
CS 295: Causal Reasoning

Primer chapter 3, Causality 1.3,3.1,3.2)

Rina Dechter

Identification of Causal Effect
The Back-Door Criterion
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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• Identifiability
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Target: to Determine the Effect of Interventions

• “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with 
more crime, still selling more ice-cream will not cause more violence. Hot 
weather is a cause for both.

• Randomized controlled experiments are used to determine causation: all factors 
except a selected one of interest are kept static or random. So the outcome can 
only be influenced by the selected factor.

• Randomized experiments are often not feasible (we cannot randomize the 
weather), so how can we determine cause for wildfire?

• Observational studies must be used. But how we untangle correlation from 
causation?
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Causal Inference —
Connecting Different Worlds

Data
Q(P’)

(Aspects of P’)

P

Distribution
(Regime 1)

P’

Distribution
(Regime 2)

change

Inference
What happens when P changes?

e.g., Infer whether less people would get cancer 

if we ban smoking.

Q = P(Cancer = true | do(Smoking = no)) Not an aspect of P.



The Challenge of Causal Inference

•Goal: how much Y changes with X if we vary X between

two different constants free of the influence of Z.

•These variations are called causal effects!

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W

P(z, x, w, y)

X

Hypothetical world

Z

W Y

P(y | do(x))

Bareinboim slides 2020



Method for Computing Causal  
Effects: Randomized Experiments

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Hypothetical world

Z

W

P(y | do(X0))

X0

do(X0)

Z

P(y | do(X1))

do(X1)

Z

W YW Y X1

Randomization:

Often we cannot do this:
How do we force people to smoke (and wait 20 years
For them to die or not
How can we change cholesterol levels…



Computing Causal Effects (l2) from  
Observational Data (l1)

Questions:

* What is the relationship between P(z, x, w, y) and P(y | do(x))?

* Is P(y | do(x)) = P(y | x)?

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W

P(z, x, w, y)

X

Hypothetical world

Z

W Y

P(y | do(x))?



Causal Effects (formal)

Causal Effect (Def. 3.2.1 [C]):

Given two disjoint sets of variables, X and Y, the  

causal effect of X on Y, denoted as P(y | do(x)), is a  

function from X to the space of probability  

distributions of Y.

For each realization x of X, P(y | do(x)) gives the  

probability Y = y induced by deleting from the  

model all equations corresponding to variables in X  

and substituting X = x in the remaining equations.



Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Alternative world

Z

W

do(X=x)
M =

Z = fZ(uz)  

X = fX(z, ux)

W = fW(x, uw)  

Y = fY(w,z, uy)

xM =

Z = fZ(uz)

X = fX(z, ux) X = x  

W = fW(x, uw)

Y = fY(w,z, uy)

Computing Causal Effects from  
Observational Data



Px(v) =

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Alternative world

Z

W

do(X=x)

P(v) =

P(z) ⨉ P(x | 

z) ⨉ P(w | x)

⨉ P(y | w, z)

P(z) ⨉

P(x) ⨉ equal to 1 in Mx  

P(w | x) ⨉

P(y | w, z)

Computing Causal Effects from  
Observational Data



Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• Identifiability
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Computing Causal Effects from  
Observational Data

Consider a distribution over the  
variables: season, sprinkler, rain, wet,  

and slippery; and the causal graph:

wet

season P(se)

sprinkler

P(sp | se)

This distribution decomposes as

P(v) =

P(se)P(sp | se)P(ra | se)P(we | sp, ra)P(sl | we)

rain

P(ra | se)

P(we | sp, ra)

slippery

P(sl | we)



Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

Computing Causal Effects from  
Observational Data



Queries:

Q1 = P(wet | Sprinkler = on)

= P(p1) + P(p2)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

p2

Computing Causal Effects from  
Observational Data



Computing Causal Effects from  
Observational Data

Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery
You can do algorithm  bucket elimination to infer Q1.



