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Lecture Outline

1. Introduction to Linear Structural Causal Models

2. Examples of when regression can and cannot be used to find causal effects.

3. Modern algorithmic approaches to identification in linear SCM
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Linear Structural Causal Models
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Non-Parametric to Linear

i
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The only substantive change weare making is that the function f becomes linear:

X

j |Vj∈pai

Vi ← fi (pai , Ui ) ⇒ V ← λ ji Vj + Ei

1. λ j i is called the “Structural Coefficient”.

2. Instead of using Ui , werename it to Ei by convention.

3. If weknow all λ j i , we can find the causal effect of Vj on Vi .



Example

Y

X1 X2

X1 = fx1(Ux1 )

X2 = fx2(Ux2 )

Y = fy (X1, X2, Uy )

=====⇒
becomes

Y

X1 X2
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X1 = Ex1

X2 = Ex2

1 2
Y = λ X + λ X + Ex y 1 x y 2 y

We can draw the structural coefficients directly on the graph, which then fully specifies 

the model.



Latent Confounding

The covariance between ei and ej is represented by e ij , and is used as the value of a 

bidirected edge:

ex

X

ey

Y

=⇒ X Y

e xy

e xy ≡ IE[exey ]

e xy is unobserved, since it is covariance of latent variables. It is mathematically useful, 

however, so wedraw it on the graph just like structural coefficients.

This is different from graph of non-parametric SCM, where a bidirected edge 

represents an explicit latent variable. 6



Linear SCM: Interventions

X Y
λ

IE[Y |do(X = x)] =?
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Linear SCM: Interventions

X Y
λ
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IE[Y |do(X = x)] = IE[λx + ey ]

= λx + IE[ey ]

= λx



Identification In Linear SCM: The Problem Statement

• Graph: We are assuming that you have a hypothesized 

causal graph structure. In other words, you think you 

know what causes what, and which variables have an 

unknown common cause.

• Observational Data: You have a set of datapoints 

with measurements of all of the observable variables.

• Goal: Structural Coefficients You  do NOT have

knowledge of the underlying structural coefficients. These 

represent the actual causal effects that wewant to find.

X Y

(x1, y1)

(x2, y2)

...

(xn, yn)

X Y

e xy

λxy
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Connecting Observed with Unobserved

Remember that weassumed e ∼ N , meaning that the distribution is fully specified by 

covariance matrix Σ (σij ).

X Y
λ

11

σxy = IE[XY ]

= IE[X (λX + ey )]

= IE[λXX + Xey ]

= λIE[XX ] + IE[Xey ]

= λ1 + 0

= λ

Remember, we normailize
The mean to 0 and variance to 1



Connecting Observed with Unobserved

Solve for σxy in terms of the structural coefficients λ and e xy

.

X

Y

λ e xy

12

σxy =?



Connecting Observed with Unobserved

Solve for σxy in terms of the structural coefficients λ and e xy

.

X

Y

λ e xy

12

σxy = IE[XY ]

= IE[X (λX + ey )]

= IE[λXX + Xey ]

= λIE[XX ] + IE[Xey ]

= λ1 + IE[Xey ]

= λ1 + IE[exey ]

= λ + e xy



A Curious Property

Z

X

λxz

λzy

Y
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σxy =?



A Curious Property

X

Z

Y

λxz

λzy
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σxy = IE[XY ]

= IE[X (λzy Z + ey )]

= IE[λzy XZ + Xey ]

= λzy IE[XZ ] + IE[Xey ]

= λzy IE[XZ ]

= λzy IE[X (λxzX + ez)]

= λzy λxzIE[XX ] + λzy IE[Xez]

= λzy λxz

We replace X with e_x



A Curious Property

X

Z

λxz

λzy

Y

e xz

14

σxy =?



A Curious Property

X

Z

Y

λxz

λzy
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e_xz

σxy = IE[XY ]

= IE[X (λzy Z + ey )]

= IE[λzy XZ + Xey ]

= λzy IE[XZ ] + IE[Xey ]

= λzy IE[XZ ]

= λzy IE[X (λxzX + ez)]

= λzy λxzIE[XX ] + λzy IE[Xez]

= λzy λxz + λzy e xz



Paths & Covariances

There seems to be a relationship between covariances and paths in the graph.

X

Y

Z

λxy

λzx

e zy
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σxy = IE[XY ] = IE[X (λxyX + ey )]

xy y
= λ IE[XX ] + IE[Xe ]

= λxy + IE[(λzxZ + ex )ey ]

xy zx z y
= λ + λ IE[e e ] + IE[e_x, e_y]

= λxy + λzx e zy



Y

Paths & Covariances

There seems to be a relationship between covariances and paths in the graph.

