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Abstract

Model-free deep reinforcement learning (RL) algorithms have been demonstrated
on a range of challenging decision making and control tasks. However, these
methods typically suffer from two major challenges: very high sample complexity
and brittle convergence properties, which necessitate meticulous hyperparameter
tuning. Both of these challenges severely limit the applicability of such methods to
complex, real-world domains. In this paper, we propose soft actor-critic, an off-
policy actor-critic deep RL algorithm based on the maximum entropy reinforcement
learning framework. In this framework, the actor aims to maximize expected
reward while also maximizing entropy—that is, succeed at the task while acting as
randomly as possible. Prior deep RL methods based on this framework have been
formulated as either off-policy Q-learning, or on-policy policy gradient methods.
By combining off-policy updates with a stable stochastic actor-critic formulation,
our method achieves state-of-the-art performance on a range of continuous control
benchmark tasks, outperforming prior on-policy and off-policy methods.

1 Introduction

Model-free deep reinforcement learning (RL) algorithms have been applied in a range of challenging
domains, from games (Mnih et al., 2013; Silver et al., 2016) to robotic control (Schulman et al.,
2015). The combination of RL and high-capacity function approximators such as neural networks
holds the promise of automating a wide range of decision making and control tasks, but widespread
adoption of these methods in real-world domains has been hampered by two major challenges. First,
model-free deep RL methods are notoriously expensive in terms of their sample complexity. Even
relatively simple tasks can require millions of steps of data collection, and complex behaviors with
high-dimensional observations might need substantially more. Second, these methods are often brittle
with respect to their hyperparameters: learning rates, exploration constants, and other settings must be
set carefully for different problem settings to achieve good results. Both of these challenges severely
limit the applicability of model-free deep RL to real-world tasks.

One cause for the poor sample efficiency of deep RL methods is on-policy learning: some of the most
commonly used deep RL algorithms, such as TRPO (Schulman et al., 2015) or A3C (Mnih et al.,
2016), require new samples to be collected for each gradient step on the policy. This quickly becomes
extravagantly expensive, as the number of gradient steps to learn an effective policy increases with
task complexity. Off-policy algorithms instead aim to reuse past experience. This is not directly
feasible with conventional policy gradient formulations (Schulman et al., 2015; Mnih et al., 2016),
but is relatively straightforward for Q-learning based methods (Mnih et al., 2015). Unfortunately,
the combination of off-policy learning and high-dimensional, nonlinear function approximation with
neural networks presents a major challenge for stability and convergence (Bhatnagar et al., 2009).
This challenge is further exacerbated in continuous state and action spaces, where a separate actor
network is typically required to perform the maximization in Q-learning. A commonly used algorithm
in such settings, deep deterministic policy gradient (DDPG) (Lillicrap et al., 2015), provides for
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sample-efficient learning, but is notoriously challenging to use due to its extreme brittleness and
hyperparameter sensitivity (Duan et al., 2016; Henderson et al., 2017).

We explore how to design an efficient and stable model-free deep RL algorithm for continuous state
and action spaces. To that end, we draw on the maximum entropy framework, which augments
the standard maximum reward reinforcement learning objective with an entropy maximization
term (Ziebart et al., 2008; Toussaint, 2009; Rawlik et al., 2012; Fox et al., 2016; Haarnoja et al., 2017).
Maximum entropy reinforcement learning alters the RL objective, though the original objective can be
recovered by using a temperature parameter (Haarnoja et al., 2017). More importantly, the maximum
entropy formulation provides a substantial improvement in exploration and robustness: as discussed
by Ziebart (2010), maximum entropy policies are robust in the face of modeling and estimation
errors, and as demonstrated by Haarnoja et al. (2017), they improve exploration by acquiring diverse
behaviors. Prior work has proposed model-free deep RL algorithms for continuous action spaces
that perform on-policy learning with entropy maximization (O’Donoghue et al., 2016), as well as
off-policy methods based on soft Q-learning (Schulman et al., 2017; Haarnoja et al., 2017). However,
the on-policy variants suffer from poor sample complexity for the reasons discussed above, while the
off-policy variants require complex approximate inference procedures in continuous action spaces.

