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Abstract of the Dissertation

Temporal Reasoning with Constraints
by

Edward Moshe Schwalb
Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1998
Professor Rina Dechter, Chair

This dissertation is focused on representing and reasoning about temporal infor-
mation. We design general temporal languages supported by specialized e�cient infer-
ence procedures. The contribution is in combining the existing logic-based temporal
reasoning languages with the existing temporal constraint models, and in designing
new e�cient inference algorithms for the combined languages. We explore a speci�c
combination of Datalog, a polynomial fragment of logic programming, with Tempo-
ral Constraint Satisfaction Problems (TCSP). To render this combination meaningful,
attention is given to the formal syntax, semantics and the inference algorithms em-
ployed. We address some historical challenges relevant to the introduction of time
and constraints into logic programming.

The dissertation surveys and develops new and improved temporal constraint
processing algorithms. When processing traditional Constraint Satisfaction Problems
(CSP), path-consistency (PC) algorithms are polynomial. We demonstrate that when
processing temporal constraints, PC is exponential, and thus does not scale up. To
remedy this problem, two new polynomial algorithms are introduced: Upper Lower
Tightening (ULT) and Loose Path Consistency (LPC). These algorithms are complete
for a class of problems, called the STAR class. The empirical evaluation of these
algorithms demonstrates a substantial performance improvement (up to six orders
of magnitude) relative to other algorithms. We also demonstrate the existance of a
phase transition for TCSPs.
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Chapter 1

Introduction

It is hard to think of research areas in AI that do not involve reasoning about time.
Medical diagnosis systems need to reason about time stamped medical histories and
medical treatment plans involve scheduling the administration of drugs. Circuit anal-
ysis programs reason about the times that signals are sent and/or received. Schedulers
need to ensure that the schedule meets a set of deadlines. These issues are addressed
within the Temporal Reasoning sub�eld of Arti�cial Intelligence. While most other
sub�elds of AI employ temporal terminology, the very goal of temporal reasoning is
the development of a general theory of reasoning about time.

Time is important because it is associated with changes. In a world where no
changes occur (e.g. no viruses infecting blood systems, no circuits moving electri-
cal charges) the concept of time would become meaningless, and temporal reasoning
would not be necessary. Consequently, languages for temporal reasoning should meet
at least two requirements: They should allow describing what is true and what is
false at various points in time, and they should enable expressing the laws governing
the change of these truth values.

The majority of work on temporal reasoning languages is logic based. McCarthy
and Hayes [69] introduced the situation calculus, a temporal formalism that, to this
day, is the basis for many temporal representations. In this formalism, a situation
is a snapshot of the world at a given moment, and actions map one situation to
another. These actions de�ne what is a lawful change by specifying a relationship
(i.e. constraint) between the initial and �nal states. For example, let ON(A,B) be
a proposition1 which is true i� block A is on top of block B. Assume that initially,
ON(A,B) is true and we execute the action of picking up A. This action changes the
truth value of the proposition ON(A,B) because A is no longer on B2. The description
of such an action must dictate that if ON(X,Y) is true before the action \pick up Y"
is executed than ON(X,Y) no longer holds after the execution was completed.

1More precisely, ON(A,B) describes a set of states in which A is on B.
2The mapping is into a set of states in which A is not on B.

1



The situation calculus, as described in the original paper, makes strong commit-
ments. The �rst is the modeling of discrete time, which precludes discussion about
continuous change such as 
ow of water or electricity. A limitation of the situation
calculus is the exclusion of concurrent actions. Finally, the most famous problem
introduced by the situation calculus is the frame problem, which stems from the fact
that the situation calculus requires describing explicitly everything that changes.

One of the strongest advocates of formal common sense reasoning has been Hayes
[49]. He introduced the theory of histories which had a strong in
uence on temporal
reasoning. In this theory, states can be associated with a time interval rather than a
single time point. A justi�cation for this approach was given in a form of a formalism
describing the qualitative behavior of 
uids which could be generalized to enable
qualitative reasoning about general physical systems.

The interval-based view of time was further developed by Allen [5]. He identi�ed
13 possible relations that could hold between two time intervals. The ontology he
de�ned associates time intervals with either a property, an event or a process. A prop-
erty is a proposition that is either true or false, namely \the pen is red". If property
holds over an interval then it holds for all of its subintervals. If an event occurred
over an interval, it did not't occur over any of its subintervals. For example, the event
\John is going to the shop" is true only over the interval starting at the time John
left and ending at the time John arrived at the shop. This statement is repeatable
(i.e. can be repeated numerous times) but non-divisible. Process propositions are
hybrid cases. For example, the statement \John is working" describes a process. If
it is true for an interval, then it must be true for some subinterval, but does not need
to be true for all subintervals (i.e. John could have had a break).

McDermott [70] began exploring the relationship between problem solving and
theories of time. He proposed a theory of time and action to be used within a
planning process. This theory takes the notion of a state as primitive, and associates
it with a time point. His language distinguished between fact types and fact tokens
where the token is an instantiation of the type. For example, \John is working" is a
type while \John is working on May 2, 1990, from 8:00 to 17:00" is a token.

Subsequently, Shoham proposed a rei�ed �rst order logic [98], which consolidated
much of the prior work. The major contribution was addressing numerous technical
issues in the quali�cation of time and formalization of a set of axioms that describe
lawful change. This includes the realization that introducing time into logic requires
modifying its syntax and semantics via a temporal quali�cation method, such as
rei�cation. Subsequently, Bacchus et al presented a non-rei�ed �rst order logic [8] in
which they invalidate the reasons that Shoham used to justify the rei�cation of logic.
Instead, a simple temporal quali�cation was used in which time is represented via
temporal arguments.

Independently, Kowalski and Sergot proposed the Event Calculus [61], which is
one of the �rst investigations into the di�culties of representing time and change
within a logic programming framework. Finally, an integral logic was proposed [45]

2
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Figure 1.1: The logical structure of the temporal reasoner.

which focuses on the computational aspects of integrating over time intervals.

Parallel to the development of languages for temporal reasoning, various restricted
frameworks for processing temporal relationships were introduced. These include the
interval algebra [5], point algebra [110], Temporal Constraint Satisfaction Problems
(TCSP) [24] and models combining quantitative and qualitative constraints [71, 55].

To extend the TCSP framework into a logic-based language there is a need to
introduce constraints into logic. Constraint Logic Programming (CLP) is a �eld of
research concerned with the syntactic, semantic and computational issues of intro-
ducing constraints into logic programming. The shortcoming of CLPs is the inability
to perform temporal reasoning.

The constraint based reasoning paradigm, pursued in this thesis, combines logic-
based temporal languages with temporal constraint models, as illustrated in Figure 1.1
The challenge is twofold: introduce time and constraints into logic programming. The
user communicates with the system using a logic based language. Sentences in this
languages are interpreted and executed using a reasoning algorithm (e.g. resolution).
When this algorithm is executed, queries to the constraint solver are generated. These
queries involve deciding consistency of a set of constraints or computing a set of
feasible relations between constraint variables.

Our work is targeted at reasoning tasks commonly performed when the informa-
tion is inde�nite, incomplete or is naturally stated in terms of a set of constraints.
Consider the following speci�c example of reasoning in a medical domain, where there
are guidelines regarding the administration of drugs such as Digoxin, which is a brand
name for digitalis, and potassium supplements. Digitalis is a well known medication
for heart failure. Patients who have heart failure are often given diuretic drugs, such
as Lasix, a brand name for Furosemide, to reduce their 
uid load, usually within one
hour if taken orally. However, Furosemide reduces the level of potassium in the blood,
which can cause organ failure, such as heart arrytmia. To correct the depletion of
potassium, potassium supplements are often administered. Unfortunately, digitalis

3



toxicity may be potentiated by the potassium supplements and can potentially cause
other types of heart arrhytmia. As a result, these two drugs (digitalis and potassium
supplements) must not be taken together. However, taking them in sequence with
su�cient time in between is often done for the same patients, since these patients
are often using the diuretic drugs against the same heart failure. Representing con-
straints such as \taking them in sequence with su�cient time in between" and making
inferences is often a critical aspect of medical reasoning, and is a central motivation
for this thesis.

The contribution of this thesis is in combining existing logic-based temporal rea-
soning languages with the existing temporal constraint models. This is done with
attention to CLP languages, which combine general (non-temporal) logic program-
ming with general (non-temporal) constraint models. Speci�cally, we pursue research
along two lines: (i) designing a logic programming based language (i.e. �rst compo-
nent of the reasoner in Figure 1.1) and (ii) developing temporal constraint satisfaction
algorithms to be used within the constraint solver (i.e. second component of the rea-
soner in Figure 1.1).

The languages we introduce are designed to enable temporal reasoning and address
some historical challenges. These challenges include introducing time and constraints
into logic programming. On the one hand, logic programming and CLP languages
were not designed to represent time. On the other hand, temporal languages were
not designed to accommodate constraints. We show that the standard resolution
algorithm needs to be modi�ed to accomplish some intended temporal inference.
Once these modi�cations are made, the resulting algorithm is complete with respect
to the intended temporal semantics.

Temporal Constraint Satisfaction Problems (TCSP) are used as the underlying
constraint model. The variables in this model represent the times at which events
occur and the constraints represent temporal relations between them.

The dissertation is organized as follows: The rest of this chapter introduces some
relevant background. First, Constraint Satisfaction Problems (CSP) and Temporal
CSPs are introduced. Subsequently, the logic programming framework is presented,
and three relevant languages are brie
y described: (i) Datalog, (ii) DatalognS and
Constraint Logic Programs (CLP).

Chapter 2 presents a short survey of results reported for Temporal Constraint
Satisfaction Problems (TCSP). The three TCSP classes presented are: (i) Qualita-
tive Point-Point constraints, (ii) Qualitative Point-Interval constraints, (iii) Metric
Point-Point constraints, and (iv) combined metric and qualitative constraints. For
each of these classes, the chapter surveys tractable classes and constraint processing
techniques.

Chapter 3 presents new results that improve the state of the art in processing
metric temporal constraints. Two algorithms are presented, Upper Lower Tightening
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Figure 1.2: A sample constraint graph.

(ULT) and Loose Path Consistency (LPC). A new tractable class is identi�ed. The
empirical evaluation shows e�ciency improvements of six orders of magnitude (i.e.
by a factor of 106).

Chapters 4,5 present two new temporal languages, TCSP-Datalog and Token-
Datalog, designed according to the constraint based reasoning paradigm. These lan-
guages are designed to address issues regarding the embedding of time and constraints
into logic programming. The languages are supported by inference algorithms which
are complete with respect to their temporal semantics.

Finally, in Chapter 6, we present some examples illustrating the applicability of
the results presented in this work.

1.1 CSP Background

1.1.1 Discrete CSP

A (Binary) Constraint Satisfaction Problem (CSP) [65, 34, 22] consists of a �nite set
of variables fX1; . . . ;Xng, a domain of possible values Di for each variable Xi, and
a set of (binary) constraints. A binary constraint Cij between variables Xi and
Xj is a set of ordered pairs (xi; xj) where xi 2 Di, xj 2 Dj , namely Cij � Di �Dj.
A binary CSP can be represented by a labeled constraint graph G(V;E). Each
vertex V represents a variable Xi and is labeled by the domain of this variable, Di.
Each edge eij in E between vi; vj represents the constraint Cij and is labeled by the
set of ordered pairs Cij speci�es. If Cij = Di �Dj then eij 62 E.

Example 1: An hypothetical constraint graph is illustrated in Figure 1.2. The
variables are X1; . . . ;X5, and the constraints are C1;5; C2;5; C2;3; C3;4; C4;5.

A solution is an n-tuple (x1; . . . ; xn), representing an assignment of xi 2 Di to
each variable Xi, such that 8i; j (xi; xj) 2 Cij. A CSP is consistent if and only if
it has at least one solution. Two CSPs are equivalent i� they have the same set of
solutions. A value xi 2 Di is feasible i� there exists at least one solution in which
Xi = xi. A pair (xi; xj) 2 Cij is feasible i� exists at least one solution in which
Xi = xi and Xj = xj. The minimal domain Dmin

i contains only feasible values and
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C12 (1,3)(1,4)(2,4)(3,1)(4,1)(4,2)
C13 (1,2)(1,4)(2,1)(2,3)(3,2)(3,4)(4,1)(4,3)
C14 (1,2)(1,3)(2,1)(2,3)(2,4)(3,1)(3,2)(3,4)(4,2)(4,3)
C23 (1,3)(1,4)(2,4)(3,1)(4,1)(4,2)
C24 (1,2)(1,4)(2,1)(2,3)(3,2)(3,4)(4,1)(4,3)
C34 (1,3)(1,4)(2,4)(3,1)(4,1)(4,2)

Table 1.1: The list of allowed pairs for every constraints of the 4-queen example

Q

Q

Q
Q

X 1

X 2

X 3

X 4

X

X

X

X
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3

4

Figure 1.3: The 4-queen problem and constraint graph.

the minimal constraint Cmin
ij contains only feasible pairs. A CSP is minimal i� all its

constraints are minimal.

Example 2: As an example, consider the 4 queen problem (see Figure 1.3). The
problem is to position 4 queens on a chess board of 4x4 such that no pair of queens is
on the same row, column or diagonal. To formalize this problem as a CSP we could
use 4 variables, X = fX1;X2;X3;X4g with the domain D1; . . . ;D4 = f1; 2; 3; 4g. The
assignment Xi = j means that the i-th queen is positioned in the j-th column. The
complete set of constraints for the 4-queen example are given in table 1.1. The value
assignment X1 = 1;X2 = 2;X3 = 3;X4 = 4 is not a solution because (1; 2) 62 C12
3. The value assignment X1 = 2;X2 = 4;X3 = 1;X4 = 3 is a solution because
(2; 4) 2 C12, (2; 1) 2 C13, (2; 3) 2 C14, . . ., (xi; xj) 2 Cij.

Notational conventions We use v = jV j as the number of variables and e = jEj as
the number of constraints.

Tasks The most common CSP tasks are deciding consistency (namely whether exists
a solution), deciding whether a single value (or a pair of values) is feasible and �nding
a single (or all) solution.

3Only the list of allowed pairs is given.
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Figure 1.4: Enforcing path-consistency.

Local Consistency is commonly used to process CSPs [34, 26, 22].
2-consistency A CSP is 2-consistent, or arc-consistent, i� for every pair of vari-
ables Xi;Xj , for every value xi 2 Di exists a value xj 2 Dj such that the pair (xi; xj)
is in Cij. Enforcing arc-consistency requires O(d2v2) steps where d is the maximum
domain size.
3-consistency For enforcing 3-consistency, two basic operations are required: con-
straint intersection \ and composition �. The intersection \ of two constraints is a
set of ordered pairs of values appearing in both. The composition Cij = Cik � Ckj is
the set of pairs Cij = f(xi; xj) j 9xk (xi; xk) 2 Cik; (xk; xj) 2 Ckjg.

A CSP is 3-consistent i� 8i; j; k Cij � Cik �Ckj. A CSP is path-consistent if and
only if the constraint induced along any path Xi1; . . . ;Xim is looser or equal to the
direct constraint between Xi1 and Xim , namely i�

Ci1;ik � Ci1;i2 � Ci2;i3 � � � � � Cim�1;im:

Theorem 1: [65] A CSP is path-consistent i� it is 3-consistent.

To understand the intuition behind this result, consider the constraint graph in which
nodes and arcs are labeled by the corresponding domains and constraints. We would
like to compute the constraints induced by the composition of C12 �C23 � � � � �Ck�1; k

along a path from X1 to Xk, (see Figure 1.4). This can be done by assigning C13 to
be the result of the composition C12 � C23. Similarly, we assign C14 = C13 � C34, and
so on until we obtain the constraint C1;k = C1;k�1 � Ck�1;k. After path-consistency
is enforced, we are guaranteed that C1;k is tighter or equal to the constraint induced
along this path.

Due to theorem 9, path-consistency can be enforced by applying, for every con-
straint Cij and every variable k where k 6= i; k 6= j, the operation Cij  Cij \ (Cik �
Ckj) until a �xed point is reached, namely until no changes are made. An algorithm
for enforcing path-consistency, called PC, is given in Figure 1.5. For completeness
we also present a weaker version called Directional Path-Consistency (DPC) which is
more e�cient but less e�ective [24, 71]. DPC enforces path-consistency relative to a
speci�c variable ordering only.

The notions of 2-consistency and 3-consistency can be generalized. A CSP is
locally k-consistent if every value assignment to k � 1 variables, which is consistent
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Algorithm PC

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. if Cij 6= Cik � Ckj then

5. Cij  Cij \ (Cik � Ckj)
6. if Cij = fg then exit (inconsistency)
7. Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g

8. end-if

9. end-while

Algorithm DPC

1. for k n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j)2 E do

3. if Cij 6= Cik � Ckj then

4. E  E [ (i; j)
5. Cij  Cij \ (Cik � Ckj)
6. if Cij = fg then exit (inconsistency)
7. end-if

8. end-for

9. end-for

Figure 1.5: Algorithms PC and DPC for CSP and TCSP alike.

with all the constraints on these k � 1 variables, can be extended by assigning a
value to every additional k-th variable such that all the constraints between the k-th
variable and the previously assigned k � 1 variables are satis�ed.

1.1.2 Temporal CSP

Temporal CSP (TCSP) is a particular type of CSP where the variables represent the
times at which events occur and the constraints represent a set of allowed temporal
relations between them. A temporal constraint Cij is of the form

(Xi r1 Xj) _ . . . _ (Xi rk Xj)

where Xi;Xj are temporal variables and r1; . . . ; rk are a set of Basic Temporal Rela-
tions (BTR). A shorthand for this constraint is written in the form

Xi fr1; . . . ; rkg Xj or Cij = fr1; . . . ; rkg:

This constraint is satis�ed if at least one of the relations r1; . . . ; rk holds between
Xi;Xj. For example, let Xi;Xj be two intervals, and let r1= Before and r2= After.
The corresponding temporal constraint is
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Xi Before Xj _ Xi After Xj

which can be rewritten using the shorthand

Xi fBefore,Afterg Xj

or alternatively, Cij = fBefore,Afterg.

In some cases it is possible to introduce a special variable X0 whose domain D0

has a single element D0 = f0g. A unary constraint Ci = fr1; . . . ; rkg can then be
described by a binary constraint C0i containing the same set of BTRs fr1; . . . ; rkg. For
example, let Xi be the i-th time point variable, then the unary constraint

Xi 2 [10; 20] [ [30; 40]

can be described using the binary constraint

Xi �X0 2 [10; 20] [ [30; 40]

because X0 = 0.

Chapter 2 presents a short survey of the various types of TCSPs and the related
literature. Chapter 3 demonstrates that the complexity of TCSPs stems from the
disjunctive nature of its constraints. Even enforcing path-consistency is exponential.
To cope with the disjunctions, two polynomial algorithms are introduced and shown
to improve e�ciency of processing TCSPs by orders of magnitude.

1.2 Logic Programming Background

Our approach for temporal reasoning is based on Logic Programming (LP). This is a
class of languages in which information is described using \if-then" rules or assertions.
Each rule is of the form H :- B1,. . .,Bn where H is the head of this rule and B1,. . .,Bn
are atoms that constitute its body.

Example 3: Consider the statement \Medicine A should be administered if either
symptom X or symptom Y are observed" which can be described by the following
two-rule propositional logic program:

MedicineA :- SymptomX.

MedicineA :- SymptomY.

where the propositions SymptomX and SymptomY evaluate to true whenever symptoms
X and Y are observed respectively, and the medicine should be administered whenever
the proposition MedicineA is true.
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First order logic programming is similar to propositional logic programming, ex-
cept that propositions are replaced with predicates. A predicate P(X1,. . .,Xn) is a
mapping of a tuple X1 = x1; . . . ;Xn = xn (i.e. value assignment to X1; . . . ;Xn ) to
true or false.

Example 4: Let us introduce two variables, Medicines, Symptoms, taking values
from a set of drugs and symptoms respectively. Let MedicineA be a drug in the
domain of the variable Medicines and let SymptomX and SymptomY be two symptoms
in the domain of the variable Symptoms. In addition, we use the variable t to represent
time. We could extend the logic program from example 3 as follows:

Administrate(MedicineA,t+10) :- Observe(SymptomX,t).

Administrate(MedicineA,t+10) :- Observe(SymptomY,t).

where Administrate(X,t) evaluates to true i� medicine X was administered at time
t and Observe(Y,t) evaluates to true i� symptom Y was observed at time t.

In Chapter 5, we show how to modify this program to describe statements such
as \Medicine A should be administered at least 1 hour and at most 8 hours after
symptom X was observed".

1.2.1 Datalog

Datalog [4, 53] is a tractable fragment of logic programming which we choose as
a basis for the languages we design. Datalog is de�ned over a set of variables,
X = X1; . . . ;Xn, which take values from their �nite domains D = D1; . . . ;Dn. An
atom is a formula p(r1; . . . ; rk) where p is predicate over the terms r1; . . . rk. A term
ri is either a variable or a value from its domain. In other words, functions are not
allowed. The rest is similar to the above de�nition of logic programs. A ground term
is a value (i.e. constant) and a ground atom is an atom whose terms are ground. A
fact is a ground atom and a database is a �nite set of facts. A rule is of the form H

:- B1,. . .,Bn . A goal is written in the form :- B1,. . .,Bm. A Datalog program is a
�nite set of rules together with a database. Every program entails a set of facts.

Models. A model is a set of facts F=fF1,. . .,Fng, satisfying the following condition:
For every rule, if B1,. . .,Bm are all in F then H must also be in F .

Queries. A query is a �nite set of rules together with a goal formula. All variables
in the rules and the goal are implicitly universally quanti�ed. An answer to a query
is the model of the program augmented with the query.

Theorem 2: [4, 53] Every Datalog program 	 has a unique minimal model M	

containing all and only those atoms that are entailed by 	. M	 can be computed in
polynomial time.
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1.2.2 DatalognS

A possible approach for introducing time into Datalog was explored by DatalognS
[15, 16]. It extends Datalog with the functional sort that enables modeling discrete
time.

Terms can be either data or functional terms. Data terms are either variables or
constants as in Datalog. Functional terms (or arguments) are built from a distin-
guished functional constant '0', data constants, data variables, functional variables
and function symbols. For example, the functional term '5' can be obtained by apply-
ing the function +1 �ve times on the constant '0', namely 5 = +1(+1(+1(+1(+1(0))))).
Every functional term contains either 0 or a single occurrence of a functional variable.
For example, if f is a function symbol and T is a functional variable then f(T ) and
f(T; a) are legal functional arguments but f(T; T ) and f(T; 0) are not.

Predicates can be either functional or non-functional. Functional predicates take
exactly one functional argument (assumed to be the �rst argument) and non-functional
predicates take only data arguments.

Example 5: Consider the atom Take(T, Medicine) where the �rst term T is a
functional term describing time and the second term, Medicine, is a data term. The
program

Take(0,Medicine).

Take(T+8,Medicine) :- Take(T,Medicine).

is equivalent to the set of facts

Take(0,Medicine), Take(8,Medicine), Take(16,Medicine), ...

A ground term is a term which does not contain any variables. The Herbrand
universe of a program 	, denoted U	, is the set of all possible ground terms that are
built on top of constants in 	. The Herbrand base of 	, denoted B	, is the set of
all possible atoms that can be constructed with predicates from 	 taking arguments
from U	. An interpretation I is any subset of B	. A model is an interpretation I
which, for every rule, if B1,. . .,Bm are all in F then H must also be in I.

In this work, we borrow the notion of successor functions and use them to represent
in�nite periodic relation such as those described by DatalognS .

1.2.3 Constraint Logic Programming

Constraint Logic Programming (CLP) began as a natural merger of two declarative
paradigms: constraint solving and logic programming. This combination helps make
CLP programs both expressive and 
exible, and in some cases, more e�cient than
other kinds of programs. Though a relatively new �eld, a signi�cant body of knowl-
edge on the utility of introducing constraints into logic programming was accumulated
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in the Constraint Logic Programming (CLP) literature [106, 51].

A CLP program is composed of rules of the form

H :- B1,. . . ,Bn,C1,. . . ,Cm

where H, B1,. . .,Bn,C1,. . .,Cm are all atoms, H is the head of the rule, B1,. . .,Bn are
the non-constraint atoms in the body of the rule and C1,. . .,Cm are the constraint
atoms in the body of the rule. Note that constraint atoms cannot appear in the head.

CLP programs di�er from traditional logic programs in way the constraint atoms
C1,. . .,Cm are processed. In standard logic programming, the constraint and non-
constraint atoms are treated equally. In CLP, specialized techniques for deciding
which constraints are entailed, called constraint propagation algorithms, may be ap-
plied to the constraint atoms only [106, 51]. While it may be possible to represent
some CLP programs using general logic programs, without the CLP inference engine
it is very di�cult and time consuming to implement algorithms that compute the
intended answers to queries [106, 51].

To illustrate some CLP concepts, consider de�ning the relation sumto(n, 1+2+� � �+n),
which maps every natural number n to the sum �n

i=1. The following example CLP
program, presented in [51], describes this relation.

sumto(0,0).

sumto(N,S) :- N�1, N�S, sumto(N-1, S-N).

To �nd out which values of n are mapped to sums which are at most 3, we use the
query \S�3, sumto(N,S)", which gives rise to three answers: (i) N=0, S=0, (ii)
N=1,S=1, and (iii) N=2,S=3. The computation that arrives at the third answer (i.e.
N=2, S=3), described by the set of subgoals generated at every step, is as follows:

Initially, the set of subgoals contains the query atoms:
Step 1: S�3, sumto(N,S).

Subsequently, the query variables are mapped into new variables used
to describe the constraints. This is done because CLP requires that the
input variables do not participate in the constraint propagation.
Step 2: S�3, N=N1, S=S1, N1 �1, N1 �S1,

sumto(N1-1, S1-N1).

Subsequently, the rule sumto(N,S) :- N�1, N�S, sumto(N-1, S-N)

is applied to derive a new set of variables and constraints:
Step 3: S�3, N=N1, S=S1, N1 �1, N1 �S1,

N1-1=N2, S1-N1=S2, N2 � 1, N2 �S2,
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sumto(N1-1, S1-N1).

The next iteration is performed by applying the same rules as in step 3.
The precondition for unifying with the fact sumto(0,0) is obtained.
Step 4: S�3, N=N1, S=S1, N1 �S1,

N1-1=N2, S1-N1=S2, N2 � 1, N2 �S2,
N2-1=0, S2-N2=0.

At this point, sumto(N2-1,S2) is uni�ed with sumto(0,0). The constraints in this
�nal state are traced back to compute the answer N=2, S=3.

The operation of replacing Ni with Ni�1+1 is not automatically performed by the
standard logic programming inference engine. While it may be possible to write a
standard logic program performing the above computation, this may not be easy. In
general, implementing the CLP inference engine using standard logic programming
may require signi�cant e�ort, and in some cases, is not feasible [51]. This example
illustrated the following key CLP features:

� Constraint atoms are used to specify the query.

� During execution, new variables and constraints are created.

� At every inference step, the collection of constraint atoms is tested as a whole
for satis�ability.

Logic Programming (LP) is an instance of CLP in which all the constraints are
explicit equality [51]. Among the CLP languages that received most attention are:
CLP(R) [52] which is de�ned over the real numbers and describes linear arithmetic
constraints. CHIP [29, 106] is de�ned over the booleans (i.e. true,false) and of
bounded (i.e. not in�nite) subsets of the integers. Prolog III [18, 17] is de�ned
over the booleans, real numbers and strings. Second generation CHIP systems are
CLP(FD) [28], Echinda [47], Flang [66], cc(FD). There are other CLP languages
including LOGIN [2], LIFE [3] which compute over the domain of feature trees, BNR-
Prolog [78] computes over boolean variables, Trilogy [112, 113], CAL [1], �-Prolog [73]
and its derivatives L� [72], ELF [80].

In some more detail, CLP(<) introduces constraint variables whose domain is the
set of real numbers. The constraints are linear inequations over these variables. Tem-
poral constraints could be described by inequality constraints over the real numbers,
as is done by Temporal CSPs, surveyed in Chapter 2 and analyzed in Chapter 3.
The semantics of CLP(<) is obtained by augmenting the standard LP semantics with
the speci�c semantics of the constraint domain. An interpretation is composed of
the standard LP interpretation and a value assignment to the constraint variables.
A model is an interpretation which satis�es all the rules. The truth value of a non-
constraint atom is determined according to the standard LP semantics. A constraint
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atom evaluates to true i� the constraint it speci�es is satis�ed.

CLP(<) appears to be a natural candidate language for temporal reasoning, but
it has some shortcomings. In chapters 4,5 we show that the use of CLP as a basis
for temporal reasoning requires enhancing its syntax, semantics and proof procedure.
Consider representing the statement \the signals a,b are always (i.e. for every time
point) complementary, namely a $ : b. Consider using On(s,t), which evaluates
to true i� the signal s is on at time point t. We could describe the above statement
as follows:

On(a,t) :- On(:b,t). On(a,t) :- :On(:a,t).
On(:a,t) :- On(b,t). On(b,t) :- :On(:b,t).

where :a,:b denote the negation of a,b respectively and :On() denotes strati�ed
negation [4], which is a well known technique for introducing negation into logic
programs. One problem is that the semantics of CLP does not enable inferring, from
this program, that if the signal a was on during the interval [t1; t2], and the signal
b was on during the interval [t3; t4], then the two intervals must be disjoint, namely
these facts induce the constraint (t2 < t3) _ (t4 < t1).

1.3 Overview of Contributions

1.3.1 Processing Temporal Constraints

Processing temporal constraints involves taking, as input, a set of constraints over a
set of variables, which typically describe the times events occur. For example, consider
the following scenario: A large navy cargo must leave New York starting on March
7, go through Chicago and arrive at Los Angeles within 8-10 days. From New York
to Chicago the delivery requires 1-2 days by air or 10-11 days on the ground. From
Chicago to Los Angeles the delivery requires 3-4 days by air or 13-15 days on the
ground. In addition, we know that an Airforce cargo needs to be transported using
the same terminal in Chicago as required for the navy's cargo transportation (i.e. the
intervals of navy and Airforce shipments should not overlap). The transportation
of the Airforce cargo should start between March 17 and March 20 and requires
3-5 days by air or 7-9 days on the ground.

The variables in this example are the cargo departure and arrival times. There are
quantitative and qualitative constraints about the durations of the transport. The
quantitative constraints specify a set of intervals, each describing how long each pos-
sible action requires (e.g. ground vs air transportation). Intervals are used instead
of speci�c durations to accommodate some uncertainty in the duration. The qualita-
tive constraints specify that, because the Airforce and navy's cargo transportation
need to use a common resource (i.e. the same terminal) the times at which they are
scheduled to utilize this terminal must be disjoint.
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Given the above constraints, we are interested in answering questions such as: \are
the constraints satis�able?", \can the NAVY cargo arrive in Los Angeles on March
13-14?", \when should the cargo arrive in Chicago ?", \how long may the navy cargo
transportation take?". Most of these queries can be reduced to the task of deciding
consistency of a Temporal CSP. When time is represented by (or isomorphic to the)
integers4, deciding consistency is in NP -complete [24, 71]. For qualitative networks,
computing the tightest set of equivalent constraints (called the minimal network) is in
NP-hard [44, 24]. In both qualitative and quantitative models, the source of complex-
ity stems from allowing disjunctive relationships between pairs of variables, namely
from considering several possible courses of action.

Chapter 2 surveys the state-of-the art in representing and processing temporal
constraints. It is a self containing quick introduction into the �eld of temporal con-
straint satisfaction [83, 92, 91]. It covers algorithm complexity, algorithms and their
empirical evaluation.

Chapter 3 presents e�cient and e�ective polynomial approximation algorithms
which are only guaranteed to correctly decide inconsistency, but they are not guar-
anteed to correctly decide consistency [85, 86, 87, 88]. We show that in contrast to
discrete CSPs, where Path-Consistency (PC) algorithms are polynomial, when pro-
cessing metric temporal constraints, algorithm PC may require time which grows
exponentially in the size of the problem. This may result in an exponential blowup,
leading to what we call fragmentation.

We address the fragmentation problem by presenting two algorithms called Upper-
Lower-Tightening (ULT) and Loose-Path-Consistency (LPC). We demonstrate that
these algorithms avoid fragmentation and are e�ective in detecting inconsistencies.
We also discuss several variants of the main algorithms, called Directional ULT
(DULT), Directional LPC (DLPC) and Partial LPC (PLPC).