Bucket elimination 
Algorithm BE-bel  (Dechter 1996)


b

Elimination operator

P(e=0)

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)

P(c|a)

P(b|a)   P(d|b,a)   P(e|b,c)

bucket  C: 

bucket  D:

bucket  E: 

bucket  A:

e=0

B

C

D

E

A

e)(a,D

(a)E

e)c,d,(a,B

e)d,(a,C


=

==
BCDE

CBEPBADPACPABPAPEAP
,,,0

),|(),|()|()|()()0|( 

A

D E

CB

P(a,e=0) 18



Computing Causal Effects from  
Observational Data

Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

rain

wet

slippery

p1

season

!
sprinkler

You can do algorithm  bucket elimination to infer Q2.



Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

= P(p1)

season

sprinkler rain

wet

slippery

p1

r
se ,ra

P(we lSp = on, ra)P(Sp = on l se)P(ral se)P(se)
=

r
s e

P(Sp = on l se)P(se)

Computing Causal Effects from  
Observational Data

You can do algorithm  bucket elimination to infer Q1.



Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

r
se ,ra

P(we lSp = on, ra)P(Sp = on l se)P(ral se)P(se)
=

r
s e

P(Sp = on l se)P(se)

Computing Causal Effects from  
Observational Data

You can do algorithm  bucket elimination to infer Q2.



Truncated Factorization Product  
(Operationalizing Interventions)

Corollary (Truncated Factorization, Manipulation Thm., G-comp.):

The distribution generated by an intervention do(X=x) (in a Markovian  

model M) is given by the truncated factorization:



Truncated Factorization Formula

29
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Intervention vs. Conditioning, The Ice-Cream Story

When we intervene to fix a value of a variable,
We curtail the natural tendencies of the variable to vary
In response to other variables in nature.

• This corresponds to a surgery of the model
• i.e. varying Z will not affect X
• intervention is different than conditioning.
• Intervention depends on the structure of the graph.

Conditioning P(X=x|Y=y)
Intervening P(X=x| do(Y=y))

Ice cream sales

temperature

Crime rates
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Intervention vs Conditioning,
The Surgery Operation

X Y

Z

X Y

Z

X Y

Z

The Simpson story The blood pressure story The ice-cream story

Conditioning P(Y=y|X=x)

Intervening P(Y=y| do(X=x))

X Y

Z

X Y

Z

X Y

Z

X=x
X=x

X=x

27



We make an assumption that intervention has no side-effect. Namely, assigning a variable by 
intervention does not affect other variables in a direct way.

Do operation and graph surgery can help determine causal effect

Intervention vs. Conditioning…
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The Adjustment Formula
To find out how effective the drug is in the population, we imagine a hypothetical intervention by which 
we administer the drug uniformly to the entire population and compare the recovery rate to what 
would obtain under the complementary intervention, where we prevent everyone from using the drug. 

We want to  estimate the “causal effect difference,” or “average causal effect” (ACE).

𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0)) (3.1)

We need a causal story articulated by a graph (for the Simpson story):

29



Definition of Intervention and Graph Surgery:
The Adjustment Formula

• We simulate the intervention in the form of a graph surgery. 
• The causal effect 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) equals to the conditional 

probability 𝑃𝑚(𝑌 = 𝑦|𝑋 = 𝑥) that prevails in the manipulated model 
of the figure below

P_m
Important: the random functions for Z and Y remain invariant

30



The Adjustment Formula
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The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment
Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958).
(This means: If the input is samples from the joint distribution over X,Y and Z we can estimate the P(y|x) directly.
Or, we can first estimate P(y|x,s) and  also P(z) and perform the summation.)

The Adjustment Formula
(in the Simpson story)

34



In the Simpson example:

We get that  the Average Causal Effect (ACE):

A more informal interpretation of ACE is that it is the difference in the fraction of the population that 
would recover if everyone took the drug compared to when no one takes the drug.

