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Overview

• Arithmetic circuits (ACs) allow for exact 
inference in networks with high treewidth 
by exploiting context-specific independence 
and determinism

• This work introduces approximate inference 
methods using ACs
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Network Polynomial

• Defines a Bayesian network as a multi-
linear function

•     - Evidence indicators: used to select the 
a value

•       - Network parameters: parameters 
from the CPTs.
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Arithmetic Circuit

• Rooted, directed acyclic graph

• Leaves - numeric constants/variables

• Interior nodes - Addition and multiplication 
operations
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Fig. 6. An arithmetic circuit that exploits local structure. The circuit computes the polynomial of the Bayesian network in
Figure 3.

It is well known that if the directed graph underlying a Bayesian network has n nodes and treewidth w, then

a jointree for N exists which has no more than n clusters and a maximum cluster size of w + 1. Theorem 6

is then telling us that the circuit complexity of such networks is O(n exp(w)).

We note here that the arithmetic circuit embedded in a jointree has a very specific structure: it alternates

between addition and multiplication nodes, and each multiplication node has a single parent. This specific

structure permits more efficient schemes for circuit evaluation and differentiation than we have proposed

earlier (since the partial derivative with respect to a multiplication node and its single parent must be equal).

Two such methods are discussed in [Park and Darwiche 2001b], where it is shown that these methods require

less space than is required by the methods of Section 4.

Definition 5 provides a method for generating arithmetic circuits based on jointrees, but it also serves as

a connection between the approach proposed here and the influential inference approaches based on jointree

propagation. According to these approaches, one performs inference by passing messages in two phases:

an inward phase where messages are passed towards the root cluster and then an outward phase where

messages are passed away from the root cluster. It was shown recently that the inward phase of jointree

propagation corresponds to an evaluation of the embedded circuit, and the outward phase corresponds to

a differentiation of the circuit [Park and Darwiche 2001b]. Specifically, it was shown that the two main

methods for jointree propagation, known as Shenoy–Shafer [Shenoy and Shafer 1986] and Hugin [Jensen

et al. 1990] propagation, do correspond precisely to two specific numeric methods for circuit differentiation

that have different time/space properties.

These findings have a number of implications. First, they provide a deeper understanding of jointree

algorithms, allowing us to extract more information from them than was previously done—see [Park and

Darwiche 2001b] for some examples. Second, they suggest that building a jointree is one specific way

of accomplishing a more general task, that of building an arithmetic circuit for computing the network

polynomial. This leaves us with the question: What other methods can one employ for accomplishing this

purpose? We address this question in the following section, where we sketch a new approach for building

arithmetic circuits that reduces the problem to one of logical reasoning [Darwiche 2002b].

5.2 Circuits that exploit local structure

The arithmetic circuits embedded in jointrees come with a guarantee on their size. This guarantee, however,

is only a function of the network topology and is both an upper and a lower bound. Therefore, if the jointree

has a cluster of large size, say 40, then the embedded arithmetic circuit will be intractable.

The key point to observe here is that one can generate arithmetic circuits of manageable size even when the

jointree has large clusters, assuming the conditional probabilities of the Bayesian network exhibit some local
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Fig. 5. A jointree for the Bayesian network in Figure 3 and its corresponding arithmetic circuit.

—Downward–pass: At node v and for each parent p,

—if p is an addition node, increment dr(v) by dr(p);

—if p is a multiplication node, increment dr(v) by

dr(p)vr(p)/vr(v) if bit1(p) = 0;

dr(p)vr(p) if bit2(p) = 1 and vr(v) = 0.

When the downward–pass of the above method terminates, we are guaranteed that the value of every addition

node v is stored in vr(v), and the value of every multiplication node v is stored in vr(v) if bit1(v) = 0, and is

0 otherwise. We are also guaranteed that the derivative of f with respect to every node v is stored in dr(v).

Finally, the method takes time which is linear in the circuit size.

4.3 Rounding errors

We close this section by pointing out that once a circuit is evaluated and differentiated, it is possible to

bound the rounding error in the computed value of the circuit output under a particular model of error

propagation. Specifically, let δ be the local rounding error generated when computing the value of an

addition or multiplication node in the upward–pass. It is reasonable to assume that |δ| ≤ �|v|, where:

– v is the value we would obtain for the node when using infinite–precision to add/multiply its children

values;

– � is a constant representing the machine–specific relative error occurring in the floating–point representa-

tion of a real number.

We can then bound the rounding error in the computed value of the circuit f by �
�

v v∂f/∂v, where v ranges

over all internal nodes in the circuit [Iri 1984]. This bound can be computed easily as the downward–pass

is being executed, allowing us to bound the rounding error in the computed probability of evidence as this

corresponds to the value of the circuit output.

5. COMPILING ARITHMETIC CIRCUITS

Our goal in this section is to present algorithms for generating arithmetic circuits that compute network

polynomials. The goal is to try to generate the smallest circuit possible, and to offer guarantees on the

complexity of generated circuits whenever possible. We will discuss two classes of methods for this purpose.

