Reinforcement Learning
of,
Learning and Planning with Markov Decision Processes

295 Seminar, Winter 2018
Rina Dechter

Slides will follow David Silver’s, and Sutton’s book

Goals: To learn together the basics of RL.
Some lectures and classic and recent papers from the literature

Students will be active learners and teachers

Class page

Demo

_ 295, Winter 2018
Detailed demo

http://www.ics.uci.edu/~dechter/courses/ics-295/winter-2018/
http://projects.rajivshah.com/rldemo/
https://www.youtube.com/watch?v=3TUZw1rlvXc&feature=youtu.be

=

N

w

4

U

(@)

N

0o

9
1

Topics

. Introduction and Markov Decision Processes: Basic concepts. S&B chapters 1, 3. (myslides 2)

. Planning Dynamic Programming — Policy Iteration, Value Iteration, S&B chapter 4, (myslides 3)

. Monte-Carlo(MC) and Temporal Differences (TD): S&B chapters 5 and 6, (myslides 4, myslides 5)
. Multi-step bootstrapping: S&B chapter 7, (myslides 4, last part, slides 6 Sutton)

. Bandit algorithms: S&B chapter 2, (myslides 7, sutton-based)

. Exploration exploitation. (Slides: silver 9, Brunskill)

. Planning and learning MCTS: S&B chapter 8, (slides Brunskill)

. function approximations S&B chapter 9,10,11, (slides: silver 6, Sutton 9,10,11)

. Policy gradient methods: S&B chapter 13, (slides: silver 7, Sutton 13)
0. Deep RL ???

295, Winter 2018 2

Resources

Book: Reinforcement Learning: An Introduction
Richard S. Sutton and Andrew G. Barto

UCL Course on Reinforcement Learning
David Silver

Reallife Reinforcement Learning

Emma Brunskill
Udacity course on Reinforcement Learning:

Isbell, Littman and Pryby

295, Winter 2018

http://incompleteideas.net/book/bookdraft2017nov5.pdf
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
http://www.cs.cmu.edu/~ebrun/15889e/schedule.html
https://www.udacity.com/course/reinforcement-learning--ud600

References

Bertsekas, D. P. (2007a). Dynamic Programming and Optimal Control,
volume 1. Athena Scientific, Belmont, MA, 3 edition.

Bertsekas, D. P. (2007b). Dynamic Programming and Optimal Control,
volume 2. Athena Scientific, Belmont, MA, 3 edition.

Bertsekas, D. P. and Shreve, S. (1978). Stochastic Optimal Control
(The Discrete Time Case). Academic Press, New York.

Puterman, M. (1994). Markov Decision Processes — Discrete
Stochastic Dynamic Programming. John Wiley & Sons, Inc., New
York, NY.

Singh, S. P. and Yee, R. C. (1994). An upper bound on the loss from
approximate optimal-value functions. Machine Learning,
16(3):227-233.

295, Winter 2018

Course Outline, Silver

a Part |: Elementary Reinforcement Learning
g Introductionto RL
i Markov Decision Processes
g Planning by Dynamic Programming
K Model-Free Prediction
g Model-Free Control

s Part ll: Reinforcement Learning in Practice
Value Function Approximation

Policy Gradient Methods

Integrating Learning and Planning
Exploration and Exploitation

Casestudy - RL in games

ERERRE

295, Winter 2018 5

295, Winter 2018

Reinforcement Learning

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in an unknown and stochastic environment (Emma Brunskill:)

Planning under Uncertainty

Learn a behavior strategy (policy) that maximizes the long term
Sum of rewards in a known stochastic environment (Emma Brunskill:)

Reinforcement Learning

4) Reward
4{ System
_ J State
-~ N
Action -
Controller
N J

295, Winter 2018

Agent and Environment

= *I.—"—*f"“\\\
— B AN PR S
P G i AR
_,j.// e \ ' \ < \ _. \\
observation f‘ e W A O action
W \ g — ;

>
O

reward R,

Branches of Machine Learning

Supervised
Learning

Unsupervised
Learning

Machine
Learning

Reinforcement
Learning

95, Whttier 2018 10

Sequential Decision Making

Goal: select actions to maximise total future reward
Actions may have long term consequences

Reward may be delayed

It may be better to sacrifice immediate reward to gain more
long-term reward

m Examples:
m A financial investment (may take months to mature)
m Refuelling a helicopter (might prevent acrash in several hours)

® Blocking opponent moves (might help winning chances many
moves from now)

* My pet project: The academic commitment problem.
Given outside requests (committees, reviews, talks,

teach...) what to accept and what to reject today? .

EXamples: RODOTCS

Atari Example: Reinforcement Learning

observation

m Rules of the game are
unknown

m Learndirectly from
Interactive game-play

m Pick actions on
joystick, seepixels
and scores

295, Winter 2018 13

Agent and Environment

XY
f{ /,_4{ r 13 \,* (\
observation ;‘ & ‘:/_.)_ R i{‘i{ action
?{/. 1 - —L // .
o A St e A m At eachstep t the agent:

a EXecutes action A;
a Receives observation O;
m Recelves scalar rewardR;

m The environment:
m Recelvesaction A;
m Emits observation O 1
m Emits scalar reward R; 1

m tincrements at env. step

295, Winter 2018 14

Markov Decision Processes

In a nutshell:

MDP is a tuple (S,A,P,R,y)

Set of states S

Start state s,

Set of actions A

Transitions P(s’|s,a) (or T(s,a,s’))
Rewards R(s,a,s’) (or R(s) or R(s,a)
Discount y
Policy = Choice of action for each state
Utility / Value = sum of (discounted) rewards

Policy: n(s) - a

Value and Q Functions

Most of the story in a nutshell:

