning expres-

sion given in Eq. (4.10).

The proof is given in Appendix D.

WeakATB Bounds Framework (ATBw)

In this section, we derive bounds expressions for aweakform of ATB, denotedATBw.

We assume here that we plug-in a bounding schemeA that only computes upper bound

PU(c1:q, e) on P (c1:q, e). We assume that algorithmA either cannot compute bounds on

166



P (xl, c1:q, e) or incurs a lot of computational overhead doing so. In practice, we may want

to avoid this overhead and use the time to generate more cutset tuples (increaseh).

Following our assumption thatA cannot produce non-trivial lower bounds forP (xl, c1:q, e),

it instantiatesPL
A(xl, c1:q, e) = 0 and, sinceP (xl, c1:q, e) ≤ P (c1:q, e), it instantiates

PU
A (xl, c1:q, e) = PU

A (c1:q, e). Plugging in lower bound 0 and upper boundPU
A (c1:q, e)

for P (xl, c1:q, e) in Eq. (4.22), we get:

PL3
A (x′l|e) ,

∑h
i=1 P (x′l, c

i, e)
∑h

i=1 P (ci, e) +
∑M ′

j=h+1 P
U
A (cj1:qj

, e)
(4.38)

Similarly, replacing the lower and upper bounds onP (xl, c1:q, e) with 0 andPU
A (c1:q, e)

in the upper bound expression in Eq. (4.28), we obtain:

PU3
A (x′l|e) ,

∑h
i=1 P (x′l, c

i, e) +
∑M ′

j=1 P
U
A (cj1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P
U
A (cj1:qj

, e)
(4.39)

Note that the expressions for lower and upper bounds in Eq. (4.38) and (4.39) above depend

only on the valuesP (ci, e) andP (xl, c
i, e) obtained via exact computation over the firsth

cutset tuples and the upper bound valuesPU
A (c1:q, e) for the partially instantiated cutset

tuples. The penalty for using these more relaxed plug-in bounds is that there exists a lower

bound on the computed bounds interval length:

THEOREM 4.3.5 Given an algorithmA that can compute an upper bound onP (c1:q, e),
wherec1:q is a partial cutset instantiation, and givenh fully-instantiated cutset tuplesci,
1 ≤ i ≤ h, then:

PU3
A − PL3

A ≥
∑h

i=1 P (ci, e)

P (e)

wherePL3
A andPU3

A are expressed in Eq. (4.38) and Eq. (4.39) respectively.

167



Despite these weakening simplifications,ATBw is guaranteed to produce as good

or better bounds as those obtained by bounded conditioning.The proof is obtained by

plugging intoATBw the brute-force bounding scheme BF described in Section 4.3.3.

We will investigate empirically the trade-offs between plugging in tighter bounds into

ATB framework vs. computing more cutset tuples using theATBw framework.

4.4 Incorporating Bound Propagation intoATB

In Section 4.3 we defined the Any-Time Bounds framework. Founded on the conditioning

principles, the framework computes exactlyP (xl, c, e) andP (c, e) for h cutset tuples and

then uses precomputed bounds onP (xl, c1:q, e) andP (c1:q, e) for the remaining partially

instantiated cutset tuples which will be plugged into the corresponding expressions. In

Section 4.4.1, we present a method for bounding probabilitiesP (xl, c1:q, e) andP (c1:q, e)

that is based on bound propagation. Then, in Section 4.4.3, we describe a simple improve-

ment to the bound propagation algorithmBdP . Section 4.4.4 describes an approximate

algorithm for solving the linear programming subproblems in the context of bound prop-

agation, without using the simplex solver. As we will show, while the resulting bounds

are not as tight, the scheme is an order of magnitude faster and, therefore, may present the

right trade-off between time and accuracy when used withinATB. Finally, Section 4.4.5

presents an additional improvement using theATB bounds as inputs to bound propagation.

168



4.4.1 BoundingP (c1:q, e) and P (xl, c1:q, e) using Bound Propagation

We cannot use the bare outputs of bound propagation directlyin ATB becauseBdP com-

putes bounds on the conditional probabilitiesP (xl|e) rather than on the joint. In order to

useBdP , we denoteZ = C1:q ∪ E and factorize the joint probabilityP (c1:q, e) = P (z) as

follows:

P (z) =
∏

zj∈z

P (zj|z1, ..., zj−1)

Each factorP (zj|z1, ..., zj−1) can be bounded byBdP , yielding:

P (z) ≥
∏

zj∈z

PL
BdP (zj|z1, ..., zj−1) , PL

BdP (z) (4.40)

P (z) ≤
∏

zj∈z

PU
BdP (zj|z1, ..., zj−1) , PU

BdP (z) (4.41)

Processing variables in some ordero = {Z1, ..., Zn}, we first apply algorithmBdP to the

network without any observations and boundP (z1). Then, we assignZ1 = z1 and apply

algorithmBdP again to compute lower and upper bounds forP (z2|z1), and so on. For

eachZj ∈ Z, we runBdP and obtain boundsPL
BdP (zj|z1, ..., zj−1). Depending on the

ordering of the variables, some of the factorsP (zj|z1, ..., zj−1) may be computed exactly

if the relevant subnetwork ofz1, ..., zj is singly-connected.

Similarly, the joint probabilityP (xl, c1:q, e) can be factorized as:

P (xl, c1:q, e) = P (xl|c1:q, e)P (c1:q, e)

Using the decomposition above, we can obtain lower and upperbounds onP (xl, c1:q, e) as

169



well:

PL
BdP (xl, c1:q, e) = PL

BdP (xl|c1:q, e)PL
BdP (c1:q, e) (4.42)

PU
BdP (xl, c1:q, e) = PU

BdP (xl|c1:q, e)PU
BdP (c1:q, e) (4.43)

wherePL
BdP (xl|c1:q, e) andPU

BdP (xl|c1:q, e) are obtained by algorithmBdP directly and

PL
BdP (c1:q, e) andPU

BdP (c1:q, e) are obtained from Eq. (4.40) and Eq. (4.41).

4.4.2 Optimizing Variable Processing Order

The factorization order of the variables inZ may affect the efficiency of computation, i.e.,

BdP computation time and the tightness of the resulting bounds.It may also affect the

number of factorsP (zj|z1, ..., zj−1) that can be computed exactly. Here, we analyze two

factorization strategies.

One possible strategy is to process evidence variables first. Namely, compute:

P (e)L
BdP =

∏

ej∈e

PL
BdP (ej|e1, ..., ej−1) (4.44)

P (e)U
BdP =

∏

ej∈e

PU
BdP (ej|e1, ..., ej−1) (4.45)

Then, the lower and upper bound onP (c1:q, e) can be obtained by:

PL
BdP (c1:q, e) =

q
∏

j=1

PL
BdP (cj|c1, ..., cj−1, e)P

L
BdP (e) (4.46)

PU
BdP (c1:q, e) =

q
∏

j=1

PU
BdP (cj|c1, ..., cj−1, e)P

U
BdP (e) (4.47)

where bounds onP (cj|c1, ..., cj−1, e) are computed directly byBdP and PL
BdP (e) and

PU
BdP (e) are obtained from Eq. (4.44) and (4.45). In the above scenario, we can precom-

170



putePL
BdP (e) andPU

BdP (e) before we start bounding truncated tuples. Then, for each trun-

cated tuplec1:q, we will only need to runBdP algorithmq + 1 times, one time for each

P (cj|c1, ..., cj−1, e), and one more time to boundP (xl|c1:q, e). The complexity of the above

computation scheme is as follows:

THEOREM 4.4.1 (complexity 1)Given a Bayesian network over a set of variablesX with
the maximum domain sized and loop-cutsetC, the complexity ofATB with bounds pre-
computed byBdP using the variable factorization ordero = {E,C} is O(|E| · TBdP +
|C|2 · h · (d− 1) · TBdP ) when the time complexity ofBdP isO(TBdP ).

Proof. The complexity of precomputing bounds onP (e) usingBdP isO(|E| ·TBdP ) since
we execute algorithm once for each evidence variable. The complexity of bounding one
truncated tuple is at mostO(|C| · TBdP ) since a truncated tuple can contain up to|C| − 1
cutset variables. Since there areO(|C| · h · (d − 1)) truncated tuples (Proposition 4.3.1),
the result follows.

An alternative strategy is to process variables in topological order. Leto = {Z1, ..., Zn}

be a topological order of variables inZ. LetZ− = {Z1, ..., Zm|Zm = Cq}, namely, letZ−

denote a subset of variables inZ that includes all cutset variablesC1 throughCq and evi-

dence variables that precedeCq in topological order. LetE− = E ∩Z− andE+ = E\Z−.

That is, the subsetE− contains the evidence variables precedingCq in topological order

(included inZ−) andE+ contains the remaining evidence variables (not included inZ−).

We factorize the joint probabilityP (c1:q, e) as follows:

P (c1:q, e) = P (z−, e+) =
∏

ej∈e+

P (ej|e1, ..., ej−1, z
−)P (z−)

We know that it is easy to computeP (c, e) if C ∪ E form a loop-cutset. It turns out that

171



computing probabilityP (z−) = P (c1:q, e
−) is easy too. The result follows from Theo-

rem 2.3.1 (proved in section 2.3 of chapter 2) which states:Given Bayesian network over

X, evidenceE ⊂ X, and cutsetC ⊂ X\E, letZ = C ∪ E be a loop-cutset. IfZ is topo-

logically ordered, then∀Zj ∈ Z the relevant subnetwork ofZ1, ..., Zj is singly-connected

whenZ1, ..., Zj are observed.

By definition, subsetZ− satisfies the conditions of Theorem 2.3.1. Therefore:

COROLLARY 4.4.1 Since the relevant subnetwork overc1:q ande− is singly-connected, we

can compute joint probabilityP (c1:q, e
−) in linear time.

We can now apply algorithmBdP to the network conditioned onc1:q ande− and

obtain bounds onP (e1|c1:q, e−) for e1 ∈ e+, then onP (e2|e1, c1:q) for e2 ∈ e+, and in se-

quence get boundsPL
BdP (ej|e1, ..., ej−1, c1:q, e

−) andPU
BdP (ej|e1, ..., ej−1, c1:q, e

−) for each

ej ∈ e+. Thus:

P (c1:q, e) ≥
∏

ej∈e+

PL
BdP (ej|e1, ..., ej−1, c1:q, e

−)P (c1:q, e
−) , PL

BdP (c1:q, e) (4.48)

P (c1:q, e) ≤
∏

ej∈e+

PU
BdP (ej|e1, ..., ej−1, c1:q, e

−)P (c1:q, e
−) , PU

BdP (c1:q, e) (4.49)

The complexity ofATB when usingBdP as described above to precompute the input

bounds is given next:

THEOREM 4.4.2 (Complexity 2)Given a Bayesian network over a set of variablesX with
maximum domain sized and loop-cutsetC, the complexity ofATB with bounds precom-
puted byBdP using the topological variable factorization order isO((N + TBdP · (1 +
|E|)) ·h ·(d−1) · |C|) whenN bounds the size of the input network and the time complexity
ofBdP isO(TBdP ).

Proof. For each tuplec1:q, we computeP (c1:q, e
−) in O(N) and applyBdP |E+| times to

172



compute bounds onP (ej|c1:q, e−, e1, ..., ej−1) for each evidence variable inE+. We need
to applyBdP one more time to compute bounds onP (xl|c1:q, e). In the worst case,|E+| =
|E| and we executeBdP a total of(1+ |E|) times for each truncated tuple. Hence, the total
complexity of bounding one partially-instantiated cutsettuple isO(N + (1 + |E|) · TBdP ).
Since the total number of partially-instantiated cutset tuples is bounded byO(|C|·h·(d−1))
(Proposition 4.3.1), the total cost of bounding the probability mass of the truncated cutset
tuples isO((N + TBdP · (1 + |E|)) · h · (d− 1) · |C|).

In our experiments, we bound probabilities of the truncatedtuples using topological vari-

able order in the factorization ofP (c1:q, e). Although a better ordering, producing tighter

bounds onP (c1:q, e) in less time, may exist, the topological ordering of the variables guar-

antees that the upper bound on the probability mass of the truncated tuples does not exceed

the prior probability mass of those tuples.

4.4.3 Improving Bound Propagation

Here, we describe how we can improve the accuracy and time ofBdP by taking into

account the network structure.

Since we plan to plug-inBdP into ourATB scheme, we must pay a special attention

to its performance. As shown,BdP ’s complexity is exponential in the size of Markov

blanket.

Restricting Markov blankets

We will control the computation time of bound propagation byrestricting the Markov blan-

ket space (or table size). The bounds of variables whose Markov blanket size exceeds

maximum will not be updated and, thus, will remain equal to their input values (usually 0

173



and 1). In turn, it will affect the quality of the bounds for neighboring nodes. As explained,

each nodeYi in the Markov blanket ofX induces a linear constraint of the form:

PL(yj|e) ≤
∑

y\yj ,Yj=yj

P (y1, ..., yk|e) ≤ PU(yj|e) (4.50)

When the lower and upper boundsPL(yj|e) andPU(yj|e) are 0 and 1 respectively, then

the constraint expressed in Eq. (4.50) is redundant and always holds. We can control the

trade-offs between computation time and tightness of the bounds using a parameterk to

specify the maximum Markov blanket size, thus, obtaining a parametrized version of bound

propagationBdP (k).

Exploiting Relevant Subnetwork Properties

Next, we show how we can reduce the effective Markov blanket size by restricting the

Markov blanket of a node to its relevant subnetwork (see Definition 1.2.5 in Section 1.2.1).

It is easy to see that the set of linear inequalities in Eq. (4.15) can be restricted only to

the “relevant” portion of the Markov blanket of nodeXl. Therefore, for every nodeXl, the

application ofBdP can be made more efficient and will often include only the variable’s

parent set.

Removing irrelevant nodes (and their parents) from the Markov blanket whenever

possible results in a smaller Markov blanket size, shorter computation time, and more ac-

curate bounds as we will demonstrate empirically. In particular, if the relevant subnetwork

of nodeXl is singly-connected then its posteriors can be computed exactly. We denote

by BdP+ the bound propagation algorithm that exploits the idea of relevant subnetwork

174



structure.

In the next section, we present a greedy algorithm for solving the linear programming

subproblems in bound propagation which computes suboptimal minimum and maximum

of the objective function but substantially reduces the computation time. By replacing the

simplex solver with the proposed fast greedy algorithm, we obtain an approximate bouvvnd

propagation scheme.

4.4.4 Approximating the LP in Bound Propagation

WhenBdP+ scheme is plugged into theATB framework, we need to bound a large num-

ber of truncated tuples. We need to invoke bound propagationalgorithm1 + |E| times

to bound one tuple (as we showed in the proof of Theorem 4.4.2). In a single iteration

of BdP+, we need to solveO(|X\E| · d), whered is the maximum domain size, linear

optimization problems (a different optimization problem for each value of each variable).

Thus, theATB framework requires to solve thousands if not hundreds of thousands of

linear optimization problems implied byBdP+. Therefore, using the simplex method for

each problem becomes impractical.

It turns out that the linear optimization problems formulated by bound propagation

fall into a class of linear packing and covering problems. The standard fractional packing

and covering problem can be defined as follows:

175



min cTx (4.51)

s.t. (4.52)

Ax ≥ l (4.53)

Bx ≤ m (4.54)

xi ≥ 0,∀i (4.55)

The problem without Eq. (4.54) is called afractional covering problem. The problem

without Eq. (4.53) is called afractional packing problem. As the constraints expressed in

Eq. (4.15) have both lower and upper bounds, the linear optimization problems inBdP+

contain both covering and packing constraints whereA = B andA is a 0/1 matrix. There-

fore, the bound propagation LP minimization problem can be described as follows:

min cTx (4.56)

s.t.
∑

j

xj = 1 (4.57)

l ≤ Ax ≥ m (4.58)

0 ≤ xj ≤ 1,∀j (4.59)

where each pair of valuesli andmi corresponds to lower and upper bound values on

someP (yk|e) and∀i, j, aij ∈ {0, 1}.

Fractional packing and covering problems often rise as a result of solving a relaxation

of combinatorial packing and covering problems. The fraction solution is then used as a

starting point for finding an integer solution. In the above application, the precision of the

fractional solution is often less important then the speed of computation. Subsequently, a

number of approximation methods have been developed for solving those classes of prob-

176



lems [17]. However, those algorithms solve either packing or covering problems, but not

both and not with the additional sum-to-1 constraint. We, therefore, resort to solving a

relaxed version of the bound propagation LP problems.

There are many possibilities for relaxing the constraints of the original problem. We

looked at two alternative relaxations. One is a relaxation to fractional knapsack packingand

the other is a relaxation to what could be viewed asfractional multiple knapsack packing

with lower bounds.

Fractional Knapsack Packing

Knapsack Packingis a well known problem. Given a set of itemsx such that each item

xi ∈ x has an associated profitci and a sizeui, the objective is to select a subset of items

that maximizes the profit such that the total size of the selected items does not exceed the

knapsack capacity. In the fractional version of the problem, we can select a portion of

the itemxi; in this case,ui becomes an upper bound on how much ofxi we can take.

For fractional packing, we can always fill the knapsack to full capacity and therefore the

packing problem can be solved exactly in a greedy fashion.

In the bound propagation LP problem, the sum-to-1 constraint can be interpreted

as specifying the “knapsack” capacity. Hence, we maintain the sum-to-1 constraint in the

relaxed version of the problem. We drop the lower bound constraints completely. The upper

bound on a sum of variables is replaced with the upper bound onindividual variables, i.e.,

for each variablexi we specify an upper bounduj = mini,aij=1mi which is the minimum

177



upper bound value of all the constraints in which variablexi participates. We obtain the

following relaxed LP problem, which is an instance of fractional knapsack packing:

max cTx (4.60)

s.t.
∑

i

xi = 1 (4.61)

0 ≤ xj ≤ uj (4.62)

The problem can be solved exactly by ordering nodes by their profit and then assign-

ing each node its maximum value until the sum of all node values equals 1. The complexity

of the algorithm isO(n log n), wheren is the number of variables, due to the complexity

of sorting.

