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Sources

 As the focus of this presentation, the majority of the information and 
images in these slides are from the mentioned “A Survey of Monte Carlo 
Tree Search Methods” publication

 Thank you to Tsan-sheng Hsu (Academia Sinica, Institute of Information 
Science) for his slide on AMAF (All Moves As First) 

 Thank you to Dr. Rina Dechter (UC Irvine) and Dr. Kalev Kask (UC Irvine) 
for their support, instruction, and guidance



K-Armed Bandit



K-Armed Bandit

 Want to choose only the best arm!!!
 …but we don’t know what it is

 Try a bunch of times all over the place to figure out?

 Focus on the one that’s been best so far?



We’re Online!

 Our actions are not for free…
 We could be missing out on chances of reward
 In some cases, we can even take serious penalties

 We don’t want to “regret” our search strategy
 We want it to do as good as it can

minimize regret:

basically, the difference between the best we could possibly do, and 
what we do



I’ll Find The Best Arm!

 …Better explore branch with best arm
 need to make sure non-zero probabilities for exploration

 But exploring can lead to regret!
 There is no policy with slower growing regret than O(ln n)

 If we do within a constant factor of this = pretty darn successful!

 One such policy:  play arm that maximizes   



Monte-Carlo Tree Search:
Main Idea



Monte-Carlo Tree Search:
Main Idea

 Explore decision tree by going through the next “urgent” node
 Uses certain “statistics” kept about the nodes



Main Idea

 Tree Policy is a method of choosing which node is most urgent to 
explore from



Main Idea

 Take turns expanding the children of the selected node



Main Idea

 Run a simulation to gain information about that node’s quality/value



How To Choose Simulation Action?

 Simplest method = uniformly from set of actions available!

 Useful?
 => world champion level Scrabble Play

 => world champion level Bridge Play

 Can we do better?
 One area of research regarding MCTS



Main Idea

 Default Policy is a method of traversing through the rest of the tree 
until a terminal node is reached that has a determinable value



Main Idea

 Update information from the results of the simulation back up through 
the tree’s nodes!



Main Idea

 Over time, we generate information about which paths are preferable!



Main Idea

 Over time, we generate information about which paths are preferable!



Quality of an Action

zi = reward
Ii = wheter action a was taken from state s

.

.

.
Q(s,a) = the current expectation of its reward



Times-Up!  (How to chose a move)

 Times up and we’ve been simulating from node A… 
 what action should we take?

 Some methods of choosing:
 Chose action leading to child with max value

 Choose action leading to child we’ve visited most

 Choose action that maximizes each of the above
 (don’t stop until reach such a point)

 Choose action leading to child that maximizes a lower 
confidence bound
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Times-Up!  (How to chose a move)

 Times up and we’ve been simulating from node A… 
 what action should we take?

 Some methods of choosing:
 Max Child

 Robust Child

 Max-Robust Child

 Secure Child



Some Advantages
 Anytime

 Can end the tree search whenever we choose

 Can narrow down search space in large, highly branched, trees
 Can work when we have very little domain knowledge
 Useful for games and planning

 Utilizes sequential decisions



Some Milestones of MCTS



Very Interesting…

 How to explore the tree
 Tree Search Policy

 How to expand nodes

 How to simulate the play-outs
 Default (and other) Policies

 How to back-propagate information



Overarching Methodologies



Early Novel Tree Policy Approaches

 Nodes selected according to estimated probability that they are 
better than the current best move

 Minimize error probability if algorithm stopped prematurely
 …but still converges to game-theoretic optimum given sufficient time!



Early Novel Tree Policy Approaches

 Nodes selected according to estimated probability that they are 
better than the current best move

 Minimize error probability if algorithm stopped prematurely
 …but still converges to game-theoretic optimum given sufficient time!

 Need a balance for exploration / exploitation!



Most Popular MCTS Algorithm:

UCT
Upper Confidence Bounds for Trees



The UTC Algorithm

 Idea = use the UCB1 algorithm!!!
 Choice of child nodes = k-armed bandit!

 Promising Properties
 Simple

 Efficient

 Guaranteed to be within a constant factor of best possible bound on 
the growth of regret

 Converges to minimax given sufficient time and memory



The UTC Algorithm

Maximize:

 Notice when nj = 0,   value = ∞
 promotes exploration of new nodes

 Notice as n grows, a node not visited increases its likelihood of being 
explored



The UTC Algorithm

Maximize:

UCT  =  Exploitation Weight  +  Exploration Weight

Cp ≈ Exploration Multiplier



The UTC Algorithm

Maximize:

Cp = 1/√2   satisfies Hoeffding inequality for rewards [0,1]



The UTC Algorithm

Maximize:

Statistics of Nodes:
number of times visited
total reward of ALL playouts passing through it



The UTC Algorithm

Maximize:

Final Choice of Move:
Max Child
Robust Child



The UTC Algorithm

Maximize:

Final Choice of Move:
Child with greatest value
Child with highest visit count



The UTC Algorithm



Variations of MCTS



Flat UCB
 Leaves of the tree treated as multi-armed bandit

 Try to explore leaves!