In this paper, we demonstrate that we can devise an off-policy maximum entropy actor-critic algorithm,
which we call soft actor-critic, which provides for both sample-efficient learning and stability. This
algorithm extends readily to very complex, high-dimensional tasks, such as the Humanoid benchmark
in OpenAI gym (Brockman et al., 2016), where off-policy methods such as DDPG typically struggle
to obtain good results (Gu et al., 2016), while avoiding the complexity and potential instability
associated with approximate inference in prior off-policy maximum entropy algorithms based on soft
Q-learning (Haarnoja et al., 2017). We present a convergence proof for our algorithm based on a soft
variant of policy iteration, and present empirical results that show a substantial improvement in both
performance and sample efficiency over both off-policy and on-policy prior methods.

2 Related Work

Our soft actor-critic algorithm incorporates three key ingredients: an actor-critic architecture with
separate policy and value function networks, an off-policy formulation that enables reuse of previously
collected data for efficiency, and entropy maximization to enable stability and exploration. We review
prior works that draw on some of these ideas in this section. Actor-critic algorithms are typically
derived starting from policy iteration, which alternates between policy evaluation—computing the
value function for a policy—and policy improvement—using the value function to obtain a better
policy (Barto et al., 1983; Sutton & Barto, 1998). In large-scale reinforcement learning problems, it
is typically impractical to run either of these steps to convergence, and instead the value function
and policy are optimized jointly. In this case, the policy is referred to as the actor, and the value
function as the critic. Many actor-critic algorithms build on the standard, on-policy policy gradient
formulation to update the actor (Peters & Schaal, 2008; Schulman et al., 2015; Mnih et al., 2016).
This tends to improve stability, but results in very poor sample complexity.

There have been efforts to increase the sample efficiency while retaining the robustness prop-
erties by incorporating off-policy samples and by using higher order variance reduction tech-
niques (O’Donoghue et al., 2016; Gu et al., 2016). However, fully off-policy algorithms still attain
better efficiency. A particularly popular off-policy actor-critic variant is based on the deterministic
policy gradient (Silver et al., 2014) and its deep counterpart, DDPG (Lillicrap et al., 2015). This
method uses a Q-function estimator to enable off-policy learning, and a deterministic actor that
maximizes this Q-function. As such, this method can be viewed both as a deterministic actor-critic
algorithm and an approximate Q-learning algorithm. Unfortunately, the interplay between the deter-
ministic actor network and the Q-function typically makes DDPG extremely difficult to stabilize and
brittle to hyperparameter settings (Duan et al., 2016; Henderson et al., 2017). As a consequence, it is
difficult to extend DDPG to very complex, high-dimensional tasks, and on-policy policy gradient
methods still tend to produce the best results in such settings (Gu et al., 2016). Our method instead
combines off-policy actor-critic training with a stochastic actor, and further aims to maximize the
entropy of this actor with an entropy maximization objective. We find that this actually results in
a substantially more stable and scalable algorithm that, in practice, exceeds both the efficiency and
final performance of DDPG.
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Maximum entropy reinforcement learning optimizes policies to maximize both the expected return
and the expected entropy of the policy. This framework has been used in many contexts, from inverse
reinforcement learning (Ziebart et al., 2008) to optimal control (Todorov, 2008; Toussaint, 2009;
Rawlik et al., 2012). More recently, several papers have noted the connection between Q-learning and
policy gradient methods in the framework of maximum entropy learning (O’Donoghue et al., 2016;
Haarnoja et al., 2017; Nachum et al., 2017a; Schulman et al., 2017). While most of the prior works
assume a discrete action space, Nachum et al. (2017b) approximate the maximum entropy distribution
with a Gaussian and Haarnoja et al. (2017) with a sampling network trained to draw samples from
the optimal policy. Although the soft Q-learning algorithm proposed by Haarnoja et al. (2017) has a
value function and actor network, it is not a true actor-critic algorithm: the Q-function is estimating
the optimal Q-function, and the actor does not directly affect the Q-function except through the data
distribution. Hence, Haarnoja et al. (2017) motivates the actor network as an approximate sampler,
rather than the actor in an actor-critic algorithm. Crucially, the convergence of this method hinges
on how well this sampler approximates the true posterior. In contrast, we prove that our method
converges to the optimal policy from a given policy class, regardless of the policy parameterization.
Furthermore, these previously proposed maximum entropy methods generally do not exceed the
performance of state-of-the-art off-policy algorithms, such as DDPG, when learning from scratch,
though they may have other benefits, such as improved exploration and ease of finetuning. In our
experiments, we demonstrate that our soft actor-critic algorithm does in fact exceed the performance
of state-of-the-art off-policy deep RL methods by a wide margin.

