
Reinforcement Learning
or, 
Learning and Planning with Markov Decision Processes

295 Seminar, Winter 2018

Rina Dechter

Slides will follow David Silver’s, and Sutton’s book

Goals: To learn together the basics of RL. 

Some lectures and classic and recent papers from the literature

Students will be active learners and teachers
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Class page

Demo

Detailed demo
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http://www.ics.uci.edu/~dechter/courses/ics-295/winter-2018/
http://projects.rajivshah.com/rldemo/
https://www.youtube.com/watch?v=3TUZw1rlvXc&feature=youtu.be


Topics

1. Introduction  and Markov Decision Processes: Basic concepts. S&B chapters 1, 3. (myslides 2)

2. Planning Dynamic Programming – Policy Iteration, Value Iteration, S&B chapter 4, (myslides 3)

3. Monte-Carlo(MC) and Temporal Differences (TD):  S&B chapters 5 and 6, (myslides 4, myslides 5)

4. Multi-step bootstrapping: S&B chapter 7, (myslides 4, last part, slides 6 Sutton)

5. Bandit algorithms: S&B chapter 2, (myslides 7 , sutton-based)

6.  Exploration exploitation. (Slides: silver 9, Brunskill)

7. Planning and learning MCTS: S&B chapter 8, (slides Brunskill)

8. function approximations S&B chapter 9,10,11, (slides: silver 6, Sutton 9,10,11)

9. Policy gradient methods: S&B chapter 13, (slides: silver 7, Sutton 13)
10. Deep RL ???
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Resources

• Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

• UCL Course on Reinforcement Learning
David Silver 

• RealLife Reinforcement Learning

Emma Brunskill

• Udacity course on Reinforcement Learning: 

Isbell, Littman and Pryby
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http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.cs.cmu.edu/~ebrun/15889e/schedule.html
https://www.udacity.com/course/reinforcement-learning--ud600
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Lecture 1: Introduction to Reinforcement Learning

Course OutlineCourse Outline, Silver

Part I: Elementary Reinforcement Learning

1 Introduction to RL

2 Markov DecisionProcesses

3 Planning by Dynamic Programming

4 Model-Free Prediction

5 Model-Free Control

Part II: Reinforcement Learning inPractice

1 Value FunctionApproximation

2 Policy GradientMethods

3 Integrating Learning and Planning

4 Exploration andExploitation

5 Case study - RL in games
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Introduction to Reinforcement 

Learnintg

Chapter 1 S&B
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Reinforcement Learning
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Learn a behavior strategy (policy) that maximizes the long term 

Sum of rewards in an unknown and stochastic environment (Emma Brunskill: )

Planning under Uncertainty 

Learn a behavior strategy (policy) that maximizes the long term 

Sum of rewards in a known stochastic environment (Emma Brunskill: )



Reinforcement Learning

295, Winter 2018 8



Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

Environments
Agent and Environment

observation

reward

action

At

Rt

Ot



Lecture 1: Introduction to Reinforcement Learning

About RLBranches of Machine Learning

Reinforcement  
Learning

Supervised  
Learning

Unsupervised  
Learning

Machine  
Learning
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

Reward
Sequential Decision Making

Goal: select actions to maximise total future reward

Actions may have long term consequences  

Reward may bedelayed

It may be better to sacrifice immediate reward to gain more  

long-term reward

Examples:

A financial investment (may take months to mature)  

Refuelling a helicopter (might prevent a crash in several hours)  

Blocking opponent moves (might help winning chances many  

moves from now)

• My pet project: The academic commitment problem. 

