Class 3: Multi-Arm Bandit

Sutton and Barto, Chapter 2

Sutton slides and Silver

295, class 2

Multi-Arm Bandits

Sutton and Barto, Chapter 2

The simplest reinforcement learning problem

The Exploration/Exploitation Dilemma

Online decision-making involves a fundamental choice:

- Exploitation Make the best decision given current information
- Exploration Gather more information

The best long-term strategy may involve short-term sacrifices Gather enough information to make the best overall decisions

Examples

Restaurant Selection

Exploitation Go to your favourite restaurant

Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert

Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location

Exploration Drill at a new location

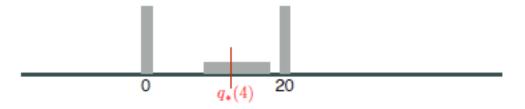
Game Playing

Exploitation Play the move you believe is best Exploration Play an experimental move

You are the algorithm! (bandit1)

- Action I Reward is always 8
 - value of action I is $q_*(1) =$
- Action 2 88% chance of 0, 12% chance of 100!
 - value of action 2 is $q_*(2) = .88 \times 0 + .12 \times 100 =$
- Action 3 Randomly between -10 and 35, equiprobable

Action 4 — a third 0, a third 20, and a third from {8,9,..., 18}



The k-armed Bandit Problem

- On each of a sequence of time steps, t=1,2,3,..., you choose an action A_t from k possibilities, and receive a real-valued reward R_t
- The reward depends only on the action taken; it is indentically, independently distributed (i.i.d.):

$$q_*(a) \doteq \mathbb{E}[R_t | A_t = a], \quad \forall a \in \{1, \dots, k\}$$
 true values

- These true values are unknown. The distribution is unknown
- Nevertheless, you must maximize your total reward
- You must both try actions to learn their values (explore), and prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

Suppose you form estimates

$$Q_t(a) \approx q_*(a), \quad \forall a$$
 action-value estimates

Define the greedy action at time t as

$$A_t^* \doteq \arg\max_a Q_t(a)$$

- If $A_t = A_t^*$ then you are exploiting If $A_t \neq A_t^*$ then you are exploring
- You can't do both, but you need to do both
- You can never stop exploring, but maybe you should explore less with time. Or maybe not.

Regret

The action-value is the mean reward for action a,

•
$$q^*(a) = E[r|a]$$

The optimal value V *is

•
$$V^* = Q(a^*) = \max_{a \in A} q^*(a)$$

The *regret* is the opportunity loss for one step

•
$$I_t = E[V^* - Q(a_t)]$$

The total regret is the total opportunity loss

$$L_t = \mathbb{E}\left[\sum_{ au=1}^t V^* - Q(a_{ au})
ight]$$

■ Maximise cumulative reward = minimise total regret

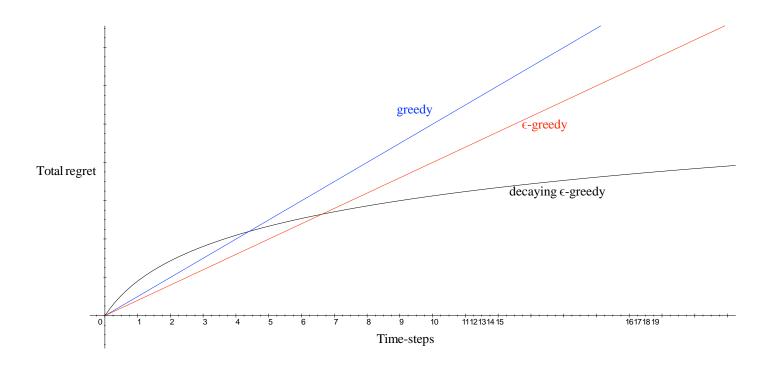
- The count $N_t(a)$ is expected number of selections for action a
- The gap Δ_a is the difference in value between action a and optimal action a^* , $\Delta_a = V^* Q(a)$
- Regret is a function of gaps and the counts

$$L_{t} = \mathbb{E}\left[\sum_{\tau=1}^{t} V^{*} - Q(a_{\tau})\right]$$

$$= \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{t}(a)\right] (V^{*} - Q(a))$$

$$= \sum_{a \in \mathcal{A}} \mathbb{E}\left[N_{t}(a)\right] \Delta_{a}$$

- A good algorithm ensures small counts for large gaps
- Problem: gaps are not known!



- If an algorithm forever explores it will have linear total regret
- If an algorithm never explores it will have linear total regret Is
- it possible to achieve sublinear total regret?