3 Preliminaries

In this section, we introduce notation and summarize the standard and maximum entropy reinforce-
ment learning frameworks.

3.1 Notation

We address policy learning in continuous action spaces. To that end, we consider infinite-horizon
Markov decision processes (MDP), defined by the tuple (S,A, ps, r), where the state space S and
the action space A are assumed to be continuous, and the unknown state transition probability
ps : S × S × A → [0, ∞) represents the probability density of the next state st+1 ∈ S given the
current state st ∈ S and action at ∈ A. The environment emits a reward r : S ×A → [rmin, rmax]

on each transition, which we will abbreviate as rt , r(st,at) to simplify notation. We will also
use ρπ(st) and ρπ(st,at) to denote the state and state-action marginals of the trajectory distribution
induced by a policy π(at|st).

3.2 Maximum Entropy Reinforcement Learning

The standard objective used in reinforcement learning is to maximize the expected sum of rewards∑
t E(st,at)∼ρπ [rt]. We will consider a more general maximum entropy objective, which favors

stochastic policies by augmenting the objective with the expected entropy of the policy over ρπ(st):

J(π) =

T−1∑
t=0

E(st,at)∼ρπ [r(st,at) + αH(π( · |st))] . (1)

The temperature parameter α determines the relative importance of the entropy term against the
reward, and thus controls the stochasticity of the optimal policy. The maximum entropy objective
differs from the standard maximum expected reward objective used in conventional reinforcement
learning, though the conventional objective can be recovered in the limit as α→ 0. For the rest of this
paper, we will omit writing the temperature explicitly, as it can always be subsumed into the reward
by scaling it by α−1. The maximum entropy objective has a number of conceptual and practical
advantages. First, the policy is incentivized to explore more widely, while giving up on clearly
unpromising avenues. Second, the policy can capture multiple modes of near-optimal behavior. In
particular, in problem settings where multiple actions seem equally attractive, the policy will commit
equal probability mass to those actions. Lastly, prior work has observed substantially improved
exploration from this objective (Haarnoja et al., 2017; Schulman et al., 2017), and in our experiments,
we observe that it considerably improves learning speed over state-of-art methods that optimize the
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conventional objective function. If we wish to extend the objective to infinite horizon problems, it
is convenient to also introduce a discount factor γ to ensure that the sum of expected rewards and
entropies is finite. Writing down the precise maximum entropy objective for the infinite horizon
discounted case is more involved (Thomas, 2014) and is deferred to Appendix A.

Just as in standard reinforcement learning, maximum entropy reinforcement learning can make use
of Q-functions and value functions, and as we note in Section 4, the soft Q-function of a stochastic
policy π satisfies the soft Bellman equation

Qπ(st,at) = r(st,at) + γ Est+1∼ps [V π(st+1)] , (2)

where the soft value V π(st) is given by

V π(st) = Eat∼π [Qπ(st,at)− log π(at|st)] . (3)

Prior methods have proposed directly solving for the optimal Q-function, from which the optimal
policy can be recovered (Ziebart et al., 2008; Fox et al., 2016; Haarnoja et al., 2017). In the next
section, we will discuss how we can devise a soft actor-critic algorithm through a policy iteration
formulation, where we instead evaluate the Q-function of the current actor, and update the actor
through an off-policy gradient update. Though such algorithms have previously been proposed for
conventional reinforcement learning, our method is, to our knowledge, the first off-policy actor-critic
method in the maximum entropy reinforcement learning framework.

4 From Soft Policy Iteration to Soft Actor-Critic

Our off-policy soft actor-critic algorithm can be derived starting from the maximum entropy variant
of the policy iteration method. In this section, we will first present this derivation, verify that the
corresponding algorithm converges to an optimal policy from its function class, and then present a
practical deep reinforcement learning algorithm based on this theory.

4.1 Derivation of Soft Policy Iteration

We will begin by deriving soft policy iteration, a general algorithm for learning optimal maximum
entropy policies by alternating policy evaluation and policy improvement in the maximum entropy
framework. Our derivation is based on a tabular setting, to enable theoretical analysis and convergence
guarantees, and we extend this method into the general continuous setting in the next section. We will
show that soft policy iteration converges to the optimal policy within a set of policies which might
correspond, for instance, to a set of parameterized functions.