The first class exploits the global structure of a Bayesian network (its topology) and comes with a complexity

guarantee in terms of the network treewidth. The second class of algorithms can also exploit local structure

(the specific values of conditional probabilities), and could be quite effective in situations where the first

approach is intractable. But first, we present a new notion of complexity for Bayesian networks which is

motivated by algebraic complexity theory [von zur Gathen 1988]:

Definition 4. The circuit complexity of a Bayesian network N is the size of the smallest arithmetic
circuit that computes the network polynomial of N .
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true .5
false .5

A B θB|A
true true 1
true false 0
false true 0
false false 1

A C θC|A
true true .8
true false .2
false true .2
false false .8

Fig. 3. A Bayesian network.

2.1 Technical preliminaries

We will start by settling some notational conventions and providing the formal definition of a Bayesian
network. Variables are denoted by upper–case letters (A) and their values by lower–case letters (a). Sets of
variables are denoted by bold–face upper–case letters (A) and their instantiations are denoted by bold–face
lower–case letters (a). For variable A and value a, we often write a instead of A=a. For a variable A with
values true and false, we use a to denote A=true and ā to denote A=false. Finally, let X be a variable and let
U be its parents in a Bayesian network. The set XU is called the family of variable X, and the variable θx|u
is called a network parameter and is used to represent the conditional probability Pr(x | u); see Figure 2.

A Bayesian network over variables X is a directed acyclic graph over X, in addition to conditional proba-
bility values θx|u for each variable X in the network and its parents U. The semantics of a Bayesian network
are given by the chain rule, which says that the probability of instantiation x of all network variables X is
simply the product of all network parameters θx|u, where xu is consistent with x. More formally,

Pr(x) =
�

xu∼x

θx|u,

where ∼ denotes the compatibility relation among instantiations (that is, xu ∼ x says that instantiations
xu and x agree on values of their common variables). For example, the probability of instantiation

report , leaving , alarm, tampering , smoke, fire

in Figure 1 is given by the product

θreport|leaving θleaving|alarm θalarm|tampering,fire θtampering θsmoke|fire θfire .

The justification for this particular semantics of Bayesian networks is outside the scope of this paper, but
the reader is referred to other sources for an extensive treatment of the subject [Pearl 1988]. Suffice it to say
here that the chain rule is all one needs to reconstruct the probability distribution specified by a Bayesian
network.

2.2 The network polynomial

We will now define for each Bayesian network a unique multi–linear function over two types of variables:

Evidence indicators: For each network variable X, we have a set of evidence indicators λx.
Network parameters: For each network family XU, we have a set of parameters θx|u.

The multi–linear function for a Bayesian network over variables X has an exponential number of terms, one
term for each instantiation of the network variables. The term corresponding to instantiation x is the product
of all evidence indicators and network parameters that are compatible with the instantiation. Consider the
simple Bayesian network in Figure 2, which has two variables A and B. The multi–linear function for this
network is:

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā.

(Figures from Darwiche 2003)
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v λa λā λb λb̄ λc λc̄ θa θā θb|a θb|ā θb̄|a θb̄|ā θc|a θc|ā θc̄|a θc̄|ā
∂f/∂v .1 .4 .1 0 .4 .1 .2 0 .1 0 .1 0 0 0 .5 0

Table 1. Partial derivatives of the network polynomial f of Figure 3 at evidence ac̄. The value of the polynomial at this
evidence is f(ac̄) = .1.

For another example, consider the network in Figure 3. The polynomial of this network has eight terms,

some of which are shown below:

f = λaλbλcθaθb|aθc|a +

λaλbλc̄θaθb|aθc̄|a +

.

.

.

λāλb̄λc̄θāθb̄|āθc̄|ā.

In general, for a Bayesian network with n variables, each term in the multi–linear function will contain 2n
variables: n parameters and n indicators. The multi–linear function of a Bayesian network is a multi–variate

polynomial where each variable has degree 1. We will therefore refer to it as the network polynomial.

Definition 1. Let N be a Bayesian network over variables X, and let U denote the parents of variable
X in the network. The polynomial of network N is defined as follows:

f =

�

x

�

xu ∼ x

λxθx|u.

The outer sum in the above definition ranges over all instantiations x of the network variables. For each

instantiation x, the inner product ranges over all instantiations of families xu that are compatible with x.

The polynomial f of Bayesian network N represents the probability distribution Pr of N in the following

sense. For any piece of evidence e—which is an instantiation of some variables E in the network—we can

evaluate the polynomial f so it returns the probability of e, Pr(e).

Definition 2. The value of network polynomial f at evidence e, denoted by f(e), is the result of replacing
each evidence indicator λx in f with 1 if x is consistent with e, and with 0 otherwise.

Consider the polynomial,

f = λaλbθaθb|a + λaλb̄θaθb̄|a + λāλbθāθb|ā + λāλb̄θāθb̄|ā,

for the network in Figure 2. If the evidence e is ab̄, then f(e) is obtained by applying the following

substitutions to f : λa = 1, λā = 0, λb = 0, and λb̄ = 1, leading to the probability of e, θaθb̄|a.

Theorem 1. Let N be a Bayesian network representing probability distribution Pr and having polynomial
f . For any evidence (instantiation of variables) e, we have f(e) = Pr(e).