Fractional Knapsack Packing with Multiple Knapsacks

TheMultiple Knapsackproblem (MKP) is a natural generalization of the single knapsack

problem defined as follows. The main difference is that we nowhave not one knapsack,

but a set of bins (knapsacks) of varying capacity.

In the relaxation of the bound propagation LP problem, we maintain the sum-to-1

constraint and the constraints induced by a single node in the Markov blanket. The rest of

the constraints are dropped after computing individual upper boundui for each variablexi

as we did before for fractional packing with single knapsack. Without loss of generality,

we can assume that the selected Markov blanket node isYq. Then, the relaxed version of

the problem can be formulated as follows:

178



max cTx (4.63)

s.t.
∑

i

xi = 1 (4.64)

LB(yq) ≤
∑

i

δ(yq, xi)xi ≤ UB(yq),∀yq ∈ D(Yq) (4.65)

0 ≤ xj ≤ uj (4.66)

whereδ(yk, xi) = 1 if the valueyk of the variableYk matches the instantiation of

Yk in xi (recall thatxi = P (y1, ..., yq|e)) andδ(yk, xi) = 0 otherwise. We can view the

problem as the one of packing|D(Yq)| knapsacks, where each knapsack corresponds to

some valueyq of variableYq and has capacityUB(yq).

Our problem has additional special properties though. Eachknapsack has not only

upper bound, but also a lower bound on the size of the load. Thesum-to-1 constraint

specifies the total size of the load. Further, the domains of the constraints induced by

variableYq are disjoint. Namely, each variablexi will participate in only one constraint of

the type expressed in Eq. (4.65). The latter can be interpreted as each knapsack having a

separate list of items that can be packed in it.

We can obtain a more general formulation of the problem if we use a double indexij

with each variablexij to indicate that it is the quantity ofjth item that is placed in knapsack

i. Then, we can re-formulate the problem as follows:

179



max
∑

i,j

cijxij (4.67)

s.t.
∑

i,j

xij = 1 (4.68)

li ≤
∑

j

xij ≤ ui,∀i (4.69)

0 ≤xij ≤ uij (4.70)

If it was not for the sum-to-1 constraint in Eq. (4.64), we could solve each knapsack-

packing problem independently. Still, the greedy approachworks. Figure 4.4 defines an

algorithm for solving the LP described in Eq. (4.67)-(4.70).

For maximization problem, first, we order variables by theirobjective function coef-

ficient value from largest to smallest (step 1 in Figure 4.4) and initialize all variable values

to 0 (step 2). Then, we make two passes. On the first pass, we assign each node the

minimum value necessary to satisfy lower bounds (step 3). Wemake a second pass incre-

menting each node value to the maximum, within the constraint bounds, until the sum of

all variables equals 1 (step 4). The solution to the minimization problem is the same except

variables are ordered by their objective function coefficient value from smallest to largest.

We prove the correctness of the algorithm in Appendix E. The complexity of the algorithm

isO(n log n) wheren = |x|. In the contex of bound propagation,n = |D(Y )|, namely, the

size of the Markov conditional probability table.

Since we cannot predict which nodeYj ∈ Y will yield the LP problem with the small-

est maximum of the objective function, we solve separately afractional MKP problem for

eachYj ∈ Y and pick the smallest value. Then, the total complexity of finding lower and

180



Greedy Multiple Knapsack With Lower Bounds
Input:

max
∑

i,j

cijxij (4.71)

s.t.
∑

i,j

xij = 1 (4.72)

li ≤
∑

j

xij ≤ ui,∀i (4.73)

0 ≤xij ≤ uij (4.74)

Output: f = max
∑

i,j cijxij

1. Sortxi by coefficientsci (profit) from largest to smallest.
2. Initialize: ∀i, xi ← 0
3. Satisfy lower bounds:
For i← 1 to |D(Y)| do:

xij ← min{li, uij}
uij ← uij − xij

li ← li − xij

ui ← ui − xij

s← s− xij

f ← f + cij · xij

End For
4.4. Maximize:
For i = 1 to |D(Y)| do:

if (s = 0) break
δ = min{uj , uij , s}
xij ← xij + δ
uij ← uij − δ
ui ← ui − δ
s← s− δ
fj ← fj + cij · δ

End For

Figure 4.4: Greedy algorithm for fractional MKP problem.

181



upper bounds for a single variable value isO(|Y | ·n log n). We denote a bound propagation

scheme which solves the linear optimization problems approximately byABdP+ for ap-

proximateBdP+. We will compare the performance ofABdP+ using fractional packing

with single knapsack and multiple knapsacks in the empirical section.

4.4.5 Algorithm BBdP+

ABdP+ andBdP+ performance depends on the initial values of the lower and upper

bounds, usually set to 0 and 1. We can boost the performance ofBdP+ by using the

bounds computed byATB, instead of 0 and 1, to initialize its lower and upper bounds.

As we mentioned earlier, the tightness of the bounds on the posterior marginals of the

nodes in the Markov blanket of variableXi affects the tightness of the constraints in the LP

optimization problems forXi. If ATB computes tighter bounds thanBdP+ (starting with

0/1 initial bounds) for some variables, then bound propagation may be able to compute

tighter bounds on the neighboring nodes. An analogy can be made where tightening some

of the bolts holding together the elements of a complex structure restricts the movement

of the remaining elements. We can think of usingATB bounds as the input toBdP+

or ABdP+ as “boosting” bound propagation. We will show results with boostedBdP+,

denotedBBdP+, in the empirical section.

182



4.5 Searching for High-Probability Tuples

We can expect a better performance fromATB (faster convergence withh) when the se-

lectedh cutset tuples are theh highest probability tuples. The task of finding theh highest

probability tuples is related to the MAP problem of finding the maximum probability in-

stantiation of a subset of variables. Forh = 1, the two tasks are equivalent. Forh > 1,

MAP is a subproblem since the maximum probability tuple is the member of the set of

theh highest probability tuples. MAP problem is#P -hard [94] (the decision version is

NP PP -hard). In fact, it remains NP-hard even in polytrees where computing the posterior

marginals is easy. Therefore, finding theh highest probability tuples is also hard.

We can search for theh highest probability cutset tuples using, for example, local

greedy search [62, 93, 94].

In [62], local search algorithm is used to find an approximatesolution to the MPE

problem. In [93] and [94], the same idea is applied to the MAP problem. Another option

is to use stochastic simulation such as Gibbs sampling. Thisis the approach we take here.

Given a problem with a set of random variablesC = {C1, ..., Cm} and observations

E, we usually apply Gibbs sampling to generate a set of samplesS = {c(j)} such that

the frequency of a tupleci ∈ S reflects its probability massP (ci|e) in the posterior dis-

tribution P (C|e). Gibbs sampling can also be viewed as a search algorithm looking for

high-probability tuples. It performs a guided random walk in the multi-dimentional space

of all instances.

183



0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000 3500

# samples

# 
un

iq
ue

 s
am

pl
es

 

cpcs179

cpcs360b

Figure 4.5: The number of unique samples generated by a Gibbssampler sampling over
a loop-cutset is plotted against the total number of samplesfor two benchmarks, cpcs179
and cpcs360b. The results are averaged over 20 instances of each benchmark with different
evidence values.

We propose to generate the cutset tuples using cutset sampling [14, 15] that applies

Gibbs sampling over a subset of the variables. Specifically,we focus on the loop-cutset

sampling. We used first an ordered Gibbs sampler. It was effective for two of our bench-

marks, cpcs179 and cps360b, where a small number of cutset tuples contained over 99% of

the probability mass ofP (e). Figure 4.5 shows the number of unique tuples as a function

of the number of samples in cpcs179 and cpcs360b networks. The results are averaged

over 20 instances for each benchmark. As we can see, the curves are logarithmic. Namely,

the algorithm found most of the high probability tuples quickly and then mostly revisited

previously observed tuples.

However, in other benchmarks, cutset sampling often required too long to find enough

“heavy” tuples. This was observed previously in [62] where the effectiveness of Gibbs

sampler and local greedy search in finding the MPE solution were compared. The main

184



difference between Gibbs sampleing and greedy local searchis that, given distribution

P (Xi|x−i), Gibbs sampling draws the new value for a variable from this distribution while

greedy local search picks the most likely value ofXi. In [62] it was shown that a combina-

tion of Gibbs sampling and greedy local search is more effective than either method alone.

In our implementation, without modifying Gibbs sampler, wemaximize the value of the

output it produced by maintaining a list of theh highest probability tuples encountered. We

elaborate on the options in the next two paragraphs.

In order to obtain the distributionP (Ci|c−i) for a discrete cutset variableCi, Gibbs-

based cutset sampling normally computes probabilityP (ci, c−i), for eachci∈D(Ci). Once

a new value for variableCi is sampled fromP (Ci|c−i), all those probabilites are discarded.

However, the sampled value is not always the most probable one and the tuples with higher

probability P (ci, c−i) may be discarded. Maintaining a list ofh highest probability tu-

ples computed during sampling (even if the Markov chain did not actually visit them), we

optimize Gibbs sampling for search. We denote resulting scheme asGopt.

Figure 4.6 presents the ordered Gibbs sampling scheme that maintains the list of

h highest probability tuples. We usec(t) = {c(t)1 , c
(t)
2 , ..., c

(t)
k } to denote samplet. Each

samplec(t) is some instantiationci ∈ D(C). A list L stores pairs< c, P (c, e) > wherec

is the cutset tuple andP (c, e) is its corresponding probability. The scheme in Figure 4.6

only differs from regular Gibbs sampler in that we add step 1.2 where we update listL. If

L contains tuplesc, we do nothing. Otherwise, if the size ofL is less thanh andc /∈ L, we

addc to L. If the size ofL equalsh andc /∈ L, we find a tuplec′ ∈ L whose probability

185



Algorithm Gopt
Input: Bayesian networkB over X, evidenceE ⊂ X, cutsetC ⊂ X\E, and
integerh < |D(C)|, integerT .
Output: list L of h high probability tuples.
L← {}
Initialize: Assign random valuec0

i to eachCi ∈ C and assign e.
Generate samples:

For t = 1 to T, generate a new samplec(t+1) as follows:
For EachCi ∈ C, compute a new valuec(t)

i for variableCi as follows:
1. For Eachci ∈ D(Ci) do:

1.1. ComputeP (ci, c
(t)
−i, e).

1.2. If c′ = {ci, c
(t)
−i} /∈ L Then

If |L| < h Then
L← L

⋃

<c′,P (c′, e)>
Else

c∗ ← arg minc∈L P (c, e)
If P (c∗, e) < P (c′, e) Then

L← L \ <c∗,P (c∗, e)>
L← L

⋃

<c′,P (c′, e)>
End If

End If
1.3 End If

2. End For Eachci

3. P (Ci|c(t)
−i, e)← αP (Ci, c

(t)
−i, e).

4. Sample new value:

c
(t+1)
i ← P (Ci|c(t)

−i, e) (4.75)

End ForCi

End For t

Figure 4.6:w-Cutset samplingAlgorithm

186



P (c′, e) is the smallest. IfP (c′, e) < P (c, e), then we replacec′ with c.

% of P(e) accumulated

0

2

4

6

8

10

12

0 2000 4000 6000 8000 10000 12000

h

%P(e)-G

%P(e)-Gopt

Average ATBw interval length

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0 5 10 15

Time (sec)

ATBw -G

ATBw -Gopt

Figure 4.7: Performance of regular Gibbs cutset sampling (G), selectingh cutset tuples with
highest probabilities among generated samples, and optimized for search (Gopt), selecting
h tuples among all computed tuples, in an instance of Barley network. The left chart shows
the percent ofP (e) covered by theh tuples as a function ofh. The right chart shows the
average bounds interval length computed byATBw as a function of time when usingG
(ATBw-G) andGopt (ATBw-Gopt) to findh highest probability tuples.

Figure 4.7 demonstrates empirically a typical improvementin the performance of

Gopt over regular Gibbs sampling, denotedG, on an instance of Barley network with 7

evidence nodes andP (e) = 3E − 06. The chart on the left measures the efficiency of the

search process by the percent of the probability massP (e) covered by the generated tuples,

namely:
∑h

i=1 P (ci, e)

P (e)
100%

You may recall it provides a lower bound on the bounds interval length forATBw. As

we can see, the percent ofP (e) covered grows much faster whenh is selected among all

computed tuples usingGopt. The chart on the right in Figure 4.7 shows the average bounds

interval length computed byATBw using theh highest probability tuples generated by

Gibbs sampling (ATBw-G) and byGopt (ATBw-Gopt).

187



In other experiments, usingGopt, we accumulated over 90% of the weight ofP (e)

in a few thousand tuples in Munin3, cpcs179, and cpcs360b, and 20-30% in cpcs422b and

Munin4. In the case of Barley network, we generated up toh = 2000 cutset tuples, that is

less than0.0002% of over 2 million tuples, that covered≈ 1% of the weight ofP (e).

4.6 Experiments

In this section, we compare empirically the performance of several bounding schemes dis-

cussed in this paper.

4.6.1 Methodology and Algorithms

Algorithms

We evaluate empirically the quality of the bounds obtained by different variants of bound

propagation and ATB framework with different plug-in bounding schemes. Our algorithms

are:

• BdP - an original bound propagation algorithm that initializesall variables’ lower and

upper bounds to 0 and 1 and then iteratively updates the bounds using the simplex solver

to find the minimum and maximum of the objective function of the linear optimization

problem over the Markov blanket of each variable;

• BdP+ - an improved bound propagation algorithm that restricts the Markov blanket of

a variable to a relevant subnetwork w.r.t. the set containing this variable and evidence

188



and pre-computes the posterior marginals of nodes whose relevant subnetwork is singly-

connected;

• ABdP+FP1 - an approximate bound propagation algorithm that uses a greedy algorithm

to solve the relaxation of the LP problem to fractional packing with a single knapsack;

• ABdP+FPM - same asABdP+FP1 except it uses an LP relaxation with multiple

knapsacks;

• ATB-FP1 - ATB framework usingABdP+FP1 plug-in;

• ATB-FPM or ATB - ATB framework usingABdP+FPM plug-in; unless stated

otherwise, we reserve the nameATB for ATB-FPM ;

• ATBw - a weak form ofATB usingABdP+FPM plug-in; recall that, givenh fully-

instantiated tuples,ATBw bounds the remaining probability mass faster thanATB be-

cause it only computes an upper bound onP (c1:q, e);

• BBdP+ - boostedBdP+ that uses theATB bounds to initialize the starting bounds

values for all variables.

The results are organized as follows. First, we compare the performance of the two

bound propagation algorithms,BdP andBdP+. Next, we compare bound propagation

using the simplex solver,BdP+, and the two variants of the approximate bound propagat-

ing,ABdP+FP1 andABdP+FPM . Subsequently, we also compare the performance of

ATB using the two variants ofABdP+ as plug-ins, i.e.,ABdP+FP1 andABdP+FPM .

189



Finally, we compare side-by-side the performance of the best bound propagation schemes

BdP+,ATB using the best of the two approximate bound propagation schemesABdP+-

FPM as a plug-in,ATBw using the same plug-in, and boostedBdP+. Where applicable,

we also compare our bounds with those in [73].

4.6.2 Measures of Performance

We measure the quality of the bounds via the average length ofthe interval between lower

and upper bound:

I =

∑

i

∑

D(xi)
(PU(xi|e)− PL(xi|e))
∑

i |D(xi)|
(4.76)

We approximate posterior marginal as the midpoint between lower and upper bound in

order to show whether the bounds are well-centered around the posterior marginalP (x|e).

Namely:

P̂ (x|e) =
PU(x|e) + PL(x|e)

2
(4.77)

and then measure average absolute error∆ with respect to that approximation:

∆ =

∑

i

∑

D(xi)
|P (xi|e)− P̂ (xi|e)|

∑

i |D(xi)|
(4.78)

All exact posterior marginals, used to evaluate the precision of the estimate expressed in

Eq. (4.77), were obtained by bucket elimination [28] using the min-fill heuristics for order-

ing variables.

We implemented bound propagation algorithm using simplex solver from COIN-OR

libraries [1]. The experiments were conducted on 1.8Ghz CPU with 512 MB RAM.

190



4.6.3 Reporting of the Results

In all benchmarks,ATB andATBw enumerate the tuples of a loop cutsetC that is gener-

ated by themga algorithm [10]. The results forATB andATBw schemes are reported as a

function ofh, the number of fully instantiated cutset tuples, and time. Recall that the upper

bound on the number of partial cutset tuples is proportionalto h (see Theorem 4.3.1). Con-

sequently, the worst case computation time ofATB andATBw grows ash increases (see

Theorem 4.4.2). Of course, ash becomes close to the total number of cutset tuples,M , the

number of truncated tuples decreases. However, in our experiments,h is small compared

to the total number of cutset tuples. Hence, computation time increases monotonously with

h.

As described, we control the time and memory of bound propagation by restricting

the maximum sizek of the conditional probability table for a variable and its Markov

blanket. AlgorithmsBdP , BdP+, andABdP+ are parametrized byk. For the plug-ins

used withATB andATBw, the maximum Markov CPT size was fixed atk = 1025.

We also fixed the parameterk = 1025 for BBdP+. The computation time of

BBdP+ includes bound propagation time andATB time. For a constant parameterk,

the computation time of bound propagation remains nearly constant for a given network

instance and only the computation time ofATB changes. SinceATB time is a function of

h,BBdP+ time is a function ofh as well.

191



4.6.4 Benchmarks

Table 4.1: Complexity characteristics of the benchmarks from UAI repository:N -number
of nodes,w∗-induced width,|LC|-number of nodes in a loop-cutset,|D(LC)|-loop-cutset
state space size, Time(BE)-exact computation time via bucket elimination, Time(LC)-exact
computation time via loop-cutset conditioning.
network N w

∗ |LC| |D(LC)| Time(BE) Time(LC)
Alarm 37 4 5 108 0.01 sec 0.05 sec
Barley 48 7 12 >2E+6 50 sec >22 hrs1

cpcs54 54 15 6 32768 1 sec 22 sec
cpcs179 179 8 8 49152 2 sec 37 sec
cpcs360b 360 21 26 226 20 min > 8 hrs1

cpcs422b 422 22 47 247 50 min > 2E+9 hrs1

Munin3 1044 7 30 > 230 8 sec > 1700 hrs1

Munin4 1041 8 49 > 249 70 sec > 1E+8 hrs1

Our benchmarks are Alarm network, CPCS networks (cpcs54, cpcs179, cpcs360b,

and cpcs422b), Barley network, and Munin3 and Munin4 networks from UAI repository.