We show that all these algorithms are complete for a class of problems, called
STAR tractable class, in which the binary constraints are restricted to be singletons
(but the unary constraints are not restricted). We demonstrate that this new tractable
class is commonly encountered when scheduling events within non-contiguous time
windows.

We address two questions empirically: (1) which of the algorithms presented is
preferable for detecting inconsistencies, and (2) how e�ective are the proposed algo-
rithms when used to improve backtrack search.

To answer the �rst question, we show that enforcing path-consistency may indeed
be exponential in the number of intervals per constraint while ULT's execution time
is almost constant. Nevertheless, ULT is able to detect inconsistency in about 70% of

4This is always the case in practice.
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Method Syntax

Rei�cation True(Residence(John,LA),I1). True(Residence(John,NY),I2).
Before(I1,I2).

Arguments Residence(John,LA,I1). Residence(John,NY,I2).
Before(Residence(John,LA,I1),Residence(John,NY,I2)).

Tokens Residence(John,LA,I1). Residence(John,NY,I2).
Before(I1,I2).

Table 1.2: Temporal Quali�cation Methods.

the cases in which enforcing path-consistency does. Algorithm LPC further improves
on ULT and, while being e�cient, is capable of detecting almost all inconsistencies
detected by PC.

To answer the second question, we apply the new algorithms in three ways: (1)
in a preprocessing phase for reducing the fragmentation before initiating search, (2)
in forward checking algorithm for reducing the fragmentation during the search and
detecting dead-ends early, and (3) in an advice generator for dynamic variable order-
ing. We show that both ULT and LPC are preferred to PC and that LPC is the best
algorithm overall through experiments with hard problems which lie in the transition
region [79, 20]. We show that the performance of backtrack search can be improved
by several orders of magnitude when using LPC for preprocessing, forward checking
and dynamic ordering.

1.3.2 Temporal Constraint Logic Programming

In Chapters 4,5,6 we combine logic-based temporal reasoning languages with tem-
poral constraint models, and design e�cient inference algorithms for the combined
languages [89, 90, 108, 109, 84]. We investigate a combination of the most restric-
tive deductive database language, Datalog Attention is given to the formal syntax,
semantics and the inference algorithms employed. To introduce time and temporal
constraints into logic programming, three components are required: (i) a temporal
quali�cation method, (ii) a theory of time and temporal incidence and (iii) a temporal
constraint domain.

Temporal quali�cation is the method in which non-temporal sentences are quali�ed
with time. Consider describing the statement \John's residence was in LA before he
moved to NY." We could use the facts

Residence(John,LA). Residence(John,NY).

and introduce the temporal statement \Residence(John,LA)before Residence(John,NY)".
There are three known ways to do so: (i) temporal rei�cation, (ii) temporal arguments
and (iii) time tokens. The use of these method is illustrated in Table 1.2.
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Temporal incidence is the method by which the properties of the atoms in the
language (which is logic-based) are described. For example, part of a temporal inci-
dence theory is the homogeneity axiom which speci�es that if Holds(A! B, t1; t2)
is true then the proposition A! B holds for every point inside the interval [t1; t2].

Finally, the temporal constraint domain speci�es the class of atomic constraints
being used together with axioms describing their semantics. For example, we could
use constraints such as X < Y accompanied by the transitivity axiom (X < Y )^(Y <
Z)) (X < Z).

In Chapter 4 we present two new languages called TCSP-Datalog and Token-
Datalog, which are novel combinations of features inherited from their predecessors
TCSP, Datalog [4, 53], DatalognS [15, 16] and CLP [51]. These languages have well
de�ned syntax and semantics and have the following properties:

1. The syntax is described using terminology and notions from traditional logic
programs. The semantics are intuitive and are described in a declarative fashion
(i.e. model-based).

2. Our approach builds on top of the framework established by the situation cal-
culus, where 
uents are used to represent what is true at every point in time.
Fluents are propositions having di�erent truth values at di�erent points in time.
This implies that our languages su�er from the famous frame (and rami�cation)
problem in the same way that many other formalisms do.

3. We address temporal incidence by introducing a well de�ned theory of temporal
incidence which enables representing both instantaneous and non-instantaneous
events. It also can express the instantaneous and non-instantaneous holding

uents.

4. We use logic programming as the computational basis for making inferences.
The SLD-resolution algorithm is modi�ed by introducingTCSP-resolution. This
allows making inferences which are correct with respect to the temporal seman-
tics.

5. We use TCSPs for describing the constraints on the times at which events occur
and the times that 
uents are true, false or change values. E�cient algorithms
for processing TCSPs are brought to bear.

6. Periodic relation can be de�ned using unary successor and predecessor functions.
For example, to describe the period of one week we could write a rule stating
that Sunday is followed by Monday, which is followed by Tuesday, . . ., Sunday is
followed by Monday. In our language we write Monday = successor(Sunday),

Tuesday = successor(Monday), Wednesday = successor(Tuesday) etc. In
this example, the function \successor" described an in�nite periodic relation.
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Using this function we can express periodic occurrences such as\John is talking
to his stock broker every Sunday between 10:00am and 11:00am".

7. Time tokens are used to improve the expressiveness and obtain numerous ben-
e�ts, as described in Section 4.5. The increase in expressiveness implies an
increase in complexity.

8. An inference algorithm is presented and its soundness and completeness is
proved. This algorithm modi�es standard SLD-resolution by introducing a new
uni�cation method capable of unifying constraints and ground token terms.

9. There is a wide range of applications that can bene�t from the use of our
temporal languages. In Chapter 6 we present four example domains.
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Chapter 2

Temporal Constraint Satisfaction:

State Of The Art

A temporal constraint satisfaction problem (TCSP) is a framework for representing
and answering queries about events and the temporal relations between them. The
work in the area of TCSP has progressed along three di�erent lines: (i) identifying
tractable classes, (ii) developing both e�cient, exact algorithms for tractable classes
and (iii) developing e�cient approximation algorithms for processing problems which
may or may not be tractable. In this chapter we survey results on three classes
of TCSPs, namely qualitative interval, qualitative point, metric, and some of their
combinations. Most of the techniques reported are based on two principles: enforcing
local consistency and enhancing backtracking search.
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2.1 Introduction

Constraint Satisfaction Problems (CSP) involves a set of constraints over a set of
variables, where each variable has a set of possible values called its domain. Most
queries of interest can be answered by deciding whether the set of constraints is
satis�able.

This paradigm is appropriate in domains where the information is inde�nite, in-
complete or is naturally stated in terms of constraints. Such domains are found in
many areas of computer science including databases, computer aided design, software
engineering, parallel computation, operational research and arti�cial intelligence.

Temporal CSP (TCSP) is a particular type of CSPs where the variables represent
the times at which events occur and the constraints represent a set of allowed tem-
poral relations between them. To illustrate the use of TCSPs, consider representing
the constraints on the schedule of the following patient treatment plan. There are 3
exams, each followed within 12 hours by treatment session. Exams and treatments
are completed within 4 hours and must be at least 8 hours apart. The exams require
resources available on Jan 8-12, 20-21. The treatment session is performed by a ther-
apist that is available 9:00am to 2:00pm on Tue and Thu.

Common queries are:

� Is there a schedule1 ?

� Find a schedule.

� Find all schedules.

� What are the feasible times for an exam or a treatment?

� What are the feasible relations between two exams or treatments?

� What are the feasible relations between all exams and treatments?

Di�erent TCSPs are de�ned depending on the time unit that variables represent
(i.e. time points vs. time intervals) and the nature of the constraints (qualitative vs.
metric). For example, qualitative constraints may specify that the treatment interval
begins after the exam interval. Quantitative (metric) constraints may restrict the
starting time of i-th exam, denoted ti, to satisfy ti 2 [8; 12][[20; 21].

This chapter surveys the techniques for deciding TCSP satis�ability and answer-
ing TCSP queries. The classes of TCSPs surveyed are qualitative point, qualitative
interval, metric point, and some of their combinations. Processing techniques were
developed along three di�erent lines of research: (i) identifying tractable classes and

1an assignment of starting and ending times for each exam and treatment such that all the
constraints are satis�ed
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developing e�cient exact algorithms for these classes, (ii) developing exact exponen-
tial search algorithms and (iii) developing e�cient polynomial approximation algo-
rithms. Most of the techniques developed are based on two principles: (i) enforcing
path-consistency and (ii) enhancing naive backtracking search.

The chapter is organized as follows. Section 2.2 presents general de�nitions and
techniques for TCSPs. Section 2.3 surveys qualitative point TCSPs, Section 2.4
surveys qualitative interval TCSPs, Section 2.5 surveys metric TCSPs and Section
2.6 surveys their combinations.

2.2 Temporal Constraint Satisfaction Problems
(TCSP)

Although TCSPs are derived fromCSPs which are described in the introduction, there
are numerous fundamental di�erences enumerated below. A temporal constraint Cij

is of the form
(Xi r1 Xj) _ . . . _ (Xi rk Xj)

where Xi;Xj are temporal variables and r1; . . . ; rk are a set of Basic Temporal Rela-
tions (BTR). A shorthand for this constraint is written in the form

Xi fr1; . . . ; rkg Xj or Cij = fr1; . . . ; rkg:

This constraint is satis�ed if at least one of the relations r1; . . . ; rk holds between
X;Y . For example, let X;Y be two intervals, and let r1= Before and r2= After.
The corresponding temporal constraint is

Xi Before Xj _ Xi After Xj

which can be rewritten using the shorthand

Xi fBefore,Afterg Xj

or alternatively, Cij = fBefore,Afterg.

Unary Constraints For Point TCSPs (qualitative and metric), it is common to
introduce a special variable X0 whose domain D0 has a single element D0 = f0g. A
unary constraint Ci = fr1; . . . ; rkg can then be described by a binary constraint C0i

containing the same set of BTRs fr1; . . . ; rkg. For example, let Xi be the i-th time
point variable, then the unary constraint

Xi 2 [10; 20]

can be described using the binary constraint

Xi �X0 2 [10; 20]
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because X0 = 0. Qualitative Interval TCSPs cannot describe unary constraints.

Singleton Labelings A singleton labeling of a constraint Cij is one of its BTRs. A
singleton labeling of a TCSP N is a labeling of all the constraints in N .

Solutions A solution of a TCSP is a singleton labeling (rather than a variable instan-
tiation) which is consistent . Even when a constraint Cij is not speci�ed in the input
(because it is universal), every solution must specify some basic temporal relation
that holds between Xi and Xj .

Feasible Relations The CSP notion of feasible values is replaced by the TCSP
notion of feasible relations, because the solutions of TCSPs are singleton labelings
rather than variable instantiations. A relation r between Xi;Xj is feasible i� exists at
least one solution in which Cij is labeled by r. The set of feasible relations between
Xi and Xj constitutes the minimal constraint Cmin

ij . When all the constraints are
minimal the TCSP is said to be minimal.

Techniques were developed along three lines of research:

� Identifying tractable subclasses and developing specialized algorithms for these
subclasses. They are characterized by two parameters: (i) properties of the
constraint graph (e.g. degree, width) and (ii) the types of the constraints used.

� Developing polynomial consistency-enforcing algorithms that are sound but in-
complete. When these algorithms detect an inconsistency the input constraints
are guaranteed to be unsatis�able. When these algorithms do not detect an in-
consistency, the constraints are not guaranteed to be satis�able (i.e. they might
be unsatis�able).

� Enhancing search algorithms. There are two well known methods: (i) back-
tracking search (ii) iterative re�nement search (i.e. GSAT [93]). The former is
guaranteed to terminate with the correct answer but does not scale up due to
its exponential complexity. The latter scales up well but is not guaranteed to
terminate with a solution.

For many tractable classes, enforcing path-consistency correctly decides consistency.
Consequently, path-consistency algorithms became the most important family of ap-
proximation algorithms for TCSPs.

Operators Let R (and sometimes \?") denote the universal constraint, namely the
constraint which contains all possible relations and thus poses no restrictions. The
basic operations on temporal constraints (used to enforce path-consistency) are the
following:

� Complement (:): :Cij = R� Cij.
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� Converse (�): �(r1; . . . ; rk) = (�r1; . . . ;� rk).

� Intersection: S \ T is the set intersection of the BTRs in S and T .

� Composition: S �T is the disjunction of the individual composition of all atoms
in T with all atoms in S, namely

T � S = (t1; . . . ; tp) � (s1; . . . ; sq) = ((t1 � s1); (t1 � s2); � � � ; (tp � sq)):

The above operations over BTRs are de�ned for each TCSP class separately.

Arc-Consistency Binary constraints relative to X0 (recall that X0 = 0) could be
used to restrict the domains and a TCSP is arc-consistent i� 8i; j Cij � Ci0 � C0j

where i 6= j. Consequently, arc-consistency is a variant of path-consistency processing
triangles that include X0 only.

Search Methods To de�ne the search space we distinguish between complete and
partial singleton labelings. In a complete labeling each of the constraints consists of
a single BTR while in a partial labeling some constraints may consist of disjunctions
(or sets) of BTRs. Consistency of a complete labeling can be decided in O(v3) steps
where v is the number of variables [27, 71].

The search space of a TCSP is de�ned over all possible partial singleton labelings.
A naive backtracking search algorithm successively labels each constraint with one of
its BTRs as long as the resulting partial labeling is consistent. Once inconsistency is
detected, a dead-end is identi�ed and the algorithm backtracks.

Figure 2.1 presents a backtracking algorithm, which reduces the number of fu-
ture singleton assignments which lead to dead-ends, using forward checking as follows
[63, 88]: Tighten the constraints by enforcing path-consistency. Thereafter, choose a
disjunctive constraint and replace it with one of its BTRs. Enforce path-consistency
again and replace another constraint in the tightened network by one of its BTRs. Re-
peat this process until either inconsistency is detected (by enforcing path-consistency)
or all the constraints specify BTRs. When inconsistency is detected, declare a dead-
end and backtrack by undoing the last BTR labeling. When all the constraints specify
BTRs and the singleton labeling is path-consistent, terminate with this labeling as the
solution.

The search algorithm chooses the next singleton assignment to a constraint non-
deterministically. Thus the number of dead-ends encountered strongly depends on
strategy for deciding on the ordering of the constraints to be labeled as well as the
order BTRs are selected. For most tractable subclasses, however, enforcing path-
consistency at step 2 (see Figure 2.1) is su�cient to guarantee that a solution can be
found in a backtrack free manner, namely without encountering any dead-ends.
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Backtracking

1. Depth 0;
2. Apply PC or DPC; this removes some redundant BTRs.
3. if inconsistency was detected then
4. if Depth = 0 then exit with failure.
5. Undo the last BTR labeling.
6. Depth Depth � 1; Go to step 8.
7. if this is a singleton labeling (i.e. all constraints specify BTRs) then

exit with the solution.
8. Replace (non-deterministically) a disjunctive constraint by a single BTR.
9. Depth Depth + 1; Go back to step 2.

Figure 2.1: The backtracking algorithm for TCSP.

2.3 Qualitative Point Constraints (PA)

Qualitative point TCSPs have been de�ned by Vilain and Kautz [111] and follow the
classical view of time as a collection of instants related by qualitative relations such
as <, � or 6=.

A qualitative point TCSP is de�ned as follows:

Variables represent time points. The domains can be the naturals, integers, ratio-
nals or reals.

Relations The basic relations, namely the BTRs, are all possible order relations be-
tween two points, namely BTR = f<;=; >g. Three subalgebras have been stud-
ied:

name abbrv relations
basic point algebra BPA <;=; >; ?
convex point algebra CPA ;; <;=; >;�;�; ?
point algebra PA ;; <;=; >;�;�; ?; 6=

where '?' stands for the universal constraint.

2.3.1 Basic Point Algebra (BPA)

A BPA is a Point-Point TCSP whose constraints can specify four possible relations:
<;=; > and the universal constraint. It is either inconsistent or it must induce a strict
partial order. If it is consistent then the non-universal input constraints are minimal.
Thus, �nding a solution is equivalent to �nding a total order. This can be done using
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topological sort in O(v + e) steps. Enforcing path-consistency also correctly decides
consistency and computes the minimal constraints but requires O(v3) steps [111].

2.3.2 Convex Point Algebra (CPA)

A ConvexPoint Algebra (CPA) is a Point-Point TCSP whose constraints can specify
six possible relations: <;�;=;�; > and the universal constraint. The set of con-
straints can be represented as a weighted, directed graph using the following transla-
tion:

xi = xj translates to xi
0
�! xj xj

0
�! xi

xi � xj translates to xi
+1
�! xj xj

0
�! xi

xi < xj translates to xi
+1
�! xj xj

��
�! xi

Consequently, for the restricted case in which the relations <;> are not allowed,
�nding a solution accounts for �nding the shortest-path using Dijkstra's algorithm in
O(v2) steps. Otherwise, if <;> are allowed, we need to apply Floyd-Warshall all-pairs
shortest-paths algorithm which is equivalent to enforcing path consistency in O(v3)
steps [62, 19].

2.3.3 Point Algebra (PA)

Deciding Consistency

In IxTeT [41], a PA TCSP is translated into a directional graph whose edges are
labeled by either � or 6=, called �-6=-graph. The translation is performed as follows:

< translates to
�
�!;

6=
�!

> translates to
�
 �;

6=
 �

= translates to a single vertex after
\collapsing" the two vertices

? translates to no edge

� translates to
�
�!

� translates to
�
 �

6= translates to
6=
 �

where
rel
 � is a directional edge labeled by rel. The resulting graph, called a �-6=-

graph, has the following property [42] (not given as a theorem):

". . . A �- 6=-graph is consistent i� no pair of vertices connected by a 6=
edge are involved in a loop through � edges."2

The algorithm for detecting consistency collapses every �-loop into a single vertex.
If two collapsed vertices connected by a 6=-edge then the TCSP is inconsistent.

Identifying �-loops is done using standard algorithm for computing strongly con-
nected components (SCC) [100]. E�cient algorithms for computing the SCC are based

2This claim was not presented as a theorem, and no proof was given in the original reference [42].
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on two-way topological sort and require O(v + e) steps [99]. fS1; S2; . . . ; Sqg be the
set of identi�ed SCCs. The input PA TCSP is consistent i� the following TCSP is
consistent:

� A variable Xi is introduced for each SCC Si

� A constraint Cij is given by 8i; j 2 [1; q]; Cij  
T

v2Si
w2Sj

Cvw

This equivalent TCSP can be computed in O(v) steps. Gerevini and Schubert follow
the same approach ([40] theorems 2.8, subsection 3.1 and theorem 3.2).

Finding a Solution

Once �-loops are removed, a solution can be computed using topological sort in
O(v + e) steps.

Answering Queries

The feasible relations between all pairs of variables can be determined by computing
the minimal constraint network. Path consistency can �nd the feasible relations for
BPA and CPA but it is not complete for PA. Figure 2.2 shows a counter-example,
commonly known as the forbidden subgraph [103].
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Figure 2.2: The unique non-minimal path-consistent PA TCSP.

For PA TCSPs, the minimal constraint network can be obtained by enforcing
4-consistency. The algorithm is based on the following observation: The forbidden
subgraph, illustrated in Figure 2.2, must be included in every PA TCSP which is
path-consistent but not minimal [102]3. This property dictates the following two step
algorithm:

3A slight mistake in the proof is corrected in [39]
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1. Enforce path consistency; this requires O(v3) steps.

2. Search systematically for the forbidden subgraphs and update the labels; this
requires O(e6=v2) steps where e6= is the number of 6= constraints.

Although the worst case complexity of this algorithm is O(v4), it was observed em-
pirically that the path consistency step, whose complexity is only O(v3), dominates
the computation [101].

The 4-consistency algorithm based on the forbidden graph can be improved to
process dynamic problems, where the variables and constraints are added and/or
removed while several feasible queries are posted. The improvements are based on
mantaining an internal representation that approximates a complete graph, allows
e�cient query answering and supports incremental update of temporal constraints.

Using an indexed spanning tree

IxTeT [42] builds and uses an internal representation based on (i) computing themax-
imal weight spanning tree, (ii) adding some residual edges between di�erent branches
of the tree, and (iii) labeling the nodes with an index that expedites query answering.

The indexed spanning tree is computed in O(v + e) steps and allows e�cient
retrieval and update. Experimental results show that both retrieval and update are
done in linear time [42]. Although the IxTeT system has clear practical interest, it
will fail to compute the correct answer when the input TCSP includes the forbidden
subgraph or when the < relation is induced by <-paths. In other words, this algorithm
is not sound.

Arranging time points into chains

TimeGraph II is intended (and optimized) to support natural language understand-
ing where chain-like aggregates are dominant [40]. The internal data structure, called
timegraph, is constructed to describe chains, and the algorithms for building and main-
taining the timegraph are oriented to maximize the length of these chains. Building a
time-graph involves three steps: (i) ranking the vertices, (ii) computing next-greater
links, (iii) propagating < through forbidden graphs.

In TimeGraph II the feasible relation between two events can be computed in
O(e+ v) However, if the two events are in the same chain or related by 6= this query
can be answered in constant time.

2.3.4 Summary

Worst case bounds have been established for the tasks of deciding consistency, �nding
a solution and generating the minimal BPA, CPA and PA TCSP [101]. These
results are di�cult to contrast with the empirical evaluation of algorithms optimized
to answer feasible relation queries for a restricted domain. IxTeT experiments show
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Task Technique
Time Cost
worst case

Time Cost
average case

van Beek
Deciding Consistency
Finding a solution

collapsing SCCs O(v + e)

All feasible relations
(Minimal Rep.)

PC+forbidden graphs O(max(v3; e6=v
2)) O(v3)

IxTeT Feasible Relation O(v)
Adding new Relation O(v)

TimeGraph II Building timegraph O(e+ v) O(e)
Feasible Relation O(e+ v) O(v)

Table 2.1: Results obtained for Point-Algebra TCSP.

that a structure based on an indexed maximal spanning tree can be used to answer
both feasible relation queries and dynamic updating of constraints. TimeGraph's
major improvement upon IxTeT was in providing correct answers when the TCSP
includes <-paths and forbidden graphs. The results are summarized in Table 2.1
above.

2.4 Qualitative Interval Constraints (IA)

Qualitative Interval TCSP, also called the Interval Algebra (IA), is a model for rep-
resenting qualitative temporal information common in natural language [5].

Variables represent time intervals.

Domains are usually ordered pairs of integers or rationals.

Constraints are built upon a set of thirteen possible basic relations between a pair
of intervals, namely

BTR =

8><
>:

before; after; meets; met by;
overlaps; overlaps by; during; contains; equals;

starts; started by; �nishes; �nished by

9>=
>; :

De�nite information IA BTRs are often called de�nite relations, and they can be
described by conjunctions of PA relations. This is described in table 2.2, where
X�,X+ are the beginning and end points of the interval X respectively.

Inde�nite information To represent inde�nite information, we use disjunctions of
BTRs. As an example, the statement \John had his breakfast prior to going on a walk"
is represented by specifying that the interval of John's breakfast is either before or
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Table 2.2: The PA representation of the 13 IA relations.
Relation PA representation Inverse PA representation

X before Y (X+ < Y �) X after Y (Y + < X�)
X = Y (X� = Y �) ^ (X+ = Y +) X = Y (X� = Y �) ^ (X+ = Y +)
X meets Y (X+ = Y �) X met-by Y (X� = Y +)
X overlaps Y (X� < Y �) ^ (X+ < Y +) X overlaped-by Y (X� > Y �) ^ (X+ > Y +)

^ (Y � < X+) ^ (Y � > X+)
X during Y (Y � < X�) ^ (X+ < Y +) X contains Y (X� < Y �) ^ (Y + < X+)
X starts Y (X� = Y �) ^ (X+ < Y +) X started-by Y (Y � = X�) ^ (Y + < X+)
X finishes Y (X� > Y �) ^ (X+ = Y +) X finished-by Y (Y � > X�) ^ (Y + = X+)

meets the interval during which John was walking. This is denoted by

IBreakfastfbefore; meetsgIWalk:

Such information is inde�nite because it is not known whether John went for a walk
immediately after breakfast or he was waiting in between. The 13 atomic relations
are given in Table 2.3 and the composition table between these relation is given in
Table 2.4. This table is used as follows: To compute the composition of the relation
o with the relation d, we follow the row labeled by o up to the column labeled by d,
and obtain the result o d s which means that it can be either o or d or s. The total
number of possible inde�nite relations is 213 = 8192.

Operators The converse �, intersection \ and composition � of BTRs are as follows:
The converse of b;m; s; f; o; d is bi;mi; si; fi; oi; di respectively. The intersection of
two non-identical BTRs is empty. The composition of every pair of BTRs is given
by Table ??, originally presented in [5]. Recall that the converse, intersection and
composition of disjunctions of BTRs is de�ned in section 2.2.

Non-degenerate intervals An interesting feature of Interval Algebra is that one
cannot coalesce the end points of an interval to obtain a zero length interval [5]. To
illustrate the implications of this feature, consider the following conjunction of three
constraints:

(X fmeetsg Y ) ^ (Y fmeetsg Z) ^ (X fmeetsg Z)

The composition of fmg � fmg is fbg, which has an empty intersection with fmg.
Thus, the above conjunction of constraints is inconsistent.

Theorem 3: [67] Deciding consistency (and computing a solution) of Interval TC-
SPs is in NP-complete.
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Relation Inverse ExampleSymbol

X

X

Y

Y

X Y

X
Y

X
Y

X
Y

X
Y

X   before   Y

X   equal    Y

X   meets   Y

X   overlaps   Y

b bi

= =

m mi

o oi

didX   during   Y

X   starts   Y s si

X   finishes   Y f fi

Table 2.3: The 13 qualitative Interval-Interval relations and their inverses.

2.4.1 Tractable Classes

Pointisible TCSPs The �rst and most simple tractable class identi�ed was the sub-
class containing the relations fb,fb,mg,=,fmi,big,big which can be represented by
PA TCSPs, called Pointisible TCSPs [67]. Linear time algorithms for processing this
class were developed [38, 30]. For this subclass, enforcing path-consistency decides
consistency and enforcing 4-consistency computes the minimal constraints [102].

Macro Relations can be used to describe tractable classes. By shifting one of the
four interval endpoints of the two intervals leaving the other three �xed, a partial
order on the 13 relations is obtained [77]. This partial order was used to represent
coarse temporal information through the notion of neighborhood [33]. Two relations
are conceptual neighbors if they can be derived by shifting to the right one of the
four endpoints leaving the other three �xed. A set of relations forms a conceptual
neighborhood if each relation is a conceptual neighbor of at least one other relation in
the set. It is convenient to consider the following macro

\ = f m; mi; o; oi; s; si; f; fi; d; di; �g
� = fm; og ; ��1 = fmi; oig
� = fs; f; dg ; ��1 = fsi; fi; dig
�\ = fb;\g ; \� = f\; big
�\� = fb; \; big ; �� = fb; big

�-classes The �-notation is used to describe subclasses of the Interval Algebra which
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� b a m mi o oi d di = s si f �

b b ? b b o m b b o m b o m b b b b b o m b
d s d s d s d s

a ? a a d f a b d f a a d f a a a a a a
oi mi oi mi oi mi

m b a oi mi b f � = b o d s o d s b m m m d s o b
di si

mi b o m a f � = a d f a d f a mi d f a mi m
di � oi di oi oi oi

o b a oi di b oi di b o m b o d s b o m o o o di d s o d
mi si si di � �

oi b o m a o di a o d = o d f a oi mi oi oi oi a oi oi
di � � oi di di � oi di si d f mi si

d b a b a b o m a d f d ? d d a d f d b o
d s oi mi oi mi d

di b o m a oi di o di oi di o oi di o d = di di o di di di si di
di � mi si � si di � si oi di � oi

= b a m mi o oi d di = s si f �

s b a b mi b o m d f d b o m s s s si d b m
oi di � = o

si b o m a o di mi o o oi di si s si si oi di
di � � di � di � d f =
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Table 2.4: Transitivity table for Qualitative Interval Algebra.
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Table 2.5: Tractable classes.

Class Name Relations Used (�-class) Reference
Interval Orders fb; bi; \g [32]
Interval Graphs f��; \g [43, 31, 13, 57]
Circle (overlap) Graphs f f�;��1;�g; fb; bi;�;��1g g [35, 14]
Interval Containment Graphs f f�;��1g; fb; bi; �; ��1;�g g [46]
Posets of dimension 2 f �; ��1; fb; bi; �; ��1;�g g [10, 9, 46]

are based on the macro relations described above. � = fm1; . . . ;mkg denotes the set
of macro relations that form an algebra which is closed under converse, intersection
and composition. An interesting result regarding the complexity of a very simple
restricted subclass of the Interval TCSP is as follows:

Theorem 4: [44] Deciding consistency of an Interval TCSP in which the relations
are � = fb; bi; \;�\�g and � = f�\; \�; ��; �\�g is in NP-complete.

Despite the fact that the restricted class described above is intractable, several
�-based tractable subclasses were identi�ed. Table 2.5, originally given in [44], de-
scribes a number of well-known recognition problems in graph theory and partially
ordered sets which are restricted subclasses of the Interval Algebra. The notation
ffr1,r2g,fr1,r4gg describes two macro relations, the �rst is the disjunction ofr1
and r2, while the second is a disjunction of r3,r4. A linear time algorithm for deciding
consistency of � = fb; bi;\;�\;\�;�\�g is given in [44]. A cubic time algorithm
for deciding consistency of � = fb; bi;\;��g is given in [44]. E�cient algorithms for
� = fb; bi;\g and � = f��;\g can be found in [12, 11].

The Maximal Tractable Class

The unique maximal tractable subclass that includes all 13 relations was identi�ed
in [76] . De�ne three atomic formulas: (Xi � Xj), (Xi = Xj) and (Xi 6= Xj), where
Xi;Xj are point variables and i < j. A ORD-Horn clause is a disjunction of these
atomic formulas, and a ORD-Horn formula is a conjunction of ORD-Horn clauses.
The class of relations which can be described by ORD-Horn formulas, denoted H, is
closed under converse, intersection and composition [76].

Example 6: The ORD-Horn representation of the (pointisible) relationXfd; o; sgY
is the formula

f(X� � X+); (X� 6= X+)
(Y � � Y +); (Y � 6= Y +)
(X� � Y +); (X� 6= Y +)
(Y � � X+); (Y � 6= X+)
(X+ � Y +); (X+ 6= Y +)g
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where X�;X+ and Y �; Y + denote the end points of the intervals X and Y respec-
tively. The relation (X� 6= Y � _ X+ 6= Y +), the complement of Xf=gY , is in H
but is not pointisible.

Theorem 5: [76]

� A sub-algebra S is tractable i� the closure of S under the converse, intersection
and composition operators is tractable.

� H is the unique maximal tractable subclass and

� enforcing path-consistency decides consistency for H.

Other Maximal Tractable Subclasses

Twelve maximal tractable subclasses that do not use all 13 relations were charac-
terized [30]. Four of these can express sequentability of intervals, which cannot be
described in the ORD-Horn subclass. The satis�ability algorithm, which is common
to all these algebras, was shown to be linear. The de�nition of the classes and the
algorithm rely on the notion of maximal acyclic relations.

De�nition 1: An acyclic relation r is such that any cycle labeled by r is unsatis�-
able. A maximal acyclic relation r is such that 6 9r0 � r where r0 is acyclic.

The relation < is acyclic but not maximal. The only maximal acyclic relations are
fm,<,o,di,�,sg, fm,<,o,di,�,sig, fm,<,o,d,f,sg, fm,<,o,d,�,sg and their respective
converses.

De�nition 2: [30] The subclass A(r; s) = A1(q) [A2(r; q) where q can be any BTR

except f m,mig, r is an acyclic relation, A1(q) = fr0 [ fq;� qgjr0 2 Ag, A2(r; q) =
fr0 [ f=; qgjr0 � rg and A is the interval algebra.

Theorem 6: [30] Algorithm SC in Figure 2.3 decides consistency of A(r; b) subal-
gebras and terminates in O(v + e) steps where v is the number of variables and e is
the number of constraints.

This algorithm is very similar to that given in [102, 38] for PA TCSPs.

2.4.2 Techniques

The original constraint propagation algorithm Allen provides in [5] enforces path-
consistency. This algorithm hasn't changed much over the years, and today it is still
used as the major constraint propagation algorithm (for Interval TCSPs). A more
sophisticated algorithm, which enforces 4-consistency, can be found in [101]. These
algorithms are sound but incomplete for deciding consistency and for approximating
the minimal constraints.
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Algorithm SC

1. Find all strongly connected components C in G0;
2. for every arc e in G whose relation excludes equals do
3. if e connects two nodes in some C then

4. exit, the constraints are not satis�able.
5. endif

6. endfor

7. exit, the constraints are satis�able.