* Value of a Policy
V()= PS5, () R(s. 7(5),8)+ V7 (s")

0" (s,a)=). _ p(s'|s,a) R(s.a,s)+)V (s")]
* Optimal Value & Optimal Policy
V*(s,)= maaX(ZHSp(SJ s, a)[R(S, (), 8"+ yV * (s,)])

=max, Q*(s,a)

X 71"_‘:_(_@ =argmax_ QO *(s,a)

Most of the story in a nutshell:

Bellman Equation

rr)=max(X, pls |50 R 2(s).8) 7 (s))

* Holds for V*
 Inspires an update rule

295, Winter 2018 18

Most of the story in a nutshell:

Value lteration

L. Initialize V (s) for all states s,

2. k=2

3. While k < desired horizon or (if infinite
horizon) values have converged

For all s,

is)=max(Y, pls; |5, R 760,50 77, (s))
s =argmax(X, p(s |, Rs.7(6).8)+ 7,5

295, Winter 2018 19

Most of the story in a nutshell:

Will Value lteration Converge?

* Yes, if discount factoris <1 orend upin a
terminal state with probability 1

* Bellman equation is a contraction

* |[f apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each

Most of the story in a nutshell:

Bellman Operator is a Contraction

| V-V’|| = Infinity norm

(find max diff |BV - BV =

Over all states)

<

<y

o

= ymax
a

max_zsjesp(s_f |87 ﬂ)V(Sf)_ZsJ.Esp(Sf |5;: a)V'(Sf)}

mt?x[R(S, a)-+ ;/ZS . ps; | s, a)lV(s,)}

—mﬂaX[R(s, a)-72, PG 15.a)(s)

2, P10V (s)- V'(s,,))]‘

<ymaxy, pls, |5, @[V (s)-V'Gs))
< }/1133}{2_%5;?(3}- |SJ-,£I)HV— V'H

A & -

295, Winter 2018 21

mEX[R(S’ a)’“VZSJE&,P(S; |S;‘ 5a)V(SJ')_R(Saa)"'}’ZSIESP(SJ ‘S[- ,ﬂ)V'(Sj)]

Most of the story in a nutshell:

Properties of Contraction

* Only has 1 fixed point

If had two, then would not get closer when apply
contraction function, violating definition of
contraction

« When apply contraction function to any argument,
value must get closer to fixed point

Fixed point doesn’'t move
Repeated function applications yield fixed point

295, Winter 2018 22

Most of the story in a nutshell:

Value lteration Converges

 |f discount factor < 1
 Bellman is a contraction

« Value iteration converges to unique
solution which is optimal value function

ii.org-about-the-artifi.. €| CS 175 Projects in Al (Sprin... B precog meetings and relat

)
udacity.com-course-reinfor... € # Photo books - Google Pho... &%

Gl

WUAT IS TWE SW EST
SEQVENZ GLTNAG

2
FLom- Starg W P&l

e

«
o

U’PJ DOW (\L/ L ET ; Q/\C-:.H'T

003 7 227 T ——— : T —— . @ £ Youlube I3

” : 4 i e Q. i
- - 0 - 2] ~ : o
&' Inbox - dec... e Reinforcem... (C))) 31 5 %Skype [2] /| Adobe Acr a WinEdt 10 P3 RL1.pptx 12/14/20

} A0) LARAL) . - ’
t y | i‘l'| in S (((L note O« oodle Phe))
| Al | nin
| | D re ‘M&YH'"IIH]' J'I’I!‘ll' ‘l")’i‘/’ | f
F I COUre remior P
) DOOYS Goog Ph

The World - 2 3

QU\LY

p— 7777 | o VAT s g CguadbiuTy OF

7 _N o ool
2 B

Sg QUENCE
LGHT NGHT DeuT 2

:,,—/4,{‘_‘-— _)p UP

e 9:41 AM
™ . [A
%skype (]... M,. n WinEdt 10... BRI RLIpPbC - o m017

‘ Inbox - dec... e Reinforcem...

History and State

m The history is the sequence of observations, actions, rewards
Ht — O] ; R] ; A] ; ...,At—] ; Ot,Rt

m I.e. all observable variables up to time t
m I.e. the sensorimotor stream of arobot or embodied agent
m What happens next depends on the history:

m The agent selects actions
m The environment selects observations/rewards

m State is the information usedto determine what happens next
m Formally, state is afunction of the history:

5t= f(Ht)

295, Winter 2018 26

Information State

An information state (a.k.a. Markov state) contains all useful
iInformation from the history.

Definition
A state S; is Markov if and only if

P[5t+1 |St] — P[St+1 |51, ---,St]

m “The future is independent of the past given the present”
H]:t—’ St — Ht+l L 00

m Once the state is known, the history may be thrown away
m i.e. The state is a sufficient statistic of the future
m The environment state S;is Markov

m The history H:; is Markov 27

Major Components of an RL Agent

= An RL agent may include one or more of these components:
m Policy: agent’s behaviourfunction
m Value function: how good is each state and/or action
m Model: agent’s representation of the environment

295, Winter 2018 28

A policy Is the agent’s behaviour
It is amap from state to action, e.g.

Deterministic policy: a= T1(s)
Stochastic policy: Tt(als) = P[A:= a|S:= 5]

295, Winter 2018 29

Value Function

" Value function is aprediction of future reward
" Usedto evaluate the goodness/badness of states
" And therefore to select between actions, e.g.

Vi(S) = EnRex1 + YRe42 + Y2Res3 + . [St =5

295, Winter 2018 30

m A model predicts what the environment will do next
m P predicts the next state

m R predicts the next (immediate) reward, e.g.