Hence, our ability to represent and evaluate the network polynomial implies our ability to compute probabil-

ities of instantiations. The polynomial has an exponential size, however, and cannot be represented as a set

of terms. But we show in Section 4 that one can represent such polynomials efficiently using arithmetic cir-

cuits, in a number of interesting cases. We also show in Section 3 that the partial derivatives of the network

polynomial contain valuable information, which can be used to answer a comprehensive set of probabilistic

queries.

We close this section by noting that [Russell et al. 1995] has observed that Pr(e) is a linear function in

each network parameter. More generally, it is shown in [Castillo et al. 1996; Castillo et al. 1997] that Pr(e)

can be expressed as a polynomial of network parameters in which each parameter has degree one. In fact,

the polynomials discussed in [Castillo et al. 1996; Castillo et al. 1997] correspond to our network polynomials

when evidence indicators are fixed to a particular value.

We will next attribute probabilistic semantics to the partial derivatives of network polynomials, and then

provide results on the computational complexity of representing them using arithmetic circuits.

Network 
polynomial

AC

Compact AC
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Context-Specific 
Independence

• Take advantage of context-specific independencies

• Variables may be independent given a certain instantiation

• Use a decision-tree CPD representation

• Arithmetic circuits can also capture these independencies
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Figure 1: Context-Specific Independence

the values of and . Clearly, we need to specify at
most five distributions over instead of eight. Such reg-
ularities occur often enough that at least two well known
BN products—Microsoft’s Bayesian Networks Modeling
Tool and Knowledge Industries’ DXpress—have incorpo-
rated special mechanisms in their knowledge acquisition in-
terface that allow the user to more easily specify the corre-
sponding CPTs.
In this paper, we provide a formal foundation for such reg-
ularities by using the notion of context-specific indepen-
dence. Intuitively, in our example, the regularities in the
CPT of ensure that is independent of and given
the context ( ), but is dependent on in the con-
text ( ). This is an assertion of context-specific in-
dependence (CSI), which is more restricted than the state-
ments of variable independence that are encoded by the
BN structure. Nevertheless, as we show in this paper, such
statements can be used to extend the advantages of variable
independence for probabilistic inference, namely, ease of
knowledge elicitation, compact representation and compu-
tational benefits in inference.
We are certainly not the first to suggest extensions to the
BN representation in order to capture additional indepen-
dencies and (potentially) enhance inference. Well-known
examples includeHeckerman’s [9] similarity networks (and
the related multinets [7]), the use of asymmetric represen-
tations for decision making [18, 6] and Poole’s [16] use of
probabilistic Horn rules to encode dependencies between
variables. Even the representation we emphasize (decision
trees) have been used to encode CPTs [2, 8]. The intent of
this work is to formalize the notion of CSI, to study its rep-
resentation as part of a more general framework, and to pro-
pose methods for utilizing these representations to enhance
probabilistic inference algorithms.
We begin in Section 2 by defining context-specific indepen-
dence formally, and introducing a simple, local transforma-
tion for a BN based on arc deletion so that CSI statements
can be readily determined using d-separation. Section 3 dis-
cusses in detail how trees can be used to represent CPTs
compactly, and how this representation can be exploited by
the algorithms for determining CSI. Section 4 offers sug-
gestions for speeding up probabilistic inference by taking
advantage of CSI. We present network transformations that
may reduce clique size for clustering algorithms, as well
as techniques that use CSI—and the associated arc-deletion
strategy—in cutset conditioning. We conclude with a dis-
cussion of related notions and future research directions.

2 Context-Specific Independence and Arc
Deletion

Consider a finite set of discrete ran-
dom variables where each variable may take on
values from a finite domain. We use capital letters, such as

, for variable names and lowercase letters to
denote specific values taken by those variables. The set of
all values of is denoted val . Sets of variables are de-
noted by boldface capital letters , and assignments
of values to the variables in these sets will be denoted by
boldface lowercase letters (we use val in the ob-
vious way).

Definition 2.1: Let be a joint probability distribution
over the variables in , and let be subsets of .
and are conditionally independent given , denoted

, if for all val val
val , the following relationship holds:

whenever (1)

We summarize this last statement (for all values of )
by .
A Bayesian network is a directed acyclic graph whose
nodes correspond to the random variables , and
whose edges represent direct dependencies between the
variables. The graph structure of encodes the set of inde-
pendence assumptions representing the assertion that each
node is independent of its non-descendants given its par-
ents . These statements are local, in that they involve
only a node and its parents in . Other statements, in-
volving arbitrary sets of variables, follow from these local
assertions. These can be read from the structure of us-
ing a graph-theoretic path criterion called d-separation [14]
that can be tested in polynomial time.
A BN represents independence information about a par-
ticular distribution . Thus, we require that the indepen-
dencies encoded in hold for . More precisely, is said
to be an I-map for the distribution if every independence
sanctioned by d-separation in holds in . A BN is re-
quired to be a minimal I-map, in the sense that the deletion
of any edge in the network destroys the I-mapness of the
network with respect to the distribution it describes. A BN
for permits a compact representation of the distribu-

tion: we need only specify, for each variable , a condi-
tional probability table (CPT) encoding a parameter

for each possible value of the variables in .
(See [14] for details.)
The graphical structure of the BN can only capture indepen-
dence relations of the form , that is, indepen-
dencies that hold for any assignment of values to the vari-
ables in . However, we are often interested in indepen-
dencies that hold only in certain contexts.