Given outside requests (committees, reviews, talks, 

teach…) what to accept and what to reject today?
11
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Lecture 1: Introduction to Reinforcement Learning

Problems within RLAtari Example: Reinforcement Learning

observation

reward

action

At

Rt

Ot

Rules of the game are  

unknown

Learn directly from  

interactive game-play

Pick actions on  

joystick, see pixels  

and scores
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

Environments
Agent and Environment

observation

reward

action

At

Rt

Ot
At each step t the agent:  

Executes action At  

Receives observation Ot  

Receives scalar rewardRt

The environment:

Receives action At

Emits observationOt+1

Emits scalar reward Rt+1

t increments at env. step
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Markov Decision Processes
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In a nutshell:

Policy: 𝜋 𝑠 → 𝑎



Value and Q Functions
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Most of the story in a nutshell:
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Most of the story in a nutshell:







Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

State
History and State

The history is the sequence of observations, actions, rewards

Ht = O1,R1, A1, ...,At−1, Ot ,Rt

i.e. all observable variables up to time t

i.e. the sensorimotor stream of a robot or embodied agent  

What happens next depends on thehistory:

The agent selects actions

The environment selects observations/rewards

State is the information used to determine what happens next  

Formally, state is a function of the history:

St =  f (Ht)
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Lecture 1: Introduction to Reinforcement Learning

The RL Problem 

State
Information State

An information state (a.k.a. Markov state) contains all useful  

information from the history.

Definition

A state St is Markov if and only if

P[St+1 | St ] =  P[St+1 | S1, ...,St ]

“The future is independent of the past given the present”

H1:t → St → Ht+1:∞

Once the state is known, the history may be thrownaway

i.e. The state is a sufficient statistic of the future

The environment state S is Markovt

The history Ht is Markov 27



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMajor Components of an RL Agent

An RL agent may include one or more of these components:

Policy: agent’s behaviourfunction

Value function: how good is each state and/or action  

Model: agent’s representation of the environment
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentPolicy

A policy is the agent’s behaviour

It is a map from state to action, e.g.  

Deterministic policy: a = π(s)

Stochastic policy: π(a|s) =  P[At =  a|St = s]
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentValue Function

Value function is a prediction of future reward  

Used to evaluate the goodness/badness of states  

And therefore to select between actions,e.g.

vπ(s) = Eπ Rt+1 + γRt+2 + γ2Rt+3 + ... | St = s
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentModel
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example

Start

Goal

Rewards: -1 per time-step  

Actions: N, E, S, W  

States: Agent’s location
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Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Policy

Start

Goal

Arrows represent policy π(s) for each state s 33



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Value Function

-14 -13 -12 -11 -10 -9

-16 -15 -12 -8

-16 -17 -6 -7

-18 -19 -5

-24 -20 -4 -3

-23 -22 -21 -22 -2 -1

Start

Goal

Numbers represent value vπ (s) of each state s 34



Lecture 1: Introduction to Reinforcement Learning

Inside An RL AgentMaze Example: Model

-1 -1 -1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1

-1

-1 -1

-1 -1

Start

Goal

Agent may have an internal  

model of the environment

Dynamics: how actions  

change the state

Rewards: how muchreward

from each state

The model may be imperfect

Grid layout represents transition model Pa  
ss‘

a
sNumbers represent immediate reward R from each state s

(same for all a)
295, Winter 2018 35



Lecture 1: Introduction to Reinforcement Learning

Problems within RLLearning and Planning

Two fundamental problems in sequential decision making  

Reinforcement Learning:

The environment is initiallyunknown

The agent interacts with the environment  

The agent improves itspolicy

Planning:

A model of the environment is known

The agent performs computations with its model (without any  

external interaction)

The agent improves its policy

a.k.a. deliberation, reasoning, introspection, pondering,  

thought, search
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Lecture 1: Introduction to Reinforcement Learning

Problems within RLPrediction and Control

Prediction: evaluate the future

Given a policy

Control: optimise the future

Find the best policy
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Markov Decision Processes

Chapter 3 S&B
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MDPs

• The world is an MDP (combining the agent and the 
world): give rise to a trajectory

S0,A0,R1,S1,A1,R2,S2,A3,R3,S3,…

• The process is governed by a transition function

• Markov Process (MP)

• Markov Reward Process (MRP)

• Markov Decision Process (MDP)

295, Winter 2018 40



Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Property
Markov Property

“The future is independent of the past given the present”

Definition

A state S t  is Markov if and only if

P [St+1 | S t ] = P [St+1 | S1, ...,S t ]

The state captures all relevant information from the history  

Once the state is known, the history may be thrown away

i.e. The state is a sufficient statistic of the future

295, Winter 2018 42



Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Property
State Transition Matrix

where each row of the matrix sums to 1.295, Winter 2018 43



Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Chains
Markov Process

A Markov process is a memoryless random process, i.e. a sequence  

of random states S1, S2, ... with the Markov property.

