CS 295: Causal Reasoning

Rina Dechter

ldentification of Causal Effect
The Back-Door Criterion



Outline (chapter 3)

* The semantic of Intervention in SCM, the do operators
* How to determine P(Y|do(x)) given an SCM

* The back door criterion and the adjustment formula

* |dentifiability



Target: to Determine the Effect of Interventions

» “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with
more crime, still selling more ice-cream will not cause more violence. Hot
weather is a cause for both.

 Randomized controlled experiments are used to determine causation: all factors
except a selected one of interest are kept static or random. So the outcome can
only be influenced by the selected factor.

 Randomized experiments are often not feasible (we cannot randomize the
weather), so how can we determine cause for wildfire?

* Observational studies must be used. But how we untangle correlation from
causation?
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Causal Inference —

Connecting Different Worlds

P
Data <« Distribution

P)
Distribution

OP’)
I~ (Aspects of P’

What happens when P changes?

(Regime 1) T (Regime 2)
| change I

Inference

e.g., Infer whether less people would get cancer

If we ban smoking.

Q = P(Cancer = true | do(Smoking = no))



The Challenge of Causal Inference

Real world Hypothetical world 7 : age, sex
z, Z - acti
X :action
W : mediator
. y, | Change | o R Y -
y v v « W y : outcome
P(z, X, W, Y) P(y [ do(x))

® Goal: how much Y changes with X if we vary X between
two different constants free of the influence of Z.

® These variations are called causal effects!

Bareinboim slides 2020



Method for Computing Causal
Effects: Randomized Experiments

Real world Hypothetical world _
e P i Z : age, sex
X . action
W : mediator
[ >0 .
X W N Y :outcome
do(Xo) do(X1)
Z Z
KN o Often we cannot do this:
¢ e e How do we force people to smoke (and wait 20 years
Xo W Y X W Y For them to die or not
Randomization: How can we change cholesterol levels...

P(y | do(Xo)) P(y [ do(X1))



Computing Causal Effects (12) from
Observational Data (I1)

Real world Hypothetical world 7 : age, sex
Z . . . Z ) - .’
X :action
W : mediator
. \ | change | o R Y -
y v v « W Y ;. outcome
5
P(z, X, W, Y) ' Py [ do))
Questions:

*What is the relationship between P(z, x, w,y) and P(y | do(x))?
*Is P(y [ do(x)) = P(y | x)?



Causal Effects (formal)

Causal Effect (Def. 3.2.1 [C]):

Given two disjoint sets of variables, X and Y, the
causal effect of X on Y, denoted as P(y | do(x)), Is a
function from X to the space of probability
distributions of Y.

For each realization x of X, P(y | do(x)) gives the
probability Y =y induced by deleting from the
model all equations corresponding to variables in X
and substituting X = x In the remaining equations.




Computing Causal Effects from

Observationa

Real world

/.\ change

X W Y
( L= fZ(Uz)
X= fX(ZI ux)
M= <

W = fW(XI uw) do()(:x)

Y =1fy(w,z, uy)

Data
Alternative world 7 - age, sex
7 | ' h
X :action
W : mediator
¢ > > .
X W y Y :outcome
rZ = fZ(uz)
X =f(z,u,) X =x
M= W = fu(x, uy)

Y =1fy(w,z uy)



Computing Causal Effects from

Observational Data
Re:l erI‘d. Alterne;tive World 7 - age, sex
X :action
W : mediator
o % | change | o \ _
X 'W N X W N Y :outcome
P(v) = Px(v) =
P(z) XP(x | P(z) X
2) XP(w | x) do(X=x) R{d- X equal to 1 in M
XP(y | w, 2) P(w | x) X

P(y [ w, 2)



Outline (chapter 3)

* How to determine P(Y|do(x)) given an SCM



Computing Causal Effects from
Observational Data

Consider a distribution over the season P(se)
variables: season, sprinkler, rain, wet,
and slippery; and the causal graph: / \

sprinkler rain

P(sp | se) \ /P(ra | se)
This distribution decomposes as
wet

P(v) = P(we | sp, ra)
P(se)P(sp | se)P(ra | se)P(we | sp, ra)P(sl | we) 1

slippery
P(sl | we)



Computing Causal Effects from
Observational Data

Queries: season

Q1= P(wet | Sprinkler =on) / \

sprinkler rain

Q2= P(wet | do(Sprinkler =on)) \ /
wet
l

slippery



Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) / \
=P(0:) + P(p)
sprinkler rain
Q2= P(wet | do(Sprinkler =on)) \ /
wet

|

slippery



Computing Causal E

fects from

Observationa

Queries:
Q1= P(wet | Sprinkler =on)

Z.._,.E ra P(we|Sp = on,ra)P(Sp = on|se)P(ra|se)P(se)

ZM_ P(Sp = on|se)P(se)

Q2 = P(wet | do(Sprinkler =on))

You can do algorithm bucket elimination to infer Q1.