The summary of benchmarks and their characteristics is shown in Table 4.6.4. For each

network, the table specifies the number of variablesN , the induced widthw∗, the size of

loop cutset|LC|, the number of loop-cutset tuples|D(LC)|, and the time needed to com-

pute the exact posterior marginals by bucket-tree elimination (exponential in the induced

widthw∗), and by cutset conditioning (exponential in the size of loop-cutset).

The Alarm network models the monitoring of patients in intensive care [11]. The

Barley network is a part of the decision-support system for growing malting barley devel-

oped in [70]. We have performed experiments with four CPCS networks: cpcs54, cpcs179,

cpcs360b, and cpcs422b. CPCS networks are derived from the Computer-Based Patient
1Times are extrapolated.

192



Care Simulation system and based on INTERNIST-1 and Quick Medical Reference Expert

systems [100]. The last two benchmarks are Munin3 and Munin4, the subsets of the Munin

network which is a part of the expert system for computer-aided electromyography [2].

Computing posterior marginals is easy in Alarm network, cpcs54, and cpcs179 using

either bucket elimination or cutset conditioning since they have small induced and a small

loop-cutset. We include those benchmarks as a proof of concept only. Several other net-

works, Barley, Munin3, and Munin4, also have small induced width and, hence, their exact

posterior marginals can be obtained by bucket elimination.

However, for a fair comparison,ATB should be compared against linear-space schemes

such as cutset-conditioning. From this perspective, Barley, Munin3, and Munin4 are hard.

For example, Barley network has only 48 variables, its induced width isw∗ = 7, and exact

inference by bucket elimination takes only 30 seconds. Its loop-cutset contains only 12

variables, but the number of loop-cutset tuples exceeds 2 million because some variables

have large domain sizes (up to 67 values). Enumerating and computing all cutset tuples, at

a rate of about 1000 tuples per second, would take over 22 hours. Similar considerations

apply in case of Munin3 and Munin4 networks.

For most benchmarks, the results for each network are averaged over 20 instances

instantiated with different evidence.

193



4.6.5 Results withBdP Variants

Here, we report the bounds intervals obtained byBdP (k) andBdP+(k) as a function of

k, the maximum Markov CPT length, fork ∈ [210, 219] on various benchmarks with and

without evidence. Fork > 219, the computation demands exceeded available memory.

The computation time ofBdP andBdP+ is a function ofk and the number of iterations

needed to converge. Since the algorithms usually convergedin less than 20 iterations, we

fixed the maximum number of iterations at 20.

In Table 4.2 and Table 4.3 we report the average error, average bounds interval length,

and computation times forBdP andBdP+ as a function of maximum Markov blanket

tuple countk. Each row corresponds to a set of experiments with a single benchmark with

a fixedk. Columns 3-5 specify the accuracy and computation time forBdP (see Eq. (4.76-

(4.78)), while columns 6-7 specify the accuracy and computation time forBdP+. We

explore the range of values ofk = 2m for m ∈ [10, 11, ..., 20]. The results are separated for

networks without evidence (Table 4.2) and networks with evidence (Table 4.2).

Analysis: BdP+ always computes tighter bounds and requires less computation

time thanBdP . The performance gap is wider in the networks without evidence (Table 4.2)

where the Markov blanket of each node, restricted to its relevant subnetwork, contains

node’s parents only andBdP+ converges after one iteration when processing nodes in

topological order. For the largest benchmark, cpcs422b, with 422 nodes andw∗ = 21, the

average bounds interval length is 0.23 forBdP and 0.008 forBdP+. At the same time,

194



Table 4.2: Average error∆, length of the bounds intervalI, and computation time for
BdP andBdP+ as a function of the maximum size of the Markov blanket state-space T
in networks without evidence.

BdP(k) BdP+(k)
k I ∆ time I ∆ time

Alarm 16384 0.637 0.1677 14 0.075 0.0076 0.1
cpcs54 16384 0.425 0.0229 24 0.091 0.0049 0.1

32768 0.417 0.0224 72 0.091 0.0049 0.1
65536 0.417 0.0224 72 0.091 0.0049 0.1
131072 0.417 0.0224 72 0.091 0.0049 0.1
262145 0.415 0.0221 265 0.091 0.0049 0.1

cpcs179 16384 0.576 0.2213 30 0.0006 0.00002 0.3
32768 0.576 0.2213 30 0.0006 0.00002 0.3
65536 0.576 0.2213 30 0.0006 0.00002 0.3

cpcs360b 16384 0.151 0.0649 64 0.0006 0.0002 1.2
32768 0.149 0.0641 80 0.0006 0.0002 1.2

cpcs422b 16384 0.237 0.0756 28 0.008 0.0008 8
262145 0.236 0.0751 33 0.008 0.0008 8

BdP computations take 190 sec whileBdP+ only takes 16 sec.

BothBdP andBdP+ bounds interval becomes larger and computation takes longer

when some nodes are observed, as shown in Table 4.3. Still,BdP+ remains superior to

BdP . Consider the results for cpcs360b network with 360 nodes, averaged over 20 in-

stances of the network with number of assigned nodes|E| ranging from 11 to 23. For

h = 16384, BdP computes the average lower and upper bound interval of length 0.338

and requires 68 seconds.BdP+ computes an average bounds interval of 0.064 and re-

quires only 15 seconds. We observe similar results for otherbenchmarks. Note that, ask

increases, the computation time of bothBdP andBdP+ increases fast, while the bounds

interval decreases only a little.

195



Table 4.3: Average error∆, length of the bounds intervalI, and computation time forBdP
andBdP+ as a function of the maximum size of the Markov blanket state-spaceT in
networks with evidence.

BdP(k) BdP+(k)
k I ∆ time I ∆ time

Alarm 1024 0.828 0.2661 13 0.611 0.2151 4.2
|E|=3-6 524288 0.828 0.2661 13 0.611 0.2151 4.2
cpcs54 1024 0.616 0.0469 6.6 0.367 0.0232 2.1
|E|=2-6 4096 0.616 0.0469 6.6 0.360 0.0219 3.4

16384 0.595 0.0458 30 0.353 0.0210 7.9
32768 0.591 0.0451 49 0.353 0.0210 9.3
65536 0.589 0.0450 66 0.353 0.0210 13
131072 0.588 0.0449 88 0.353 0.0209 23
262144 0.587 0.0447 166 0.352 0.0207 52
524288 0.587 0.0447 260 0.352 0.0207 54

cpcs179 1024 0.604 0.2228 30 0.230 0.0783 5.3
|E|=12-24 4096 0.603 0.2227 31 0.160 0.0520 9.3

16384 0.603 0.2227 30 0.119 0.0366 19
32768 0.603 0.2227 30 0.111 0.0331 28
65536 0.598 0.2214 90 0.073 0.0203 80
524288 0.592 0.2113 260 0.055 0.0149 413

cpcs360b 1024 0.361 0.1532 15 0.124 0.0516 4.2
|E|=11-23 2048 0.357 0.1528 18 0.113 0.0468 4.7

4096 0.356 0.1522 19 0.099 0.0408 6
8192 0.352 0.1504 23 0.083 0.0330 8
16384 0.338 0.1423 68 0.064 0.0247 15
32768 0.337 0.1419 85 0.055 0.0215 24
65536 0.143 0.3367 120 0.050 0.0192 36
131072 0.143 0.3366 128 0.043 0.0160 80
262144 0.143 0.3364 190 0.038 0.0137 130

cpcs422b 1025 0.351 0.1195 16 0.231 0.0740 7
|E|=6-11 8192 0.337 0.1175 34 0.217 0.0677 18

16384 0.337 0.1175 34 0.214 0.0665 24
32768 0.329 0.1081 80 0.203 0.0617 74
65536 0.317 0.1023 195 0.182 0.0467 150
131072 0.289 0.0881 1192 0.155 0.0401 1097

196



Results forABdP+ using two variants of Fractional Packing

Figure 4.8 presents the average bounds interval length obtained byBdP+ algorithm and

ABdP+ with two different approximation schemes, denotedABdP+FP1 andABdP+FPM ,

in cpcs54, cpcs360b, andcpcs422bnetworks. The charts on the left show average bounds

length as a function ofm, wherek = 10m determines the maximum Markov blanket size.

As we can see from the charts on the left, for the samem (samek), average bounds interval

of BdP+ is smaller than the bounds interval ofBdP+FPM , which, in turn, is smaller

than that ofBdP+FP1, as expected. The charts on the right show average bounds length

as a function of time. The computation time of all three schemes grows asm increases.

Thus, each point on the right-hand chart corresponds to a particularm. The charts show

thatABdP+FPM incurs a negligible amount of overhead compared toABdP+FP1, but

computes considerably tighter bounds.BdP+ outperformsABdP+FPM when given

enough time. However, for the samek, BdP+ requires an order of magnitude more time

thanABdP+. For example, in cpcs54, fork = 210, ABdP+FPM computes bounds in

<0.01 seconds whileBdP+ requires a few seconds. Roughly,BdP+ requires as much

time to compute bounds form = 10 (i.e., k = 210) asABdP+FPM for k = 217 − 219.

As a result,BdP+ begins to outperformABdP+FPM only after≈2 seconds in cpcs54

and only after 10 seconds in cpcs360b. Hence, in short term, we can obtain more accurate

bounds usingBdP+FPM .

Comparing the smallest bounds intervals obtained byBdP+ andABdP+FPM (for

197



cpcs54, |E|=2-8

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0 5 10 15 20

m

A
v

g
. 

B
o

u
n

d
s

 I
n

te
rv

a
l

BdP+

ABdP+-FP1

ABdP+-FPM

cpcs54, |E|=2-8

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

0.46

0.01 0.1 1 10 100

Time (sec)

A
vg

. B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+-FP1

ABdP+-FPM� � ��� � �� � � � � � � ��
cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20

m

A
vg

 B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+FP1

ABdP+FPM

cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.1 1 10 100 1000

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+FP1

ABdP+FPM

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 5 10 15 20

m

A
vg

 B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+FPM

ABdP+FP1

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0 1 2 3 4 5 6 7 8 9

Time (sec)

A
vg

 B
ou

nd
s 

In
te

rv
al

BdP+

ABdP+FPM

ABdP+FP1

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0 5 10 15 20

m

A
vg

 B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+FP1

ABdP+FPM

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.1 1 10 100 1000 10000

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

BdP+

ABdP+FP1

ABdP+FPM

Figure 4.8: Bounds interval length forBdP+, BdP+FP1, andBdP+FPM , averaged
over 20 instances of cpcs54, cpcs179, cpcs360b, and cpcs422b, as a function ofm and
time, wherem bounds the maximum Markov table sizek=2m.

198



maximumm), we see that the difference is small in most networks. In cpcs54, the differ-

ence is about 0.04 which is≈ 1% of the interval length. We observed the largest difference

in the case of cpcs360b, where the smallestBdP+ bounds interval length is a factor of 2

smaller thanABdP+FPM .

Table 4.4: Average bounds interval forBdP+, ABdP+FP1, andABdP+FPM for the
maximum value ofk = 2m tried,m ∈ [10, 19], averaged over 20 instances of each bench-
mark.

BdP+ BdP+-FPM BdP+-FP1

network m I Time I Time I Time
Alarm ≥10 0.611 4.2 0.611 0.08 0.67 0.02
Barley ≥10 0.231 1.5 0.251 0.05 0.29 0.03
cpcs54 19 0.352 53 0.392 1.3 0.42 0.60
cpcs179 19 0.055 413 0.109 51 0.19 15.3
cpcs360b 19 0.033 270 0.085 5 0.11 2.7
cpcs422b 17 0.155 1027 0.173 9.4 0.19 8.9
Munin3 19 0.255 9 0.258 0.7 0.32 0.2
Munin4 19 0.228 13 0.232 1.0 0.31 0.2

We observe similar results in other networks. Table 4.4 summarizes the average

bounds interval results for the maximumk for each benchmark. InBarley, ABdP+-

FPM computes average bounds interval of 0.25 in 0.05 sec, whileBdP+ computes only

slightly smaller average bounds interval of 0.23 in 1.7 sec.In cpcs422b, fork = 217,

IBdP+−FPM = 0.17 and takes 23 seconds to compute whileIBdP+ = 0.15 and takes 1025

seconds.

199



Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0 5000 10000 15000 20000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM
Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM

cpcs360b,  N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 500 1000 1500 2000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM

cpcs360b,  N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40 50

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0

0.1

0.2

0.3

0.4

0 20 40 60 80 100 120

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATB-FP1

ATB-FPM

Figure 4.9: Average bounds length forATB with a bound propagation plugin optimizing
LP by fractional packing with 1 (ATB-FP1) and many knapsacks (ATB-FPM ).

200



Experimenting with ATB Variants

In Figure 4.9 we compare the performance ofATB framework with two plug-ins,ABdP+FP1

andABdP+FPM . The resulting algorithms are denotedATB-FP1 andATB-FPM .

We use three representative benchmarks, Barley, cpcs360b, and cpcs422b, which are also

the largest of our benchmarks. For each algorithm, the results are averaged over 20 in-

stances of each network. We see that theATB-FPM line is consistently lower thanATB-

FP1. Hence,ATB-FPM not only computes tighter bounds, but it is also timewise more

efficient thanATB-FP1. We also observe that the difference between the results of the

two schemes becomes larger with time. This is more noticeable in the case of cpcs360b

(Figure 4.9, middle) and cpcs422b (Figure 4.9, bottom). This observation points out that

the tightness of the bounds on the unexplored tuples strongly affects theATB convergence

speed.

Results forATBw, ATB,BdP+ andBBdP+

This section provides our main evaluation of the proposedATB scheme against bound

propagation. We use the superior variants of those schemes.Namely, we have showed that

BdP+ always outperfromsBdP and thatABdP+FPM is the superior variant of approx-

imate bound propagation, used either stand-alone or as a plug-in in ATB framework. We

compareATB andATBw with ABdP+FPM plug-in againstBdP+. In addition, we

show the results of boosted bound propagationBBdP+ usingATB results as input.

For reference, we also computed the minimum length of bounded conditioning bounds

201



interval by plugging into the framework the brute force 0 lower bounds and priorP (c)

upper bounds. The computed bounds interval length remainedclose to 0.75 for Munin

benchmarks and 0.95 for the others; hence, those results areomitted in the remainder of

the section.

We summarize the results for each benchmarks in a tabular format and charts. The

tables report the average bounds intervalI, average error∆, computation time (in seconds),

and percent of probability of evidenceP (e) covered by the fully-instantiated cutset tuples

generated byATBw, ATB, andBBdP+ algorithms as a function ofh. SinceBdP+

results do not depend onh, they are not included in the tables here. The results forBdP+

were reported in Table 4.3. We highlight in bold face the firstATB data point where

the average bounds interval is as good or better thanBdP+. We use charts to show the

convergence of bounds interval length as a function ofh and time.

Results for Alarm network. The Alarm network hasN = 37 nodes and a loop-

cutset of size|LC| = 5 with the cutset state-space of size|LC| = 108. The exact posterior

marginals in the Alarm network can be obtained using bucket elimination or exact cutset

conditioning in less than a second. We present the results inorder to relate to the bounds

reported previously for bounded conditioning [56] and for bound propagation [76]. The

results are reported in Table 4.5 and Figure 4.10.

As expected, the average bounds interval generated byATBw andATB decreases

ash increases, demonstrating the any-time property ofATB with respect toh. For a fixed

202



Alarm, N=37, w*=5, |LC|=8, |E|=1-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

Alarm, N=37, w*=5, |LC|=8, |E|=1-4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.10: Results for Alarm network as a function ofh (top) and a function of time (bot-
tom), averaged over 20 instances. Exact inference using bucket elimination is 30 seconds.
Exact inference using cutset conditioning is> 22 hours.

203



Table 4.5: Average error∆, bounds intervalI, and computation timet for BdP+ , ATB,
andBBdP+ over 20 instances of Alarm network as function ofh.

Alarm, N=37,w∗=5, |LC|=8, |DLC |=108,|E|=1-4
ATBw ATB BBdP+

h %P(e) I ∆ time I ∆ time I ∆ time
25 86 0.51 0.16 0.021 0.41 0.12 0.038 0.35 0.10 3.4
34 93 0.38 0.12 0.022 0.31 0.09 0.039 0.27 0.08 2.3
40 96 0.31 0.10 0.025 0.25 0.07 0.044 0.22 0.06 2.1
48 97 0.20 0.09 0.035 0.24 0.05 0.051 0.15 0.04 1.5
50 98 0.16 0.06 0.036 0.16 0.04 0.052 0.12 0.03 1.2
54 99 0.12 0.05 0.044 0.13 0.03 0.059 0.09 0.02 0.86

h, ATBw bounds interval is always larger than that ofATB, as predicted. However, the

picture is different time-wise. For example,ATBw computes bounds interval ofIATBw =

0.12 within 0.044 seconds (h = 54), whileATB only computesIATB = 0.25 within the

same time (h = 40).

Both any-time schemes perform better thanBdP+. Recall that fork ≥ 65536BdP+

obtained an average interval length of 0.65 within 4 seconds(Table 4.3). BothATBw and

ATB compute more accurate bounds starting with the first data point of h = 25. In the

second row of Table 4.5,IATBw = 0.41 andIATB = 0.51, and require respectively 0.021

and 0.038 seconds, an order of magnitude less thanBdP+. UsingATB bounds as input

to bound propagation inBBdP+ considerably improves theATB results. For the same

h = 25, IBBdP+ = 0.35. However,BBdP+ is not efficient time wise compared toATB

since the bound propagation time is considerably larger than that ofATB. Yet, since

BBdP+ computation time on average is less thanBdP+, it outperformsBdP+ starting

with h = 25, similar toATB andATBw.

