
Mixtures of Deterministic-Probabilistic Networks
and their AND/OR Search Space

Rina Dechter and Robert Mateescu
School of Information and Computer Science

University of California, Irvine, CA 92697-3425
{dechter, mateescu}@ics.uci.edu

Abstract

The paper introducesmixed networks, a new
framework for expressing and reasoning with
probabilistic and deterministic information. The
framework combines belief networks with con-
straint networks, defining the semantics and
graphical representation. We also introduce the
AND/OR search space for graphical models, and
develop a new linear space search algorithm.
This provides the basis for understanding the
benefits of processing the constraint information
separately, resulting in the pruning of the search
space. When the constraint part is tractable or
has a small number of solutions, using the mixed
representation can be exponentially more effec-
tive than using pure belief networks which model
constraints as conditional probability tables.

1 INTRODUCTION

Modeling real-life decision problems requires the specifi-
cation and reasoning with probabilistic and deterministic
information. The primary approach developed in artificial
intelligence for representing and reasoning with partial in-
formation under conditions of uncertainty is Bayesian net-
works. They allow expressing information such as “if a per-
son has flu, he is likely to have fever.” Constraint networks
and propositional theories are the most basic frameworks
for representing and reasoning about deterministic infor-
mation. Constraints often express resource conflicts fre-
quently appearing in scheduling and planning applications,
precedence relationships (e.g., “job 1 must follow job 2”)
and definitional information (e.g., “a block is clear iff there
is no other block on top of it”). Most often the feasibil-
ity of an action is expressed using a deterministic rule be-
tween the pre-conditions (constraints) and post-conditions
that must hold before and after executing an action (e.g.,
STRIPS for classical planning).

The two communities of probabilistic networks and con-
straint networks matured in parallel with only minor inter-
action. Nevertheless some of the algorithms and reason-
ing principles that emerged within both frameworks, espe-
cially those that are graph-based, are quite related. Both
frameworks can be viewed as graphical models, a popular
paradigm for knowledge representation.

Researchers within the logic-based and constraint commu-
nities have recognized for some time the need for aug-
menting deterministic languages with uncertainty infor-
mation, leading to a variety of concepts and approaches
such as non-monotonic reasoning, probabilistic constraint
networks and fuzzy constraint networks. The belief
networks community started only recently to look into
mixed representation [Poole1993, Ngo & Haddawy1977,
Dechter & Larkin2001] perhaps because it is possible, in
principle, to capture constraint information within belief
networks [Pearl1988].

Indeed, constraints can be embedded within belief net-
works by modeling each constraint as a Conditional Prob-
ability Table (CPT). One approach is to add a new variable
for each constraint that is perceived as itseffect(child node)
in the corresponding causal relationship and then to clamp
its value totrue [Pearl1988]. While this approach is se-
mantically coherent and complies with the acyclic graph
restriction of belief networks, it adds a substantial num-
ber of new variables, thus cluttering the problem’s struc-
ture. An alternative approach is to designate one of the
arguments of the constraint as a child node (namely, as its
effect). This approach, although natural for functions (the
arguments are the causes or parents and the function vari-
able is the child node), is quite contrived for general rela-
tions (e.g.,x+6 6= y). Such constraints may lead to cycles,
which are disallowed in belief networks. Furthermore, if a
variable is a child node of two different CPTs (one may
be deterministic and one probabilistic) the belief network
definition requires that they be combined into one CPT.

The main shortcoming, however, of any of the above inte-
grations is computational. Constraints have special proper-
ties that render them attractive computationally. When con-

straints are disguised as probabilistic relationships, their
computational benefits are hard to exploit. In particular,
the power of constraint inference and constraint propaga-
tion may not be brought to bear.

Therefore, we propose a framework that combines deter-
ministic and probabilistic networks, calledmixed network.
Specifically, we propose a mixed network framework in
which the identity of the respective relationships, as con-
straints or probabilities, will be maintained explicitly,so
that their respective computational power and semantic dif-
ferences can be vivid and easy to exploit. The mixed net-
work approach allows two distinct representations: causal
relationships that are directional and normally (but not nec-
essarily) quantified by CPTs and symmetrical deterministic
constraints. The proposed scheme’s value is in providing:
1) semantic coherence; 2) user-interface convenience (the
user can relate better to these two pieces of information if
they are distinct); and most importantly, 3) computational
efficiency.

2 PRELIMINARIES AND BACKGROUND

Reasoning graphical model A reasoning graphical model
is a tripletR = (X,D,F) whereX is a set of variables,
X = {X1, . . . , Xn},D = {D1, . . . , Dn} is the set of their
respective finite domains andF = {F1, . . . , Ft} is a set
of real-valued functions, defined over subsets ofX . The
primal graphof a reasoning problem has a node for each
variable, and any two variables appearing in the same func-
tion’s scope are connected. Thescopeof a function is its
set of arguments.
Belief networks A belief network can be viewed as an
instance of a reasoning graphical model. In this case the
set of functionsF is denoted byP = {P1, . . . , Pn} and
represents a set of conditional probability tables (CPTs):
Pi = P (Xi|pai). pai are the parents ofXi. When
the CPTs entries are “0” or “1” only, they are calledde-
terministic or functional CPTs. The associated directed
graphG, drawn by pointing arrows from parents to chil-
dren, should be acyclic. We also denote belief networks
by B = (X,D,G, P). The belief network represents a
probability distribution overX having the product form
PB(x̄) = P (x1, . . . , xn) = Πn

i=1P (xi|xpai
) where an

assignment̄x = (X1=x1, . . . , Xn=xn) is abbreviated to
x̄ = (x1, . . . , xn) and wherexS or x[S] denote the restric-
tion of a tuplex over a subset of variablesS. An evidence
sete is an instantiated subset of variables. We use upper
case letters for variables and nodes in a graph and lower
case letters for values in a variable’s domain. Themoral
graphof a directed graph is the undirected graph obtained
by connecting the parent nodes of each variable and elimi-
nating direction. Given a directed graphG, the ancestral
graph relative to a subset of nodesX is the undirected
graph obtained by taking the subgraph ofG that contains
X and all their non-descendants, and moralizing the graph.