Data
season
sprinkler rain

N/
|

slippery



Bucket elimination
Algorithm BE-bel (Dechter 1996)

P(A|IE=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

ZH<— Elimination operator
b A

bucket B:  P(bla) P(db,a) P(elb,c)
/
bucket C: P(c|a) AB(a,d,c,e)
\/ A\ v
bucket D: A (a,d,e)
bucket E: e=0 A°(a,e)
~. wr=4

bucket A: P(a) A5 (a)

//M P(a|e=0)—P(a’e=0)

P(a,e=0) P(e=0) N




Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) Fi(( \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra|se)P(se) sprinkler rain

ZM P(Sp = on|se)P(se) \ /
Q2= P(wet | do(Sprinkler = on))
wet

|

slippery

You can do algorithm bucket elimination to infer Q2.



Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra| se)P(se) sprinkler rain
ZM P(Sp = on|se)P(se) \ /
Q2 = P(wet | do(Sprinkler =on))
— P( ) wet

|

slippery

You can do algorithm bucket elimination to infer Q1.



Computing Causal Effects from
Observational Data

Queries: season
Q1= P(wet | Sprinkler =on) \
Z}_Nw P(we|Sp = on,ra)P(Sp = on|se)P(ra|se)P(se) sprinkler rain
ZM P(Sp = on|se)P(se) \ /
Q2 = P(wet | do(Sprinkler =on))
wet
2., .. Pwe|Sp = on,rajP(Sp = on)P(ra|se)P(se) 1
B )'3’(*‘5‘;51 - on) _
slippery

= Z P(we|Sp = on.ra)P(ra|se)P(se)

You can do algorithm bucket elimination to infer Q2.



Truncated Factorization Product
(Operationalizing Interventions)

Corollary (Truncated Factorization, Manipulation Thm., G-comp.):

The distribution generated by an intervention do(X=x) (in a Markovian

model M) is given by the truncated factorization:

P(v|do(x)) = - P(vi|pa;)
(VeV\X|

X=X



Truncated Factorization Formula

The truncated product,

Pv|dox) =[] Po;lpa

{ViEVAX]

X=x
can be rewritten as:

P(v)

P(v|do(x)) =
P (x| pay)

: X=x
Also equivalent to:

P(v|do(x)) = P (V|X, pay) P (pay)

=X

The transformation between the observation and interventional
distributions can be seen as a re-weighing process.

29
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Intervention vs. Conditioning, The lce-Cream Story

Uz
temperature
Conditioning P(X=x|Y=y) ; lz :p
Intervening P(X=x| do(Y=y)) x N Uy
v
lce cream sales R L Crime rates

Figure 3.1: A graphical model representing the relationship between temperature (), ice
cream sales (JX'), and crime rates (Y)

When we intervene to fix a value of a variable,
We curtail the natural tendencies of the variable to vary

Z In response to other variables in nature.
lz 1 * This corresponds to a surgery of the model
N N ! e i.e.varying Z will not affect X
\i * intervention is different than conditioning.
f ¥ * Intervention depends on the structure of the graph.

Figure 3.2: A graphical model representing an intervention on the model in Figure 3.1 that
lowers ice cream sales 26



Intervention vs Conditioning,

The Surgery Operation Conditioning P(Y=y(X=
The Simpson story The blood pressure story The ice-cream story
i /\ /\ o /\
l Intervening P(Y=y| do(X=x))
= X=
) 9\ - e\m
(X = \ X

27



Intervention vs. Conditioning...