204



Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2000 4000 6000 8000 10000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

Barley, N=48, w*=7, |LC|=12, |E|=4-8

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.11: Results for Barley network as a function ofh (top) and a function of time (bot-
tom), averaged over 20 instances. Exact inference using bucket elimination is 30 seconds.
Exact inference using cutset conditioning is> 22 hours.

205



Table 4.6: Results for Barley network.
Barley,N=48,w∗=7, |LC|=12, |DLC | >2E+6,|E|=4-8

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
278 0.005 0.501 0.194 0.4 0.282 0.099 5 0.168 0.047 7
562 0.01 0.501 0.194 0.8 0.279 0.097 9 0.167 0.047 10
1394 0.03 0.500 0.194 2.0 0.263 0.090 23 0.162 0.045 25
2722 0.06 0.500 0.194 4.0 0.247 0.084 43 0.154 0.042 45
4429 0.14 0.500 0.193 6.3 0.235 0.079 65 0.147 0.040 67
6016 0.22 0.499 0.193 8.6 0.230 0.078 86 0.145 0.040 88
7950 0.33 0.499 0.193 11.0 0.228 0.077 99 0.145 0.040 101
9297 0.40 0.499 0.193 12.8 0.224 0.075 111 0.143 0.039 113
12478 0.52 0.498 0.193 17.3 0.219 0.073 139 0.142 0.038 141

Results for Barley network. We applied the bounding algorithms to 20 instances of

Barley network with different evidence picked at random among the input nodes as defined

in [70]. We compare the performance of different bounding schemes within 100 seconds

time interval. The results are reported in Table 4.6 and Figure 4.11. The top chart shows

the convergence ofATBw, ATB, andBBdP+ bounds interval withh (sinceBBdP+

bounds are never worse thanATB, the bounds converge withh). The bottom chart shows

the average interval ofATBw, ATB, BdP+, andBBdP+ as a function of time. We

see thatBdP+ converges quickly yielding an average bounds length of 0.23in less than

2 seconds but does not improve any more with time.ATBw, ATB, andBBdP+ clearly

improve ash increases. However, the convergence is slow withh and with time. For

example, averageATBw bounds interval length remains close to 0.5 whileATB bounds

interval decreases from 0.28, obtained in 5 seconds, to 0.22after 139 seconds. It takesATB

about 86 seconds to achieve the same accuracy asBdP+. Overall, the winning scheme

time-wise isBBdP+. The bound propagation time ofBBdP+ is negligible compared to

206



ATB computation time. UsingATB results to jump-start bound propagation substantially

improvesATB bounds, computingI = 0.168 in 7 seconds andI = 0.142 in 141 seconds.

Table 4.7: Results for cpcs54.
cpcs54,N=54, |LC|=15,w∗=15, |DLC |=32678,|E|=2-8

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
513 10 0.84 0.062 0.4 0.51 0.027 0.9 0.34 0.011 3.1
1114 19 0.78 0.055 0.7 0.45 0.023 1.5 0.32 0.010 3.1
1343 25 0.76 0.054 0.9 0.44 0.023 1.7 0.32 0.010 3.3
1581 29 0.74 0.052 1.0 0.42 0.021 1.9 0.31 0.009 3.4
1933 34 0.71 0.049 1.3 0.40 0.020 2.2 0.30 0.009 3.6
2290 40 0.68 0.047 1.5 0.38 0.019 2.4 0.30 0.008 3.9
2609 46 0.66 0.045 1.8 0.37 0.018 2.7 0.29 0.007 4.0
3219 53 0.62 0.041 2.1 0.34 0.016 3.2 0.27 0.007 4.5
3926 59 0.57 0.038 2.7 0.31 0.014 3.8 0.25 0.006 5.2
6199 63 0.46 0.029 4.5 0.23 0.010 5.9 0.20 0.006 6.6
7274 68 0.41 0.026 5.4 0.20 0.008 6.9 0.17 0.006 7.3

Results for CPCS networks. Results for cpcs54 are given in Table 4.7 and Fig-

ure 4.12, for cpcs179 in Table 4.8 and Figure 4.13, for cpcs360b in Table 4.9 and Fig-

ure 4.14, for cpcs422b in Table 4.10 and Figure 4.15.

cpcs54.We focus on cpcs54 first, the smallest of CPCS networks, with 54 nodes and

induced widthw∗ = 15. Its loop cutset size is 16 and yields 65536 (216) cutset tuples. Exact

inference in cpcs54 by bucket elimination takes less than 1 second while cutset conditioning

requires 15 seconds. TheBdP+ scheme obtains the bounds interval of 0.35 with the

maximum Markov table size ofk = 4096 and hardly changes at all ask increases up to

the memory limit (see Figure 4.3).ATB outperformsBdP+ within 3 seconds.ATB

also outperformsATBw by a wide margin with respect toh (Figure 4.12, top) and time-

207



cpcs54, N=54, |LC|=15, w*=15, |E|=2-8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2000 4000 6000 8000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

cpcs54, N=54, |LC|=15, w*=15, |E|=2-8

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 2 4 6 8 10

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.12: Results for cpcs54 network as a function ofh (top) and a function of time
(bottom), averaged over 20 instances. Exact inference using bucket elimination is 1 second.
Exact inference using cutset conditioning is 15 seconds.

208



wise (Figure 4.12, bottom).BBdP+ improves theATB result as a function ofh, as

shown in Table 4.7 and Figure 4.12, top. For example, forh = 513, IATB = 0.51 while

IBBdP+ = 0.34. However, the improvement is not enough to compensate for additional

computation time as we see in Figure 4.12, bottom.

Table 4.8: Results for cpcs179.
cpcs179,N=179,w∗=8, |LC|=8, |DLC |=49152,|E|=12-24

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
242 70 0.533 0.205 2.5 0.224 0.067 4 0.092 0.029 11
334 75 0.392 0.151 3.5 0.123 0.033 6 0.054 0.016 13
406 78 0.323 0.124 3.8 0.092 0.024 7 0.037 0.010 13
483 80 0.286 0.110 4.3 0.080 0.021 8 0.034 0.009 15
574 82 0.256 0.099 4.8 0.070 0.018 9 0.029 0.008 15
683 84 0.219 0.084 5.4 0.061 0.015 10 0.024 0.007 17
801 85 0.195 0.075 5.8 0.054 0.014 10 0.022 0.006 17
908 86 0.167 0.064 6.3 0.044 0.011 11 0.019 0.005 18
996 87 0.151 0.058 6.6 0.040 0.010 12 0.017 0.005 18
1130 88 0.124 0.048 6.8 0.032 0.008 12 0.014 0.004 19
1285 88 0.104 0.040 7.8 0.026 0.006 13 0.012 0.003 20
1493 89 0.078 0.030 9.0 0.019 0.004 15 0.009 0.003 21
1669 90 0.064 0.024 9.7 0.015 0.003 16 0.007 0.002 22

cpcs179. The results for cpcs179 network are shown in Table 4.8 and Figure 4.13.

The results forATB, ATBw, andBBdP+ as a function of time are similar and speak for

themselves. The first data point forBdP+ in Figure 4.13, corresponding tok = 1024, is

I = 0.23 and takes 5.3 seconds to compute. Ask increases, the average bounds interval of

BdP+ decreases slowly. Within 20 seconds, the best result ofBdP+ is I = 0.12. ATB

andATBw computer tighter bounds thanBdP+ after the first 5 seconds. Comparing

the two any-time schemes, we see thatATB’s curve is considerably lower thanATBw

209



cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000 1200 1400 1600

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

cpcs179, N=179, |LC|=8, w*=8, |E|=12-24

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.13: Results for cpcs179 network as a function ofh (top) and a function of time
(bottom), averaged over 20 instances. Exact inference using bucket elimination is 2 sec-
onds. Exact inference using cutset conditioning is 37 seconds.

210



at first. However, at the end of 20 second interval, their curves becomes very close. The

performance ofBBdP+ as a function of time is lagging behind bothATBw andATB.

The averageBBdP+ computation time per network instance is 8 seconds. Subsequently,

althoughBBdP+ improves the result ofATB as shown in the Figure 4.13, top,BBdP+

is not cost-effective here.

Table 4.9: Results for cpcs360b.
cpcs360b, N=360,w∗ = 21, |LC| = 26, |E|=11-23

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
121 83 0.235 0.098 3 0.0486 1.6E-2 5 0.0274 1.0E-2 7
282 92 0.086 0.035 7 0.0046 9.0E-4 10 0.0032 8.5E-4 12
409 95 0.057 0.023 9 0.0028 5.6E-4 13 0.0020 5.3E-4 15
501 96 0.044 0.018 10 0.0020 3.6E-4 15 0.0014 3.5E-4 17
722 97 0.029 0.012 13 0.0012 2.4E-4 19 0.0009 2.3E-4 21
831 98 0.024 0.010 16 0.0008 1.2E-4 22 0.0006 1.2E-4 25
938 98 0.020 0.008 18 0.0006 8.4E-5 25 0.0004 7.8E-5 27
1027 98 0.018 0.007 19 0.0006 8.1E-5 26 0.0004 7.5E-5 29
1168 98 0.015 0.006 22 0.0005 7.5E-5 29 0.0004 6.9E-5 31
1271 99 0.013 0.005 24 0.0004 6.7E-5 32 0.0003 6.1E-5 34
1388 99 0.012 0.005 26 0.0004 5.9E-5 35 0.0003 5.4E-5 37
1486 99 0.011 0.004 28 0.0003 5.8E-5 37 0.0003 5.3E-5 39
1582 99 0.010 0.004 30 0.0003 5.3E-5 39 0.0002 4.8E-5 41
1674 99 0.009 0.004 32 0.0003 5.0E-5 41 0.0002 4.6E-5 43
1757 99 0.008 0.003 34 0.0003 4.7E-5 43 0.0002 4.4E-5 46

cpcs360bloop-cutset has226 cutset tuples, prohibitively many for complete enumer-

ation. The exact computation time for cpcs360b by bucket elimination is about 20 minutes.

We experimented with 20 instances of the network with the number of evidence nodes

ranging from 11 to 23. We have compared the performance of allfour bounding algorithms

within 40 seconds, that is only a fraction of time necessary to compute posterior marginals

211



cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 200 400 600 800 1000 1200

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

cpcs360b, N=360, |LC|=26, w*=21, |E|=11-23

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 10 20 30 40

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.14: Results for cpcs360b as a function ofh (top) averaged over 20 instances. Evi-
dence is chosen randomly among leaf nodes only. Exact inference using bucket elimination
is 20 minutes. Exact inference using cutset conditioning is> 8 hours.

212



exactly. The results for cpcs360b are summarized in Table 4.9 and Figure 4.14.

The convergence of all conditioning-based schemes was veryfast in cpcs360b. At

h ≈ 700, theh cutset tuples contained on average about 98% of the probability mass of

P (e). The results are overall similar.ATBw algorithm converges fast decreasing from

I = 0.24 for h = 121 (3 seconds) toI = 0.008 for h = 1757 (33 seconds). However,ATB

and, consequently,BBdP+ converge considerably faster. In 30 seconds, their average

bounds interval decreases to 0.003. Although the overhead of bound propagation time in

BBdP+ is relatively small,≈2 seconds, the performance ofATB andBBdP+ is very

similar timewise. As we see,ATBw, ATB, andBBdP+ schemes outperformedBdP+.

Larkin’s algorithm [73], when applied to cpcs360b benchmark, achieved average bounds

interval length of 0.03 in 10 seconds. Within the same time,ATB computes an average

bounds interval of≈ 0.005. However, the comparison is not on the same instances since

the evidence nodes are not the same.

cpcs422b. The result for the fourth and the largest cpcs network, cpcs422b, are

shown in Table 4.10 and Figure 4.15. Cpcs422b is challenging for any inference scheme

as it has large induced width ofw∗ = 22 and247 loop-cutset tuples. Exact inference by

bucket elimination requires about 50 minutes. The estimated cutset conditioning time is

over2E + 9 hours.

From Table 4.10, we see thatATB outperformsATBw by a wide margin andBBdP+

improves a little overATB. ATB outperformsATBw as a function ofh and time as shown

213



cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0

0.3

0.6

0.9

0 500 1000 1500 2000 2500 3000 3500 4000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

cpcs422b, N=422, |LC|=47, w*=22, |E|=4-10

0

0.3

0.6

0.9

0 20 40 60 80 100 120

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.15: cpcs422b average bounds length as a function ofh (top) and time (bottom),
averaged over 20 instances. Exact inference using bucket elimination is 50 minutes. Exact
inference using cutset conditioning is> 2E + 9 hours.

214



Table 4.10: Results for cpcs422b.
cpcs422b,|E|=6-11

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
253 1.7 0.79 0.326 14 0.28 0.090 27 0.17 0.056 37
381 2.0 0.79 0.325 16 0.24 0.076 33 0.16 0.050 42
563 2.6 0.79 0.323 17 0.23 0.073 37 0.15 0.049 47
688 2.9 0.78 0.322 19 0.21 0.066 40 0.14 0.046 50
867 3.4 0.78 0.321 21 0.20 0.062 44 0.14 0.044 53
1171 4.5 0.77 0.318 22 0.19 0.059 49 0.14 0.043 58
1472 5.4 0.77 0.315 26 0.18 0.054 55 0.13 0.040 64
1779 6.5 0.76 0.312 27 0.18 0.054 59 0.13 0.040 68
2368 8.0 0.75 0.307 30 0.17 0.052 67 0.12 0.039 76
2954 9.5 0.74 0.303 34 0.17 0.050 75 0.12 0.038 84
3654 10.8 0.73 0.300 38 0.16 0.049 85 0.12 0.038 94
4429 12.2 0.72 0.296 42 0.16 0.047 95 0.12 0.037 104
5120 13.7 0.72 0.292 44 0.15 0.044 101 0.11 0.035 110

in Figure 4.15. It outperformsBdP+ after 40 seconds. Overall,BBdP+ is the best algo-

rithm. TheBBdP+ result forh=5120,I = 0.1124, is the best of all algorithms for the 2

minute time interval.

Larkin [73] reports an average bounds interval of 0.15, obtained within 30 seconds.

ATB andBdP+ obtain comparable results. Within 30 seconds, bothATB (h = 379

in Table 4.10) andBdP+ (k = 16384 in Table 4.3) compute average bounds interval of

length≈ 0.21. ATB’s bounds interval is reduced to 0.15 after 100 seconds (see Table 4.10,

h = 4598). Note also thatBBdP+ computesI = 0.15 in 47 seconds.

Munin’s benchmarks. Our last two benchmarks are Munin3 and Munin4. The

evidence in each network instance has been pre-defined. Both networks are large, with

215



Table 4.11: Results for Munin3.
Munin3, N=1044,w∗=7, |LC|=30, |E|=257

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
196 64 0.32 0.133 4 0.050 0.020 8 0.048 0.020 16
441 72 0.25 0.100 6 0.030 0.011 12 0.029 0.012 20
882 78 0.20 0.078 10 0.025 0.009 18 0.025 0.009 26
1813 79 0.19 0.073 19 0.020 0.007 32 0.019 0.007 40
2695 80 0.17 0.068 28 0.018 0.006 46 0.017 0.007 54
2891 81 0.17 0.065 30 0.017 0.006 49 0.016 0.006 57
3185 82 0.16 0.062 34 0.014 0.005 54 0.014 0.005 62
3577 82 0.16 0.060 44 0.013 0.004 68 0.012 0.004 76
4312 83 0.15 0.056 52 0.011 0.004 80 0.010 0.004 88

Table 4.12: Results for Munin4.
Munin4, N=1041,w∗=8, |LC|=49, |E|=235

ATBw ATB BBdP+
h %P(e) I ∆ time I ∆ time I ∆ time
245 1 0.87 0.396 3 0.39 0.16 14 0.24 0.102 21
441 7 0.82 0.372 4 0.32 0.13 17 0.22 0.095 24
1029 11 0.78 0.352 7 0.28 0.12 34 0.21 0.089 44
2058 17 0.73 0.329 12 0.25 0.11 54 0.19 0.082 65
3087 20 0.70 0.316 17 0.22 0.11 83 0.18 0.077 91
5194 24 0.67 0.301 27 0.21 0.09 134 0.17 0.072 145

216



Munin3, N=1044, |LC|=30, w*=7, |E|=257

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1000 2000 3000 4000 5000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

Munin3, N=1044, |LC|=30, w*=7, |E|=257

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.16: Munin3 average bounds length as a function ofh (top) and time (bottom).
Exact inference using bucket elimination is 8 seconds. Exact inference using cutset condi-
tioning is> 1700 hours.

217



Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.3

0.6

0.9

0 1000 2000 3000 4000 5000 6000

h

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BBdP+

Munin4, N=1041, |LC|=49, w*=8, |E|=235

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150

Time (sec)

A
vg

 B
o

u
n

d
s 

In
te

rv
al

ATBw

ATB

BdP+

BBdP+

Figure 4.17: Munin4 average bounds length as a function ofh (top) and time (bottom).
Exact inference using bucket elimination is 70 seconds. Exact inference using cutset con-
ditioning is> 1E + 8 hours.

218



1044 and 1041 nodes. However, their induced widths are relatively small. The induced

width of Munin3 isw∗ = 7 and induced width of Munin4 isw∗ = 8. Subsequently,

exact inference by bucket elimination is fairly easy. As we report in Table 4.6.4, the exact

computation time of Munin3 is 8 seconds and Munin4 is 70 seconds. The empirical results

for each network are summarized in Tables 4.11 and 4.12 in Figures 4.16 and 4.17.

The behavior of the algorithms in Munin3 and Munin4 is similar and is self-explanatory.

First, we take a look at the charts demonstrating the convergence of theATBw,ATB, and

BBdP+ bounds interval withh in Figure 4.16, top, and Figure 4.17, top. TheATBw algo-

rithm is the worst. Its performance is especially poor in case of Munin4. Afterh ≈ 1000,

theATBw bounds interval length remains close to 0.8. Its performance improves with

h very slowly. TheATB bounds interval length is an order of magnitude smaller than

ATBw for Munin3 and a factor of 2 smaller in Munin4.BBdP+ improvement overATB

is very small in Munin3. Consequently, the two curves are veryclose and they are hard to

distinguish on the charts. The improvement is more noticeable in Munin4.