Definition

A Markov Process (or Markov Chain) is a tuple (S, P )   

S is a (finite) set of states

P  is a state transition probability matrix,

Pss' = P [St+1 = s' | S t  = s]
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Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Chains
Example: Student Markov Chain, a transition graph

0.5 0.2

0.4

SleepFacebook

Class 2
0.8

0.9

0.1

Pub

Class 3 
0.6

PassClass 1 0.5

0.4
0.2

0.4

1.0
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Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Chains
Example: Student Markov Chain Episodes

Sleep

0.9

Facebook

0.1

Pub

Pass

0.5 0.2

Class 1 0.5 Class 2
0.8

Class 3
0.6

0.4

0.2
0.4

0.4

1.0

Sample episodes for Student Markov  
Chain starting from S1 = C1

S1,S2, ...,ST

C1 C2 C3 Pass Sleep  

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep

C1 FB FB C1 C2 C3 Pub C1 FB FB
FB C1 C2 C3 Pub C2 Sleep
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Lecture 2: Markov DecisionProcesses

Markov Processes 

Markov Chains
Example: Student Markov Chain Transition Matrix

0.5 0.2

SleepFacebook

0.9

0.1

Pub

Class 2
0.8

Class 3
0.6

0.4

PassClass 1 0.5

0.4
0.2

0.4

1.0
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Markov Decision Processes

• States: S

• Model: T(s,a,s’) = P(s’|s,a)

• Actions: A(s), A

• Reward: R(s), R(s,a), R(s,a,s’)

• Discount: 𝛾

• Policy: 𝜋 𝑠 → 𝑎

• Utility/Value: sum of discounted rewards.

• We seek optimal policy that maximizes the 
expected total (discounted) reward
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

MRP
Example: Student MRP

R = +10

0.5 0.2

0.4

Sleep

0.9

Facebook

0.1

R = +1

R = -1 R = 0

Pub

Class 2
0.8

Class 3
0.6 PassClass 1 0.5

R = -2 R = -2 R = -2

0.4
0.2

0.4

1.0
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Goals, Returns and Rewards

• The agent’s goal is to maximize the total 
amount of rewards it gets (not immediate 
ones), relative to the long run.

• Reward is -1 typically in mazes for every time 
step

• Deciding how to associate rewards with states 
is part of the problem modelling. If T is the 
final step then the return is:
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Return
Return

Definition

The return Gt is the total discounted reward from time-step t.

The discount γ ∈ [0, 1] is the present value of future rewards  

The value of receiving reward R after k + 1 time-steps is γk R.  

This values immediate reward above delayed reward.

γ close to 0 leads to ”myopic” evaluation
γ close to 1 leads to ”far-sighted” evaluation
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Return
Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards  

Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earn more 

interest than delayed rewards

Animal/human behaviour shows preference for immediate  

reward

It is sometimes possible to use undiscounted Markov reward  

processes (i.e. γ = 1), e.g. if all sequences terminate.
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Value Function
Value Function

The value function v (s) gives the long-term value of state s

Definition

The state value function v (s) of an MRP is the expected return  

starting from state s

v (s) = E[Gt  | S t  = s]
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Value Function
Example: Student MRP Returns

Sample returns for Student MRP:
Starting from S1 = C1 with γ = 1

2

G1 = R2 + γR3 + ...+ γT−2RT

C1 C2 C3 Pass Sleep  

C1 FB FB C1 C2 Sleep

C1 C2 C3 Pub C2 C3 Pass Sleep  C1 

FB FB C1 C2 C3 Pub C1 ...  FB 

FB FB C1 C2 C3 Pub C2 Sleep
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman Equation
Bellman Equation for MRPs

The value function can be decomposed into two parts:  

immediate reward Rt+1

discounted value of successor state γv (St+1)

v(s) = E [Gt | S t = s]