In notation, we distinguish between cases where a variable X takes a value = naturally
and cases where we fix X = = by denoting the latter do(X = z). So P(Y =y|X ==z
is the probability that ¥ = y conditional on finding X = z, while P(Y = y|do(X = z))
is the probability that ¥ =y when we intervene to make X = x. In the distributional
terminology, P(Y = y|X = x) reflects the population distribution of ¥ among individuals
whose X value is . On the other hand, P(Y = y|do(X = 7)) represents the population
distribution of Y if evervone in the population had their X value fixed at x. We similarly
write P(Y = y|do(X = x),Z = 2z) to denote the conditional probability of ¥ = y, given
Z = z, in the distribution created by the intervention do(X = x).

Do operation and graph surgery can help determine causal effect

We make an assumption that intervention has no side-effect. Namely, assigning a variable by
intervention does not affect other variables in a direct way.

28



The Adjustment Formula

To find out how effective the drug is in the population, we imagine a hypothetical intervention by which
we administer the drug uniformly to the entire population and compare the recovery rate to what
would obtain under the complementary intervention, where we prevent everyone from using the drug.

We want to estimate the “causal effect difference,” or “average causal effect” (ACE).

P(Y =1|do(X = 1)) - P(Y = 1|do(X = 0)) (3.1)

We need a causal story articulated by a graph (for the Simpson story):

Uy
b
LX / \ [,-'},
VN
X "y

Figure 3.3: A graphical model representing the effects of a new drug, with Z representing
gender, X standing for drug usage, and Y standing for recovery




Definition of Intervention and Graph Surgery:
The Adjustment Formula

U * We simulate the intervention in the form of a graph surgery.
- * The causal effect P(Y = y|do(X = x)) equals to the conditional
probability P»(Y = y|X = x) that prevails in the manipulated model
Z ) of the figure below
Uy Uy
S ™
X Y
Uy Important: the random functions for Zand Y remain invariant
P m
7z PoWY=ylZ=2X=2)=PlY=yl£d=2,X=2) and P,(Z =2
. U,




he Adjustment Formula

P(Y = yldo(X = z)

=P,.(Y =y|X =x) (by definition) (3.2)
:me(y:y\x:m,zzz)Pm{Z:z\sz) (3.3)
— Z PnY =yl X =2,7Z =2)P,(Z =2) (3.4)

Equation (3.3) 1s obtained from Bayes™ rule by conditioning on and summing over all
values of Z = z (as in Eq. (1.19)), while (Eq. 3.4) makes use of the independence of Z and
X 1n the modified model.

Finally, using the invariance relations, we obtain a formula for the causal effect, in terms
of preintervention probabilities:

P(Y =yldo(X =x)) = Z PY=ylX=z2=z)P(Z ==2) (3.5)

Equation (3.5) is called the adjustment formula and as you can see, it computes the
association between X and Y for each value z of Z. then averages over those values. This
procedure is referred to as “adjusting for 27 or “controlling for Z.”

;H:H—H

32



The Adjustment Formula
(in the Simpson story)

P(Y =yldo(X =x)) = Z PY=ylX=ux,7Z=2)P(Z ==z) (3.5)

The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment

Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958).
(This means: If the input is samples from the joint distribution over X,Y and Z we can estimate the P(y|x) directly.
Or, we can first estimate P(y|x,s) and also P(z) and perform the summation.)



Table 1.1 Results of a study into a new drug, with gender taken into account

In the Simpson example: Drug No drug

Men 81 out of 87 recovered (93%) 234 out of X70 recovered (87%)
Women 192 out of 263 recovered (73%) 55 out of B0 recovered (69%)
Combined data 273 out of 3530 recovered (T8%) 289 out of 330 recovered (83%)

PY =1ldo(X=1))=PY =1X=1,Z=1)P(Z=1)+P(Y =1X=1,Z=0)P(Z =

Substituting the figures given in Table 1.1 we obtain

=0.832

0.93(87 +270)  0.73(263 + 80
P(Y = 1]do(X = 1)) = (mn ) | mé )

while, similarly,

0.87(87 +270) 0.69(263 + 80) ~0.7818

P(Y = 1|do(X = 0)) = o + 700 G l
X=x

0)
Uy
Z
Uy
Y

We get that the Average Causal Effect (ACE):

ACE = P(Y = 1|do(X = 1)) — P(Y = 1|do(X = 0)) = 0.832 — 0.7818 = 0.0502

A more informal interpretation of ACE is that it is the difference in the fraction of the population that
would recover if everyone took the drug compared to when no one takes the drug.