Now, we look at the performance ofATBw, ATB, BBdP+, andBdP+ as a func-

tion of time.BdP+ algorithm computes bounds interval of 0.25 for Munin3 and 0.23 for

Munin4 within 10 and 15 seconds respectively and does not improve any more. In Munin3,

ATB outperformsBdP+ by a wide margin yielding a bounds interval of 0.05 in 8 sec-

onds. In Munin4, the loop-cutset size is larger and, thus, convergence ofATB is slower;

ATB outperformsBdP+ after≈70 seconds.BBdP+ performance is very close toATB

in Munin3 after 20 seconds. In Munin4, Figure 4.17, we observe thatBBdP consistently

219



outperformsATB.

4.6.6 Discussion

We demonstrated that in all benchmarks, except Alarm network, ATB converges faster

with time thanATBw. Hence, it is usually cost-effective to invest time into computing

tighter bounds onP (x, c1:q, e). The fast convergence ofATBw bounds in the case of

Alarm network may be attributed to the small number of loop-cutset tuples; there are only

108 tuples to explore.

Comparing the average bounds length to the average absolute error in the estimator,

we observe, across all benchmarks, that the error is usuallysmaller than half of the interval

length. This indicates that bounds are usually well centered around posterior marginals.

In most cases, the relative error inATBw (absolute error relative to the average bounds

interval) appears larger than inATB which indicates that computing tighter bounds on

P (x, c1:q, e) produces bounds on posterior marginals that are not only tighter but also better

centered around the exact values.

4.7 Conclusions and Future Work

In this chapter we presented an anytime framework for bounding the posterior beliefs of

every variable. The scheme is parametrized by a fixed number of cutset tuplesh over

which it applies exact computation using cutset conditioning. We used a modified Gibbs

sampling scheme to findh high probability tuples. We developed expressions to bound

220



the rest of the probability mass. Those expressions facilitate the use of any off-the-shelve

bounding algorithms (worst-case we can plug in 0 and priors). If we denote this scheme by

ATBh(A) (usingh cutset tuples and plug-in algorithmA), ATBh(A) can be viewed as a

boosting scheme forA.

ATB can make any existing bounding scheme anytime and improve it. In this paper

we focused on a specific algorithm,A=ABdP+, which is a variant of bound propagation

[76]. ABdP+ is based on the improved bound propagation scheme,BdP+, that exploits

the directionality of the network to its advantage, restricting variable’s Markov blanket to

its relevant subnetwork. Consequently, theBdP+ computation time is reduced and tighter

bounds are obtained for the same input parameters which we confirmed empirically on

several benchmarks. However, usingBdP+ as a plug-in in the proposed any-time frame-

work was infeasible time-wise. Instead, we chose algorithmABdP+ which incorporates

the improvements inBdP+ scheme but uses an approximate greedy solution to the LP

optimization problems rather than the simplex solver. Although the resulting bounds are

less accurate, we reduce computation time by more than an order of magnitude. Since the

framework focuses on enumerating high-probability cutset-tuples and only uses the plug-in

to bound the remaining probability mass ofP (e), we can compenstate for the loss of accu-

racy due to usingABdP+ plug-in instead ofBdP+ by enumarating more cutset tuples.

We showed that the any-time framework withABdP+ plug-in outperformedBdP+

in all benchmarks after exploring a few hundred to a few thousand cutset tuples. In larger

networks, such as cpcs360b and cpcs422b,ATB computed a small bounds interval in a

221



fraction of the time needed to compute exact posterior marginals by bucket elimination or

cutset conditioning.

Finally, we showed that for iterative bounding algorithms,such asBdP+, another

boosting step is feasible by taking the results ofATB and plugging them back intoBdP+.

The resulting algorithmBBdP+ improves results further overATB as we showed.

The main improvements inATB framework compared to bounded conditioning are

1) the tighter bound formulation and 2) tighter bounds on theprobability mass of the un-

explored cutset tuples.ATB approach is also related to the algorithm for estimating and

bounding posterior probabilities proposed by David Poole in [98]. In fact, the bounds ex-

pression in [98] is similar toATB bounds derived in this paper where the summation over

the truncated cutset tuples inATB expressions represents the Poole’s bounding function.

The main difference is that in [98] the enumeration is over the network tuples as opposed

to a cutset. Consequently, the approach is more similar to search than conditioning. Also,

in [98], the bounding function is updated via conflict counting, whileATB refines the

bounding function and bounds probabilities on individual cutset tuples.

Another approach for computing bounds was proposed in [99] where “context-specific”

bounds were obtained by simplifying the conditional probability tables. The method per-

forms a variant of bucket elimination where intermediate tables are collapsed by grouping

some probability values together. However, since the method was validated only on a small

car diagnosis network with 10 variables, it is hard to draw conclusions about its effective-

ness. In [73], the bounds are also obtained by simplifying intermediate probability tables

222



in the variable elimination order but, instead of grouping probabilities, the author solves

an optimization problem to find a table decomposition that minimizes the error. A special-

ized large deviation boundsapproach for layered networks is proposed in [65, 64] and an

elaborate bounding scheme with non-linear objective function was proposed in [87].

Of all the methods mentioned, only bounded conditioning andATB offer any-time

properties, namely, improve the bounds given more time to explore more cutset instances

and converge to exact posterior marginals. It is also worth noting that our approach offers

a complete framework for computing bounds where any bounding algorithm can be used

to bound P(c,e) and P(x,c,e) for partially-instantiated tuples.

223



Chapter 5

Conclusions
When it is not in our power to determine what is true,

we ought to follow what is most probable.
-Rene Descartes

In this final chapter, we conclude the dissertation with a discussion of contributions

and possible directions for future work.

Our research addresses the problem of answering Bayesian queries in networks whose

induced width is so large that using exact algorithms is infeasible. In such cases, we resort

to using approximation and bounding methods. In this dissertation, we showed how ex-

isting approximation and bounding algorithms can be improved by combining them with

exact inference.

5.1 Contributions

Our main contributions to AI research are three novel schemes for automated reasoning in

Bayesian networks:

• Cutset sampling. In Chapter 2 we proposed a general scheme for sampling on a subset of

variables using Gibbs sampling and likelihood weighting inBayesian networks resulting

in a faster convergence of the estimates. The proposed algorithms remain time efficient

by exploiting the network structure to bound the complexityof exact inference used to

224



computed sampling probabilities.

• Minimumw-cutset Algorithm. The efficiency of any scheme utilizing computation on a

cutset can be improved by minimizing the size of the cutset for a fixed induced width

boundw. The problem of finding minimal loop-cutset has been addressed previously.

We contribute an algorithm for finding the minimum costw-cutset.

• Any-Time Bounding Framework. In Chapter 4, we extended the ideas explored in bounded

conditioning resulting in an any-time bounding framework that computes exactly a subset

of cutset tuples and uses any off-the-shelf method to bound the probability mass spread

over the remaining cutset tuples. Plugging bound propagation algorithm into proposed

framework, we obtained a hybrid scheme that is superior to both bounded conditioning

and bound propagation scheme.

The contributions of this dissertation to practical applications are in the area of plan-

ning and on-line decision support systems. Both of the proposed schemes for approximat-

ing and bounding posterior marginals are any-time. and converge to the correct posterior

marignals. Sampling estimates improve as the number of generated samples increases.

ATB bounds improve as the number of generated cutset tuples increases. The any-time

property is important in on-line applications, where the least cost-effective action is “no

action” and we cannot afford to wait idly for answers to our queries. We can take initial

action based on the rough estimates and return later for moreaccurate results. Consider an

autonomous system on board a satellite that has to make decisions on what information to

send back to the ground. Typical constraints are communication bandwidth and commu-

225



nication time. The on-board computer can start transmitting data based on the preliminary

estimates of their importance while refining the importancemeasures of the remaining data.

5.2 Future Work

The future work will focus on improving the efficiency of the proposed schemes and ex-

tending their applications to real-time on-line planning systems where new observations

become available during processing. We have already discussed in previous chapters the

possible improvements to the proposed approximation and bounding schemes. Incor-

porating new observation into our approximation and bounding schemes is motivated by

scenarios where new information is gained during computation process, possibly as a result

of some action. For example, if a set of actions leads to a deadend, it is only reasonable

to incorporate this result into our computation so that we donot repeat the same mistake

again. Of the previously proposed schemes, cutset conditioning addressed the problem of

incorporating new evidence but the solution implied updating all previously visited tuples.

Our objective is to incorporate new observations into the proposed sampling and bounding

schemes while minimizing the amount of “recomputation” required.

226



Bibliography
[1] COmputational INfrastructure for Operations Research. http://www.coin-or.org.

[2] “Munin - an expert EMG assistant,” inComputer-Aided Electromyography and Ex-
pert Systems, ch. 21(DESMEDT, J. E., ed.), Elsevier Science Publishers, Amster-
dam, 1990.

[3] A. B ECKER, R. BAR-YEHUDA, D. G., “Random algorithms for the loop cutset
problem,”Journal of Artificial Intelligence Research, pp. 219–234, 2000.

[4] A BDELBAR, A. M. and HEDETNIEMI, S. M., “Approximating maps for belief net-
works is NP-hard and other theorems,”Artificial Intelligence, vol. 102, pp. 21–38,
1998.

[5] A NDRIEU, C., DE FREITAS, N., and DOUCET, A., “Rao-Blackwellised particle
filtering via data augmentation,” inAdvances in Neural Information Processing Sys-
tems, MIT Press, 2002.

[6] A RNBORG, S. A., “Efficient algorithms for combinatorial problems ongraphs with
bounded decomposability - a survey,”BIT, vol. 25, pp. 2–23, 1985.

[7] BAR-YEHUDA, R., GEIGER, D., NAOR, J., and ROTH, R., “Approximation algo-
rithms for the vertex feedback set problems with applications to constraint satsifac-
tion and bayesian inference,” inProceedings of the 5th Annual ACM-Siam Sympo-
sium On Discrete Algorithms, Arlington, Virginia, 1994.

[8] BECKER, A., BAR-YEHUDA, R., and GEIGER, D., “Random algorithms for the
loop cutset problem,” inProceedings of Uncertainty in AI, 1999.

[9] BECKER, A. and GEIGER, D., “Approximation algorithms for the loop cutset prob-
lem,” in Proceedings of Uncertainty in AI (UAI’94), pp. 60–68, 1994.

[10] BECKER, A. and GEIGER, D., “A sufficiently fast algorithm for finding close to
optimal junction trees,” inProceedings of Uncertainty in AI, pp. 81–89, 1996.

[11] BEINLICH , I., SUERMONDT, G., CHAVEZ , R., and COOPER, G., “The ALARM
monitoring system: A case study with two probabilistic inference techniques for
belief networks,” inSecond European Conference on AI and Medicine, Berlin, 1989,
Springer–Verlag, 1989.

[12] BELLARE, M., HELVIG , C., ROBINS, G., and ZELIKOVSKY, A., “Provably good
routing tree construction with multi-port terminals,” inTwenty-Fifth Annual ACM
Symposium on Theory of Computing, pp. 294–304, 1993.

[13] BERTELE, U. and BRIOSCHI, F., Nonserial Dynamic Programming. Academic
Press, 1972.

227



[14] BIDYUK , B. and DECHTER, R., “Cycle-cutset sampling for Bayesian networks,” in
16th Canadian Conference on AI, pp. 297–312, 2003.

[15] BIDYUK , B. and DECHTER, R., “Empirical study of w-cutset sampling for Bayesian
networks,” inUAI, pp. 37–46, 2003.

[16] BIDYUK , B. and DECHTER, R., “On finding minimal w-cutset problem,” inUncer-
tainty in AI, pp. 43–50, Morgan Kaufmann, 2004.

[17] BIENSTOCK, D., Potential function methods for approximately solving linear pro-
gramming problems: theory and practice. Kluwer Academic Publishers, 2002.

[18] BILLINGSLEY, P.,Convergence of Probability Measures. John Wiley & Sons, New
York, 1968.

[19] CANO, J. E., HERNANDEZ, L. D., and MORAL, S., “Importance sampling algo-
rithms for the propagation of probabilities on belief networks,” International Journal
of Approximate Reasoning, vol. 15, pp. 77–92, 1996.

[20] CASELLA , G. and ROBERT, C. P., “Rao-Blackwellisation of sampling schemes,”
Biometrika, vol. 83, no. 1, pp. 81–94, 1996.

[21] CHENG, J. and DRUZDZEL, M. J., “AIS-BN: An adaptive importance sampling
algorithm for evidenctial reasoning in large baysian networks,” Journal of Aritificial
Intelligence Research, vol. 13, pp. 155–188, 2000.

[22] COOPER, G., “The computational complexity of probabilistic inferences,”Artificial
Intelligence, vol. 42, pp. 393–405, 1990.

[23] COZMAN , F. G., “Generalizing variable-elimination in Bayesian networks,” in
Workshop on Probabilistic reasoning in Bayesian networks atSBIA/Iberamia 2000,
pp. 21–26, 2000.

[24] DAGUM , P. and LUBY, M., “Approximating probabilistic inference in Bayesian be-
lief networks is NP-hard,”Artificial Intelligence, vol. 60, no. 1, pp. 141–153, 1993.

[25] DAGUM , P. and LUBY, M., “An optimal algorithm formonte carlo estimation (ex-
tended abstract),” inProceedings of the 36th IEEE Symposium on Foundations of
Computer Science, Portland, Oregon, pp. 142–149, 1995.

[26] DAGUM , P. and LUBY, M., “An optimal approximation algorithm for Bayesian in-
ference.,”Artificial Intelligence, vol. 93, pp. 1–27, 1997.

[27] DECHTER, R., “Enhancement schemes for constraint processing: Backjumping,
learning and cutset decomposition,”Artificial Intelligence, vol. 41, pp. 273–312,
1990.

228



[28] DECHTER, R., “Bucket elimination: A unifying framework for reasoning,” Artificial
Intelligence, vol. 113, pp. 41–85, 1999.

[29] DECHTER, R.,Constraint Processing. Morgan Kaufmann, 2003.

[30] DECHTER, R. and FATTAH , Y. E., “Topological parameters for time-space tradeoff,”
Artificial Intelligence, vol. 125, no. 1-2, pp. 93–118, 2001.

[31] DECHTER, R., KASK, K., and MATEESCU, R., “Iterative join-graph propagation,”
in Uncertainty in AI, pp. 128–136, 2002.

[32] DOUCET, A. and ANDRIEU, C., “Iterative algorithms for state estimation of jump
markov linear systems,”IEEE Transactions on Signal Processing, vol. 49, no. 6,
pp. 1216–1227, 2001.

[33] DOUCET, A., ANDRIEU, C., and GODSILL, S., “On sequential Monte Carlo sam-
pling methods for Bayesian filtering,”Statistics and Computing, vol. 10, no. 3,
pp. 197–208, 2000.

[34] DOUCET, A., DE FREITAS, N., MURPHY, K., and RUSSELL, S., “Rao-
Blackwellised particle filtering for dynamic Bayesian networks,” in Uncertainty in
AI, pp. 176–183, 2000.

[35] DOUCET, A., DEFREITAS, N., and GORDON, N., Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York, Inc., 2001.

[36] DOUCET, A., GORDON, N., and KRISHNAMURTHY, V., “Particle filters for state
estimation of jump markov linear systems,” tech. rep., Cambridge University Engi-
neering Department, 1999.

[37] EDWARDS, R. and SOKAL , A., “Generalization of the fortuin-kasteleyn-swendsen-
wang representation and monte carlo algorithm,”Physical Review D, vol. 38, no. 6,
pp. 2009–12, 1988.

[38] ESCOBAR, M. D., “Estimating normal means iwth a dirichlet process prior,” Journal
of the American Statistical Aasociation, vol. 89, pp. 268–277, 1994.

[39] FREY, B. J. and MACKAY, D. J. C., “A revolution: Belief propagation in graphs
with cycles,” inNeural Information Processing Systems, vol. 10, 1997.

[40] FUNG, R. and CHANG, K.-C., “Weighing and integrating evidence for stochastic
simulation in Bayesian networks,” inUncertainty in AI, pp. 209–219, 1989.

[41] FUNG, R. andDEL FAVERO, B., “Backward simulation in Bayesian networks,” in
Uncertainty in AI, pp. 227–234, Morgan Kaufmann Publishers, 1994.

229



[42] GAREY, M. R. and JOHNSON, D. S., “Computers and intractability: A guide to the
theory of NP-completeness,” inW. H. Freeman and Company, San Francisco, 1979.

[43] GEIGER, D. and FISHELSON, M., “Optimizing exact genetic linkage computations,”
in 7th Annual International Conf. on Computational Molecular Biology, pp. 114–
121, 2003.

[44] GELFAND, A. and SMITH , A., “Sampling-based approaches to calculating marginal
densities,”Journal of the American Statistical Association, vol. 85, pp. 398–409,
1990.

[45] GEMAN , S. and GEMAN , D., “Stochastic relaxations, Gibbs distributions and the
Bayesian restoration of images,”IEEE Transaction on Pattern analysis and Machine
Intelligence, vol. 6, pp. 721–742, 1984.

[46] GEYER, C. J., “Practical markov chain monte carlo,”Statistical Science, vol. 7,
pp. 473–483, 1992.

[47] GILKS , W., RICHARDSON, S., and SPIEGELHALTER, D., Markov chain Monte
Carlo in practice. Chapman and Hall, 1996.

[48] GILKS , W. R. and WILD , P., “Adaptive rejection sampling for Gibbs sampling,”
Applied Statistics, vol. 41, pp. 337–348, 1992.

[49] GOGATE, V. and DECHTER, R., “A complete anytime algorithm for treewidth,” in
Uncertainty in AI, 2004.

[50] GOTTLOB, G., LEONE, N., and SCARELLO, F., “A comparison of structural CSP
decomposition methods,” inProceedings of the 16th International Joint Conference
on Artificial Intelligence (IJCAI), pp. 394–399, Morgan Kaufmann, 1999.