Constraint networks A constraint network can also be
viewed as an instance o a reasoning graphical model. In
this case the functions are denoted byC = {C1, ..., Ct},
and the constraint network is denoted byR = (X,D,C).
Each constraint is a pairCi = (Si, Ri), whereSi ⊆ X is
the scope of the relationRi defined overSi, denoting the
allowed combinations of values. The associated graphG

of a constraint networkR is its primal graph. We say that
R represents its set of solutions,ρ, or ρ(R). A particular
example of constraint networks is CNF, in which the vari-
ables are boolean (binary domains) and the constraints are
boolean formulas. In this case the network is given as for-
mula in conjunctive normal form.
Induced-graphs and induced width An ordered graph
is a pair(G, d) whereG is an undirected graph, andd =
X1, ..., Xn is an ordering of the nodes. Thewidth of a node
in an ordered graph is the number of the node’s neighbors
that precede it in the ordering. Thewidth of an orderingd,
denotedw(d), is the maximum width over all nodes. The
induced width of an ordered graph, w∗(d), is the width of
the induced ordered graph obtained as follows: nodes are
processed from last to first; when nodeX is processed, all
its preceding neighbors are connected. Theinduced width
of a graph,w∗, is the minimal induced width over all its or-
derings. Thetree-widthof a graph is the minimal induced
width.
Tasks The primary queries over belief networks are:be-
lief updating, evaluating the posterior probability of each
singleton proposition given some evidence;most probable
explanation(MPE), finding a complete assignment to all
variables having maximum probability given the evidence
andmaximum a posteriori hypothesis(MAP), which calls
for finding the most likely assignment to a subset of hy-
pothesis variables given the evidence. The primary queries
over constraint networks are to decide if the network is con-
sistent and if so, to find one, some or all solutions.

3 MIXING PROBABILITIES WITH
CONSTRAINTS

DEFINITION 1 (mixed networks) Given a belief network
B = (X,D,G, P) that expresses the joint probabilityPB

and given a constraint networkR = (X,D,C) that ex-
presses a set of solutionsρ, a mixed network based onB
andR denotedM(B,R) = (X,D,G, P,C) is created from
the respective components of the constraint network and
the belief network as follows. The variablesX and their
domains are shared, (we could allow non-common vari-
ables and take the union), and the relationships include the
CPTs inP and the constraints inC. The mixed network
may be inconsistent, or if it is consistent it expresses the
conditional probabilityPM(X):

PM(x̄) =

{

PB(x̄ | x̄ ∈ ρ), if x̄ ∈ ρ

0, otherwise.

Belief updating, MPE and MAP queries can be extended to
mixed networks straightforwardly. They are well defined
relative to the mixed probabilityPM, when the constraint
portion is consistent. An additional relevant query over a
mixed network is to find the probability that a random tuple
satisfies the constraint query, namelyPB(x̄ ∈ ρ).

The auxiliary network We now define the belief net-
work that expresses constraints as pure CPTs.

DEFINITION 2 (auxiliary network) Given a mixed net-
workM(B,R) we define the auxiliary networkS(B,R) to be
a belief network that has new auxiliary variables as fol-
lows. For every constraintCi = (Si, Ri) in R, we add
the auxiliary variableAi that has a domain of two values,
{0, 1}. There is a CPT defined overAi whose parent vari-
ables areSi, defined as follows:

P (Ai=1 | tSi
) =

{

1, if t ∈ Ri

0, otherwise.

S(B,R) is a belief network that expresses a probability dis-
tributionPS . It is easy to see that,

Proposition 1 Given a mixed networkM(B,R) and an as-
sociated auxiliary networkS = S(B,R), then: PM(x̄) =
PS(x̄|A1=1, ..., At=1).

One source of determinism in the context of belief net-
works may arise because we have deterministic queries
or complex evidence description. Both reduce toCNF or
Constraint Probability Evaluation (CPE).

DEFINITION 3 (CPE) Given a mixed networkM(B,R),
where the belief network(X,D,G, P) is defined over vari-
ablesX = {X1, ..., Xn} and where the constraint portion
is a either a set of relational constraints or a CNF query
(R = ϕ) over a subsetQ = {Q1, ...Qr}, whereQ ⊆ X ,
the Constraint, respectivelyCNF, Probability Evaluation
(CPE) taskis to find the probabilityPB(x̄ ∈ ρ(R)), re-
spectivelyPB(x̄ ∈ m(ϕ)) wherem(ϕ) are the models (so-
lutions ofϕ) .

Alternatively, we can envision situations when one wants to
assess the belief of a proposition given partial, disjunctive
information.

Belief assessment conditioned on a CNF evidenceis the
task of assessingP (X |ϕ) for every variableX . Since
P (X |ϕ) = αP (X ∧ ϕ) whereα is a normalizing con-
stant relative toX , computingP (X |ϕ) reduces to a CPE
task for the query((X = x)∧ϕ). More generally,P (ϕ|ψ)
can be derived fromP (ϕ|ψ) = αϕ ·P (ϕ∧ψ) whereαϕ is
a normalization constant relative to all the models ofϕ.

4 MIXED GRAPHS AS I-MAPS

In this section we define themixed graphof a mixed net-
work and an accompanying separation criterion, extending
d-separation. We show that a mixed graph is a minimal I-
map (independency map) of a mixed network relative to an
extended notion of separation, calleddm-separation.

DEFINITION 4 (A mixed graph) Given a mixed network
M(B,R), the mixed graphGM = (GB, GR) is defined
as follows. Its nodes are the set of variablesX , and the
arcs are the union of the directed arcs in the belief network
graphGB and the undirected arcs in the constraint graph
GR. The moral mixed graph is the union of the moral
graph of the belief network, and the constraint graph.