In the policy evaluation step of soft policy iteration, we wish to compute the value of a policy,
π(at|st), according to the maximum entropy objective in Equation 1. For a fixed policy, the soft
Q-value can be computed iteratively, by starting from any function Q : S ×A → R and iteratively
applying a modified version of the Bellman backup operator:

Q← T πQ, (4)

where T π is the soft Bellman backup operator defined by

T πQ = r(st,at) + γ Est+1∼ps,at+1∼π [Q(st+1,at+1)− log π(at+1|st+1)] . (5)

Indeed, we can show that repeated application of Equation 4 will converge to the soft value of the
fixed policy π, as formalized in Lemma 1.
Lemma 1 (Soft Policy Evaluation). Consider the soft Bellman backup operator T π in Equation 5
and a mapping Qk : S ×A → R and define Qk+1 = T πQk. Then the sequence Qk will converge to
the soft value of π as k →∞.

Proof. See the appendix.

In the policy improvement step, we update the policy towards the exponential of the new Q-function.
This particular choice of update can be guaranteed to result into an improved policy in terms of its
soft value, as we show in this section. Since in practice we prefer policies that are tractable, we will
additionally restrict the policy to some set of policies Π, which can correspond, for example, to a
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Algorithm 1: Soft Policy Iteration
1 while πnew(at|st) 6= πold(at|st) for some (at, st) ∈ A× S do
2 Q0 ← Qπold

3 while Qk+1(st,at) > Qk(st,at) for some (at, st) ∈ A× S do
4 Qk+1 ← T πnewQk
5 k ← k + 1
6 end
7 πold ← πnew

8 πnew ← arg minπ′∈Π DKL (π′ ‖ exp (Qπold − logZπold))
9 end

parameterized family of distributions such as Gaussians. To account for the constraint that π ∈ Π,
we project the improved policy into the desired set of policies. While in principle we could choose
any projection, it will turn out to be convenient to use the information projection defined in terms of
the Kullback-Leibler divergence. In the other words, in the policy improvement step, we update the
policy according to

πnew = arg min
π′∈Π

DKL (π′( · |st) ‖ exp (Qπold(st, · )− logZπold(st))) . (6)

For this choice of projection, we can show that the new, projected policy has a higher value than the
old policy with respect to the objective in Equation 1. We formalize this result in Lemma 2.

Lemma 2 (Soft Policy Improvement). Let πold ∈ Π and let πnew be the optimizer of the minimization
problem defined in Equation 6. Then Qπnew(st,at) ≥ Qπold(st,at) for all (st,at) ∈ S ×A.

Proof. See the appendix.

The full soft policy iteration algorithm, which we summarize in Algorithm 1 alternates between the
soft policy evaluation and the soft policy improvement steps, and it will provably converge to the
optimal maximum entropy policy among the policies in Π (Theorem 1). Although this algorithm
will provably find the optimal solution, we can perform it in its exact form only in the tabular case.
Therefore, we will next approximate the algorithm for continuous domains, where we need to rely on
function approximator to represent the Q-values, and running the two steps until convergence would
be computationally too expensive. The approximation gives rise to a new practical algorithm, called
soft actor-critic.

Theorem 1 (Soft Policy Iteration). Algorithm 1 converges, and at the convergence, πnew(at|st) =

maxπ′∈ΠQ
π′(st,at) for all (st,at) ∈ S ×A.

Proof. See the appendix.

4.2 Soft Actor-Critic

As discussed above, large, continuous domains require us to derive a practical approximation to
soft policy iteration. To that end, we will use function approximators for both the Q-function
and policy, and instead of running evaluation and improvement to convergence, alternate between
optimizing both networks with stochastic gradient descent. For the remainder of this paper, we will
consider a parameterized state value function Vψ(st), soft Q-function Qθ(st,at), and a tractable
policy πφ(at|st). The parameters of these networks are ψ, θ, and φ. In the following, we will derive
update rules for these parameter vectors.