35



The Blood Pressure Example

Z

X Y

Figure 3.5: A graphical model representing the effects of a new drug, with X representing
drug usage, Y representing recovery, and Z representing blood pressure (measured at the
end of the study). Exogenous variables are not shown in the graph, implying that they are
mutually independent

P(Y=y | do(X=x) =7 Here the “surgery on X changes nothing. So,

This means that no surgery 1s required; the conditions under which data were obtained were
such that treatment was assigned “as if randomized.” If there was a factor that would make
subjects prefer or reject treatment, such a factor should show up in the model; the absence of
such a factor gives us the license to treat X as a randomized treatment.

P(Y = yldo(X = 1)) = P(Y = y|X = ),

36



To Adjust or not to Adjust?

Rule 1 (The Causal Effect Rule) Given a graph G in which a set of variables PA are
designated as the parents of X, the causal effect of X on'Y is given by

P(Y = yldo(X =2) =Y P(Y =y|X =2, PA=2)P(PA=2) (3.6)

Where z ranges over all the combinations of values that the variables n PA take

So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X), and this
Can be decided via the graph.

37



Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

P(z1,72,...,zn|do(z)) = | | P(zilpai)  forall i with X; notin X,

Example:
P(z1,22,w,y|do(T = t,Z3 = z3)) = P(21) P(22) P(w|t) P(y|w, z3, 22)

where we have deleted the factors P(t|zq, z3) and P(z3|z1, z2) from the product.

38



Multiple Interventions and the Truncated Product Rule

- - —— —_— - - o g

—_

preintervention distribution in the model of Figure 3.3 is given by

P ('L. b y ? = ) T P(E ) P{'I: | z) P(y | L ¥ < ) Figure 3.3: A graphical model representing the effects of a new drug, with Z representing
gender, X standing for drug usage, and Y standing for recovery

whereas the postintervention distribution, governed by the model of Figure 3.4 is given by
the product

P(z,y|do(x)) = Py(2)Pn(ylz,z) = P(z)P(y|z, z) (3.9)

with the factor P(x|z) purged from the product, since X becomes parentless as it is fixed
at X = x. This coincides with the adjustment formula, because to evaluate P(y|do(x)) we
need to marginalize (or sum) over z, which gives

P(y|do(x)) = > P(z)P(y|r, 2)

— 39



Outline (chapter 3)

* The identification problem



The Identification Problem

Causal Effect Identifiability (Def. 3.2.2)

The of Xon Y is said to be from a
causal diagram G if the quantity P(y | do(x)) can be
computed uniquely from a positive probability of the
observed variables.

That is, if for every pair of models M1 and Mzinducing G,
Pm:(y | do(x)) = Pwme(y | do(x)), whenever Pwm.(v) = Pwm(v) > 0.

D



The Identification Problem (Il)

Truth
(Unobserved)

Exp. Dist.
P(v | do(x))

Truth
(Observed)

Causal
Graph
G

Obs. Dist.
P(v)

Causal Inference
For any two SCMs Mz, M,
G .= G(M1) = G(Mo)

P(v) P(v | do(x))
M1(V) = Pwm (Pma(y|do(X))
(Praly) = Prz(v) = Pwm2(y|do(X))
Observed Unobserved

(input) (output)

w b

43



The Identification Problem (Il)

Truth
(Unobserved)

Exp. Dist.
P(v | do(x))

Truth
(Observed)

Causal
Graph
G

Obs. Dist.
P(v)

Causal Inference
For any two SCMs Mz, M,

G
l Mo ;
P(v) P(v | do(x))
Identifiable
Observed Unobserved

(input) (output)

44



The Identification Problem (Il)

Truth Truth Causal Inference
(Unobserved) (Observed) For any two SCMs M, M2,

|dentifiability really means that,

no matter the shape of M1, My, S

for all models agreeing in terms of i M2 !

(G, P(v)), they will also agree in P
P(v | do(x))!

