295, class 2

Multi-Arm Bandits

Sutton and Barto, Chapter 2

The simplest
reinforcement learning
problem

The Exploration/Exploitation Dilemma

Online decision-making involves a fundamental choice:
 Exploitation Make the best decision given current information
 Exploration Gather more information

The best long-term strategy may involve short-term sacrifices
Gather enough information to make the best overall decisions

Examples

Restaurant Selection
Exploitation Go to your favourite restaurant

Exploration Try a new restaurant

Online Banner Advertisements

Exploitation Show the most successful advert
Exploration Show a different advert

Oil Drilling

Exploitation Drill at the best known location
Exploration Drill at a new location

Game Playing
Exploitation Play the move you believe is best
Exploration Play an experimental move

295, class 2

You are the algorithm! (bandit1)

Action | — Reward is always 8

« value of action | is g+ (1) =

Action 2 — 88% chance of 0, | 2% chance of 100!

* value of action 2 is q+(2) = .88 x 0+ .12 x 100 =

Action 3 — Randomly between -10 and 35, equiprobable

-10 0 !. a5 q+ (3} =
Action 4 — a third 0, a third 20, and a third from {8,9,..., |18}

0 g1 20

The k-armed Bandit Problem

* On each of a sequence of time steps,t=1,2,3,...,

you choose an action A; from k possibilities, and receive a real-
valued reward R

* The reward depends only on the action taken;
it is indentically, independently distributed (i.i.d.):

g« (a) = E[R;

Ay=a]. Yae{l.. .k} tuevaes
* These true values are unknown. The distribution is unknown

* Nevertheless, you must maximize your total reward

* You must both try actions to learn their values (explore), and
prefer those that appear best (exploit)

The Exploration/Exploitation Dilemma

* Suppose you form estimates

Qi(a) = ge(a), Ya action-value estimates

* Define the greedy action at time t as

A7 = argmax (¢(a)
‘L

« If A; = A7 then you are exploiting
f A; # A; then you are exploring

* You can’t do both, but you need to do both

* You can never stop exploring, but maybe you should explore
less with time. Or maybe not.

Regret

The action-value is the mean reward for action a,
* g*(a) = E[rla]

The optimal value V *is
+ V*=Q(a¥) = maxa*(a)

The regret is the opportunity loss for one step

* lk=E[V*-Q(a)]
The total regret is the total opportunity loss

[t
Le=FE|» V*—Q(ar)
=1

m Maximise cumulative reward = minimise total regret

m [he count Ni(a) is expected number of selections for action a

m The gap A, is the difference in value between action a and
optimal action a*, A, = V* — Q(a)

m Regret is a function of gaps and the counts

m A good algorithm ensures small counts for large gaps

m Problem: gaps are not known!

greedy
e-greedy

Total regret
decaying e-greedy

0 1 2 3 4 5 6 7 8 9 10 1112131415 ‘ ‘ ‘ 16171819
Time-steps

= If an algorithm forever explores it will have linear total regret
= If an algorithm never explores it will have linear total regret Is
= it possible to achieve sublinear total regret?

Complexity of regret

m [he performance of any algorithm is determined by similarity
between optimal arm and other arms

m Hard problems have similar-looking arms with different means

m [his is described formally by the gap A, and the similarity in
distributions KL(R?||R%x)

Theorem (Lai and Robbins)

Asymptotic total regret is at least logarithmic in number of steps

. A,
=
fim Le>logt KL(R?|[R?")
alA;>0

295, class 2 11

Overview

Action-value methods

— Epsilon-greedy strategy

— Incremental implementation

— Stationary vs. non-stationary environment
— Optimistic initial values

UCB action selection

Gradient bandit algorithms

Associative search (contextual bandits)

Basics

e Maximize total reward collected
— vs learn (optimal) policy (RL)

* Episode is one step
 Complex function of

— True value

— Uncertainty

— Number of time steps

— Stationary vs non-stationary?

