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Lecture 1: Introduction

Causal Inference in Statistics, A primer, J. Pearl, M Glymur and N. Jewell Ch1, Why, ch1



Class Information
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Course Topics

• Introduction: Causal Hierarchy

• Structural Causal Models

• Identification of Causal Effects

• The Problem of Confounding and the Back-doorCriterion

• Causal Calculus

• Linear Structural Causal Models

• Counterfactuals

• Structural Learning

Textbooks

[P] Judea Pearl, Madelyn Glymour, Nicholas P. Jewell,

Causality: Models, Reasoning and Inference,

Cambridge Pess, 2016.

[C] Judea Pearl,

Causality: Models, Reasoning and Inference,

Cambridge Press, 2000.

[W] Judea Pearl, Dana Mackenzie,

Causality: Models, Reasoning and Inference,

Basic books, 2018.

Grading

• few homeworks

• Project: Class presentation and a report: Students will 

present a paper and write a report

http://bayes.cs.ucla.edu/WHY/

Class page

http://bayes.cs.ucla.edu/PRIMER/
http://bayes.cs.ucla.edu/BOOK-2K/
http://bayes.cs.ucla.edu/WHY/
http://bayes.cs.ucla.edu/WHY/
https://www.ics.uci.edu/~dechter/courses/ics-295cr/spring-2021/
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The Simpson Paradox 

• It refers to data in which a statistical association that holds for an entire population is reversed in 
every subpopulation.

• (Simpson 1951) a group of sick patients are given the option to try a new drug. Among those who 
took the drug, a lower percentage recover than among those who did not. However, when we 
partition by gender, we see that more men taking the drug recover than do men not taking the 
drug, and more women taking the drug recover than do women not taking the drug! In other 
words, the drug appears to help men and help women, but hurt the general population.

• Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. 
350 patients chose to take the drug and 350 patients did not. We got:
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The Simpson Paradox 

• Example 1.2.1 We record the recovery rates of 700 patients who were given access to the drug. 
350 patients chose to take the drug and 350 patients did not. We got:

• The data says that if we know the gender of the patient we can prescribe the drug, but if not we 
should not…. Which is ridiculous.

• So, given the results of the study, should the doctor prescribe the drug for a man? For a woman? 
Or when gender is unknown?

• The answer cannot be found in the data!! We need to know the story behind the data- the 
causal mechanism that lead to, or generated the results we see.
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Simpson’s Paradox

● Also known as Simpson’s Reversal

● No statistical method that can aid our understanding!

Drug No drug

Men 81/87 recovered (93%) 234/270 recovered 
(87%)

Women 192/263 recovered 
(73%)

55/80 recovered (69%)

Combined 273/350 recovered 
(78%)

289/350 recovered 
(83%)

scott
10



The Simpson Paradox 

• The same phenomenon with continuous 
variables. Example: Impact of exercise on 
Cholesterol for different age groups:

• Because, Age is a common cause of both treatment (exercise) 
and outcome (cholesterol). So we should look at the
age-segregated data in order to compare same-age 
people, and thereby eliminate the possibility that the 
high exercisers in each group we examine are more likely to
have high cholesterol due to their age, and not due to exercising.
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The Simpson Paradox 

• Segregated data is not always the right way. What if we record blood (BP) pressure instead of gender?

• We know that drug lower blood pressure but also has a toxic effect.

• Would you recommend the drug to a patient?

• In the general population, the drug might improve recovery rates because of its effect on blood pressure. But in the 
subpopulations—the group of people whose post-treatment BP is high and the group whose post-treatment BP is low—we of 
course would not see that effect; we would only see the drug’s toxic effect.

• In this case the aggregated data should be consulted.

• Same data opposite conclusions!!!
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Simpson’s Paradox (Aggregated)
● Segregation not good

● Drug lowers blood pressure

● Also has a toxic effect

● 3 groups of people

○ BP high after treatment

○ BP low before and after*

treatment

○ Everyone else

● Segregating causes selection 

bias

No drug Drug

Low BP 81/87 
recovered 
(93%)

234/270 
recovered 
(87%)

High BP 192/263 
recovered 
(73%)

55/80 
recovered 
(69%)

Combine
d

273/350 
recovered 
(78%)

289/350 
recovered 
(83%)

scott
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● “Data show that income and marriage have a 

high positive correlation. Therefore, your 

earnings will increase if you get married.”

What is Wrong With These Claims?

● “Data show that people who hurry tend to be late to their 

meetings. Don’t hurry, or you’ll be late.”