Z

λzx

X

λxy

e zy
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σxy = λxy + λzx e zy

The resulting terms correspond to paths between X

and Y in the causal graph



X

Y

Treks & Wright’s Rule

The covariance betweenvariables X and Y is the sum of paths betweenthem in the 

causal graph, i.e. any non-self-intersecting path without colliding arrowheads (→←):

x ← ... ↔ ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

Z

λxy

λzx

e zy
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σxy
= (X 

λxy λzx e_zy

−→ Y ) + (X ←− Z ←→ Y )

σxy = λxy + λzx e zy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ↔ ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

e wy

Y
17

σxy =

+

+

λxy 

λwx ewy

λzxλwz e wy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ↔ ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Zλwx

e wy

λxy

Y
17

σxy =

+

+

λxy 

λwx ewy

λzxλwz e wy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ↔ ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

e wy

Y
17

σxy =

+

+

λxy 

λwx wy

λzxλwzEwy



X

Reading Covariances off the Graph

The covariance between variables X and Y is the sum of open paths between them in 

the causal graph, so paths with no colliding arrowheads (→←):

x ← ... ↔ ... → y x ← ... ← w → ... → y x ← ... ← y x → ... → y

W

Z

λxy

λwx

wy

Y
17

σxy =

+

+

λxy 

λwx wy 

λzxλwz e wy



Wright’s Rules (1921)

Wright’s Rules [9]

18

σxy = Sum of products of path coefficients 

along all open paths between X and Y

• σxy is only 0 when X and Y are d-separated.

• If there is an edge X −→αY in the model, then

σxy = α + other paths between x and y.

Thus σxy = α if X and Y are d-separated in Gα (graph where edge α is removed)

• Wright’s rules are defined for acyclic models



One More Example

X Z Y

W V

λxz λzy

e xzλwx

λwv

19

σxy =?



One More Example

X Z Y

W V

λxz λzy

e xzλwx

λwv
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σxy = (λxz + e xz)λzy + λwxλwvλvy



Linear Regression
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Example: The Medical Researcher

Suppose weare a medical researchers who are trying to determine if a new drug is 

helpful for curing a disease.
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Example: The Medical Researcher

Suppose weare a medical researchers who are trying to determine if a new drug is 

helpful for curing a disease.

Our job is to make a treatment recommendation, which will be followed by doctors 

around the country.

21



Step 1: Gather a Dataset

Start by gathering a dataset of patients 

who have taken the drug, including:

1. How much of the drug they took

2. The amount of a biomarker 

(antibodies) in their blood.

22



Step 2: Perform a Regression

Perform a regression Y = βX + e on

the data, with X as amount of drug

taken, and Y the amount of biomarker,

23

giving: β = 0.375



Step 2: Perform a Regression

Perform a regression Y = βX + e on

the data, with X as amount of drug

taken, and Y the amount of biomarker,

23

giving: β = 0.375

The drug seems to be beneficial, so 

you authorize its use.



Step 3: The Drug is Given to Everyone

When the drug is given to everyone

in the population, the result is a clear

negative association, with slope −1.

This drug actually hurts people!

24



What’s Happening Here?

Why was this negative effect not visible 

in the original dataset?

• Maybe wedidn’t gather enough 

data?

25



What’s Happening Here?

Why was this negative effect not visible 

in the original dataset?

• Maybe wedidn’t gather enough 

data?

• Why did the original regression 

“fail" here? (red line)

25



What’s Happening Here?

Why was this negative effect not visible 

in the original dataset?

• Maybe wedidn’t gather enough 

data?

• Why did the original regression 

“fail" here? (red line)

• Is there a way to get the true 

causal effect? (green line)

25



X Y

Key Assumption: Lack of Confounding

The following world model is implicitly assumed when attributing causal meaning to the 

regression coefficient:

λxy

26

X := ex

Y := λxyX + ey
ex, ey independent



X Y

Key Assumption: Lack of Confounding

The following world model is implicitly assumed when attributing causal meaning to the 

regression coefficient:

λxy

26

X := ex

Y := λxyX + ey
ex, ey independent

Regression Y = βX + e gives correct β = λxy.



X Y

Key Assumption: Lack of Confounding

The following world model is implicitly assumed when attributing causal meaning to the 

regression coefficient:

λxy

26

ex, ey independent
X := ex

Y := λxyX + ey

The covariance gives the same answer:

xy xy y xy
: 1

σ = IE[XY ] = IE[X (λ X + e )] = λ IE[XX ] + : 0
IE[Xey]



The Ground-Truth Model

If one is unable to ascertain the assumption of no confounding between X and Y, this is

the corresponding graphical model:

X

27

Y

e xy

λxy

X := ex

Y := λxyX + ey

ex, ey correlated

The drug is expensive so mostly rich 
people are getting it. 
But  data not gathered…



The Ground-Truth Model

If one is unable to ascertain the assumption of no confounding between X and Y, this is

the corresponding graphical model:

e xy

λxy

X Y

Regression Y = βX + e gives biased answer

σxy  = λxyIE[XX ] + IE[exey]

27

= λxy + e xy



The Ground-Truth Model

If one is unable to ascertain the assumption of no confounding between X and Y, this is

the corresponding graphical model:

X

27

Y

e xy

λxy

It is provably impossible to disentangle the effect of the drug from the confounding.