= E [ R + γR 2
t +1 t +2 t +3 t+ γ R + ... | S = s]

= E [Rt+1 + γ (Rt+2 + γRt+3 + ...) | S t = s]

= E [Rt+1 + γGt+1 | S t  = s]

= E [Rt+1 + γv(St+1) | S t = s]
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman Equation
Bellman Equation for MRPs (2)
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman Equation
Example: Bellman Equation for Student MRP

10-13 1.5 4.3

0-23

R = +10

0.5 0.2

0.8 0.6

0.4

0.9

0.1

R = +1

R = -1 R = 0

0.8

0.5

R = -2 R = -2 R = -2

0.4
0.2

0.4

1.0

4.3 = -2 + 0.6*10 + 0.4*0.8

57



Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman EquationBellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v = R + γPv

where v is a column vector with one entry per state
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Lecture 2: Markov DecisionProcesses

Markov Reward Processes 

Bellman Equation
Solving the Bellman Equation

The Bellman equation is a linear equation  

It can be solved directly:

v = R + γPv

(I − γP) v = R

v = (I − γP)−1 R

Computational complexity is O(n3) for n states  

Direct solution only possible for small MRPs

There are many iterative methods for large MRPs, e.g.
Dynamic programming  
Monte-Carlo evaluation  
Temporal-Difference learning295, Winter 2018 59



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

MDP
Markov Decision Process
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

MDP
Example: Student MDP

R = -2 R = -2

Study

Facebook
R = -1

Study

Sleep
R =0

Pub
R =+1

0.4
0.2

0.4

Study

R = +10

Facebook
R = -1

Quit
R =0
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Policies
Policies and Value functions (1)

Definition

A policy π is a distribution over actions givenstates,

π(a|s) = P [At = a | S t  = s]

A policy fully defines the behaviour of an agent

MDP policies depend on the current state (not the history)

i.e. Policies are stationary (time-independent),
At ∼ π(·|St ), ∀t > 0
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Policy’s and Value functions
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Lecture 1: Introduction to Reinforcement Learning

Problems withinRLGridworld Example: Prediction

3.3 8.8 4.4 5.3 1.5

1.5 3.0 2.3 1.9 0.5

0.1 0.7 0.7 0.4 -0.4

-1.0 -0.4 -0.4 -0.6 -1.2

-1.9 -1.3 -1.2 -1.4 -2.0

A B

+5

+10 B’

A’
Actions

(a) (b)

What is the value function for the uniform random policy?

Gamma=0.9. solved using EQ. 3.14

Exercise: show 3.14 holds for each state in Figure (b).

Figure 3.3

Actions: up, down, left, right. Rewards 0 unless off the grid with reward -1

From A to A’, rewatd +10. from B to B’ reward +5

Policy:  actions are uniformly random.
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Value Functions
Value Function, Q Functions

Definition

The state-value function vπ (s) of an MDP is the expected return  

starting from state s, and then following policy π

vπ (s) = Eπ [Gt | S t  = s]

Definition

The action-value function qπ (s, a) is the expected return

starting from state s, taking action a, and then following policy π

qπ(s,a) = Eπ [Gt | S t = s,At = a]

295, Winter 2018 65



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Expectation Equation
Bellman Expectation Equation

The state-value function can again be decomposed into immediate  

reward plus discounted value of successor state,

vπ (s) = Eπ [Rt+1 + γvπ (St+1) | S t  = s]  

The action-value function can similarly be decomposed,

qπ(s,a) = Eπ [Rt+1 + γqπ(St+1,At+1) | S t = s,At = a]
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Expressing the functions recursively, 

Will translate to one step look-ahead.



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Expectation Equation
Bellman Expectation Equation for V π
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Expectation Equation
Bellman Expectation Equation for Qπ
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Expectation Equation
Bellman Expectation Equation for vπ (2)
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Expectation Equation
Bellman Expectation Equation for qπ (2)
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Optimal Policies and Optimal Value Function

Definition

The optimal state-value function v∗(s) is the maximum value  

function over all policies

π
∗ πv (s) = max v (s)

The optimal action-value function q∗(s, a) is the maximum  

action-value function over all policies

π∗ π
q (s, a) = max q (s, a)

The optimal value function specifies the best possible  

performance in the MDP.

