Monte-Carlo Tree Search and

Rapid Action Value
Estimation in computer Go

By Sylvain Gelly and David Silver
Presented by Caleb Nelson

The Game of Go

Go is played on a 19x19, 13x13, or 9x9 grid

Black and White take turns putting stones on intersections of the grid
Sets of adjacent, connected stones of one colour are known as blocks.
The empty intersections adjacent to a block are called its liberties

If a block is reduced to zero liberties by the opponent, it is captured and
removed from the board

Blocks which cannot be captured are described as alive; blocks which will
certainly be captured are described as dead

The game ends when both players pass without placing a stone. Dead blocks
are removed from the board and each player adds up their stones and
intersections they surround, which becomes their final score.

Extra Go Terminology

e Blocks with just one remaining liberty are said to be in atari
e A connected set of empty intersections that is wholly enclosed by stones of

one colour is known as an eye

o One natural consequence of the rules is that a block with two eyes can never be captured by
the opponent

e Since Black always goes first, White receives compensation, known as komi,
which is added to White’s score at the end of the game
e Rankings in Go come in 3 stages

Beginner Master Professional

30 kyu 1 kyu 1dan 7 dan 1 dan 9 dan

Monte-Carlo Tree Search

e MCTS is an alternative to minimax that makes it much more feasible to search
massive state spaces with a large number of state/action pairs

e Instead of mapping the whole game tree at once, MCTS chooses the moves
that seem the most promising and simulates them until completion, reflecting
the result in its evaluation of the move

e Can run indefinitely and be safely cut off at any time - once it is cut off, it simply
chooses what it feels to be the best move available to it and can begin the
search anew

e Given infinite time, MCTS will always converge to minimax.

UCT Algorithm

e MCTS will explore the nodes it considers most promising - but how does it

factor uncertainty into its evaluation of nodes?
o Namely, how does it balance exploration and exploitation?

e The UCBI-T (short for the Upper Confidence Bound 1 algorithm for Trees) or
UCT algorithm encourages optimism in the face of uncertainty by replacing the
Q-values with ones that contain a benefit for under-explored states

log N(s)
N(s,a)’

Q%s,a)=0Q(s,a)+c

a* = argmax Q @ (s, a)
a

Algorithm 1 Two-player UCT

procedure UCTSEARCH(Sg)
while time available do
SIMULATE(board, sg)
end while
board.SetPosition(sg)
return SELECTMovVE(board, sg, 0)
end procedure

procedure SIMULATE(board, sg)
board.SetPosition(sg)

|, st] = SIMTREE(board)
z = SIMDEFAuLT(board)
Backup([so,...,st], 2)

end procedure

procedure SIMTREE(board)
¢ = exploration constant
t=0
while not board.GameOver() do
s; = board.GetPosition()
if s; ¢ tree then
NEWNODE(S;)

a = SELECTMoVE(board, s;. c)
board.Play(a)
t=t+1
end while
return [so. ..., St—1]
end procedure

procedure SIMDEFAULT(board)
while not board.GameOver() do
a = DErauLTPoLIcY(board)
board.Play(a)
end while
return board.BlackWins()
end procedure

procedure SELECTMoVE(board, s, c)
legal = board.Legal()
if board.BlackToPlay() then
log N(s))

a* = argmaxﬂelegal(Q (s,a)+c NG.a)
else
a* = argmingeegq(Q (s. @) — ¢,/ '—"A%(QI—";—’)
end if
return a*
end procedure

procedure BACKUP([so, ..., stl, z)
fort=0to T do
N(st) =N(st) +1

N(s¢,ap) +=1
Q(se.ar) += —Z;%tf;'g')
end for

end procedure

procedure NEWNODE(s)
tree.Insert(s)

N(s)=0

forall a € A do
N(s,a)=0
Q(s,a)=0

end for

end procedure

The All-Moves-As-First Heuristic

e The AMAF heuristic is a way to reduce the number of state/action pairs that
need to be evaluated to make a good decision

e Essentially, the idea is that given a state, a certain action taken on the state will
have the same value whether or not the move is played immediately or at any
point during the game

e This means that, for any given state, each available action will only have one
value associated with it for the rest of the game, which makes Monte-Carlo
rollouts much faster

Rapid Action Value Estimation

e RAVE combines MCTS with the AMAF
heuristic for faster evaluation

e When RAVE is choosing a move from the
current state of the game, it values all
available actions from the current state for
the rest of the simulation, instead of
re-evaluating actions at every simulated

State

MC-RAVE

e Unfortunately, RAVE by itself doesn’t work very well - the value of actions can
be changed drastically by changes elsewhere on the board

e MC-RAVE overcomes this issue, by combining the rapid learning of the RAVE
algorithm with the accuracy and convergence guarantees of MCTS

e MC-RAVE estimates the overall value of action a in state s by using a weighted
sum Q*(s,a) of the MC value Q(s,a) and the AMAF value Q"(s,a)

® [3(s,a) is a weighting parameter that can change over time - usually change it
from prioritizing AMAF value to MC value as more information is gathered