The notion ofd-separationin belief networks is known
to capture conditional independence [Pearl1988]. Namely
any d-separationin the directed graph corresponds to a
conditional independence in the corresponding probabil-
ity distribution. Likewise, an undirected graph represen-
tation of probabilistic networks (e.g., Markov networks)
allows reading valid conditional independence based on
undirected graph separation.

In this section we definedm-separationfor mixed graphs
and show that it provides a criterion for establishing mini-
mal I-mapness for mixed networks.

DEFINITION 5 (ancestral graphs in mixed networks)
Given a mixed graphGM = (GB, GR) of a mixed network
M(B,R) whereGB is the directed graph ofB, andGR is
the undirected constraint graph ofR, the ancestral graph
of Y ⊆ X in GM is the union ofGR and the ancestral
graph ofY in GB.

DEFINITION 6 (dm-separation) Given a mixed graph,
GM and given three subsets of variablesW , Y and Z
which are disjoint, we say thatW andY are dm-separated
givenZ in the mixed graphGM , denoted〈W,Z, Y 〉dm, iff
in the ancestral mixed graph ofW ∪ Y ∪ Z, all the paths
betweenW andY are intercepted by variables inZ.

THEOREM 1 (I-map) Given a mixed networkM =
M(B,R) and its mixed graphGM , thenGM is a minimal
I-map relative to dm-separation. Namely, if〈W,Z, Y 〉dm

thenPM (W |Y, Z) = PM (W |Z) and no arc can be re-
moved while maintaining this property.

Example 1 Figure 1(a) shows a regular belief network in
whichW and Y are d-separated given the empty set. If
we add a constraintRPQ betweenP andQ, we obtain the
mixed network in Figure 1(b). According to dm-separation
W is no longer independent ofY given the empty set, be-
cause of the pathWPQY in the ancestral graph. Figure
1(c) shows the auxiliary network, with variableA assigned

W

Z

P Q

Y W

Z

P Q

Y W

Z

P Q

Y

A

(a) (b) (c)

Figure 1:dm-separationin mixed networks

to 1 corresponding to the constraint betweenP andQ. D-
separation also dictates a dependency betweenW andY ,
givenA = 1.

We will next see the first virtue ofmixedvs auxiliary net-
works. It is now clear that the concept of constraint prop-
agation has a well defined meaning within the mixed net-
work framework. That is, we can allow the constraint net-
work to be processed by any constraint propagation algo-
rithm to yield another, equivalent, mixed network.

DEFINITION 7 (equivalent mixed networks) Two mixed
networks defined on the same set of variablesX =
{X1, ..., Xn} and the same domains,D1, ...,Dn, denoted
M1 = M(B1,R1) andM2 = M(B2,R2), are equivalent iff
they are equivalent as probability distributions, namely iff
PM1

= PM2
.

Proposition 2 If R1 andR2 are equivalent constraint net-
works (have the same set of solutions), thenM(B,R1) is
equivalent toM(B,R2).

The above proposition shows one advantage of looking at
mixed networks rather than at auxiliary networks. Due
to the explicit representation of deterministic relationships,
notions such as inference and constraint propagation are
naturally defined and exploitable in mixed network.

5 AND/OR SEARCH SPACES FOR
GRAPHICAL MODELS

One way of taking advantage of the implications of Propo-
sition 2 is by search. The intuitive idea for mixed networks
is to search in the space of partial variable assignments, and
use the constraints to limit the actual searched space.

This sections introduces the basics of a new AND/OR
search space paradigm for graphical models. The usual
way to do search (called hereOR search) is to instantiate
variables in turn (in a static or dynamic ordering). In the
most simple case this defines a search tree, whose nodes
represent states in the space of partial assignments, and
the typical depth first (DFS) algorithm searching this space
would require linear space. If more space is available, then
some of the traversed nodes can be cached, and retrieved
when encountered again, and the DFS algorithm would in
this case traverse a graph rather than a tree.

In contrast to inference algorithms which exploit the inde-
pendencies in the underlying graphical model effectively
(e.g. variable elimination, tree-clustering), theOR search
space does not capture any of the structural properties of
the underlying graphical model. IntroducingAND nodes
into the OR search space can capture the graph-model
structure by decomposition the problem into independent
subproblems.

TheAND/OR search spaceis a well known problem solv-
ing approach developed in the area of heuristic search, that
exploits the problem structure to decompose the search
space. The states of an AND/OR space are of two types:
ORstates which usually represent alternative ways of solv-
ing the problem, andAND states which usually represent
problem decomposition into subproblems, all of which
need to be solved. We will next present the AND/OR
search space for a generalreasoning graphical model
which in particular applies to mixed networks. For more
details see [Dechter2004].

For illustration consider the simple tree graphical model in
Figure 2a, over domains{1, 2, 3}which represents a graph-
coloring problem. Once variableX is assigned the value 1,
the search space it roots corresponds to two independent
subproblems, one that is rooted byY and the other rooted
byZ. These two search subspaces do not interact. This can
be captured by viewing the assignment〈X, 1〉 as an AND
state, having two descendants. One is labeled by variableY

and the other by variableZ. The same decomposition can
be associated with the other assignments toX . Applying
the decomposition recursively toY andZ and so on along
the tree (Figure 2a) yields the AND/OR search tree in Fig-
ure 2c. Notice that in the AND/OR space a full assignment
to all the variables is not a path in the search space but a
subtree. A solution subtree is highlighted in 2c. Clearly,
the size of the AND/OR search space can be far smaller
than that of the regular OR space (compare the number of
states in 2b with that in 2c).

5.1 AND/OR SEARCH TREES

The definition of an AND/OR space is not restricted to tree
graph-models, however it has to be guided by a tree which
spans the original graph-model. We can use a DFS span-
ning tree. Given a DFS traversal of a graphG, the corre-
spondingDFS spanning treeT is defined by taking only
the traversed arcs ofG.