● “Data show that as the number of fires increase, so does the 

number of firefighters. Therefore, to cut down on fires, you 

should reduce the number of firefighters.”

scott
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Aggregated or Segregated Data

● Doctors choose between 2 treatments for kidney stones
○ Treatment A → large/severe stones
○ Treatment B → small stones
○ What might be reasons for different treatments?
○ Aggregate or segregated data?
○ What does DAG look like?

● 2 doctors perform 100 surgeries each
○ Some very difficult and some very easy surgeries
○ Doctor 1 performs easy surgeries far more often
○ Doctor 2 performs difficult surgeries far more often
○ What might be going on?
○ Aggregate or segregated data?
○ What does DAG look like?

scott
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The Simpson Paradox 

• The fact that treatment affect BP and not the opposite was not in the data. 
Indeed in Statistics it is often stressed that “correlation is not causation”, so there 
is no statistical method that can determine the causal story from the data alone. 
Therefore, there is no statistical method that can aid in the decision.

• We can make causal assumptions because we know that drug cannot affect 
gender. “treatment does not cause sex” cannot be expressed in the data.

• So, what do we do? How can we make causal assumptions and make causal 
inferences?

d
r
u
g

drug

Gender

recovery

Post Blood 
Pressure
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The Simpson Paradox SCM (Structural Causal Model)
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For Causal Inference We Need:

Spring 2021

1. A working definition of “causation”
2. A method by which to formally articulate causal assumptions—that is, to create causal models
3. A method by which to link the structure of a causal model to features of data
4. A method by which to draw conclusions from the combination of causal assumptions
embedded in a model and data.
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Outline

• Simpson Paradox

• The causal Hierarchy

• Structural Causal Models

• Linear Regression
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Motivating Quotes (Book of why)
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Adam and Eve: 
• When God asks: “Have you eaten from the tree which I forbade you?” 
• Adam answers: The woman you gave me for a companion, she gave me fruit from the tree and I ate. 
• “What is this you have done?” God asks Eve. 
• She replies: “The serpent deceived me, and I ate.”

• God asked for the facts, and they replied with explanations

• Causal explanations, not dry facts, make up the bulk of our knowledge. 
• Satisfying our craving for explanation should be the cornerstone of machine  intelligence.

• On Machine Learning: no machine can derive explanations from raw data. It needs a push



Hunters Example

22Spring 2021

• To imagine and compare the consequences of several hunting strategies. To do this, it must possess, 
consult, and manipulate a mental model of its reality. Here is how we might draw such a mental model:

Ladder of causation: there are at least three distinct levels that need to be

conquered by a causal learner: seeing, doing, and imagining.

• Planning requires imagining the consequences of action (Examples: hunters of the ICE Age)



Ladder of Causation
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• Most animals, learning machines are on the first rung, 

learning from association. 

• Tool users, such as early humans, are on the second rung, if 

they act by planning and not merely by imitation. We can 

also use experiments to learn the effects of interventions, and 

presumably this is how babies acquire much of their causal 

knowledge. 

• On the top rung, counterfactual learners can imagine worlds 

that do not exist and infer reasons for observed phenomena.

seeing, doing, and imagining.

Darwiche 2017: “Human-Level Intelligence or Animal-Like

Abilities?”



The Firing Squad
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The story: Suppose that a prisoner is about to be executed. First, the court has to order 

the execution.  The order goes to a captain, who signals the soldiers on the firing squad 

(A and B) to fire. 

Ladder 1: If the prisoner is dead, 

does that mean the court order was given?  

Yes. Logic

Alternatively, suppose we find out that A fired. 

What does that tell us about B? Yes.

Ladder 2: we can ask questions of intervention. 

What if soldier A decides on his own initiative to fire, 

without waiting for the captain’s command? Will the

prisoner be dead or alive?

(CO, C, A, B, D) is a true/false variable



The Firing Squad, 
Counterfactuals

• Ladder 3: Suppose the prisoner is lying 
dead on the ground. Using level one implies  
that A shot, B shot, the captain gave the 
signal, and the court gave the order. 

• If, contrary to fact, A had decided not to 
shoot, would the prisoner be alive? 

• This question requires us to compare the 
real world with a fictitious and 
contradictory world where A didn’t shoot. 

• In the fictitious world, the arrow leading 
into A is erased and A is set to False, but the 
past history of A stays the same as it was in 
the real world.

26

In the firing squad example we ruled out uncertainties: maybe the captain gave

his order a split second after rifleman A decided to shoot, maybe rifleman B’s gun 

jammed, etc. To handle uncertainty we need information on how likely the alternatives are 

to occur.