The state value function approximates the soft value. There is no need in principle to include a
separate function approximator for the state value, since it is related to the Q-function and policy
according to Qθ(st,at) − log πφ(at|st). This quantity can be evaluated using actions sampled
from πφ, but in practice, including a separate function approximator for the soft value substantially
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stabilizes training, and is convenient to train simultaneously with the other networks. The soft value
function is trained to minimize the squared residual error

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πφ [Qθ(st,at)− log πφ(at|st)]

)2]
, (7)

where D is the distribution of previously sampled states and actions, or a replay buffer. The gradient
of Equation 7 can be estimated with an unbiased estimator

∇̃ψJV (ψ) = ∇ψVψ(st) (Vψ(st)−Qθ(st,at) + log πφ(at|st)) , (8)

where the actions are sampled according to the current policy, instead of the replay buffer. The soft
Q-function parameters can be trained to minimize the soft Bellman residual

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st,at)−

(
r(st,at) + γ Est+1∼ps [Vψ(st)]

))2]
, (9)

which again can be optimized with stochastic unbiased gradients

∇̃θJQ(θ) = ∇θQθ(at, st) (Qθ(st,at)− r(st,at)− γVψ(st)) . (10)

Finally, the policy parameters can be learned by directly minimizing the KL-divergence in Equation 6,
which we reproduce here in parametrized form for completeness

Jπ(φ) = DKL (πφ( · |st) ‖ exp (Qθ(st, · )− logZθ(st))) . (11)

There are several options for minimizing Jπ, depending on the choice of the policy class. For
simple distributions, such as Gaussians, we can use the reparametrization trick, which allows us to
backpropagate the gradient from the critic network and leads to a DDPG-style estimator. However,
if the policy depends on discrete latent variables, such as is the case for mixture models, the
reparametrization trick cannot be used. We therefore propose to use a likelihood ratio gradient
estimator:

∇φJπ(φ)=Eat∼πφ [∇φ log πφ(at|st) (log πφ(at|st)+1−Qθ(st,at)+logZθ(st)+b(st))] , (12)

where b(st) is a state-dependent baseline (Peters & Schaal, 2008). We can approximately center the
learning signal and eliminate the intractable log-partition function by choosing b(st) = Vψ(st) −
logZθ(st)− 1, which yields the final gradient estimator

∇̃φJπ(φ) = ∇φ log πφ(at|st) (log πφ(at|st)−Qθ(st,at)− Vψ(st)) . (13)

Algorithm 2: Soft Actor-Critic
1 Initialize parameter vectors ψ, θ, φ.
2 for each iteration do
3 for each environment step do
4 at ∼ πφ(at|st)
5 st+1 ∼ ps(st+1|st,at)
6 D ← D∪{(st,at, r(st,at), st+1)} .
7 end
8 for each gradient step do
9 ψ ← ψ − λV ∇̃ψJV (ψ)

10 θ ← θ − λQ∇̃θJQ(θ)

11 φ← φ− λπ∇̃φJπ(φ)
12 end
13 end

The complete algorithm is described in Algo-
rithm 2. The method alternates between collecting
experience from the environment with the current
policy and updating the function approximators
using the stochastic gradients on batches sampled
from a replay buffer. This is feasible because both
value estimators and the policy can be trained en-
tirely on off-policy data. The algorithm is agnostic
to the parameterization of the policy, as long as
it can be evaluated for any arbitrary state-action
tuple. We will next suggest a practical parameteri-
zation for the policy, based on Gaussian mixtures.

4.3 Soft Actor-Critic with Gaussian
Mixtures

Although we could use a simple policy represented by a Gaussian, as is common in prior work, the
maximum entropy framework aims to maximize the randomness of the learned policy. Therefore, a
more expressive but still tractable distribution can endow our method with more effective exploration
and robustness, which are the typically cited benefits of entropy maximization (Ziebart, 2010). To
that end, we propose a practical multimodal representation based on a mixture of K Gaussians. This
can approximate any distribution to arbitrary precision as K →∞, but even for practical numbers of
mixture elements, it can provide a very expressive distribution in medium-dimensional action spaces.
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Figure 1: Training curves on continuous control benchmarks. Note that SAC attains the best results in all
tasks, compared to both on-policy and off-policy methods. Furthermore, additional gradient steps per time step
increase performance up to 16 steps.

Although the complexity of evaluating or sampling from the resulting distribution scales linearly in
K, our experiments indicates that a relatively small number of mixture components, typically just
two or four, is sufficient to achieve high performance, thus making the algorithm scalable to complex
domains with high-dimensional action spaces.