Given a reasoning graphical modelR, its primal graphG
and a DFS treeT of G, the associated AND/OR tree is de-
fined as follows. TheAND/OR search treehas alternating
levels of AND and OR nodes. The OR nodes are labeled
Xi and correspond to the variables. The AND nodes are
labeled〈Xi, v〉 and correspond to the valuesv assigned to
Xi. The structure of the AND/OR search tree is based on
the underlying DFS treeT . The root of the AND/OR search

X

Y Z

T R L M

(a) A constraint tree

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 3 1 3 1 2 1 2 1 2 1 2 2 3 2 3

2 3 2 3 2 3

1 3

1 3 1 3

(b) OR search tree

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R L M

1 3 1 3 1 2 1 2

OR

OR

AND

AND

OR

AND

(c) AND/OR search tree with one of its
solution subtrees

Figure 2: OR vs. AND/OR search trees; note the connector for AND arcs

1 2 3

2 3 1 3 1 2

1 3 1 2

X

T

R

Y

Z

L

M

2 3 1 2 2 3 1 3

1 32 1 2 3

123

1 2

1 2

2 3 1

1 3

3

2 3

Figure 3: Condensed OR graph for the tree problem

tree is an OR node, labeled with the root ofT . The children
of an OR nodeXi are AND nodes labeled with its possible
assignments〈Xi, v〉. The children of an AND node〈Xi, v〉
are OR nodes labeled with the children of variableXi in
the DFS treeT . The value of leaf nodes is ”S” (solved)
if they represent a partial consistent assignment, or ”U” if
they corresponds to a dead-end.

A solution subgraph of an AND/OR search graphG is a
subtree which: (1) contains the start nodes0; (2) if n in the
subtree is an OR node then it contains one of its child nodes
in G and ifn is an AND node it contains all its children in
G; (3) all its terminal nodes are ”Solved” (S). If we look
at a probabilistic network that expresses a positive proba-
bility distribution each full assignment will be expressedas
”Solved” in the AND/OR search tree.

When a depth-first search algorithm is applied to the
AND/OR search tree, it requires linear space, storing only
the current path from root. It is therefore important that
during the search, the scope of every function fromF be
fully assigned on some path. The DFS treeT of G has the
property that if we add toT all the other arcs ofGwhich do
not appear inT , only back-arcs (i.e. arcs between a node
and one of its ancestor) will be created. In other words no
arcs will be added between different branches ofT , which
ensures that each scope ofF will be fully assigned on some
path inT .

The size of the AND/OR search tree will depend on the

1 2 3

X

Y Z Y Z Y Z

2 32 3

T R

1 3

1 1

2

T R T R

1 32

L M

1 32

L M L M

1 32

Figure 4: AND/OR search graph for the tree problem

depth of the underlying DFS treeT . Therefore, DFS trees
of smaller height are better. However, there is a larger
class of spanning trees that can be used to derive AND/OR
search trees, calledlegal trees, which have the above men-
tioned back-arc property.

DEFINITION 8 (legal tree of a graph) Given an undi-
rected graphG = (V,E), a directed rooted tree
T = (V,E′) defined on all its nodes islegal if any arc
of G which is not included inE′ is a back-arc, namely
it connects a node to an ancestor inT . The arcs inE′

may not all be included inE. Given a legal treeT of
G, the extended graphof G relative to T is defined as
GT = (V,E ∪ E′).

Clearly, any DFS tree and any chain are legal trees. Search-
ing the OR space corresponds to searching a chain-based
space, which is a special legal tree. It is easy to see that the
size of the AND/OR tree is exponential in the depth of the
legal tree. Therefore, any algorithm searching this space
is bounded by that complexity. Finding a legal or a DFS
tree of minimal depth is known to be NP-complete. How-
ever the problem was studied, and various greedy heuris-
tics are available. The following relationship between the
induced-width and the depth of legal trees is well known
[Bayardo & Miranker1996, Dechter2003]. Given a tree-
decomposition of a primal graphG havingn nodes, whose
tree-width isw∗, there exists a legal treeT of G whose
depth,m, satisfies:m ≤ w∗ · logn. In summary,

THEOREM 2 ([Dechter2004]) Given a graphical modelR
and a legal treeT , its AND/OR search treeST (R) is sound
and complete (contains all and only solutions) and its size
isO(n·exp(m)) wherem is the legal tree’s depth. A graph-
ical model that has a tree-widthw∗ has an AND/OR search
tree whose size isO(exp(w∗ · logn)).

5.2 AND/OR SEARCH GRAPHS

It is often the case that certain states in the search tree
can be merged because the subtree they root are identical.
Any two such nodes are calledunifiable, and when merged,
transform the search tree into a search graph.

5.2.1 Minimal AND/OR Search Graphs

A partial path in the AND/OR search-treeST

(〈X1, a1〉, 〈X2, a2〉, ..., 〈Xi, ai〉) is abbreviated to(X̄, āi),
where X̄ is the sequence of variables and̄a is their
corresponding sequence of value assignments.

DEFINITION 9 (legal transformation) Given two partial
paths over the same set of variables,s1 = (X̄i, āi), s2 =
(X̄i, b̄i) whereai = bi = v, we say thats1 ands2 areunifi-
ableat 〈Xi, v〉 (can be merged) iff the search subgraphs
rooted ats1 ands2 are identical. TheMergeoperator over
search graphs,Merge(s1, s2) transformsST into a graph
S′

T by mergings1 with s2.

It can be shown that the closure under the merge operator
of an AND/OR search space yields a unique fixed point,

DEFINITION 10 (minimal AND/OR search graph) The
minimal AND/OR search graph relative toT is the closure
undermergeof the AND/OR search treeST .

The above definition is applicable, via the legal-chain def-
inition, to the traditional OR search tree as well, however,
its compression is inferior, because of the linear structure
imposed by the OR search tree. This distinction will be
clarified shortly.