Figure 2.3: The simple algorithm for deciding consistency of A(r; q).

Hierarchical IA TCSPs

Reference intervals can be used to form clusters to reduce the space requirements and
time complexity of enforcing path-consistency [5]. Clusters are formed by associat-
ing a set of intervals with one reference interval that subsumes them. E�ciency of
constraint propagation is improved by enhancing path-consistency as follows: Path-
consistency is applied within each cluster separately. Inter-cluster constraints, be-
tween a pair of variables Xi;Xj from di�erent clusters, are computed by processing
triangles in which Xk speci�es a reference interval only. If the reference intervals are
disjoint, then enforcing path-consistency within the clusters is su�cient to enforce
path-consistency for the whole TCSP.

To improve e�ciency of enforcing path-consistency on general TCSPs where there
are no reference intervals (or they are not disjoint), reference intervals can be gen-
erated on-the-
y [56]. This reduces the number of triangles processed yet, if done
correctly, computes a path-consistent TCSP.

Empirical Evaluation

Next, we survey results of three experiments reported in [63], aimed at evaluating
the e�ectiveness of path-consistency for: (i) removing disjunctions, (ii) detecting
inconsistencies, and (iii) prunning dead-ends in backtrack search.

Removing Disjunctions To analyze the ability of path-consistency to remove re-
dundant disjunctions, its e�ectiveness was evaluated on randomly generated problems
[63]. For consistent TCSPs, the average number of disjunctions removed by enforcing
path-consistency was reported. For inconsistent TCSPs, the number of disjunctions
after enforcing path-consistency is 0. Thus, it was suggested to measure the average
number of disjunctions removed after the �rst iteration.

Problems of sizes 4-20 variables were analyzed. For each constraint, each of the 13
relations was included with probability 0.5. Thus, the average number of disjunction
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Figure 2.4: Removing disjunctions with path-consistency.

per constraint was 7.5 and the constraint graph was complete (i.e. for every pair of
variables a constraint was speci�ed).

The reproduced results form [63] are presented in �gure 2.4. The average number
of disjunctions generated was 7.5 (i.e. 50% of 13). For consistent TCSPs, after
enforcing path-consistency the average number of disjunctions did not drop under
5.5. For inconsistent TCSPs, the average number of disjuncts after the �rst iteration
of PC did not go above 4.5. Most inconsistencies were found in the �rst 3 iterations.

Similar results were reported by Ladkin and Reinefeld [64], van Beek and Manchak
[104]. Nebel [75] considers instantiating labels by elements from a tractable relation
set, and proved that this is completeness preserving. Furthermore, Nebel shows that
his technique almost always terminates in polynomial time [75].

2.4.3 Summary

For qualitative Interval TCSPs, also called the Interval Algebra (IA), answering
queries is intractable. Nevertheless, many relation based tractable classes exist and
the unique maximal tractable class using all 13 relations was identi�ed. The most
common technique used for deciding consistency and computing feasible relations of
the IA is enforcing path-consistency. For all the tractable classes surveyed, it correctly
decides consistency. To compute a solution, backtrack search is used. Incorporating
path-consistency as a forward checking procedure within backtrack search was shown
to be very e�ective in pruning dead-ends.
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2.5 Metric Point Constraints

Metric Point TCSP was introduced as a framework which extends constraint satis-
faction to include continuous variables and allows processing temporal constraints
[25].

Variables specify time points.

Domains represent an ordered and unbounded set of time points, and are usually
the set of integers or rationals.

Constraints are built upon a single BTR,Xj�Xi 2 [a; b]. A constraint C is expressed
by a set of intervals

C
def
= fI1; . . . ; Ing = f[a1; b1]; . . . ; [an; bn]g:

Having the following meaning: A unary constraint Ci restricts the domain of the
variable Xi to the given set of intervals

Ci
def
= (a1 � Xi � b1) [ . . . [ (an � Xi � bn):

where 7! means \translates to". A binary constraint Cij over Xi;Xj restricts the
permissible values for the distance Xj �Xi; it represents the disjunction

Cij
def
= (a1 � Xj �Xi � b1) [ . . . [ (an � Xj �Xi � bn):

All intervals are assumed to be pairwise disjoint. All times can be speci�ed relative
to X0 and thus each unary constraint Ci can be represented as a binary constraint
C0i (having the same interval representation).

Qualitative Point TCSPs, or PA networks, can be described using Metric Point
TCSPs by mapping the qualitative point-point constraints into metric constraints, as
described in table 2.6a [71, 55]. Similarly, metric TCSPs can be translated, with loss
of information, into Qualitative TCSPs, as described in table 2.6b [71, 55].

Operators Let T = fI1; . . . ; Ilg and S = fJ1; . . . ; Jmg.

1. The inverse of T = f[a1; b1]; . . . ; [ak; bk]g is
�T = f[�bk;�ak]; . . . ; [�b1;�a1]g.

2. The intersection of T and S, denoted by T \ S,
admits only values that are allowed by both of them.

3. The composition of T and S, denoted by T � S, admits only values r for which
there exists t 2 T and s 2 S such that r = t+ s
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Table 2.6: The mappings between Qualitative and Metric BTRs.

0 <0 7! (�1; 0);
0 �0 7! (�1; 0];
0 =0 7! [0; 0];
0 �0 7! [0;1);
0 >0 7! (0;1);

[a; b] 7!

8>>>>>><
>>>>>>:

0 <0 if a � b < 0;
0 �0 if a � b � 0;
0 =0 if a = 0 = b;
0 �0 if 0 � a � b;
0 >0 if 0 < a � b;

(a) (b)

Solutions A solution is a consistent singleton labeling. A singleton labeling of a
Metric TCSP is a selection of a single interval from each constraint. Consistency
of a labeling can be decided by enforcing path-consistency in O(v3) where v is the
number of variables. Note that when a constraint Cij is not speci�ed in the input, it
is assumed to specify the single interval [�1;1].

Theorem 7: [25] Deciding consistency (and computing a solution) of a Metric
Point TCSP is in NP-complete.

2.5.1 Tractable Classes

There are two relation based tractable classes: Simple Temporal Problems (STP)
and STP with inequation constraints (for continuous domains only). There is also a
graph-based tractable class called series-parallel TCSPs.

Simple Temporal Problems (STP)

Simple Temporal Problems (STP) specify a single interval per constraint. An STP
can be associated with a directed edge-weighted graph, Gd, called a distance graph (d-
graph), having the same vertices as the constraint graph G; each edge i! j is labeled
by a weight wij representing the constraint Xj �Xi � wij. An STP is consistent i�
the corresponding d-graph Gd has no negative cycles and the minimal network of
the STP corresponds to the minimal distances in Gd. Therefore, Floyed-Warshall's
all-pairs shortest path algorithm enforces path-consistency and is complete for STPs
[25]. Consequently, deciding consistency and computing the minimal network require
O(v3) steps.

Single Intervals with Inequation constraints

The class of Simple Temporal Networks was further extended to include disjunctions
of inequations (i.e. x 6= y). This extension is tractable if the domains are dense (i.e.
rationals or reals) [58]. This class of constraints may be encountered when resolution
is combined with variable elimination.
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Example 7: [58] Consider the following set of constraints

X3 � X1; X5 < X1; X1 � X2; X4 6= X1

EliminatingX1 (using standard elimination procedures) results in X3 � X2; X5 < X2

with the addition of disjunction X4 6= X3 _ X4 6= X2.

Deciding consistency can be done in O(v3e) [58].

Minimal Constraints can be computed in O(v5) by enforcing 5-consistency [60].

Series Parallel

A TCSP is said to be series-parallel with respect to a pair of nodes, i and j, if it
can be reduced to the edge (i,j) by repeated applications of the following reduction
operation: select a node of degree 2 or less, remove it from the network, and connect
its neighbors. This means that, once you have more than 2 domain constraints, the
problem is not series-parallel. Deciding whether a TCSP is series-parallel requires
O(v) steps where v is the number of variables [25]. If the TCSP is series-parallel,
deciding consistency can be done using algorithm DPC (recall section 2) in O(nk)
where k is the maximal number of intervals per constraint [25].

2.5.2 Techniques

The original path-consistency algorithm presented in [25] parallels the path-consistency
algorithms used to process discrete CSPs and Qualitative TCSPs.

Complexity of Path-Consistency

When time is described by integer or rational numbers, algorithms PC and DPC
terminate in O(v3R3) and O(v3R2) steps respectively, where R is the range of the
constraints, namely the number of domain elements between the largest and smallest
numbers speci�ed [25]. However, as we show in Chapter 3, when the range R is very
large or the domains are continuous, enforcing path-consistency is problematic and
becomes impractical (exponential) [81, 88]. Consider the network presented in �gure
2.5, having 3 variables, 3 constraints and 3 intervals per constraint. After enforcing
path-consistency, two constraints remain unchanged in the path-consistent network
while the third is broken into 10 subintervals. As this behavior is repeated over
numerous triangles in the network, the number of intervals may become exponential.

2.5.3 Summary

Metric TCSPs provide a framework for describing disjunctive linear di�erence con-
straints. In general, answering queries is intractable. Four tractable classes were
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Figure 2.5: The fragmentation problem.

surveyed: Simple Temporal Problems (STP), STP with disjunctions of inequation
constraints and series-parallel TCSP.

2.6 Combining Temporal Constraints

The qualitative and metric point and interval TCSPs were combined into a uni�ed
model [71]. This model is described using the same general concepts given in Section
??.

2.6.1 Point Interval Qualitative Constraints

In the point-interval algebra, abbreviated PIA the variables represent either time
points of time intervals. A new kind of constraints is introduced between a point
variable and an interval variable. The new BTRs are f before, starts, during,
finishes, afterg and their inverses, as illustrated in Table 2.7. Table 2.8 repre-
sent the composition between four types of relations: (i) point-point, point-interval,
interval-point and interval-interval. The composition between a Point-Point (PP) re-
lation and another PP relation is given in the table TPPP which is the Point Algebra
(PA) given in Section 2.3. TIII is the IA transitivity table given in Section 2.4, Table
2.4. The composition between a PP relation and a Point-Interval (PI) relation is
given in Table 2.9. The composition between PI relations and IP relations is given in
Table 2.10. The rest of the tables can be derived similarly.

Although PIA is less expressive than IA, the former is also intractable.

Theorem 8: [71] Deciding consistency of PIA TCSP is NP-complete.

2.6.2 Point Algebra + Metric Domain Constraints

TCSPs resulting from augmenting PA with unary metric constraints are also in-
tractable. The PIA subclasses investigated were either CPA or PA augmented with
one of the following unary metric constraints [71]:

� Discrete: Speci�ed by a �nite set of values.
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Relation Inverse ExampleSymbol

Y

Y

Y

YX   finishes   Y f fi

X   after  Y

didX   during   Y

YX   starts   Y s si

X   before   Y b

X

X

X

bi

ai X

X

a

Table 2.7: The 10 qualitative Point-Interval relations and their inverse.

PP PI IP II

PP TPPP TPPI
PI TPIP TPII
IP TIPP TIPI
II TIIP TIII

Table 2.8: The combined transitivity tables.

TPPI b s d e a

< b b b s d b s d ?
= b s d e a
> ? d e a d e a a a

Table 2.9: Composition of PP and PI relations.

TPIP ai ei di si bi

b < < < < ?
s < < < = >

d < < ? > >
e < = < > >

a ? < < > >

Table 2.10: Composition of PI and IP relations.
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Figure 2.6: Augmented CPA networks (a) before path-consistency and (b) after path-
consistency.

Table 2.11: Results on Combined TCSPs.

Discrete Single interval Multiple interval

Deciding consistency

CPA AC O(ek) AC+PC O(n2) AC+PC O(n2k)
PA NP-Complete AC+PC O(en) NP-Complete

Computing minimal constraints

CPA AC+PC O(n2k) AC+PC O(n2) AC+PC O(n2k)
PA AC+PC O(en2)

� Single interval: Speci�ed by a single metric interval.

� Multiple intervals: Speci�ed by a set of disjoint metric intervals.

Figure �g:a-cpaa presents a sample CPA augmented with multiple interval do-
mains. There are four variables, A,B,C,D with the qualitative PA constraints A�B,
A�B, A�D, C>D, B�C and metric domain constraints A2[0,6], B2(0,2)[[3,5),
C2(1,2)[(3,4) and D2(2,5). Figure �g:a-cpab show the constraints obtained after
enforcing path-consistency.

Table 2.11 summarize the complexity results and techniques, where AC denotes
Arc-Consistency, PC denotes Path-Consistency, and k is the maximum number of
intervals de�ning the domain [71].

2.6.3 Interval Algebra + Metric Constraints

TCSPs resulting from augmenting qualitative interval TCSPs with metric point con-
straints are intractable. Apart from backtracking search, there are two methods for

41



deciding consistency and approximating the minimal constraints: (i) Enforcing path-
consistency on a combined TCSP in O(n3R3) steps where R is the range of the metric
constraints (see Section 2.5) [71]. (ii) Iteratively enforcing path-consistency on the
point metric and qualitative interval sub-TCSPs independently, and translating and
propagating information between them in O(n5R3) [55].
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Chapter 3

Processing Metric Temporal

Constraints

This chapter advances the state-of-the-art of temporal constraint processing by intro-
ducing new e�cient processing algorithms. We demonstrate that even local consis-
tency algorithms like path-consistency (PC) can be exponential on TCSPs due to the
fragmentation problem. We present two new polynomial approximation algorithms,
Upper-Lower Tightening (ULT) and Loose Path-Consistency (LPC), which are e�-
cient yet e�ective in detecting inconsistencies and reducing fragmentation. We iden-
tify a new tractable class for which both ULT and LPC are complete. Our experiments
on hard problems in the transition region show that LPC has the best e�ectiveness-
e�ciency tradeo� for processing TCSPs. When incorporated within backtrack search,
LPC is capable of improving search performance by orders of magnitude.
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3.1 Introduction

Problems involving temporal constraints arise in various areas including temporal
databases [21], diagnosis [54], scheduling [82, 81], planning [70], common sense reason-
ing [98] and natural language understanding [7]. Among the formalisms for expressing
and reasoning about temporal constraints are the interval algebra [5], point algebra
[67], Temporal Constraint Satisfaction Problems (TCSP) [27] and models combining
quantitative and qualitative constraints [71, 55].

The two main types of Temporal Constraint Networks can be characterized as
qualitative [5, 67] and quantitative [27]. In the qualitative model, variables are time
intervals or time points and the constraints are qualitative. In the quantitative model,
variables represent time points and the constraints are metric. These two types have
been combined into a single model [71, 55]. In this paper we build upon the model
proposed by Meiri [71], in which variables are either points or intervals and there
are three types of constraints: metric point-point and qualitative point-interval and
interval-interval.

Answering queries in constraint processing reduces to the tasks of determining
consistency, computing a consistent scenario and computing the minimal network.
When time is represented by (or isomorphic to the) integers1, deciding consistency is
in NP -complete [27, 71]. For qualitative networks, computing the minimal network
is in NP-hard [44, 27]. In both qualitative and quantitative models, complexity
stems from disjunctive relationships between pairs of variables and occur in many
applications.

Example 8: A large navy cargo must leave New York starting on March 7, go through
Chicago and arrive at Los Angeles within 8-10 days. From New York to Chicago the
delivery requires 1-2 days by air or 10-11 days on the ground. From Chicago to Los
Angeles the delivery requires 3-4 days by air or 13-15 days on the ground. In addition,
we know that an airforce cargo needs to be transported using the same terminal in
Chicago as required for the navy's cargo transportation (i.e. the intervals of navy
and airforce shipments should not overlap). The transportation of the airforce
cargo should start between March 17 and March 20 and requires 3-5 days by air or
7-9 days on the ground.

Given the above constraints, we are interested in answering questions such as: \are
the constraints satis�able?", \can the NAVY cargo arrive in Los Angeles on March
13-14?", \when should the cargo arrive in Chicago ?", \how long may the navy cargo
transportation take?". The �rst two queries reduce to deciding consistency and the
third and fourth queries reduces to computing the minimal network.

Since answering such queries is inherently intractable, this paper focuses on the
design of e�cient and e�ective polynomial approximation algorithms for deciding con-
sistency and computing the minimal network. The common approximation algorithm

1This is always the case in practice.
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enforces path-consistency (PC) [27]. As we demonstrate, in contrast to discrete CSPs,
enforcing path-consistency on quantitative TCSPs is exponential. This is because
in the path-consistent quantitative TCSP intervals are broken into several smaller
subintervals. This may result in an exponential blowup, leading to what we call
fragmentation.

We present two algorithms for bounding fragmentation called Upper-Lower Tight-
ening (ULT) and Loose Path-Consistency (LPC). We show that these algorithms
avoid fragmentation and are e�ective in detecting inconsistencies. We also discuss
�ve variants of the main algorithms, called ULT-2, Directional ULT (DULT), LPC-2,
Directional LPC (DLPC) and Partial LPC (PLPC).

We address two questions empirically: (1) which of the algorithms presented is
preferable for detecting inconsistencies, and (2) how e�ective are the proposed al-
gorithms when used to improve backtrack search by preprocessing and (guiding the
search) by forward checking.

To answer the �rst question, we show that enforcing path-consistency may indeed
be exponential in the number of intervals per constraint while ULT's execution time
is almost constant. Nevertheless, ULT is able to detect inconsistency in about 70%
of the cases in which PC does. Algorithm LPC further improves on ULT; it is both
e�cient and capable of detecting almost all of the inconsistencies detected by PC.

To answer the second question, we apply the new algorithms in three ways: (1) in
a preprocessing phase for reducing the fragmentation before initiating search, (2) in a
forward-checking algorithm for reducing the fragmentation during the search and de-
tecting dead-ends early, and (3) in an advice generator for dynamic variable ordering.
Through experiments with hard problems which lie in the transition region (de�ned
by [79, 20]), we show that both ULT and LPC are preferred to PC and that LPC
is the best algorithm overall. We conclude that the performance of backtrack search
can be improved by several orders of magnitude when using LPC for preprocessing,
forward checking and dynamic variable ordering.

The organization of the paper is as follows. Section 2 summarizes the model of
TCSPs and the known algorithms for processing them. Section 3 presents algorithm
Upper Lower Tightening (ULT) and section 4 presents a new tractable class based
on ULT. Section 5 presents Loose Path-Consistency (LPC). Section 6 extends the
results of sections 3,4 and 5 to networks of combined qualitative and quantitative
constraints. Section 7 presents backtracking algorithms and Section 8 provides an
empirical evaluation.
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Figure 3.1: The constraint graph for the metric portion of the logistics problem.

3.2 Metric Temporal Constraint Networks

A quantitative TCSP involves a set of variables, X1; . . . ;Xn, having continuous do-
mains, each representing a time point. Each constraint C is a set of intervals

C
def
= fI1; . . . ; Ing = f[a1; b1]; . . . ; [an; bn]g:

A unary constraint Ci restricts the domain of the variable Xi to the given set of
intervals

Ci
def
= (a1 � Xi � b1) [ . . . [ (an � Xi � bn):

A binary constraint Cij over Xi;Xj restricts the permissible values for the distance
Xj �Xi; it represents the disjunction

Cij
def
= (a1 � Xj �Xi � bl) [ . . . [ (an � Xj �Xi � bn):

All intervals are assumed to be open and pairwise disjoint.

Example 9: Consider the cargo example given in the introduction. Let the variables
be:

X
N:Y:

= time point at which the navy cargo was shipped out of N.Y.,
X

Chicago
= time point the navy cargo arrived into and shipped out of Chicago

X
L:A:

= time point at which the cargo arrived into L.A.
X

AirforceStart
= time point at which the airforce shipment starts,

X
AirforceEnd

= time point at which the airforce shipment ends.

The metric constraints are:

X
N:Y:
�X0 2 [March 7th; March 7th]

X
Chicago

�X
N:Y:
2 [1; 2] [ [10; 11]

X
L:A:
�X

Chicago
2 [3; 4] [ [13; 15]

X
L:A:
�X

N:Y:
2 [8; 10]

X
AirforceEnd

�X
AirforceBegin

2 [3; 5] [ [7; 9]
X

AirforceBegin
�X

N:Y:
2 [10; 13]
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De�nition 3: [ solution ]
A tuple X = (x1; . . . ; xn) is called a solution if the assignment X1 = x1; . . . ;Xn =
xn satis�es all the constraints. The network is consistent i� at least one solution
exists.

A quantitative TCSP can be represented by a directed constraint graph, where
nodes represent variables and an edge i! j indicates that a constraint Cij is speci�ed.
Every edge is labeled by the interval set as illustrated in Figure 3.1. A special time
point X0 is introduced to represent the \beginning of the world". All times can be
speci�ed relative to X0 and thus each unary constraint Ci can be represented as a
binary constraint C0i (having the same interval representation). The constraint graph
representing the logistics example is given in Figure 3.1.

The minimal network is useful for answering a variety of queries, as described
below, because it describes explicitly all the implicit (induced) binary constraints.

De�nition 4: [ minimal network ]
A value vi and vij is a feasible value of Xi and Xj �Xi, respectively, if there exists
a solution in which Xi = v and Xj �Xi = vij respectively. The minimal domain of
a variable is the set of all feasible values of that variable. A minimal constraint Cij

between Xi and Xj is the set of feasible values for Xj �Xi. A network is minimal i�
its domains and constraints are minimal.

3.2.1 Answering Queries

For completeness, we describe the set of queries that the quantitative TCSP model
is designed to support. Consider the following sample queries:

1. Is the network consistent, and if so, what is a possible scenario ?

2. Can Xi occur 5 to 10 minutes after Xj ?

3. Must Xi occur 5 to 10 minutes after Xj ?

4. At what possible times can event Xi occur ?

5. Given the time at which event Xi occurred, when can Xj occur ?

These queries can be partitioned into two groups: those that can be reduced to the
task of deciding consistency and those that require computing the minimal network.

Clearly, Query 1 requires testing the consistency of the TCSP. To answer Query
2, we add the constraint Xj �Xi 2 [5; 10] and test for consistency. If the resulting
network is consistent the answer to the query is yes; otherwise it is no. Query 3, often
referred to as entailment, can be answered by adding (to the network) the negation
of the constraint, namelyXj�Xi 2 [�1; 5][ [10;1], and checking for inconsistency.
If consistency was detected by computing a solution, that solution provides a counter
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example that shows how Xi can occur less than 5 minutes or more than 10 minutes
after Xj .

Queries 4 and 5 can be processed in constant time by a simple table lookup, after
the equivalent minimal network (recall De�nition 2) has been computed. The event
associated with Xi can occur at time t for every t 2 C0i, where C0i is the constraint
between X0 and Xi in the minimal network. Given that Xi occurs at time t1, event
Xj can occur at time t2 2 Cij � t1, where Cij is the constraint between Xi and Xj in
the minimal network.

3.2.2 Path-Consistency

Deciding whether a given network is consistent is in NP-complete [27] and deciding
whether it is minimal is in NP-hard (which subsumes NP-complete). Therefore, it is
common to use algorithms that detect some (but not all) inconsistencies and tighten
the constraints to obtain an approximation of minimal constraints. Such algorithms
enforce local k-consistency by ensuring that every subnetwork with k variables is min-
imal [23]. Here, we present path-consistency (3-consistency) for quantitative TCSPs.
For qualitative TCSPs, 3,4-consistency algorithms are covered by [102].

Path-consistency is de�ned using the \ and the � operations (see Figure 3.2:

De�nition 5: [ Operators ]
Let T = fI1; . . . ; Ilg and S = fJ1; . . . ; Jmg be two sets of intervals which can
correspond to either unary or binary constraints.

1. The intersection of T and S, denoted T \S, admits only values that are allowed
by both of them.

2. The composition of T and S, denoted T � S, admits only values r for which
there exists t 2 T and s 2 S such that r = t+ s (Figure 3.2).

The intuition behind enforcing path-consistency is as follows: We would like to
compute the constraints induced by the composition of C12�C23�� � ��Ck�1;k along
the path from X1 to Xk. After path-consistency is enforced, we are guaranteed that
C1;k is tighter than or equal to the constraint induced along this path.

De�nition 6: A constraint Cij is path-consistent i� Cij � \8k(Cik � Ckj) and a
network is path-consistent i� all its constraints are path-consistent.

Any arbitrary consistent quantitative TCSP with non-dense time domains (as
is always the case in practice) can be converted into an equivalent path-consistent
network by repeatedly applying the relaxation operation Cij  Cij \ (Cik�Ckj) until
a �xed point is reached. If the domains are dense, it is unclear under what conditions a
�xed point can be reached in �nite time. Figure 3.3 presents an algorithm for enforcing
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T

S

S

S

T

T

0 1 2 3 4 5 6 7 8 9-1-2

T = f[�1:25; 0:25]; [2:75; 4:25]g
S = f[�0:25; 1:25]; [3:77; 4:25]g

T \ S = f[�0:25; 0:25]; [3:75; 4:25]g
T � S = f[�1:50; 1:50]; [2:50; 5:50]; [6:50; 8:50]g

Figure 3.2: An illustration of the \ and the � operations.

path-consistency. For completeness, we also describe a weaker yet more e�cient
version of path-consistency, called Directional Path Consistency (DPC), which is tied
to a particular ordering of the variables [26].

Theorem 9: [27]
If time is not dense then algorithms PC and DPC terminate in O(n3R3) and O(n3R2)
steps respectively, where n is the number of variables and R is the range of the con-
straints, i.e. the di�erence between the lowest and highest numbers speci�ed in the
input network.

Example 10: Consider a constraint Xj � Xi 2 [�1000;�990] [ [�800;+800] [
[990; 1000]. The range R of this constraint is [�1000; 1000]. For such R the theorem
9 implies that PC might need to update the constraints thousands of times.

3.2.3 Fragmentation

In contrast to discrete CSPs, enforcing path-consistency on quantitative TCSPs is
problematic when the range R is large or the domains are continuous [27, 81]. An
upper bound on the number of intervals in T � S is jT j � jSj, where jT j; jSj are the
number of intervals in T and S respectively. As a result, the total number of intervals
in the path-consistent network might be exponential in the number of intervals per
constraint in the input network, yet bounded by R when integer domains are used.

Example 11: Consider the network presented in Figure 3.4, having 3 variables,
3 constraints and 3 intervals per constraint. After enforcing path-consistency, two
constraints remain unchanged in the path-consistent network while the third is broken
into 10 subintervals. As this behavior is repeated over numerous triangles in the
network, the number of intervals may become exponential.
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Algorithm PC

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. if Cij 6= Cik � Ckj then

5. Cij  Cij \ (Cik � Ckj)
6. if Cij = fg then exit (inconsistency)
7. Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g

8. end-if

9. end-while

Algorithm DPC

1. for k n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j)2 E do

3. if Cij 6= Cik � Ckj then

4. E  E [ (i; j)
5. Cij  Cij \ (Cik � Ckj)
6. if Cij = fg then exit (inconsistency)
7. end-if

8. end-for

9. end-for

Figure 3.3: Algorithms PC and DPC.
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Figure 3.4: The fragmentation problem.
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Figure 3.5: Processing an STP.

3.3 Upper Lower Tightening (ULT)

Enforcing path-consistency computes a tighter equivalent network that approximates
the minimal network and is useful for answering a variety of queries. The problem
with enforcing path-consistency is that the relaxation operation Cij  Cij\(Cik�Ckj)
may increase the number of intervals in Cij. Our idea is to compute looser constraints
which consist of fewer intervals that subsume all the intervals of the path-induced
constraint.

3.3.1 Simple Temporal Problems

Fragmentation does not occur when we enforce path-consistency on the special class
of quantitative TCSPs called the Simple Temporal Problem (STP). In these networks,
only a single interval is speci�ed per constraint.

An STP can be associated with a directed edge-weighted graph, Gd, called a
distance graph (d-graph), having the same vertices as the constraint graph G; each
edge i ! j is labeled by a weight wij representing the constraint Xj � Xi � wij,
as illustrated in Figure 3.5. An STP is consistent i� the corresponding d-graph
Gd has no negative cycles and the minimal network of the STP corresponds to the
minimal distances in Gd. Therefore, an all-pairs shortest path procedure (Figure 3.5)
is equivalent to enforcing path-consistency and is complete for STPs [27]. The focus
of the rest of chapter is on two algorithms designed to bound the fragmentation.
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Algorithm Upper-Lower Tightening (ULT)
1. input: N
2. N 000 N
3. repeat

4. N  N 000

5. compute N 0; N 00; N 000.
6. until 8ij (low(C000ij ) = low(Cij)) and (high(C000ij ) = high(Cij))

; which implies no change
or 9ij (high(C000ij ) < low(C000ij ))

7. if 8ij (high(C000ij ) > low(C000ij )) output: N 000

otherwise output: \Inconsistent."

Figure 6: The Upper Lower Tightening (ULT) algorithm.

3.3.2 Avoiding Fragmentation

The algorithm for approximating path-consistency, called Upper Lower Tightening
(ULT), utilizes the fact that an STP is tractable. The algorithm treats the extreme
points of all the intervals associated with a single constraint as one big interval,
yielding an STP, and then performs path-consistency on that STP. This process
cannot increase the number of intervals per constraint. Finally, we intersect the
resulting simple path-consistent minimal network with the input network.

De�nition 7: [ Upper Lower Tightening ]
Let Cij = [I1; . . . ; Im] be the constraint over variablesXi;Xj and let low(Cij); high(Cij)
be the lower and upper bounds of Cij, respectively. We de�ne N 0; N 00; N 000 as follows:

� N 0 is an STP derived from N by relaxing its constraints to
C 0
ij = [low(Cij); high(Cij)].

� N 00 is the minimal network of N 0 (N' is an STP).

� N 000 is the intersection of N 00 and N , namely C 000
ij = C 00

ij \ Cij.

Algorithm Upper Lower Tightening (ULT) is presented in Figure 6. The network
N 0 is a relaxation of N . N 00 is computed by applying the all-pairs shortest path
algorithm on N 0. Because N 00 is equivalent to N 0, intersecting N 00 with N results in
a network that is equivalent to N .

Lemma 1: Let N be the input to ULT and R be its output.

1. The networks N and R are equivalent.

2. Every iteration of ULT (except the last one) removes at least one interval.
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Proof: Part 1: Let Sol(N) denote the set of solutions of the network N , then
Sol(N) � Sol(N 0) = Sol(N 00). This implies that Sol(N) \ Sol(N 00) = Sol(N) and
therefore Sol(N 000) = Sol(N). Part 2: Let N 0

i ; N
00
i be the networks N 0; N 00 at iteration

i. If an interval is not removed at iteration i, N 00
i = N 0

i+1 = N 00
i+1, which implies no

change. 2

Algorithm ULT computes looser networks than those resulting from enforcing full
path-consistency. A complete comparison, is given in section 4 and is depicted in
Figure 14.

Example 12: An example run of ULT on a sample problem instance is given in
Figure 7. We start with N and compute N 0

(1); N
00
(1); N

000
(1). Thereafter, we perform

the second iteration in which we compute N 0
(2); N

00
(2); N

000
(2) and �nally, in the third

iteration, there is no change. The �rst iteration removes two intervals, while the
second iteration removes one. In addition, ULT computes an induced constraint C02,
which allows inferring a new implicit fact that was not speci�ed explicitly in the input
network.

Theorem 10: Algorithm ULT terminates in O(n3ek + e2k2) steps where n is the
number of variables, e is the number of edges, and k is the maximal number of intervals
in each constraint.

Proof: Because computing N 0 requires processing every interval in the network
at most once, this computation requires O(ek) steps. Computing N 00 from N 0 can
be done by applying the all-pairs shortest path algorithm (e.g. Floyd-Warshall) and
thus requires O(n3) steps. Computing the intersection T \S of two sorted constraints
requires O(jT j+ jSj) steps, thus computing N 000 from N 00 requires O(ek) steps. This
means that each iteration requires O(n3+ ek) steps. The halting condition (Figure 6,
line 6) implies that at every iteration at least one interval must be removed (Lemma
1). Therefore, at most O(ek) iterations are performed yielding a total complexity of
O(n3ek + e2k2) steps. 2

To explain the di�erence between ULT and PC, we view every disjunctive con-
straint as a single interval with holes. The single interval speci�es the upper and
lower bounds of legal values while the holes specify intervals of illegal values.

Lemma 2: Algorithms ULT and PC compute the same upper and lower bounds.