P(v) P(v | do(x))

Exp. Dist.
P(v | do(x))

Identifiable

Observed Unobserved
(input) (output) 45



Example. |dentifiable Effect

® Consider any two pair of models compatible with the following
graph and the same observational distribution P(v):

Z

PN

X

I Y

P(v)=P(2)P(x|2)P(y[x,2)

M(l) =

(7 ¢ f(u,)
X & fW(z,u,)

(1)
k Yéfyl (X, Z,U})/ dO(X)
—

(7 ¢ fO(u,)

<X€f9@ul

Y & f@(x, z,u)
L y y

Y

P(vldo(x))=P(2)P(ylx,2) = Ply|do(x)) = 5 P(2)Py]x,2)

(Z < fW(u)

M) = x ¢ x

M(z) = <

Y < fil(x,z,uy)

(Z < f2(u)
X< x

Y < f2(x,z,u,)

No matter what the specific
functions or P(u) are,
as long as M1, M2
agree in (G, P(v)),
they will also agree In
P(z) and P(y|x,2),
hence in P(v | do(x))!

D
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Example. Non-identifiable Effect

® Consider the pair of models compatible with the following graph G
and observational distribution P(v):

C
>
<
cC
3
=
<

X YO Y@ P(vu)

x U Y 1 0 0 1 1 1/8

1 11 11 1/8

P(V) = Z P(y | X, Mxy)P(-x | uxy)P(uxy) 8 (]:_) 2 8 8 i;:
tyy 1 0 0 11 1/8

X< U,
MO = Y
Y X@U,)VU,

X YO YO POW) POW)
XU 0 0 o | 14 1/4
MP = ” 0 1 1| w4 14 |
Y < U, 1 0 o | w4 1/4
1 1 1 k 1/4 s |
PIU. = 1) = 1/2, D
(= {x,y,xy},j = {1.2} They match in P(v), that is, P@(v)=P@)(v)!

48



Example. Non-identifiable Effect

® Consider the pair of models compatible with the following graph G
and observational distribution P(v):

U‘CV (]xy YO Y@ P(v,uldO(X))
--------- 0 0 «x Oex O 1/8
0 1 x 1ex O 1/8
R N
X.‘ >e Y X. > Y 1 O X 1 1 1/8
“ 11 x 11 1/8
0 0 «x Oax O 1/8
P(v) = )" P(y|x, 1, )P(x | )P(,) P(V]do(x)) = ZP(ylx, e )P(ity,) 01 x dex 0 1/8
m m 10 x 1 1 1/8
11 x 1 1 1/8
) — X « ny Y — X «x
Y<«Xe&eU,) VU, Y= X® U,V
do(x)
X<U — X «x
«—
M® = - M = {Y<— U
Y « Uy y

PO = 1) = 112 Even though both models induce G and have the
i= (vl j=1{12) same P(v), the effect P()(y|do(x)) # PO)(y|do(x))!

~



Let’s study how to decide
whether a causal effect is
identifiable...



ldentification in Markovian Models

Theorem. Given the causal diagram G of any
Markovian model that all variables are measured,
the causal effect Q = P(y | do(x)) is identifiable for
every subsets of variables X and Y and is
obtained from the truncated factorization, I.e.,

P(V | dO(X)) = H (Vi |pai) Sum over all variables

notin XuUY
% eV\X}

Pyldocn =Y [] P(nlra)

CV\(xUy) [V, € VAX}




Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian
system, the causal quantity Q = P(y | do(x)) Is
identifiable whenever {X, Y, Pax} c V, that is,
whenever X, Y, and all the parents of variables X
are measured. The expression of Q Is then
obtained by adjustment for PAy, or

P(y|do(x)) = ) P (y|x,pa,) P (pay)

pay

Quiz: 1) derive from previous slide
2) derive for non-Markovian models 13



How could adjustment help

in real data analysis?
(The Problem of Confounding)

53



Cholesterol Level

Confounding Bias

What's the causal effect of Exercise on Cholesterol? age
What about P(cholesterol | exercise) ? e \\

exercise —— cholesterol

"Exercise (hours/week)

“
\

14



Confounding Bias

What's the causal effect of Exercise on Cholesterol? age
What about P(cholesterol | exercise) ? e \\

exercise —— cholesterol

150

140

130

120

110

100

90

80

Cholesterol Level

70

[]
>

" AgelV | AgeV

14



Confounding Bias

What's the causal effect of Exercise on Cholesterol? age
What about P(cholesterol lexercise) 2 2 N\
P(cholesterol | exercise) > cholesterol
150 = ! #
el \4 P(cholesterol | do(exercise))
- This difference is called confounding bias == —=—
v . and represents one of the major L.
100 . obstacles to causal inference &
o0 o Interpretability.
80 e - ¢ % e ~

Cholesterol Level

70

[]
>

" AgelV | AgeV



If Season is latent,
is the effect still computable?