An MDP is “solved” when we know the optimal value function.



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Optimal Value Function for Student MDP

6 8 10
R = -2 R = -2

Study

Facebook
R = -1

Study

Sleep
R =0

Pub
R =+1

0.4
0.2

0.4

Study

R = +10

Quit
R =0

Facebook v*(s) for γ =1
R = -1

6 0
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Optimal Action-Value Function for Student MDP

6 8 10

06

0.4
0.2

0.4

q*(s,a) for γ =1Facebook
R = -1

q* =5

Quit
R =0
q*=6

R =-2

q*=6

Facebook
R =-1
q*=5

Study

R =-2

q*=8

Sleep
R =0
q* =0

Study

Study
R = +10

q* =10

Pub
R =+1

q*=8.4
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Optimal Policy

Define a partial ordering over policies

π ≥ π' if vπ(s) ≥ vπ'(s),∀s

Theorem

For any Markov Decision Process

There exists an optimal policy π∗ that is better than or equal  

to all other policies, π∗ ≥ π, ∀π

All optimal policies achieve the optimal value function,  

vπ∗ (s) = v∗(s)

All optimal policies achieve the optimal action-value function,  

qπ∗(s,a) = q∗(s,a)
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Optimal Value Functions
Finding an Optimal Policy

An optimal policy can be found by maximising over q∗(s, a),

There is always a deterministic optimal policy for any MDP  

If we know q∗(s, a), we immediately have the optimal policy
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Bellman Equation for V* and Q*
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V*(s) q*(s; a)



Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Optimality EquationExample: Bellman Optimality Equation in Student MDP

6 8 10
R = -2 R = -2

Study

Facebook
R = -1

Study

Sleep
R =0

Pub
R =+1

0.4
0.2

0.4

Study

R = +10

Quit
R =0

Facebook 6 = max {-2 + 8, -1 + 6}
R = -1

6 0
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Lecture 1: Introduction to Reinforcement Learning

Problems withinRLGridworld Example: Control

a) gridworld V*

22.0 24.4 22.0 19.4 17.5

19.8 22.0 19.8 17.8 16.0

17.8 19.8 17.8 16.0 14.4

16.0 17.8 16.0 14.4 13.0

14.4 16.0 14.4 13.0 11.7

A B

+5

+10 B’

A’

π*b) v c) ⇡

What is the optimal value function over all possible policies?  

What is the optimal policy?

Figure 3.6
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Lecture 2: Markov DecisionProcesses

Markov Decision Processes 

Bellman Optimality Equation
Solving the Bellman Optimality Equation

Bellman Optimality Equation is non-linear  

No closed form solution (in general)  Many 

iterative solution methods

Value Iteration  
Policy Iteration  
Q-learning  
Sarsa
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Planning by Dynamic
Programming

Sutton & Barto, 

Chapter 4
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Lecture 3: Planning by Dynamic Programming

IntroductionPlanning by Dynamic Programming

Dynamic programming assumes full knowledge of the MDP  

It is used for planning in an MDP

For prediction:
Input: MDP (S, A , P , R , γ) and policy π

or: MRP (S, Pπ , Rπ , γ)
Output: value function vπ

Or for control:
Input: MDP (S, A , P , R , γ)
Output: optimal value function v∗

and: optimal policy π∗
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Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Iterative Policy Evaluation
Policy Evaluation (Prediction)

Problem: evaluate a given policy π

Solution: iterative application of Bellman expectation backup

v1 →  v2 →  ... → vπ

Using synchronous backups,  
At each iteration k + 1  

For all states s ∈ S

Update vk+1(s) from vk (s')  
where s' is a successor state of s

We will discuss asynchronous backups later

Convergence to vπ will be proven at the end of the lecture
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Iterative Policy Evaluations

295, Winter 2018 85

These  is a simultaneous linear equations in ISI unknowns and can be solved.

Practically  an iterative procedure until a foxed-point can be more effective

Iterative policy evaluation.