Complexity of regret

- The performance of any algorithm is determined by similarity between optimal arm and other arms
- Hard problems have similar-looking arms with different means
- This is described formally by the gap Δ_a and the similarity in distributions $KL(\mathcal{R}^a||\mathcal{R}^a*)$

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

$$\lim_{t\to\infty} L_t \ge \log t \sum_{a|\Delta_a>0} \frac{\Delta_a}{\mathit{KL}(\mathcal{R}^a||\mathcal{R}^{a^*})}$$

Overview

- Action-value methods
 - Epsilon-greedy strategy
 - Incremental implementation
 - Stationary vs. non-stationary environment
 - Optimistic initial values
- UCB action selection
- Gradient bandit algorithms
- Associative search (contextual bandits)

295, class 2 12

Basics

- Maximize total reward collected
 - vs learn (optimal) policy (RL)
- Episode is one step
- Complex function of
 - True value
 - Uncertainty
 - Number of time steps
 - Stationary vs non-stationary?

Action-Value Methods

- Methods that learn action-value estimates and nothing else
- For example, estimate action values as sample averages:

$$Q_t(a) \doteq \frac{\text{sum of rewards when } a \text{ taken prior to } t}{\text{number of times } a \text{ taken prior to } t} = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbf{1}_{A_i=a}}{\sum_{i=1}^{t-1} \mathbf{1}_{A_i=a}}$$

The sample-average estimates converge to the true values
 If the action is taken an infinite number of times

$$\lim_{\substack{N_t(a)\to\infty\\}} Q_t(a) \ = \ q_*(a)$$
 The number of times action a has been taken by time t

ε-Greedy Action Selection

- In greedy action selection, you always exploit
- In ε -greedy, you are usually greedy, but with probability ε you instead pick an action at random (possibly the greedy action again)
- This is perhaps the simplest way to balance exploration and exploitation

A simple bandit algorithm

Initialize, for a = 1 to k:

$$Q(a) \leftarrow 0$$

 $N(a) \leftarrow 0$

Repeat forever:

$$A \leftarrow \begin{cases} \arg\max_a Q(a) & \text{with probability } 1-\varepsilon \\ \arcsin\max_a Q(a) & \text{with probability } 1-\varepsilon \end{cases}$$
 (breaking ties randomly) $R \leftarrow bandit(A)$ $N(A) \leftarrow N(A) + 1$ $Q(A) \leftarrow Q(A) + \frac{1}{N(A)}[R - Q(A)]$

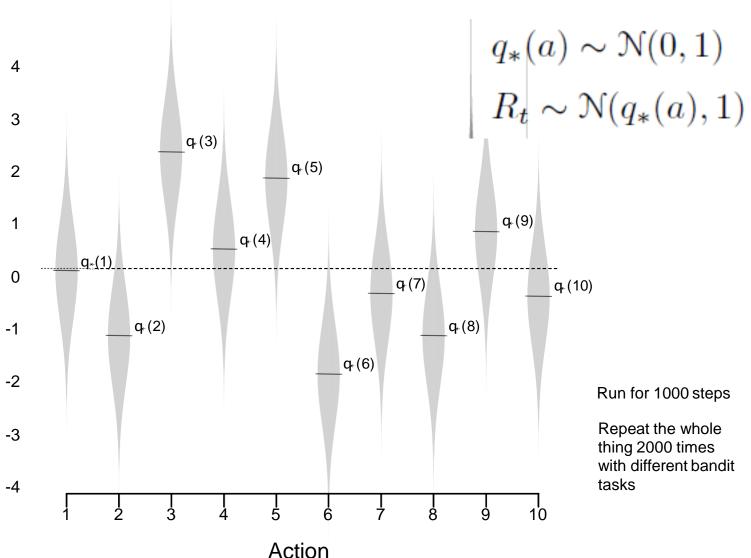
One Bandit Task from

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q(a) of each of the ten actions was selected according to a normal distribution with mean zero and unit variance, and then the actual rewards were selected according to a mean q(a) unit variance normal distribution, as suggested by these gray distributions.