Smallpox Vaccination: Adding Uncertainties
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Suppose that out of 1 million children, 99 percent are vaccinated and 1 percent are not. If

a child is vaccinated, he or she has 1 chance in 100 of developing a reaction, and the reaction has

1 chance in 100 of being fatal. On the other hand, he or she has no chance of developing

smallpox. Meanwhile, if a child is not vaccinated, he or she obviously has zero chance of

developing a reaction to the vaccine, but he or she has 1 chance in 50 of developing smallpox.

Finally, let’s assume that smallpox is fatal in one out of 5 cases.

• We now ask the counterfactual question: What if we had set the vaccination rate to 0? 

• we can conclude that out of 1 million children, 20 thousand would have gotten 

smallpox and 4,000 would have died.

• Comparing the counterfactual world with the real world, we see that the cost of not 

vaccinating was the death of 3,861 children (the difference between 4,000 and 139).

Data: Out of 1 million children, 990 thousand get vaccinated; 9,900 get the reaction; and 99 die

from the reaction. Meanwhile, 10 thousand don’t get vaccinated, 200 get smallpox, and 40 

die from the disease. In summary, more children die from vaccination (99) than from the disease (40).
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Graphs

● Parents

● Ancestors

● Children

● Descendants

● Paths

● Directed paths
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Cyclic?

A → D → F → A → … 

36



Cyclic?

No directed cycles
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Structural Causal Models (SCM), M

A structural causal model describes how nature assigns values to variables of interest.

• Two sets of variables, U and V and a set of functions F: (U,V,F)
• Each function assigns value to a variable in V based on the values of the other variables.
• We say that Variable X  is a direct cause of Y if it appears in the function of Y. 
• U are exogenous variables (external to the model. We do not explain how they are caused)..
• Variables in U have no parents.

Z- salary, X – years in school, Y – years in the profession
39



Structural Causal Models (SCM), M

Spring 2021

• Every SCM is associated with a graphical causal model.

• The graphical model 𝐺 for an SCM 𝑀 contains one node for each variable in 𝑀. If, in 𝑀, the 

function 𝑓𝑋 for a variable 𝑋 contains variable 𝑌 (i.e., if 𝑋 depends on 𝑌 for its value), then, in 
𝐺, there will be a directed edge from 𝑌 to 𝑋.

• We will deal primarily with SCMs that are acyclic graphs (DAGs). 

• A graphical definition of causation:  If, in a graphical model, a variable 𝑋 is the child of 
another variable 𝑌 then 𝑌 is a direct cause of 𝑋; if 𝑋 is a descendant of 𝑌 , then 𝑌 is a 
potential cause of 𝑋 .

40X  and Y are direct causes for Z



Structural Causal Models (SCM)

Spring 2021

U are unmeasured terms that we do not care to name. Random causes we do not care about.
U are sometime called error terms.

The graphical causal model provides lots of information about what is going on: X causes Y and Y causes Z

U

U

U

S

P

H
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More on Exogeneity/Endogeneity

● Exogenous variables?
○ {A, E, C}

● Endogenous variables?
○ {B, D, F, G}

● Functions and their inputs?
○ fA(?)

■ No functions for exogenous variables
○ fB(C, E)
○ fD(A, B, C, E)
○ fF(B, D)
○ fG(A, D, F)

43



Outline

• Simpson Paradox

• The causal Hierarchy

• Structural Causal Models

• Product form of Graphical models.
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Data: Joint Probability Distributions

● X = eye color (amber, blue, brown, gray, green, hazel, red)
● Y = hair color (blonde, brown, black, red, white, purple)
●

● How many rows in our joint distribution table?
● What if there were 10 variables?
● How do SCMs help?

X Y P(x, y)

amber blonde 0.03

amber brown 0.09

... ... ...
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Probability distibutions of SCM;
Product Decomposition in Bayesian Networks

● How to calculate joint probability from SCM
● P(x₁, x₂, …, xn) = 𝚷iP(xi|pai)

○ pai are the parents of xi

● X→Y←Z, how to calculate P(x, y, z)?
○ P(x, y, z) = P(X = x)·P(Y = y|X = x, Z = z)·P(Z = z)

● Why is this important?
● Y→X→Z, X = eye color, Y = age (between 7 and 14), Z = hair color

○ How many rows of data do we need for joint probability?
■ 8·7·6

○ How many rows of data do we need to be able to calculate joint probability?
■ 8 + 8·7 + 6·7
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Curse of Dimensionality
● 5 binary variables: X, Y, Z, W, V
● What is the size of the probability table?