Action-Value Methods

* Methods that learn action-value estimates and nothing else

* For example, estimate action values as sample averages:

: t—1
sum of rewards when a taken prior to ¢ Z-ﬁ:l Ri-14,—4

Qt(a) =

number of times a taken prior to t Zt_% 14—,
1= Ll —

* The sample-average estimates converge to the true values
If the action is taken an infinite number of times

lim Qi(a) = g«(a)

Ni(a)—oo

/

The number of times action «a
has been taken by time ¢

e-Greedy ActionSelection

* In greedy action selection, you always exploit

® In &-greedy, you are usually greedy, but with probability €you
instead pick an action at random (possibly the greedy action

again)

* This is perhaps the simplest way to balance exploration and
exploitation

A simple bandit algorithm

Initialize, for a =1 to k:

Qa) + 0
Na) + 0

Repeat forever:
arg max, (a) with probability 1 — s (breaking ties randomly)
A+ : : .
a random action with probability =
R + bandit(A)
N({(A)+ N(A)+1
Q(A4) + Q(A) + xig [R — Q(A)]

Figure 2.1: An example
bandit problem from the
10-armed testbed. The true
value qg(a) of each of the
ten

actions was selected
according to a normal
distribution with mean zero
and unit variance, and then
the actual

rewards were selected
according to a mean q(a)
unit variance normal
distribution, as suggested
by these gray

distributions.

Reward
distribution

One Bandit Taskfrom

The 10-armed Testbed

qs(a) ~ N(0. 1)

By~ Nlgu(a), 1)

a3
_a(5)

99
_a@

NGV D R N R N e e

__am _q(10)

a2 __a(8)

_ a(6)
Run for 1000 steps

Repeat the whole
thing 2000 times
with different bandit
tasks

| ——

Action

e-Greedy Methods on the 10-ArmedTestbed

Average
reward

100%

S0%

O/o s
Optimal

aCliOf\ S5

2
2%

¢ = () (greedy)

7 | 1
230 300 750 1000

€ = () (greedy)

1 L)
250 S0 750 1000

Steps

Averaging — learning rule

* Tosimplify notation, let us focus on one action

* We consider only its rewards, and its estimate after n+1 rewards:

Ri+Ry+ ---+ Rp_1
n-1

* How can we do this incrementally (without storing all the rewards)?
* Could store a running sum and count (and divide), or equivalently:

Qn =

1
Qn—}—l — Qﬂ, + ; [Rn — Qn}

* This is a standard form for learning/update rules:

NewEstimate <— OldFEstimate + StepSize [Tsu',g'.i'r — {:)IE'EE,HTIIHJHH‘]

Derivation of incremental update

) n—1
1
= — | R —1 R;
n +(r n— 1 ;)
1 _
T
1
pr— ; (Rﬂ + ??'Qﬂ- — Q)
1
- Qn + E [Rn — Q]

Tracking a Non-stationary Problem

* Suppose the true action values change slowly over time

« then we say that the problem is nonstationary

In this case, sample averages are not a good idea (Why?)

Better is an “exponential, recency-weighted average™:
Qn—l—l — Qﬂ: + |:R?'|! — Q?‘E]
= (1 —a)"Q + Z a(l —a)" R,
i=1

where « is a constant, step-size parameter, 0 < a <1

There is bias due to @) that becomes smaller over time

Standard stochastic approximation
convergence conditions

* To assure convergence with probability |:

Z a,(a) = oo and Z &-E_(a} < 00
n=1 n=1
1
E+g., by = —
TL . o —p .
if apn=n"", pe(0,1)
not a, = — then convergence is

n? at the optimal rate:
O(1/y/n)

Optimistic Initial Values

* All methods so far depend on Q1(a), i.e.,they are biased.
So far we have used Qi(a) =0

» Suppose we initialize the action values optimistically (Qi(a) = 5), e.g.,on
the 10-armed testbed (with alpha= 0.1)

100% -
optimistic, greedy

Q=5 E=0

80% -

% 60% - realistic, !-greedy
Optimal Q=0 E=01
action 40% -
20% -
O% 1 1 1 1 1 |
0 200 400 600 800 1000