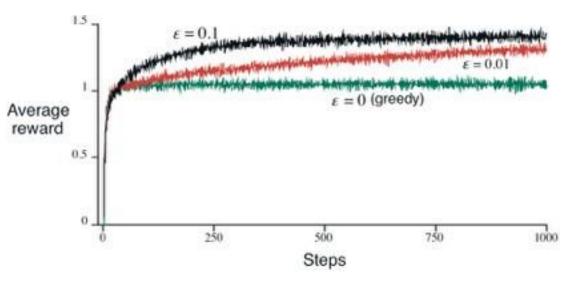
Reward

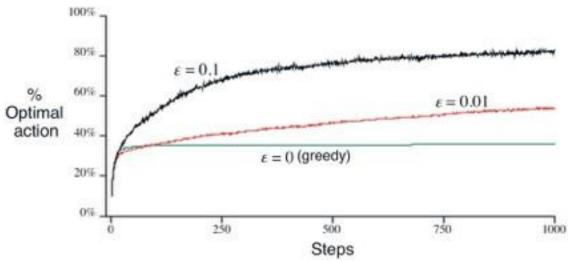
distribution

The 10-armed Testbed



ε-Greedy Methods on the 10-Armed Testbed





Averaging → learning rule

- To simplify notation, let us focus on one action
 - We consider only its rewards, and its estimate after n+1 rewards:

$$Q_n = \frac{R_1 + R_2 + \cdots + R_{n-1}}{n-1}$$

- How can we do this incrementally (without storing all the rewards)?
- Could store a running sum and count (and divide), or equivalently:

$$Q_{n+1} = Q_n + \frac{1}{n} \left[R_n - Q_n \right]$$

This is a standard form for learning/update rules:

$$NewEstimate \leftarrow OldEstimate + StepSize \left[Target - OldEstimate \right]$$

Derivation of incremental update

$$Q_n \doteq \frac{R_1 + R_2 + \dots + R_{n-1}}{n-1}$$

$$Q_{n+1} = \frac{1}{n} \sum_{i=1}^{n} R_{i}$$

$$= \frac{1}{n} \left(R_{n} + \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1) \frac{1}{n-1} \sum_{i=1}^{n-1} R_{i} \right)$$

$$= \frac{1}{n} \left(R_{n} + (n-1)Q_{n} \right)$$

$$= \frac{1}{n} \left(R_{n} + nQ_{n} - Q_{n} \right)$$

$$= Q_{n} + \frac{1}{n} \left[R_{n} - Q_{n} \right],$$

Tracking a Non-stationary Problem

- Suppose the true action values change slowly over time
 - then we say that the problem is nonstationary
- In this case, sample averages are not a good idea (Why?)
- Better is an "exponential, recency-weighted average":

$$Q_{n+1} = Q_n + \alpha \left[R_n - Q_n \right]$$
$$= (1 - \alpha)^n Q_1 + \sum_{i=1}^n \alpha (1 - \alpha)^{n-i} R_i$$

where α is a constant, step-size parameter, $0 < \alpha \le 1$

• There is bias due to Q_1 that becomes smaller over time

Standard stochastic approximation convergence conditions

To assure convergence with probability 1:

$$\sum_{n=1}^{\infty} \alpha_n(a) = \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \alpha_n^2(a) < \infty$$

• e.g.,
$$\alpha_n = \frac{1}{n}$$

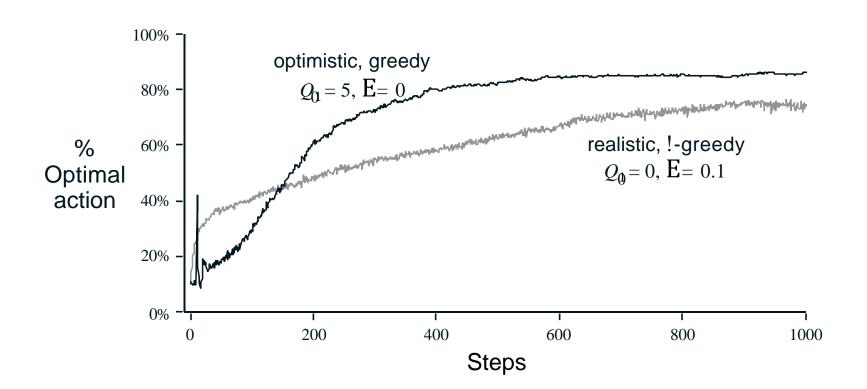
• not
$$\alpha_n = \frac{1}{n^2}$$

if
$$\alpha_n = n^{-p}$$
, $p \in (0,1)$
then convergence is
at the optimal rate:

$$O(1/\sqrt{n})$$

Optimistic Initial Values

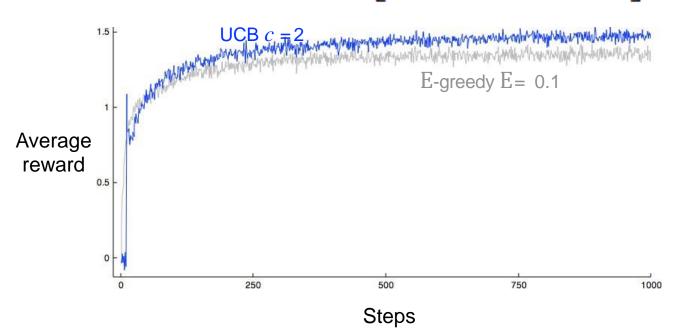
- All methods so far depend on $Q_1(a)$, i.e.,they are biased. So far we have used $Q_1(a) = 0$
- Suppose we initialize the action values optimistically $(Q_1(a) = 5)$, e.g., on the I0-armed testbed (with alpha= 0.1)



Upper Confidence Bound (UCB) action selection

- A clever way of reducing exploration over time
- Focus on actions whose estimate has large degree of uncertainty
- Estimate an upper bound on the true action values
- Select the action with the largest (estimated) upper bound

$$A_t \doteq \operatorname*{arg\,max}_{a} \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$



Complexity of UCB Algorithm

Theorem

The UCB algorithm achieves logarithmic asymptotic total regret

$$\lim_{t\to\infty} L_t \le 8 \log t \qquad \qquad \Delta_a$$
$$a|_{\Delta_a>0}$$

Gradient-Bandit Algorithms

• Let $H_t(a)$ be a learned preference for taking action a

$$\Pr\{A_{t} = a\} \doteq \frac{e^{H_{t}(a)}}{\sum_{b=1}^{k} e^{H_{t}(b)}} \doteq \pi_{t}(a)$$

$$H_{t+1}(A_{t}) \doteq H_{t}(A_{t}) + \alpha \left(R_{t} - \bar{R}_{t}\right) \left(1 - \pi_{t}(A_{t})\right), \quad \text{and}$$

$$H_{t+1}(a) \doteq H_{t}(a) - \alpha \left(R_{t} - \bar{R}_{t}\right) \pi_{t}(a), \quad \text{for all } a \neq A_{t},$$

$$(2.10)$$



Derivation of gradient-bandit algorithm

In exact gradient ascent:

$$H_{t+1}(a) \doteq H_t(a) + \alpha \frac{\partial \mathbb{E}[R_t]}{\partial H_t(a)},$$
 (1)

where:

$$\mathbb{E}[R_t] \doteq \sum_b \pi_t(b) q_*(b),$$

$$\frac{\partial \mathbb{E}[R_t]}{\partial H_t(a)} = \frac{\partial}{\partial H_t(a)} \left[\sum_b \pi_t(b) q_*(b) \right]$$
$$= \sum_b q_*(b) \frac{\partial \pi_t(b)}{\partial H_t(a)}$$
$$= \sum_b (q_*(b) - X_t) \frac{\partial \pi_t(b)}{\partial H_t(a)},$$

where X_t does not depend on b, because $\sum_b \frac{\partial \pi_t(b)}{\partial H_t(a)} = 0$.

$$\frac{\partial \mathbb{E}[R_t]}{\partial H_t(a)} = \sum_b \left(q_*(b) - X_t \right) \frac{\partial \pi_t(b)}{\partial H_t(a)}
= \sum_b \pi_t(b) \left(q_*(b) - X_t \right) \frac{\partial \pi_t(b)}{\partial H_t(a)} / \pi_t(b)
= \mathbb{E} \left[\left(q_*(A_t) - X_t \right) \frac{\partial \pi_t(A_t)}{\partial H_t(a)} / \pi_t(A_t) \right]
= \mathbb{E} \left[\left(R_t - \bar{R}_t \right) \frac{\partial \pi_t(A_t)}{\partial H_t(a)} / \pi_t(A_t) \right],$$

where here we have chosen $X_t = \bar{R}_t$ and substituted R_t for $q_*(A_t)$, which is permitted because $\mathbb{E}[R_t|A_t] = q_*(A_t)$.

For now assume: $\frac{\partial \pi_t(b)}{\partial H_t(a)} = \pi_t(b) (\mathbf{1}_{a=b} - \pi_t(a))$. Then:

$$= \mathbb{E}\left[\left(R_t - \bar{R}_t\right)\pi_t(A_t)\left(\mathbf{1}_{a=A_t} - \pi_t(a)\right)/\pi_t(A_t)\right] = \mathbb{E}\left[\left(R_t - \bar{R}_t\right)\left(\mathbf{1}_{a=A_t} - \pi_t(a)\right)\right].$$

$$H_{t+1}(a) = H_t(a) + \alpha (R_t - \bar{R}_t) (\mathbf{1}_{a=A_t} - \pi_t(a)), \text{ (from (1), QED)}$$

Thus it remains only to show that

$$\frac{\partial \pi_t(b)}{\partial H_t(a)} = \pi_t(b) (\mathbf{1}_{a=b} - \pi_t(a)).$$

Recall the standard quotient rule for derivatives:

$$\frac{\partial}{\partial x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\partial f(x)}{\partial x} g(x) - f(x) \frac{\partial g(x)}{\partial x}}{g(x)^2}.$$

Using this, we can write...