Q.(s.a) = (1 —B(s.@))Q(s.a) + B(s,)Q (s,)

UCT-RAVE

e UCT-RAVE combines the exploration of UCT with MC-RAVE

e |[f 3(s,a) trends to O for all states and actions, then the asymptotic behaviour of
UCT-RAVE is equivalent to UCT

o Remember that 3(s,a) = 1 means only AMAF value is considered while 3(s,a) = O means only MC
value is considered

log N(s)
@ .
Q7(s,a) = Q.(s,a)+c /_N(s,a) ;

B(s,a) schedules

e Two different schedules for changing the parameter [3(s,a) over time

e Hand-selected schedule where [(3(s,a) = 1/2 after some number of simulations k,

chosen manually
/ k
B(s,a)= m

e Minimum MSE schedule that selects (3(s,a) as to minimize the MSE in the
combined estimate Q*(s, a)

0.7 ' l

" UCT ——
MC-RAVE =~ ===e===
0.65 | -
2 0.6 | 5 g "_’:‘\\E 3 ’-;-.; g
5 : |) B e o T
Cé '? ------ erearss . F H T
) i . i i ; ‘
3 055t T S 3]
= """ :
O os} ; ‘
-
%
g 045 | _
a
)]
= 04} I
S
%0
‘2 035} -
~ 03 I
0.25 | 1 1 T : Y
1 1 1 I t
0.2 : : '
1 " L 1000 10000

k

Fig. 5. Winning rate of MC-RAVE with 3000 simulations per move against GnuGo 3.7.10 (level 10) in 9 x 9 Go, for different settings of the equivalence
parameter k. The bars indicate the standard error. Each point of the plot is an average over 2300 complete games.

Table 1

Winning rate of MoGo against GnuGo 3.7.10 (level 10) when the number of simulations per move is increased. MoGo
competed on CGOS, using heuristic MC-RAVE and the hand-selected schedule, in February 2007. The versions using
10 minutes per game modify the simulations per move according to the available time, from 300,000 games in the
opening to 20,000 in the endgame. The asterisked version competed on CGOS in April 2007 using the minimum
MSE schedule and additional parameter tuning.

Schedule Computation Wins vs. GnuGo CGOS rating
Hand-selected 3000 sims per move 69% 1960
Hand-selected 10,000 sims per move 82% 2110
Hand-selected 10 minutes per game 92% 2320

Minimum MSE 10 minutes per game 97% 2480*

Heuristic MCTS

e Since the state space for Go is so large, state/action pairs are rarely visited
more than once, which makes MCTS unreliable

e In order to reduce the uncertainty for rarely encountered positions, incorporate
prior knowledge by using a heuristic evaluation function H(s,a) and a heuristic
confidence function C(s,a)

o When a node is first added to the search tree, it is initialised according to the heuristic function,
Q (s,a) = H(s,a) and N(s,a) = C(s,a)

e Confidence in the heuristic function is measured in terms of equivalent
experience: the number of simulations that would be required in order to
achieve a Monte-Carlo value of similar accuracy to the heuristic value

Heuristic MC-RAVE

e Heuristic MC and MC-RAVE can be combined to form Heuristic MC-RAVE

e When a new node n(s) is added to the tree, and for all actions a € A, initialise
both the MC and AMAF values to the heuristic evaluation function, and
initialise both counts to heuristic confidence functions C and C" respectively

Q(s.a) < H(s,a),
N(s,a) < C(s,a),
Q (s, a) < H(s, a),
N(s,a) < C(s,a),

N(s) « Z N(s.a).
as A

Algorithm 2 Heuristic MC-RAVE

procedure Mc-RAVE(sg)
while time available do
SimuLATE(board, sp)
end while
board.SetPosition(sg)
return SELECTMovVE(board, sp. 0)
end procedure

procedure SimuLATE(board, sp)
board.SetPosition(sg)
[so0. a0, ..., st.ar) = SIMTREE(board)
l[ar+1,..., ap), z= SimDerauLT(board, T)
Backup([so, st). [ao, ..., apl, z)

end procedure

procedure SimDEeFAuULT(board, T)

t=T+1

while not board.GameOver() do
a; = DeFauLTPoLICY(board)
board.Play(a)
t=t+1

end while

z = board.BlackWins()

end procedure

procedure SIMTREE(board)
t=0
while not board.GameOver() do
s¢ = board.GetPosition()
if s; ¢ tree then
NEWNODE(S;)
a; = DerauLTPoLicY(board)
return [sp.aop. ..., Se. Qe
end if
ar = SELECTMovVE(board, s¢)
board.Play(a;)
t=t+1
end while
return [sp.qp. ..., St—1.0¢-1)
end procedure

procedure SELEcTMovE(board, s)
legal = board.Legal()
if board.BlackToPlay() then
return argmaxg,jeqq EVAL(S, @)
else
return argmingeqq EVAL(s, @)
end if
end procedure

procedure EvAL(s, a)
b = pretuned constant bias value
B= ' Ns.a) i}
N(s.a)+N(5.a)+4N(5.a)N(s.a)b?
return (1 - 8)Q(s,a) + BQ (s, a)
end procedure

procedure BAackup([so. ..., st), [ao, ..., apl.z)
fort=0to T do
N(s;.ap) +=1
Qse.ap) += L)
for u=t to D step 2 do
if ay ¢ [ar,ar42, ..., ay-2) then
N(st,au) +=1
A _ z=Q(s;.ap)
dQ.::sbau) = G
end i
end for
end for

end procedure

procedure NEwNobDE(board, s)
tree.Insert(s)
for all a € board.Legal() do _
N(s,a), Q(s.a), N(s,a). Q (s, a) = HEurisTic(board, a)
end for
end procedure