Example 2 The smallest OR search graph of the search
tree in Figure 2(b) is given in Figure 3. The smallest
AND/OR graph of the same problem along some DFS tree
is given in Figure 4. We see that some variable-value pairs
must be repeated in Figure 3 while in an AND/OR case
they appear just once. For example, the subgraph below
the paths〈X, 1〉, 〈Y, 2〉 and〈X, 3〉, 〈Y, 2〉 in Figure 3 can-
not be merged.

5.2.2 Rules for Merging Nodes

Given a reasoning graphical modelR = (X,D,F) and
a legal treeT , there could be many AND/OR graphs rel-
ative toT that are equivalent to the AND/OR search tree

ST , each obtained by some sequence of merging. The fol-
lowing rules provide an efficient way for generating such
graphs without creating the whole search tree first. The
rules are based on a definition ofinduced-width of a le-
gal tree of Gwhich is instrumental for characterizing OR
graphs vs. AND/ORgraphs. We denote byddfs(T) a DFS
ordering of a treeT .

DEFINITION 11 (generalized induced-width of a legal
tree) GivenGT , an extended graph ofG relative toT (see
definition 9), thegeneralized induced width ofG relative
to legal treeT , wT (G) is the induced-width ofGT along
ddfs(T).

We can show that, 1. Theminimal generalized induced-
width of G relative to all legal trees is identical to the
induced-width (tree-width) ofG. 2. The generalized
induced-width of a legal chaind is identical to its path-
width pw(d) alongd.

Given an induced graph ofGT , denotedG∗T along
ddfs(T), each variable and its parent set is a clique.

DEFINITION 12 (parents, parent-separators) Given the
induced-graph,G∗T , the parents ofX denotedpsX , are
its earlier neighbors in the induced-graph. Its parent-
separators,psaX are its parents that are also neighbors
of future variables relative toX , in T .

Note that for every node except those latest in the cliques of
the induced graph, the parent-separators are identical to the
parents. For nodes latest in cliques, the parent-separators
are the separators between cliques. InG∗T , for every node
Xi, the parent-separators ofXi separates inT its ances-
tors on the path from the root, and all its descendents in
GT . The reader should compare Figures 3 and 4 to verify
merging using context.

THEOREM 3 [Dechter2004] Given G∗T , let s1 =
(āi, 〈Xi+1, v〉) and s2 = (b̄i, 〈Xi+1, v〉) be two partial
paths of assignments in its AND/OR search treeST , end-
ing with the same assignment variable〈Xi+1, v〉. If pro-
jectings1 ands2 on the parent separatorspsai+1 is iden-
tical, namely:s1[psai+1] = s2[psai+1], then the AND/OR
search subtrees rooted ats1 and s2 are identical ands1
ands2 can be merged at〈Xi+1, v〉.

DEFINITION 13 (context) For every statesi, si[psai] is
called the context ofsi whenpsai is the parent-separators
set ofXi relative to the legal treeT .

THEOREM 4 [Dechter2004] GivenG, a legal treeT and
its induced widthw = wT (G), the size of the AND/OR
search graph based onT obtained when every two nodes
in ST having the same context are merged isO(n · kw),
whenk bounds the domain size.

AND-OR-CPE()
Input: A mixed networkM(B,R) = (X, D, G, P, C). A
DFS treeT rooted atX1 of the moral mixed graph ofM(B,R).
Output: The probabilityP (x̄ ∈ ρ(R)) that a tuple satisfies
the constraint query.
(1) Initialize OPEN by addingX1 to it (X1 is an OR node);

PATH := φ
(2) if OPEN ==φ

return g(X1)
Remove the first node in OPEN, call itn
Add n to PATH

(3) Expandn generating all its successors as follows:
if (n is an OR node, denoten by Xi)

g(Xi) := 0
succ(Xi) := {〈Xi, v〉 | relevant constraintsCj , s.t.

scope(Cj) ⊆ PATH∪ {〈Xi, v〉}, are satisfied}
else (n is an AND node, denoten by 〈Xi, v〉)

g(〈Xi, v〉) := 1
A := {P (Y |paY) | (Xi ∈ paY ∪ {Y }) and(paY ∪
{Y } ⊆ PATH)} (CPTs with fully assigned scope
containingXi)
if A 6= φ

g(〈Xi, v〉) := g(〈Xi, v〉)∗
∏

A
P (Y = y | paY),

if g(〈Xi, v〉) == 0
succ(〈Xi, v〉) := φ

else
succ(〈Xi, v〉) := Children(Xi) in T

Add succ(n) on top of OPEN
(4) while succ(n) == φ

(a) if (n is an OR node)
g(Parent(n)) := g(Parent(n)) ∗ g(n)
if (g(n) == 0)

removesucc(Parent(n)) from OPEN
succ(Parent(n)) := φ

(b) if (n is an AND node)
g(Parent(n)) := g(Parent(n)) + g(n)

succ(Parent(n)) := succ(Parent(n)) − {n}
removen from PATH
n := Last(PATH)

(5) go to step (2)

Figure 5: Algorithm AND-OR-CPE

Thus, the minimal AND/OR search graph ofG relative to
T isO(n · kw) wherew = wT (G). SinceminT {wT (G)}
equalsw∗ and sinceminT∈chains{wT (G)} equalspw∗,

Corollary 1 The minimal AND/OR search graph is
bounded exponentially by the primal graph’s tree-width
while the OR minimal search graph is bounded exponen-
tially by its path-width.

It is known [Bodlaender & Gilbert1991] that for any graph
w∗ ≤ pw∗ ≤ w∗ · log n. It is also easy to placem∗ (the
minimal depth legal tree) yieldingw∗ ≤ pw∗ ≤ m∗ ≤
w∗ · logn.

The difference between tree-width and path-width can be
substantial. In fact for balanced trees the tree-width is 1
while the path-width islogn, wheren is the number of
variables, yielding a substantial difference between OR and
AND/OR search graphs.