Iterative policy Evaluation
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Lecture 3: Planning by Dynamic Programming

Policy Evaluation

Example: Small Gridworld
Evaluating a Random Policy in the Small Gridworld

Undiscounted episodic MDP (γ = 1)  

Nonterminal states 1, ..., 14

One terminal state (shown twice as shaded squares)  

Actions leading out of the grid leave state unchanged  

Reward is −1 until the terminal state is reached  

Agent follows uniform random policy

π(n|·) = π(e|·) = π(s|·) = π(w |·) = 0.25
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Lecture 3: Planning by Dynamic Programming 

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld

Vk
Vk

k = 0

k = 1

k = 2

random
policy

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 -1.0

-1.0 -1.0 -1.0 0.0

0.0 -1.7 -2.0 -2.0

-1.7 -2.0 -2.0 -2.0

-2.0 -2.0 -2.0 -1.7

-2.0 -2.0 -1.7 0.0

vk for the  

Random Policy

Greedy Policy

w.r.t. vk
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Lecture 3: Planning by Dynamic Programming 

Policy Evaluation

Example: Small Gridworld

Iterative Policy Evaluation in Small Gridworld (2)

k = 10



k = 3

optimal
policy

0.0 -2.4 -2.9 -3.0

-2.4 -2.9 -3.0 -2.9

-2.9 -3.0 -2.9 -2.4

-3.0 -2.9 -2.4 0.0

0.0 -6.1 -8.4 -9.0

-6.1 -7.7 -8.4 -8.4

-8.4 -8.4 -7.7 -6.1

-9.0 -8.4 -6.1 0.0

0.0 -14. -20. -22.

-14. -18. -20. -20.

-20. -20. -18. -14.

-22. -20. -14. 0.0

k = ∞
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Policy IterationPolicy Improvement

Given a policy π

Evaluate the policy π

vπ(s) = E [Rt+1 + γRt+2 + ...|St = s]

Improve the policy by acting greedily with respect to vπ

π' = greedy(vπ)

In Small Gridworld improved policy was optimal, π' = π∗

In general, need more iterations of improvement /  evaluation  

But this process of policy iteration always converges to π∗
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Lecture 3: Planning by Dynamic Programming

Policy IterationPolicy Iteration

Policy evaluation Estimate vπ

Iterative policy evaluation

Policy improvement Generate πI ≥ π

Greedy policy improvement
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Policy Iteration

Policy Improvement
Policy Improvement
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Lecture 3: Planning by Dynamic Programming

Policy Iteration

Policy Improvement
Policy Improvement (2)

If improvements stop,

qπ(s, π'(s)) = max qπ(s, a) = qπ(s, π(s)) = vπ(s)
a∈A

Then the Bellman optimality equation has been satisfied

vπ(s) = max qπ(s, a)
a∈A

Therefore vπ (s) = v∗(s) for all s ∈ S

so π is an optimal policy
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Policy Iteration

Extensions to Policy Iteration
Modified Policy Iteration

Does policy evaluation need to converge to vπ ?

Or should we introduce a stopping condition
e.g. E-convergence of value function

Or simply stop after k iterations of iterative policy evaluation?

For example, in the small gridworld k = 3 was sufficient to  

achieve optimal policy

Why not update policy every iteration? i.e. stop after k = 1

This is equivalent to value iteration (next section)
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Policy Iteration

Extensions to Policy Iteration
Generalised Policy Iteration

Policy evaluation Estimate vπ

Any policy evaluation algorithm

Policy improvement Generate π' ≥ π

Any policy improvement algorithm

295, Winter 2018 97



Lecture 3: Planning by Dynamic Programming

Value Iteration

Value Iteration in MDPs
Principle of Optimality

Any optimal policy can be subdivided into two components:  

An optimal first action A∗

Followed by an optimal policy from successor state S I

Theorem (Principle of Optimality)

A policy π(a|s) achieves the optimal value from state s,  

vπ (s) = v∗(s), if and onlyif

For any state s' reachable from s

π achieves the optimal value from state s', vπ (s') = v∗(s')
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Value Iteration

Value Iteration in MDPs
Deterministic Value Iteration
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Value Iteration

