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Causal Discovery

Suppose you are only given 𝑃(𝑉). 

How much can you extract of the underlying causal diagram?
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𝑃



Review
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Causal Structure of a set of variables 𝑽

A DAG where: 
• Nodes = distinct element of 𝑉
• Edges = direct functional relationships between nodes

Causal Model

A 4-tuple < 𝑉, 𝑈, ℱ, 𝑃 𝑢 >: 
• 𝑉 = endogenous variables
• 𝑈 = exogenous variables
• ℱ = functions which determine 𝑉:

𝑣𝑖 ← 𝑓𝑖 𝑝𝑎𝑖 , 𝑢𝑖 , 𝑝𝑎𝑖 ⊂ 𝑉𝑖 , 𝑢𝑖 ⊂ 𝑈
• 𝑃 𝑢 = distribution over 𝑈

𝑋 𝑌

𝑋 ← 𝑓𝑥(𝑈, 𝑈𝑥)

𝑌 ← 𝑓𝑦(𝑋, 𝑈, 𝑈𝑦)



Undirected Edges

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 ⟶
?
𝐶𝑎𝑢𝑠𝑎𝑙 𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒
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𝑋 𝑌

Can be either: 

𝑋 𝑌𝑋 𝑌

𝑋 𝑌

𝑋 𝑌

𝑋 𝑌



How can we learn causal structure?

Constraint-Based Structure Learning

• Example

• PC & IC Algorithm

• Working with Latent Variables

• IC* Algorithm

2 other methods exist: (mentioned for completeness)

• Score-Based Structure Learning 

• Function-Based Structure Learning



What constraints on the DAG exist in the data?
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What does that mean about the graph?
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What constraints does the DAG encode?

𝑊

𝑋 𝑌

𝑍
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Another Example: 
Independencies? 

Dependencies?

𝑋 ⫫ 𝑌 ∣ 𝑊

𝑋 ⫫ 𝑌

𝑋 ⫫ 𝑌 ∣ 𝑊𝑍

𝑋 ⫫ 𝑌 ∣ 𝑍

The data must have the given independencies for 

this to be a compatible graph for the system.

𝑊 ⫫ 𝑍 ∣ 𝑋𝑌



Assumptions
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Minimality [10]

If 2 graphs 𝐺1 and 𝐺2 can both generate 𝑃(𝑉), and 𝐺1 can 
also generate any distribution 𝐺2 generates, then 𝐺2 is the 
preferred model. 

Occam’s razor: The most constrained model that can generate 
the distribution is preferred.

Faithfulness [12] (also called Stability [9])

The underlying natural generator does not give any 
independencies not immediately visible from its graphical 
model. 

That is, if 𝑋 ⫫ 𝑌, then the graph isn’t really 𝑋 → 𝑌



What Can We Extract?

True Model

Current Best Guess
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Suppose that this graph encodes all 

independencies present in 𝑃 𝑉 . 

𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

What parts of the graph 

can we reconstruct? 
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Current Best Guess
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𝑍

𝑌

𝑋 ⫫ 𝑌 ∣ 𝑊
𝑊 ⫫ 𝑍 ∣ 𝑋𝑌

From before… 
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What Can We Extract?

True Model

Current Best Guess
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𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑋 ⫫ 𝑌 ∣ 𝑊
𝑊 ⫫ 𝑍 ∣ 𝑋𝑌

From before… 

Can we reason about 

any edge directions?
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Current Best Guess
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𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑋 ⫫ 𝑌 ∣ 𝑊
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From before… 

No 𝑍!

𝑋 𝑍 𝑌

𝑋 𝑍 𝑌

𝑋 𝑍 𝑌

Not Possible!

By Process of Elim: 

𝑋 𝑍 𝑌



What Can We Extract?

True Model

Current Best Guess
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𝑊

𝑋

𝑍

𝑌

𝑊

𝑋

𝑍

𝑌

𝑋 ⫫ 𝑌 ∣ 𝑊
𝑊 ⫫ 𝑍 ∣ 𝑋𝑌

From before… 

Can we do anything else?



An Equivalence Class
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The set of all possible graphs that are 
compatible with the set of constraints that 
we have from the data 



An Equivalence Class
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𝑊
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The set of all possible graphs that are 
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Compatible?

𝑋 ⫫ 𝑌 ∣ 𝑊
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PC & IC Algorithm
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Assumption: True model is without latent variables and acyclic.

