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Dynamical Systems

Say we want to model protein activity ‘ Q @ D



Dynamical Systems

€1-Q@-&N



Dynamical Systems CQ Q

=@ =€

From this, we could try to derive a model as follows:

d
E+ S ES 18] =~k [SI[E] + K [ES)
d
ES 2% B+ 8 ‘ I
d
—[P] = k3|ES]

dt

d
ES — E+P T [ES] = Ikt [S][E] = ko[ES] = ks [ES]
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From this model, we can derive from initial conditions a continuous time prediction of the evolution of the system:

d

7 [S1= —ky[ST[E] + k5 [ES]

d [S](t = 0) = 10mM c
o |[E] = —kq[S][E] + k2 [ES] + k3[ES] + [E](t =0) = 1nM 2
d [P](t = 0) = OmM =
E[P] = k3[ES] [ES](t = 0) = OmM §
d S
- [ES] = ka[S][E] = ky[ES] = ks[ES] 2l




Dynamical Systems

* A dynamical system is a model of an evolving system over some value

A Linearized version — prey
—— predator

population




Deterministic Causal Kinetic Models

* A deterministic causal kinetic model is a tuple (X;, G, F) where
* X, is a set of objects {x, ... x{}
* G is a graph with nodes of elements of X;
* F is a collection of d ODEs and initial value assignments
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Deterministic Causal Kinetic Models

p
ODE representations

A—2A G
fiig p i i i
— 2B 1A] = k[A] — ks[A][C]
A+C 200 4 B] = ky[B] — ka[B][C] |

B+t 0 4(C] = ks[A][C] + ka [ B)[C) — ks [C] (4}

P

e Given a deterministic causal kinetic model, we can model the
observation of the causal model as noisy observations

‘Xt=xt+6t



Stochastic Causal Kinetic Models

* What if the evolution of objects is stochastic in nature?
» Use Stochastic differential equation

AXF = R, )de+ hR X AW, XS =66,

* W, is a Wiener process which has the following properties
W, =0
e Wiypy—We LW, fors <t
* Weiuw =We ~N(O, u)
* W, is continuous in ¢
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Interventions on Causal Kinetic Models

e What do interventions look like?

p
ODE representations

A 504
ko ]
B =% 2B S 4] = 4] — ks [4][C]
A+C 200 4IB] = ky[B] — k4[B][C]
Byt ac 41C] = K3l A[C] + k[ B][C] — ks C] (4}
C g




Interventions on Causal Kinetic Models

« eye . k A
* We can replace initial values, or dynamics vo =& or Lali= glz, ™)
ODE representations
\ A £> 24 \ @
ko o ]
B2 S[A] = ki [A] - ks[A][C]
A+C 2500 4IB] = ky[B] — k4[B][C] |
Byt ac 41C] = K3l A[C] + k[ B][C] — ks C] (4} (B)
C g




Interventions on Causal Kinetic Models

* We can change initial values, or dynamics

k - :
xg =& or T, = g(x,

* An intervention on initial conditions: do(x(’)‘ = c)

. . H d
* An intervention on dynamics: do (E xf = gk(XfAk))
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Interventions example - Lotka-Volterra model

observational setting interventional setting

Ay 04

3.0
3.0

T
_|_
wollvy
E3
= b
N vy
1.0 2.0
I N N
. 1.0 2.0
| | | | | | |
/@

= =
< | | | | | | < | | | | | |
0 20 40 60 80 100 0 20 40 60 80 100
Al = k1 [A] — ko[A][B | |
- - - - time time
B] = k2 A [B] — k3 B : Intervention k; = 1,[B], = 2




Challenges of Causal Kinetic Models

* Adjustments, do-calculus, effect of hidden variables, casual discovery
are all open questions

* Systems of ODEs are harder to solve than simple algebraic equations
* Regression/Fitting on kinetic models is more involved

* It is unclear if conditional independence is the right notion for
exploring graph properties



Structure Leaning on kinetic systems

* Detailed in another publication

Learning stable and predictive structures in
kinetic systems: Benefits of a causal approach

* Two concepts: Predictability and stability
 Stability: How do parameters vary throughout the experiments?
* Predictability: How well can you predict the data you have?



Structure Leaning on kinetic systems
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Structure Leaning on kinetic systems
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Conclusions

e Authors extend the formulation of causal models to kinetic models
* Open questions exist on many parts of causal inference
 Structure learning has some preliminary work and algorithms



