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INVERSE REINFORCEMENT 
LEARNING

• Given a Markov Decision Process (MDP) with a reward function, number of 
ways to obtain a near-optimal or optimal policy. 

• However, reward functions can be hard to specify.

• Instead, we can learn a policy by learning from the trajectories (data) 
generated by an expert. 

• Called inverse reinforcement learning (IRL). 

3



DRIVING
• Many things that go into a reward: safety, 

comfort, etc. 
• Humans learn by watching experts drive. 

• In machines, we can learn from data 
generated by an expert. 

• Don’t want to exactly copy the expert; 
doesn’t generalize. 

• Instead, learn a policy that implicitly 
maximizes reward from expert data. 
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NOTATION
• MDP generally defined as a tuple: 

• S: set of states
• A: set of actions
• T: transition probabilities 
•   : discount factor
• r : reward function, bounded by 1. 

• A MDP without a reward function is called a world model, denoted by  

• Assume a feature vector for states: 
• Assume an optimal reward function: 

�
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• A policy,   , is a mapping from states to a probability over actions. 
• The value of a policy can be written as follows:

• We can then define the feature expectations to be

    and the policy value 
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IRL FORMALISM
• Given a world model,     , a predefined feature mapping,    , and a set of 

trajectories                             generated from an expert policy,      . 
• Think of this expert policy as returning the optimal value. 

• Let       be the expert feature expectation and      be the estimated expert 
feature expectation.  

• We can find a policy that implicitly maximizes the expert’s unknown reward 
function via the following optimization:
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INTUITION
• When a human designs a reward function (known as a proxy reward 

function), they try and capture as much about the world as possible. 

• However, we can’t possibly capture all scenarios, leading to negative side 
effects when encountering new states.

• Machines should thus take our reward function as an guess at what the true 
reward function is and assign uncertainty estimates to the rewards generated 
by our reward function. 
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• Proxy reward functions are likely to be true in the context they were defined.  
Assign high confidence to rewards generated in this case. 

• Proxy reward functions can be very wrong in contexts not defined in. Assign 
high uncertainty to rewards generated in this case.

• Our agent should try and avoid high uncertainty scenarios. 

• Formally speaking, inverse reward design tries to capture the true reward 
function given a proxy reward function.

KEY IDEAS
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INVERSE RL V.S.  RD
• IRL and IRD both tackle the problem of value alignment: the problem of 

communicating to an agent an good reward. 

• Inverse Reinforcement Learning:  Hard to design a reward function. Instead 
given trajectories from expert. 

• Inverse Reward Design: More tractable to design reward function. Reward 
function designed by “expert” but not necessarily complete. 
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BAYESIAN MODELING OF IRD
• In the IRD formalism, we are given a world model,     , and a proxy reward function, 

•  represents a trajectory

• Our goal is to recover the optimal reward function                            by recovering the 
optimal set of weights.   

• Let                     be the probability of a trajectory under a world model and a proxy reward 
function.      

• We can represent a posterior distribution over the optimal reward function via:                      

fM
er = ew · �(⇠)
⇠

r⇤ = w⇤ · �(⇠)

⇡(⇠|er, fM)
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• Remember, we want to assume that our proxy reward function results in 
near optimal in the situations in which it was defined. 

• We can model the likelihood as follows:

• This says that in the trajectories generated by our proxy reward function, the 
reward yielded is optimal with respect to the optimal reward function.

• The posterior can then be written as

    

where                                       is a normalizing constant.  Need to 
approximate. 
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RISK-AVERSE POLICY
• We can obtain a risk averse policy in the following way:

1. Sample a set of weights         from our posterior distribution

2. Given those weights, pick a trajectory that maximizes the reward in 
the worst case: 
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EVALUATION: LAVALAND

Training Testing
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• Maps initialized at random. 

• Testing: 5% lava, 66.5% dirt, 28.5% 
grass

• Features: 3 dimensional

• Proxy reward: generated random 
uniformly. 

• Metric: % of trajectories during test 
time with lava. 
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CONCLUSIONS
• In this work, the authors present a method that accounts for uncertainty in 

the reward function. 

• They propose a Bayesian framework to model this uncertainty 

• They show empirically on toy examples that their framework can avoid 
catastrophic events in the face of high uncertainty. 
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