Definition 2.2: Let be pairwise disjoint sets
of variables. and are contextually independent given

(Figure from Boutilier et al. 1996)
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Log-Linear Model 
Representation

• fi - feature: represents an assignment i to a 
configuration 

• wi - weight: represents the value corresponding to 
assignment i 

best for both structure and parameters, achieving the highest accuracy on eight challenging, real-

world domains. Compared to loopy belief propagation, mean field, and Gibbs sampling, our AC
2
-F

method, which selects parameters once per domain, is faster and usually more accurate. Our AC
2
-G

method, which optimizes parameters at query time, achieves higher accuracy on every domain with

a running time similar to Gibbs sampling.

The remainder of this paper is organized as follows. In Section 2, we provide background on

Bayesian networks and arithmetic circuits. In Section 3, we present our methods and discuss re-

lated work. We evaluate the methods empirically in Section 4 and conclude in Section 5.

2 Background

2.1 Bayesian networks

Bayesian networks (BNs) exploit conditional independence to compactly represent a probability

distribution over a set of variables, {X1, . . . , Xn}. A BN consists of a directed, acyclic graph with

a node for each variable, and a set of conditional probability distributions (CPDs) describing the

probability of each variable, Xi, given its parents in the graph, denoted πi [2]. The full probability

distribution is the product of the CPDs: P (X) =
�n

i=1 P (Xi|πi).

Each variable in a BN is conditionally independent of its non-descendants given its parents. Depend-

ing on the how the CPDs are parametrized, there may be additional independencies. For discrete

domains, the simplest form of CPD is a conditional probability table, but this requires space expo-

nential in the number of parents of the variable. A more scalable approach is to use decision trees as

CPDs, taking advantage of context-specific independencies [3, 4, 5]. In a decision tree CPD for vari-

able Xi, each interior node is labeled with one of the parent variables, and each of its outgoing edges

is labeled with a value of that variable. Each leaf node is a multinomial representing the marginal

distribution of Xi conditioned on the parent values specified by its ancestor nodes and edges in the

tree.

Bayesian networks can be represented as log-linear models:

log P (X = x) = − log Z +
�

i wifi(x) (1)

where each fi is a feature, each wi is a real-valued weight, and Z is the partition function. In BNs, Z

is 1, since the conditional distributions ensure global normalization. After conditioning on evidence,

the resulting distribution may no longer be a BN, but it can still be represented as a log linear model.

The goal of inference in Bayesian networks and other graphical models is to answer arbitrary

marginal and conditional queries (i.e., to compute the marginal distribution of a set of query vari-

ables, possibly conditioned on the values of a set of evidence variables). Popular methods include

variational inference, Gibbs sampling, and loopy belief propagation.

In variational inference, the goal is to select a tractable distribution Q that is as close as possible to

the original, intractable distribution P . Minimizing the KL divergence from P to Q (KL(P �Q)) is

generally intractable, so the “reverse” KL divergence is typically used instead:

KL(Q�P ) =
�

x

Q(x) log
Q(x)
P (x)

= −HQ(x)−
�

i

wiEQ[fi] + log ZP (2)

where HQ(x) is the entropy of Q, EQ is an expectation computed over the probability distribution Q,

ZP is the partition function of P , and wi and fi are the weights and features of P (see Equation 1).

This quantity can be minimized by fixed-point iteration or by using a gradient-based numerical

optimization method. What makes the reverse KL divergence more tractable to optimize is that the

expectations are done over Q instead of P . This minimization also yields bounds on the log partition

function, or the probability of evidence in a BN. Specifically, because KL(Q �P ) is non-negative,

log ZP ≥ HQ(x) +
�

i wiEQ[fi].

The most commonly applied variational method is mean field, in which Q is chosen from the set

of fully factorized distributions. Generalized or structured mean field operates on a set of clusters

(possibly overlapping), or junction tree formed from a subset of the edges [6, 7, 8]. Selecting the

best tractable substructure is a difficult problem. One approach is to greedily delete arcs until the

junction tree is tractable [6]. Alternately, Xing et al. [7] use weighted graph cuts to select clusters

for structured mean field.

2
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KL Divergence

• Average log difference between two distributions

• Q is typically the approximate distribution, while 
P is the true distribution

• In variational methods, the goal is to find a 
tractable distribution Q that minimizes this

best for both structure and parameters, achieving the highest accuracy on eight challenging, real-

world domains. Compared to loopy belief propagation, mean field, and Gibbs sampling, our AC
2
-F

method, which selects parameters once per domain, is faster and usually more accurate. Our AC
2
-G

method, which optimizes parameters at query time, achieves higher accuracy on every domain with

a running time similar to Gibbs sampling.

The remainder of this paper is organized as follows. In Section 2, we provide background on

Bayesian networks and arithmetic circuits. In Section 3, we present our methods and discuss re-

lated work. We evaluate the methods empirically in Section 4 and conclude in Section 5.

2 Background

2.1 Bayesian networks

Bayesian networks (BNs) exploit conditional independence to compactly represent a probability

distribution over a set of variables, {X1, . . . , Xn}. A BN consists of a directed, acyclic graph with

a node for each variable, and a set of conditional probability distributions (CPDs) describing the

probability of each variable, Xi, given its parents in the graph, denoted πi [2]. The full probability

distribution is the product of the CPDs: P (X) =
�n

i=1 P (Xi|πi).