[51] H. J. SUERMONDT, G. F. C. and HECKERMAN, D. E., “A combination of cutset
conditioning with clique-tree propagation in the Path-finder system,” inUncertainty
in Artificial Intelligence (UAI’91), pp. 245–253, 1991.

[52] HASTINGS, W. K., “Monte carlo sampling using markov chains and their applica-
tions,” Biometrica, vol. 57, no. 1, pp. 97–109, 1970.

[53] HECKERMAN, D., HORVITZ, E., and NATHAWANI , B., “Towards normative expert
systems: Part i. the pathfinder project,”Methods of Information in Medicine, vol. 31,
no. 2, pp. 90–105, 1992.

[54] HENRION, M., “Propagating uncertainty in Bayesian networks by probabilistic logic
sampling,” inUncertainty in AI, pp. 149–163, 1988.

[55] HIGDON, D., “Auxiliary variable methods for Markov Chain Monte Carlowith ap-
plications,”American Statistical Association, vol. 93, pp. 585–595.

230



[56] HORVITZ, E., SUERMONDT, H., and COOPER, G., “Bounded conditioning: Flexi-
ble inference for decisions under scarce resources,” inWorkshop on Uncertainty in
Artificial Intelligence, pp. 181–193, 1989.

[57] JENSEN, C., KONG, A., and KJÆRULFF, U., “Blocking Gibbs sampling in very
large probabilistic expert systems,”International Journal of Human Computer Stud-
ies. Special Issue on Real-World Applications of UncertainReasoning., vol. 42,
no. 6, pp. 647–666, 1995.

[58] JENSEN, C. and KONG, A., “Blocking Gibbs sampling for linkage analysis in large
pedigrees with many loops,” Research Report R-96-2048, Aalborg University, Den-
mark, 1996.

[59] JENSEN, F. V., LAURITZEN, S. L., and OLESEN, K. G., “Bayesian updating in
causal probabilistic networks by local computation,”Computational Statistics Quar-
terly, vol. 4, pp. 269–282, 1990.

[60] JONES, G. and HOBERT, J. P., “Honest exploration of intractable probability dis-
tributions via markov chain monte carlo,”Statist. Sci., vol. 16, no. 4, pp. 312–334,
2001.

[61] KARP, R., “Reducibility among combinatorial problems,” inComplexity of Com-
puter Computations(M ILLER , R. and THATCHER, J., eds.), pp. 85–103, Plenum
Press, New York, 1972.

[62] KASK, K. and DECHTER, R., “Stochastic local search for Bayesian networks,”
in Workshop on AI and Statistics(HECKERMAN, D. and WHITTAKER , J., eds.),
pp. 113–122, Morgan Kaufmann, 1999.

[63] KASK, K., DECHTER, R., LARROSA, J., and DECHTER, A., “Unifying cluster-tree
decompositions for reasoning in graphical models,”Artificial Intelligence, vol. 166,
pp. 165–193, 2005.

[64] KEARNS, M. and SAUL , L., “Large deviation methods for approximate probabilistic
inference, with rates of convergence,” inProc. of Uncertainty in AI, pp. 311–319,
Morgan Kaufmann, 1998.

[65] KEARNS, M. and SAUL , L., “Inference in multilayer networks via large deviation
bounds,”Advances in Neural Information Processing Systems, vol. 11, pp. 260–266,
1999.

[66] KJÆRULFF, U.,Triangulation of graphs - algorithms giving small total space. No. R
90-09, 1990.

[67] KJÆRULFF, U., “HUGS: Combining exact inference and Gibbs sampling in junction
trees,” inUncertainty in AI, pp. 368–375, Morgan Kaufmann, 1995.

231



[68] KOLLER, D., LERNER, U., and ANGELOV, D., “A general algorithm for approx-
imate inference and its application to hybrid bayes nets,” in Uncertainty in AI,
pp. 324–333, 1998.

[69] KONG, A., L IU , J. S., and WONG, W., “Sequential imputations and Bayesian miss-
ing data problems,”Journal of the American Statistical Association, vol. 89, no. 425,
pp. 278–288, 1994.

[70] KRISTENSEN, K. and RASMUSSEN, I., “The use of a Bayesian network in the de-
sign of a decision support system for growing malting Barley without use of pesti-
cides,”Computers and Electronics in Agriculture, vol. 33, pp. 197–217, 2002.

[71] KSCHISCHANG, F. R. and FREY, B. J., “Iterative decoding of compound codes by
probability propagation in graphical models,”IEEE Journal on Selected Areas in
Communications, vol. 16, pp. 219–230, 1998.

[72] KULLBACK , S.,Information Theory and Statistics. Wiley, New York, 1959.

[73] LARKIN , D., “Approximate decomposition: A method for bounding andestimating
probabilistic and deterministic queries,” inProceedings of UAI, pp. 346–353, 2003.

[74] LARROSA, J. and DECHTER, R., “Boosting search with variable elimination in con-
straint optimization and constraint satisfaction problems,” Constraints, vol. 8, no. 3,
pp. 303–326, 2003.

[75] LAURITZEN, S. and SPIEGELHALTER, D., “Local computation with probabilities
on graphical structures and their application to expert systems,”Journal of the Royal
Statistical Society, Series B, vol. 50(2), pp. 157–224, 1988.

[76] LEISINK, M. A. R. and KAPPEN, H. J., “Bound propagation,”Journal of Artificial
Intelligence Research, vol. 19, pp. 139–154, 2003.

[77] L IU , J.,Correlation Structure and Convergence Rate of the Gibbs Sampler. 1991.

[78] L IU , J., “The collapsed Gibbs sampler in Bayesian computations with applica-
tions to a gene regulation problem,”Journal of the American Statistical Association,
vol. 89, no. 427, pp. 958–966, 1994.

[79] L IU , J., WONG, W., and KONG, A., “Covariance structure of the Gibbs sam-
pler with applications to the comparison of estimators and augmentation schemes,”
Biometrika, vol. 81, no. 1, pp. 27–40, 1994.

[80] L IU , J. S., “Nonparametric hierarchical bayes via sequential imputations,”Annals
of Statistics, vol. 24, no. 3, pp. 911–930, 1996.

[81] L IU , J. S.,Monte Carlo Strategies in Scientific Computing. Springer-Verlag, New
York, Inc., 2001.

232



[82] LUND, C. and YANNAKAKIS , M., “On the hardness of approximating minimization
problems,”J. of ACM, vol. 41, pp. 960–981, September 1994.

[83] MACEACHERN, S., CLYDE , M., and LIU , J., “Sequential importance sampling for
nonparametric bayes models: The next generation,”The Canadian Journal of Statis-
tics, vol. 27, pp. 251–267, 1998.

[84] MACEACHERN, S. N., “Estimating normal means with a conjugate style dirichlet
process prior,”Communications in Statistics-Simulation and Computation, vol. 23,
no. 3, pp. 727–741, 1994.

[85] MACKAY, D., “Introduction to monte carlo methods,” inProceedings of NATO Ad-
vanced Study Institute on Learning in Graphical Models. Sept 27-Oct 7, pp. 175–
204, 1996.

[86] MAIER, D., “The theory of relational databases,” inComputer Science Press,
Rockville, MD, 1983.

[87] MANNINO , M. V. and MOOKERJEE, V. S., “Probability bounds for goal directed
queries in Bayesian networks,”IEEE Transactions on Knowledge and Data Engi-
neering, vol. 14, pp. 1196–1200, September/October 2002.

[88] MCELIECE, R., MACKAY, D., and CHENG, J.-F., “Turbo decoding as an instance
of pearl’s belief propagation algorithm,”IEEE J. Selected Areas in Communication,
1997.

[89] METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH, M. N., TELLER, A. H.,
and TELLER, E., “Equations of state calculations by fast computing,”Journal of
Chemical Physics, vol. 21, no. 6, pp. 1087–1091, 1953.

[90] MORAL, S. and SALMERON, A., “Dynamic importance sampling in bayesian net-
works based on probability trees,”International Journal of Approximate Reasoning,
vol. 38, pp. 245–261, 2005.

[91] MURPHY, K. P., WEISS, Y., and JORDAN, M. I., “Loopy belief propagation for ap-
proximate inference: An empirical study,” inUncertainty in AI, pp. 467–475, 1999.

[92] PARK , J., “Map complexity results and approximation methods,” in UAI, pp. 388–
396, Morgan Kaufmann Publishes, Inc., 2002.

[93] PARK , J. and DARWICHE, A., “Approximating map using local search,” inUAI,
pp. 388–396, Morgan Kaufmann Publishes, Inc., 2001.

[94] PARK , J. and DARWICHE, A., “Complexity results and approximation strategies for
map explanations,”JAIR, 2003.

233



[95] PARKER, R. and MILLER , R., “Using causal knowledge to create simulated patient
cases: the CPCS project as an extension of INTERNIST-1,” inProc. 11th Symp.
Comp. Appl. in Medical Care, pp. 473–480, 1987.

[96] PEARL, J.,Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[97] PEOT, M. A. and SHACHTER, R. D., “Fusion and propagation with multiple obser-
vations in belief networks,”Artificial Intelligence, vol. 48, pp. 299–318, 1992.

[98] POOLE, D., “Probabilistic conflicts in a search algorithm for estimating posterior
probabilities in Bayesian networks,”Artificial Intelligence, vol. 88, no. 1–2, pp. 69–
100, 1996.

[99] POOLE, D., “Context-specific approximation in probabilistic inference,” inProc. of
Uncertainty in Artificial Intelligence (UAI), pp. 447–454, 1998.

[100] PRADHAN , M., PROVAN, G., MIDDLETON, B., and HENRION, M., “Knowledge
engineering for large belief networks,” inProceedings of Tenth Conf. on Uncertainty
in Artificial Intelligence, Seattle, WA, pp. 484–490, 1994.

[101] RAJAGOPALAN, S. and VAZIRANI , V., “Primal-dual RNC approximation algo-
rithms for (multi)set (multi)cover and covering integer programs,”SIAM J. of Com-
puting, vol. 28, no. 2, pp. 525–540, 1998.

[102] RISH, I. and DECHTER, R., “To guess or to think? Hybrid algorithms for SAT,” in
Principles of Constraint Programming (CP-96), pp. 555–556, 1996.

[103] RISH, I. and DECHTER, R., “Resolution vs. search; two strategies for sat,”J. of
Automated Reasoning, vol. 24(1/2), pp. 225–275, 2000.

[104] RISH, I., KASK, K., and DECHTER, R., “Empirical evaluation of approximation
algorithms for probabilistic decoding,” inUncertainty in AI, 1998.

[105] ROBERTS, G. O. and SAHU , S. K., “Updating schemes; correlation structure;
blocking and parameterization for the Gibbs sampler,”Journal of the Royal Sta-
tistical Society, Series B, vol. 59, no. 2, pp. 291–317, 1997.

[106] ROSTI, A.-V. and GALES, M., “Rao-Blackwellised Gibbs sampling for switching
linear dynamical systems,” inIEEE International Conference on Acoustics, Speech,
and Signal Processing (ICASSP 2004), pp. 809–812, 2004.

[107] ROTH, D., “On the hardness of approximate reasoning,”Artificial Intelligence,
vol. 82, pp. 273–302, Apr. 1996.

[108] SCHERVISH, M. and CARLIN , B., “On the convergence of successive substitution
sampling,”Journal of Computational and Graphical Statistics, vol. 1, pp. 111–127,
1992.

234



[109] SHACHTER, R. D., ANDERSON, S. K., and SOLOVITZ , P., “Global conditioning for
probabilistic inference in belief networks,” inUncertainty in Artificial Intelligence
(UAI’94), pp. 514–522, 1994.

[110] SHACHTER, R. D. and PEOT, M. A., “Simulation approaches to general probabilis-
tic inference on belief networks,” inUncertainty in AI, pp. 221—231, 1989.

[111] SHIMONY, S. E., “Finding MAPs for belief networks is NP-hard,”Artificial Intelli-
gence, vol. 68, pp. 399–410, 1994.

[112] SHOIKET, K. and GEIGER, D., “A practical algorithm for finding optimal trian-
gulations,” inFourteenth National Conference on Artificial Intelligence (AAAI’97),
pp. 185–190, 1997.

[113] STEIGER, N. M. and WILSON, J. R., “Convergence properties of the batch means
method for simulation output analysis,”INFORMS Journal on Computing, vol. 13,
no. 4, pp. 277–293, 2001.

[114] SUERMONDT, H. J. and COOPER, G. F., “Probabilistic inference in multiply con-
nected belief network using loop cutsets,”International Journal of Approximate Rea-
soning, vol. 4, pp. 283–306, 1990.

[115] SWENDSEN, R. and WANG, J., “The calculation of posterior distributions by data
augmentation (with discussion),”American Statistical Association, vol. 82, no. 382,
pp. 528–540, 1987.

[116] TANNER, M. A. and WONG, W. H., “The calculation of posterior distributions
by data augmentation,”Journal of the American Statistical Association, vol. 82,
pp. 528–550, 1987.

[117] TIERNEY, L., “Markov chains for exploring posterior distributions,” Annals of
Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

[118] TREVISAN, L., “Non-approximability results for optimization problems on bounded
degree instances,”In proceedings of 33rd ACM STOC, 2001.

[119] VAZIRANI , V. V., Approximation Algorithms. Springer, 2001.

[120] YUAN , C. and DRUZDZEL, M., “An importance sampling algorithm based on evi-
dence pre-propagation,” inUncertainty in AI, pp. 624–631, 2003.

235



Appendix A

KL-distance between target and sampling
distribution
LEMMA A.0.1 Given non-negative real weightsw1, ..., wn s.t.

∑

iwi = 1, and given two
set of non-negative valuesf1, ..., fn andg1, ..., gn s.t.∀i, gi = fiǫi, where0 ≤ ǫi ≤ 1, then:

R =

∑

iwifigi

(
∑

iwifi)(
∑

iwigi)
≥ 1

Proof. The proof is based on power means inequality. Using the termsdefined here, the
r-th weighted power mean of thefi is defined as:

M r
w(f1, ..., fn) = (w1f

r
1 + w2f

r
2 + ...+ wnf

r
n)1/r

The power means inequality states that ifr < s, then:

M r
w ≤M s

w

Let r = 1 ands = 2. Then we get:

w1f1 + w2f2 + ...+ wnfn ≤ (w1f
2
1 + w2f

2
2 + ...+ wnf

2
n)1/2

which is equivalent to:

(w1f1 + w2f2 + ...+ wnfn)2 ≤ w1f
2
1 + w2f

2
2 + ...+ wnf

2
n (A.1)

Deviding both sides of inequality by(w1f1 + w2f2 + ...+ wnfn)2, we get:

1 ≤ w1f
2
1 + w2f

2
2 + ...+ wnf

2
n

(w1f1 + w2f2 + ...+ wnfn)2
=

∑

iwif
2
i

(
∑

iwifi)2
(A.2)

Letw′
i = ǫiwiP

j ǫjwj
. Write power means inequality forfi using weightsw′

1, ..., w
′
n:

1 ≤
∑

iw
′
if

2
i

(
∑

iw
′
ifi)2

Substituting ǫiwiP
j ǫjwj

for w′
i, we get:

1 ≤
∑

i
ǫiwiP
j ǫjwj

f 2
i

(
∑

i
ǫiwiP
j ǫjwj

fi)2
=

P
i ǫiwif

2
iP

j ǫjwj

(
P

i ǫiwifiP
i ǫiwi

)2
=

(
∑

i ǫiwif
2
i )(

∑

i ǫiwi)
2

(
∑

i ǫiwi)(
∑

i ǫiwifi)2
=

(
∑

i ǫiwif
2
i )(

∑

i ǫiwi)

(
∑

i ǫiwifi)2

236



By decomposing the fraction on the right-hand side into a product of two fractions, we get:

1 ≤
∑

i ǫiwif
2
i

∑

i ǫiwifi

∑

i ǫiwi
∑

i ǫiwifi

=

∑

iwigifi
∑

iwigi

∑

i ǫiwi
∑

i ǫiwifi

(A.3)

We focus on analyzing the factor
P

i ǫiwiP
i ǫiwifi

. Sincea
b
≤ a+δ

b+δ
, then:

∑

i ǫiwi
∑

i ǫiwifi

≤
∑

i ǫiwi +
∑

iwifi(1− ǫi)
∑

i ǫiwifi +
∑

iwifi(1− ǫi)
=

∑

i ǫiwi +
∑

iwifi −
∑

iwifiǫi
∑

iwifi

(A.4)

=

∑

iwifi +
∑

i ǫiwi(1− fi)
∑

iwifi

≤
∑

iwifi +
∑

iwi(1− fi)
∑

iwifi

(A.5)

=

∑

iwi
∑

iwifi

=
1

∑

iwifi

(A.6)

Substituting right-hand side of Eq. A.6 for
P

i ǫiwiP
i ǫiwifi

in Eq. A.3, we get:

1 ≤
∑

iwigifi
∑

iwigi

∑

i ǫiwi
∑

i ǫiwifi

≤
∑

iwigifi
∑

iwigi

1
∑

iwifi

=

∑

iwigifi

(
∑

iwigi)(
∑

iwifi)
= R

THEOREM 2.3.3 (Reduced Information Distance)
Proof. Assume we have a Bayesian networkB overX = {X1, ..., Xn}. Let lower case
x denote an instantiation of all variables. LetE ⊂ X be a subset of evidence variables,
|E| = m. Let C = {C1, ..., Cm} ⊂ X\E denote a subset of variables.The target distri-
bution of Likelihood Weighting is denotedP (X|e). The sampling distribution of Likeli-
hood Weighting is denotedQ(X). When sampling over cutsetC, the target distribution is
P (C|e) and sampling distribution isQ(C).

