
INVERSE REWARD DESIGN
Dylan Hadfield-Menell, Smith Milli, Pieter Abbeel, Stuart Russell, Anca Dragan

University of California, Berkeley

Slides by Anthony Chen

Inverse Reinforcement
Learning (Review)

Inverse Reward Design (Intuition)

Inverse Reward Design
(Formalism)

2

INVERSE REINFORCEMENT
LEARNING

• Given a Markov Decision Process (MDP) with a reward function, number of
ways to obtain a near-optimal or optimal policy.

• However, reward functions can be hard to specify.

• Instead, we can learn a policy by learning from the trajectories (data)
generated by an expert.

• Called inverse reinforcement learning (IRL).

3

DRIVING
• Many things that go into a reward: safety,

comfort, etc.
• Humans learn by watching experts drive.

• In machines, we can learn from data
generated by an expert.

• Don’t want to exactly copy the expert;
doesn’t generalize.

• Instead, learn a policy that implicitly
maximizes reward from expert data.

4

NOTATION
• MDP generally defined as a tuple:

• S: set of states
• A: set of actions
• T: transition probabilities
• : discount factor
• r : reward function, bounded by 1.

• A MDP without a reward function is called a world model, denoted by

• Assume a feature vector for states:
• Assume an optimal reward function:

�

�(s) 2 Rk,� : S ! [0, 1]k

r⇤ = w⇤�(s), w⇤ 2 Rk, ||w⇤||1  1

M = hS,A, T, �, ri

fM

5

• A policy, , is a mapping from states to a probability over actions.
• The value of a policy can be written as follows:

• We can then define the feature expectations to be

 and the policy value

⇡

E[V ⇡(s0)] = E

 1X

t=0

�tR(st)|⇡
�

= E

 1X

t=0

�tw · �(st)|⇡
�

= w · E
 1X

t=0

�t�(st)|⇡
�

µ(⇡) = E

 1X

t=0

�t�(st)|⇡
�

E[V ⇡(s0)] = w · µ(⇡)

6

IRL FORMALISM
• Given a world model, , a predefined feature mapping, , and a set of

trajectories generated from an expert policy, .
• Think of this expert policy as returning the optimal value.

• Let be the expert feature expectation and be the estimated expert
feature expectation.

• We can find a policy that implicitly maximizes the expert’s unknown reward
function via the following optimization:

⇡E

µE µ̂E

{s(i)0 , s(i)1 , . . . }mi=1

µ̂E =
1

m

mX

i=1

1X

t=0

�t�
�
s(i)t

�

�

⇡̂ = min
⇡

||µ(⇡)� µ̂E ||2

fM

7

Inverse Reinforcement Learning
(Review)

Inverse Reward Design
(Intuition)

Inverse Reward Design
(Formalism)

8

INTUITION
• When a human designs a reward function (known as a proxy reward

function), they try and capture as much about the world as possible.

• However, we can’t possibly capture all scenarios, leading to negative side
effects when encountering new states.

• Machines should thus take our reward function as an guess at what the true
reward function is and assign uncertainty estimates to the rewards generated
by our reward function.

9

Image taken from paper

10

• Proxy reward functions are likely to be true in the context they were defined.
Assign high confidence to rewards generated in this case.

• Proxy reward functions can be very wrong in contexts not defined in. Assign
high uncertainty to rewards generated in this case.

• Our agent should try and avoid high uncertainty scenarios.

• Formally speaking, inverse reward design tries to capture the true reward
function given a proxy reward function.

KEY IDEAS

11

INVERSE RL V.S. RD
• IRL and IRD both tackle the problem of value alignment: the problem of

communicating to an agent an good reward.

• Inverse Reinforcement Learning: Hard to design a reward function. Instead
given trajectories from expert.

• Inverse Reward Design: More tractable to design reward function. Reward
function designed by “expert” but not necessarily complete.

12

Inverse Reinforcement Learning
(Review)

Inverse Reward Design (Intuition)

Inverse Reward Design
(Formalism)

13

BAYESIAN MODELING OF IRD
• In the IRD formalism, we are given a world model, , and a proxy reward function,

• represents a trajectory

• Our goal is to recover the optimal reward function by recovering the
optimal set of weights.

• Let be the probability of a trajectory under a world model and a proxy reward
function.

• We can represent a posterior distribution over the optimal reward function via:

fM
er = ew · �(⇠)
⇠

r⇤ = w⇤ · �(⇠)

⇡(⇠|er, fM)

14

P (w⇤| ew, fM) = P (ew|w⇤, fM) · P (w⇤)

• Remember, we want to assume that our proxy reward function results in
near optimal in the situations in which it was defined.

• We can model the likelihood as follows:

• This says that in the trajectories generated by our proxy reward function, the
reward yielded is optimal with respect to the optimal reward function.

• The posterior can then be written as

where is a normalizing constant. Need to
approximate.

eZ(w) =

Z

ew
exp

�
�wT eµ)d ew

15

P (ew|w⇤
,

f
M) / exp

✓
� · E


w

⇤T
�(⇠)

��
⇠ ⇠ ⇡(⇠| ew, fM)

�◆

P (w = w⇤| ew, fM) /
exp

�
� · wT eµ

�

eZ(w)
P (w)

RISK-AVERSE POLICY
• We can obtain a risk averse policy in the following way:

1. Sample a set of weights from our posterior distribution

2. Given those weights, pick a trajectory that maximizes the reward in
the worst case:

�
ewi

⇠⇤ = argmax

⇠
min

w2wi

wT�(⇠)

16

EVALUATION: LAVALAND

Training Testing

17

• Maps initialized at random.

• Testing: 5% lava, 66.5% dirt, 28.5%
grass

• Features: 3 dimensional

• Proxy reward: generated random
uniformly.

• Metric: % of trajectories during test
time with lava.

18

CONCLUSIONS
• In this work, the authors present a method that accounts for uncertainty in

the reward function.

• They propose a Bayesian framework to model this uncertainty

• They show empirically on toy examples that their framework can avoid
catastrophic events in the face of high uncertainty.

19