Quotient Rule:
$$\frac{\partial}{\partial x} \left[\frac{f(x)}{g(x)} \right] = \frac{\frac{\partial f(x)}{\partial x} g(x) - f(x) \frac{\partial g(x)}{\partial x}}{g(x)^2}$$

$$\frac{\partial \pi_{t}(b)}{\partial H_{t}(a)} = \frac{\partial}{\partial H_{t}(a)} \pi_{t}(b)$$

$$= \frac{\partial}{\partial H_{t}(a)} \left[\frac{e^{h_{t}(b)}}{\sum_{c=1}^{k} e^{h_{t}(c)}} \right]$$

$$= \frac{\frac{\partial e^{h_{t}(b)}}{\partial H_{t}(a)} \sum_{c=1}^{k} e^{h_{t}(c)} - e^{h_{t}(b)} \frac{\partial \sum_{c=1}^{k} e^{h_{t}(c)}}{\partial H_{t}(a)}}{\left(\sum_{c=1}^{k} e^{h_{t}(c)}\right)^{2}} \qquad (Q.R.)$$

$$= \frac{\mathbf{1}_{a=b} e^{h_{t}(a)} \sum_{c=1}^{k} e^{h_{t}(c)} - e^{h_{t}(b)} e^{h_{t}(a)}}{\left(\sum_{c=1}^{k} e^{h_{t}(c)}\right)^{2}} \qquad (\frac{\partial e^{x}}{\partial x} = e^{x})$$

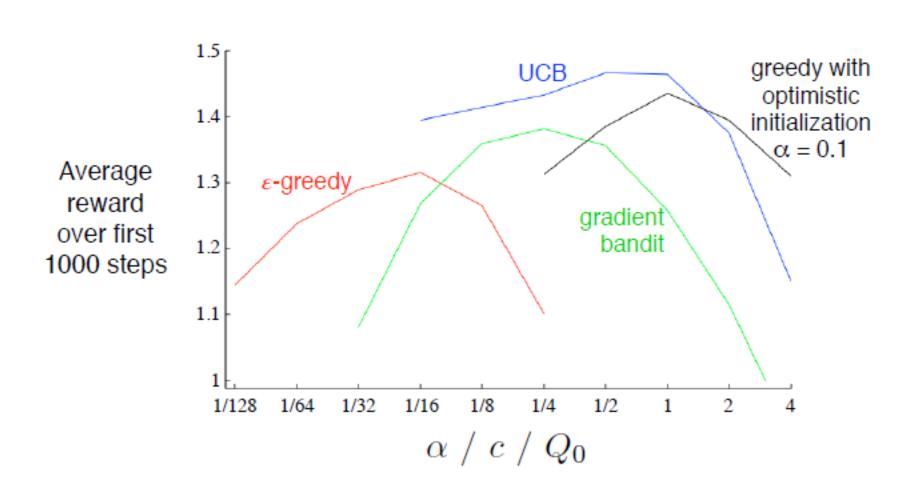
$$= \frac{\mathbf{1}_{a=b} e^{h_{t}(b)}}{\sum_{c=1}^{k} e^{h_{t}(c)}} - \frac{e^{h_{t}(b)} e^{h_{t}(a)}}{\left(\sum_{c=1}^{k} e^{h_{t}(c)}\right)^{2}}$$

$$= \mathbf{1}_{a=b} \pi_{t}(b) - \pi_{t}(b) \pi_{t}(a)$$

$$= \pi_{t}(b) (\mathbf{1}_{a=b} - \pi_{t}(a)). \qquad (Q.E.D.)$$

(Q.E.D.)

Summary Comparison of Bandit Algorithms



Conclusions

- These are all simple methods
 - but they are complicated enough—we will build on them
 - we should understand them completely
 - there are still open questions
- Our first algorithms that learn from evaluative feedback
 - and thus must balance exploration and exploitation
- Our first algorithms that appear to have a goal
 - —that learn to maximize reward by trial and error