○ 25 - 1
● Assume we recorded 100 samples

○ How many samples per X, Y, Z, W, V bucket?
■ 100/32 ≈ 3

○ Not very accurate
● X → Y → Z → W → V

○ We just need P(x), P(y|x), P(z|y), P(w|z), and P(v|w)
○ P(x) uses entire 100 samples
○ P(y|x) gets split how? How many buckets?

■ 4 buckets ⇒ 100/4 = 25 samples per bucket on average

48
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Regression
● Predict the value of Y based on X

● Used in Machine Learning too

● Can’t we just use E[Y | X = x]?
○ Yes, if know it or can calculate it

● How to create a regression line?
○ Plot data values of X, Y

○ “Fit” them to y = mx + b

○ The least square regression is the line tht minimize the sum of the squared error 

average  ∑ (y - b - mx)²

○ Need to find b and m
■ What do they represent on the graph?
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Dice

● Can’t get all of data for some things, like a roll of dice

● We have to let sample size be infinity, how?

● X = Dice 1, Z = Dice 2, Y = X + Z

● E[Y|X = x]?
○ = E[Dice 2 + X|X = x] = E[Dice 2] + x = 3.5 + 1.0x

● Intuitive, right?

● It is easy to see that E[X|Y = y] = 0.5y, why?
○ E[X|Y = y] = E[Y −Z|Y = y] = y−E[Z|Y = y]

○ E[X|Y = y] = E[Z|Y = y]
○ 2·E[X|Y = y] = y
○ E[X|Y = y] = ½y = 0.5y
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Regression Coefficient

● RYX is slope of regression line of Y on X

● m = RYX = σXY/σX²
○ RYX = RXY?

○ When is it?

● Slope gives correlation
○ Positive number → positive correlation
○ Negative number → negative correlation
○ Zero → independent or non-linear
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Multiple Regression

● y = r₀ + r₁·x + r₂·z

● How do we visualize?
○ 3d plane

● What happens if we hold x at a value?
○ r₁·x becomes a constant

○ r₂ is now the 2d slope of slice along X-axis

● What happens if we hold z at a value?
○ r₂·z becomes a constant
○ r₁ is now the 2d slope of slice along Z-axis
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Partial Regression Coefficient

● Symbol for regression coefficient of Y on X?
○ RYX

● Symbol for regression coefficient of Y on X when holding Z constant?
○ RYX·Z

○ Called partial regression coefficient
● What happens when RYX is positive and RYX·Z is negative?
● What are partial regression coefficients in y = r₀ + r₁·x + r₂·z?

○ r₁ and r₂
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Orthogonality Principle

● How do we find partial regression coefficients in y = r₀ + r₁·x + r₂·z?
● Use statistical variables and add noise term ϵ

○ Y = r₀ + r₁X₁ + r₂X₂ + ϵ
● Assume ϵ is not correlated with X₁ or X₂

○ σϵX₁ = 0  σϵX₂ = 0
● Called orthogonality principle

● Remember covariance: E[(X - E[X])·(Y - E[Y])] = E(X·Y) - E(X)·E(Y)
○ What does orthogonality principle say about that?
○ E(ϵX) = E(ϵ)·E(X)
○ What if E(ϵ) = 0?
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Orthogonality Principle Example

● X = Dice 1, Y = Dice 1 + Dice 2
● X = α + β·Y + ϵ

○ What do we want to find to make predictions of X on Y?
○ α and β

● Take expectation of both sides, assuming E[ϵ] = 0
○ E[X] = E[α] + β·E[Y] + E[ϵ]
○ E[X] = α + β·E[Y]

● Also, multiply by Y and take expectation of both sides
○ E[X·Y] = E[αY] + β·E[Y²] + E[ϵY]
○ But    E[ϵY] = 0

● Now we have 2 equations with 2 unknowns
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Regression Equation

● Solve for α and β in orthogonality principle equations
○ E[X] = α + β·E[Y]
○ E[X·Y] = E[αY] + β·E[Y²] + E[ϵY]

■ = αE[Y] + β·E[Y²]

● Remember σY² = E[Y²] - E[Y]²
● α = E[X] - β·E[Y]

○ E[X·Y] = (E[X] - β·E[Y])·E[Y] + β·E[Y²]
○ E[X·Y] = E[X]·E[Y] - β·E[Y]² + β·E[Y²]
○ E[X·Y] - E[X]·E[Y] = -β·E[Y]² + β·E[Y²]
○ E[X·Y] - E[X]·E[Y] = β·(E[Y²] - E[Y]²)
○ β = σXY/σY²
○ Regression coefficient!
○ Could’ve simply swapped X and Y!

58