Each variable in a BN is conditionally independent of its non-descendants given its parents. Depend-

ing on the how the CPDs are parametrized, there may be additional independencies. For discrete

domains, the simplest form of CPD is a conditional probability table, but this requires space expo-

nential in the number of parents of the variable. A more scalable approach is to use decision trees as

CPDs, taking advantage of context-specific independencies [3, 4, 5]. In a decision tree CPD for vari-

able Xi, each interior node is labeled with one of the parent variables, and each of its outgoing edges

is labeled with a value of that variable. Each leaf node is a multinomial representing the marginal

distribution of Xi conditioned on the parent values specified by its ancestor nodes and edges in the

tree.

Bayesian networks can be represented as log-linear models:

log P (X = x) = − log Z +
�

i wifi(x) (1)

where each fi is a feature, each wi is a real-valued weight, and Z is the partition function. In BNs, Z

is 1, since the conditional distributions ensure global normalization. After conditioning on evidence,

the resulting distribution may no longer be a BN, but it can still be represented as a log linear model.

The goal of inference in Bayesian networks and other graphical models is to answer arbitrary

marginal and conditional queries (i.e., to compute the marginal distribution of a set of query vari-

ables, possibly conditioned on the values of a set of evidence variables). Popular methods include

variational inference, Gibbs sampling, and loopy belief propagation.

In variational inference, the goal is to select a tractable distribution Q that is as close as possible to

the original, intractable distribution P . Minimizing the KL divergence from P to Q (KL(P �Q)) is

generally intractable, so the “reverse” KL divergence is typically used instead:

KL(Q�P ) =
�

x

Q(x) log
Q(x)
P (x)

= −HQ(x)−
�

i

wiEQ[fi] + log ZP (2)

where HQ(x) is the entropy of Q, EQ is an expectation computed over the probability distribution Q,

ZP is the partition function of P , and wi and fi are the weights and features of P (see Equation 1).

This quantity can be minimized by fixed-point iteration or by using a gradient-based numerical

optimization method. What makes the reverse KL divergence more tractable to optimize is that the

expectations are done over Q instead of P . This minimization also yields bounds on the log partition

function, or the probability of evidence in a BN. Specifically, because KL(Q �P ) is non-negative,

log ZP ≥ HQ(x) +
�

i wiEQ[fi].

The most commonly applied variational method is mean field, in which Q is chosen from the set

of fully factorized distributions. Generalized or structured mean field operates on a set of clusters

(possibly overlapping), or junction tree formed from a subset of the edges [6, 7, 8]. Selecting the

best tractable substructure is a difficult problem. One approach is to greedily delete arcs until the

junction tree is tractable [6]. Alternately, Xing et al. [7] use weighted graph cuts to select clusters

for structured mean field.

2
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Approximate 
Compilation

• Main idea: Compile an AC that 
approximates the true BN and perform 
using that AC

• Two stages

• Structure search (Performed once)

• Parameter optimization (Fine tunes the 
circuit to specific evidence)
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Structure Search

• Two methods covered in this work

• Prune and compile

• Learn from samples
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Decision Tree CPD Structure Learning

• Split operators

• Complete - C(v, π) add leaf nodes as children to v, 
where each leaf corresponds to an assignment of π

• Binary - B(v, π, k) adds 2 leaf nodes as children to 
v, where one leaf corresponds to assignment k of π 
and the other for all other assignments

• Merge - M(v1,v2) merges 2 leaf nodes; resulting 
node inherits all parents from both.
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Decision Tree CPD Structure Learning

v 1 v 3 v 2 

y 
0 1 2 

y 
0 1 2 

x 
0 1 2 

y 
0 1 2 

x 
0 1,2 

y 
0 1,2 

(a) 

(b) (c) (d) 

C(v3,x) B(v3,x,0) M(v2,v3)

v1=P(z | y=0)
v2=P(z | y=1)
v3=P(z | y=2)
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Prune and Compile
• Goal: Find a simplified network Q from pruning splits in the 

decision tree CPD

• Q’s structure is a subset of P’s - can decompose KL divergence

• Need to compute parent distributions P(πi)

• Intractable

• Need to approximate

• P-Samp: Estimate joint distributions with samples

• P-MF: Mean field

ditional probability distribution, so that the approximated log probability of every instance is within

a constant factor of the truth, as done by the Multiplicative Approximation Scheme (MAS) [12].

However, we found that the bounds for our networks were very large, with ratios in the hundreds or

thousands. This occurs because our networks have probabilities close to 0 and 1 (with logs close to

negative infinity and zero), and because the bounds focus on the worst case.

Therefore, we chose to focus instead on the average case by attempting to mini-

mize the KL divergence between the original model and the simplified approximation:

KL(P �Q) =
�

x P (x) log P (x)
Q(x) where P is the original network and Q is the simplified approxi-

mate network, in which each of P ’s conditional probability distributions has been simplified. We

choose to optimize the KL divergence here because the reverse KL is prone to fitting only a sin-

gle mode, and we want to avoid excluding any significant parts of the distribution before seeing

evidence. Since Q’s structure is a subset of P ’s, we can decompose the KL divergence as follows:

KL(P �Q) =
�

i

�

πi

P (πi)
�

xi

P (xi|πi) log
P (xi|πi)
Q(xi|πi)

(3)

where the summation is over all states of the Xi’s parents, Πi. In other words, the KL divergence

can be computed by adding the expected divergence of each local factor, where the expectation is

computed according to the global probability distribution. For the case of BNs with tree CPDs (as

described in Section 2.1), this means that knowing the distribution of the parent variables allows us

to compute the change in KL divergence from pruning a tree CPD.