(a) (c)

C

A B

D

))((CDBA ¬∨¬∨=ϕ

0 1

A

C

0 1

D B

0 1 0

D B

1 0

C

A

BD

(b)

OR

AND

OR

AND

OR

AND

Figure 6: a) Mixed network; b) DFS tree; c)AND/OR
search tree

6 ALGORITHMS FOR PROCESSING
MIXED NETWORKS

We will focus on the CPE task of computingP (x̄ ∈ ρ(R)),
the probability that a random tuple satisfies the constraint
query. A number of related tasks can be easily derived by
changing the appropriate operator (e.g., using maximiza-
tion for maximum probable explanation - MPE, or summa-
tion and maximization for maximum a posteriori hypothe-
sis - MAP).

There are two primary exact approaches for processing be-
lief and constraint networks: inference and search. Both
of them can be applied in the context of the mixed net-
works. Variable elimination algorithms were explored
in [Dechter & Larkin2001]. The experimental work of
[Dechter & Larkin2001] demonstrated that keeping the de-
terministic information separately was far superior to em-
bedding it in the auxiliary network.

Variable elimination algorithms are expected to be far bet-
ter than linear space search, as is predicted by worst-case
complexity. Yet, for large or highly connected networks,
variable elimination may be infeasible due to space limita-
tions. Algorithms with controllable space are the only ones
applicable in such situations. They use less space at the
cost of spending more time.

6.1 LINEAR SPACE ALGORITHM OF AND/OR
SEARCH TREES

We will present first the extreme case, a new linear space
algorithm based on depth first search for processing mixed
networks. The algorithm explores the AND/OR search
trees just introduced.

The algorithm, AND-OR-CPE, is described in Figure 5. It
is given as input a legal treeT of the mixed moral graph,
and the output is the result of the CPE task, the probability
that a random tuple satisfies the constraint query. AND-
OR-CPE traverses the AND/OR search tree corresponding
to T in a DFS manner. Each node maintains a labelg

which accumulates the computation resulted from its sub-
tree. OR nodes accumulate the summation of their chil-

A

D

B C

E F

G H I K

(a) Belief network

A

D

B C

E F

G H I K

>

>

>

>>

>
> >

>

(b) Constraint network

1 2

A

C

3 4

B B

2 3 4

ED

3 4 3 4

HG

4 4

G I

4

I

D

4

G

D

2 3 4

FF

4

K

F

4

K

3

K

4

3 4

4

G

D D

B

4

D

B

OR

AND

OR

AND

OR

AND

AND

OR

(c) AND/OR search space

Figure 7: Example of AND-OR-CPEand AO-FC search spaces

dren’s labels, while AND nodes accumulate the product of
their children’s labels.

A list called OPEN simulates the recursion stack. The list
PATH maintains the current assignment.Parent(n) refers
to the predecessor ofn in PATH, which is also its parent in
the AND/OR tree, andsucc denotes the set of succesors of
a node in the AND/OR tree.

Step (3) is where the search goes forward. When an OR
node is expanded, it is labeled with 0, and its successors
are the values that are consistent with the current assign-
ment. To determine these successors, only the relevant con-
straints, whose scope is contained in the current path, need
to be checked. When an AND node〈Xi, v〉 is expanded, it
is labeled with the product of all the CPT entries for which
Xi is contained in their scope, and the scope is contained
in PATH (i.e., it is fully assigned). If the product does not
exist, the label is 1.

Step (4) is where the labels are propagated backward. This
is triggered when a node has an empty set of successors,
and it typically happens when the node’s descendants are
all evaluated or when it is a dead-end.

Example 3 Figure 6(a) shows a mixed binary network (the
constraint part is given by the cnf formulaϕ). Figure 6(c)
describes an AND/OR search tree based on the DFS tree
given in Figure 6(b). AlgorithmAND-OR-CPEstarts from
node A, and assignsg(A) = 0, theng(〈A, 0〉) = P (A=0).
It continues assigningg(C) = 0, and theng(〈C, 0〉) = 1.
B is not assigned yet, soP (C|A,B) will participate in the
label of a descendant node (the set A of step (3) of the al-
gorithm is empty). The node D can take both values (ϕ

is not violated), so by backing up the values of its descen-
dentsg(D) becomes 1 (g(D) =

∑

D P (D|C=0) = 1).
Going on the branch of B,g(B) = 0, then B can only be
extended to 0 (to satisfyA ∨ ¬B), and the label becomes
g(〈B, 0〉) = P (B=0) ·P (C=0|A=0, B=0). In general, a
CPT participates in labeling at the highest level (closer to
the root) of the tree where all the variables in its scope are
assigned.

The following are implied immediately from the general

properties of AND/OR search trees,

THEOREM 5 AlgorithmAND-OR-CPE is sound and exact
for the CPE task.

THEOREM 6 Given a mixed networkM with n variables
with domain sizes bounded byk and a legal treeT of depth
m of its moral mixed graph, the time complexity ofAND-
OR-CPE isO(n · km).

Proposition 3 A mixed network having induced widthw∗

has an AND/OR search tree whose size isO(exp(w∗ ·
logn)).

6.1.1 Constraint propagation in AND-OR-CPE

Proposition 2 provides an important justification for us-
ing mixed networks as opposed to auxiliary networks.
The constraint portion can be processed by a wide range
of constraint processing techniques, both statically before
AND/OR search or dynamically during AND/OR search.
The algorithms can combine consistency enforcing (arc-,
path-, i-consistency) before or during search, directional
consistency, look-ahead techniques, no-good learning etc.