Upper Confidence Bound (UCB) action selection

® A clever way of reducing exploration over time
® Focus on actions whose estimate has large degree of uncertainty
® Estimate an upper bound on the true action values

® Select the action with the largest (estimated) upper bound

1 f
0g
A = a1gma}: Qila) + ¢
e
° l*J/ﬁfr«Bf‘»%Jﬂ'ﬂ o e by Fp A T i
i
A

T
Average | |f
reward

05+

0 250 500 750 1000

Steps

Complexity of UCB Algorithm

The UCB algorithm achieves logarithmic asymptotic total regret

tIim L: < 8logt A,
alA;>0

Gradient-Bandit Algorithms

® Let Hi(a) bea Iearnedupreferencel for taking action a

Hiq [.‘1,{: = H, I:.‘q.g::' + CE(RE — Fg}{l — ."I'tl:.‘q.t]:l..
Hipila) = Hy(a) — a(R, — Ri)m(a),

PT{J4.,§:G.} = W

Optimal
action

100%
8096 -
6096 -
4008 -
2098 + '

0%,

= m(a)

and

for all a # A,

Steps

o =0.1 o A AP
b with baseline
f,w"('“ o =04
& =01
& o without baseline
o =04
ZéQ) 5&!0 750 10]9@

Derivation of gradient-bandit algorithm

In exact gradient ascent:

IE [R]
() (1)

Hes1(a) = He(a) +

where:

ElR:] = Z me(b)q.(b).

b
OE[R] O
OH.(3) IH,(Zb: !]
B & me(b)
=2 +O)3n0)
_ . dme(b)
=2 @O XG0

where X; does not depend on b, because Ebg;%g = 0.

OE[R,] O e(b)
OH:(a) Z (9-(b) — Xo) OHy(3)

dms(b
— ZTt(b) q* —)3HtEa)) /’ﬂ't(b)

= E| (0.(A) - X, Zﬁfg) ()

dme(Ar)
dHe(a) /m t(A*)] !

where here we have chosen X; = R; and substituted R: for g«(At),
which is permitted because E[R:|At] = g«(A¢).

For now assume: 3;%2} = m¢(b)(1.=p — m¢(a)). Then:

_E| (R — R,)

= E[(Rr — -‘?r) ?Tr(At)(la:At — Wf(a))/ﬂt(l‘qt)]
= E[(R: — Re) (1aea, — m(3))].

Hei1(a) = He(a) + a(Re — Re) (1a=a, — m¢(a)), (from (1), QED)

Thus 1t remains only to show that

8 me(b)
OH,(3)

— me(b) (Lamp — me(a))-

Recall the standard quotient rule for derivatives:

0 [f(x)} - Te(x) - f(x) 5
Ox g(x)? '

Using this, we can write...

uotient Rule: 0 |f(x)| _ ﬁ;iﬂg
Q rale: [g{x}] _
Ome(b) O
SHf() aHr{ }J {b)
0
~ OH(a)

ohe(b)
Zk—1 ehe(c)
pee(t) o~k c he(b) 8 =g €™
(Zi_l Ehf{c])
3 h;{a} E{C — EhE(b}EhE{EJ JeX
— Z 2 (Er;x — Ex)

(Ec=l Eh‘{c])

1, pehe(®) ohe(b) ght(a)

N ey el (Zﬁzl ehr{CJ)E

= 1,—pm(b) — m(b)me(a)
= m¢(b) (10=p — 7(3))- (QED.)

Summary Comparison of Bandit Algorithms

15y
UCB__—— greedy with

_ optimistic

14} - 7 “Snitialization
/ \i - 0.1
Average ~

13} e-greedy —

reward I
: . gradient
overfirst | bandit
1000 steps
1.1}
]_ B

[
e L

1/128 1/64 1/32 1/16 1/8 1/4 1/2 1

a /e /[Qg

Conclusions

* These are all simple methods
* but they are complicated enough—we will build on them
* we should understand them completely
* there are still open questions
* Our first algorithms that learn from evaluative feedback
* and thus must balance exploration and exploitation

* Our first algorithms that appear to have a goal
—that learn to maximize reward by trial and error