Value Iteration in MDPs
Example: Shortest Path

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

-1 -1 -1 -1

0 -1 -2 -2

-1 -2 -2 -2

-2 -2 -2 -2

-2 -2 -2 -2

0 -1 -2 -3

-1 -2 -3 -3

-2 -3 -3 -3

-3 -3 -3 -3

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -4

-3 -4 -4 -4

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -5

0 -1 -2 -3

-1 -2 -3 -4

-2 -3 -4 -5

-3 -4 -5 -6

g

Problem V1 V2 V3

V4 V5 V6 V7
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Value Iteration

Value Iteration in MDPs
Value Iteration

Problem: find optimal policy π

Solution: iterative application of Bellman optimality backup

v1 →  v2 →  ... → v∗

Using synchronous backups  
At each iteration k + 1  

For all states s ∈ S
Update vk+1(s) from vk (s')

Convergence to v∗ will be proven later

Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy
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Value Iteration

Value Iteration in MDPs
Value Iteration (2)
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Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Asynchronous Dynamic Programming

DP methods described so far used synchronous backups

i.e. all states are backed up in parallel

Asynchronous DP backs up states individually, in any order  

For each selected state, apply the appropriate backup

Can significantly reduce computation

Guaranteed to converge if all states continue to be selected
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Extensions to Dynamic Programming 

Asynchronous Dynamic ProgrammingAsynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

In-place dynamicprogramming

Prioritised sweeping

Real-time dynamicprogramming
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Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
In-Place Dynamic Programming
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Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Prioritised Sweeping
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Extensions to Dynamic Programming 

Asynchronous Dynamic Programming
Real-Time Dynamic Programming

Idea: only states that are relevant to agent

Use agent’s experience to guide the selection of states  

After each time-step St , At , Rt+1

Backup the state St
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Extensions to Dynamic Programming 

Full-width and sample backups
Full-Width Backups

DP uses full-widthbackups

For each backup (sync or async)  
Every successor state and action is  

considered

Using knowledge of the MDP transitions  
and reward function

DP is effective for medium-sized problems  

(millions of states)

For large problems DP suffers Bellman’s
curse ofdimensionality

Number of states n = |S| grows  

exponentially with number of state  
variables

Even one backup can be too expensive 111
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Extensions to Dynamic Programming 

Full-width and sample backups
Sample Backups

In subsequent lectures we will consider sample backups

Using sample rewards and sample transitions
(S, A, R, S ')

Instead of reward function R  and transition dynamics P

Advantages:

Model-free: no advance knowledge of MDP required
Breaks the curse of dimensionality through sampling
Cost of backup is constant, independent of n = |S|
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Extensions to Dynamic Programming 

Approximate Dynamic Programming
Approximate Dynamic Programming
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Lecture 3: Planning by Dynamic Programming

Contraction MappingValue Function ∞-Norm

s∈S

We will measure distance between state-value functions u and

v by the ∞-norm

i.e.  the largest difference between state values,

||u − v||∞ = max |u(s) − v(s)|
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Contraction MappingContraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an  

operator T (v ), where T is a γ-contraction,

T converges to a unique fixed point  

At a linear convergence rate of γ
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Contraction MappingConvergence of Iter. Policy Evaluation and Policy Iteration

The Bellman expectation operator T π has a unique fixed point  

vπ is a fixed point of T π (by Bellman expectation equation)  

By contraction mapping theorem

Iterative policy evaluation converges on vπ

Policy iteration converges on v∗
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Contraction MappingBellman Optimality Backup is a Contraction

Define the Bellman optimality backup operator T ∗,

T ∗(v) = max Ra + γPav
a∈A

This operator is a γ-contraction, i.e. it makes value functions  

closer by at least γ (similar to previous proof)

||T∗(u) − T ∗(v)||∞ ≤ γ||u − v||∞
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Contraction MappingConvergence of Value Iteration

The Bellman optimality operator T ∗ has a unique fixed point  

v∗ is a fixed point of T ∗ (by Bellman optimality equation)  By 

contraction mapping theorem

Value iteration converges on v∗
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