First, we evaluateKL(P (C|e), Q(C)), denotedKLc. By definition:

KLc =
∑

c

P (c|e) log
P (c|e)
Q(c)

(A.7)

=
∑

c

P (c|e) log
P (c, e)

Q(c)P (e)
(A.8)

=
∑

c

P (c|e) log
P (c, e)

Q(c)
−

∑

c

P (c|e) lgP (e) (A.9)

=
∑

c

P (c|e) log
P (c, e)

Q(c)
− logP (e) (A.10)

To simplify analysis, we focus on evaluatingKLc without constantlogP (e). We denote:

KL′
c = KLc + logP (e) =

∑

c

P (c|e) log
P (c, e)

Q(c)
(A.11)

237



For each variableEi ∈ E, let c1:ki
denote a subset of cutset variables that precedeEi

in the sampling order. Letcki+ = c\c1:ki
. Note, thatP (c,e)

Q(c)
=

∏

Ei∈E P (ei|c1:ki
, e1:i−1).

Therefore:

KL′
c =

∑

c

P (c|e) log
∏

Ei∈E

P (ei|c1:ki
, e1:i−1) (A.12)

Sincelog of a product equals the sum oflogs of factors, then we can transform the expres-
sion above into:

KL′
c =

∑

c

P (c|e)
∑

Ei∈E

logP (ei|c1:ki
, e1:i−1) =

∑

Ei∈E

∑

c

P (c|e) logP (ei|c1:ki
, e1:i−1)

(A.13)

=
∑

Ei∈E

∑

c

P (c1:ki
, cki+|e) logP (ei|c1:ki

, e1:i−1) (A.14)

Clearly, we can sum out variables incki+.

KL′
c =

∑

Ei∈E

∑

c1:ki

P (c1:ki
|e) logP (ei|c1:ki

, e1:i−1) (A.15)

Next, we evaluateKL(P (X|e), Q(X)), denotedKLx. LetY = X\C,E. By definition:

KLx =
∑

c,y

P (y, c|e) log
P (y, c|e)
Q(c, y)

(A.16)

ReplacingP (y, c|e) with P (y, c, e)/P (e), similar toKLc, we get:

KLx =
∑

c,y

P (y, c|e) log
P (y, c, e)

Q(c, y)
− logP (e) (A.17)

Again, to simplify notation, we denote:

KL′
x = KLx + logP (e) =

∑

c,y

P (y, c|e) log
P (y, c, e)

Q(c, y)
(A.18)

Using equalityP (y,c,e)
Q(y,c)

=
∏

Ei∈E P (ei|pai) yields:

KL′
x =

∑

c,y

P (y, c|e) log
∏

Ei∈E

P (ei|pai) (A.19)

Sincelog of a product equals the sum oflogs of factors, then we get:

KL′
x =

∑

c,y

P (y, c|e)
∑

Ei∈E

logP (ei|pai) =
∑

Ei∈E

∑

c,y

P (y, c|e) logP (ei|pai) (A.20)

238



Without loss of generality, we can assume thatc1:ki
andpai are disjoint. Letyi = (c ∪

y)\c1:ki
, pai. Then:

KL′
x =

∑

Ei∈E

∑

c1:ki
,yi

∑

pai

P (c1:ki
, pai, yi|e) logP (ei|pai) (A.21)

Clearly, we can sum out variables inyi:

KL′
x =

∑

Ei

∑

c1:ki

∑

pai

P (c1:ki
, pai|e) logP (ei|pai) (A.22)

=
∑

Ei

∑

c1:ki

∑

pai

P (pai|c1:ki
, e)P (c1:ki

|e) logP (ei|pai) (A.23)

=
∑

Ei

∑

c1:ki

P (c1:ki
|e)

∑

pai

P (pai|c1:ki
, e) logP (ei|pai) (A.24)

Due to Jensen’s inequality:
∑

pai

P (pai|c1:ki
, e) logP (ei|pai) ≥ log

∑

pai

P (pai|c1:ki
, e)P (ei|pai) (A.25)

Consequently:

KL′
x ≥

∑

Ei

∑

c1:ki

P (c1:ki
|e) log

∑

pai

P (pai|c1:ki
, e)P (pai|c1:ki

, e)P (ei|pai) (A.26)

Thus:

KLx −KLc = KL′
x − logP (e)−KL′

c + logP (e) = KL′
x −KL′

c (A.27)

≥
∑

Ei∈E

∑

c1:ki

P (c1:ki
|e) log

∑

pai

P (pai|c1:ki
, e)P (ei|pai) (A.28)

−
∑

Ei∈E

∑

c1:ki

P (c1:ki
|e) logP (ei|c1:ki

, e1:i−1) (A.29)

=
∑

Ei∈E

∑

c1:ki

P (c1:ki
|e)[log

∑

pai

P (pai|c1:ki
, e)P (ei|pai)− logP (ei|c1:ki

, e1:i−1)]

(A.30)

Sing log a− log b = log a
b
, then we get :

KLx −KLc ≥
∑

Ei

∑

c1:ki

P (c1:ki
|e) log

∑

pai
P (ei|pai)P (pai|c1:ki

, e)

P (ei|c1:ki
, e1:i−1)

(A.31)

Let us evaluate thelog:

l =

∑

pai
P (ei|pai)P (pai|c1:ki

, e)

P (ei|c1:ki
, e1:i−1)

239



Multiplying the numerator and denominator of the fraction by P (c1:ki
, e) yields:

l =

∑

pai
P (ei|pai)P (pai, c1:ki

, e)

P (ei|c1:ki
, e1:i−1)P (c1:ki

, e)

Denotinge1:i−1 = {e1, ..., ei−1} andei:m = {ei, ..., em}, we can rewrite:

l =

∑

pai
P (ei|pai)P (pai, c1:ki

, e1:i−1, ei:m)

P (ei|c1:ki
, e1:i−1)P (c1:ki

, e1:i−1, ei:m)
(A.32)

=

∑

pai
P (ei|pai)P (ei:m|pai, c1:ki

, e1:i−1)P (pai|c1:ki
, e1:i−1)P (c1:ki

, e1:i−1)

P (ei|c1:ki
, e1:i−1)P (ei:m|c1:ki

, e1:i−1)P (c1:ki
, e1:i−1)

(A.33)

The termsP (ei|c1:ki
, e1:i−1) in the denominator and nominator cancel-out, yielding:

l =

∑

pai
P (ei|pai)P (ei:m|pai, c1:ki

, e1:i−1)P (pai|c1:ki
, e1:i−1)

P (ei|c1:ki
, e1:i−1)P (ei:m|c1:ki

, e1:i−1)

We can apply Lemma A.0.1 tol by letting:

fi = P (ei|pai, c1:ki
, e1:i−1) = P (ei|pai)

gi = P (ei:m|pai, c1:ki
, e1:i−1)

ǫi = P (ei+1:m|pai, c1:ki
, e1:i)

wi = P (pai|c1:ki
, e1:i−1)

and also observing that:
∑

i

wifi =
∑

pai

P (ei|pai, c1:ki
, e1:i−1)P (pai|c1:ki

, e1:i−1) = P (ei|c1:ki
, e1:i−1)

∑

i

wigi =
∑

pai

P (ei:m|pai, c1:ki
, e1:i−1)P (pai|c1:ki

, e1:i−1) = P (ei:m|c1:ki
, e1:i−1)

Therefore, due to Lemma A.0.1, we get:

l ≥ 1

Therefore:
lg l ≥ 1

Subsequently:

KLx −KLc ≥ 0

Proof is complete.

240



Appendix B

Analysis of Bounded Conditioning
In [56], the lower and upper bounds are computed first for caseof evidence e where all
tuplesci are explored (bounding from complete state) and then for case of adding new ev-
idence f where only a subset of tuples is explored (bounding from incomplete state). We
will disregard here evidence e and bounding from complete state because our objective is
to avoid ever exploring all tuples, with or without evidence. Also, to maintain the same
notation used throughout this paper, we will denote new evidence with e, not f as in [56].
Thus, we consider a simple case where we are given a Bayesian network, a cutset C, ev-
idence e, and some means of selecting h cutset tuples out of total M. Following the rules
of bounding from incomplete state in [56] while disregarding evidence e in [56], we have
following lower and upper bounds:

PL(x|e) =
h

∑

i=1

P (x|ci, e)wL
i (B.1)

PU(x|e) =
h

∑

i=1

P (x|ci, e)wU
i +

j
∑

i=h+1

wU
i +

M
∑

i=j+1

wU ′

i (B.2)

Since the sum
∑j

i=h+1w
U
i in PU(x|e) corresponds in [56] to summing over tuples where

we computeP (ci, e) but notP (x, ci, e) and we do not allow this situation to occur (if we
took the trouble of computingP (ci, e), it makes sense to computeP (x|ci, e) and obtain the
P (x, ci, e) = P (x|ci, e)P (ci, e)), then we set h=j and simplify:

PL(x|e) =
h

∑

i=1

P (x|ci, e)wL
i (B.3)

PU(x|e) =
h

∑

i=1

P (x|ci, e)wU
i +

M
∑

i=h+1

wU ′

i (B.4)

The weights in the above expressions are defined as follows:

wL
i =

P (ci|e)
∑h

k=1 P (ck|e) +
∑M

k=h+1 P (ck)
=

P (ci, e)
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck)
(B.5)

wU
i =

P (ci|e)
∑h

k=1 P (ck|e)
=

P (ci, e)
∑h

k=1 P (ck, e)
(B.6)

wU ′

i =
P (ci)

∑h
k=1w

L
k + (1−∑M

k=h+1w
U
k )

(B.7)

241



We can simplify computation ofwU ′

i observing that actually:

M
∑

k=h+1

wU
k =

∑h
k=1 P (ck, e)

∑h
k=1 P (ck, e)

= 1

and then substitutingwL
i with its expanded form, we obtain:

wU ′

i =
P (ci)

∑h
k=1w

L
k + 1− 1

=
P (ci)

∑h
k=1w

L
k

=
P (ci)(

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck))

∑h
k=1 P (ck, e)

Substituting weight formulas in the bounds expressions, weobtain:

PL(x|e) =
h

∑

i=1

P (x|ci, e) P (ci, e)
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck)

=

∑h
i=1 P (x|ci, e)P (ci, e)

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck)

=

∑h
i=1 P (x, ci, e)

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck)

PU(x|e) =
h

∑

i=1

P (x|ci, e)wU
i +

M
∑

i=h+1

wU ′

i

=
h

∑

i=1

P (x|ci, e) P (ci, e)
∑h

k=1 P (ck, e)
+

M
∑

i=h+1

P (ci)(
∑h

k=1 P (ck, e) +
∑M

k=h+1 P (ck))
∑h

k=1 P (ck, e)

=

∑h
i=1 P (x|ci, e)P (ci, e)

∑h
k=1 P (ck, e)

+

∑M
i=h+1 P (ci)(

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck))

∑h
k=1 P (ck, e)

=

∑h
i=1 P (x, ci, e)

∑h
k=1 P (ck, e)

+

∑M
i=h+1 P (ci)(

∑h
k=1 P (ck, e) +

∑M
k=h+1 P (ck))

∑h
k=1 P (ck, e)

=

∑h
i=1 P (x, ci, e)

∑h
k=1 P (ck, e)

+
M

∑

i=h+1

P (ci) +

∑M
k=h+1 P (ck)

∑h
k=1 P (ck, e)

242



Appendix C

Bounding posteriors of cutset nodes
So far, we only considered computation of posterior marginals for variableX ∈ X\C,E.
Now we focus on computing bounds for a cutset nodeCk ∈ C. Let c′k ∈ D(C) be some
value in domain ofCk. Then, we can compute exact posterior marginalP (ck|e) using
Bayes formula:

P (c′k|e) =
P (c′k, e)

P (e)
=

∑M
i=1 δ(c

′
k, c

i)P (ci, e)
∑M

i=1 P (ci, e)
(C.1)

whereδ(c′k, c
i) is a Dirac delta-function so thatδ(c′k, c

i) = 1 iff cik = c′k andδ(c′k, c
i) = 0

otherwise. To simplify notation, letZ = C\Z. Let Mk denote the number of tuples in
state-space ofZ. Then we can re-write the numerator as:

M
∑

i=1

δ(c′k, c
i)P (ci, e) =

Mk
∑

i=1

P (c′k, z
i, e)

and the denominator can be decomposed as:

M
∑

i=1

P (ci, e) =
∑

ck∈D(Ck)

Mk
∑

i=1

P (c′k, z
i, e)

Then, we can re-write the expression forP (c′k|e) as follows:

P (c′k|e) =

∑Mk

i=1 P (c′k, z
i, e)

∑

ck∈D(Ck)

∑Mk

i=1 P (ck, zi, e)
(C.2)

Let hck
be the number of full cutset tuples wherecik = ck. Then, we can decompose the

numerator in Eq. (C.2) as follows:

Mk
∑

i=1

P (c′k, z
i, e) =

hc′
k

∑

i=1

P (c′k, z
i, e) +

Mk
∑

i=hc′
k
+1

P (c′k, z
i, e)

Similarly, we can decompose the sums in the denominator:

∑

ck∈D(Ck)

Mk
∑

i=1

P (ck, z
i, e) =

∑

ck∈D(Ck)

hck
∑

i=1

P (ck, z
i, e) +

∑

ck∈D(Ck)

Mk
∑

i=hck
+1

P (ck, z
i, e)

After decomposition, the Eq. (C.2) takes on the form:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑Mk

i=hc′
k
+1 P (c′k, z

i, e)

∑

ck∈D(Ck)

∑hck

i=1 P (ck, zi, e) +
∑

ck∈D(Ck)

∑Mk

i=hck
+1 P (ck, zi, e)

(C.3)

243



Now, for conciseness, we can group together all fully instantiated tuples in the denominator:

∑

ck∈D(Ck)

hck
∑

i=1

P (ck, z
i, e) =

h
∑

i=1

P (ci, e)

Then, Eq. (C.3) transforms into:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑Mk

i=hc′
k
+1 P (c′k, z

i, e)

∑h
i=1 P (ci, e) +

∑

ck∈D(Ck)

∑Mk

i=hck
+1 P (ck, zi, e)

(C.4)

Now, we can replace each sum
∑Mk

i=hc′
k
+1 over unexplored cutset tuples with a sum over

the partially-instantiated cutset tuples. Denoting asM ′
ck

= Mk − hck
+ 1 the number of

partially instantiated cutset tuples forCk = ck, we obtain:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P (c′k, z
j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑

ck∈D(Ck)

∑M ′
ck

j=1 P (ck, z
j
1:qj
, e)

(C.5)

In order to obtain lower and upper bounds formulation, we will separate the sum of joint
probabilitiesP (c′k, z

j
1:qj
, e) whereCk = c′k from the rest:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P (c′k, z
j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑

M ′
c′
k

j=1 P (c′k, z
j
1:qj
, e) +

∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj
, e)

(C.6)

In the expression above, probabilitiesP (ck, z
i, e) andP (ci, e) are computed exactly since

they correspond to full cutset instantiations. ProbabilitiesP (ck, z
i
1:qi
, e), however, will be

bounded since only partial cutset is observed. Observing that both numerator and denom-
inator have componentP (c′k, z

i
1:qi
, e) and replacing it with an upper boundPU(c′k, z

i
1:qi
, e)

in both numerator and denominator, we will obtain an upper bound onP (c′k|e) due to
Lemma 4.3.2:

P (c′k|e) ≤
∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P
U(c′k, z

j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑

M ′
c′
k

j=1 P
U(c′k, z

j
1:qj
, e) +

∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj
, e)

(C.7)

Finally, replacingP (ck, z
j
1:qj
, e), ck 6= c′k, with a lower bound (also increasing fraction

value), we obtain:

P (c′k|e) ≤
∑

hc′
k

i=1 P (c′k, z
i, e) +

∑M ′
ck

j=1 P
U(c′k, z

j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑M ′
ck

j=1 P
U(c′k, z

j
1:qj
, e) +

∑

ck 6=c′
k

∑M ′
ck

j=1 P
L(ck, z

j
1:qj
, e)

= PU1
c

(C.8)

244



The lower bound derivation is similar. Taking Eq. (C.4) as thebasis, we first group together
all partially-instantiated tuples:

∑

ck∈D(Ck)

Mk
∑

i=hck
+1

P (ck, z
i, e) =

M
∑

i=h+1

P (ci, e)

transforming Eq. (C.4) into:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑Mck

i=hc′
k
+1 P (c′k, z

i, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci, e)
(C.9)

Now, replacing the summation of unexplored fully-instantiated tuples in Eq. (C.7) with
summation over corresponding partially-instantiated tuples, we obtain:

P (c′k|e) =

∑
hc′

k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P (c′k, z
j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P (cj1:qj
, e)

(C.10)

We obtain lower bound by replacingP (cj1:qj
, e) in the denominator with an upper bound

andP (c′k, z
j
1:qj
, e) in the numerator with a lower bound yielding:

P (c′k|e) ≥
∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P
L(c′k, z

j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P
U(cj1:qj

, e)
= PL1

c (C.11)

We can obtain a different lower bound if we start with Eq. (C.6)and replaceP (c′k, z
i
1:qi
, e) in

numerator and denominator with a lower bound. Lemma 4.3.2 guarantees that the resulting
fraction will be a lower bound onP (c′k|e):

P (c′k|e) ≥
∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P
L(c′k, z

j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑

M ′
c′
k

j=1 P
L(c′k, z

j
1:qj
, e) +

∑

ck 6=c′
k

∑M ′
ck

j=1 P (ck, z
j
1:qj
, e)

(C.12)

Finally, replacingP (ck, z
j
1:qj
, e) in Eq. (C.12) with a corresponding upper bound, we obtain

the second lower boundPL2
c :

P (c′k|e) ≥
∑

hc′
k

i=1 P (c′k, z
i, e) +

∑

M ′
c′
k

j=1 P
L(c′k, z

j
1:qj
, e)

∑h
i=1 P (ci, e) +

∑

M ′
c′
k

j=1 P
L(c′k, z

j
1:qj
, e) +

∑

ck 6=c′
k

∑M ′
ck

j=1 P
U(ck, z

j
1:qj
, e)

= PL2
c

(C.13)
The lower boundsPL1

c andPL2
c are respective cutset equivalents of the lower bounds

PL1 andPL2 obtained in Eq. (4.22) and (4.26). Hence, the result of Theorem 4.3.3 and
Corollary 4.3.3 apply.