Input: 𝑃(𝑉)

(0) Initialize empty graph 𝐺

(1) For each pair of variables 𝑎, 𝑏 ∈ 𝑉, search for a subset of 

variables that makes them independent. If no such subset 

exists, add undirected edge 𝑎 − 𝑏 to 𝐺

(2) For each pair of non-adjacent variables (𝑎, 𝑏), with common 

neighbor 𝑐, check if 𝑐 is in 𝑎𝑏’s separating set. If not, change 

𝑎 − 𝑐 − 𝑏 into 𝑎 → 𝑐 ← 𝑏

(3) In the resulting partly-directed graph, orient as many 

undirected edges as possible, such that: 

(a) The orientation does not add colliders that would have 

been found in Step 2

(b) The orientation does not create a directed cycle



Edge Orientation Rules (for Step 3)
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Rules to orient edges in step 3 of previous slide: 

1. Orient 𝑏 − 𝑐 into 𝑏 → 𝑐 if there is 𝑎 → 𝑏 s.t. 𝑎, 𝑐 are not adjacent.

2. Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there is a chain 𝑎 → 𝑐 → 𝑏

3. Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there are two chains 

𝑎 − 𝑐 → 𝑏 and 𝑎 − 𝑑 → 𝑏 s.t. 𝑐, 𝑑 are not adjacent

4. Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there are two chains 

𝑎 − 𝑐 → 𝑑 and 𝑐 → 𝑑 → 𝑏 s.t. 𝑏, 𝑐 are not adjacent and 

𝑎, 𝑑 are adjacent

No New Colliders (S2), No Directed Cycles



Orient 𝑏 − 𝑐 into 𝑏 → 𝑐 if there is 𝑎 → 𝑏 s.t. 𝑎, 𝑐 are not adjacent

[IC] Reasoning for Rule 1

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶
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Rule 1

𝐴 𝐵 𝐶 ⇒

No New Colliders (S2), No Directed Cycles



Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there is a chain 𝑎 → 𝑐 → 𝑏

[IC] Reasoning for Rule 2

A B

𝐴

𝐶

𝐵

𝐴

𝐶

𝐵

18

Rule 2

𝐶

⇒

No New Colliders (S2), No Directed Cycles



Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there are two chains 
𝑎 − 𝑐 → 𝑏 and 𝑎 − 𝑑 → 𝑏 s.t. 𝑐, 𝑑 are not adjacent

[IC] Reasoning for Rule 3

𝐴

𝐷

𝐵 ⇒ 𝐴

𝐷

𝐵

𝐴

𝐶

𝐷

𝐵 𝐴

𝐶

𝐷

𝐵 𝐴

𝐶

𝐷

𝐵
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Rule 3

𝐶𝐶

No New Colliders (S2), No Directed Cycles



Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there are two chains
𝑎 − 𝑐 → 𝑑 and 𝑐 → 𝑑 → 𝑏 s.t. 𝑏, 𝑐 are not adjacent and 𝑎, 𝑑 are 
adjacent

[IC] Reasoning for Rule 4

𝐶

⇒
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Rule 4

𝐴 𝐵

𝐷 𝐶

𝐴 𝐵

𝐷

𝐶

𝐴 𝐵

𝐷𝐶

𝐴 𝐵

𝐷

∗

∗

∗

∗

∗

∗

∗

∗

∗−∗ represents wildcard

No New Colliders (S2), No Directed Cycles



Orient 𝑎 − 𝑏 into 𝑎 → 𝑏 whenever there are two chains
𝑎 − 𝑐 → 𝑑 and 𝑐 → 𝑑 → 𝑏 s.t. 𝑏, 𝑐 are not adjacent and 𝑎, 𝑑 are 
adjacent

[IC] Reasoning for Rule 4

𝐶

⇒
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Rule 4

𝐴 𝐵

𝐷 𝐶

𝐴 𝐵

𝐷

∗

∗

∗

∗ Problem?

Doesn’t matter that 𝐵 is a collider; 𝐴,𝐷 are already dependent

!!

No New Colliders (S2), No Directed Cycles



Dealing withLatents

What happens if we run IC on a model with latent variables?

𝑋 𝑌

𝑍

𝑋

𝑍

𝑌
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The edges do not represent direct causationanymore!



PDAGs: Partial DAGs
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A DAG representing incomplete information about the underlying 
causal model. It has several types of edges: 

1. Marked arrow 𝑎 →
∗
𝑏 signifies a directed path 𝑎 to 𝑏

2. Unmarked arrow 𝑎 → 𝑏 signifies either a directed path or a 
latent variable (or both)

3. Bidirected edge 𝑎 ↔ 𝑏 signifies a latent common cause
4. An undirected edge 𝑎 − 𝑏 signifies a latent variable, 

𝑎 → 𝑏, or 𝑎 ← 𝑏

PDAG

𝑋 𝑌

𝑍

𝑋

𝑍

𝑌 𝑋

𝑍

𝑌

Compatible PDAGsTrue Model



IC∗
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(0) Initialize empty graph 𝐺