Queries:

P -

Q> = P(wet | do(Sprinkler = on))

Do ra POWEl Sp = on, ra) P(Sp = on)P(ra|se)P(se) sprinkler rain

P(Sp = on)
- Z P(we|Sp = on,ra)P(ra|se)P(se) \ /
wet

se,ra

— Z P(we|Sp = on, ra)P(ra, se)

= Z P(we|Sp = on, ra) Z P(ra, se) l
” se slippery

= D Plwe|Sp = on,ra)P(ra) | Adjystment by Rain!

ra




If Season is latent,
is the effect still computable?

Queries:

/" season *

-
- ~
~

Q2= P(wet | do(Sprinkler =on))

¥

== = - .

_ ZP(weISp — on, ra)P(ra) sprinkler rain 9’

ra
. . i R

By conditioning on rain,
- p2 (the non-causal path) is blocked, and wet B
- p1 (the causal path) remains unaffected! 1

slippery



s Confounding Bias removable?

Goal: Find the efect of X on Y, Q = P(y|do(x)),
given measurements on variables Zi,..., Zx,

/2

Z1
’123 Z5
X 26 Y

where some of X parents are unobserved.

How can the target quantity Q be identified if only
a subset of the parents Is measured?




Outline (chapter 3)

* The back door criterion and the adjustment formula



Answer:
The Back-door Criterion

Definition 3.3.1 (Back-door Criterion)

A set Z satisfies the back-door criterion (bdc) w.r.t.
to a pair of variables X,Y in a causal diagram G If:

(1) no node In ZIs a descendent of X; and

(i1)Z blocks every path between X and Y that
contains an arrow into X.



The Back-door Adjustment

Theorem 3.3.2 (Back-door Adjustment)

If a set Z satisfies the bdc w.r.t the pair X\Y, the
effect of X on Y is identifiable and given by:

P(y|do(x)) = )’ P(y|x,2)P(z)



Direct derivation,
showing it works

Back-Door Sets as Substitutes of
the Direct Parents of X

Rain satisfies the back-door criterion

relative to Sprinkler and Wet:
(i) Rain is not a descendant of Sprinkler, and

————

/
ll ‘\‘
4 «

(if)Rain blocks the only back-door path from sprinkler rain

Sprinkler to Wet. 7
Adjusting for the direct parents of Sprinkler, //
we have: wet B

P(we |do(sp)) = Y P(we|sp, se)P(se)

se slippery
= Z P(we | sp, se, ra)P(ra| sp, se)P(se)
sera (SpLRal|Se)
= Z P(we| sp,ra)P(ra|se)P(se) 4‘-”/ (WelLSe|Ra,Sp)
se.rd = . :
= ) P(we|sp,ra) )’ P(ra,se) ={ Y P(we|sp,ra)P(ra) | Adjustment by Rain
ra se b

. ra




Adjustment by Direct Parents
— Back-door Adjustment

More Generally:

(i) no node in Zis adescendent of X; and =

(i1)Z blocks every path between X and Y

that contains an arrow into X.

Then:

P(y|do(x)) = Y P(y|x, pay)P(pay)
pay

=

— Z P(y | X, pay, 2)P(z | X, pay)P(pay)

Z,pay

= 3 P(yIx.2)P@|pa)P(pay) &

Z.pay

_ Y P Ix) Y P pay -
V/ pay

Y Ply|x.0P@)

(X 1.Z | Pay)

(Y LPax| Z, X) |

e

Adjustment by Z is equivalent to
adjustment by direct parents
whenever Z is bd-admissible!



How do we find thesebd-sets?
Graphical Condition

P(y | do(x)) is identifiable if there is a set Z
th at X Y GX (the graph G where all arrows

emanating from X are removed.)

Z1 Z> /1 Z>
24 /\ﬁz 2, /\ﬂz
[N/ rgaNvi
X’ Y 7e Y

Z4
) Zs X

G Gy

P(y|do(x)) = D P(y|x, 21, 2)P (21, 24)

Zl 7Z4 25
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Back-door Examples

Are there admissible back-door sets (relative to
X,Y )for the followinggraphs?