P;js! =]P)[Sf_|_1 = Srr | Sf — 5, At = 3]
Rg :E[Rt—l—l ‘ St = 5._141; = 3]

295, Winter 2018 31

Maze Example

Start

s Rewards: -1 per time-step
s Actions: N, E,S,W
a States: Agent’s location

Goal

295, Winter 2018 32

Maze Example: Policy

m Arrows represent policy Tt(s) for each state s -

Maze Example: Value Function

Start |-

m Numbers represent value v;;(s) of each state s ”

Maze Example: Model

m Agent may have an internal
model of the environment

m Dynamics: how actions
change the state

m Rewards: how much reward
from each state

m The model may be imperfect

a Grid layout represents transition model P,

m Numbers represent immediate reward R? from each state s

(same for all a)
295, Winter 2018 35

Learning and Planning

Two fundamental problems in sequential decision making

a Reinforcement Learning:

m The environment is initially unknown
m The agentinteracts with the environment
m The agentimproves its policy

m Planning:
m A model of the environment is known
m The agent performs computations with its model (without any
external interaction)
m The agentimproves its policy

m a.k.a. deliberation, reasoning, introspection, pondering,
thought, search

295, Winter 2018 36

Prediction and Control

m Prediction: evaluate the future
m Given apolicy

m Control: optimise the future
m Find the best policy

295, Winter 2018 37

295, Winter 2018

The RL Interface

Agent
A
| State, Reward, Action,
ngu!us, Gain, Payoff, Response,
Situation Cost Control
Environment |¢——

(world)

* Environment may be unknown, nonlinear, stochastic and complex
* Agent learns a policy mapping states to actions
Seeking to maximize its cumulative reward in the long run

295, Winter 2018

MDPs

The world is an MDP (combining the agent and the
world): give rise to a trajectory

S0,A0,R1,51,A1,R2,52,A3,R3,S3,...
The process is governed by a transition function
p(s',r|s,a) = Pr{S;=s,R;=r|S;_1=s,A;_1=a},

Markov Process (MP)
Markov Reward Process (MRP)
Markov Decision Process (MDP)

Markov Property

1 | START

1 2 3 4

“The future is independent of the past given the present”

A state S is Markov if and only if
P[St+] | St] — P[St+] | S],...,St]

= 1he state captures all relevant information from the history
a Once the state is known, the history may be thrown away

m i.e. The state is a sufficient statistic of the future

295, Winter 2018 42

State Transition Matrix

For a Markov state s and successor state s’, the state transition
probability is defined by

Psss =P |Sti1 =5 | S¢ = 5|

State transition matrix P defines transition probabilities from all
states s to all successor states s’,

to

Pl]_ “ e P]_n
P = from '

Pn]_ . s Pnn

where each row of the matrix’sumis to 1. 4

Markov Process

A Markov process is a memoryless random process, i.e. a sequence
of random states S5, S», ... with the Markov property.
Definition
A Markov Process (or Markov Chain) is a tuple (S, P)
= S is a (finite) set of states

m P is a state transition probability matrix,
Pss= P [St+1 =5 |St =S]

295, Winter 2018 44

Example: Student Markov Chain, a transition graph

0.9<7
w Sleep |<e—

0.1 .
< 0.5 0.2 1.0
0.5 0.8—> 0.6—>
0.4

0.2
@ 0.4

295, Winter 2018 45

Example: Student Markov Chain Episodes

Sample episodes for Student Markov
Chain starting from S = C1

S1,82, ..., 57

s C1 C2 C3 Pass Sleep
= C1FB FB C1 C2 Sleep

m C1 C2 C3 Pub C2 C3 Pass Sleep

m CIFBFBC1C2C3PubCl1FBFB
FB C1 C2 C3 Pub C2 Sleep

295, Winter 2018 46

Example: Student Markov Chain Transition Matrix

Sleep

C1

c2

C3

P = Pass
Pub

FB
Sleep

295, Winter 2018

C1

c2
0.5

0.4

c3

0.8

0.4

Pass

0.6

Pub FEBE
0.5
0.4
0.9

Sleep

0.2

1.0

47

Markov Decision Processes

States: S

Model: T(s,a,s’) = P(s’|s,a)

Actions: A(s), A

Reward: R(s), R(s,a), R(s,a,s’)

Discount: y

Policy: m(s) — a

Utility/Value: sum of discounted rewards.

We seek optimal policy that maximizes the
expected total (discounted) reward

Example: Student MRP

0.0
0.1 =

R=-1 R=0

e

K}J

49

Goals, Returns and Rewards

 The agent’s goal is to maximize the total
amount of rewards it gets (not immediate
ones), relative to the long run.

 Reward is -1 typically in mazes for every time
step

* Deciding how to associate rewards with states
is part of the problem modelling. If T is the
final step then the return is:

Tf—R_f_ [+Rf+.’-‘+ﬂf+1+ —|—R’f'..

Return

The return Gt is the total discounted reward from time-step t.

Gt = Rr+1 + ’Y’Rr+2 + ... = Z ’VerJrkﬂ
k=0

a Ihe discount y €[0, 1] is the present value of future rewards

» The value of receiving reward R after k + 1 time-steps is y¥R.

= 1his values immediate reward above delayed reward.

m Y close to 0 leads to “myopic” evaluation
m Y cdoseto 1 leads to "far-sighted” evaluation

295, Winter 2018

Why discount?

Most Markov reward and decision processes are discounted. Why?

Mathematically convenient to discount rewards
Avoids infinite returns in cyclic Markov processes

Uncertainty about the future may not be fully represented

If the reward is financial, immediate rewards may earm more
interest than delayed rewards

Animal/human behaviour shows preference for immediate
reward

It is sometimes possible to use undiscounted Markov reward
processes (i.e. y = 1), e.q. if all sequences terminate.