Unfortunately, computing the distribution of each variable’s parents is intractable and must be ap-

proximated in some way. We tried two different methods for computing these distributions: estimat-

ing the joint parent probabilities from a large number of samples (one million in our experiments)

(“P-Samp”), and forming the product of the parent marginals estimated using mean field (“P-MF”).

Given a method for computing the parent marginals, we remove the splits that least increase the

KL divergence. We implement this by starting from a fully pruned network and greedily adding the

splits that most decrease KL divergence. After every 10 splits, we check the number of edges by

compiling the candidate network to an AC using the C2D compiler.
1

We stop when the number of

edges exceeds our prespecified bound.

3.1.2 Learning from samples

The second approach we tried is learning a circuit from a set of generated samples. The samples

themselves are generated using forward sampling, in which each variable in the BN is sampled in

topological order according to its conditional distribution given its parents. The circuit learning

method we chose is the LearnAC algorithm by Lowd and Domingos [13], which greedily learns

an AC representing a BN with decision tree CPDs by trading off log likelihood and circuit size.

We made one modification to the the LearnAC (LAC) algorithm in order to learn circuits with a

fixed number of edges. Instead of using a fixed edge penalty, we start with an edge penalty of 100

and halve it every time we run out of candidate splits with non-negative scores. The effect of this

modified procedure is to conservatively selects splits that add few edges to the circuit at first, and

become increasingly liberal until the edge limit is reached. Tuning the initial edge penalty can lead

to slightly better performance at the cost of additional training time. We also explored using the BN

structure to guide the AC structure search (for example, by excluding splits that would violate the

partial order of the original BN), but these restrictions offered no significant advantage in accuracy.

Many modifications to this procedure are possible. Larger edge budgets or different heuristics could

yield more accurate circuits. With additional engineering, the LearnAC algorithm could be adapted

to dynamically request only as many samples as necessary to be confident in its choices. For exam-

ple, Hulten and Domingos [14] have developed methods that scale learning algorithms to datasets

of arbitrary size; the same approach could be used here, except in a “pull” setting where the data is

generated on-demand. Spending a long time finding the most accurate circuit may be worthwhile,

since the cost is amortized over all queries.

We are not the first to propose sampling as a method for converting intractable models into tractable

ones. Wang et al. [15] used a similar procedure for learning a latent tree model to approximate a

1
Available at http://reasoning.cs.ucla.edu/c2d/.
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• Every 10 splits, compile the network to an 
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Learning from Samples
• The LearnAC algorithm (Lowd and Domingos, UAI 2008)

• Initialize circuit as a product of marginals (a BN with 
no edges)

• Apply AC splits that add the fewest edges while 
increasing a score function

• The score function computes the log-likelihood of 
the training data, with penalties on the number of 
edges and parameters

• Modified in this work to stop when a size limit is 
reached
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AC2-F
• Generate a set of samples from the original BN

• Use maximum likelihood estimation to set AC parameters

• Can be viewed as approximately minimizing KL(P||Q)

• For conditional queries, we are more interested in the divergence 
of the conditional distributions, KL(P( . | xev)||Q( . | xev)

• Expected to perform more poorly on rare evidence (see 
bound below)

BN. They found that the learned models had faster or more accurate inference on a wide range of
standard BNs (where exact inference is somewhat tractable). In a semi-supervised setting, Liang et
al. [16] trained a conditional random field (CRF) from a small amount of labeled training data, used
the CRF to label additional examples, and learned independent logistic regression models from this
expanded dataset.

3.2 Parameter optimization

In this section, we describe three methods for selecting AC parameters: forward sampling, varia-
tional optimization, and Gibbs sampling.

3.2.1 Forward sampling

In AC2-F, we use forward sampling to generate a set of samples from the original BN (one million
in our experiments) and maximum likelihood estimation to estimate the AC parameters from those
samples. This can be done in closed form because, before conditioning on evidence, the AC structure
also represents a BN. AC2-F selects these parameters once per domain, before conditioning on any
evidence. This makes it very fast at query time.

AC2-F can be viewed as approximately minimizing the KL divergence KL(P � Q) between the
BN distribution P and the AC distribution Q. For conditional queries P (Y |X = xev), we are more
interested in the divergence of the conditional distributions, KL(P (.|xev)�Q(.|xev)). The following
theorem bounds the conditional KL divergence as a function of the unconditional KL divergence:
Theorem 1. For discrete probability distributions P and Q, and evidence xev ,

KL(P (.|xev)�Q(.|xev)) ≤ 1
P (xev)

KL(P �Q)

(See the supplementary materials for the proof.) From this theorem, we expect AC2-F to work
better when evidence is likely (i.e., P (xev) is not too small). For rare evidence, the conditional KL
divergence could be much larger than the unconditional KL divergence.