We define the policy as

πφ(at|st) =
1∑
i w

φ
i

K∑
i=1

wφi (st)N
(
at;µ

φ
i (st),Σ

φ
i (st)

)
, (14)

where wφi , µ
φ
i , Σφi are the unnormalized mixture weights, means, and covariances, respectively,

which all can depend on st in complex ways if expressed as neural networks. Note that, in contrast to
soft Q-learning (Haarnoja et al., 2017), our algorithm does not assume that the policy can accurately
approximate the optimal exponentiated Q-function distribution. The convergence result for soft policy
iteration holds even for policies that are restricted to a policy class, in contrast to prior methods of
this type.

5 Experiments
The goal of our experimental evaluation is to understand how the sample complexity and stability of
our method compares with prior off-policy and on-policy deep reinforcement learning algorithms.
To that end, we evaluate on a range of challenging continuous control tasks from the OpenAI gym
benchmark suite (Brockman et al., 2016). Although the easier tasks in this benchmark suite can
be solved by a wide range of different algorithms, the more complex benchmarks, such as the 17
dimensional Humanoid-v1 task, are exceptionally difficult to solve with off-policy algorithms (Duan
et al., 2016). The stability of the algorithm also plays a large role in performance: easier tasks make
it more practical to tune hyperparameters to achieve good results, while the already narrow basins of
effective hyperparameters become prohibitively small for the more sensitive algorithms on the most
high-dimensional benchmarks, leading to poor performance (Gu et al., 2016).

In our comparisons, we compare to trust region policy optimization (TRPO) (Schulman et al., 2015), a
stable and effective on-policy policy gradient algorithm, as well as deep deterministic policy gradient
(DDGP) (Lillicrap et al., 2015), an algorithm that is regarded as one of the more efficient off-policy
deep RL methods (Duan et al., 2016). Although DDPG is very efficient, it is also known to be more
sensitive to hyperparameter settings, which limits its effectiveness on complex tasks (Gu et al., 2016;
Henderson et al., 2017). Figure 5 shows the total average reward of evaluation rollouts during training
for the various methods. Exploration noise was turned off for evaluation for DDPG and TRPO. For
SAC, which does not explicitly inject exploration noise, we heuristically chose the action to be the
mean of the mixture component that achieves the highest Q-value.

Comparative evaluation. The results show that, overall, SAC substantially outperforms DDPG
on all of the benchmark tasks, in terms of both sample efficiency and final performance, and learns
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substantially faster than TRPO. On the hardest tasks, Humanoid-v1 and HumanoidStandup-v1, DDPG
is unable to make any progress, a result that is corroborated by prior work (Gu et al., 2016; Duan
et al., 2016). SAC still learns substantially faster than TRPO on these tasks, likely as a consequence
of improved stability. Poor stability is exacerbated by high-dimensional and complex tasks. The
quantitative results attained by SAC in our experiments also compare very favorably to results
reported by other methods in prior work (Duan et al., 2016; Gu et al., 2016; Henderson et al., 2017),
indicating that both the sample efficiency and final performance of SAC on these benchmark tasks
exceeds the state of the art. In Figure 2, we show the performance for multiple individual seeds of
both DDPG and SAC (Figure 5 shows the average over seeds). The individual seeds attain much
more consistent performance with SAC, while DDPG exhibits very high variability across seeds,
indicating substantially worse stability. Note that the different seeds of SAC are even more consistent
than TRPO, an algorithm that is generally known to be among the more stable (though less efficient)
deep RL methods. Even though TRPO does not make perceivable progress for some tasks within the
range depicted in the figures, it will eventually solve all of them after substantially more iterations.
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Figure 2: Performance of the individual seeds on the
half-cheetah benchmark. Note that all of the SAC seeds
attain good performance, while DDPG and TRPO ex-
hibit considerable variability across seeds. The TRPO
distribution is in fact clearly bimodal, with one set of
successful seeds, and one set of seeds that learn much
slower. Several of the DDPG seeds oscillate and fail to
improve after the first million steps.