245



With respect to computing bounds onP (c′k, z1:q, e) in Eq. (C.8) and (C.13) in practice,
we distinguish two cases. We demonstrate them on the exampleof upper bound.

In the first case, each partially instantiated tuplec1:q that includes nodeCk, namely
k ≤ q, can be decomposed asc1:q = z1:q

⋃

c′k so that:

PU(c′k, z1:q, e) = PU(c1:q, e)

The second case concerns the partially instantiated tuplesc1:q that do not include
nodeCk, namelyk > q. In that case, we compute upper bound by decomposing:

PU(c′k, z1:q, e) = PU(ck|c1:q)PU(c1:q, e)

246



Appendix D

Proofs for Chapter 4, Section 4.3
THEOREM 4.3.3 (Lower Bound Dominance1)Given a Bayesian networkB with a cutset
C and evidenceE, let X be some variable inB andx′ be a value in the domain ofX.
Assume an algorithmA computes boundsPL(cj1:qj

, e) andPU(cj1:qj
, e) on P (cj1:qj

, e) and

boundsPL(x|cj1:qj
, e) andPU(x|cj1:qj

, e) onP (x|cj1:qj
, e) for 1 ≤ j ≤ M ′ and∀x ∈ D(X).

Let:
PL(x, cj1:qj

, e) = PL(x|cj1:qj
, e)PL(cj1:qj

, e)

PU(x, cj1:qj
, e) = PU(x|cj1:qj

, e)PU(cj1:qj
, e)

If PL(x′|cj1:qj
, e) ≤ 1−∑

x 6=x′ PU(x|cj1:qi
, e) thenPL1(x′|e) ≤ PL2(x′|e)

wherePL1 andPL2 are defined in Eq. (4.22) and Eq. (4.26) respectively.
Proof. The numerators in Eq. (4.22) and Eq. (4.26) are the same. Hence, we only need
to compare denominators. LetD1 denote denominator inPL

1 andD2 denote denominator
in PL

2 . Each denominator contains a
∑h

i=1 P (ci, e) component which will cancel out in
D2 −D1. Therefore, the difference is:

D2 −D1 =
M ′
∑

i=h+1

PL(x′, ci1:qi
, e) +

∑

x 6=x′

M ′
∑

i=h+1

PU(x, ci1:qi
, e)−

M ′
∑

i=h+1

PU(ci1:qi
, e)

=
M ′
∑

i=h+1

[PL(x′, ci, e) +
∑

x 6=x′

PU(x, ci1:qi
, e)− PU(ci1:qi

, e)]

=
M ′
∑

i=h+1

[PL(x′|ci, e)PL(ci1:qi
, e) +

∑

x 6=x′

PU(x|ci1:qi
, e)PU(ci, e)− PU(ci1:qi

, e)]

=
∑

i=h+1

[PL(x′|ci1:qi
, e)PL(ci, e)− PU(ci1:qi

, e)(1−
∑

x 6=x′

PU(x|ci1:qi
, e))]

By theorem condition,PL(x′|ci1:qi
, e) ≤ 1 −∑

x 6=x′ PU(x|ci1:qi
, e). Therefore, after we

replacePL(x′|ci1:qi
, e) for 1−∑

x 6=x′ PU(x|ci1:qi
, e), we get:

D2 −D1 ≤
M ′
∑

i=h+1

[PL(x′|ci1:qi
, e)PL(ci1:qi

, e)− PU(ci1:qi
, e)PL(x′|ci1:qi

, e)]

≤
M ′
∑

i=h+1

PL(x′|ci1:qi
, e)(PL(ci1:qi

, e)− PU(ci1:qi
, e)) ≤ 0

Thus,D2 ≤ D1. Therefore,PL1 ≤ PL2 .

247



THEOREM4.3.4Given an algorithmA that computes lower and upper boundsPL
A (x, cj1:qj

, e)

andPU
A (x, cj1:qj

, e) such that∀j,PU(x, cj1:qj
, e) ≤ P (cj1:qj

) thenPU1(x|e) ≤ PU(x|e) where
PU1(x|e) is given in Eq. (4.28) andPU(x|e) is the bounded conditioning upper bound given
in Eq. (4.10).
Proof. SettingPL(x, cj1:qj

, e) = 0, x 6= x′, in Eq. (4.28) and, hence, reducing the denomi-
nator, we obtain:

PU1(x′|e) ≤
∑h

i=1 P (x′, ci, e) +
∑M ′

j=1 P
U(x′, cj1:qj

, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P
U(x′, cj1:qj

, e)

By assumption,PU(x′, cj1:qj
, e) ≤ P (cj1:qj

). Setting the upper bound onP (x′, cj1:qj
, e) to its

maximum valueP (j
1:qj

) in equation above yields:

PU1(x′|e) ≤
∑h

i=1 P (x, ci, e) +
∑M ′

j=1 P (cj1:qj
)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P (cj1:qj
)

(D.1)

=

∑h
i=1 P (x, ci, e) +

∑M
i=1 P (cj)

∑h
i=1 P (ci, e) +

∑M
i=1 P (cj)

, PU3(x′|e) (D.2)

The boundPU3(x′|e) in Eq. (D.2) represents the maximum value ofPU1(x′|e) under the
assumption thatPU(x′, cj1:qj

, e) ≤ P (cj1:qj
). We will show next that the maximum value of

PU1(x′|e) is always less or equal to the bounded conditioning upper bound.
RewritePU3(x|e) as a sum of fractions:

PU3(x|e) =

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

+

∑M
i=h+1 P (ci)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

The first addend inPU3(x|e) is smaller than the first addend in Eq. (4.10):

∑h
i=1 P (x, ci, e)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

≤
∑h

i=1 P (x, ci, e)
∑h

i=1 P (ci, e)

The second addend in̂PU(x|e) is smaller then the second addend in Eq. (4.10):

∑M
i=h+1 P (ci)

∑h
i=1 P (ci, e) +

∑M
i=h+1 P (ci)

≤
M

∑

i=h+1

P (ci)

The theorem follows.

THEOREM 2.3.1 If C is a topologically ordered loop-cutset of a Bayesian network and
C1:q = {C1, ..., Cq} is a subset ofC, q < |C|, then the relevant subnetwork ofC1:q consist-
ing of loop-cutset nodes in subsetC1:q and their ancestors is singly-connected.

248



Proof. First, we prove that the relevant subnetwork of any loop-cutsetCq is singly-connected
when all loop-cutset precedingCq in the ordering are assigned. Proof by contradiction. As-
sumeCq is observed. If the relevant subnetwork of nodeCq is not singly-connected, then
there is a loopL with a sinkS s.t. eitherS is observed orS has an observed descendant
amongC1, ..., Cq−1 or Cq is a descendant ofS (otherwiseS would be irrelevant). LetCi,
1 ≤ i ≤ q denote the node for whichS is the ancestor (orS = Ci). By definition of
loop-cutset,∃Cm ∈ L s.t. Cm 6= S andCm ∈ C. Then,Cm is ancestor ofCi. Since
cutset is topologically ordered and all cutset nodes preceding Ci are observed, thenCm

must be observed, thus, breaking the loop. Contradiction. Applying the above result recur-
sively, we have: relevant subnetwork ofC1 is singly-connected, relevant subnetwork ofC2,
conditioned on onC1, is singly-connected, and so on. The theorem follows.

THEOREM4.3.5Given an algorithmA that can compute an upper bound onP (c1:q, e),
wherec1:q is a partial cutset instantiation, givenh fully-instantiated cutset tuplesci, 1 ≤
i ≤ h, then:

PU3
A − PL3

A ≥
∑h

i=1 P (ci, e)

P (e)

wherePL3
A andPU3

A are expressed in Eq. (4.38) and Eq. (4.39) respectively.
Proof. Let q denote the fraction of the probability mass covered by the explored cutset
tuples:

q =

∑h
i=1 P (ci, e)

P (e)

Then, the bounds intervalPU
A − PL

A is always lower bounded by1 − q. We begin by
computing the bounds interval:

PU
A − PL

A =

∑M ′

j=1 P
U
A (ci, e)

∑h
i=1 P (ci, e) +

∑M ′

j=1 P
U
A (cj, e)

We replace
∑M ′

j=1 P
U
A (ci, e) in both numerator and denominator with exact probability sum

∑M ′

j=1 P (cj, e), yielding a lower bound on the bounds interval length:

PU
A − PL

A ≥
∑M ′

j=1 P (ci, e)
∑h

i=1 P (ci, e) +
∑M ′

j=1 P (ci, e)
(D.3)

Since, the
∑M ′

j=1 P (cj, e) =
∑M

i=h+1 P (ci, e), then the Eq. (D.3) transforms into:

PU
A − PL

A ≥
∑M

i=h+1 P (ci, e)
∑h

i=1 P (ci, e) +
∑M

i=h+1 P (ci, e)
(D.4)

249



Replacing the sums in denominator in Eq. (D.3) withP (e) and replacing
∑M

i=h+1 P (ci, e)

in the numerator withP (e)−∑h
i=1 P (ci, e), we get:

PU
A − PL

A ≥
P (e)−∑h

i=1 P (ci, e)

P (e)
=
P (e)− qP (e)

P (e)
= 1− q (D.5)

250



Appendix E

Proof of Optimality of Greedy Algorithm
Greedy Algorithm For Multiple-Knapsack Packing and Covering with
Sum-to-1 Constraint

The inputs to the problem are a set of variablesx = {x1, ..., xn}, representing some
type of commodities, and a set of knapsacksK = {K1, ..., Km} with minimum required
fill capacityLi and maximum capacityUi. Each variableXi is assigned to some knapsack
Kj and cannot be placed in any other knapsack. LetQj ⊂ x, j ∈ [1,m], denote a set of
commodities that can be loaded into knapsackKj. All subsetsQj are mutually exclusive.
Each variablexi has an associated payoff (reward)ci. The objective is to packm knapsacks
so as to maximize payoff. The linear program is defined as follows:

max f =
∑

i

ciXi (E.1)

s.t.
∑

i

xi = 1 (E.2)

Lj ≤
∑

i,xi∈Qj

xi ≤ Uj,∀j (E.3)

0 ≤ xi ≤ xmax
i ,∀xi ∈ x (E.4)

A problem is feasible if and only if:
1)

∑

j Lj ≤ 1
2)

∑

xk∈Qj
xmax

k ≥ Lj

3)
∑

xk∈X x
max
k ≥ 1.

Therefore, we assume that these conditions always hold.
Sort variables by their coefficients from largest to smallest:

c1 ≤ c2 ≤ ... ≤ cn

First, we satisfy the lower bound constraints. Initialize each variable value to 0. Assign
each variableXi in order:

xi ← min{xmax
i , Lj|xi ∈ Qj}

and update corresponding lower and upper bound:

Lj ← Lj − xi

Uj ← Uj − xi

xmax
i ← xmax

i − xi

251



We stop when all lower bounds are zero or we reach the end of thelist. Denote the as-
signment to all variables after the first pass asx0 = {x0

1, ..., x
0
n}. All lower bounds will be

satisfied after processing all variables as long as
∑

j Lj ≤ 1 and∀j, ∑

xk∈Qj
xmax

k ≥ Lj.
Let Xi = Yi + x′i where0 ≤ Yi ≤ xmax

i − x′i. Let Y denote a set of variablesYi.
Then the new objective function will take a form:

max f =
∑

i

ci(Yi + x′i) =
∑

i

cix
′
i +

∑

i

ciYi

Since
∑

i cix
′
i is constant, it is sufficient to maximize now the sum

∑

i ciYi. Denoting
T = T (1) = 1−∑

i x
′
i, U

′
i = Uj −

∑

i,yi∈Qj
x′i, andymax

i = xmax
i − x′i, we obtain a simpler

optimization problem 2 overY :

max f =
∑

i

ciYi (E.5)

s.t.
∑

i

Yi = T (E.6)

0 ≤
∑

i,yi∈Qj

Yi ≤ U ′
j,∀Kj (E.7)

0 ≤ Yi ≤ y′i,∀yi ∈ Y (E.8)

We process the variables in the same order:

yi ← min{ymax
i , Uj, T

(i)|yi ∈ Qj}

and update:

Uj ← Uj − yi (E.9)

ymax
i ← ymax

i − yi (E.10)

T (i+1) = T (i) − yi (E.11)

We stop whenT (i+1) = 0 or after all variables are processed. We can guarantee that
T (n+1) = 0 (which means that sum-to-1 constraint is satisfied) at the end of processing as
long as

∑

xk∈X x
max
k ≥ 1. Otherwise, feasible solution does not exist. Denote final solution

asx1 = {x1
1, ...., x

1
n}.

THEOREM E.0.1 Algorithm computes a maximum value of the objective f-nf .

Proof.
1. The obtained solution is feasible.As we already mentioned, the lower bounds

are satisfied as long as
∑

j Lj ≤ 1 and∀j, ∑

xk∈Qj
xmax

k ≥ Lj. The upper bounds are
not violated by construction. The sum-to-1 is also satisfiedby construction as long as
∑

xk∈X x
max
k ≥ 1.

252



2. Now we prove that the solution is optimal.
Note: we can assume without loss of generality that all variables’ coefficients in any

one knapsackKj are different. If not, we can group several variablesxi into one variable
whose upper bound equals the sum of the upper bounds of the constituents. We are only
interested in the total mass assigned to this subset of variables. How the mass is really
distributed among thosexi’s does not affect neither the value of the objective function nor
the total load in knapsackKj.

2.1. We prove that any optimal solution will have an assignment of values as
defined above.

Let x′ = {x′1, ..., x′n} denote some optimal solution. Assume∃x′i ∈ x′ s.t. x′i < x0
i .

Assumexi is assigned to knapsackLj. Note that
∑

xk∈Qj
x′k = Lj. Sincex′i < x0

i but
∑

xk∈Lj
x′k ≥ Lj (the solution is feasible), then there must exist variablexl ∈ Qj s.t.

x′l > x0
l .

Case 1: cl > ci. This is impossible. Since we assign values to variables in order
from largest coefficients to smallest, variablexl has been assigned valuex0

l prior toxi. By
definition, variablexl is assigned either valueLj or its maximum value. If variablexl was
assigned a maximum valueLj, then the valuex0

i would be equal to 0 which contradicts our
assumption. If variablexl was assigned its maximum valuexmax

l , then solutionx′ is not
feasible.

Case 2: cl < ci. We can reduce the valuecl down toc0l and increase value ofci by
the same amount. Letδ = c′l − c0l . Then, we setcl = c′l − δ andci = c′i + δ. By doing so,
we preserve the feasibility of solution. We also increase the value of the objective function
by (ci − cl)δ which means thatx′ is not an optimal solution. Hence, this scenario is also
impossible.

Thus, any optimal feasible solutionx′ guarantees for allxi ∈ X thatx′i ≥ x0
i . Thus,

the partial assignment of values obtained after first pass always can be extended to an
optimal solution. Then,max f(x) =

∑

i cix
0
i + max

∑

i ciyi. Thus, as long as we can
prove thaty1 is optimal, then algorithm A finds an optimal solution.

2.2. We prove that the solution to the optimization problem 2is optimal.
Let y′ be some optimal solution. We need to show that sumy′i > y0

i .
First, consider variabley1 in knapsackK1. Assumey′1 > y1

1. Recall how we picked
the value ofy1.

If y0
1 = T , then it is impossible fory′1 > y1

1 because solutionx′ would violate sum-
to-1 constraint.

If y0
1 = U1, theny′1 > y1

1 is also impossible because solutionx′ would violate sum-
to-1 constraint.

If y0
1 = ymax

i then y′1 > y1
1 is also impossible because solutionx′ would violate

sum-to-1 constraint.
Thus, consider case ofy′i < y0

k.
If y1

1 = T , then since coefficientc1 is the largest, thenc1y0
1 ≥ sumiciy

′
i. Thus, either

y0
1 = U1 or y0

1 = ymax
i .

Since the sum of all variables equals to 1, then there exists avariableyk s.t. y′k > y0
k.

253



If yk is in the same knapsack asy1, then we can reduceyk from y′k down toy0
k and increase

y1 by the same amount. Since the coefficient ofy1 is the largest, that would increase the
value of the objective function which contradicts assumption thatx′ is optimal. This means
that for all yj in knapsackK1, y′j ≤ y0

k. Hence,yk must belong to a different knapsack.
Next we analyze the relationship between coefficientsc1 andck of x1 andxk.

Case 1. ck > c1. Impossible. Coefficientc1 is the largest.
Case 2. ck < c1. Impossible. If that was true, we could shift some weight from ck to

c1 in solutionx′ without violating constraints and yield a solution with larger objective f-n
value contradicting assumption thatx′ is optimal.

Thus, the only possibility is thatck = c1. But this is impossible too. We use the same
line of reasoning as we used to prove thaty′1 cannot be greater thany0

1. We consider the
possibilities of how we picked the value ofyk.

If y0
k = Uj, theny′k > y1

k is also impossible because solutionx′ would violate sum-
to-1 constraint.

If y0
k = ymax

i then y′k > y1
k is also impossible because solutionx′ would violate

sum-to-1 constraint.
If y0

k = T (k), thenxk was the last variable processed. The rest of the variables were
assigned value 0. Then, in solutionx0, the maximum total load T is distributed over only
variables with maximal coefficients equals toc1. Then, the value ofx0 is maximal and it is
indeed an optimal solution.

Thus, we proved that eitherx0
1 = x′1 or the solutionx0 with assignmentx1 = x0

1

is optimal. Either case implies that assignmentx1 = x0
1 extends to an optimal solution.

Namely, we can re-write our objective f-n as:

f = c1x
0
1 + max

∑

i>1

cixi

Thus, the problem exhibits optimal substructure. We can prove in a similar manner that the
solution to the subproblem overn − 1 variables has the same properties. Namely, we can
show for variablex2 that eitherx0

2 = x′2 or the solutionx0
2, ...., x

0
n with assignmentx2 = x0

2

is optimal. Continuing recursively in similar manner we prove that either solutionsx0 and
x′ are identical orx′ is optimal. Proof is complete.

254