(1) For each pair of variables 𝑎, 𝑏 ∈ 𝑉, search for a subset of 

variables that makes them independent. If no such subset 

exists, add undirected edge 𝑎 − 𝑏 to 𝐺 [Same as IC]

(2) For each pair of non-adjacent variables (𝑎, 𝑏), with common 

neighbor 𝑐, check if 𝑐 is in 𝑎𝑏’s separating set. If not, change 

𝑎 − 𝑐 − 𝑏 into 𝑎 → 𝑐 ← 𝑏 [Same as IC]

(3) In the resulting PDAG, add as many arrowheads as possible, 

and mark as many edges as possible, according to: 

(a) Orient 𝑏 −∗ 𝑐 into 𝑏 → 𝑐 if there is 𝑎 ∗→ 𝑏 s.t. 𝑎, 𝑐 are not 

adjacent

(b) If 𝑎, 𝑏 are adjacent and there is a directed path from 𝑎

to 𝑏, then set 𝑎 ∗ −𝑏 to 𝑎 ∗→ 𝑏



Note on Notation: Overloaded *
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Represents a directed path

e.g., 𝑎 →
∗
𝑏

Edges with * above them

Represents a wildcard (we do not care what arrow is there) 

e.g., 𝑎 ∗→ 𝑏 can be 𝑎 ↔ 𝑏 or 𝑎 → 𝑏

Edges with * at end



Orient 𝑏 −∗ 𝑐 into 𝑏 →
∗
𝑐 if there is 𝑎 ∗ −𝑏 s.t. 𝑎, 𝑐 are not 

adjacent

Rule 1

[IC*] Reasoning on Rule 1

𝐴 𝐵 𝐶 𝐴 𝐵 𝐶

26

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶

𝐴 𝐵 𝐶∗ ∗ 𝐴 𝐵 𝐶∗ ∗⇒



If 𝑎, 𝑏 are adjacent and there is a directed path from 𝑎 to 𝑏 using 

only edges →
∗

, then set 𝑎 ∗ −𝑏 to 𝑎 ∗→ 𝑏

Rule 2

[IC*] Reasoning on Rule 2

27

𝐵 ⇒𝐴 𝐵𝐴∗ ∗

∗Path ∗Path

𝐵𝐴 ∗
∗Path

Adding the arrowhead only disallows this graph

all others are still allowed.



IC* Example

True Model

Current Best Guess
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𝑍
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𝑋 ⫫ 𝑌 ∣ 𝑊

𝑊 ⫫ 𝑍 ∣ 𝑋𝑌

𝑊𝑋𝑌 ⫫ 𝑉 ∣ 𝑍

Start as before: 

1. Eliminate edges between 

d-separated nodes



IC* Example

True Model

Current Best Guess

28

𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

𝑋 ⫫ 𝑌 ∣ 𝑊

𝑊 ⫫ 𝑍 ∣ 𝑋𝑌

𝑊𝑋𝑌 ⫫ 𝑉 ∣ 𝑍

Start as before: 

1. Eliminate edges between 

d-separated nodes



IC* Example

True Model

Current Best Guess
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𝑊
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𝑌
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𝑊
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Start as before: 

2. Orient discoverable colliders

𝑋 ⫫ 𝑌 ∣ 𝑊 No 𝑍!

𝑋 𝑍 𝑌

𝑋 𝑍 𝑌

𝑋 𝑍 𝑌

Not Possible!

By Process of Elim: 

𝑋 𝑍 𝑌
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Not Possible!
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IC* Example

True Model

Current Best Guess
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𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

[IC*] Can we apply any rules?

If 𝑎, 𝑏 are adjacent and there 
is a directed path from 𝑎 to 𝑏

using only edges →
∗

, then set 
𝑎 ∗ −𝑏 to 𝑎 ∗→ 𝑏

Rule 2

Orient 𝑏 −∗ 𝑐 into 𝑏 →
∗
𝑐 if 

there is 𝑎 ∗ −𝑏 s.t. 𝑎, 𝑐 are 
not adjacent

Rule 1



IC* Example

True Model

Current Best Guess
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𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

[IC*] Rule 1: 

𝑍 −∗ 𝑉 to 𝑍 →
∗
𝑉 since 

𝑋 ∗ −𝑍 and 𝑋, 𝑉 are not adj. 

∗

Anything else?