Gradient steps per time step. For both
DDPG and SAC, we experimented with the num-
ber of actor and critic gradient steps per time
step of the algorithm. Prior work has observed
that increasing the number of gradient steps for
DDPG tends to improve sample efficiency (Gu
et al., 2017; Popov et al., 2017). Our experi-
ments agree with this observation. We empiri-
cally found that 4 gradient updates per time step
resulted in the best performance for DDPG. In-
terestingly, SAC was able to effectively benefit
from substantially larger numbers of gradient
updates, with performance increasingly steadily
until 16 gradient updates per step. In Figure 5,
we show performance for SAC with 1, 4, and 16
gradient steps.

Mixture components. We experimented with
different numbers of mixture components for
the Gaussian mixture policy for SAC. We found
that the number of mixture elements generally
did not have a very large effect on performance,
though 2 or 4 components typically attained the
best results.

Importance of entropy regularization. It is in principle possible to implement a “hard” variant
of SAC, by dropping the entropy regularization term. The result is a standard off-policy actor-critic
algorithm that uses a Q-function for off-policy learning. This algorithm closely resembles DDPG,
but with a stochastic policy trained via likelihood ratio gradients. We found that this method achieved
very poor performance across all tasks, and were unable to tune it to train effectively. This suggests
that the inclusion of entropy regularization is a critical component of our method.

6 Conclusion

We presented soft actor-critic (SAC), an off-policy maximum entropy deep reinforcement learning
algorithm that provides sample-efficient learning while retaining the benefits of entropy maximization
and stability. Our theoretical results derive soft policy iteration, which we show to converge to the
optimal policy. From this result, we can formulate a soft actor-critic algorithm, and we empirically
show that it outperforms state-of-the-art model-free deep RL methods, including the off-policy DDPG
algorithm and the on-policy TRPO algorithm. In fact, the sample efficiency of this approach actually
exceeds that of DDPG by a substantial margin. Our results suggest that stochastic, entropy maximizing
reinforcement learning algorithms can provide a promising avenue for improved robustness and
stability, and further exploration of maximum entropy methods, including methods that incorporate
second order information (e.g., trust regions (Schulman et al., 2015) or Kronecker factorization (Johns
et al., 2007)) or more expressive policy classes is an exciting avenue for future work.
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A Infinite Horizon Discounted Maximum Entropy Objective

J(π) =

∞∑
t=0

E(st,at)∼ρπ

[ ∞∑
l=t

γl−t Esl∼ps,al∼π [r(st,at) + αH(π( · |st))|st,at]

]
(15)

B Proofs

B.1 Lemma 1

Proof. Define the entropy augmented reward as rH(st,at) , r(st,at) +H (π( · |st)) and rewrite
the update rule as

Q(st,at)← rH(st,at) + γ Ea∼π [Q(st+1,a)] (16)

and apply the standard convergence results for policy evaluation (Sutton & Barto, 1998).

B.2 Lemma 2

Proof. We will drop the state and action arguments from the following derivation for improved
readability. Let πold ∈ Π and let Qπold and V πold be the corresponding soft state-action value and
soft state value, and let πnew be defined as

πnew = arg min
π′∈Π

DKL (π′ ‖ exp (Qπold − logZπold))

= arg min
π′∈Π

Jπold
(π′). (17)

It must be the case that Jπold
(πnew) ≤ Jπold

(πold), since we can always choose πnew = πold ∈ Π.
Hence

Eπnew
[log πnew −Qπold + logZπold ] ≤ Eπold

[log πold −Qπold + logZπold ] , (18)

or

Eπnew
[Qπold − log πnew] ≥ V πold . (19)

Next, consider the soft Bellman equation:

Qπold = r + γ Eps [V πold ]

≤ r + γ Eps [Eπnew
[Qπold − log πnew]]

...
≤ Qπnew . (20)

We keep expanding Qπold on the RHS, which converges to Qπnew by Lemma 1.

B.3 Theorem 1

Proof. Let πi be the policy at iteration i. By Lemma 2, the sequence Qπi is monotonically increasing.
Since Q is bounded, the sequence converges to some π∗. We will still need to show that π∗ is indeed
optimal. At convergence, it must be case that Jπ∗(π∗) < Jπ∗(π) for all π ∈ Π, π 6= π∗. Using the
same iterative argument as in the proof of Lemma 2, we get Qπ

∗
> Qπ , that is, the soft value of any

other policy in Π is lower than that of the converged policy. Hence π∗ is optimal in Π.
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