Proof: The lower and upper bounds are modi�ed using the \ and the � op-
erators. We observe that low(Cik � Ckj) = low(Cik) + low(Ckj) which is equal to
the lower bound of [low(Cik); high(Cik)] � [low(Ckj); high(Ckj)]. A similar observa-
tion is made for the upper bound. Consequently, the lower and upper bounds of
Cij \ ([low(Cik); high(Cik)]� [low(Ckj); high(Ckj)]) and Cij \ (Cik�Ckj) are equal.
Additional iterations performed by PC only enlarge the 'holes'. 2
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Iteration 1 Iteration 2 Iteration 3

N’(1)

N’’(1)

XN

XX

X0

3 2

1

[0,50]

[20,40]

[60,70]
[180,200]

[140,170]

[20,130]

[10,20]  [30,40]

[130,150]
[60,90]

[0,40]

[20,70]
[0,150]

[0,50]

[20,200]

[10,40]

[20,70]

[30,110]

[30,160]

[20,120]

[0,50]

[10,40]

N’’’(1)

[20,40]

[60,70]

[10,20] [30,40]

[140,160]

[30,130]

[20,40]

[60,90]

[0,50]

[30,110]

N’(2)

N’’(2)

N’’’(2)

N’(3)

N’’(3)

N’’’(3)

[20,90]
[20,70]

[30,160]

[30,110]

[10,40]

[0,50]

[20,90]

[20,70]

[30,110]

[20,40]

[60,70]

[20,40]

[60,90]

[0,50]

[30,130]

[30,110]

[10,20] [30,40]

[30,130]

[10,40]

[0,50]

[20,90]

[20,70]

[20,90]

[20,70]

[20,40]

[60,70]

[10,20] [30,40]

[30,130]
[60,90]

[20,40]

[0,50]

[30,110]

[30,130]

[30,110]

[30,110] [0,50]

[10,40]

[10,40]

[0,50]

[30,130]

Figure 7: A sample run of ULT.
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Algorithm ULT-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q

4. T 00ij  Cij \ ([low(Cik); high(Cik)]� [low(Ckj); high(Ckj)])

5. if T 0ij = fg then exit (inconsistency)

6. if T 00ij 6= Cij then

Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g

7. Cij  T 00ij
8. end-while

Algorithm DULT

1. for k n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j)2 E do

3. T 00ij  Cij \ ([low(Cik); high(Cik)]� [low(Ckj); high(Ckj)])

4. if T 00ij = fg then exit (inconsistency)

5. if T 00ij 6= Cij then E  E [ (i; j)

6. Cij  T 00ij
7. end-for

8. end-for

Figure 8: Algorithms ULT-2 and DULT.

Thus, the di�erence between ULT and PC is the propagation of the holes. In
contrast to PC, ULT is guaranteed to converge in O(ek) iterations even if the interval
boundaries are not rational numbers.

3.3.3 Variations of ULT

While an iteration of ULT is divided into three sequential stages that involve the
whole network, algorithm PC uses simpler local operations over triplets of variables
and admits parallel execution. We next present two variations on ULT, called ULT-2
and Directional ULT (DULT), which perform such local computations (see Figure 8).
We use low(Cij) and high(Cij) to denote, respectively, the lowest lower bound and
highest upper bound of the union of the intervals in Cij.

Theorem 11: Given a network N , let n be the number of variables, e the number
of constraints and k the maximum number of intervals per constraint.

1. Algorithms ULT-2 and DULT terminate in O(n3k2 + ek3n); O(n3k2) steps re-
spectively and compute a network equivalent to their input network.

2. Algorithm ULT-2 computes a tighter network than DULT.
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Proof: Part 1. Algorithm ULT-2 initializes the queue with O(n3) triangles. A
set of O(n) triangles is added to Q (Figure 8, Alg ULT-2 line 6) only if at least one
interval was removed from the network, and therefore at most O(ekn) triangles are
added. Since computing T �S requires at most O(k2) steps, the total complexity for
ULT-2 is O(n3k2+ ek3n). Algorithm DULT performs a single pass of O(n3) triangles
and each triangle requires O(k2) steps.
Part 2. Every triangle that is considered in DULT is also considered in ULT-2 but
not vice versa, thus DULT is weaker. 2

Algorithm ULT can be extended to process discrete Constraint Satisfaction Prob-
lems (see Appendix A).

3.4 A Tractable Class

This section analyzes the class of quantitative TCSPs in which the binary constraints
Cij specify single intervals but the unary constraints C0i may specify an arbitrary
number of intervals. It subsumes the class of convex point algebra networks with holes
in their domains [71], but it is not comparable to the class of STPs with disjunctions
of inequations [59] over dense domains.

De�nition 8: [ STP Upper Bound ]
The STP upper bound of a network N , denoted N 0 = STP (N) is such that C 0

ij =
[low(Cij); high(Cij)].

Lemma 3: [27] For a minimal STP with the constraints Cij = [Lij; Uij], the instan-
tiation Xi = L0i is a solution.

Lemma 4 : For every quantitative TCSP N , if STP (N) is minimal then the
instantiation Xi = low(C0i) is a solution of N if all the binary constraints (i.e.
Cij; 8i > 0;8j > 0) specify a single interval.

Proof: From Lemma 3 it follows that this instantiation is a solution of STP (N).
Thus, all the binary constraints are satis�ed by this instantiation. Clearly, because
L0i 2 C0i = Ci, all the disjunctive constraints C0i are also satis�ed by this instantia-
tion. 2

Lemma 5: Algorithm ULT computes a network N whose STP (N) is minimal.

Proof: Follows immediately from De�nition 7. 2

From Lemmas 4,5 we get:

Theorem 12: Algorithm ULT correctly decides consistency of TCSPs in which
Cij; 8i > 0; 8j > 0, is speci�ed by a single interval.
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This class of problems is frequently encountered. Consider, for example, schedul-
ing tasks that use resources available in a set of time windows. The availability of
resources constrains the times at which tasks can be accomplished and can be describe
by unary constraints. For example, suppose we would like to transport cargo from
the east coast to the west coast. To use an air carrier we need to consider resource
availability constraints. These constraints need to be described by disjunctive unary
constraints on the times that cargo loading and unloading can occur.

This class can be generalized using the notion of a disjunctive constraint graph
G(V;E) whose vertices V correspond to variables and edges E specify disjunctive
constraints only.

Corollary 1: ULT is complete for TCSPs whose disjunctive constraint graph is a
star, namely a tree in which all edges are incident on a single node.

Proof: Label the root of the star by X0 and apply Theorem 4. 2

Moreover, even if the input TCSP is not a star, ULT may remove disjunctions
and obtain a star network. In such cases, ULT is complete.

An important consequence of the above is that ULT reduces the search space by
an exponential factor. Since the search algorithm need not consider all the disjunctive
constraints connected to the node with the maximal degree, the search space is re-
duced by a factor of O(kd(G)), where G is the disjunctive constraint graph, d(G) be the
maximal degree of G and k is the disjunction size, namely the number of intervals in
each constraint. In Section 8.2.1 we show empirically that without preprocessing with
ULT even tiny problems were computationally prohibitive and could not be solved in
a reasonable amount of time.

Unfortunately, our analysis cannot be extended to networks whose disjunctive
constraint graph is a general tree. Consider a triangle Xi;Xj ;Xk with the constraint
bounds [Lij; Uij ], [Lik; Uik] and [Lkj; Ukj ] respectively. When STP(N) is minimal we
are guaranteed that Lij � Lik + Lkj . Thus, instantiating Xk = Xi + Lik and Xj =
Xk + Lkj does not guarantee that Xj �Xi 2 [Lij; Uij].

3.4.1 ULT for discrete CSPs

The idea of ULT can be extended to approximate path-consistency in classical CSPs.
While enforcing full path-consistency requires O(n3k3) steps [74], approximating with
a single iteration of ULT requires O(n3k2), and using the complete ULT requires
O(n3ek + e2k2). Using a single ULT iteration (weaker than ULT) may signi�cantly
reduce propagation time (compared to PC) when the domains are large.

A binary relation Rij on Xi;Xj can be represented by a (0,1)-matrix with jDij
rows and jDj j columns by imposing an ordering on the domains. A zero entry at row
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r and column s means that the pair consisting of the r-th element of Di and the s-th
element of Dj in not allowed.

De�nition 9: (row convexity [101]) A (0,1)-matrix is row convex i� in each row
all of the ones are consecutive, that is no two ones within a single row are separated
by a zero in that same row. A constraint is row convex i� its matrix representation is
row convex and the network is row convex i� all its constraints are row convex. A row
convex relation can be represented by a set of k pairs of integers, (lr; ur), where lr is
the number of the �rst non-zero column and ur is the number of the last non-zero
column.

It was shown that enforcing path-consistency on row convex networks renders
them globally consistent [101]. In Figure 9, we present algorithm ULT-CSP. The
algorithm relaxes the network into a row-convex network, enforces path-consistency
and intersects the resulting network with the original network, until there is no change.

De�nition 10: Given an arbitrary matrix A, its upper bound row convex matrix
is obtained by changing, for every row r, all the elements between column lr and
ur, (e.g. ar;lr . . .ar;ur ) to ones. An upper bound row convex approximation of a
binary constraint is obtained by computing an upper bound row convex of its matrix
representation. The networks N 0; N 00; N 000 are de�ned as follows:

� N 0 is the row convex upper bound of N .

� N 00 is the minimal network of N 0 (obtained by enforcing path-consistency).

� N 000 is derived from N 0 and N 00 by intersection.

Theorem 13: Let N be the input to ULT-CSP and R be its output.

1. N and R are equivalent networks.

2. For row convex networks, ULT-CSP computes the minimal network in a single
iteration.

3. Every iteration of algorithm ULT-CSP terminates in O(n3k2) steps.

Proof: Part 1: Let Sol(N) denote the set of solutions of then Sol(N) � Sol(N 0) =
Sol(N 00). This implies that Sol(N) \ Sol(N 00) = Sol(N) and therefore Sol(N 000) =
Sol(N). Part 2: Clearly, if the input network is row convex, then N = N 0 and it
is known that for row convex networks path-consistency is complete [102]. Part 3:
Computing lr; ur for every row in every matrix requires O(n2k2) steps and enforcing
path-consistency on row convex networks requires O(n3k2) steps. 2
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Algorithm ULT-CSP
1. input: N
2. N 000  N
3. repeat
4. N  N 000

5. Compute N 0 by computing the row-convex upper bound of N .
6. Compute N 00 by enforcing path consistency on N 0.
7. Compute N 000 by intersecting N 0 and N 00.
8. until N 000 = N .
9. if N 000 is consistent, output: N"'.

output: \Inconsistent."

Figure 9: Algorithm ULT-CSP.

3.5 Loose Path-Consistency (LPC)

Now we present algorithm Loose Path-Consistency (LPC), which is stronger than ULT
and its variants, namely it generates tighter approximations to PC. The algorithm is
based on the following loose intersection operator.

De�nition 11: Let T = fI1; I2; . . . ; Irg and S = fJ1; J2; . . . ; Jsg be two constraints.
The loose intersection, T / S consists of the intervals fI 01; . . . ; I

0
rg such that 8i I 0i =

[Li; Ui] where [Li; Ui] are the lower and upper bounds of the intersection Ii \ S.

It is easy to see that the number of intervals in Cij is not increased by the operation
Cij  Cij / (Cik � Ckj). In addition, 8k Cij � Cij / (Cik � Ckj) � Cij \ (Cik � Ckj)
and T / S 6= S / T .

Example 13: Let T = f[1; 4]; [10; 15]g and S = f[3; 11]; [14; 19]g. Then T / S =
f[3; 4]; [10; 15]g, S / T = f[3; 11]; [14; 15]g while S \ T = f[3; 4]; [10; 11]; [14; 15]g.

According to De�nition 2, a constraint Cij is path-consistent i� Cij � \8k(Cik �
Ckj). By replacing the intersection operator \ with the loose intersection operator
/, we can bound the fragmentation. Algorithm LPC is presented in Figure 10. The
network N 0 is a relaxation of N and therefore loosely intersecting N 00 with N results
in an equivalent network.

Example 14: In Figure 11 we show a trace of LPC on a sample quantitative TCSP.
We start with N and compute N 0

(1); N
00
(1). Thereafter, we perform a second iteration

in which we compute N 0
(2); N

00
(2). Finally, in the third iteration, there is no change.

The �rst iteration removes 7 intervals while the second iteration removes a single
interval. We see that LPC explicates an induced constraint C02, which allows to infer
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Algorithm Loose Path-Consistency (LPC)
1. input: N
2. N 00 N
3. repeat

4. N  N 00

5. Compute N 0 by assigning T 0ij = \8k(Cik � Ckj), for all i; j.

6. Compute N 00 by loosely intersecting T 00ij = Cij / T
0
ij , for all i; j.

7. until 9i; j (T 00ij = �) ; inconsistency, or

or 8i; j jT 00ij j = jCij j ; no interval removed.

8. if 9i; j (T 00ij = �) then output \inconsistent."

else output: N 00.

Figure 10: The Loose Path-Consistency (LPC) algorithm.

a new implicit fact about the times that event X2 can occur. Note that applying ULT
on the same network will have no e�ect and applying PC on it results in the same
network as results from applying LPC.

Lemma 6: Let N be the input to LPC and R be its output.

1. The networks N and R are equivalent.

2. Every iteration of LPC (excluding the last) removes at least one interval from
one of the constraints.

Proof: Immediate. 2

Theorem 14: Algorithm LPC terminates in O(n3k3e) steps where n is the number
of variables, e is the number of constraints and k is the maximal number of intervals
in each constraint.

Proof: Computing N 0 requires processing every triangle in the network once, thus
requires O(n3k2) steps. Because in every iteration at least one interval is removed,
there are at most ek iterations. The complexity is therefore O(n3k3e). 2

Algorithm LPC computes tighter networks than ULT. For detailed execution, see
Figure 11. To clarify the di�erences among ULT, LPC and PC, we can view every
disjunctive constraint as a single interval with holes (as in Section 3.2). The single
interval speci�es the upper and lower bounds of legal values, while the holes specify
intervals of illegal values.

Lemma 7: Algorithms ULT, LPC and PC compute the same upper and lower
bounds.
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Iteration 1 Iteration 2 Iteration 3

N

X X23

X0
X1

[30,40]

(1)N’’ [10,20]    [110,110]

N’(1)

[70,90]

[130,150]

[160,180]

[130,150]

[150,160]

[-100,-60] 

[110,130]    [140,160]

[-60,-30]  [10,30]  [40,70]

[-10,40]  [90,120]

[30,60]    [120,140]

[20,30]

[130,140]

[110][120]

N’’

N’

[130,150]

[10,20]  

[150,160]

[10,30]

[140,160]

[30,50]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

N’’

N’(2)

(2)

[130,150]

[10,20]  

[150,160]

[10,30]

[140,160]

[30,50]

[240,250]

[10,30]

[100,120]

[30,50]

[20,30]

[130,140]

[110,120]

(3)

(3)

[30,140]

[230,250]

[130,160]

[40,60]

[-160,-120]

[-110,-70]

[-60,30]

[60,90]

[10,20]  [100,110]

[20,40]

[100,130]

[50,70]   [110,120]

[130,140]   [160,190]

[80,100]

[150,160]

[180,190]

Figure 11: A sample run of LPC.

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

[11,12]

[1,2]

[21,22]

[0,1]

[16,17]

[23,24]

Loose   Path-Consistency

[0,22]  [23,33]  [34,50] [1,22]  [23,29]  [34,46]

Figure 12: Solving the fragmentation problem.

61



Algorithm LPC-2

1. Q f(i; k; j)j(i < j) and (k 6= i; j)g
2. while Q 6= fg do
3. select and delete a path (i; k; j) from Q
4. T 0ij  Cij / (Cik � Ckj)

5. if T 0ij = fg then exit (inconsistency)

6. if jT 0ijj < jCij j then

Q Q [ f(i; j; k); (k; i; j) j 1 � k � n; i 6= k 6= j g
7. Cij  T 0ij
8. end-while

Algorithm DLPC

1. for k n downto 1 by -1 do
2. for 8i; j < k such that (i; k); (k; j)2 E do

3. T 0ij  Cij / (Cik � Ckj)

4. if T 0ij = fg then exit (inconsistency)

5. if jT 0ijj < jCij j then E  E [ (i; j)

6. Cij  T 0ij
7. end-for

8. end-for

Figure 13: Algorithms LPC-2 and DLPC.
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(a) (b)

Triangles not processed

Figure 14: The utility of PLPC.

Exponential
Polynomial

LPC-2

DPC

PC-2

PLPC

LPC

ULT

ULT-2

DLPC

DULT

Figure 15: The partial order on the e�ectiveness.

Proof: Using the same arguments as in the proof of Lemma 2 we show that
the lower and upper bounds of Cij / (Cik � Ckj) and Cij \ [low(Cik); high(Cik)] �
[low(Ckj); high(Ckj)] are equal to the bounds of Cij \ (Cik � Ckj). 2

Thus, the di�erence among ULT, LPC and PC is in their propagation of holes.
Algorithm ULT does not change the holes. LPC may enlarge the holes, while PC
may create additional holes.

3.5.1 Variations of LPC

We next present two variations on LPC which have the same structure as PC and
DPC. These algorithms, presented in Figure 13, are called LPC-2 and Directional
LPC (DLPC). They di�er from PC and DPC only in using the loose intersection
operator / instead of the strict intersection operator \.

Theorem 15: Given a network N , let n be the number of variables, e be the number
of constraints and k be the maximum number of intervals per constraint. Algorithms
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LPC-2 and DLPC terminate in O(n3k2 + ek3n)); O(n3k2) steps, respectively, and
they compute TCSPs which are equivalent to their input.

Proof: Algorithm LPC-2 applies the operation Cij  Cij / (Cik�Ckj) which does
not change the set of solutions, and thus the resulting network is equivalent. Initially,
the queue Q consists of O(n3) triangles. A set of O(n) triangles is added to Q (LPC-2
line 6) only if at least one interval was removed from the network, and therefore at
most O(ekn) triangles are added. Since computing T � S requires at most O(k2)
steps the total complexity of LPC-2 is O(n3k2+ ek3n). Algorithm DLPC applies the
operation Cij  Cij / (Cik �Ckj) at most O(n3)times. Each such operation does not
change the set of solutions and requires O(k2) steps. Thus the overall complexity of
DLPC is O(n3k2). 2

3.5.2 Partial LPC (PLPC)

To re�ne the tradeo� between e�ectiveness and e�ciency, we suggest another variant
for constraint propagation, called Partial LPC (PLPC). We apply the relaxation
operation Cij  Cij / (Cik �Ckj) only in cases where Cij and at least one of Cik and
Ckj is non-universal in the input network. Consider, for example, the tree network
in Figure 14a and the circle network in Figure 14b. The dashed lines outline several
triangles that are not processed.

3.5.3 Relative E�ectiveness

The partial order on the e�ectiveness of all the algorithms presented in this chapter
is shown in Figure 15. A directed edge from algorithm A1 to A2 indicates that A2

computes an equivalent network which is equal or tighter than A1 on an instance by
instance basis. This means that A2 can detect inconsistencies that A1 cannot detect,
but not vice versa. Note that algorithms PC and DPC are exponential.

3.6 Combining Quantitative and Qualitative Con-
straints

In this section, we present Meiri's extension [71] which combines qualitative and met-
ric constraints over time points and intervals.

A combined qualitative and quantitative TCSP involves a set of variables and a
set of binary constraints over pairs of variables. There are two types of variables,
point variables and interval variables. The constraint Cij between a pair of variables,
Xi;Xj is described by specifying a set of allowed relations, namely

Cij
def
= (Xi r1 Xj) _ � � � _ (Xi rk Xj): (3:1)
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Figure 16: The complete constraint graph of the logistics problem.

There are three types of relations, or alternatively, disjunctive constraints:

1. A point-point constraint between two point variables Xi;Xj is quantitative
2 and

has the form
Xj �Xi 2 I1 [ � � � [ Ik

where I1; . . . ; Ik are intervals.

2. A point-interval constraint between a point variable and an interval variable,
is qualitative, and is in the set f before, starts, during, �nishes, after g
abbreviated f b, s, d, f, a g respectively (see Section 2.6) [71].

3. An interval-interval constraint between two interval variables is qualitative, and
is in the set8><

>:
before; after; meets; met�by;

overlaps; overlaps�by; during; contains; equals;
starts; started�by; �nishes; �nished�by

9>=
>;

abbreviated f b,bi, m,mi, o,oi, d,di, =, s,si, f,� g respectively (see Section 2.4)
[5].

Example 15: Consider the cargo example of section 1. Let the variables be:

X
N:Y:

= time point at which the navy cargo was shipped out of N.Y.,
X

Chicago
= time point the navy cargo arrived into and shipped out of Chicago

X
L:A:

= time point at which the navy cargo arrived into L.A.
I
NAV Y

= transportation interval of the navy cargo.
I
Airforce

= transportation interval of the airforce cargo.
X

AirforceStart
= time point at which the airforce shipment starts,

X
AirforceEnd

= time point at which the airforce shipment ends.

2In Meiri [71] a distinction is made between qualitative and quantitative point-point constraints.
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The constraints are:

X
N:Y:
�X0 2 [March7; March7]

X
Chicago

�X
N:Y:
2 [1; 2] [ [10; 11]

X
L:A:
�X

Chicago
2 [3; 4] [ [13; 15]

X
L:A:
�X

N:Y:
2 [8; 10]

X
N:Y:
fstartsg I

NAV Y

X
L:A:
fendsg I

NAV Y

X
AirforceBegin

fstartsg I
Airforce

X
AirforceEnd

fendsg I
Airforce

X
AirforceEnd

�X
AirforceBegin

2 [3; 5] [ [7; 9]
X

AirforceBegin
�X

N:Y:
2 [10; 13]

I
NAV Y

fbefore; meets; met�by; afterg I
Airforce

The last constraint means that I
NAV Y

and I
Airforce

are disjoint. The constraint graph
representing this network is given in Figure 16.

3.6.1 Extending LPC for Combined Networks

For brevity we will describe the extension for LPC, but ULT can be extended using the
same methodology. As de�ned in Section 2, the combined model involves three types
of constraints: point-point (quantitative), point-interval (qualitative) and interval-
interval (qualitative). Each node in a triangle can be either a point or an interval
variable, resulting in 23 = 8 types of triangles. We therefore modify the semantics of
the / and the � operators to accommodate all 8 types.

Let Cij; Cik; Ckj be the constraints on pairs Xi;Xj , Xi;Xk and Xj ;Xk. For
computing T 0ij  Cij / (Cik � Ckj), we use Meiri's tables, except when quantitative
constraints are used. We consider the following cases:

Case 1: If Xi;Xj;Xk are interval variables then Allen's transitivity table [5] is used
to compute Cik�Ckj and the / operator is interpreted as the usual intersection
operator.

Case 2: If both Xi;Xj are interval variables and Xk is a point variable then Meiri's
transitivity tables [71] are used to compute Cik � Ckj and the / operator is
interpreted as the usual intersection.

Case 3: If exactly one of Xi;Xj is an interval variable and Xk is a point variable,
then the quantitative point-point constraint, Cik or Ckj, is translated into a
qualitative point-point constraint (using <;>;=) and Meiri's transitivity tables
[71] are used to compute Cik � Ckj ; the / operator is interpreted as the usual
intersection.

Case 4: If Xi;Xj are point variables and Xk is an interval variable then Cik � Ckj

is computed using Meiri's transitivity tables [71]. If Cik � Ckj 6= f<;>g then

66



the resulting constraint is translated into a single interval and the / operator
is interpreted as the \ operator in De�nition 1. Otherwise, to avoid increasing
the number of intervals in Cij, we set T 0ij  Cij (i.e. no change).

Case 5: If Xi;Xj ;Xk are point variables, then the composition operation used is
described by De�nition 1 and the / operator is described in De�nition 3.

With these new de�nitions of the operators � and /, we can apply algorithms LPC,
LPC-2 and DLPC for processing combined networks.

3.7 General Backtracking

Algorithms ULT and LPC are useful for detecting inconsistencies and for explicating
constraints, however they are not designed to �nd a consistent scenario. A brute-
force algorithm for determining consistency or for computing consistent scenarios
can decompose the network into separate simple subnetworks by selecting a single
interval from each quantitative constraint and a single relation from a qualitative
constraint [71, 27]. Each sub network can then be solved separately in polynomial
time by enforcing path-consistency, and the solutions can be combined. Alternatively,
a naive backtracking algorithm can successively select one interval or relation from
each disjunctive constraint as long as the resulting network is consistent [71, 27].
Once inconsistency is detected, the algorithm backtracks. This algorithm can be
improved by performing forward checking to reduce the number of possible future
interval assignments during the labeling process.

De�nition 12: [71] A basic label of an arc i ! j is either a selection of a single
interval from the interval set Cij for quantitative constraints, or a selection of a single
relation for qualitative constraints. A singleton labeling of N is a selection of a basic
label for all the constraints in N and a partial labeling of N is a selection such that
some constraints are assigned basic labels.

A singleton labeling of a combined network can be described by an STP [71].
Thus, deciding the consistency of a singleton labeling can be done in O(n3) steps, by
enforcing path-consistency [71].

Lemma 8: Algorithms ULT, ULT-2, DULT, LPC, LPC-2 and DLPC and their
extension for processing combined networks decide consistency of a singleton labeling.

Proof: When there are no disjunctions, the quantitative TCSP can be described
by an STP, for which all of the above algorithms are complete. Enforcing path-
consistency of a qualitative TCSP with no disjunctions is known to decide its consis-
tency [5, 71]. 2

We can apply backtrack search with forward checking in the space of partial
labelings as follows: The algorithm chooses a disjunctive constraint and replaces
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a b

X

Figure 11: Sample portion of the search tree

it with a single interval (if metric) or a single relation (if qualitative) from that
constraint. When the constraints are chosen in a dynamic order, the constraint with
the smallest disjunction size is selected for labeling. Thereafter, the network can be
tightened using ULT and LPC. Subsequently, the algorithm selects a new constraint
from the tightened network, assigns it a label and tests consistency again. This
is repeated until either inconsistency is detected (by ULT or LPC) or a consistent
singleton labeling is found. When inconsistency is detected, a dead-end is declared
and the algorithm backtracks by undoing the last constraint labeling.

Additional improvements we propose are (1) to avoid constraint propagation on
any subnetwork that is already singly labeled (since it is already consistent) (2) to
avoid using a stack for undoing the last constraint labeling3, and instead, to re-
construct the previous partial labeling using the indexes of the labels; (3) to avoid
instantiating constraints that were universal in the input network but became non-
universal as a result of constraint propagation.

Algorithms ULT and LPC are also useful for preprocessing before initiating search.
They reduce the number of disjuncts in the constraints, that is the number of inter-
vals in quantitative constraints and the number of allowed relations in qualitative
constraints. As a result, the branching factor of the search space is reduced. In
addition to reducing the disjunction size, these algorithms render all the universal
constraints non-universal. In contrast, using path-consistency algorithms for prepro-
cessing increases the fragmentation and the branching factor.

3.7.1 Detailed Backtracking Algorithms

The key for scaling up the backtrack algorithm suggested above is e�ective memory
management. In contrast to classical CSPs, when backtracking on TCSPs there is a
need to store information about the complete network at each level of the search tree.

To illustrate the problem, consider part of the search tree shown in Figure 11, in
which every node is a partial labeling. Suppose the search algorithm expands node
\X", and thereafter visits the left child labeled by \a". Suppose that once node \a"
was visited there is a need to backtrack due to inconsistency. The naive way to allow
backtracking is to simply store the partial labeling of \X". Such an approach, how-

3In the stack there would be O(n2) entries of size O(n2) each - this was the major problem in
[63].
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ever, requires to store all partial labelings on the path from the root of the search tree
to the current node, which may require O(n4) space4. Instead, we propose to con-
struct the partial labeling of node \b" during search without storing or reconstructing
\X". We store only the necessary information required for reconstruction of node \b",
namely the index of the basic labels within every constraint. Note that applying LPC
removes some intervals from the constraints and therefore such an indexing should
be carefully handled. The saving obtained by this method is mostly apparent when
the common parent of a and b is several levels up, closer to the root of the tree.

When a dead-end is encountered, we determine the source of the con
ics as fol-
lows. Suppose the dead-ends occurred at the constraint Cij, namely, instantiating Cij

with any of its intervals renders the networks inconsistent. Suppose the constraint
instantiated before Cij was Cpq. Then if the networks in which Cpq is made universal
is inconsistent with every possible instantiation of Cij then Cpq is clearly not respon-
sible for the dead-end. In that case, we check the constraints instantiated before Cpq

by making it universal and enforcing path-consistency, until we �nd a constraint for
which path-consistency does not detect inconsistency.

The complete backtracking algorithm is presented in Figure 16. The function of
LabelNetwork, shown in Figure 16, is to reconstruct the partial labeling based on the
indexes. It receives as input the original network N (the root of the tree), the indexes
of the basic labels to be selected from each constraint stored in the Index matrix,
and the last constraint which to be instantiated, Cij. Two copies of the network are
maintained: N is the original input network and N 0 is the partial labeling currently
expanded; the ij-th constraint of N 0 is denoted by T 0ij.

In contrast to Ladkin and Reinefeld, we propose to perform limited propagation.
As shown in Figure 15 lines 5-8, because every iteration of the \repeat" loop removes
at least one atomic relation from T 0ij (otherwise no change) we perform at most
max(26n; 2nk) relaxation operations where n is the number of variables and k is the
maximal number of intervals in a point-point constraint. In average, however, we
perform much less than 2nk.

Finally, the last improvement we propose is not to instantiate constraints that
were initially universal. It is easy to see that every consistent labeling of all the
non-universal constraints is also consistent with the universal constraints; as a result,
unnecessary dead-ends can be avoided.

3.8 Empirical Evaluation

Our empirical evaluation is addressing two questions: (1) which of the polynomial
approximation algorithms presented in this chapter is preferable for detecting incon-
sistencies, and (2) how e�ective are these algorithm when used to improve backtrack

4an entry for every constraint - O(n2) entries; each entry describes a complete network - O(n2)
space each.
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Input: A network N with n variables.
Output: A consistent singleton labeling of N if consistent, or

a noti�cation that N is inconsistent.
1. i 0; j  1
2. repeat
3. N 0 LabelNetwork(N; Index; i; j)
4. Index[i; j] 0
5. repeat
6. 8k 2 [j + 1; n] T 0ik  T 0ik / (T

0
ij � T 0jk)

7. 8k 2 [j + 1; n] T 0kj  T 0kj / (T
0
ki � T 0ij)

8. until no change.
9. Length[i; j] = jT 0i;jj
10. if N 0 is inconsistent then let i; j be the previous i; j such that i < j.
11. while Index[i; j] � Length[i; j] and j > 0 do
12. let i; j be the previous i; j such that i < j.
13. if j > 0 then
14. Index[i; j] = Index[i; j] + 1
15. let i; j be the next constraint to be instantiated such that i < j.
16. until N 0 is a consistent singleton labeling or j = 0.
17. if N 0 is a consistent singleton labeling then exit with N 0 as the solution.
18. else exit with failure.

Figure 15: The general Backtracking algorithm.

LabelNetwork(N; Index; i; j)
Input: N , a network with n variables,

Index, the indexes of the labels,
i; j, the current constraint not to be instantiated.

Output: N 0, a partial labeling of N .
1. 8q 2 [0; j � 1]; 8p 2 [0; q � 1]; T 0pq  the Index[p; q]-th label of Cpq.
2. 8q 2 [0; i� 1]; T 0jq  the Index[j; q]-th label of Cjq.
3. return(N 0).

Figure 16: Reconstructing a partial labeling.
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search via preprocessing, forward checking and dynamic variable ordering. Section 8.1
presents experiments addresing the �rst question by measuring the tradeo� between
e�ciency and e�ectiveness. Section 8.2 presents experiments addressing the second
question.

The problems were generated with the following parameters: n and e are the
number of variables and constraints respectively, and k is the number of intervals per
quantitative point-point constraint. These quantitative constraints specify integers
in the domain [�R;R], and the tightness � of a constraint T = fI1; . . . ; Ikg is (jI1j+
� � �+ jIkj)=2R where jIij is the size of Ii. We used uniform tightness for all constraints.
The parameter � is the number of relations in every point-interval constraint and the
parameter 
 is the number of relations in every interval-interval constraint.