 Maintains characteristics of UCT
 Improves regret bound over UCB1 in certain scenarios

 Led to Bandit Algorithm for Smooth Trees (BAST)
 Extension of Flat UCB in which high confidence sub-optimal branches 

are avoided!

 Only optimal branches expanded indefinitely given infinite time!



Single-Player MCTS

 Often include variance as factor
 Higher σ2  greater the chance of choosing node

Often added third term:

 Single player games can often afford to be more permanent when 
finding strong lines of play
 No opponent to worry about needing to play sub-optimally



Multi-Agent MCTS

 Ex. Have two “agents” running simulation as opposition to each 
other
 ie. Assigning different heuristics / simulation policies

 Can lead to emergent properties

 Main Challenge = choosing properties of such agents

 Two separate MCTS, then combine at end?
 Proclaimed, but not reproduced



Reinforcement Learning!!!

 We can already see similarities
 Attempting to “learn” optimal “paths”

 Relation to TD(λ)?



Comparison

MCTS TD(λ)
Learn to take actions from (s,a) Learn to take actions from (s,a)
Tree-building algorithm Does not usually build trees
Estimates temporary state values Learns long term state value

Do I feel a merger coming?



MCTS / TD(λ) Hybrid



Non-Determinant Games



Determinization

 Instantiate state into a fully observable deterministic environment by 
using belief state

 Can perform at beginning of each iteration of MCTS
 Then proceed as if deterministic

 Pantom Go



Opponent Modelling for MCTS

 Can use Bayesian inference / relational 
probability tree learning to model 
opponent behavior
 Have general model and a prior

 Continue improving estimation of 
parameters

 This can be used in MCTS when 
simulation is simulating opponent moves!



A Ton of Recursive Algorithms

 Can use variation of MCTS recursively through search iterations

 Can also combine with other tree searches such as BFS



Can be Used For Planners and SAT

 The list goes on…



Enhancing MCTS Tree Policy



Enhancing MCTS Tree Policy

 Two main categories of enhancements

 Domain Independent
 Can be applied to any domain without prior knowledge

 Typically result in small improvements

 Domain Dependent
 Specific to certain domains

 Exploit unique aspects / Utilize prior knowledge



UCB1-Tuned Node Selection
 Replace exploration term with:

 Implies machine j has variance at most = sample variance + √[ (2 ln t)/(s) ]

 Regret bound unproven, but empirically performs better than many 
MCTS algorithms



Bayesian UCT

 Use a Bayesian framework
 Potentially more accurate estimations of node values and node 

uncertainty when number of trials is limited

 Two UCT exploration-term modifications to go with framework

motivated by optimistic prior / 

independence assumptions

motivated by CLT



Other Bandit Based Modifications

 EXP3
 Probabilistic

 Partial observability games

 Simultaneous-moves games

 Hierarchical Optimistic Optimization for Trees

 Many More



Node Selection Enhancements



Node Selection Enhancements
 First Play Urgency

 New children immediately have some value assigned

 Not necessarily expand all unexplored actions
 Earlier exploitation

 Deeper tree analysis in large branching factor trees

 Decisive and Anti-Decisive Moves
 Must do guaranteed good moves during selection and default

 Move Groups
 Combine “similar actions” into a group, then use UCB1

 Can reduce large branching factors of similar moves



Node Selection Enhancements

 Transpositions
 Model games that are in actuality more DAGs

 Identical states via different paths are “transposed” and their 
information conglomerated

 Progressive Bias
 Add domain specific knowledge as a heuristic

 Acts kind of like a prior

 Additional term:



Node Selection Enhancements

 Opening Books
 Use table of known positions / configurations to drive selection of nodes

 Monte Carlo Paraphrase Generation (MCPG)
 UTC except use maximum reachable score (not average score)

 Search Seeding
 Use experience to seed nodes with artificial values of num visits and 

num wins to help narrow tree search



Node Selection Enhancements

 History Heuristic
 Use previous plays as heuristic

 Tree-tree level = use history info to improve action selection in MCTS tree

 Tree-playout level = use history info to improve simulation

 Progressive History
 Progressive bias that, when history info is available, replaces H value 

with historical value



All Moves As First (AMAF)
 Update every state-action encountered in the playout

 Even if the state-action did not originate in the original selection phase

Thank You
Tsan-sheng Hsu



All Moves As First (AMAF)
 Permutation AMAF

 Also update other leaf nodes (nodes up for selection) that can lead to 
the same terminal state via a different order of actions

 α – AMAF
 Keep AMAF statistics separately

 Calculate UTC using:  

 Some-First AMAF
 Truncates the AMAF after m-depth of simulation moves

 Cutoff AMAF
 AMAF only for the first k-iterations = jump start



All Moves As First (AMAF)
 Rapid Action Value Estimation (RAVE)

 Similar to α-AMAF except α decreases and num visits increases

 Kind of like mixing α-AMAF with Cutoff AMAF

 For α uses:  