295, Winter 2018

52

Value Function

The value function v (s) gives the long-term value of state s

Definition
The state value function v (s) of an MRP is the expected return
starting from state s

V(S) = E[Gt |St = S]

ve(s) = Eq[Gy | Si=s] = Eﬂ[Z’}"th—k+1

k=0

S‘t:s] , for all s € §,

295, Winter 2018 53

Example: Student MRP Returns

Sample returns for Student MRP'
Starting from S1 = C1l withy = 1,

Gi=R>+VRs+..+Vy 2Ry

C1 C2 C3 Pass Sleep vy = —2 — 2% % _2*%+10*% — —2.25
C1 FB FB C1 C2 Sleep v1:—2—1*%—1*%—2*%—2*% — —3.125
C1 C2 C3 Pub C2 C3 Pass Sleep CI Vl:_g_z*%_g*%_,_l*%_g*%m _ —3.41
FB FB C1C2C3PubCl... FB m=-—2—1xt—1xl-241_241

1= 2 4 8 6 - _—-3.20
FB FB C1 C2 C3 Pub C2 Sleep ’

295, Winter 2018 54

Bellman Equation for MRPs

The value function can be decomposed into two parts:
= immediate reward R

m discounted value of successor state yv (Si+1)

v(s) = E[Gt]| St = 5]
=E [RitrYR t+2+ V°Ris3+ ... |St=5]
= E[Ri+1 + V(Rt+2 + YRi+3 +...) | St = 5]
= E [Rt+1 + YGt+1 | St = 5]
= E[Rt+1 + yv(St+1) | St = 5]

295, Winter 2018 55

Bellman Equation for MRPs (2)

v(s) =Rs+ 7 Z Poorv(s')
s'eS

295, Winter 2018 56

Example: Bellman Equation for Student MRP

O 43=-2+0.6%10+0.4*0.8
0.9

(=) .

0

L.

(et

K}J

57

Bellman Equation in Matrix Form

The Bellman equation can be expressed concisely using matrices,

v= R+ yPv

where v is a column vector with one entry per state

295, Winter 2018 58

Solving the Bellman Equation

= 1he Bellman equation is a linear equation
s It can be solved directly:

v= R+ yPv
(I —yP) v=R
v=(l-yP) 'R

s Computational complexity is O(n3) for n states
m Direct solution only possible for small MRPs
® There are many iterative methods for large MRPs, e.g.
® Dynamic programming
® Monte-Carlo evaluation
= Temporal-Difference learning 201¢ 59

Markov Decision Process

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

A Markov Decision Process is a tuple (S, A, P, R,~)
m S is a finite set of states

m A is a finite set of actions

m P is a state transition probability matrix,
P =P[St4y1=5"| S5t =s,Ar = 3
m R is a reward function, RZ =E[R;11 | 5t = s, Ar = 3

m 7 is a discount factor v € [0, 1].

295, Winter 2018 60

Example: Student MDP

Facebook

R=-1
Q

Facebook Sleep

R=-1 R=0
Study Study
R=-2 R=-2

Quit
R=0

295, Winter 2018 61

Policies and Value functions (1)

A policy 1 is a distribution over actions given states,

r(als) = P [Air= a | St =]

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
At~ n(-|S), Vt>0

295, Winter 2018 62

Policy’s and Value functions

Ux(8) = EA[Gy | Sp=s]

=E;[Riy1 +7Gis1 | Se=5] (by (3.9))
- Z m(als) Z Z p(s',r|s,a) [?’ + VEa[Ges1|Se1=4]
= Z m(als) Z p(s’,r|s,a) {r‘ + ’f}'L’,L-{SF}}._ for all s € §, (3.14)
5
' a
p r

OO0 OO O OO¢

Backup diagram for v,

295, Winter 2018 63

Gridworld Example: Prediction

Actions: up, down, left, right. Rewards 0 unless off the grid with reward -1
From Ato A, rewatd +10. from B to B’ reward +5

Policy: actions are uniformly random.

Al |B. 3.3/ 88| 44/53|15
\ +5 1.5/3.0| 2.31.9/05
+1c) B’ 0.1/07| 0.7 0.4/-0.4

-1.0-0.4/-0.4-0.6/-1.2

AKX Actions 1.9/-1.3/-1.2-1.4/-2.0

(a) (b)

What is the value function for the uniform random policy?
Gamma=0.9. solved using EQ. 3.14

Exercise: show 3.14 holds for each state in Figure (b). Ny

Value Function, Q Functions

The state-value function v (s) of an MDP is the expected return
starting from state s, and then following policy 7

Vn(S) = Ex [Gt|5t =S]

Definition
The action-value function g (s, a) is the expected return
starting from state s, taking action a, and then following policy 7

gr(s,a) = Ex[Gt| St =5, At = @]

295, Winter 2018 65

Bellman Expectation Equation

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

VJT(S) = Ex [Rt—H + YVJT(SHl) | St = 5]

The action-value function can similarly be decomposed,

Gr(s, @) = Ex [Ri+1 + yqn(St+1, At+1) | St = s, Ay = d]

Expressing the functions recursively,
Will translate to one step look-ahead.