3.8.1 Comparing Constraint Propagation Algorithms

We evaluate the tradeo� between e�ciency and e�ectiveness of ULT and LPC. E�-
ciency is measured by comparing the execution time. The e�ectiveness or accuracy
of an algorithm A is the fraction of times A returns a correct consistency decision.
Since comparing the correct answer by search is too time consuming, we propose to
measure relative e�ectiveness instead. To de�ne the notion of relative e�ectiveness,
we rely on the observation that all the approximation algorithms described in this
chapter are sound, namely when a problem is classi�ed as inconsistent this classi�ca-
tion is correct. Thus, two algorithms can di�er only in the number of problems they
incorrectly classify as consistent. We therefore de�ne the relative e�ectiveness of two
algorithms as the ratio between the number of inconsistencies detected by the algo-
rithms evaluated. In all accuracy plots we use the strong algorithm as the reference
point, namely it has 100% accuracy.

Path-Consistency versus ULT

In this subsection, we discuss two variants on PC: algorithms PC-1 and PC-2. By
PC-1 we refer to the brute-force path-consistency algorithm presented in [27] and by
PC-2 we refer to the algorithm presented in Figure 3.3a. We use PC as a collective
name for both PC-1 and PC-2.

Figure 15 describes qualitatively the strength of the various algorithms. We next
present a quantitative empirical comparison of algorithms PC-1, PC-2, DPC and ULT.
In Figure 17 we show that both PC-1, PC-2 and DPC may be impractical even for
small problems with 10 variables. We see that although ULT is orders of magnitude
more e�cient than PC-1 and PC-2, ULT is able to detect inconsistency in about
70% of the cases that PC-1, PC-2 and DPC detect inconsistencies. Subsequently, we
measure the relative e�ciency-e�ectiveness tradeo� for ULT and LPC.
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Figure 18: Execution times and quality of the approximations obtained by DPC and
ULT relative to PC. Each point represents 20 runs on networks with 10 variables, 95

Comparing ULT, LPC, DLPC and PLPC

Here we measure the relative e�ectiveness tradeo�s of LPC, ULT, DLPC and PLPC.
We test our algorithms on problems having 32 variables. The tightness of interval-
interval constraints is 7 relations allowed out of 13, namely the tightness 
 = 7=13;
for point-interval constraints the tightness � = 4=5; and for point-point constraints
the tightness is � = 0:45.

The tradeo� between e�ciency and e�ectiveness is presented in Table 3 and is
plotted in Figure 18. Each table entry and data point represents the average of 200
instances. The columns of Table 3 labeled \Acc < alg >" specify the accuracy of
algorithm < alg > relative to LPC, namely the fraction of cases in which algorithm
< alg > detected inconsistency given that LPC did. The columns labeled \# Op
< alg >" describe the number of revision operations made by algorithm < alg >.
The basic revision operation of PC is Cij  Cij \ (Cik � Ckj). The basic revision
operation of LPC is Cij  Cij / (Cik � Ckj), while the basic operation for ULT is
described in De�nition 3. Measuring the number of revision operations is machine
and implementation independent, unlike execution time.

For networks with only point variables, having about 200 constraints, ULT de-
tected 15% of the inconsistencies that LPC detected, while DLPC and PLPC detected
25% and 95% inconsistencies respectively. For the same benchmark, the execution
time of ULT, DLPC, PLPC, LPC was 0.162, 0.259, 0.533, 0.623 seconds respectively.
The general trends in Table 3 indicate that (1) ULT is clearly the most e�cient
algorithm and (2) PLPC is almost as e�ective as LPC in detecting inconsistencies.

Based on the results in Table 3 it is di�cult to select a clear winner. We speculate
that in applications where queries involve a small subset of the variables and e�ciency
is crucial (e.g. real-time applications, large databases), ULT will be preferable to LPC
and its variants. However, on our benchmarks, LPC is by far superior to ULT. Based
on experiments made so far, we cautiously conclude that PLPC seems to show the
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# of Acc of Acc of Acc of # Op: # Op: # Op: Time Time Time Time
Consts PLPC DLPC ULT LPC PLPC DLPC LPC PLPC DLPC ULT

32 vars; 100% interval variables (pure qualitative); 200 reps:

250 100% 100% 100% 17K 13K 11K 0:621 0:467 0:417 0:621
300 100% 98% 100% 20K 17K 15K 0:748 0:632 0:551 0:748
350 100% 92% 100% 25K 22K 19K 0:886 0:807 0:689 0:886
400 100% 79% 100% 28K 27K 23K 1:001 0:970 0:807 1:001
450 100% 71% 100% 30K 30K 26K 1:056 1:056 0:907 1:056
496 100% 73% 100% 28K 28K 25K 0:971 0:971 0:885 0:971

32 vars; 50% interval variables (mixed); 200 reps:

150 100% 100% 100% 13K 6K 5K 0:210 0:121 0:082 0:163
200 99% 98% 97% 18K 11K 8K 0:283 0:200 0:135 0:174
250 98% 93% 95% 23K 17K 11K 0:374 0:306 0:199 0:308
300 96% 63% 65% 26K 22K 15K 0:456 0:406 0:266 0:422
350 98% 32% 89% 27K 25K 20K 0:460 0:440 0:325 0:426
400 100% 46% 98% 24K 23K 20K 0:406 0:402 0:347 0:385
450 100% 86% 100% 20K 20K 19K 0:400 0:400 0:343 0:379
496 100% 100% 100% 16K 16K 16K 0:359 0:353 0:294 0:331

32 vars; 100% point variables (pure quantitative); 200 reps:

150 98% 92% 90% 25K 12K 5K 0:546 0:400 0:165 0:132
200 99% 25% 15% 27K 17K 8K 0:623 0:533 0:259 0:162
250 100% 70% 45% 14K 11K 10K 0:380 0:350 0:315 0:181
300 100% 99% 77% 9K 8K 8K 0:287 0:275 0:270 0:164
350 100% 100% 94% 7K 7K 7K 0:244 0:241 0:235 0:126
400 100% 100% 100% 6K 6K 6K 0:211 0:212 0:204 0:105

Table 3: E�ectiveness and e�ciency of LPC, DLPC, PLPC and ULT.

best overall e�ciency-e�ectiveness tradeo�.

3.8.2 Backtracking

To improve backtrack search, our polynomial approximation algorithms can be used
in three ways: (1) in preprocessing to reduce the number of disjuncts before initi-
ating search, (2) to perform forward checking (within backtracking) for reduction of
fragmentation and early detection of dead-ends, and (3) as an advice generator to
determine the order of constraint labelings. For simplicity of exposition, we report
results of experiments in which the same constraint propagation algorithm is used for
preprocessing, forward-checking and dynamic variable variable ordering.

In selecting our benchmark problems, we drew on the recent observation that
many classes of NP-complete problems have hard instances in a transition region
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Figure 18: E�ectiveness and E�ciency of LPC, ULT, DLPC and PLPC (from Table 3).

[79, 20]. We therefore identi�ed generation patterns that enable generating problems
in the transition region and report the results obtained on those problems. Section
8.2.1 provides results on quantitative TCSPs and Section 8.2.2 provides results on
qualitative networks.

Quantitative TCSPs

In general, constraint propagation algorithms are used as a preprocessing phase before
backtracking in order to reduce the number of dead-ends encountered during search.
When preprocessing with PC, problems become even harder to solve due to increased
fragmentation. In contrast, preprocessing with ULT results in problems on which
even naive backtracking is manageable (for small problems). This can be explained
from the search space reduction argument mentioned at the end of Section 4.

We compare three backtrack search algorithms: \Old-Backtrack+ULT" which uses
ULT as a preprocessing phase with no forward checking and static ordering; \ULT-
Backtrack+ULT" and \LPC-Backtrack+LPC" which use ULT and LPC respectively
for preprocessing, forward-checking and dynamic variable ordering.

The experiments reported in Figure 19 were conducted with networks of 10-20
variables, complete constraint graphs and 3 intervals in each constraint. Each point
represents 500 runs. The region in which about half of the problems are satis�able,
is called the transition region [79, 20]. In Figures 19a and 19b we observe a phase-
transition when varying the size of the network, while in Figures 19c and 19d we
observe a similar phenomenon when varying the tightness of the constraints.

The experiments reported in Figure 20 were conducted with networks having 12
variables, 66 constraints (i.e. complete constraint graphs) and 3 intervals in each
constraint. Each point represents 500 runs. ULT and LPC pruned dead-ends and
improved search e�ciency on our benchmarks by orders of magnitude. Speci�cally,
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averaged over 500 instances in the transition region (per point), Old-Backtrack+ULT
is about 1000 times slower than ULT-Backtrack+ULT, which is about 1000 times
slower than LPC-Backtrack+LPC. The latter encounters about 20 dead-ends on the
peak (worst performance). As we depart from the transition region the execution
times become smaller and the improvements are less signi�cant.

Qualitative TCSPs

Here we present results obtained with backtracking on qualitative TCSPs. We show
that (1) a transition region exists for qualitative networks and (2) for problems within
this region PC [5] is completely ine�ective. The backtracking algorithm is the algo-
rithm used by Ladkin and Reinefeld [63]. In their implementation, they avoid enforc-
ing path-consistency on any subnetwork that is already labeled (since it is already
consistent).

The experiments reported in Figure 21 were conducted with networks having 12
variables, 66 constraints, and each point is averaged over 100 instances. We change
the tightness of the constraints by changing 
. We measure the number of dead-ends
(Figure 21a) and the fraction of cases in which enforcing path-consistency correctly
decides consistency (Figure 21b).

Figure 21a shows that qualitative networks exhibit a phase transition at 
 =
8=13. The only di�erence between the experiments reported in this section and those
reported in [63] is that the latter used a �xed 
 = 0:5, namely in about half of the
cases, six relations out of 13 interval relations were allowed and the other half, seven
were allowed.

Our results agree with those reported in [63] in that for 
 = 0:5 most of the
generated problems were inconsistent. However, we see that for 
 = 9=13, all the
problems generated were consistent. For 
 = 6=13, the problems were about two
orders of magnitude easier than those at the peak (Figure 21a) because, in most
of the cases, PC detected inconsistency before invoking backtracking search (Figure
21b).

3.9 Conclusion

Temporal Constraint Satisfaction Problems (TCSP) provide a formal framework for
reasoning about temporal information, which is derived from the framework of clas-
sical Constraint Satisfaction Problems (CSP). As in classical CSPs, the central task
of deciding consistency is known to be NP-complete. To cope with intractability it is
common to use polynomial approximation algorithms which enforce path-consistency.

In this chapter we demonstrated that, in contrast to classical CSPs, enforcing path-
consistency on quantitative TCSPs is exponential due to the fragmentation problem.
We controlled fragmentation using two new polynomial approximation algorithms,
Upper lower Tightening (ULT) and Loose Path-Consistency (LPC). When evaluating
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Figure 21: The di�culty as a function of tightness for Qualitative Networks.

these algorithms, we addressed two questions empirically: (1) which of the algorithms
presented is preferable for detecting consistency, and (2) how e�ective are they when
incorporated within backtrack search.

To answer the �rst question, we measured the tradeo� between e�ciency and
e�ectiveness. E�ciency is measured by execution time while e�ectiveness is mea-
sured by counting the fraction of cases in which inconsistency was detected. Using
some classes of randomly generated problems, we made two observations: (i) enforcing
path-consistency may indeed be exponential in the number of intervals per constraint,
and (2) ULT's execution time is almost constant in that number. Nevertheless, ULT
is able to detect inconsistency in about 70% of the cases in which path-consistency
does. The overall superior algorithm, LPC, is less e�cient but more e�ective than
ULT. It is also very e�ective relative to path-consistency.

To answer the second question, we applied the new algorithms in three ways:
(1) in a preprocessing phase to reduce fragmentation before search, (2) as a forward
checking algorithm for pruning the search and (3) as heuristic for dynamic variable
ordering. We show that for relatively hard problems, which lie in the transition region
[79, 20], incorporating ULT within backtracking search is preferred to incorporating
path-consistency. Algorithm LPC is superior, in all three roles, as it improves the
performance of backtracks search by several orders of magnitude.
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Chapter 4

Temporal Constraint Logic

Programming

4.1 Introduction

In this chapter we investigate temporal reasoning issues that arise when embedding
the TCSP model within a more expressive temporal language. Most of the recent work
on representing and reasoning about change is focused on logic based formalisms.
These formalisms typically represent change as a transition from one state of the
world to another. The language design we propose has the following properties:

� Syntactically, time is mentioned explicitly, either by including it as an argu-
ment or by tokenizing it. Consider the non-temporal statement \John visited
Europe" which can be represented by the proposition Visited(John,Europe),
and consider representing the temporal statement \John visited Europe from
Jan 12 to Jan 28".

{ When time is included as an argument, the above statement can be repre-
sented by adding two arguments to the predicate Visited resulting in the
proposition Visited(John,Europe, Jan12, Jan28).

{ When time is tokenized, by assigning every occurrence a unique ID, the
occurrence Visited(John,Europe) is assigned the ID k, resulting in the
proposition Visited(John,Europe, k). The time of this occurrence can
be speci�ed by the temporal constraints begin(k)=Jan12and end(k)=Jan28.

� Semantically, we use the classic interpretation in which a formula is either true
or false. The temporal semantics is augmenting the classic semantics with
constraints ensuring that holding over an interval implies holding at all the
time points in it and holding over its subintervals.

� The inference engine is based on classical resolution, with a few extensions that
are required for implementing the temporal semantics, as explained in Chapter
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5.

This chapter, as well as chapters 5,6, focuses on the design of formal temporal lan-
guages having clear syntax, well de�ned semantics and accompanied by e�cient infer-
ence engine. We propose two languages based on combining Datalog with Temporal
Constraint Satisfaction Problems (TCSP), called TCSP-Datalog and Token-Datalog.

One issue we address is called the incompatibility problem [89, 84]. When two
incompatible propositions hold, they must hold on disjoint intervals. To illustrate
the issues involved, we present three example domains: (i) formalizing medical treat-
ment guidelines, (ii) veri�cation of electronic circuits and (iii) warehouse database
management.

Example 16: Consider medical regulation regarding the administration of Digoxin
and potassium supplements. Digoxin is a Digitalis, which is a well known medication
for heart failure. Potassium supplements are often used when patients who have heart
failure are given diuretic drugs to reduce their 
uid load. These two drugs must not
be taken together, since potassium supplements render the Digoxin a very dangerous
poison that can cause arrhytmia of the heart. However, taking them in sequence with
su�cient time in between is OK, and is often done for the same patients, since they
are often using the diuretic drugs against the same heart failure (e.g. Lasix).

Next we demonstrate how incompatibility is manifested in two application do-
mains: electronic circuit veri�cation and warehouse database management.

Example 17: Consider an electronic circuit processing n signals and assume the
circuit can be described by a Finite State Automaton (FSA) with 2n states, where
n is the number of bits required to represent each individual state. Let a,b be two
signals of the circuit and suppose that the circuit must satisfy the constraint or(a,b)
at all times, namely at least one of a,b is true at all times. An approach based on
temporal constraints de�nes a set of intervals S1 during which a is known to be false
and a set of intervals S2 during which b is known to be false. The constraint or(a,b)
is satis�ed if and only if all the intervals in S1 are pairwise disjoint from all intervals
in S2. This representation of the constraint or(a,b) does not require knowing the
values of signals a,b at all time points. Moreover, it should be independent of the
resolution of time representation and should be good for continuous time as well.

Example 18: Warehouse management systems are typically implemented using
Relational Databases in which some of the attributes are temporal. Consider the
following relation:

Part # Description Shelf Start End

10527 Connector A-B 3A Jan 3 Feb 3
10527 Connector A-B 4A Jan 17 Feb 15
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This relation is inconsistent because part # 10527 cannot be simultaneously on shelves
3A and 4A. This inconsistency may result from a typing error or other sources. One
way to handle such mistakes is to avoid specifying exact data. We would like to say
that \we do not know when the connector was moved form shelf 3A to shelf 4A".
To formalize this approach, we introduce two variables X and Y were X is the time
point at which the connector was moved from shelf 3A and Y is the time at which it
was moved onto shelf 4A.

Part # Description Shelf Start End

10527 Connector A-B 3A Jan 3 X
10527 Connector A-B 4A Y Feb 15

Here, the temporal constraint induced by incompatibility is thatX � Y , which means
that the connector was taken o� shelf 3A before it was put on shelf 4A. This constraint
may be explicitly given in the input or can be deduced by other constraints. Here,
consistency maintenance means (i) computing the implicit constraint X � Y and (ii)
ensuring that the constraint is always satis�ed, no matter how X and Y change.

Other related issues we address in our language are Homogeneity and Concaten-
ability. Homogeneity of a 
uent holding means that when a 
uent is true during
an interval then it must be true during any subinterval and point within the inter-
val [6, 36]. Concatenability of a 
uent holding means that when a 
uent is true on
two consecutive time intervals it must be true on the time interval obtained by con-
catenating them. These issues are addressed by providing semantic tools within the
language for describing axioms that ensure the intended inferences.

To illustrate the homogeneity issue, consider the following two statements having
two distinct meanings: \John was alive between 1764 and 1821" and \John was
working from 1784 to 1805". In the �rst statement the intended semantics implies
that John was alive at every year between 1764 and 1821. In the second statement
the intended semantics is that John might have had some vacations. Thus, there were
some time intervals during which John was not actually working. In this work we
will implement the �rst statement only.

To illustrate the concatenability problem, consider the statement \The power was
on from 8:00am to 12:00pm", and \The power was on from 12:00pm to 6:00pm".
Together, these statements implies that the power was on from 8:00am until 6:00pm.
Now, consider the statement \Mary was pregnant from July to April, and she was
also pregnant from \April to November". Do these statements imply that Mary was
pregnant for 18 months? Is it possible to infer that Mary had two pregnancies?

4.1.1 Language Design Approach
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Figure 4.1: The language design approach.

Our goal is to design languages that equip a common-sense reasoner with the ability to
express and infer desired temporal relationship in general (as illustrated in examples
1-3). Our starting point is TCSP on the one hand, and Datalog on the other hand.
We also borrow techniques from Allen's temporal logic [6], DatalognS [15, 16], �rst
order Logic Programming (LP) and Constraint Logic Programming (CLP) [51] (see
Figure 4.1). The properties borrowed from each of these languages are:

� LP is a general form of deductive databases. The techniques for deriving the
�xed point semantics and the inference engine of LP are incorporated in our
languages.

� Datalog is a fragment of LP which is computationally advantageous because its
inference is polynomial. We use Datalog as the basis for the syntax and seman-
tics, and extend it to accommodate temporal variables and temporal constraints.

� CLP is a general framework for embedding constraints into LP. Since we ad-
dress similar issues, CLP is an important language to compare and contrast our
approach with.

� Allen's temporal logic is based on the Holds predicate. The atom Holds(P, I)

evaluates to true whenever the proposition P evaluates to true at the interval
I. There are numerous types of propositions characterized by di�erent holding
properties. For example, proposition describing attributes of objects (e.g. color)
are homogeneous, namely they hold at every point within the interval I. Our
languages are designed with homogeneous propositions only.
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� DatalognS is an extension of Datalog that allows performing a limited temporal
reasoning over time points. This language is �nite representable and decidable.
This property is carried over when we introduced TCSPs into Datalog.

We present two extensions of Datalog that accommodate temporal constraints.
The �rst, called TCSP-Datalog, uses temporal arguments to qualify propositions
with time. The second, called Token-Datalog, uses token arguments as the temporal
quali�cation method.

To illustrate the syntactic di�erence between TCSP-Datalog and Token-Datalog,
consider representing the statement \John was in LA from Jan 15 to Feb 15". When
using temporal arguments, this statement can be described with the proposition
Location(John, LA, Jan15, Feb15). Using token arguments, this statement can
be described with the conjunction Location(John, LA, k), begin(k)=Jan15, end(k)=Feb15.

4.2 Temporal Quali�cation Methods

To specify the times at which logical statements are valid there is a need to incorporate
time into logic using some temporal quali�cation method. Non temporal statements,
such as \John is in LA", have no temporal quali�cation, namely the time during
which they are valid is not described. Temporal statements, such as \John was in
L.A. from Jan 1 until Feb 1", specify the time during which the statement is valid.
There are three main temporal quali�cation methods. To illustrate each method and
describe its properties, we consider representing the statement \John was located in
L.A. before he moved to (i.e. located in) N.Y.". We will use the predicate \Loca-
tion(P,X)" which evaluates to true i� person 'P' is at location 'X'.

We �rst illustrate the use of temporal rei�cation [97], in which the above sample
statement is described by the conjunction:

True( Location(John, LA), t1). True( Location(John, NY), t2). t1< t2.

With this method, the predicate Location(P,X) is converted into a function and
becomes an argument of the True predicate. This is computationally undesirable
because introducing numerous new functions signi�cantly increases the complexity of
making inferences.

The next temporal quali�cation method is temporal arguments. In this method,
the above sample statement is described by the conjunction:

Location(John, LA, t1). Location(John, NY, t2). t1 <t2.
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The third temporal quali�cation method is token arguments [21, 107]. In this
method, every proposition (e.g. Location(John. LA)) is associated with a unique ID,
or a token constant. Every token constant k is associated with a time entity (e.g.
point or interval) specifying the time during the statement whose ID is k. With this
method, the above sample statement can be described by:

Location(John, LA, k1), Location(John, NY, k2), time(k1)<time(k2).

where time(k) is the time associated with the token k and k1,k2 are the unique ID of
the propositions Location(John, LA) and Location(John, LA). Notice that here,
the propositions are expressed using atoms that are disjoint from those describing
the temporal quali�cation. Because k1,k2 are the unique proposition IDs, the con-
straint time(k1)<time(k2) has the meaning \Location(John, LA) occurred before
Location(John, NY)".

To further illustrate the token quali�cation method, consider representing the
statement \John was located in LA from t1 to t2". Using tokens, this statement is
described by the conjunction

Location(John, LA, k), begin(k)=t1, end(k)=t2.

where k is a token term, Location(John, LA, k) is the proposition Location(John,

LA) quali�ed with k, begin(k), end(k) are temporal variables and begin(k)=t1,

end(k)=t2 are temporal constraints.

The tradeo�s between temporal arguments and temporal tokens are as follows:

1. Temporal arguments are simpler than temporal tokens. There is no need to
introduce the new sort of tokens, and there are less semantical complications
due to the exclusion of functions.

2. Temporal tokens are more expressive because they allow describing periodic
occurrences. They also provide a better separation between the temporal and
non-temporal components of sentences.

These tradeo�s are explained in the next chapter, section 5.4, where TCSP-Datalog
and Token-Datalog are compared.

4.3 Temporal Incidence and other Technical Is-
sues

Next we present a list of issues that we think should be addressed by any temporal
reasoning language.
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Figure 4.2: Maintaining the room temperature.

4.3.1 Embedding Time

Temporal reasoning involves reasoning about the change of some state of a�airs,
typically described by a set of variables whose values change with time. Such variables
are called 
uents.

Consider, for example, formalizing a system that maintains a constant room tem-
perature using a furnace. Wemodel the state of the room with a 
uent RoomTemperature
which takes the values fWarm, Coldg. We model the state of the furnace with the

uent FurnaceStatewhich takes three values: fOn, O�, OutOfOilg. As illustrated in
Figure 4.2, the system comprising of room and furnace alternates between the states
(RoomTemp=Warm, FurnaceState=Off) and (RoomTemp=Cold, FurnaceState=On).
After some time, the furnace runs out of gas (or oil), and we arrive at the state
(RoomTemp=Cold, FurnaceState=OutOfOil).

The goal of temporal reasoning is to reason about changes such as \the furnace
runs out of gas\. A temporal reasoning language must enable expressing why, how and
when does the furnace change state. To achieve this goal, we present a list of speci�c
issues through a variety of examples. For simplicity, we restrict the discussion to

uents taking the values true and false only (instead of general multi-valued 
uents).

A. Instantaneous Events It is sometimes argued that it is possible to perform
temporal reasoning using time intervals alone [6, 50]. However, modeling dynamic
systems often involves some events that cannot be quali�ed by an interval. Some
examples are \turn o� the furnace" or \turn o� the light", \shoot the gun", \start
moving" and \sign a contract". Although these events may have an in�nitely small
yet non-zero interval length, it is often advantaguous to model the events as instanta-
neous. One reason is that the temporal resolution requirements for representing very
short intervals may be too high, namely the duration of the interval may be smaller
than the smallest unit of time we can represent with state-of-the-art data structures
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implemented on state-of-the-art computers.

B. Instantaneous Fluent Holding In many real life situations, it is crucial to
know the truth value of a 
uent at a certain time point, at which an instantaneous
event occurred. For example, consider modeling a car accident in which John was
hit, and assume the event TheCarHitJohn is modeled as instantaneous. Knowing the
truth value of the 
uent TheLightIsRed at the time point the event TheCarHitJohn
occurred is crucial.

We also consider modeling continuous change, that requires representing 
uents
that hold at isolated time points. Consider, for example, the speed of a ball tossed
upwards in the Tossed Ball Scenario (TBS) (see Figure 4.3).

6

?

v > 0 [I1]

v = 0 [t]

v < 0 [I2]

Figure 4.3: The Tossed Ball Scenario (TBS).

The ball moves up during an interval I1 and down during an interval I2. While
the speed of the ball is non-zero during both I1 and I2, there must be an isolated
time point t \in between" the two intervals where the speed of the ball is zero.

C. Non-Instantaneous Holding of Fluents Formalizing the properties of tem-
poral incidence for non-instantaneous 
uents is not a simple issue. There are two
major classes of properties: (i) the holding over intervals and the holding at points
inside these intervals and (ii) the holding of incompatible 
uents.

Important properties of non-instantaneous holding statements that we incorporate in
our languages are:

� Homogeneity: If a 
uent is true during an interval then it must be true during
any subinterval and point within the interval [6, 36].

� Concatenability: If a 
uent is true on two consecutive time intervals it must be
true on the time interval obtained by concatenating them 1.

� Incompatibility: If a 
uent F is true during some interval, other 
uents which
together imply the negation of F cannot be all true during this interval.

To address these issues, we incorporate in our languages the following:

1There are di�erent views for the meaning of consecutive.
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� Explicit Incompatibility: Fluents come in pairs F;:F , where :F is the name of
a 
uents which is the negation of F . The incompatibility between F and :F is
explicitly stated by rules augmenting the given theory expressed by the input
set of rules.

� Non-holding: If :F holds during a time interval I then there is no time point
or interval within I at which F holds.

� Disjointness: If both F and :F hold during the intervals I1 and I2 respectively,
then I1 and I2 must be disjoint, namely the intersection I1 \ I2 is empty.

The Dividing Instant Problem (DIP) Assume that we choose to represent both
instantaneous and non-instantaneous holding of 
uents. Consider using the 
uent
TheLightIsOn to model the state of the room. Let TheLightIsOn evaluate to true
during I1 and evaluate to false during I2, where the end of I1 equals the beginning
of I2. Let us use the event SwitchOff to model switching o� the light. The problem
at hand is deciding what is the truth value of the 
uent TheLightIsOn at the time
point that the event SwitchOff occurred (see �gure 4.4) [48, 105, 6, 36].

TheLightIsOn

: TheLightIsOn
-

time
i

TheLightIsOn?

p1

p2

Figure 4.4: The Dividing Instant Problem.

This is a problem of maintaining logical consistency: If intervals are closed then
TheLightIsOn and :TheLightIsOn are both true when SwitchOff occurred, which is
inconsistent. If they are open we might have a \truth gap". The other two options
are open/closed and closed/open intervals which are perceived to be arti�cial [6, 36].

4.3.2 Embedding Constraints

The primary bene�t of embedding constraints within a logic programming framework,
as is evident from reports in the CLP literature [51], is to enhance the e�ciency of
inference. A necessary hurdle to overcome before this can be achieved is to decide on
the syntax and semantics of such an embedding. In the following we present some
central issues.
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Constraint Atoms in the Bodies of Rules

It is neccessary to determine when a constraint is entailed by a program. Consider
the following program

	 �
C1. C2.

A :- C3.
where

C1 � X1-X2 2 [2,5]

C2 � X2-X3 2 [7,9]

C3 � X1-X3 2 [5,20]

We need to decide when 	 entails A. We design the semantics of our language such
that 	 entails A because C3 is entailed by the conjunction of C1 and C2, regardless
of the values of X1;X2 or X3.

Constraint Atoms in the Heads of Rules

Consider describing the statement \if both events E1,E2 occurred, E2 occurred less
than 120 time units after E1". We consider two ways of formalizing this statement:

1. We could use a variable E whose value is the time point at which the event
occurred, and write the following short program:

E2-E12[0,120] :- Occur(E2), Occur(E1).

The bottom-up semantics of this rule is unclear because to perform bottom-up
evaluation we need to assign values to both E1 and E2, namely to assign the
exact times at which E1, E2 occur. For example, let us assume that Occur(E2)
and Occur(E1) are true and we assigned E1 = 0, E2 = 200. Since Occur(E2)
and Occur(E1) are true, the body of the rule evaluates to true, and we need to
add E2-E1 2[0,120] as a constraint fact. The result is inconsistency, because
E2-E1 =200 implying E2-E1 62[0,120],

To avoid this problem, many constraint-based logic programming languages,
including CLP, do not allow constraint atoms in the head. As a result, the
statement \if both events E1,E2 occurred, E2 occurred less than 120 time units
after E1" cannot be described in CLP.

2. We could map the non-constraint variables E1,E2 to constraint variables, de-
noted time(E1),time(E2), and write the following program:

time(E2)-time(E1)2[0,120] :- Occur(E2), Occur(E1).

With this approach, the constraint variables time(E1),time(E2) remain non-
ground (i.e. not �xed) even when both E1,E2 are ground. This enables �xing
both E1,E2 without �xing neither time(E1) nor time(E2) and without intro-
ducing inconsistencies. Thus, bottom-up evaluation is well de�ned.
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TCSP-Datalog incorporates the �rst option, allows constraint atoms in the heads of
rules yet still has a well de�ned semantics. This is achieved by using a declarative
model-based semantics in which interpretations consist of two partitions: constraint
and non-constraint facts. The details are described below.

Token-Datalog incorporates the second option. It provides a much cleaner solution
to the problem. The penalty is the increased complexity of making inferences.

Representing Constraint Facts

The representation of constraint facts depends on whether constraint atoms can ap-
pear in the heads of rules. When constraint atoms are not allowed to appear in the
heads of rules (e.g. CLP), then facts are of the form A:-C where A is a non-constraint
atom and C is a constraint atom. In our design, when constraint atoms are allowed
to appear in the heads of rules, then constraint facts are empty-body rules containing
a single constraint atom. TCSP-Datalog incorporates the �rst option, while Token-
Datalog incorporates the second option.

Addressing these issues In our languages we use both time points and time
interval as the basic temporal entities. This enables us to represent both instantaneous
events and instantaneous holding by associating them with isolated time points. To
address the DIP, the holding intervals are always open. To describe the holding over a
closed interval, we use three holds statements: one non-instantaneous holding over the
open interval and two instantaneous holding for the end-points of the interval. Holding
over left-sided and right-sided open intervals is described with one non-instantaneous
holds over the open interval and one instantaneous holds at the closed end-point.

By including the instantiation of constraint variables (i.e. value assignments) in
the interpretation2, we address the semantic problems associated with introducing
constraint atoms into logic-programming framework. This enables describing the
negation of a constraint atom using the complement of this constraint, and allows
introducing constraint atoms in the heads or rules as well as in their bodies, without
restricting them to be positive or negative.

4.4 The TCSP-Datalog Language

TCSP-Datalog extends the TCSP model to allow performing temporal reasoning
tasks. We combine TCSPs with Datalog and analyze the emerging issues. The syn-
tax of TCSP-Datalog is de�ned by the sorts (i.e. variable types), the terms, the
predicates and rules. The semantics is given by de�ning interpretations and the sat-
isfaction relation for deciding when an interpretation is a model. Using techniques
from general LP we show that the intersection of all models is the unique minimal

2In some CLP languages this cannot be done.
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model.

4.4.1 Syntax

Sorts are the types of arguments that predicates in the language can take. The
formal name for these arguments is terms. There are two sorts of terms: data and
temporal terms.

Terms are symbols that appear as arguments of predicates.

Data Terms are either data variables or data constants (i.e. no functions, as in
Datalog).

Temporal Terms are either time points or intervals. A constant time point t and
a constant interval [a,b] are temporal terms. If I is an interval temporal term then
its end points are given by t1,t2 where t1fstartsgI, t2fendsgI are atoms in the
language. No functions are allows.