In the empirical evaluation, we used two forms of con-
straint propagation on top of AND-OR-CPE (called AO-
C for shortness). The first, yielding algorithm AO-
FC, is based onforward checking, which is one of
the weakest forms of propagation. It propagates the
effect of a value selection to each future uninstanti-
ated variable separately, and checks consistency against
the constraints whose scope would become fully in-
stantiated by just one such future variable. To per-
form this, we need to add at step (3) of Figure 5:

Apply forward-checking forPATH ∪ 〈Xi, v〉

If inconsistent then do not include〈Xi, v〉 in succ(Xi)

The second algorithm we used is called AO-RFC, and per-
forms a variant ofrelational forward checking. Rather
than checking only constraints whose scope becomes fully
assigned, AO-RFC checks all the existing constraints by
looking at their projection on the current path. If the pro-
jection is empty an inconsistency is detected. AO-RFC is

Table 1: AND/OR space vs. OR space

N=25, K=2, R=2, P=2, C=10, S=3, t=70%, 20 instances, w*=9, h=14

Time Nodes Dead-ends Full space
AO-C 0.15 44,895 9,095 152,858
OR-C 11.81 3,147,577 266,215 67,108,862

Table 2: AND/OR Search Algorithms (1)

N=40, K=2, R=2, P=2, C=10, S=4, 20 instances, w*=12, h=19

t i Time Nodes (*1000) Dead-ends (*1000) #sol
AO- AO- AO-

C RC RFC C FC RFC C FC RFC
20 0 0.671 0.056 0.022 153 4 1 95 3 1 2E+05

6 0.479 0.055 0.022 75 3 1 57 3 1
12 0.103 0.044 0.016 17 2 1 3 2 0

40 0 2.877 0.791 1.094 775 168 158 240 40 36 8E+07
6 1.409 0.445 0.544 183 35 32 107 28 24

12 0.189 0.142 0.149 28 9 7 3 4 3
60 0 6.827 4.717 7.427 1,975 1,159 1,148 362 163 159 6E+09

6 2.809 2.219 3.149 347 184 180 151 89 86
12 0.255 0.331 0.425 36 23 22 3 5 5

80 0 14.181 14.199 21.791 4,283 3,704 3,703 370 278 277 1E+11
6 5.305 6.286 9.061 626 519 518 128 98 97

12 0.318 0.543 0.714 44 40 40 1 3 3
100 0 23.595 27.129 41.744 7,451 7,451 7,451 0 0 0 1E+12

6 8.325 11.528 16.636 957 957 957 0 0 0
12 0.366 0.681 0.884 51 51 51 0 0 0

computationally more intensive than AO-FC, but its search
space is smaller.

Example 4 Figure 7 shows the search spaces ofAO-C
andAO-FC. Figure 7(a) shows the belief part of the mixed
network, and Figure 7(b) the constraint part. All variables
have the same domain,{1,2,3,4}, and the constraints ex-
press “less than” relations. Figure 7(c) shows the search
space of AO-C (the whole tree) andAO-FC (the grey
nodes are pruned in this case).

7 EMPIRICAL EVALUATION

We ran our algorithms on mixed networks generated ran-
domly uniformly given a number of input parameters:N
- number of variables;K - number of values per variable;
R - number of root nodes for the belief network;P - num-
ber of parents for a CPT;C - number of constraints;S -
the scope size of the constraints;t - the tightness (percent-
age of the allowed tuples per constraint). (N,K,R,P) defines
the belief network and (N,K,C,S,t) defines the constraint
network. We report the time in seconds, number of nodes
expanded and number of dead-ends encountered (in thou-
sands), and the number of consistent tuples of the mixed
network (#sol). In tables,w∗ is the induced width andh
is the height of the legal tree.

We compared four algorithms: 1) AND-OR-CPE, denoted
here AO-C; 2) AO-FC and 3) AO-RFC (described in pre-
vious section); 4) BE - bucket elimination (which is equiv-
alent to join tree clustering) on the auxiliary network; the
version we used is the basic one for belief networks, with-
out any constraint propagation and any constraint test-

Table 3: AND/OR Search Algorithms (2)

t i Time Nodes (*1000) Dead-ends (*1000)#sol
AO-FC AO-RFC AO-FC AO-RFC AO-FC AO-RFC

N=100, K=2, R=10, P=2, C=30, S=3, 20 instances, w*=28, h=38
10 0 1.743 1.743 15 15 15 15 0

10 1.748 1.746 15 15 15 15
20 1.773 1.784 15 15 15 15

20 0 3.193 3.201 28 28 28 28 0
10 3.195 3.200 28 28 28 28
20 3.276 3.273 28 28 28 28

30 0 69.585 62.911 805 659 805 659 0
10 69.803 62.908 805 659 805 659
20 69.275 63.055 805 659 687 659

N=100, K=2, R=5, P=3, C=40, S=3, 20 instances, w*=41, h=51
10 0 1.251 0.382 7 2 7 2 0

10 1.249 0.379 7 2 7 2
20 1.265 0.386 7 2 7 2

20 0 22.992 15.955 164 113 163 111 0
10 22.994 15.978 162 110 162 111
20 22.999 16.047 162 110 162 110

30 0 253.289 43.255 2093 351 2046 304 0
10 254.250 42.858 2026 283 2032 289
20 253.439 43.228 2020 278 2026 283

Table 4: AND/OR Search vs. Bucket Elimination
t i Time Nodes (*1000) Dead-ends (*1000)#sol

BE AO-FC AO-RFCAO-FC AO-RFCAO-FC AO-RFC

N=70, K=2, R=5, P=2, C=30, S=3, 20 instances, w*=22, h=30
40 0 26.4 2.0 1.3 49 21 35 19 0

10 1.9 1.2 30 18 29 18
20 1.9 1.3 26 17 21 16

50 0 30.7 35.6 2,883 2,708 1,096 1,0321E+12
10 18.6 18.9 557 512 342 302
20 12.4 12.1 245 216 146 130

60 0 396.8 511.4 51,223 50,089 13,200 12,8457E+14
10 167.9 182.5 5,881 5,708 2,319 2,241
20 80.5 83.6 1,723 1,655 718 697

N=60, K=2, R=5, P=2, C=40, S=3, 20 instances, w*=23, h=31
40 0 67.3 0.7 0.6 9 9 8 7 0

10 0.6 0.6 6 5 5 5
20 0.6 0.6 5 5 4 4

50 0 3.2 3.0 58 55 41 38 6E+04
10 3.0 2.8 31 28 28 25
20 2.7 2.6 25 23 20 18

60 0 65.2 70.2 2,302 2,292 1,206 1,1958E+08
10 54.1 56.4 791 781 660 649
20 39.6 40.7 459 449 319 309

ing. For the search algorithms we tried different levels of
caching, denoted in the tables byi (i-bound, this is the max-
imum scope size of the tables that are stored).i = 0 stands
for linear space search. Caching is implemented based on
context as described in Section 5.