That is, λxy is not identifiable



What does Regression Compute?

Y = βX + e

Here, β is the regression coefficient.

What does β represent?

28



What does Regression Compute?

Let’s do least squares symbolically:

IE[(Y − βX )2] = IE[YY − 2βXY + β2XX ]

= IE[YY ]− 2βIE[XY ] + β2IE[XX ]

= 1 + β2 − 2βIE[XY ]

= 1 + β2 − 2βσxy

Minimizing:

0 =
∂

∂β

IE[(Y − βX )2] ∂

∂β
2= 1 + β − 2βσxy

= 2β − 2σxy

β = σxy

The regression coefficient is just the covariance between x and y! 29



Regression Equation vs. SCM: Confusion of the Century

• Regression Equation:

Y = βX + e Assuming e ⊥ X

When solved, β = σxy . We will call this value ryx (solved value of linear regression 

of y on x). It makes no causal claims.

• Structural Equation:

Y = λX + ey

IE[Y |do(X )] = λX
X Y

λ

30

Makes claims about the interventional distribution which can be tested, and can be 

falsified.



Be Careful With Regression

34

Remember: alpha, beta are regression 
Coeffieints and lmbdas aree causal



Be Careful With Regression
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Remember: alpha, beta are regression 
Coeffieints and lmbdas aree causal



Be Careful With Regression

Z

W

X Y
λxy

Y = βX + αW + γZ + e

34



Be Careful With Regression

Z

W

X Y
λxy

34

Y = βX + αW + e

β = λxy



How to Use Regression Correctly?
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Single-Door Criterion

Z X Y
λzx λxy

zy

36

We want to find λxy .

ryx = σxy =??



Single-Door Criterion

Z X Y
λzx λxy

zy

36

We want to find λxy . How can it be isolated?

ryx = σxy = λxy + λzx e zy



Single-Door Criterion: Multiple Regression

Z X Y
λzx λxy

e zy

39

What if wefind the least squares regression parameters of this model?

Y = αX + βZ + e

α = λxy  

β = ezy



Single-Door Criterion

Theorem Single-Door (Identification of Direct Effects) [8]

Let G be any path diagram in which λ is the path coefficient associated with the link 

X → Y , and let Gλ denote the diagram that results when X → Y is removed from G. 

The coefficient λ is identifiable if there exists a set Z such that

1 . Z contains no descendants of Y , and

2 . Z D-separates X from Y in Gλ

Moreover, if Z satisfies these conditions, λ = ryxz

Here, weuse the notation ryxz to be the regression coefficient of x when performing 

regression y on x and z.
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Example

A

λay

B

λby

Y

λby =?
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Example

A

λay

B

λby

Y

λby = ryba

λay =?
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Example

A

λay

B

λby

Y

λby = ryba

λay = ryab

41



Try It

X Y Z

W

λxy λyz

e xy

e zy
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λxy =?



Try It

X Y Z

W

λxy λyz

xy

zy

42

λxy = ryx



Try It Again

X Y Z

W

λxy λyz

xy

zy

43

λwz =?



Try It Again

X Y Z

W

λxy λyz

xy

zy

43

λwz = rzwyx



Corollary: When are Multiple Parameters Useful?

When can weuse multiple regression to solve for multiple coefficients simultaneously?

X1 X2

Y

44



Back-Door Criterion

Theorem Back-Door (Identification of Total Effects) [8]

For any two variables X and Y in a causal diagram G, the total effect of X on Y is 

identifiable if there exists a set of measurements Z such that

1. No member of Z is a descendant of X, and

2 . Z d-separates X from Y in the subgraph GX

Moreover, if Z satisfies these conditions, the total effect of X on Y is given by ryxz

Remember that GX means delete all edges outgoing from X .
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Why no Descendants of X?

X

Z

Y

46



Example

X

Y

Z1

Z2

λz2y

47

What is the total effect of X on Y ?



Example

X

Y

Z1

Z2

λz2y

47

λxz1λz1y + λxyWhat is the total effect of X on Y ?

Can we find it using the back-door?



Example

X

Y

Z1

Z2

λz2y

47

What is the total effect of X on Y ?

Can we find it using the back-door?

λxz1λz1y + λxy

ryxz2