Predicates are of three types: constraint, temporal and neutral predicates. Neutral
predicates take only data terms. Constraint predicates, describing TCSP constraints,
take exactly two temporal terms (i.e. binary constraints) and cannot take data terms.
Temporal predicates take exactly one temporal term and may take data terms without
restrictions.

Note that we restrict constraint predicates to take two temporal arguments and
temporal predicates to take a single temporal argument for reasons of simplicity.
Analyzing the more general cases is outside the scope of this work.

Atoms are built from predicates as usual. For the temporal constraints, we use a=b,
a6=b, a<b, a�b, x-y2[a,b] with the usual meaning as a short hand for Eq(a,b),
Neq(a,b), Less(a,b), LessEq(a,b), Difference(x,y,a,b) respectively.

Example 19: The statement \John was in LA between Jan 1 and Feb 12" can be
represented by the conjunction of the facts

Location(John,LA, I), Jan1fstartsgI, Fab12fendsgI.

where Location(X,Y,I) is a predicate which evaluates to true i� person X was at
location Y at every time point during the interval I, the symbols John, LA are data
terms and I is an interval temporal term.
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Similarly, the statement \John was in LA for a duration of less than 10 days" can
be represented by the conjunction of the facts

Location(John,LA, I), t1fstartsgI, t2fendsgI. t2-t1 �10.

Rules are of the form H :- B1,. . .,Bk, where H and Bi are arbitrary atoms. Rules
must be range restricted, namely all data variables must appear in the body of some
rule or equated to a variable in the body of some rule. Without this restriction, the
�xed point semantics of TCSP-Datalog will not be well de�ned.

4.4.2 Predicate Buddies

Predicate buddies are introduced to enable both instantaneous and non-instantaneous
holding. Galton proposed to address this technical problem using the HoldsAt,HoldsOn
predicates [37] commonly used in temporal rei�cation. HoldsAt(F,t) describes in-
stantaneous holding and evaluates to true i� the 
uent F evaluates to true at time
point t. HoldsOn(F,I) describes non-instantaneous holding and evaluates to true i�
the 
uent F is true at every point in time within the interval I.

In TCSP-Datalog, we address this problem without using HoldsAt and HoldsOn.
Atoms of the form HoldsAt(F,t) can be replaced by F(t) where t is a time point
and the 
uent name F is used as the predicate name. Both statements HoldsAt(F,I)
and HoldsOn(F,I) should be written as F(t),F(I) where t is a time point, I is an
open time interval3. However, in logic, it is not possible to assign a predicate to two
distinct signatures.

To overcome this problem, temporal predicates in TCSP-Datalog come in pairs.
The predicate PAT(a1,. . .,an,t), where t is a time point, has a pair, or buddy predi-
cate PON(a1,. . .,an,I), where I is a time interval. We use the shortcut P whenever it
is clear from the type of the temporal argument whether the meaning is instantaneous
PAT or non-instantaneous PON .

4.4.3 Expressing Incompatibility

Incompatibility is usually implicit in the meaning the user gives to predicates. This
meaning is usually too complicated to formalize due to syntactic restrictions as well
as semantic problems.

Example 20: Consider expressing the fact that John cannot be in NY and LA
simultaneously, unless NY and LA are two names of the same city. We can explicitly
say that the atoms Location(John, LA) and Location(John, NY) are incompatible

3The interval is open to address the DIP. See section 4.4.6.
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unless LA=NY. We could use a TCSP-Datalog rule of the form

I1fbefore,after,meets, met-bygI2 :-
X6=Y, LocationON (John, X, I1), LocationON (John, Y, I2).

Note that the above rule cannot be expressed in CLP languages because constraint
atoms are not allowed in the heads of rules.

The limitation of the solution we presented for TCSP-Datalog is that we do not
have a generic form for expressing incompatibility and we cannot infer incompatibility.
Thus, we require that the user will enter a speci�c rule for every case incompatibility
might arise.

In general, incompatibility can be expressed by rules of the form

C :- A1,A2,. . .,An

where A1,A2,. . .,An are TCSP-Datalog atoms, C = C(t1,t2) is a TCSP-Datalog con-
straint atoms expressing disjointness. The constraint C can be of three possible types:

1. If t1; t2 are two point temporal terms then the rule is of the form

t1 6= t2 :- A1,A2,. . .,An

where 6= is a point-point constraint.

2. If t1 is a time point and t2 is a time interval then the rule is of the form

t1 fbefore,afterg t2 :- A1,A2,. . .,An

where fbefore,afterg is a point-interval constraint.

3. Otherwise, t1,t2 are both time intervals, then the rule is of the form

t1 fbefore,meets,met-by,afterg t2 :- A1,A2,. . .,An

where fbefore,after,meets,met-byg is an interval-interval constraint.

Example 21: The above sample statement is represented by the TCSP-Datalog rule

I1 f before,meets,met-by,afterg I2 :-

X6=Y, Location(John, X, I1), Location(John, Y, I2)

where I1,I2 are interval variables and X,Y, I1,I2 are implicitly universally quanti�ed
(by the semantics of logic programming).
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4.4.4 Standard Semantics

Once the syntax of the language is de�ned, its semantics can be either standard (i.e.
non-temporal) or temporal. First, we introduce the classical de�nitions of seman-
tics for non-temporal logic. This semantics, also called model based semantics, is
described in terms of Herbrand interpretations and a satisfaction relation deciding
which interpretations are models. For logic programs, a well known result states that
the intersection of all models, also called the least Herbrand model, contains all the
atoms that are entailed by the program [4, 53].

De�nition 13: Given a TCSP-Datalog program 	, interpretations are de�ned in
terms of the Herbrand universe of 	, denoted U	 and the Herbrand base of 	, denoted
B	. A ground term is a term which does not contain any variables. The Herbrand
universe of a program 	, denoted U	, is the set of all possible ground terms that are
built on top of constants in 	. The Herbrand base of 	, denoted B	, is the set of
all possible atoms that can be constructed with predicates from 	 taking arguments
from U	. An interpretation I consists of the following:

1. A non-empty set D called the domain.

2. For each element in U	, the assignment of an element in D.

3. For each n-ary function in 	, an assignment from Dn to D.

4. For each n-ary predicate in 	, an assignment from Dn to ftrue,falseg.

Clearly, every interpretation is a subset of the Herbrand base.

Example 22: Consider representing the following guideline: \MedicineA is admin-
istered for the duration of 1-2 hours and MedicineB is administered for the duration
of 2-3 hours. If both MedicineA and MedicineB need to be administered, then these
events must be at least 7 hours and at most 9 hours apart." This statement can be
expressed by the program 	 =

t11fstartsgI1.
t12fendsgI1.
t21fstartsgI2.
t22fendsgI2.
t21-t12 2[7,9] :- AdministrateON( MedicineB, I2),

AdministrateON( MedicineA, I1).

t12- t11 2[1,2] :- AdministrateON( MedicineA, I1).

t22- t21 2[2,3] :- AdministrateON( MedicineB, I2).

92



The Herbrand universe U	 is

U	 = fMedicineA;MedicineB; I1; I2g [ Z

where MedicineA;MedicineB are data terms, I1; I2 are interval constraint terms
and Z4 denotes the set of all integers, each of which is a point constraint term. One
possible interpretation is as follows:

1. The domain D = U	.

2. Each element in D = U	 is mapped to itself.

3. There are two functions, begin, end, mapping interval constraint terms to
point constraint terms at the end points of the intervals.

4. There are two predicates, the temporal predicate Administrate and the con-
straint predicate t2-t1 2[a,b]. The predicate Administrate(X,I) maps the
ordered pairs (MedicineA,[0,1]) and (MedicineB,[5,6]) to true and all
other pairs to false.

This sample interpretation is not a model because begin(I2)-end(I1)62[7,9], and
thus the unit clause in 	 is not satis�ed.

Models are de�ned in terms of substitutions and a satisfaction relation deciding
which interpretations are models.

De�nition 14: Given a TCSP-Datalog program 	, let U	 be its Herbrand universe.
A substitution � is a set of ordered pairs (v1; u1); . . . ; (vi; ui) where vi is a variable
occurring in 	 and ui is either a variable or any member of U	. If all of ui are
constants, then � is called a ground substitution. Let 	� denote the result of applying
� on 	, namely substituting the variables vi with ui. In other words, if L	 is the
language de�ned over the constants in 	, then given an atom A, the atom A� is in
the language L	 i� A� 2 B	.

Given a ground substitution � mapping all variables in 	 to constants, the truth
values of all ground atoms, which must be elements of B	, is well de�ned by condition
4 in de�nition 13. We say that a representation of an interpretation I, alternative to
the representation described in de�nition 13, is a subset of B	 containing all and only
those ground atoms that evaluate to true in I. If the truth value assignment de�ned
by I, satis�es all clauses in 	� (according to the standard meaning for connectives)
for every possible ground substitution �, then I is a model of 	.

Theorem 16: [68] Let M	 be the intersection of all models of 	. Then M	 is a
model and an atom A is in M	 i� it is a logical consequence of 	.

4The set Z is introduced automatically whenever all the numbers occurring in the constraints
are integers.
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4.4.5 Temporal Semantics

Temporal semantics is distinguished from standard (i.e. non-temporal) semantics
in that predicates that take temporal arguments must satisfy some properties. In
this chapter, we focus only on the requirement that holding over intervals implies
holding over all sub-intervals and points within these intervals. In other words,
P (d1; . . . ; dn; I)7!true for some interval I implies P (d1; . . . ; dn; t)7!true for every time
point t within the interval I. This is the homogeneous property, which gives rise to
the incompatibility issues described above.

Example 23: To continue with example 22, consider the atom AdministrateON(

MedicineA, I1) and let I1=[0,2]. According to the desired temporal semantics,
if AdministrateON( MedicineA, [0,2]) evaluates to true then AdministrateON(

MedicineA, [0,1]) must also evaluate to true. In contrast, according to the stan-
dard non-temporal semantics, the truth value of the latter is not constrained and can
be either true or false. If, in addition, MedicineA and MedicineB cannot be given
simultaneously, the user must add an appropriate incompatibility constraint. Because
the holding over an interval implies the holding over point within the intervals and
all subintervals, this incompatibility constraint implies that the intervals I1 and I2
are disjoint. Such incompatibility is not accounted for in the standard non-temporal
semantics.

Next, we de�ne the satisfaction relation of TCSP-Datalog, which modi�es the
standard satisfaction relation (described above) with the additional requirement that
the non-instantaneous holding over intervals is homogeneous. We start by de�ning
constraint entailment.

De�nition 15: A set of constraints C entails a constraint C, denoted C j= C, i� C
speci�es a pair of variables in C and C is satis�ed by all solutions of C, namely C j= C
i� C ^ �C is inconsistent where �C is the complement of C.

Example 24: The constraint C1 = t2 � t1 2 [2; 3] entails the constraint C2 =
t2 � t1 2 [1; 6] because the conjunction of C1 with the complement �C2 = t2 � t1 2
[�1; 0] [ [7;1], is inconsistent.

The temporal semantics requires that, if a fact PON( a1,. . .,an,I) is in a model
M then this modelmust also contain numerous additional facts of the form PON(a1,. . .,an,I'),
PAT(a1,. . .,an,t), for every interval I' is subsumed in I and for every time point t
in I. The facts P(a1,. . .,an,t) for every time point t in I.

TCSP-Datalog interpretations are standard (i.e. built from terms and facts in the
usual way). The di�erence between the temporal and non-temporal semantics is the
satisfaction relation.
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De�nition 16: An interpretation I is a model of 	 under the temporal semantics,
denoted I j=

temporal
	, i�

1. I is a model of 	 under the standard (i.e. non-temporal) semantics described
above,

2. and, for every ground temporal atom A = PON(a1,. . .,an, i) in I where i is
an interval term and a1,. . .,an are data terms in I, the following two conditions
are satis�ed:

(a) if A 2 I then
8i', begin(i)�begin(i'), end(i')�end(i) �! PON(a1,. . .,an,i')2
I,and 8t, begin(i)< t <end(i) �! PAT(a1,. . .,an, t)2 I

(b) if A 62 I then
9i', begin(i)�begin(i'), end(i')�end(i) �! PON(a1,. . .,an, i') 62
I,or 9t, begin(i)< t <end(i) �! PAT(a1,. . . ,an, t)62 I

A ground atom A is entailed by a program 	 i� A is in all models of 	.

The conditions 2a and 2b in De�nition 16 are introduced to ensure that homo-
geneity holds. Condition 2a ensures that if the atom PON(a1,. . .,an, i) is in the
set of facts, then for every time point t which is within the interval of i, the atom
PAT(a1,. . .,an, t) is in the set of facts. Similarly, condition 2b ensures that for
every i' which is a subinterval of i, the atom PON(a1,. . .,an, i') is in the set of
facts.

Example 25: Consider the statement \If Mary was in LA between Jan 1 and Feb
15 then John was with her", which can be represented by the program

LocationON(Mary,LA, [Jan1,Feb20]).

LocationON(John,LA, [Jan15,Feb15] :- LocationON(Mary,LA, [Jan15,Feb15]

Consider two interpretations of this program:

1. LocationON(Mary,LA, [Jan1,Feb20]).

2. LocationON(Mary,LA,[Jan2,Feb15]), LocationON(Mary,LA,[Jan3,Feb12]), . . .
LocationON(John,LA,[Jan15,Feb15]), LocationON(John,LA,[Jan16,Feb15]), . . .

The second interpretation is a model under both standard and temporal semantics
as well. The �rst interpretation is a model under the standard (non-temporal) se-
mantics but it is not a model under the temporal semantics. Thus, every model
which includes the fact Location(Mary,LA, [Jan1,Feb20]) must also include the
facts Location(Mary,LA, [t1,t2]) for every t1,t2 2[1,20] and t1 �t2. 5

5Notice that there are no constraints in this interpretation because there are no constraints in
the program.
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De�nition 17: The Buttom-Up �xed point semantics is de�ned as follows. Given
an interpretation I of a program 	, let C be the set of constraint facts in I and let
F = I � C. We will use I =< F ; C > as a shorthand for this relation. The operator
T	(I) is de�ned as

T	(I) = the facts in I [ f H1�; . . . ;Hm� | the rule r = H1; . . . ;Hm :- B1; . . . ;Bn
in 	 where I j=B1�; . . . ;Bn� and the conjunction of the constraints

in B1�; . . . ;Bn�,H1�; . . . ;Hm� is satisfiable for the substitution � g.

The successive iterations of T	(I) are de�ned as follows:

T 1
	 = the set of input facts

T i+1
	 = T	(T i

	)
T !
	 =

S
k�0 T

i
	 � < F!

	; C
!
	 >

A ground atom A is a logical consequence of 	 i� A 2 T !
	.

Theorem 17: For every TCSP-Datalog program 	,

1. the intersection of all models is the unique minimal model, M temporal
	 , under the

temporal semantics;

2. An atom A is entailed by 	 i� it is entailed by M	;

3. the minimal model M temporal
	 under the temporal semantics subsumes or equals

the minimal model M	 under the standard semantics;

4. A fact which is entailed under the standard semantics must also be entailed
under the temporal semantics.

5. Buttom-Up evaluation computes T !
	 =M temporal

	 where T !
	 is the pair< F!

	; C
!
	 >,

F!
	 is the intersection of all sets of non-constraint facts and C!	 is the constraint

network containing all the constraint facts in C0
	 [ � � � [ C

!
	.

Proof:
Part 1: This property follows from the de�nition, as the intersection of all models is
unique, and always contains everything entailed by the program.
Part 2: This property follows immediately from Part 1.
Part 3: This property follows immediately from Parts 1,2.

Part 4: We divide the atoms in T	(I) into two partitions: F	(I), describing all non-
constraint (also non-temporal) facts, and C	(I), describing all constraint facts (also
temporal facts). We show that every model M =< F ; C > satis�es F!

	 � F and
C!	 j= C, which implies that T !

	 is the unique intersection of all models.
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According to de�nition 17, for every rule r = (B ! H), everymodelM =< F ; C >
satis�es M j= B ! M j= H. In addition, whenever T i

	 6j= H, if T i+1
	 6j= B then

T i+1
	 6j= H, namely T i+1

	 j= B $ T i+1
	 j= H. This generalizes to T !

	 j= B $ T !
	 j= H,

which is stronger than T !
	 j= B ! T !

	 j= H. Thus, every fact in F!
	 must be in F .

The non-standard part of this proof involves the constraints. The modelM satis-
�es a constraint C i� the conjunction C^ �C is inconsistent, where �C is the complement
of C. Since T !

	 j= B $ T !
	 j= H, C!	 is a conjunction of at least those constraints

in C. Thus, every constraint in C!	 is always tighter or equal to the corresponding
constraint (on the same pair of variables) in C, namely the conjunction C^ �C is always
looser than the conjunction C!	 ^ �C. Consequently, if C!	 6j= C then C 6j= C, and the
claim follows. 2

4.4.6 Addressing the issues from Section 4.3

We now show that the design of TCSP-Datalog enables addressing the issues presented
in section 4.3.

Instantaneous Events
The use of predicate buddies enables representing events that occur either instanta-
neously or over intervals.

Instantaneous and Non-Instantaneous Holding
The use of predicate buddies enables representing both instantaneous and non-instantaneous
holding. In the tossed ball example, we could specify that the speed of the balls
changed from positive to negative, being zero at a single isolated instant time point
t:

BallSpeedON(Positive,I1), BallSpeedAT(Zero,t), BallSpeedON(Negative,I2)

I1fmeetsgI2, tfstartsg I2, tfendsgI1.

where meets,starts,ends are the TCSP relations de�ned in previous chapters.

The Dividing Instant Problem (DIP)
Holding intervals are always open. Thus, the holding over an interval does not bear
any implication on the holding over its end points. For example, the statement \the
light was on during interval I" can have four possible meanings: the interval I is
open, close, right-side open or left-side open. All four meanings can be expressed in
TCSP-Datalog as follows:

� To describe an open interval statement we use LightON(On,I).
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� To describe a closed interval statement we use

LightAT(On,t1), LightON(On,I), LightAT(On,t2), t1fstartsgI, t2fendsgI.

� To describe a right-side open interval statement we use

LightAT(On,t1), LightON(On,I), t1fstartsgI.

� To describe a left-side open interval statement we use

LightON(On,I), LightAT(On,t2), t2fendsgI.

Representing Constraint Facts A constraint fact is a rule with an empty body
(i.e. unit clause) containing a ground atom. For example, the atom

t2-t1 2 [3; 7].

is a constraint fact.

Constraint atoms in the bodies of rules TCSP-Datalog allows constraint atoms
in the bodies of rules without restrictions. When a conjunction of constraints in the
database (of facts) entails a constraint atom in the body of a rule, this atom is assigned
the value \true". For example, consider the program

C1. C2.

A :- C3.
where

C1 � t1-t2 2 [2,5]

C2 � t2-t3 2 [7,9]

C3 � t1-t3 2 [5,20]

In TCSP-Datalog, 	 entails A because C3 is entailed by C1^C2, regardless of the values
of t1,t2 or t3. Such an inference cannot be made using standard logic programming
nor using CLP languages.

Constraint atoms in the heads of rules TCSP-Datalog allows constraint atoms
in heads of rules without restrictions. The statement \if the package will be shipped
today, then it must be shipped before 4:00pm" can be expressed by the rule

t<4pm :- Ship(Package,t), Today(t).

This sentence cannot be expressed using CLP languages.

4.5 The Token-Datalog Language

The use of tokens dates back to the Time Map Management (TMM) system [21]. The
intuition behind tokens is that they are the atomic data entities combining 
uents
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with intervals or time points at which they holds. For example, a token K might
comprise of a 
uent TheLightIsRed and a time interval [t1; t2] during which it was
true.

In this chapter, we extend TCSP-Datalog by using tokens. The resulting language,
called Token-Datalog, improved on TCSP-Datalog in a number of ways:

1. Periodic relation can now be de�ned using unary successor and predecessor
functions. For example, to describe the period of one week we could write,
without knowing the date, a rule stating that Sunday is followed by Monday,
which is followed by Tuesday, . . ., Saturday is followed by Monday. This in�nite
periodic relation cannot be described in TCSPs nor in TCSP-Datalog.

2. A clear separation between temporal and non-temporal atoms is achieved. In
both languages the temporal termsmust be constraint terms. In TCSP-Datalog,
atoms can take both constraint and non-constraint terms, while in Token-
Datalog they must be either constraint or non-constraint terms but not both,
Token terms are used in both temporal and non-temporal atoms to create the
links that are needed to preserve the meaning.

3. Queries about possible relations between objects can now be expressed and
processed. For example, if Love(John,Marry), Married(John,Mary) hold,
then we can ask a query about the set of relations between Mary and John
and obtain the answer Love, Married. This is not feasible in TCSP-Datalog
nor in standard LP.

4.5.1 Syntax

There are three sorts of terms: data, token and temporal constraint terms.

Data Terms are either data variables or data constants (as in Datalog).

Token Terms are of two types: point or interval token terms. They are built from
token constants, data constants, token variables, data variables and function symbols,
as follows:

1. Every token constant symbol and token variable symbol is a token term.

2. If f is a function symbol, k is a token term, d1,. . .,dn are data terms then
f(k,d1,. . .,dn) is a token term of the same sort (i.e. point 7!point, interval7!interval).

Example 26: Let k be a token variable, scenarioA, scenarioB be two data terms
and let next, prev be two function names. The terms k, next(k), next(k,scenarioA),

prev(next(k,scenarioA),scenarioB) are legal token terms but scenarioA, next(k,k),

prev(scenarioB) are not legal token terms.
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As we demonstrate below, functions are introduced in Token-Datalog to enable
describing a generic succession relation that may be periodic.

Constraint Terms If k is a point token term, then time(k) is a constraint term.
If k is an interval token, then interval(k), begin(k) and end(k) are temporal con-
straint terms satisfying begin(k)fstartsg interval(k)and end(k)fendsginterval(K).

Example 27: The terms interval(k), begin(f(k)), end(f(f(k,d1),d2)) are
legal temporal constraint terms but interval(d1), interval(interval(k)), begin(interval(k

are not legal temporal constraint terms.

Note that the use of functions taking a single token argument is �rst introduced in
DatalognS [15, 16]. Here we adopt this idea to enable representing periodic patterns
of occurrences. Recall that TCSP-Datalog does not allow functions of any kind.

Predicates are of three types: constraint, token and neutral predicates. Neutral
predicates take only data terms. Constraint predicates represent TCSP constraints,
take exactly two constraint terms (i.e. binary constraints) and cannot take data
terms. Token predicates take exactly one token term and may take data terms without
restrictions (i.e. cannot take constraint terms).

Token predicates come in pairs. The predicate P(a1,. . .,an,t), where t is a point
token, has a pair, or buddy predicate P(a1,. . .,an,I), where I is an interval token.

In Token-Datalog it is possible to describe in�nite periodic sequences into the past
as well as into the future. This can be achieved by constraining a token k0 to be either
before or after the the token f(k0). For example, the terms k0, successor(k0) and
predecessor(k0) can be constrained such that

time(predecessor(k0)) < time(k0) < time(successor(k0))

Atoms are built from predicates as usual. For the temporal constraints, we use
the TCSP constraints described in previous chapters. Speci�cally, we use a=b, a 6=b,
a<b, a�b, x � y 2 [a; b] with the usual meaning as a short hand for Eq(a,b),
Neq(a,b), Less(a,b), LessEq(a,b), Difference(x,y,a,b) respectively. Disjunc-
tive temporal constraints are also allowed.

Example 28: The fact time(K)-time(prev(K))=8 implies that the successor of
K is a token which occurred before K. In contrast, time(next(K))-time(K)=8 goes
forward in time.
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Rules are of the form H1,. . .,Hm :- B1,. . .,Bk, where Hi and Bi are arbitrary atoms.
Rules must be range restricted, namely all non-constraint (i.e. token or data) variables
must appear in the body of some rule or equated to a variable in the body of some
rule.

Example 29 : To explicate the di�erence between Token-Datalog and TCSP-
Datalog, consider representing the following guideline:\Treatment A requires a du-
ration of 1-2 hours and Treatment B requires a duration of 2-3 hours. According to
the guidelines, if both Treatment A and Treatment B are needed, then they must be
given at least 7 hours and at most 9 hours apart." This statement can be represented
by the program 	 =

end(k1)-begin(k1)2[1,2] :- AdministrateON( TreatmentA, k1).

end(k2)-begin(k2)2[2,3] :- AdministrateON( TreatmentB, k2).

begin(k2)-end(k1)2[7,9] :- AdministrateON( TreatmentB, k2),

AdministrateON( TreatmentA, k1).

Traditional LP allows heads of rules to contain a single atom only. For express
sentences that involve temporal constraints it is often move convenient and straitfor-
ward to introduce rules whose heads contains multiple atoms (both constraint and
non-constraint atoms).

Example 30: Consider the following variation on the above guideline: \Medicine
A should be administered every 7-9 hours". This statement could be represented by
the rule

begin(next(k))-end(k)2[7,9], AdministrateON(MedicineA, next(k)) :-

AdministrateON(MedicineA, k).

where the head is a conjunction of atoms. The conjunction in the head present in the
above rule can be described, on the propositional level, as

C,B :- A � (C^B)_:A � (B_:A)^(C_:A) � B :- A, C :- A.

where A,B,C are three simple propositions. Consequently, the sample Token-Datalog
rule can be broken into the following two equivalent rules having a single atom in the
head:

AdministrateON(MedicineA, next(k)) :- AdministrateON(MedicineA, k).

begin(next(k))-end(k)2[7,9] :- AdministrateON(MedicineA, k).
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4.5.2 Predicate Buddies

The technical problem addressed by predicate buddies is the same as in TCSP-Datalog
(see section 4.4.2). Atoms of the form HoldsAt(F,t) and HoldsOn(F,i) are replaced
by the conjunction F(k)^ time(k)=t where the 
uent name F is used as the predi-
cate name and the temporal term t is replaced by a token term k. The advantages
of the token-argument temporal quali�cation method over the temporal argument
quali�cation method used in TCSP-Datalog (described in the beginning of this sec-
tion) are (i) enables expressing periodic relations, (ii) provides a better separation
between temporal and non-temporal components, and (iii) improves expressiveness
of the query language.

4.5.3 Expressing Incompatibility

The technical problem, described in section 4.4.3, involves describing which 
uents
cannot be true simultaneously. For example, a person cannot be in Europe and
Australia simultaneously. This problem is addressed with the following Token-Datalog
rules:

1. If k1; k2 are two point token terms then add the rule

time(k1) 6= time(k2) :- A1,A2,. . .,An.

2. If k1 is a point token terms and k2 is an interval token term then add the rule
time(k1) fbefore,afterg interval(k2) :- A1,A2,. . .,An.

3. Otherwise, use the rule
interval(k1) f before,meets,met-by,afterg interval(k2) :- A1,A2,. . .,An.

4.5.4 Standard Semantics

The standard semantics for Token-Datalog is as de�ned above for TCSP-Datalog.
The only di�erence is that Token-Datalog introduces the additional sort of tokens,
and thus the domain D is divided into three partitions: time constants (points and
intervals), token constants and data constants. These constants enable de�ning three
types of terms: temporal constraint terms, token terms and data terms.

4.5.5 Temporal Semantics

The functions time, interval, begin, end have prede�ned meaning. The func-
tion time maps point token terms into time points. The function interval maps
interval token terms into time intervals. The functions begin,endmap interval token
terms into the end points of interval(k), namely they satisfy the constraints
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begin(k)fstartsg interval(k), end(k)fendsg interval(k).

The domain D is divided into three partitions: (i) T is the temporal domain, (ii)
K is the set of token constants and (iii) D0 is the set of data constant. For every
interpretation I, ground token terms in K are constants, but their interpretation on
the temporal domain T is not �xed, because every point token K2 K can be assigned
a value t 2 T . A fact is a member of the Herbrand base (as usual).

The Token-Datalog satisfaction relation is similar to the TCSP-Datalog satisfac-
tion relation. It is the conjunction of the standard satisfaction relation with the ad-
ditional condition called the homogeneity property. The only di�erence between the
TCSP-Datalog and the Token-Datalog de�nition is that interval terms are replaced
by interval token terms.

De�nition 18: An interpretation I, partitioned into constraint facts C and non-
constraint facts F , is a model of 	 under the temporal semantics, denoted I j=

temporal
	,

i�

1. I is a model of 	 under the standard non-temporal semantics described above,

2. for every ground temporal atom A = P(a1,. . .,an, k) where k is an interval
token term and a1,. . .,an are data terms, the following two conditions are
satis�ed:

(a) if A 2 I then
8kinterval, C j= begin(k)�begin(kinterval), C j= end(k)�end(kinterval)
�! P(kinterval, a1,. . .,an)2 I, and
8kpoint, C j= begin(k)<kpoint <end(k) �! P(kpoint, a1,. . .,an)2 I

(b) if A 62 I then
9kinterval, C j= begin(k)�begin(kinterval), C j= end(k)�end(kinterval)
�! PON(a1,. . .,an, kinterval)62 I, or
9kpoint, C j= begin(k)<time(kpoint)<end(k) �! PAT(a1,. . .,an, kpoint)62
I

where C is the conjunction of constraint facts in I, PON(a1,. . .,an, kinterval), P(kpoint,
a1,. . . ,an) are buddies (recall syntax de�nition above).

The conditions 2a and 2b in De�nition 18 are introduced to ensure that homo-
geneity holds. Condition 2a ensures that if the atom PON(a1,. . .,an, k) is in the set
of facts, then for every point token kpoint which is within the interval of k, the atom
PAT(a1,. . .,an, kpoint) is in the set of facts. Similarly, condition 2b ensures that for
every kinterval which is a subinterval of k, the atom PON(a1,. . .,an, kinterval) is in
the set of facts.

Theorem 18: For every Token-Datalog program 	,
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1. the intersection of all models is the unique minimal model, M temporal
	 , under the

temporal semantics which contains everything that is entailed by 	;

2. the minimal model M temporal
	 under the temporal semantics subsumes or equals

the minimal model M	 under the standard semantics;

3. A fact which is entailed under the standard semantics must also be entailed
under the temporal semantics.

4. Buttom-Up evaluation computes T !
	 =M temporal

	 where T !
	 is the pair< F!

	; C
!
	 >,

F!
	 is the intersection of all sets of non-constraint facts and C!	 is the constraint

network containing all the constraint facts in C0
	 [ � � � [ C

!
	.

Proof: The proof of Theorem 17 applies here. 2

To answer queries, we could use the following corollary:

Corollary 2: A non-constraint atom is a logical consequence of a program 	 i� it
is in F!

	 and a (temporal) constraint atom is a consequence of 	 i� it is entailed by
C!	.

Proof: From Theorem 18 it follow that, for every model M =< F ; C >, F!
	 is

subsumed in F of every model, and C!	 entails C. 2

In other words, all the temporal constraints that are entailed by 	 must also be en-
tailed by temporal constraints in the unique minimal model M	.

Example 31: Consider the program 	 =:
1. Active(1,k0).

2. Active(2,next(K)) :- Active(1,K) .

3. Active(1,next(K)) :- Active(2,K) .

4. interval(K)fmeetsginterval(next(K)).

The minimal model of this program, M	, is:
Active(1,k0).

Active(2,next(k0)). interval(k0)fmeetsginterval(next(k0)).

Active(1,next(next(k0))). interval(next(k0))fmeetsginterval(next(next(k0))).
...

The relation interval(k0) fbeforeg interval(next(next(k0))) is not speci�ed
by 	 yet it is included in the set of constraint facts 	 entails because it is entailed by
the conjunction interval(k0) fmeetsg interval(next(k0)) ^ interval(next(k0))
fmeetsg interval(next(next(k0))).
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4.5.6 Addressing the issues from Section 4.3

Since Token-Datalog is more expressive than TCSP-Datalog which addresses all the
issues of instantaneous events, instantaneous holding of 
uents, non-instantaneous
holding of 
uents and the DIP, these issues are also addressed by Token-Datalog.

4.6 Tentative Summary

We presented two languages that reside within the logic programming paradigm,
which are based on TCSP, Datalog, CLP and some of their variants. The glue con-
necting between TCSP (i.e. temporal constraint) and Datalog (i.e. logic program-
ming) are the temporal quali�cation methods of Temporal Arguments and Temporal
Tokens.

Our languages have well de�ned temporal domains, theory of temporal incidence,
syntax and semantics. The semantics of these languages augments the standard
semantics with a theory of temporal incidence which includes homogeneity. We ana-
lyzed the interaction between the temporal and non-temporal aspects of the language
through issues such as incompatibility.