Table 1 gives a brief account for our choice of using
AND/OR space instead of the traditional OR space. Given
the same ordering, an algorithm that only checks con-
straints (without constraint propagation) always expands
less nodes in the AND/OR space.

Tables 2, 3, and 4 show a comparison of the linear space
and caching algorithms exploring the AND/OR space. We
ran a large number of cases and this is a typical sample.

Table 2 shows a medium sized mixed network, across the
full range of tightness for the constraint network. For lin-
ear space (i = 0), we see that more constraint propagation
helps for tighter networks (t = 20), AO-RFC being faster

than AO-FC. As the constraint network becomes loose, the
effort of AO-RFC does not pay off anymore. When almost
all tuples become consistent, any form of constraint prop-
agation is not cost effective, AO-C being the best choice
in such cases (t = 80, 100). For each type of algorithm,
caching improves the performance. We can see the general
trend given by the bolded figures.

Table 3 shows results for large mixed networks (w∗ =
28, 41). These problems have an inconsistent constraint
portion (t = 10, 20, 30). AO-C was much slower in this
case, so we only include results for AO-FC and AO-RFC.
For the smaller network (w∗ = 28), AO-RFC is only
slightly better than AO-FC. For the larger one (w∗ = 41),
we see that more propagation helps. Caching doesn’t im-
prove either of the algorithms here. This means that for
these inconsistent problems, constraint propagation is able
to detect many of the no-goods easily, so the overhead
of caching cancels out its benefits (only no-goods can be
cached for inconsistent problems). Note that these prob-
lems are infeasible for BE due to high induced width.

Table 4 shows a comparison between search algorithms and
BE. All instances fort < 40 were inconsistent and the
AO algorithms were much faster than BE, even with lin-
ear space. Betweent = 40 − 60 we see that BE becomes
more efficient than AO, and may be comparable only if AO
is given the same amount of space as BE.

There is an expected trend with respect to the size of the
traversed space and the dead-ends encountered. We see that
the more advanced the constraint propagation technique,
the less nodes the algorithm expands, and the less dead-
ends it encounters. More caching also has a similar effect.

8 CONCLUSION

The paper presents the new framework ofmixed networks
which combines belief and constraint networks. It allows
for a more efficient and flexible exploitation of probabilis-
tic and deterministic information by borrowing the specific
strengths of each formalism that it builds upon. This sep-
aration is harder to exploit when constraints are expressed
as CPTs. We also introduce the AND/OR search space for
graphical models, which is always more effective than the
traditional OR space [Dechter2004]. We demonstrate the
benefit of searching the AND/OR space for solving mixed
networks, by introducing a new linear space search algo-
rithm. The AND/OR algorithm can easily be augmented
with caching, to take advantage of the amount of space
available.

An alternative main approach based on variable elimination
was explored earlier in [Dechter & Larkin2001]. Related
work was presented recently in [Allen & Darwiche2003],
where unit resolution can speed up recursive conditioning
[Darwiche1999] in the case of genetic linkage networks

which contain a lot of determinism. In general, the re-
cursive conditioning type algorithms exhibit behavior and
have complexities similar to AND/OR search algorithms.

Overall we showed that belief networks algorithms can
benefit from the mixed representation in a number of
ways: 1) Constraint propagation techniques can be applied
straightforwardly, maintaining their properties of conver-
gence and fixed point; 2) The semantics is much clearer by
separating probabilistic and deterministic information;3)
The algorithms can be made more efficient.

Acknowledgments

This work was supported in part by the NSF grant IIS-
0086529 and the MURI ONR award N00014-00-1-0617.

References

[Allen & Darwiche2003] Allen, D., and Darwiche, A.
2003. New advances in inference by recursive condi-
tioning. In Proceedings of the 19th Conference on Un-
certainty in Artificial Intelligence, 2–10.

[Bayardo & Miranker1996] Bayardo, R., and Miranker, D.
1996. A complexity analysis of space-bound learning
algorithms for the constraint satisfaction problem. In
AAAI’96: Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, 298–304.

[Bodlaender & Gilbert1991] Bodlaender, H., and Gilbert,
J. R. 1991. Approximating treewidth, pathwidth and
minimum elimination tree-height. InTechnical report
RUU-CS-91-1, Utrecht University.

[Darwiche1999] Darwiche, A. 1999. Recursive condition-
ing. In Proceedings of the 11th Conference on Uncer-
tainty in Artificial Intelligence (UAI99).

[Dechter & Larkin2001] Dechter, R., and Larkin, D. 2001.
Hybrid processing of belief and constraints. InProceed-
ings of UAI’2001, 112–119.

[Dechter2003] Dechter, R. 2003.Constraint Processing.
Morgan Kaufmann Publishers.

[Dechter2004] Dechter, R. 2004. AND/OR search spaces
for graphical models. Technical report, UCI.

[Ngo & Haddawy1977] Ngo, L., and Haddawy, P. 1977.
Answering queries from context-sensitive probabilis-
tic knowledge bases.Theoretical Computer Science
171:147–177.

[Pearl1988] Pearl, J. 1988.Probabilistic Reasoning in
Intelligent Systems. Morgan Kaufmann.

[Poole1993] Poole, D. 1993. Probabilistic horn abduction
and bayesian networks.Artificial Intelligence64:81–
129.