3.2.2 Variational optimization

Since AC2-F selects parameters based on the unconditioned BN, it may do poorly when conditioning
on rare evidence. An alternative is to choose AC parameters that (locally) minimize the reverse KL
divergence to the BN conditioned on evidence. Let P and Q be log-linear models, i.e.:

log P (x) = − log ZP +
�

i wifi(x) log Q(x) = − log ZQ +
�

j vjgj(x)

The reverse KL divergence and its gradient can now be written as follows:

KL(Q�P ) =
�

j vjEQ(gj)−
�

i wiEQ(fi) + log ZP
ZQ

(4)
∂

∂vj
KL(Q�P ) =

�
k vk(EQ(gkgj)−Q(gk)Q(gj))−

�
i vi(EQ(figj)−Q(fi)Q(gj)) (5)

where EQ(gkgj) is the expected value of gk(x) × gj(x) according to Q. In our application, P is
the BN conditioned on evidence and Q is the AC. Since inference in Q (the AC) is tractable, the
gradient can be computed exactly.

We can optimize this using any numerical optimization method, such as gradient descent. Due
to local optima, the results may depend on the optimization procedure and its initialization. In
experiments, we used the limited memory BFGS algorithm (L-BFGS) [17], initialized with AC2-F.

We now discuss how to compute the gradient efficiently in a circuit with e edges. By setting leaf
values and evaluating the circuit as described by Darwiche [1], we can compute the probability of
any conjunctive feature Q(fi) (or Q(gk)) in O(e) operations. If we differentiate the circuit after
conditioning on a feature fi (or gk), we can obtain the probabilities of the conjunctions Q(figj) (or
Q(gkgj)) for all gj in O(e) time. Therefore, if there are n features in P , and m features in Q, then
the total complexity of computing the derivative is O((n + m)e). Since there are typically fewer
features in Q than P , this simplifies to O(ne).

These methods are applicable to any tractable structure represented as an AC, including low tree-
width models, mixture models, latent tree models, etc. We refer to this method as AC2-V.

5
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AC2-V

• Representing P and Q as log-linear 
models...

BN. They found that the learned models had faster or more accurate inference on a wide range of
standard BNs (where exact inference is somewhat tractable). In a semi-supervised setting, Liang et
al. [16] trained a conditional random field (CRF) from a small amount of labeled training data, used
the CRF to label additional examples, and learned independent logistic regression models from this
expanded dataset.
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In this section, we describe three methods for selecting AC parameters: forward sampling, varia-
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3.2.1 Forward sampling
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evidence. This makes it very fast at query time.

AC2-F can be viewed as approximately minimizing the KL divergence KL(P � Q) between the
BN distribution P and the AC distribution Q. For conditional queries P (Y |X = xev), we are more
interested in the divergence of the conditional distributions, KL(P (.|xev)�Q(.|xev)). The following
theorem bounds the conditional KL divergence as a function of the unconditional KL divergence:
Theorem 1. For discrete probability distributions P and Q, and evidence xev ,

KL(P (.|xev)�Q(.|xev)) ≤ 1
P (xev)

KL(P �Q)

(See the supplementary materials for the proof.) From this theorem, we expect AC2-F to work
better when evidence is likely (i.e., P (xev) is not too small). For rare evidence, the conditional KL
divergence could be much larger than the unconditional KL divergence.
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Since AC2-F selects parameters based on the unconditioned BN, it may do poorly when conditioning
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divergence to the BN conditioned on evidence. Let P and Q be log-linear models, i.e.:

log P (x) = − log ZP +
�

i wifi(x) log Q(x) = − log ZQ +
�

j vjgj(x)

The reverse KL divergence and its gradient can now be written as follows:

KL(Q�P ) =
�

j vjEQ(gj)−
�

i wiEQ(fi) + log ZP
ZQ

(4)
∂

∂vj
KL(Q�P ) =

�
k vk(EQ(gkgj)−Q(gk)Q(gj))−

�
i vi(EQ(figj)−Q(fi)Q(gj)) (5)

where EQ(gkgj) is the expected value of gk(x) × gj(x) according to Q. In our application, P is
the BN conditioned on evidence and Q is the AC. Since inference in Q (the AC) is tractable, the
gradient can be computed exactly.

We can optimize this using any numerical optimization method, such as gradient descent. Due
to local optima, the results may depend on the optimization procedure and its initialization. In
experiments, we used the limited memory BFGS algorithm (L-BFGS) [17], initialized with AC2-F.

We now discuss how to compute the gradient efficiently in a circuit with e edges. By setting leaf
values and evaluating the circuit as described by Darwiche [1], we can compute the probability of
any conjunctive feature Q(fi) (or Q(gk)) in O(e) operations. If we differentiate the circuit after
conditioning on a feature fi (or gk), we can obtain the probabilities of the conjunctions Q(figj) (or
Q(gkgj)) for all gj in O(e) time. Therefore, if there are n features in P , and m features in Q, then
the total complexity of computing the derivative is O((n + m)e). Since there are typically fewer
features in Q than P , this simplifies to O(ne).