Our languages present the following desirable combination of features:

1. They incorporate a well de�ned theory of temporal incidence which enables
representing both instantaneous and non-instantaneous events. It also allows
expressing the instantaneous and non-instantaneous holding of both continuous
and discrete 
uents.

2. The logic programming framework provides a computational basis for making
inferences. The inference algorithms are described in the next chapter.

3. The \Holds" predicates are used for the non-temporal component. These were
introduced by [6] and re�ned by [37].

4. The well understood TCSP framework is used for the temporal component.
E�cient algorithms such as those presented in Chapters 2 and 3 can be brought
to bear, as we show in the next chapter.

5. The virtues of the languages described in this chapter are:

(a) Periodic relation can be de�ned using unary successor and predecessor
functions. For example, to describe the period of one week we could write,
without knowing the date, a rule stating that Sunday is followed by Mon-
day, which is followed by Tuesday, . . ., Saturday is followed by Monday.
This in�nite periodic relation cannot be described in TCSPs nor in TCSP-
Datalog.
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(b) A clear separation between temporal and non-temporal atoms is achieved.
In both languages the temporal terms must be constraint terms. In TCSP-
Datalog, an atoms can take both constraint and non-constraint terms,
while in Token-Datalog they must be either constraint or non-constraint
terms but not both. Token terms are used in both temporal and non-
temporal atoms to create the links needed to preserve the meaning.
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Chapter 5

Making Temporal Inferences

In logic programming, inferences are performed through the computation of SLD-
refutations. The elementary operation within an SLD-refutation is called SLD-
derivation. It takes as input two (or more) expressions in a language L, performs
syntactic manipulations and computes a derived expression in the same language L.
A proof is an SLD-refutation, which is an SLD-derivation in which inconsistency is
proved. The algorithm for computing SLD-refutations is called SLD-resolution. In
this section, we show that standard SLD-resolution is incomplete with respect to the
temporal semantics applied to our Datalog-based language (de�ned in the previous
chapter) and propose a modi�cation which renders it complete.

The shortcoming of standard resolution stems from (i) inadequate uni�cation of
constraints atoms (to be distinguished from regular atoms), and (ii) inadequate uni-
�cation of ground terms which does not support homogeneity.

The �rst step in addressing these shortcomings involves designing a uni�cation
algorithm giving constraint atoms special treatment. Constraint C1 can be uni�ed
with a constraint facts C2 if C2 j= C1. The ability to make such a uni�cation enables
inferring what is considered standard constraint entailment in the CSP framework.

The second step involves unifying two ground terms. If k1 and k2 are two overlap-
ping time entities, then we unify them into a third token, k', which is the overlapping
portion of the two. This enables reasoning about simultaneous occurrences.

5.1 SLD-Resolution

Although Datalog is propositional, augmenting it with temporal and token variables
renders it non-propositional and raises the need for a generalized resolution inference
engine. In this section, we introduce the standard resolution algorithm. This involves
the standard de�nitions of most general uni�ers and derivations.

De�nition 19: Given a �nite set S of atoms, we say that a substitution � is a
uni�er if applying � on all the elements of S results in identical atoms, namely S�
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Figure 5.1: SLD-Derivation

is a singleton. A uni�er � is called a most general uni�er, abbreviated mgu, i� for
every � which is a uni�er of S, there exists a substitution 
 such that applying � is
equivalent to applying �
, namely � = �
.

De�nition 20: Let G be the goal :- A1,. . . ,Am,. . .,Ak, and let R be a rule H

:- B1,. . .,Bq. Then G0 is derived from, or the resolvant of G and R using the most
general uni�er � if the following holds:

1. Am is an atom, called the selected atom in G.

2. � is a most general uni�er of Am and H.

3. G0 is the goal :- A1,. . .,Am�1,B1,. . . ,Bq,Am,. . . ,Ak.

De�nition 21: Given a program 	 and a goal G, a selected-derivation, also called
SLD-derivation of 	 [ G, consists of a sequence G, G1; G2 . . . of goals, a sequence
R1; R2; . . . of rules, and a sequence �1; �2 . . . of most general uni�ers such that Gi+1

is the resolvant of Gi�i+1 and Ri+1�i+1, as illustrated in Figure 5.1. A selected-
refutation, also called SLD-refutation or proof, is an SLD-derivation which includes
(or terminates) with an empty clause.

Resolution algorithms are aimed at computing SLD-refutations. Because introduc-
ing time into logic requires syntactic and semantic modi�cations, standard resolution
algorithms are no longer su�cient for temporal reasoning.
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Example 32: Consider formalizing the statement \The medicine needs to be taken
every 8 hours during �ve days". Let T be the only temporal variable used and let
medicine(T) evaluate to true i� the medicine is taken at time point T. We could
represent the example statement by the TCSP-Datalog program:

medicine(0).

medicine(T+8) :- medicine(T), T2[0,120].

Using K as the only token variable and k0 as the only token constant, an equivalent
Token-Datalog program is as follows:

time(k0)=0.

time(next(K))-time(K)=8.

medicine(k0).

medicine(next(K)) :- medicine(K), time(K)2[0,120].

where next is a function mapping tokens to tokens. One of the features of this
Token-Datalog formulation is that it is more expressive. The user can replace the de-
terministic temporal constraint time(next(K))-time(K)=8 with a non-deterministic
constraint time(next(K))-time(K)2[7,9], while staying within the Token-Datalog
language.

Consider the query \Is the medicine taken at time point 8 ?" which can be formalized
as follows:

time(k1)=8.

:- medicine(k1).

Using SLD-resolution, the evaluation of this query proceeds as follows: It begins by
resolving the negation of the query literal :medicine(k1) with the rule

medicine(next(K)) :- medicine(K),

time(K)2[0,120].

Because medicine(next(K)) is in the head (i.e. not negated), an attempt is made
to unify it with :medicine(k1). The uni�cation succeeds with the substitution �1 =

(next(K)/k1) and the resolvant is

:- medicine(K), time(K)2[0,120].

This resolvant consists of atoms that are still not ground, and K can be assigned
values such that K6=next(k1). This is undesirable because the relationship between
the terms T1 =next(K) and T2 =K is lost. We will therefore resolve this issue by
explicitly adding the substitution �2=(K/next

�1(k1)) and deriving the resolvant:

:- medicine(next�1(k1)),

time(next�1(k1))2[0,120].
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The next inference step involves temporal constraint propagation. The fact
time(next(K))-time(K)=8 entails that time(k1)-time(next

�1(k1))=8. From the
fact time(k1)=8we can infer that time(next�1(k1))=0 and that time(k0)=time(next�1(k1)).

The problem is that in order to derive the last sentence we need to resolve again
but we cannot unify the term next�1(k1) with any other term, because it is already
ground. To arrive at the correct answer and infer that the medicine is given at k1,
we need to substitute �3 = (next�1(k1)/k0). We call this non-standard operation
of unifying (or substituting) two ground token terms, token fusion. After the fusion
we obtain two new subgoals:

:- medicine(k0), time(k0)2[0,120].

medicine(k0) is given as a fact. Because time(k0)=0 is also a fact we know that
the literal time(k0)2[0,120] is entailed. This completes the proof for the query :-

medicine(k1). The substitution used in answering this query is

� = �1�2�3
= (next(K)/k1)(K/next

�1(k1))(next
�1(k1)/k0)

where �3 is token fusion.

5.2 TCSP-Resolution

In the following we present a sample program and query for which there is no SLD-
refutation for making the intended temporal inference. To address this problem,
temporal resolution is introduced. It is a modi�cation of the standard resolution
algorithm in which the uni�cation algorithm is modi�ed to support temporal rea-
soning with constraints. The result is an inference algorithm capable of computing
refutations according to the intended temporal semantics.

We start by illustrating why SLD-resolution is not su�cient for making inferences
according to the temporal semantics.

Example 33: Consider the introductory example with Digoxin and Potassium
Supplements. Assume that the drugs, A,B, need to be administered. The medical
guidelines specify that if both Medicine A and B are administered, then B needs to
be administered between 7 and 9 hours after A. The task at hand is: Observing that
Medicine A was administered at time point 0 and Medicine B was administered at the
8 hour time point, determine whether the above guideline is satis�ed. This treatment
history is expressed below by two TCSP-Datalog facts. The guideline to be veri�ed
is expressed below as a TCSP-Datalog query.
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Figure 5.2: Simple TCSP-Derivation

Database: Administrate(MedicineA, 0).

Administrate(MedicineB, 8).

Query: t2-t1 2[7,9], Administrate(MedicineB,t2), Administrate(MedicineA,t1).

where Administrate(X,t) evaluate to true i� medicine X was administered at time
point t.

Although the guideline is clearly satis�ed, there is no SLD refutation for this
program. This is because we have t2 � t1 = 8 which cannot be related to t2 � t1 2
[7; 9]. To arrive at the answer 'Yes', we need to make a non-standard inference
that the constraint query t2-t1 2[7,9] is entailed by the constraint t2-t1=8 which is
induced by the database facts. This step is non-standard and is achieved by constraint
inference, or by what we call constraint uni�cation, as shown below.

As illustrated in Figures 5.2,5.3, this inference requires two steps: (i) inferring the
constraint fact Y-X=8 from the composition of X=0, Y=8 and (ii) unifying the query
constraint Y-X2[7,9]with the constraint fact Y-X=8. The �rst step can be performed
by the constraint propagation algorithms described in chapters 2 and 3. The second
step is performed by the constraint uni�cation algorithm described in this section.
We call this two step derivation TCSP-derivation.

In summary, TCSP-Resolution di�ers from SLD-Resolution in that its derivation
include one additional operation type, called constraint propagation.

De�nition 22: In a Simple TCSP-Derivation, every derivation step is either a stan-
dard SLD-Derivation step or the operation Revise(i,j,k), de�ned as follows: Let
A1; A2; A3 be three unit clauses specifying the constraint atoms C(Xi;Xj); C(Xi;Xk); C(Xk;Xj)
respectively. Then Revise(i,j,k) modi�es A1 by replacing its content with the
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Figure 5.3: TCSP-Derivation (i.e. general - non-simple).

constraint resulting from the operation C(Xi;Xj) \ (C(Xi;Xk) � C(Xk;Xj)) whose
semantics is de�ned by TCSPs in chapters 2,3. A TCSP-derivation (i.e. general, non-
simple) is a Simple TCSP-Derivation where the operation Revise(i,j,k) is replaced
by the computation of the minimal TCSP. A TCSP-Refutation is a TCSP-derivation
which contains either an empty clause or an empty constraint. A Simple TCSP-
Refutation is a Simple TCSP-derivation which contains either an empty clause or an
empty constraint.

In order to compute a TCSP-Derivation (and even a Simple TCSP-Derivation),
there must be unit constraint clauses containing a constraint C(Xi;Xj) for all i; j. The
conjunction of these constraints together form the TCSP which is used to determine
entailment. To guarantee the existence of unit clauses describing such constraints,
we could add as a unit clause, for every i; j, the universal constraint over Xi;Xj.

Lemma 9:

1. Computing an inference step for a Simple-TCSP-Derivation can be done in time
which is linear in the length of the expressions uni�ed.

2. Computing an inference step for a TCSP-Derivation is not tractable.

Proof: Computing an inference step within the standard SLD-Derivation is linear
in the length of the expressions. Simple TCSP-Derivations include steps which involve
composition of two constraints, which requires a constant amount of work. General
TCSP-Derivations, however, require computing the entailed constraint. This task is
not tractable. 2
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Note, however, that once the minimal TCSP is available, deciding entailment can be
done in constant time. Consequently, in some cases it may be bene�cial to compute
the minimal TCSP before we start computing the derivation steps. This minimal
TCSP can be incrementally updated as new constraints are conjoined with it. Up-
dating the minimal TCSP is tractable in case the TCSP falls within a tractable class
(see Chapters 2,3).

5.2.1 TCSP-Datalog Constraint Uni�cation Algorithm

A TCSP-Datalog constraint atom is a binary predicate of the form C(t1; t2) where
C is the temporal relation (i.e. constraint) and t1; t2 are point or interval constraint
terms (i.e. constraint variables).

Algorithm UnifyConstraints for TCSP-Datalog is presented in Figure 5.4. Given
a constraint atom A and a consistent TCSP C, it computes a uni�er � such that
C j= A� or C j= �A�. This is achieved by trying to unify the pair of variables in A with
some pair of variables in C. This algorithm is based on the following de�nition:

De�nition 23: A substitution � is a uni�er of C1(t1; t2) and C2(t3; t4) i� there
C1(t1�; t2�) j= C2(t3�; t4�). The atoms C1(t1; t2) and C2(t3; t4) are uni�able i� exists
such a substitution.

Example 34: Consider the above sample guideline veri�cation task and let C1 =
t2� t1 = 8 and C2 = t2� t1 2 [7; 9]. The substitution � = (t1=t1)(t2=t2) is a uni�er.
It is also the most general uni�er.

De�nition 24: Let CU be the set of all unit constraint clauses containing temporal
constraints.

Lemma 10: Applying algorithm UnifyConstraints (see Figure 5.4) on a TCSP
de�ned by CU and a constraint atom A,

1. succeeds i� 9� CU j= A� _ CU j= �A�, and

2. computes � such that CU j= A� or CU j= �A�.

3. step 1 is intractable (we need an approximation) but steps 2-8 (see Figure 5.4)
terminate in O(nm) steps where n is the number of constraints in CU and m is
the maximum length of the terms uni�ed.

Proof: Follows immediately from the algorithm in Figure 5.4. 2

Algorithm UnifyConstraints (Figure 5.4) deviates from the standard uni�cation
algorithms in that it uni�es two atoms even if they di�er in the constraint (i.e. pred-
icate) they specify. Had we not uni�ed di�erent constraints on the same pair of
variables it would have restricted the inference to entailing facts explicitly listed in
the database only, thus not utilizing the ability of constraint propagation to infer
implicit constraints.
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Algorithm UnifyConstraints for TCSP-Datalog

Input: A constraint atom A and a consistent TCSP C.
Output: A uni�er � such that C j= A� or C j= �A� (if � exists).
1. Compute Cmin, the minimal TCSP of C.
2. For every constraint C in Cmin do

3. De�ne C = C(t1; t2) and A = A(t3; t4).
4. Let � = (t3=t1)(t4=t2).
5. If C� j= A� or C� j= �A� (use TCSP techniques to test) then return �.
6. Else exit with failure.
7. End-if

8. End-for

Figure 5.4: Unifying constraints in TCSP-Datalog.

5.2.2 Token-Datalog Constraint Uni�cation Algorithm

The Token-Datalog constraint uni�cation algorithm di�ers from its TCSP-Datalog
counterpart in that it takes into account functions mapping from token-terms to
constraint-terms.

De�nition 25: A constraint atom is a binary predicate of the form

C(g1(K1); g2(K2))

where C is the temporal relation (i.e. constraint), K1,K2 are token terms, g1(K1) and
g2(K2) are constraint terms (i.e. constraint variables) and g1; g2 are functions mapping
token terms to points or interval constraint variables.

Example 35 : Consider an atom interval(next(K)) foverlapsginterval(K)
which evaluates to true whenever the intervals associated with K and next(K) overlap.
For this atom, K1=next(K), K2=K, g1=g2=interval and C = C(X;Y ) is the relation
Xf overlapsg Y.
The atom begin(next(K))-end(K)=8 evaluates to true whenever the beginning of
the interval associated with the token term next(K) is 8 time units after the end of
the interval associated with the token term K. For this atom, K1 = next(K), K2=K,

g1=begin, g2=end and C = C(X;Y ) is the relation X � Y 2 [8; 8].

Algorithm UnifyConstraints is presented in Figure 5.5. Given a constraint atom A
and a consistent TCSP C, it computes a uni�er � such that C j= A� or C j= �A�. This
is achieved by trying to unify the pair of variables in A with some pair of variables
in C. In contrast to TCSP-Datalog, unifying tokens requires processing functions.
Because the functions time, begin, end take a single token term, the uni�cation
task reduces to unifying their token arguments. This simpli�es the uni�cation process
considerably.
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Example 36: To illustrate the execution of algorithm UnifyConstraints, let CU in-
clude the constraintC = time(k1)-time(k0)=8 and the queryA = time(next(K))-time(K)2[4,1
Since g1 = g3 and g2 = g4 we try to unify next(K), K with k1,k0 respectively. The
uni�cation succeeds with the substitution � = (next(K)/k1)(K/k0) which has the
desired property that C j= A� implying that CU j= A� and that 	 j= A�. Recall that
the entailment is tested using the TCSP techniques described in chapters 2 and 3.

Lemma 11: Applying algorithm UnifyConstraints on a TCSP de�ned by CU and a
constraint atom A,

1. succeeds i� 9� CU j= A� _ CU j= :A�, and

2. computes � such that CU j= A� or CU j= :A�.

3. step 1 is intractable (we need an approximation) but steps 2-9 terminate in
O(nm) steps where n is the number of constraints in CU and m is the maximum
length of the terms uni�ed.

Proof: Follows immediately from the algorithm in Figure 5.5. 2

To see the problem solved here, recall that in example 32, without constraint uni-
�cation we could not infer that time(k0)=time(next

�1(k1)). As is the case with
TCSP-Datalog, algorithm UnifyConstraints for Token-Datalog (see Figure 5.5) devi-
ates from the standard uni�cation algorithms in that it uni�es two atoms even if they
di�er in the constraint (i.e. predicate) they specify.

Example 37: Constraint uni�cation includes an inference step and thus it devi-
ates from standard uni�cation. In this example, we show how it is possible to unify
two atoms describing di�erent predicates symbols, as long as the uni�ed predicates
are temporal constraints. Consider the two atom interval(k1)fmeets,starts,
overlapsginterval(k2) and interval(next(K)) fmeets,overlapsginterval(K).
The substitution � = (next(K)/k1)(K/k0) uni�es these two constraint atoms. To
understand why such uni�cation cannot be part of an SLD-refutation, we examine
the predicate calculus representation of the two constraints being uni�ed. The �rst
constraint is equivalent to the disjunction

Meets(interval(k1),interval(k2)) _
Starts(interval(k1),interval(k2)) _
Overlaps(interval(k1),interval(k2))

while the second constraint is equivalent to the disjunction

Meets(interval(next(K)),interval(K)) _
Overlaps(interval(next(K)),interval(K)) .

Because the sets of predicates are di�erent, such a uni�cation is an example of an
inference step that may be included in a TCSP-refutation, but cannot be a step in
an SLD-refutation.
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Algorithm UnifyConstraints for Token-Datalog

Input: A constraint atom A and a consistent TCSP C.
Output: A uni�er � such that C j= A� or C j= :A� (if � exists).
1. Compute Cmin, the minimal TCSP of C.
2. For every constraint C in Cmin do

3. De�ne C = C(g1(K1); g2(K2)) and A = A(g3(K3); g4(K4)).
4. If g1 = g3 and g2 = g4 and

K1,K2 are uni�able with K3,K4 respectively then
5. Assign � = (K3/K1)(K4/K2).
6. If C j= A� or C j= :A� then return �.
7. End-if

8. End-for
9. Exit with failure.

Figure 5.5: Unifying constraints in Token-Datalog.

5.2.3 Problem: TCSP-Datalog Interval Fusion

Constraint uni�cation is not su�cient to provide correct answers. To illustrate the
problem that is still unresolved, consider the statements \Mary was located in Ar-
rowhead from 1977 to 1986, when she moved to San Francisco. John was located in
Arrowhead from 1980 to 1987, when he joined Mary in San Francisco." As we show
below, in many cases standard resolution algorithms do not allow inferring that both
Mary and John were in the same city simultaneously, namely that \both John and
Marry were staying in Arrowhead simultaneously".

A possible TCSP-Datalog formalization of the above example is as follows:

Location(Marry, Arrowhead, I1).

Location(John, Arrowhead, I2).

1977fstartsgI1. 1986fendsgI1.
1980fstartsgI2. 1987fendsgI2.

Inferring that \both John and Marry were staying in Arrowhead simultaneously" ac-
counts for deciding the entailment of the query

:- Location(John, Arrowhead, I), Location(Marry, Arrowhead, I)

Using standard resolution we cannot prove the entailment of this query because there
is no interval I for which Location(Marry,Arrowhead,I)and Location(John,Arrowhead,I)
are both in the database. To correctly decide entailment, we need to introduce the
substitution �=(I1/I)(I2/I). Unfortunately, in standard resolution, this substitution
enforces I=I1=I2. Clearly this is an undesirable side e�ect that disquali�es � from
being used in an SLD-refutation.
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Figure 5.6: Interval fusion.

5.2.4 Solution: TCSP-Datalog Interval Fusion Algorithm

We introduce temporal fusion, which remedies this problem by removing the undesired
side e�ect of applying the above �. This is achieved by introducing the new intervals
fI3,I4,I5g which are the fusion of fI1,I2g. These intervals have the following end
points (illustrated in �gure 5.6):

1977fstartsgI3. 1980fendsgI3.
1980fstartsgI4. 1985fendsgI4.
1985fstartsgI5. 1986fendsgI5.

De�nition 26: Given a program 	 and its constraint facts CU , two constraint terms
are fusible i� CU entails that they overlap, namely there are three possible cases:

1. If t1,t2 are point constraint terms and CU j= t1=t2 then t1,t2 are fusible.

2. If t is a point constraint term while I is an interval constraint term and CU j=
tfduringgI, then t and I are fusible.

3. If both I1,I2 are interval constraint terms and

CU j= I1

(
start; overlaps; during; equals; finishes;

started by; overlapped by; contains; finished by

)
I2

then I1,I2 are fusible.

The key operation in temporal fusion is the processing of a set of linearly ordered
points, or a set of intervals whose end points are linearly ordered. The fusion operator
takes, as input, a set of constraint terms and computes, as output, a new set of
constraint terms which is the fusion of the input terms.

De�nition 27: Let P be a set of linearly ordered points, I be a set of intervals whose
end points together with the point in P are linearly ordered, and let E = fe1; . . . ; eng
be the linearly ordered set comprising of P and the end points of the intervals in I.
The fusion of the set S = P [ I, denoted fusion(S), is a set of intervals I1,. . .,In
satisfying IifmeetsgIi+1 and eifstartsgIi, eifendsgIi�1.
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We modify the set of facts in the database to perform temporal fusion using
algorithm TCSP-TemporalFusion, shown in Figure 5.7. The input consists of two
sets of facts: (i) facts of the form P(a1,. . .,ar,t) where t is a point constraint term,
and (ii) facts of the form P(a1,. . .,ar,I) where I is an interval constraint term.
The �rst step requires testing whether CU1 entails a linear order over all the point
constraint terms and the end points of the interval constraint terms. The second
step computes the fusion set I1,. . .,In satisfying IifmeetsgIi+1 and eifstartsgIi,
eifendsgIi�1. Finally, the third step, generates the set of facts that are true for each
of I1,. . .,In and e1,. . .,en+1.

Example 38: To continue with the above example, the input to the temporal fusion
algorithm is the following set of facts:

Located(Marry, Arrowhead, I1).

Located(John, Arrowhead, I2).

1977fstartsgI1. 1986fendsgI1.
1980fstartsgI2. 1987fendsgI2.

The output of the temporal fusion algorithm consists of the following set of facts:

Located(Marry, Arrowhead, I3). Located(Marry, Arrowhead, I4).

Located(John, Arrowhead, I4). Located(John, Arrowhead, I5).

1977fstartsgI3. 1980fendsgI3.
1980fstartsgI4. 1985fendsgI4.
1985fstartsgI5. 1986fendsgI5.

Lemma 12: Algorithm TCSP-Temporal-Fusion computes, in linear time, a set of
facts which is equivalent to its input (with respect to the temporal semantics).

Proof: The complexity is derived as follows. Step 2 can be implemented by
topological sort, which requires O(nc) steps where n is the number of variable and c
is the number of constraints in Cmin

U . The loop from 5 to 8 terminates in O(nm) where
n is the number of end-points and m is the number of facts in the input database.
Thus, the total complexity is O(nc+ nm).

Equivalence is achieved because (i) a fact is in the output if it is entailed by some
input fact through homogeneity, and (ii) every input fact is mapped to at least one
output fact. The �rst part of this claim follows immediately from the conditions
in lines 6,7. The equivalence follows from the fact that e1,. . .,en+1 contain all the
end-points. 2

1This is the set of unit clauses containing constraint atoms.
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Algorithm TCSP-Temporal-Fusion

Input: A set of facts of the form P(a1,. . .,ar,t) where t is a point constraint term
A set of facts of the form P(a1,. . .,ar,I) where I is an interval constraint term
A consistent TCSP CU over all the end-points and its equivalent minimal network Cmin

U .
Output: An equivalent database D such that each fact is mapped to a single input fact.
1. Let e1,. . .,en+1 be all the end-points.
2. Compute an order e1,. . .,en+1 such that 8C(ei; ej) 2 C

min
U , (C(ei,ej) j= ei �ej) i� i < j

(i.e. topological sort).
3. if there is no linear order with the desired property then exit with failure.
4. Initialize D = fg.
5. for every i do
6. Let I be the interval [ei,ei+1].
7. if there exists an input fact P(a1,. . .,ar,I) such that Ifcontains,started by,finished bygIi

then add the fact P(I,a1,. . .,ar) to the output database D.
8. if there exists an input fact P(a1,. . .,ar,t) such that t=ei

then add the fact P(ei,a1,. . .,ar) to the output database D.
9. end-for
10. return D.

Figure 5.7: Performing Temporal Fusion in TCSP-Datalog.

5.2.5 Problem: Token-Datalog Interval Fusion

A possible Token-Datalog formalization of the above example is as follows:

Located(Marry, Arrowhead, K1).

Located(John, Arrowhead, K2).

begin(K1)=1977. end(K1)=1986.

begin(K2)=1980. end(K2)=1987.

Inferring that \both John and Marry were staying in Arrowhead simultaneously" is
equivalent to deciding the entailment of the query

:- GetMarried(John, K), BuyHouse(John, K)

5.2.6 Solution: Token-Datalog Interval Fusion Algorithm

The Token-Datalog fusion algorithm di�ers from the TCSP-Datalog fusion algorithm
in that it fuses token terms.

Example 39: Similar to TCSP-Datalog, we introduce the interval tokens fK3,K4,K5g
which are the fusion of fK1,K2g. These intervals have the following end points (illus-
trated in �gure 5.6):
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begin(K3)=1977. end(K3)=1980.

begin(k4)=1980. end(K4)=1985.

begin(K5)=1985. end(K5)=1986.

Example 40: To continue with Example 32, the temporal constraints entail the
constraint time(next�1(k1))=time(k0). This equality renders the ground terms
next�1(k1) and k0 fusible. Let k' be their fusion and assign medicine(k') to true.
Then the substitution �3 = (next�1(k1)/k')(k0/k') transforms

medicine(k0) and
:- medicine(next�1(k1)), time(next�1(k1)2[0,120]).

into

medicine(k') and :-medicine(k'), time(k')2[0,120].

This enables resolving the two clauses together. Since we have derived the constraint
time(next�1(k1))=time(k')=0, the atom time(next�1(k'))2[0,120] is entailed.
As a result, the proof of the query is completed.

Lemma 13: Let 	 be a program whose CU2 induces a linear order on the end points
of all the token terms in 	, and let K be the set of token terms occurring in 	.

1. The truth value of the predicates in 	 may change only at the end points of the
token terms in fusion(K) (see Example 38).

2. Computing fusion(K) and the set of predicates that evaluate to true for each
token in fusion(K) requires O(n(n+m)) where n is the number of tokens in K
and m is the total number of predicates.

Proof: For Part 1 see the proof for TCSP-Datalog. The truth value of the non-
constraint predicates that take token arguments does not change during the interval
associated with the token argument. Thus, the truth value may change only at the
end-points of the input tokens K. Because every end-point of the tokens in K is an
end-point of at least one (and at most two) tokens in fusion(K), the thesis follows.

2

5.3 Completeness

In this section we show that the combination of the two algorithms, constraint uni�ca-
tion and token-fusion, is complete for making inferences with Token-Datalog. Because
TCSP-Datalog is strictly less expressive, this result is applicable to TCSP-Datalog

2All unit clauses containing constraint atoms (recall De�nition 24).
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as well. For clarity of presentation, we consider three classes of languages that have
increasing levels of expressiveness and complexity:

� L0 is a subclass of Token-Datalog having no constraint atoms and all the token
terms are ground.

� L1 extends L0 by allowing constraint atoms (token terms are ground).

� L2 is the general Token-Datalog which extends L1 by allowing non-ground token
terms.

For all three L0, L1, L2 we use the combined TCSP as the temporal constraint
component.
Let R be a generalized resolution algorithm, let Rc be R augmented with constraint
uni�cation, let Rk be R augmented with token fusion and let Rkc be R augmented
with both. The algorithms R, Rc and Rkc are all non-deterministic in that, at every
step, they may apply one of several possible operations. Algorithms Rc and Rk di�er
from R in that they can apply all the operations that R applies, with the addition of
constraint uni�cation and token fusion respectively. Rkc modi�es line 4 in algorithm
UnifyConstraints to include token fusion, namely the uni�cation of K1,K2 with K3,K4
when K1,K2,K3,K4 are all ground token terms. Clearly, if R detects the inconsistency
of a program 	 thenRc, Rk and Rkc can also detect this inconsistency. This is because
they have a larger set of operations to apply. We next formalize these algorithms.

De�nition 28: An R-derivation is a standard SLD-derivation. An Rc-derivation
is such that every step may be either standard SLD-derivation step or a constraint
uni�cation step. An Rk-derivation is such that every step may be either standard
SLD-derivation step or a token fusion step. An Rkc derivation is such that every step
may be either standard SLD-derivation step, constraint uni�cation or token fusion
step. An R-refutation is a standard SLD-refutation; Rc,Rk and Rkc-refutations are
Rc,Rk and Rkc-derivations containing either an empty clause or an empty constraint.

Lemma 14: If algorithm R is complete for L0 then algorithm Rc is sound and
complete for L1.

Proof: Assume R is complete for L0 and Rc is incomplete for L1. If Rc is
incomplete for L1, then there exists an inconsistent program 	 in L1 for which does
not exist an Rc-refutation. To prove, by contradiction, that this assumption is false,
we divide the atoms in 	 into two partitions: constraint and non-constraint atoms.
Let 	c is the result of removing all constraint atoms from 	. Because 	c 2 L0, if 	c is
inconsistent then there exists an R-refutation for 	c, and thus exists an Rc-refutation
for 	c.
Case 1: If the conjunction of the constraints described by all the constraint atoms
in 	 is satis�able, then 	 is consistent i� 	c is consistent. This contradicts the
assumption, concluding that Rc is complete for Case 1.
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Case 2: If the conjunction of the constraints described by the constraint facts in
	 is unsatis�able, then their inconsistency is detected as follows. Given a TCSP-
derivation �, let G(�) = G1; . . . ; Gn be the set of all subgoals generated by � (recall
Figure 5.3). Before extending � with another step, a TCSP N is generated from all
the subgoals in G(�) which contain constraints. Subsequently, the minimal network
Nmin is computed. A constraint C is entailed by N i� exists a substitution � such
that Nmin� j= C�. From Lemma 11 we know that, if a constraint C is entailed by
Nmin, the desired substitution � is guaranteed to be found. In particular, this claim
is true in case � enables inferring the empty constraint, which means that Nmin is
inconsistent, implying that N is inconsistent and thus 	 is inconsistent. Adding the
substitution � to � converts it into an Rc-refutation (for 	). This contradicts the
assumption that no such refutation exists, concluding that Rc is complete for Case 2.
Case 3: In all other cases, 	 is inconsistent due to the assertion of some constraint
atom C. In this case, there exists a TCSP-derivation in which C is added as a sub-goal.
In subsequent derivation steps, this subgoal, and all previous subgoals, are treated
as facts. This satis�es the precondition of Case 2 above and enables constructing
an Rc-refutation. This contradicts the assumption that no such refutation exists,
concluding that Rc is complete for Case 3. 2

Lemma 15: If algorithm R is complete for L0 then Rkc is complete and for every
program 	 2 L2.

Proof: We claim that if Rkc terminates without identifying an inconsistency then
the following holds: for every interval token term k and point token k', if 	 j= p(k)^
(begin(k)< time(k')< end(k)) then 	 j=p(k'). This claim is equivalent to the
above lemma because it implies that the token-fusion algorithm enables to make all
the inferences that should be made under the temporal semantics given in Chapter
4, De�nition 18, having one condition: holding over a time interval implies holding
at any time point within this interval.