=0.832

=0.7818

35



The Blood Pressure Example

P(Y=y | do(X=x) = ? Here the “surgery on X changes nothing. So, 

36



To Adjust or not to Adjust?

So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X),  and this
Can be decided via the graph.

Where  z ranges over all the combinations of values that the variables n PA take.
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Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

Example:

T

38



Multiple Interventions and the Truncated Product Rule
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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The identification problem 

• The back door criterion and the adjustment formula
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The Identification Problem

4

2

Causal Effect Identifiability (Def. 3.2.2)

The causal effect of X on Y is said to be identifiable from a  

causal diagram G if the quantity P(y | do(x)) can be  

computed uniquely from a positive probability of the  

observed variables.

That is, if for every pair of models M1 and M2 inducing G,  

PM1(y | do(x)) = PM2(y | do(x)), whenever PM1(v) = PM2(v) > 0.

Bareiboim slides
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The Identification Problem (II)

Obs. Dist.
P(v)

Causal  

Graph  
G

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

SCM
M

M1 M2

Observed  
(input)

Unobserved  
(output)

4

3

P(v)

Causal Inference

For any two SCMs M1, M2,

G = G(M1) = G(M2)

P(v | do(x))

(PM1(y|do(x))

= PM2(y|do(x))
(PM1(v) = PM2(v))

43



M1 M2

P(v) P(v | do(x))

Causal Inference

For any two SCMs M1, M2,  

G

The Identification Problem (II)

Obs. Dist.
P(v)

Causal  

Graph  
G

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

SCM
M

Identifiable

Observed  
(input)

Unobserved  
(output)

4

4
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M2

P(v) P(v | do(x))

Identifiable

Causal G

Graph
G

M1

Obs. Dist.
P(v)

The Identification Problem (II)

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

Causal Inference

For any two SCMs M1, M2,

SCM
M

Identifiability really means that,  

no matter the shape of M1, M2,
for all models agreeing in terms of

⟨G, P(v)⟩, they will also agree in

P(v | do(x))!

Observed  
(input)

Unobserved  
(output)

4

5
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Example. Identifiable Effect

• Consider any two pair of models compatible with the following

graph  and the same observational distribution P(v):

Z Z

X Y

P(v)=P(z)P(x|z)P(y|x,z)

M(1) =

zZ ← f (1)(uz)

xX ← f (1)(z,ux)

Y ← f (1)(x, z,u )
y y

M(2) =

zZ ← f (2)(uz)

X ← f (2)(z, u )
x x

Y ← f (2)(x, z,u )
y y

⟹

M(1) =

Z ← f (1)(u )
z z

X ← x

yY ← f (1)(x, z, uy)

M(2) =

Z ← f (2)(u )
z z

X ← x

yY ← f (2)(x, z, uy)
⟹X Y

P(v|do(x))=P(z)P(y|x,z) ⟹ P(y|do(x)) = ∑ P(z)P(y|x, z)
z

No matter what the specific  

functions or P(u) are,

as long as M1, M2

agree in ⟨G, P(v)⟩,

they will also agree in  

P(z) and P(y|x,z),  

hence in P(v | do(x))!

4

7

do(x)
⟼

47



Example. Non-identifiable Effect

• Consider the pair of models compatible with the following graph G

and observational distribution P(v):  

Uxy

⟹X Y

0 0 0 0 0 1/8

0 1 1 0 0 1/8

1 0 0 1 1 1/8

1 1 1 1 1 1/8

0 0 0 0 0 1/8

0 1 1 0 0 1/8

1 0 0 1 1 1/8

1 1 1 1 1 1/8

Uy Uxy X Y(1) Y(2) P(v,u)

X Y(1) Y(2) P(1)(v) P(2)(v)

0 0 0 1/4 1/4

0 1 1 1/4 1/4

1 0 0 1/4 1/4

1 1 1 1/4 1/4

⟹

They match in P(v), that is, P(1)(v)=P(2)(v)!
4

8

48



Example. Non-identifiable Effect

• Consider the pair of models compatible with the following graph G

and observational distribution P(v):  