295, Winter 2018 66

Bellman Expectation Equation for V 7

Ur(S) ¢S

qr(s,a) < a

vn(s) = 3 (als)gx(s. a)

ac A

295, Winter 2018 67

Bellman Expectation Equation for Q"

qﬁ(sz a) — Rg T Z Ps?s" V’?T(Sf)

s’'eS

295, Winter 2018 68

Bellman Expectation Equation for v (2)

va(s) = " w(als) (Ri 1 S P2 vw(s’))

ac A s'eS

295, Winter 2018 69

Bellman Expectation Equation for g, (2)

Ir(S,0) < 5,0

qr(s",a") < a

qﬂ(st a) :R§+?Z 5?5" Z ﬂ(8’|5")qw(5"?a’)

s'eS a'eA

295, Winter 2018 70

Optimal Policies and Optimal Value Function

The optimal state-value function v«(s) is the maximum value
function over all policies

v(s) = max vLs)

The optimal action-value function q«(s, a) is the maximum
action-value function over all policies

q(s, a) = max q (s, a)

= 1he optimal value function specifies the best possible
performance in the MDP.
= An MDP is “solved” when we know the optimal value function.

Optimal Value Function for Student MDP

Facebook Q vx(s) for y =1
R=-1

Facebook
R=-1

72

Optimal Action-Value Function for Student MDP

Facebook g=(s,a) for y=1
R=-1
Ox =5

73

Optimal Policy

Define a partial ordering over policies

= if vz(s) = vy (s), Vs

For any Markov Decision Process

m There exists an optimal policy iy that is better than or equal
to all other policies, rn« = r, Vn

m All optimal policies achieve the optimal value function,
Vi (S) = Vi(s)

m All optimal policies achieve the optimal action-value function,
Gr«(S, @) = g«(s, a)

295, Winter 2018 74

Finding an Optimal Policy

An optimal policy can be found by maximising over g«(s, a),
1 if a=argmax qg«(s, a)

ﬂ*(a|5) — acA
0 otherwise

m There is always a deterministic optimal policy for any MDP
m Ifweknow g«(s, a), weimmediately have the optimal policy

295, Winter 2018 75

Bellman Equation for V* and QF

('U*} 5 {q*] S,
- SI'

O, ¢ !!n JHHI-J

O C‘S ¢ » o ea

Figure 3.5: Backup diagrams for v. and q.

V*(s) = mfxz p(s’,r|s,a)[r +yv.(s')]. q*(s; a)= Z-p{s’;ﬂ&‘a} [r +ymaxg.(s’,a)|.

295, Winter 2018

77

Example: Bellman Optimality Equation in Student MDP

Facebook Q 6 = max {-2 + 8, -1 + 6}
R=-1

Facebook
R=-1

Study

295, Winter 2018 78

Gridworld Example

: Control

A B 22.0| 24.4/ 22.0119.4/17.5
\ +5 19.8|22.0/19.817.8/16.0
+1c3 B’ 17.8/19.8 17.8 16.0|14.4
/ 16.0| 17.8 16.0 14.4/13.0

A ﬂ/ 14.4| 16.0 14.413.0(11.7

a) gridworld b) V

What is the optimal value function over all possible policies?

What is the optimal policy?

295, Winter 2018

Lt e |
[P
Lt g Jdd
Lt d]Jdd
c)*

79

Solving the Bellman Optimality Equation

a Bellman Optimality Equation is non-linear
= No dosed form solution (in general) Many
s iterative solution methods

Value Iteration
Policy Iteration
Q-learning

[|
[|
[|
m Sarsa

295, Winter 2018 80

295, Winter 2018

Planning by Dynamic Programming

= Dynamic programming assumes full knowledge of the MDP
s Itis used for planningin an MDP

m For prediction:
= Input: MDP (S, A, P, R, y) and policy n
m or: MRP (S,P7,R7,y)
m Output: value function v,
m Or for control:
m Input: MDP (S, A, P, R, y)
a Output: optimal value function v
N and: optimal policy

295, Winter 2018 83

Policy Evaluation (Prediction)

m Problem: evaluate a given policy n
m Solution: iterative application of Bellman expectation backup

mVi— Vo— ...—> Vg
m Using synchronous backups,
a At eachiteration k + 1
m Forall statess e S
s Update vi+1(s) from vi(s)
m Where s’ is a successor state of s

m We will discuss asynchronous backups later
m Convergence to vy will be proven at the end of the lecture

295, Winter 2018 84

Iterative Policy Evaluations

ve(s) =BGy | Si=5]
= E[Riy1 +7Giq1 | Si=3]
— EE:R;+1 + YU [Sf.'.l;l Sf :5

= Z m(als) Z p(s',r|s, a) {r + "_:'L’,T{SF}] .

These is a simultaneous linear equations in ISI unknowns and can be solved.
Practically an iterative procedure until a foxed-point can be more effective

Vk41(8) = Ex[Rit1 +70k(Se41) | Se=4]

= Z 7(als) Z p(s’,r|s,a) [-r + f:-Lf;;(s’)] :

a

Iterative policy evaluation.

295, Winter 2018 85

Iterative policy Evaluation

Iterative policy evaluation

Input w, the policy to be evaluated
Initialize an array V(s) =0, for all s € 8T
Repeat
A0
For each s € &:
v+ V(s)
V(s) > ,m(als) X s . p(s',7]s,a) [r +1V ()]
A +— max(A, |[v —V(s)|)
until A < @ (a small positive number)
Output V = v,

295, Winter 2018

87

Evaluating a Random Policy in the Small Gridworld

1 2 3

4 |5 |6 |7 r= -1
on all transitions
8 9 [10 |11

actions

12 13 [14

= Undiscounted episodic MDP (y = 1)

s Nonterminal states 1, ..., 14

= One terminal state (shown twice as shaded squares)
m Actions leading out of the grid leave state unchanged
s Rewardis -1 until the terminal state is reached