We compare four heuristic evaluation functions in 9 x 9 Go, using the heuristic MC-RAVE algorithm in the program
MoGo.

1. The even-game heuristic, Qeven(s. a) = 0.5, makes the assumption that most positions encountered between strong play-
ers are likely to be close.

2. The grandfather heuristic, Qgrgng(St.@) = Q (s5¢—2, @), sets the value of each node in the tree to the value of its grandfa-
ther. This assumes that the value of a Black move is usually similar to the value of that move, last time Black was to
play.

3. The handcrafted heuristic, Qmogo(s. @), is based on the pattern-based rules that were successfully used in MoGo’s default
policy. The heuristic was designed such that moves matching a “good” pattern were assigned a value of 1, moves
matching a “bad” pattern were given value 0, and all other moves were assigned a value of 0.5. The good and bad
patterns were identical to those used in MoGo, such that selecting moves greedily according to the heuristic, and
breaking ties randomly, would exactly produce the default policy Tmogo.

4. The local shape heuristic, Qg (s,a), is computed from the linear combination of local shape features used in RLGO 1.0
(see Section 3.4). This heuristic is learnt offline by temporal difference learning from games of self-play.

For each heuristic evaluation function, we assign a heuristic confidence C(s, a) = M, for various constant values of equiv-
alent experience M. We played 2300 games between MoGo and GnuGo 3.7.10 (level 10). The MC-RAVE algorithm executed
3000 simulations per move (see Fig. 6).

0.75 - - r ,
Local Shape Features — ——
Handcerafted Heuristic -------
Grandfather Heuristic = «-«--se-
- Even Game Heuristic x
2 No Heuristic
o
El .
K. G ol
m s h
U s S
= :
- = :
'\. & : :
) 4
o o
9] :
2
G 3 ¥
2 055 F - o
© H ‘
o -
. S
o o X
© = :
o 0 5 = t = s =
c -
= e
£ - i
=
045 | ™ -
0.4 3 L . L
0 50 100 150 200

M

Fig. 6. Winning rate of MoGo, using the heuristic MC-RAVE algorithm, with 3000 simulations per move against GnuGo 3.7.10 (level 10) in 9 x 9 Go. Four

different forms of heuristic function were used (see text). The bars indicate the standard error. Each point of the plot is an average over 2300 complete
games.

Results of Heuristic MC-RAVE

e When executing 3000 simulations per move and using the hand-selected
schedule, Heuristic MC-RAVE increased the winning rate of MoGo against
GnuGo, from 24% for UCT, up to 69%

o With more simulations, improvements increase even further

e 2007 release version of MoGo used the heuristic MC—-RAVE algorithm, the
minimum MSE schedule, and an improved, handcrafted heuristic function to

become the first program to achieve master dan level in 9 x 9 go and 2 kyu in
19 x19 Go

Elo rating

3200

3000
2800

2600

2400 :
2200 .
2000 ’
1800 :
1600 .

1400

1200

1000
800
600 *

9x9 Scalability Study

T

'MoGol »—c-[—o
GnuGo 3.7.11

T

L L 1

I T Ll 1 Al

1 1 1l 1 1

1 1 L

L

L

29 210 ol

212

213 214 215 216 217

Simulations per move

218 219 220

22

223

Improvements to Heuristic MC-RAVE

The heuristic function of MoGo was substantially enhanced by initialising
H(s,a), C(s,a), and C"(s,a) to hand-tuned values based on handcrafted rules and
patterns

Supervised learning was also used to bias move selection towards patterns
favored by expert players

MoGo was also modified by massively parallelising the MC—-RAVE algorithm to
run on a cluster

o This parallel version, while running on Huygens, the Dutch national supercomputer, was able to
defeat 9-dan player Jun-Xun Zhou in 19 x 19 Go with 7 handicap stones, giving it an effective
rank of 2-dan

Source

e All information, images, and excerpts are from
http://www.ics.uci.edu/~dechter/courses/ics-29
b/winter-2018/papers/mcts-gelly-silver.pdf

http://www.ics.uci.edu/~dechter/courses/ics-295/winter-2018/papers/mcts-gelly-silver.pdf
http://www.ics.uci.edu/~dechter/courses/ics-295/winter-2018/papers/mcts-gelly-silver.pdf

Thank you for listening!
Questions?