Uxy Y(1) Y(2)



Let’s study how to decide
whether  a causal effect is
identifiable…



Identification in Markovian Models

Theorem. Given the causal diagram G of any  

Markovian model that all variables are measured,  

the causal effect Q = P(y | do(x)) is identifiable for  

every subsets of variables X and Y and is  

obtained from the truncated factorization, i.e.,



Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian  

system, the causal quantity Q = P(y | do(x)) is  

identifiable whenever {X, Y, Pax}  V, that is,

whenever X, Y, and all the parents of variables X  

are measured. The expression of Q is then  

obtained by adjustment for PAx, or

P(y|do(x)) = ∑ P (y|x, pax) P (pax)

13

pax

Quiz: 1) derive from previous slide

2) derive for non-Markovian models 52



How could adjustment help 
in real data analysis?
(The Problem of Confounding)

53



Confounding Bias

age

cholesterol

C
h

o
le

s
te

ro
l
L

e
v
e
l

🏃
Increase exercise → increase cholesterol?

Exercise (hours/week)

🤷

What’s the causal effect of Exercise on Cholesterol?  

What about P(cholesterol | exercise) ?

exercise

❤



Confounding Bias

age

cholesterol

C
h

o
le

s
te

ro
l
L

e
v
e
l

What’s the causal effect of Exercise on Cholesterol?  

What about P(cholesterol | exercise) ?

exercise

❤

More exercise → Lower cholesterol (per age group)

Age I Age II Age III

🏃

🕵
Exercise (hours/week)

Age IV Age V



What’s the causal effect of Exercise on Cholesterol?  

What about P(cholesterol | exercise) ?

Confounding Bias

age

exercise cholesterol

C
h

o
le

s
te

ro
l
L

e
v
e
l

❤

P(cholesterol | exercise)

≠

P(cholesterol | do(exercise))

This difference is called confounding bias  

and represents one of the major

obstacles  to causal inference &

interpretability.

More exercise → Lower cholesterol (per age group)

Age I Age II Age III

🏃

🕵
Exercise (hours/week)

Age IV Age V



If Season is latent,
is the effect still computable?



If Season is latent,
is the effect still computable?

Queries:

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

p2

By conditioning on rain,

- p2 (the non-causal path) is blocked, and

- p1 (the causal path) remains unaffected!



Is Confounding Bias removable?

Goal: Find the effect of X on Y, Q = P(y|do(x)),  

given measurements on variables Z1,..., Zk,

Z6

Z3

Z2

Z5

Z1

X Y

Z4

where some of X parents are unobserved.

How can the target quantity Q be identified if only  

a subset of the parents is measured?



Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The identification problem 

• The back door criterion and the adjustment formula
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Answer:
The Back-door Criterion

Definition 3.3.1 (Back-door Criterion)

A set Z satisfies the back-door criterion (bdc) w.r.t.  

to a pair of variables X,Y in a causal diagram G if:

(i) no node in Z is a descendent of X; and

(ii)Z blocks every path between X and Y that  

contains an arrow into X.



The Back-door Adjustment

Theorem 3.3.2 (Back-door Adjustment)

If a set Z satisfies the bdc w.r.t the pair X,Y, the  

effect of X on Y is identifiable and given by:



season

sprinkler rain

wet

slippery

back-door

path

Back-Door Sets as Substitutes of  
the Direct Parents of X

Rain satisfies the back-door criterion  

relative to Sprinkler and Wet:

(i) Rain is not a descendant of Sprinkler, and

(ii)Rain blocks the only back-door path from

Sprinkler to Wet.

Adjusting for the direct parents of Sprinkler,  

we have:

Adjustment by Rain

Direct derivation, 
showing it works



Adjustment by Direct Parents
→ Back-door Adjustment

More Generally:

(i) no node in Z is a descendent of X; and

(ii)Z blocks every path between X and Y

that contains an arrow into X.