= Agent follows uniform random policy

n(n|-) = n(e|-) = n(s|-) = n(w|-) = 0.25

295, Winter 2018

88

Iterative Policy Evaluation in Small Gridworld

VK for the Greedy Policy
Random Policy wrt. Vg

0.0/ 0.0/ 0.0] 0.0 Ll L
o 0.0/ 0.0/ 0.0 0.0 P I R A I P O random
= 0.0[0.0] 0.0] 0.0 NN N policy
0.0/ 00| 0.0] 0.0 P P D I
0.0[-1.0[-1.0[-1.0 DR R PO
-1.0[-1.0[-1.0|-1.0 U et lets
k=1 1.0[-1.0|-1.0[-1.0 IR PE I P
-1.0{-1.0[-1.0] 0.0 P AN PR AN N
0.0[-1.7]-2.0[-2.0 DR R PO
“1.7[-2.0]-2.0]-2.0
-2.0[-2.0]-2.0]-1.7 ENEE
-2.0{-2.0[-1.7] 0.0 L

295, Winter 2018 89

Iterative Policy Evaluation in Small Gridworld (2)

0.0(-2.4{-2.9|-3.0

— 4—1
-2.4]-2.9]-3.0[-2.9 N
k=3 S S a1
2.9/-3.0{-2.9]-2.4 I
-3.0[-2.9[-2.4[0.0 L]]
0.0[-6.1[-8.4]-9.0 R P \
_ -6.1]-7.7|-8.4|-8.4 Pl e | optimal
k=10 -8.4|-8.4|-7.7|-6.1 = policy
-9.0[-8.4[-6.1] 0.0 L o]

0.0(-14.1-20.|-22.

|4
~14.-18.[-20.]-20. 1
K=o 20.1-20.-18.|-14 W
20.[-20.]-18.|-14. o o,
22.-20.-14. 0.0 N .

295, Winter 2018 90

Policy Improvement

= Given a policy
m Evaluate the policy

Vi(s) = E[Re+1 + yRi+2 + ...|St = 5]
m Improve the policy by acting greedily with respect to v

n = greedy(vi)

= In Small Gridworld improved policy was optimal, ' = r*
= In general, need more iterations of improvement / evaluation

m But this process of policy iteration always converges to =

295, Winter 2018 91

Policy Iteration

E I E I E E
Mo — Upyg —F M —F Uy —F W2 —F -+ —F Te — Vs,

where — denotes a policy evaluation and — denotes a policy improvement. Each policy is guaranteed
to be a strict improvement over the previous one (unless it is already optimal). Because a finite MDP
has only a finite number of policies, this process must converge to an optimal policy and optimal value
function in a finite number of iterations.

Policy iteration (using iterative policy evaluation)

1. Initialization
V(s) € R and w(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A+0
For each s € &:
v+ V{(s)
V(s) ¢ Y p8", 7|8, 7(8) [r + 9V ()]
A+ max(A, |v—V(s)])
until A < # (a small positive number)

3. Policy Improvement
policy-stable + true
For each s € &:
old-action + m(s)
m(s) + argmax, » . .p(s',7|s, a)[r+1V(s)]
If old-action # w(s), then policy-stable + false
If policy-stable, then stop and return V = v, and 7 = m.; else go to 2

295, Winter 2018

Policy Iteration

starting
Vr

Policy evaluation Estimate v,
Iterative policy evaluation

Policy improvement Generate ! > nt

Greedy policy improvement

295, Winter 2018

evaluation

/:w\
! Vv
ni—>greedy(V)
improvement
o

93

Policy Improvement

m Consider a deterministic policy, a = 7(s)
m We can improve the policy by acting greedily

7'(s) = argmax g»(s. a)
acA

m [his improves the value from any state s over one step,

Gx(5.7'()) = max 4x(s.) = Gx(5.7(5)) = v (5)

m |t therefore improves the value function, v,/(s) > v:(s)
V’W(S) < Q?T(S: W!(S)) = Ex [Rt—l—l + ﬁ}"'VW(SH—l) I St = 5]
< Er [Rf—i—l + 797 (Ser1, T (Se41)) | Se = 5}
< Erx [Res1 +7Rey2 + V4 (St42.7(Se42)) | Se = |
S Eﬁf [Rt—|—1 -+ ’”jﬁ"Rt_|_2 -+ ... | Sr = 5] = Vﬂ-w'(S)

295, Winter 2018 94

Policy Improvement (2)

m If improvements stop,

gr(s, m(s)) = max gn(s,) = Gn(s, 7(s)) = V()

m Then the Bellman optimality equation has been satisfied

vi(s) = max gr(s, a)
acA

m Therefore vi;(s) = v«(s) forall s € S
m SOt is an optimal policy

295, Winter 2018 95

Modified Policy Iteration

m Does policy evaluation need to converge to v;;?

m Or should weintroduce a stopping condition
m €.g. E-convergence of value function

m Or simply stop after k iterations of iterative policy evaluation?

a For example, in the small gridworld k = 3 was sufficient to
achieve optimal policy

= Why not update policy every iteration? i.e. stop after k = 1
m This is equivalent to value iteration (next section)

295, Winter 2018 96

Generalised Policy Iteration

starting
Vr

Policy evaluation Estimate v
Any policy evaluation algorithm

Policy improvement Generate it = nt
Any policy improvement algorithm

295, Winter 2018

evaluation

! |4

ni—>greedy(V)

improvement

Principle of Optimality

Any optimal policy can be subdivided into two components:
= An optimal first action A«

s Followed by an optimal policy from successor state S!