IC* Example

Equivalence Class
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𝑊

𝑋

𝑍

𝑌

𝑉

∗

𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

𝑊

𝑋

𝑍

𝑌

𝑉

𝑎 →
∗
𝑏 : directed path 𝑎 to 𝑏

𝑎 → 𝑏 : directed path and/or latent variable 
𝑎 ↔ 𝑏 : a latent common cause
𝑎 − 𝑏 : a latent variable, 𝑎 → 𝑏, or 𝑎 ← 𝑏

PDAG Arrows



The constraint-based approach to determining 𝑥 − 𝑦

30

• Sometimes, we only care about determining causal 

relationship between 𝑋, 𝑌

• Steps:

• Check if 𝑋 ⫫ 𝑌

• If not, find other variables in the system 

correlated with 𝑋, 𝑌. 

• Repeat* until learned graph can allow you to 

orient edge 𝑋 − 𝑌, or no possible sources of data 

remain

* Using a similar algorithm known as FCI [13], which was 

shown to be complete for edge orientation [14] and 

utilizes a different encoding of graph called PAG.



Summary

31

• Conditional Independence Constraints allow us to 

extract partial information about underlying graphical 

structure

• … but they are not always sufficient to extract the 

full graph

• Recent Research has extended notions into PAGs 

(e.g., identifiability) [4]



References

31

[1] A. Gretton, O. Bousquet, A. Smola, and B. Schölkopf. Measuring Statistical 

Dependence with Hilbert-Schmidt Norms. In D. Hutchison, T. Kanade, J. 

Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz, C. 

Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi,

G. Weikum, S. Jain, H. U. Simon, and E. Tomita, editors, Algorithmic Learning  

Theory, volume 3734, pages 63–77. Springer Berlin Heidelberg, Berlin,  

Heidelberg, 2005. ISBN 978-3-540-29242-5 978-3-540-31696-1. doi:  

10.1007/11564089 7.

[2] P. O. Hoyer, D. Janzing, J. M. Mooij, J. Peters, and B. Schölkopf. Nonlinear

causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. 

Bengio, and L. Bottou, editors, Advances in Neural Information Processing  

Systems 21, pages 689–696. Curran Associates, Inc., 2009.

[3] A. Hyvärinen and E. Oja. Independent component analysis: Algorithms and  

applications. Neural Networks, 13(4):411–430, June 2000. ISSN 0893-6080. doi:  

10.1016/S0893-6080(00)00026-5.



References

32

[4] A. Jaber, J. Zhang, and E. Bareinboim. Causal Identification under Markov  

Equivalence. 2018.

[5] D. Janzing and B. Schoelkopf. Causal inference using the algorithmic Markov  

condition. arXiv:0804.3678 [cs, math, stat], Apr. 2008.

[6] D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler, P. Daniuˇsis, B. Steudel, 

and B. Sch¨olkopf. Information-geometric approach to inferring causal  directions. 

Artificial Intelligence, 182-183:1–31, May 2012. ISSN 00043702. doi:  

10.1016/j.artint.2012.01.002.

[7] R. Jiao, N. Lin, Z. Hu, D. A. Bennett, L. Jin, and M. Xiong. Bivariate Causal  

Discovery and Its Applications to Gene Expression and Imaging Data Analysis.  

Frontiers in Genetics, 9, 2018. ISSN 1664-8021. doi: 10.3389/fgene.2018.00347.

[8] J. M. Mooij, J. Peters, D. Janzing, J. Zscheischler, and B. Scholkopf.  

Distinguishing Cause from Effect Using Observational Data: Methods and  

Benchmarks. page 102.

[9] J. Pearl. Causality: Models, Reasoning and Inference. Cambridge University  

Press, 2000. ISBN 978-0-521-89560-6.

[10] J. Pearl and T. S. Verma. A theory of inferred causation. In D. Prawitz, B. Skyrms, 

and D. Westerståhl, editors, Studies in Logic and the Foundations of  Mathematics, 

volume 134 of Logic, Methodology and Philosophy of Science IX,  pages 789–811. 

Elsevier, Jan. 1995. doi: 10.1016/S0049-237X(06)80074-1.



References

33

[11] S. Shimizu, P. O. Hoyer, A. Hyvarinen, and A. Kerminen. A Linear Non-Gaussian  

Acyclic Model for Causal Discovery. page 28, 2006.

[12] P. Spirtes, C. N. Glymour, R. Scheines, D. Heckerman, C. Meek, G. Cooper, and

T. Richardson. Causation, Prediction, and Search. MIT Press, 1993. ISBN  978-0-

262-19440-2.

[13] J. Zhang. A Characterization of Markov Equivalence Classes for Directed Acyclic  

Graphs with Latent Variables. page 8, 2007.

[14] J. Zhang. On the completeness of orientation rules for causal discovery in the  

presence of latent confounders and selection bias. Artificial Intelligence, 172  

(16-17):1873–1896, Nov. 2008. ISSN 00043702. doi:  

10.1016/j.artint.2008.08.001.