Adjustment by Z is equivalent to  

adjustment by direct parents  

whenever Z is bd-admissible!

⟹

⟹

(X ⫫Z | Pax)

(Y ⫫Pax | Z, X)



How do we find thesebd-sets?
Graphical Condition

P(y | do(x)) is identifiable if there is a set Z

that d-separates X from Y in Gx

25

Z6

Z3 Z5

X Y

Z4

G

Z

Z6

Z3

Z2 Z2

Z5

Z1 Z1

X Y

Z4

Gx

68

(the graph G where all arrows 
emanating from X are removed.)



Back-door Examples

X Y

Z

Z=

Z6X Y

Are there admissible back-door sets (relative to

X,Y ) for the followinggraphs?

Z2

Z5

Z4

Z={Z4, Z2}, {Z4, Z5},

{Z4, Z2, Z5}



Back-door Examples

X Y

Z

Z=

Z6X Y

Are there admissible back-door sets (relative to

X,Y ) for the followinggraphs?

Z2

Z5

Z4

Z={Z4, Z2}, {Z4, Z5},

{Z4, Z2, Z5}



Recaping The Backdoor Criterion

71



3.3 The Backdoor Criterion

Rationale:

72



More Examples for Backdoors

W is a backdoor. Therefore we can compute:

P(Y|do(X))?

74



Examples

P(Y|do(X))?

No backdoors between X and Y and therefore: P(Y|do(X))= P(Y|X)

What if we adjust for W? … wrong!!!

But what if we want to determine P(Y|do(X),w)? What do we do with the spurious path 𝑋 → 𝑊 ← 𝑍 <- 𝑇 → 𝑌 ?

if we condition on 𝑇, we would block the spurious path 𝑋 → 𝑊 ← 𝑍 <- 𝑇 → 𝑌. We can compute: 

Example: W can be post-treatment pain
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Adjusting for Colliders?

There are 4 backdoor paths. We must adjust for Z, and one of E or A or both

76



Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The identification problem 

• The back door criterion and the adjustment formula

• Computing bd: Inverse probability weighting
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Evaluating BD adjustment

• The backdoor provides a criterion for deciding when a  

set of covariates Z is admissible for adjustment, i.e.,

P(y|do(x)) = ∑ P(y|x, z)P(z)

z

• In practice, how should backdoor expressions be  

evaluated?

• There are sample & computational challenges entailed  

by the eval. of such expressions since one needs to

• estimate the different distributions, and

• evaluate them, summing over a possibly  high-

dimensional Z (i.e., time O(exp(|Z|)) ).



Inverse Probability Weighting (IPW)

• Let’s rewrite the bd-expression,

79



P(y|do(x)) =
∑

z

P(y, x,z)

P(x ∣ z)

= ∑
N

z

1 ∑N

i=1
1Yi=y,Xi=x,Zi=z

g(z)

=
1

N ∑ ∑
i=1 z

N 1Yi=y,Xi=x,Zi=z

g(z)

=
1 N

N ∑
i=1

1Yi=y,Xi=x,Zi=z

g(z)

• Assume we have N samples, then

Requires time proportional to  

the number of samples N

Inverse Probability Weighting (IPW)



Inverse Probability Weighting (IPW)

• In practice, evaluating the expr.  

can be seen as:

g(z1) = 0.33

1/ g(z1)

1/g(z2)

1/g(z2)

1

2

n

g(z2) = 0.5

Inverse

Probability Weighting
“pseudo”  

causal samples
Observational samples

30
81



Inverse Probability Weighting (IPW)

1/ g(z1)

1/g(z2)

• In practice, evaluating the expr.  

can be seen as:

g(z1) = 0.33

1

2

n

Any statistics computed on the  

re-weighted samples is causal, in  

the sense that the samples come  

from a pseudo-population that

mimics the intervened population.

g(z2) = 0.5

1/g(z2)

Inverse

Probability Weighting
“pseudo”  

causal samples
Observational samples

31
82