Theorem (Principle of Optimality)

A policy r(a|s) achieves the optimal value from state s,
vir(s) = v«(S), if and only if

m For any state s reachable from s
m 7t achieves the optimal value fromstate s, vi(s) = v«(s)

295, Winter 2018 98

Deterministic Value Iteration

m |f we know the solution to subproblems v,(s’)

m [hen solution v,(s) can be found by one-step lookahead

m [he idea of value iteration is to apply these updates iteratively
m Intuition: start with final rewards and work backwards

m Still works with loopy, stochastic MDPs

295, Winter 2018 99

Value lteration

Uk+1(s) = maxBE[Rii1 +70k(Sis) | Se=s, 4 =4l
= 111{;&}{2 p(s’,r|s,a) [r + ’}"L—‘;\.{Sf}] : (4.10)

for all s € §. For arbitrary v, the sequence {vi} can be shown to converge to v, under the same
conditions that guarantee the existence of v,.

295, Winter 2018 100

Value lteration

Value iteration

Initialize array V arbitrarily (e.g., V(s) = 0 for all s € §)

Repeat
A+
For each s £ &:
v+ V(s)
V(s) &« maxg), . p(s'.7|s,a) [r+4V(s")]
A +— max(A, |v —V{(s)|)
until A < @ (a small positive number)

Output a deterministic policy, ™ = m,, such that
m(s) = argmax, >, .p(s'.r|s.a) [r +V(s")]

295, Winter 2018 101

Example: Shortest Path

o | o o [o [a[a]2] (2] -
0 0 0 0 -1 -1 1 1 1 -2 2 -2
o [0 |o 0 A 1 1| 2 |2 |2 | -2
o [0 o 0 A 1 1| 2 |2 |2 | -2
Problem V, Vs V3
8 a2 o| [[[=] IO 42| B |2 |-
] 2| 3| -3 1 |2 |3 | 4 A 2| 3| -4 1 |2 |3 | 4
2 3| 3| 3 2 |3 |4 | 4 2| 3| 4| 5 2 |3 |4 | 5
3| 3| 3| 3 3 |4 |-4 | 4 3| 4| 5 | 5 3 |4 |5 | 6
V4 Vg Ve V5

295, Winter 2018 102

Value Iteration

Problem: find optimal policy r

Solution: iterative application of Bellman optimality backup

Vi— Vo— ... > Vg
Using synchronous backups
a At eachiteration k + 1

m Forall statess € S
m Update vi+1(s) from vi(s)

Convergence to v« Wwill be proven later
Unlike policy iteration, there is no explicit policy

Intermediate value functions may not correspond to any policy

295, Winter 2018

103

Value Iteration (2)

Vk+1(S)

||

Uk1(s) s

max (’R? + Z Pvi(s)

ac A
s’'eS

max R? + 7P?v,
acA

295, Winter 2018

|

104

Asynchronous Dynamic Programming

m DP methods described so far used synchronous backups

m i.e. all states are backed up in parallel
a Asynchronous DP backs up states individually, in any order

a For each selected state, apply the appropriate backup

= Can significantly reduce computation
m Guaranteed to converge if all states continue to be selected

295, Winter 2018 106

Asynchronous Dynamic Programming

Three simple ideas for asynchronous dynamic programming:

m In-place dynamic programming
m Prioritised sweeping
m Real-time dynamic programming

295, Winter 2018 107

In-Place Dynamic Programming

m Synchronous value iteration stores two copies of value function

forall sinS

Vhew(S) 4= max (’R? + Z P vo;d(s’))

ac A
s’eS

Vold < Vhnew

m In-place value iteration only stores one copy of value function

forall sin &

v(s) < max (’Ra + v Z Piv(s)

e s'eS

295, Winter 2018 108

Prioritised Sweeping

m Use magnitude of Bellman error to guide state selection, e.g.

max (Ri + Z P v(s’)) — v(s)
s'eS

Backup the state with the largest remaining Bellman error

O

m Update Bellman error of affected states after each backup
m Requires knowledge of reverse dynamics (predecessor states)
O

Can be implemented efficiently by maintaining a priority queue

295, Winter 2018 109

Real-Time Dynamic Programming

m Idea: only states that are relevant to agent
a Use agent’s experience to guide the selection of states

a After each time-step S¢, At, Rt+1
m Backup the state S;

S a ~ a /
v(St) ¢ max (L+7) Piav(s))

s’'eS

295, Winter 2018 110

Full-Width Backups

m DP uses full-widthbackups

m For each backup (sync or async)
a Every successor state and action is
considered
m Using knowledge of the MDP transitions
and reward function

m DP is effective for medium-sized problems
(millions of states)

m For large problems DP suffers Bellman'’s
curse of dimensionality

m Number of states n = |S| grows
exponentially with number of state
variables

m Even one backup can be too expensive 111

Sample Backups

m In subsequent lectures we will consider sample backups

m Using sample rewards and sample transitions
(S,AR,S)

m Instead of reward function R and transition dynamics P

= Advantages:

m Model-free: no advance knowledge of MDP required
m Breaks the curse of dimensionality through sampling
m Cost of backup is constant, independent of n = |S]

295, Winter 2018

O
o
O

112

Approximate Dynamic Programming

m Approximate the value function

m Using a function approximator V(s,w)

m Apply dynamic programming to (-, w)

m e.g. Fitted Value lteration repeats at each iteration k,

m Sample states ScsS
m For each state s € §, estimate target value using Bellman
optimality equation,

Vi (s) = max (Ri + Z P (s, Wk))

acA
s’'eS

m Train next value function V(-,wy.1) using targets {(s. Vx(s))}

295, Winter 2018 113

Csaba slides,

The fundamental theorem and the Bellman (optimality) operator

Theorem

Assume that | A| < +oc. Then the optimal value function satisfies

acA
yeX

V*(x) max{r(x,a)+’yZP(x,a,y)V*(y)} . xe X.

and if policy = is such that in each state x it selects an action that maximizes
the r.h.s. then = is an optimal policy.