Back-door Examples

Are there admissible back-door sets (relative to
X,Y )for the followinggraphs?

/2




Recaping The Backdoor Criterion

g Under what conditions does a causal

story permit us to compute the causal effect of one variable on another, from data obtained by
passive observations, with no interventions? Since we have decided to represent causal stories
with graphs, the question becomes a graph-theoretical problem: Under what conditions is the
structure of the causal graph sufficient for computing a causal effect from a given data set?
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3.3 The Backdoor Criterion

Definition 3.3.1 (The Backdoor Criterion) Given an ordered pair of variables (X.Y ) in
a directed acyclic graph G, a set of variables Z satisfies the backdoor criterion relative to

(X.Y )ifnonodein Z is a descendant of X, and Z blocks every path between X and Y that
contains an arrow into X.

It a set of variables Z satisfies the backdoor criterion for X and Y, then the causal effect
of X on Y 1is given by the formula

P(Y =yldo(X =x))=> P(Y =y|X =2,Z=2)P(Z = z)

Rationale:

. We block all spurious paths between X and Y .
2. We leave all directed paths from X to Y unperturbed.

3. We create no new spurious paths. .



More Examples for Backdoors

=
L
| P(Y|do(X))?
Y Y
X——()

Figure 3.6: A graphical model representing the relationship between a new drug (X)),

recovery (YY), weight (W), and an unmeasured variable Z (socioeconomic status)

W is a backdoor. Therefore we can compute:

P(Y =yldo(X =xz)) = ZP(Y =Y

w

X=uW= 'M-’)P (H-’T

w)
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Examples

P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X))= P(Y|X)

What if we adjust for W? ... wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spurious path X > W & Z<-T > Y ?

if we condition on T, we would block the spurious path X > W & Z <-T - Y. We can compute:

P(Y =yldo(X = z),W =w) =Y P(Y =y

t

X=ao,W=wT=t)P(T =tlW = w)

Example: W can be post-treatment pain



Adjusting for Colliders?

Figure 3.7: A graphical model in which the backdoor criterion requires that we condition on
a collider () 1n order to ascertain the effectof X onY

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both
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Outline (chapter 3)

* Computing bd: Inverse probability weighting



Evaluating BD adjustment

®* The backdoor provides a criterion for deciding when a
set of covariates Z is admissible for adjustment, i.e.,

P(y|do(x)) = ) P(y|x,z)P(z)

® In practice, how should backdoor expressions be
evaluated?

®* There are sample & computational challenges entailed
by the eval. of such expressions since one needs to

®* estimate the different distributions, and

® evaluate them, summing over a possibly high-
dimensional Z (i.e., time O(exp(|Z])) ).



Inverse Probability Weighting (IPW)

® Let's rewrite the bd-expression,

P(y|do(X = x)) = ) P(y|x,2)P(z)

P(y,x,z)

R

)3 ENtries of the joint distribution

g(z)
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Inverse Probability Weighting (IPW)

®* Assume we have N samples, then

P(y. x,
P(y|do(x)) = Y }f(yx’l‘zz))

LyN 4
_ Z N “i=1 " Y=Y X=X.Z;=1
8(z)

Z—Z Z 1Y—yX =X,Z2,;=Z

= 1 Z_ g(z)

1
Yoy X=xZ=s 3, Requires time proportional to
1 2(z) the number of samples N
=




Inverse Probability Weighting (IPW)

* |In practice, evaluating the expr. 1Y—yX—xZ—z

can be seen as: Cg(z)j

g(Z1) 0.33
1 1/ g(z >|
2 >

g(z2)=0.5 ;,»,

>
1/g(22)
n Inverse
Probability Weighting

Observational samples > “pseudo”

causal samples ¥



Inverse Probability Weighting (IPW)

® In practice, evaluating the expr.
can be seen as:

3

N
1 1Yi=y,=X,Zi=Z

g(z1) = 0.33
1
2

e,

- Probability Weighting
Observational samples Ra— <

- Any g%lzgigtlocfg computed on the
re-weighted samples is causal, in

the sense that the samples come
' from a pseudo-population that

mimics the Injpyéggecd population.

“pseudo”
causal samples
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