 Killer RAVE
 Only most important(?) moves used for RAVE updates

 PoolRAVE
 Build pool of k best moves according to RAVE

 Choose one move m

 Play m with a probability p, else use the default policy



Insights About AMAF

 Random playouts provide more about the goodness of earlier 
moves of the playout

 AMAF updates are useful even after the playout
 More aggressive updates are often beneficial
 Combining heuristics more powerful



Game-Theoretic Enhancements



Game-Theoretic Enhancements

 If we know (for sure) what a certain node’s value is, this info can be 
extremely useful to the nodes leading up to it
 Looking for nodes leading to proven wins / losses



Game-Theoretic Enhancements
 MCTS-Solver (Using PNS)

 Concept:
 If an action leads to a state that is guaranteed to win, then the current state 

is guaranteed to win

 If all actions lead to sates that are guaranteed to lose, then current state is 
guaranteed to lose

 Uses Proof-Number Search (PNS)
 Prioritize nodes whose value can be proven by exploring the fewest children

 Used for end-game solvers



Game-Theoretic Enhancements

 Monte Carlo Proof-Number Search (MC-PNS)
 Nodes that do not have proven value are searched via MCTS

 Score Bounded MCTS
 Useful in games with multiple ending scores (not necessarily zero-sum)

 Use optimistic and pessimistic bounds on score

 Values converge to estimated score with many iterations
 When the two bounds are equal  node solved



Move Pruning



Move Pruning

 Two main categories:

 Soft Pruning
 These nodes may later be searched, but temporarily pruned

 Hard Pruning
 Never to be searched / selected again



Move Pruning
 Progressive Unpruning / Widening

 Soft Pruning

 Ensures that, over infinite time, all nodes are visited

 Idea
 Start off aggressively exploitation (in case of short time available)

 Progressively widen search space as time becomes plentiful

 Absolute and Relative Pruning
 When you can be sure an action a has so many more visits than its 

sibling actions a’ that they can never overtake the number of visits a 
has, prune a’

 Pruning with Domain Knowledge  exactly what it sounds like



Node Expansion Enhancements



Simulation Enhancements



Simulation Enhancements
 Rule-Based Simulation Policy

 Hand design simulation policy

 Contextual Monte Carlo Search
 Combine simulations that reached similar parts of the tree

 Use past simulations to drive action decisions

 Fill the Board
 At each simulation step, choose N random intersections

 If intersection and immediate neighbors empty, choose action

 Else, randomly choose some legal action

 Fills up board space quickly  Patterns become more apparent



Simulation Learning

 Move-Average Sampling Technique (MAST)
 Keep a record of average Q(a) (independent of state)

 Bias future actions choices by Gibbs distribution

 Predicate-Average Sampling Technique (PAST)
 Similar to MAST except keeps predicates helping to denote a certain 

context

 Bias future action choices matching predicates by Gibbs distribution
 ie. Takes into account the context of the action, and only biases using 

actions matching the same context



Simulation Learning

 Feature-Average Sampling Technique (FAST)
 Similar to MAST and PAST

 Features of the game extracted
 how? manually?

 TD(λ) to discern relative importance of features

 Used to weigh the Q(a)’s



Simulation Learning

 Using History Heuristics
 Use history of good/bad moves to inform simulation steps

 Described as “using history information at the tree-playout level”

 Two types
 Internal heuristic = alters moves made during playouts

 External heuristic = changes the move selected before the playouts

 Use of evaluation functions
 Can be helpful in the beginning of the tree construction to avoid early 

bad moves
 Then switch to greedy or some other variation



Simulation Learning

 Simulation Balancing
 Gradient descent to bias policy during simulations

 Does not always lead to “strong” play, but often “balanced” play

 Last Good Reply (LGR)
 What move causes a win from the previous move? = Good Reply

 Store this with respect to the previous move

 Use it when the previous move pops up again

 Overwritable by newer “Good Replies”
 Thus “Last” Good Reply

 With Fogretting = erase if Good Reply ever leads to a loss in a simulation



Simulation Learning

 Patterns
 Use patterns to inform simulation

 Literature shows that spending time improving 
simulation is more advantageous than 
spending time during selection
 Artifact of our already good advancement in 

selection modifications?



Backpropagation Enhancements



Backpropagation Enhancements

 Weighing Simulation Results
 Higher weight for…

 Shorter simulations

 Later in game simulations

 Score bonus
 Back propagate values [0,1], the range of 

which describes bad loses to strong wins



Backpropagation Enhancements

 Decaying Reward
 Decay factor γ applied as backpropagation occurs

 similar effect to Weighting Simulation Results by shorter wins having greater effect

 Transposition Table Updates
 Share update information across nodes that are similar/related



Parallelization



Parallelization



Considerations for Enhancement



Considerations for Enhancement

 Heavily modified ~~ possibly not accurate results

 Computational time vs. Better Play
 Common metrics:

 Win rate against particular opponents

 Elo rating against other opponents

 Number of iterations per second

 Memory usage



The End