A shorter way to write this is
V* — ka‘/:k7

(T*V)(x) = L {r(x, a) +’)*Z’P(x,a,y)V(y)} , XEX.

yeX

295, Winter 2018 115

Policy evaluation operator

Definition (Policy evaluation operator)
Let 7 be a stochastic stationary policy. Define

(T™V)(x) = Zw(am{r(x, a)ﬂZP(x,a,y)vu)}

acA yeX

= Y m(a)TV(x), xeX.

ac A

Corollary
T™ is a contraction, and V™ is the unique fixed point of T™. J

295, Winter 2018 116

Greedy policy

Definition (Greedy policy)
Policy 7 is greedy w.r.t. V if

"V =TV,

or

acA yeX

max,ec4 {r(x, a) + 92 yex Pl

holds for all states x.

S n(al) {(a)+7 3 Plx.ay)V(y)

}

a)V}

295, Winter 2018

117

A restatement of the main theorem

Theorem

Assume that |A| < +o0o. Then the optimal value function satisfies the
fixed-point equation V* = T*V* and any greedy policy w.r.t. V* is
optimal.

295, Winter 2018 118

Action-value functions

Corollary
Let Q* be the optimal action-value function. Then,

Q* — T*Q*
and if is a policy such that

Z m(alx)Q* (x,a) = max Q*(x,a)

=y acA

then w is optimal. Here,

T°Q (x,a) = r(x.a) +~ Z P(x,a,y) max Q(y.d'), xe X,ae A
yeX

295, Winter 2018 119

Finding the action-value functions of policies

Theorem

Let be a stationary policy, T™ be defined by

T°Q(x.a) = r(x.a) +7 > P(x.ay) D w(@y) Q0.a'), x€X,ac A
yeX a'eA

Then Q™ is the unique solution of

TTTQ?T _ Qﬂ'.

295, Winter 2018 120

Value iteration

Note

@ IfV, is the value-function computed in the t" jteration of value
iteration then
Vit = T*V,.)

v

@ The key is that T* is a contraction in the supremum norm and
Banach'’s fixed-point theorem gives the key to the proof the
theorem mentioned before.

Note

One can also use Q, .1 = T*Q,, or value functions with post-decision
states. What is the advantage?

295, Winter 2018

121

Policy iteration

function POLICYITERATION(r)

- repeat

2 w7

3 V+« GETVALUEFUNCTION(7)
4. 7+ GETGREEDYPOLICY(V)
5

6

—

- until m # 7
: return 7

295, Winter 2018 122

What if we stop early?

Theorem (e.g., Corollary 2 of Singh and Yee 1994)

Fix an action-value function Q and let = be a greedy policy w.r.t. Q.
Then the value of policy = can be lower bounded as follows:

VR) 2 V() —

— 10 = Q¥flo, ¥ € X.
/

295, Winter 2018 123

Value Function co-Norm

m We will measure distance between state-value functions u and
v by the co-norm

m i.e. the largest difference between state values,

lu= V]l = max |u(s) - v(s)l

295, Winter 2018 126

Contraction Mapping Theorem

Theorem (Contraction Mapping Theorem)

For any metric space V that is complete (i.e. closed) under an
operator T (v), where T is a y-contraction,

m | converges to a unique fixed point
a At a linear convergence rate of y

295, Winter 2018 128

Bellman Operator is a Contraction

||_V—V | = In_ﬂmty norm max[R(S, ﬂ)ﬂ’z,_ s, |5j,5a)V(5;,)}
(find max diff 1BV - BV = a s€8

Over all states)

—mﬂaX[R(s, a)-72, PG 15.a)(s)

<

mEX[R(S’ a)’“VZSJE&,P(S; |S;‘ 5a)V(SJ')_R(Saa)"'}’ZSIESP(SJ ‘S[- ,ﬂ)V'(Sj)]

<y

max_zsjesp(s_f |87 ﬂ)V(Sf)_ZsJ.Esp(Sf |5;: a)V'(Sf)}

o

= ymax
a

_Zs .ESP(S;‘ | Sis a)(V(SJ') - V!(Sj))]‘
EJ’HE.XZS.ESP(SJ s, @)V (s)=V'(s))
< }/1133}{2_%5;?(3}- |SJ-,£I)HV— V'H

\ =y -

295, Winter 2018 129

Convergence of Iter. Policy Evaluation and Policy Iteration

= The Bellman expectation operator T has a unique fixed point
m Vrris a fixed point of T ™ (by Bellman expectation equation)
= By contraction mapping theorem

m [terative policy evaluation converges on vi;
m Policy iteration converges on vx

295, Winter 2018 130

Bellman Optimality Backup is a Contraction

m Define the Bellman optimality backup operator T *,

T *(v) = max R4 + yP4y
acA

= This operator is a y-contraction, i.e. it makes value functions
closer by at least y (similar to previous proof)

[IT*W) = T*lle < vllu = V]l

295, Winter 2018 131

Convergence of Value Iteration

= 1he Bellman optimality operator T *has a unique fixed point
= V«isS a fixed point of T *(by Bellman optimality equation) By
a contraction mapping theorem

m Value iteration converges on v

295, Winter 2018 132

Will Value lteration Converge?

* Yes, if discount factoris <1 orend upin a
terminal state with probability 1

* Bellman equation is a contraction

* |[f apply it to two different value functions,
distance between value functions shrinks
after apply Bellman equation to each

Properties of Contraction

* Only has 1 fixed point

If had two, then would not get closer when apply
contraction function, violating definition of
contraction

« When apply contraction function to any argument,
value must get closer to fixed point

Fixed point doesn’'t move
Repeated function applications yield fixed point

295, Winter 2018 134

Value lteration Converges

 |f discount factor < 1
 Bellman is a contraction

« Value iteration converges to unique
solution which is optimal value function

295, Winter 2018

