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a breakthrough in RL

® function approximation in TD learning is
now straightforward

® as straightforward as it is in supervised
learning

® [D learning can now be done as gradient-
descent in a novel Bellman error
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® |inear function approximation
® one-step TD methods (A = 0)

® prediction (policy evaluation), not control



limitations (for this paper)

® |inear function approximation
® one-step TD methods (A = 0)

® prediction (policy evaluation), not control

all of these are being removed in current work



keys to the breakthrough

® a new Bellman error objective function

® an algorithmic trick—a second set of weights
® to estimate one of the sub-expectations
® and avoid the need for double sampling

® introduced in prior work (Sutton, Szepesvari
& Maei, 2008)
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TD+FA was not straightforward

® with linear FA, off-policy methods such as Q-
learning diverge on some problems (Baird, 1995)

® with nonlinear FA, even on-policy methods can
diverge (Tsitsiklis & Van Roy, 1997)

® convergence guaranteed only for one very
important special case—linear FA, learning
about the policy being followed

® second-order or importance-sampling methods
are complex, slow or messy

® no true gradient-descent methods



Baird’s counterexample

a simple Markov chain
linear FA, all rewards zero

deterministic,

expectation-based
full backups (as in DP)

each state updated once
per sweep (as in DP)

weights can diverge to
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e.g. linear value-function
approximation in Computer Go
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Notation

e state transitions: s——s'

e feature vectors: i glb’ c R n < #states
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Notation

® state transitions:

e feature vectors:

* approximate values:
* TD error:

e TD(0) algorithm:

* true values:

* Bellman operator:
over per-state vectors

SLS/
o ¢ c R" n < Ffstates
V() =076 0 R P

S=r4+~0"'¢—0'¢ ~€[0,1)

A0 = a0 a >0

V*(s) = E[r|s] + 7 ) Pss V*(s')

IV =R+~PV Vi i=TV"
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The space spanned by the feature vectors,
weighted by the state visitation distribution
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Value function geometry
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Value function geometry

Previous work on .
gradient methods for TD AN V
minimized this objective fn N |
(Baird 1995, 1999) _\@6@@ WAL T takes you outside
'S the space
P 11
N, 4 I projects you back
\\ ____________________________ [ 1 TV@ into it
VQ ‘\‘ >\\\
| < -- RMSPBE ™~ o
®.D = ~—_— Better objective fn!

The space spanned by the feature vectors,
weighted by the state visitation distribution

Mean Square Projected Bellman Error (MSPBE)
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TD objective functions

(to be minimized)

Error from the true values | Vo —V* |5,  NotTD

Error in the Bellman equation | Vo —TVy |3 Not right
(Bellman residual)

Error in the Bellman equation | Vo — TITV, ||2, Right
after projection (MSPBE)

Zero expected TD update Vo =TV

Not an
objective



backwards-

bootstrapping
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* The two ‘A’ states look the
same; they share a single feature
and must be given the same
approximate value .

V(AL) = V(42) = 5

e All transitions are deterministic;
Bellman error = TD error

* Clearly, the right solution is
V(B)=1, V(C)=0

e But the solution the minimizes
the Bellman error is

V(B) = Z V(C) = i
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TD objective functions

(to be minimized)

Error from the true values | Vo —V* |3,  NotTD

Error in the Bellman equation | Vo —TVy |3 Not right
(Bellman residual)

Error in the Bellman equation | Vo — TITV, ||2, Right
after projection (MSPBE)

Not an objective

Zero expected TD update V= 11TV}, E[A07p] =0

Norm Expected TD update H 43[/\9TD] H previous work

Expected squared TD error 2[67] hlot right
residual gradient
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Gradient-descent learning

|. Pick an objective function J(6),a
parameterized function to be minimized

2. Use calculus to analytically compute the
gradient Vy.J(0)

3. Find a “sample gradient” that you can sample
on every time step and whose expected value
equals the gradient

4. Take small steps in 6 proportional to the
sample gradient:

AO = —aVyJ,(6)



Derivation of the TDC algorithm

1
A6 = —aVyJ(6)
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Derivation of the TDC algorithm
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Derivation of the TDC algorithm
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Derivation of the TDC algorithm

1
A6 = —-aV,J(6)

(sampling)
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The complete TD with gradient
correction (TDC) algorithm

® on each transition §—8

® update two parameters with gradient
~~ correction

0 — 0 +Hadp)—(ave’ (¢"w)
w — w ~+ B(0 — ¢Tw)¢

® where
§=r++0'¢'—0'¢



The complete TD with gradient
correction (TDC) algorithm

® on each transition §—8

® update two parameters

0« 0+ adp— avyd )
W < W + 6(5 _)¢ estimate of the

TD error (§) for

® wher
where the current state ¢

§=r++0'¢'—0'¢
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Three new algorithms

® GTD, the original gradient TD algorithm
(Sutton, Szepevari & Maei, 2008)

® GTD2,a second-generation GTD
o TDC



Convergence theorems

For arbitrary on- or off-policy training

All algorithms converge w.p.| to the TD fix-point:

©[0p] — O

GTD, GTD2 converge at one time scale

a=03—70

TDC converges in a two-time-scale sense

o)
o, — 0 > 0
b
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Computer Go experiment

® |earn alinear value
function (probability of
winning) for 9x9 Go

from self play 2]

® One million features, 047

each corresponding to a

template on a part of
the Go board

02 1t

0 t t t t t !
.000001 .000003 .0000f1 .00003 .0001 .0003 .001

® An established X
experimental testbed




conclusions

the new algorithms are roughly the same
efficiency as conventional TD on on-policy
problems

but are guaranteed convergent under general
off-policy training as well

their key ideas appear to extend quite
broadly, to control, general A\, non-linear
settings, DP, intra-option learning, TD nets...

ID with FA is now straightforward

the curse of dimensionality is removed