To prove by contradiction, assume Rkc did not identify inconsistency and there
exists a ground interval token term k in T !

	 such that 	 j= p(k)^ (begin(k)<
time(k')< end(k)) and 	 6j=p(k'). This implies that exists a set of subgoals G =
G1; . . . ; Gn such that G 6j= p(k0) yet G j= p(k). As shown in Lemma 13, described
in Figure 5.7 (similar for both TCSP-Datalog and Token-Datalog) and illustrated in
Example 40, Rkc is guarantees to �nd a substitution which uni�es k',k with a ground
token k''. This grounds the token terms and creates formula in L1, for which exists
an Rc-refutation. Thus, inconsistency can be detected, leading to a contradiction and
proving the intermediate claim. 2

Recall that without token fusion we might not �nd a ground token term k' that
enables us to detect the inconsistency.

Theorem 19: Algorithm Rkc, namely resolution augmented with constraint uni�ca-
tion and token fusion, is complete for Token-Datalog.
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Proof: Follows from Lemmas 14,15. 2

Consider algorithm Simple-Rkc which is equivalent to algorithm Rkc where Simple
TCSP-Derivations are used instead of general TCSP-Derivations. Let Simple Token-
Datalog be a fragment of Token-Datalog in which the constraints form a class of
constraints for which enforcing path-consistency is complete for deciding entailment
(see Chapters 2,3).

Theorem 20: Algorithm Simple-Rkc is complete for Simple Token-Datalog.

Proof: The proofs of Lemmas 14,15 rely on the completeness of constraint uni�-
cation when deciding constraint entailment. In case entailment can be decided using
path-consistency, entailment can be proved using a sequence of Revise(i,j,k) opera-
tions. This sequence can be converted into a Simple-TCSP-derivation which contains
the empty constraint, namely a Simple-TCSP-refutation. 2

Note, however, that Simple Token-Datalog may not be tractable because it allows
describing periodic yet in�nite sequences.

5.4 Comparing TCSP-Datalog and Token-Datalog

In this section, we explain the di�erences between TCSP-Datalog and Token-Datalog.
Token-Datalog is more expressive than TCSP-Datalog, yet making inference in Token-
Datalog is more complicated.

5.4.1 Syntax

There are two major syntactic di�erences between TCSP-Datalog and Token-Datalog:
(i) the temporal quali�cation method and (ii) the use of functions.

TCSP-Datalog uses the temporal argument quali�cation method while Toke-Datalog
uses the token argument quali�cation method. To illustrate the syntactic di�erence
between these two temporal quali�cation methods, consider representing the state-
ment \John was in LA from Jan 15 to Feb 15". When using temporal arguments,
this statement can be described with the proposition

Location(John, LA, Jan15, Feb15).

Using token arguments, this statement can be described with the conjunction

Location(John, LA, k), begin(k)=Jan15, end(k)=Feb15.

TCSP-Datalog does not allow functions at all. Token-Datalog allows two types
of functions: (i) mapping token terms to constraint terms, and (ii) mapping token
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terms to token terms.
In Token-Datalog, given a point token k, the function time(k) maps k into a

constraint term representing a time point. Given an interval token k, the functions

interval(k),begin(k),end(k)

map k into constraint terms representing a time interval, the time point starting the
interval and the time point ending the interval, respectively. In TCSP-Datalog, given
an interval term I, its starting and ending points are described by point terms P1,P2
which are constrained to I with the constraint atoms:

P1fstartsg I, P2fendsg I.

Token-Datalog functions mapping token terms to token terms using successor
functions have no parallel in TCSP-Datalog. This mapping does not require known
the time point or interval associated with tokens. For example, the fact

time(K)-time(prev(K))=8

implies that the successor of K is a token which occurred before K. In contrast,
time(next(K))-time(K)=8

goes forward in time. Neither sequences are constrained to speci�c time points.
Successor functions can also be used in a more general form. For example, the

statement \the medicine needs to be taken every 7-9 hours" can be represented by
the program 	 =

time(next(k))-time(k)2[7,9].
Administrate( Medicine, next(k)) :- Administrate( Medicine, k).

where k1,k2 are point token terms, Medicine is a data constant and take is a predi-
cate symbol.

5.4.2 Semantics

While a TCSP-Datalog maps every time point t to a set of ground atoms (i.e. facts)
that evaluate to true at t, Token-Datalog maps every token term k to a set of ground
atoms. To illustrate the di�erence, consider the statement \the party took place one
week prior to the 200th independence day". In Token-Datalog, this statement can be
represented by the conjunction

Occur(Party,k), time(independence200)-time(k)=7days.

where the token symbol independence200 represents the time of the 200 indepen-
dence day without specifying the exact date. Representing this statement in TCSP-
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Datalog requires specifying the exact point in time that the 200th independence day
occurred. If t be the required date then the equivalent TCSP-Datalog conjunction is

Occur(Party,t'), t'-t=7days.

5.4.3 Inference Algorithm

The uni�cation algorithm for TCSP-Datalog and Token-Datalog are slightly di�erent
due to the syntactic di�erences between these languages. For example, consider the
Token-Datalog database

Location(John, LA, k1), begin(k1)=Jan15, end(k1)=Feb15,

Location(Mary, LA, k2), begin(k2)=Jan1, end(k2)=Feb1.

According to the semantics of Token-Datalog, this conjunction entails the conjunction

Location(John,LA,k),Location(Mary,LA,k)

which means that both John and Mary were in LA at the same time. The grounding
of k reveals that the time interval was between Jan15 and Feb1. As shown above, us-
ing standard resolution such inferences cannot be made. This problem was addressed
by introducing Token-Fusion.

The equivalent TCSP-Datalog would be

Location(John, LA, Jan15, Feb15), Location(Mary, LA, Jan1, Feb1)

and the equivalent query is

Location(John,LA,t1,t2),Location(Mary,LA,t1,t2)

where t1=Jan15 and t2=Feb1.

5.5 Relationship to CLP

5.5.1 Syntax

Similarities: It is possible to develop a CLP language using TCSP as a constraint
domain. Our approach is more speci�c, as it focuses on the combination of Datalog
with TCSP. In order to generalize our results and render the combination with general
CLP useful for temporal reasoning, the issues presented in Chapter 4 need to be
addressed and the inference algorithm need to be modi�ed as described in Chapter
5.

125



Di�erences: While in our languages constraint atoms in the heads of rules are
allowed, in CLP languages, constraint atoms in the heads of rules are not allowed.
While constraint facts in our languages are unit clauses specifying a constraint atoms,
a CLP fact is of the form a :- c where c is a constraint atom and a is a non-constraint
atom.

5.5.2 Semantics

Similarities: The languages we propose as well as CLP languages have a �xed point
semantics.

Di�erences: The temporal semantics of our languages cannot be implemented us-
ing existing CLP languages. Once the syntax of CLP is extended with the temporal
quali�cation methods used by TCSP-Datalog and Token-Datalog, there is a need to
enhance the semantics to accommodate (i) constraints in the heads of rules, (ii) ho-
mogeneity of holding. While many more issues may need to be addressed, solution
to these issues were described in this work.

Inference: The major di�erence is the uni�cation algorithm. To generalize our
results to the CLP framework, there is a need to augment the existing resolution
algorithms with the constraint uni�cation and token fusion algorithms introduced in
this work. These algorithms improve the state of the art in that the variables need
not be ground in order for constraint propagation to occur.

5.5.3 Inference Algorithm

Similarities: Inferences in our languages as well as for CLP are made through a
resolution algorithm.

Di�erences: In our languages, the resolution algorithm is modi�ed to be consistent
with the temporal semantics we de�ned. This new algorithm, which is capable of
unifying constraints and fusing time entities, is called temporal resolution, which is
based on TCSP-derivations and refutations. In contrast, because value assignment
to CLP constraints variables are not included in the interpretation, the constraint
solver in CLP is external to the resolution algorithm. Consequently, many constraint
operations cannot be performed.

5.6 Conclusion

In this chapter we identi�ed and resolved issues that arise when performing tempo-
ral reasoning using resolution. We focused on the problems that render resolution
incomplete for TCSP-Datalog and Token-Datalog.
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The two major di�culties are: (i) the need to unify ground temporal and token
terms, and (ii) the need to unify constraints. To address these problems we introduced
the token fusion and constraint uni�cation methods. We have shown that augmenting
the standard resolution algorithm with those methods renders it su�cient for making
the intended inferences.

Our results render the logic programming paradigm a viable knowledge represen-
tation approach temporal reasoning. For example, our results could be used to extend
a speci�c class of logic programs, Constraint Logic Programs (CLP), to make the in-
ferences which intended under the temporal semantics by augmenting its inference
engine with constraint uni�cation and token fusion.
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Chapter 6

Example Domains

Chapters 4 and 5 show that temporal reasoning requires extending the traditional
inference engine, resolution, to allow uni�cation of constraints and ground temporal
terms. Our hypothesis is that, no matter which application domain is of interest,
these extensions are likely to be needed whenever temporal reasoning is embedded
within a logic programming framework. To support this hypothesis, we demonstrate
the utility of modifying the inference algorithm when reasoning about knowledge in
various domains using Token-Datalog. We extend the examples presented throughout
this thesis for the domains of:

1. Formalizing medical guidelines and treatment plans. Such a formalization en-
ables verifying whether a given treatment plan complies with the guidelines.

2. Formalizing electrical circuits and the intended speci�cation. Such a formaliza-
tion enables verifying whether a given circuit complies with the speci�cations.
If the speci�cations are not met, bugs are identi�ed by presenting counter ex-
amples.

3. Formalizing the 
ow of inventory within a warehouses and manufacturing orga-
nizations. The challenge is to make inferences even when the information about
the time certain changes occurred is unknown.

4. Formalizing common sense reasoning is a di�cult task which is still unresolved.
Here we demonstrate how our languages can be used to describe the e�ects of
actions in a fashion similar to traditional methods. The novelty is in the ability
to answer queries about possible relation between objects. These queries could
not be answered using standard �rst-order logic programs.

6.1 Treatment Plan Veri�cation

A task common to many application domains is the analysis of data accumulated over
time, leading to identi�cation of past and present trends and to episodic decisions
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Figure 6.1: Temporal abstraction and interpolating missing values.

made on the basis of the previous and the current state of the world. An example of
such a task in the medical domain is managing patients who are being treated with
clinical guidelines [94]. An inherent requirement of such tasks is to accumulate and
analyze patient data over time and to constantly revise an assessment of the patient's
state.

These higher-level concepts can be used for summarizing large medical databases,
for monitoring, for replanning therapy, for providing explanations to a user of a
decision-support system, and as a basis for a more intelligent dialog between an
automated decision-support system and a human health-care provider.

Physicians are often required to make diagnostic or therapeutic decisions based on
numerous time-stamped patient data. These data may be overwhelming, particularly
if the physicians' ability to reason with the data does not scale up to the amount of
data collected. Most clinical data include a time stamp indicating when each datum
was valid. Temporal abstraction of the data was proposed to deal with the large
volume of clinical data [94, 95, 96]. Time oriented abstraction highlight meaningful
trends and patterns, save the physician valuable time, and supports an intelligent
decision-support patient-record system.

Temporal abstraction is the conversion of quantitative time-stamped data into
propositions describing a qualitative state which persists over time intervals. Consider
measuring Granulocyte counts and describing the results in a graph, as illustrated
in Figure 6.1. The abstraction may specify when the Granulocyte count is under
2000, between 2000-2500, between 2500-3000, and greater than 3000. In Figure 6.1
four intervals were generated, describing time periods during which the count was at
di�erent qualitative levels. In addition, an isolated time point may be used describe
data which should not contribute to generating the trend (e.g. because they might
be errornous).

Each abstraction interval can be modeled as a token. The list of propositions that
hold throughout the intervals associated with these tokens describe the qualitative
state of the patient. In Token-Datalog, the holding of an abstraction \Granulocyte
count is Low" at a point token k1 can be formalized using the atom GLevelAT(Low,
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k1). The holding over an interval token k2 is represented by GLevelON(Low, k2). We
perform abstraction using the atom GCountLesserThan(2000, k1), which is true if
the Granulocyte count is less than 2000 at the time point time(k1). This abstraction
can be de�ned by the rule:

GLevelAT(Low, k1) :- GCountLesserThan(2000, k1).

To describe the holding of this abstraction over an interval we need yet another rule,
which encodes the homogeneity axiom as follows:

GCountLesserThanAT(2000, k1) :- GLevelON(Low, k2),

time(k1) fduringg interval(k2).

This ensures that abstracting over the interval implies abstracting for every time
point within the interval. Note that the homogeneous holding is di�erent than ho-
mogeneous abstractions. While homogeneous holding is encoded within the seman-
tics, the abstraction must be described explicitly using rules expressible in the lan-
guage. In Figure 6.1, the decreasing length of these intervals indicates a trend. This
trend could not be identi�ed without having created the temporal abstraction such
as GLevelON(Low, k2).

The problem here is that the above two rules do not enable inferring that if some
points within an interval satisfy the abstraction GCountLesserThanAT(2000, k1),
then this is a license to infer the holding of the abstraction GLevelON(Low, k2) over
the whole interval. This is called the truth value interpolation problem [94, 95, 96].

To formalize the conditions under which the truth value interpolation can be made,
we could formalize statements such as \if the abstraction held for n points where
each pair is most two days apart then the point abstractions can be converted into an
interval abstraction that subsumes all these points. In other words, if for i 2 1; . . . ; n
GLevelAT(Low, ki), time(ki)-time(ki�1)� 2 where ki+1=next(ki), then we can
infer that GLevelON(Low, kall) where kall subsumes all the point tokens k1,. . .,kn,
namely 8i, time(ki) fduringg interval(kall). This inference can be performed in a
bottom-up fashion, starting from pairs of tokens, ki and next(ki), with the following
Token-Datalog rule:

GLevelON(Low, kc),

time(next(ki))=end(kc),

time(ki)=start(kc) :- time(next(ki))-time(ki)�2,
GLevelAT(Low, ki),

GLevelAT(Low, next(ki)).

and, an additional rule is necessary to specify that the truth value of the predicate
GLevel is concatenatable:
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GLevelON(X, kc),

interval(kp) starts interval(kc),

interval(kq) finishes interval(kc) :- interval(p) meets interval(q),

GLevelON(X, kp),

GLevelON(X, kq).

where X stands for an arbitrary level (e.g. Low, Medium, High or VeryHigh). Similar
rules can be used for the abstraction levels where the Granulocyte count is Medium
between 2000,2500, or High between 2500,3000 or Very High if it is greater than 3000.

A typical reasoning task in this domain involves verifying whether the treatment
history complies with the protocol under which the treatment is given. For example,
the guideline might require that \Medicine A should be administered if the Granu-
locyte count increases beyond 2500, and Medicine B should be given when the count
is greater than 3000, both no more than two days after the measurement was taken.
These requirements could be described by the Token-Datalog rules:

Administer(MedicineA, k2), time(k2)-end(k1)�2 :- GLevelON(High, k1)

Administer(MedicineA, k2), time(k2)-end(k1)�2 :- GLevelON(VeryHigh, k1)

Note that the constraint time(k2)-end(k1) is not placed in the body. This is because
the token k2 need not be generated unless the atom in the body is true. Referring to
k2 in the body will create problems as the body cannot evaluate to true in case k2
was not yet created.

Next, we illustrate the need to perform constraint uni�cation and how it works.
Assume we are given two Granulocyte counts measured at time point k1,k2 set to
be one day apart, namely time(k2)-time(k1)=1. Could we infer that the this fact
entails the query :- time(k2)-time(k1)�2? This inference is necessary to enable
interpolating1 the truth value of the GLevel predicate. Constraint uni�cation enables
unifying a query atom Q with a fact F if the constraint described by F , denoted CF ,
entails the constraint de�ned by Q, denoted CQ, namely CF j= CQ.

Next, we illustrate the need for token fusion and how it works. Assume that,
in addition to the Granulocyte count parameter, we have parameter called Bone
Marrow Toxicity level, we abbreviate as BMT. Consider a guideline stating that
\In case both the Granulocyte and BMT level were found to be high, Medicine
C must be administered at most 24 hours after this measurement. Suppose that
the database contains two facts, GLevelON(High,k1) and BMTLevelON(High,k2)

where interval(k1)=[10,16] and interval(k2)=[15,17]. To determine the need
for administering Medicine C, there is a need to generate a new token k3, where
interval(k3)=[15,16], and infer both GLevelON(High,k3) and BMTLevelON(High,k3).

1i.e. guessing the value at a time point which is between two other time points for which the
truth value is known.
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Figure 6.2: Clock timing speci�cation.

6.2 VLSI Veri�cation

The digital circuit veri�cation task involves deciding whether a circuit description
(in some procedural language or Finite State Automaton (FSA)) satis�es timing
constraints (described in some declarative language).

Consider a clock circuit. The procedural Finite State Automaton (FSA) circuit
description is as follows: There are two states, S1; S2 where S1 is the initial state.
There are two transitions, S1 ! S2 and S2 ! S1. The circuit has a single output
signal. When the circuit is in state S1 its output signal is true, and in state S2 its
output signal is false.

The timing constraints are as follows: There are four events, E1; E2; E3; E4, where
event E1 begins the transition S2 ! S1, event E2 ends the transition from S2 ! S1,
event E3 begins the transition S1 7! S2 and event E4 ends the transition S1 ! S2.
The time at which an event E occurs is denoted time(E). The timing constraints
are as follows: 2tCr = time(E2) � time(E1), 3tCH = time(E3) � time(E2), 4tCf =
time(E4)�time(E3), 5tCL = time(E1)�time(E4) and tC = tCr+tCH+tCf+tCL
(see Figure 6.2).

Timing speci�cations typically include the �ve types of transitions depicted in
Figure 6.3:

(a) A signal transition that occurs at a time point v1.
The signal changes value from false to true. This change requires some time.
The transition point is de�ned as the middle time point between the transition
beggining and end times.

(b) A simple transition that occurs within some interval [t1; t2].
This speci�cation is di�erent from (a) in that a single time point is replaced
by a time interval.

(c) An activation of a bus occurs during a time interval [t1; t2].
A bus is a set of signals that collectively de�ne an integer value (i.e. data).
Busses typically have two states: active or passive. When a bus is active, it
places data on the wires that physically construct the bus. When it is passive,
it is isolated from the physical wires and has no impact on the values of

2tCr stands for \time clock rise", namely the time a low-to-high transision occurs.
3tCr stands for \time clock high".
4tCr stands for \time clock fall", namely the time a high-to-low transision occurs.
5tCr stands for \time clock low".
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Figure 6.3: The legend of timing speci�cation.

signals. The transistion of a bus from passive to active state requires time.
The time point v1 is the middle time point between the beggining and end of
this transition.

(d) A transition of all signals on an active bus at a time point t. When a bus is
active, it may change the values of all its signals simultaneously. The transition
point is de�ned as the middle between its beggining and end.

(e) A delay d (i.e. time di�erence) between two transitions of any kind.

Consider a simple microprocessor chip, such as Zilog Z80B, an eight-bit CPU, and
a RAM chip, such as Toshiba 2015AP-90, a 2K static RAM6. We will focus on the
timing speci�cation of the data-write operation. Figure 6.4 shows the relevant ports
of each chip, while Figures 6.5,6.6 provide the timing speci�cation. In each of these
�gures the timing spec is given in terms of inequality constraints on the temporal
variables. These constraints can be described by a restricted class of TCSPs calls
Simple Temporal Problems (STP).

The speci�cations given in Figures 6.5,6.6 is described using 10 tokens, k1,. . .,k10,
and the following Token-Datalog constraint facts:

(time(k2)-time(k1) 2 [-1,90]). (time(k3)-time(k2)2 [-1,130]).

(time(k5)-time(k3)2 [25,1]). (time(k5)-time(k4)2 [70,1]).

(time(k7)-time(k5)2 [135,1]). (time(k7)-time(k6)2 [-1,70]).

(time(k10)-time(k8)2 [-1,80]). (time(k9)-time(k8)2 [-1,90]).

where 1 time unit is 10�9 seconds, also called nano-seconds.

6Modern chips have the same qualitative temporal characteristics as these obsolete chips
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In the rest of this section we use v,w to denote two data terms indexing signal
values, and Eq, Neq to denote the following propositional relations:

1. Eq(v,w) is satis�ed i� v=w.

2. Neq(v,w) is satis�ed i� v 6=w.

Combinatorial constraints are represented as follows:

� Same(a,b) is satis�ed i� for every time point, a,b have exactly the same value.
It is expressed by the Token-Datalog rule

interval(k1)fdisjointginterval(k2) :-

Neq(v1,v2), Value(a,v1,k1), Value(b,v2,k2)

� Inv(a,b) is satis�ed i� for every time point, a,b have opposite values. It is
expressed by the Token-Datalog rule

interval(k1)fdisjointginterval(k2) :-

Eq(v1,v2), Value(a,v1,k1), Value(b,v2,k2)

� MutEx(a,b) is satis�ed i� for every time point at most one of a,b is true. It is
expressed by the Token-Datalog rule

interval(k1)fdisjointginterval(k2) :-

Eq(v1,true), Eq(v2,true), Value(a,v1,k1), Value(b,v2,k2)

� Or(a,b) is satis�ed i� for every time point at most one of a,b is false. It is
expressed by the Token-Datalog rule

interval(k1)fdisjointginterval(k2) :-

Eq(v1,false), Eq(v2,false), Value(a,v1,k1), Value(b,v2,k2)

Temporal dependence relationships between signals can also be described:

� Implies(a,b,t1,t2) is satis�ed if signal b becomes true at least t1 and at most
t2 seconds after signal a became true.

� Eventually(a,b) is satis�ed if signal b becomes true at least once after signal
a became true.

These are described as follows:

� Implies(a,b,t1,t2) is equivalent to the Token-Datalog rule
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Value(b,true,f(k1)), begin(f(k1))-end(k1) 2 [t1,t2] :-

Value(a,true,k2), Value(a,false,k1), end(k1)=begin(k2)

where f is a unary (successor) function mapping interval tokens to interval
tokens.

� Eventually(a,b) is equivalent to Implies(a,b,0,1).

Next, we illustrate the need for constraint uni�cation. Assume that the circuit at
hand must react to a signal comming in at time t = 0 within 8 time units. Let
InSignal be the input signal and Response be the output signal. Assume that, ac-
cording to the lab tests, the circuit at hand satis�es 	1 =

Value(Response, true, k2), start(k2)-start(k1)2[2,6] :-

Value(InSignal, true, k1)

The task is to verify whether the requirements, formalized as 	2 =

Value(Response, true, k2), start(k2)-start(k1)2[0,8] :-

Value(InSignal, true, k1)

are satis�ed. To test whether the required behavior encoded in 	2 is entailed by the
speci�cations encoded in 	1, there is a need to test whether 	1 entails 	2. In this
case, the answer is \Yes" because the tighter constraint start(k2)-start(k1)2[2,6]
entails the looser constraint start(k2)-start(k1)2[0,8]. We can decide this en-
tailment by unifying the two constraints and adding the tighter constraint as a fact.

Next, we illustrate the need for token fusion. Consider a circuit with three
signals, a,b,c which must satisfy the constraint Eq(c, a^b). The behavior ob-
served in practice is described the facts Value(a, true, k1), Value(b, true, k2),
and Value(c, true, k3) where interval(k1)=[2,7], interval(k2)=[4,9] and
interval(k3)=[4,8]. By the closed world assumption, for every interval token k

whose interval is not subsumed in interval(k1), the atom Value(a, true, k) eval-
uates to false. Similarly, for every interval token k whose interval is not subsumed
in interval(k1) or in interval(k2), the atoms Value(b, true, k) and Value(c,

true, k) evaluate to false respectively. As a result, the constraint Eq(c, a^b) is
not satis�ed because during interval(k), a=false, b=true, c=true. Detecting that
the constraint is not satis�ed requires identifying that during the interval [7,8] the
constraint Eq(c, a^b) is not satis�ed. This can be done by generating a new token
k' such that interval(k')=[7,8]. This operation is called token fusion. With this
new token we can infer the facts Value(a, false, k'), Value(b, true, k'), and
Value(c, true, k'), and thus Eq(c, a^b) is not satis�ed for k'.

136



6.3 Warehouse Management

We next demonstrate the ability of Token-Datalog to represent and reason about in-
compatibilities that exist in warehouse management systems, typically implemented
using Temporal Relational DataBases (TRDB). The purpose of this example is to
show that TRDB can be described within the Token-Datalog framework. This demon-
strates the applicability of the languages to the wide range of domains that TRDB is
applicable.
For example, consider the following typical relation:

Part # Description Shelf Start End

10527 Connector A-B 3A Jan 3 Feb 3
10527 Connector A-B 4A Jan 17 Feb 15

This relation is inconsistent because part # 10527 cannot be simultaneously on shelves
3A and 4A. This inconsistency may result from a typing error or other sources. One
way to handle such mistakes is to avoid specifying exact data, we would like to say
that \we do not know when the connector was moved form shelf 3A to shelf 4A".
To formalize this approach, we introduce two variables X and Y were X is the time
point at which the connector was moved from shelf 3A and Y is the time at which it
was moved onto shelf 4A.

Part # Description Shelf Start End

10527 Connector A-B 3A Jan 3 X
10527 Connector A-B 4A Y Feb 15

Here, the temporal constraint induced by incompatibility is thatX � Y , which means
that the connector was taken o� shelf 3A before it was put on shelf 4A. This constraint
may be explicitly given in the input or can be deduced by other constraints. Here,
consistency maintanance means (i) computing the implicit constraint X � Y and (ii)
ensuring that the constraint is always satis�ed, no matter how X and Y change.

Let D be above single relation TRDB to be represented in Token-Datalog. We
assume that every tuple in D is quali�ed by a unique token constant called the tuple
ID (i.e. identi�er). To describe D, we introduce three special purpose predicates:
relation, member and attribute. Data terms are diversi�ed into relation, attribute
and generic data terms. Let r,a,v be a relation, an attribute and a generic data term
respectively and let k be a token term. The atom Relation(r,a) evaluates to true
i� the scheme of the relation r in D contains the attribute a. The atom Member(k,r)

evaluates to true i� the relation r in D has a tuple whose interval (or point) is equal
to �interval(k) (or time(k)). The atom Attribute(k,a,v) evaluates to true i� the
attribute a of the tuple quali�ed by k is assigned the value v.
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To represent the above relation, we could use the following set of Token-Datalog
facts:

Relation(inventory, part no).

Relation(inventory, description).

Relation(inventory, shelf).

Member(k1, invernory)

Member(k2, invernory)

Attribute(k1, part no, 10527)

Attribute(k2, part no, 10527)

Attribute(k1, description, `Connector A-B')

Attribute(k2, description, `Connector A-B')

Attribute(k1, shelf, 3A)

Attribute(k2, shelf, 4A)

begin(k1) = Jan 3

end(k2) = Feb 15

To identify the inconsistency of the input relation, we write the following Token-
Datalog rules for every attribute a and for every a pair of incompatible values vi and
vj:

interval(ki)fdisjointginterval(kj) :- Attribute(ki,a,vi),

Attribute(kj,a,vj),

vi 6= vj)

When assigning interval(k1)=[Jan3,X] and interval(k2)=[Y,Feb15] the con-
straint interval(k1)fdisjointginterval(k2) induces the desired constraint X �
Y .

6.4 Common Sense Reasoning

Consider the statement \John and Fred were roommates, but now, John owes Fred
money, hates him and threatens to kill him. John unloaded his gun 10 minutes ago,
but later he loaded it and now the gun is pointing at Fred". Consider the queries:

1. \What is the relationship between John and Fred now ?". The answer is \John
owes money, hates and threatens Fred".

2. \What is the status of the gun now ?". The answer is \the gun is loaded and
pointing at Fred."
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3. \When did the gun get loaded ?". The answer is \John loaded the gun between
10 minutes ago and now.

A possible way to represent (in �rst order logic) the above temporal information is
to use the following predicates: Loaded(Gun; t), PointedAt(X;Y; t), Owe(X;Y; t),
Hate(X;Y; t) and Threaten(X;Y; t) where t is a temporal quali�cation7.

One problem that is addressed when using Token-Datalog is as follows. If we are
to represent the queries described above in �rst order logic, we need a di�erent set
of predicates. This is because in �rst order logic it is not possible to quantify over
predicate symbols, as seems to be required for representing the above three queries.

Another problem that is addressed when using Token-Datalog, originally identi-
�ed by [61], is as follows. Consider the statement \John owes someone money". This
could be represented by 9X Owes(John; X). In general, words such as \someone
may require introducing an existential quanti�er over an arbitrary number of vari-
ables. This is highly undesirable in environments such as logic programs because it
translates to exhaustive search.

We next formalize this example in Token-Datalog. We have two classes of objects,
People and Guns. Guns have two relevant properties: loaded/unloded and the direc-
tion at which they point. There are three interpersonal relations: roommate, owe,
and threaten. In addition, the two actions speci�ed are: John loading and unloading
the gun. We therefore introduce two relations to represent people and guns, two re-
lation to represent the actions of loading and unloading the gun, and three relations
to specify the dynamics of relationship between John and Fred.

We use the same method introduce in the warehouse management example above
(Section 6.3). To represent the relationship between John and Fred we use the
database

Relation(Owe, Person1, Person2).

Relation(Threatens, Person1, Person2).

Relation(RoomMate, Person1, Person2).

Member(Owe, k1). Attribute(Person1, John, k1).

Member(Threaten, k2). Attribute(Person1, John, k2). Attribute(Person2, Fred, k2).

Member(RoomMate, k3). Attribute(Person1, John, k3). Attribute(Person2, Fred, k3).

The �rst three lines describe facts de�ning the scheme of the relations used. The next
three lines de�ne the tuples in these relations and assigns values to their attributes.

7or a state, as in situation calculus.
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K Next(K)

Time

Load the Gun 
Intantaneous Action: 

Figure 6.7: Formalizing an instantaneous action.

To describe the action of John loading the gun we assume this action is instan-
taneous. We use two interval tokens: k describes the interval that ends with the
action and next(k) described the interval that immediately follows the action, as
illustrated in Figure 6.7. Note that the lengths of these intervals need not be known.
To formalize lawful change we use the following Token-Datalog program:

Relation(Load, Actor, Object).

Relation(Gun, Status).

interval(next(k1)) meets interval(k1).

Member(next(k1),Gun), Attribute(next(k1),Status,Loaded) :-

Member(k1, Load), Attribute(k1, Actor, John), Attribute(k1, Object, Gun).

The �rst three facts de�ne the relation Load which describes an action having two
attributes: an actor the the object being acted upon. The second fact describes a
relation for the object Gun, which has a single attribute, the gun's status. The third
fact is required to ensure that the interval before the action took place meets the in-
terval just after the action occurred (i.e. instantaneous action). The subsequent rule
enforces that if John (the actor) loaded the gun (the object) then the gun becomes
loaded immediately after the action took place.

Next, we formalize the three queries presented above. The �rst query, \What is
the relationship between John and Fred?", requires to compute the set of relations
that hold now between John and Fred:

:- Q(R).

Q(R) :- Member(K, R), Attribute(K, Person1, John), Attribute(K, Person2, Fred),

now {during} K.

where now is a point token representing the present time.

The the second query \What is the status of the Gun now?" is given by
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:- Q(A,V).

Q(A,V) :- Member(K, Gun), Attribute(K, A,V), now {during} interval(K).

Finally, the third query \When was the gun loaded?" is given by

:- Q(begin(interval(K))).

Q(begin(interval(K))) :- Member(K, Load).
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Chapter 7

Concluding Remarks

We have explored performing temporal reasoning with constraints. This work pro-
gressed along two lines of research: (i) improving the algorithms for processing Tem-
poral Constraint Satisfaction Problems (TCSP), and (ii) identifying and resolving the
problem that arise when embedding TCSPs within a logic programming language.

Along the �rst line of research, our results show that state-of-the-art algorithms
could be improved by orders of magnitude. We designed two new algorithms called
Upper Lower Tightening and Loose Path Consistency, whose e�ciency was evaluated
theoretically and empirically. We have also identi�ed a new tractable class which is
common in scheduling domains.

Along the second line of research, we have de�ned two new languages, TCSP-
Datalog and Token-Datalog. TCSP-Datalog is the �rst step towards achieving the
desired embedding of TCSP within logic programs. To further address some issues
and improve the utility and 
exibility of the language, Token-Datalog was designed.
We identi�ed and resolved several syntactic, semantic and inference algorithm issues
regarding the embedding of time and constraints within logic programming frame-
work.
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