These methods are applicable to any tractable structure represented as an AC, including low tree-
width models, mixture models, latent tree models, etc. We refer to this method as AC2-V.
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the BN conditioned on evidence and Q is the AC. Since inference in Q (the AC) is tractable, the
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AC2-G

• Minimize KL(P||Q), since expectations over 
Q may assign small or zero probabilities to 
important modes of P

• Approximate the expectations of P with 
Gibbs sampling

3.2.3 Gibbs sampling

While optimizing the reverse KL is a popular choice for approximate inference, there are certain
risks. Even if KL(Q�P ) is small, Q may assign very small or zero probabilities to important modes
of P . Furthermore, we are only guaranteed to find a local optimum, which may be much worse
than the global optimum. The “regular” KL divergence, does not suffer these disadvantages, but is
impractical to compute since it involves expectations according to P :

KL(P �Q)=
�

i wiEP (fi)−
�

j vjEP (gj) + log ZQ/ZP (6)
∂

∂vj
KL(P �Q)= EQ(gj)− EP (gj) (7)

Therefore, minimizing KL(P �Q) by gradient descent or L-BFGS requires computing the condi-
tional probability of each AC feature according to the BN, EP (gj). Note that these only need to be
computed once, since they are unaffected by the AC feature weights, vj . We chose to approximate
these expectations using Gibbs sampling, but an alternate inference method (e.g., importance sam-
pling) could be substituted. The probabilities of the AC features according to the AC, EQ(gj), can
be computed in parallel by differentiating the circuit, requiring time O(e).2 This is typically orders
of magnitude faster than the variational approach described above, since each optimization step runs
in O(e) instead of O(ne), where n is the number of BN features. We refer to this method as AC2-G.

4 Experiments
In this section, we compare the proposed methods experimentally and demonstrate that approximate
compilation is an accurate and efficient technique for inference in intractable networks.

4.1 Datasets

We wanted to evaluate our methods on challenging, realistic networks where exact inference is in-
tractable, even for the most sophisticated arithmetic circuit-based techniques. This ruled out most
traditional benchmarks, for which ACs can already perform exact inference [9]. We generated in-
tractable networks by learning them from eight real-world datasets using the WinMine Toolkit [18].
The WinMine Toolkit learns BNs with tree-structured CPDs, leading to complex models with high
tree-width. In theory, this additional structure can be exploited by existing arithmetic circuit tech-
niques, but in practice, compilation techniques ran out of memory on all eight networks. See Davis
and Domingos [19] and our supplementary material for more details on the datasets and the networks
learned from them, respectively.

4.2 Structure selection

In our first set of experiments, we compared the structure selection algorithms from Section 3.1
according to their ability to approximate the original models. Since computing the KL divergence
directly is intractable, we approximated it using random samples x(i):

D(P ||Q) =
�

x

P (x) log
P (x)
Q(x)

= EP [log(P (x)/Q(x))] ≈ 1
m

�

i

log(P (x(i))/Q(x(i))) (8)

where m is the number of samples (10,000 in our experiments). These samples were distinct from
the training data, and the same set of samples was used to evaluate each algorithm.

For LearnAC, we trained circuits with a limit of 100,000 edges. All circuits were learned using
100,000 samples, and then the parameters were set using AC2-F with 1 million samples.3 Training
time ranged from 17 minutes (KDD Cup) to 8 hours (EachMovie). As an additional baseline, we also
learned tree-structured BNs from the same 1 million samples using the Chow-Liu algorithm [20].

Results are in Table 1. The learned arithmetic circuit (LAC) achieves the best performance on all
datasets, often by a wide margin. We also observe that, of the pruning methods, samples (P-Samp)
work better than mean field marginals (P-MF). Chow-Liu trees (C-L) typically perform somewhere
between P-MF and P-Samp. For the rest of this paper, we focus on structures selected by LearnAC.

2To support optimization methods that perform line search (including L-BFGS), we can similarly approxi-
mate KL(P �Q). log ZQ can also be computed in O(e) time.

3With 1 million samples, we ran into memory limitations that a more careful implementation might avoid.
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Experiments
• Structure Selection

• Compute KL divergences (used random samples)

• Prune and compile (P-Samp and P-MF)

• Chow-Liu Trees

• LearnAC

• Parameters set using AC2-F

• Training times ranged from 17 minutes to 8 hours

3.2.3 Gibbs sampling
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Therefore, minimizing KL(P �Q) by gradient descent or L-BFGS requires computing the condi-
tional probability of each AC feature according to the BN, EP (gj). Note that these only need to be
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be computed in parallel by differentiating the circuit, requiring time O(e).2 This is typically orders
of magnitude faster than the variational approach described above, since each optimization step runs
in O(e) instead of O(ne), where n is the number of BN features. We refer to this method as AC2-G.
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tractable, even for the most sophisticated arithmetic circuit-based techniques. This ruled out most
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The WinMine Toolkit learns BNs with tree-structured CPDs, leading to complex models with high
tree-width. In theory, this additional structure can be exploited by existing arithmetic circuit tech-
niques, but in practice, compilation techniques ran out of memory on all eight networks. See Davis
and Domingos [19] and our supplementary material for more details on the datasets and the networks
learned from them, respectively.

4.2 Structure selection

In our first set of experiments, we compared the structure selection algorithms from Section 3.1
according to their ability to approximate the original models. Since computing the KL divergence
directly is intractable, we approximated it using random samples x(i):
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where m is the number of samples (10,000 in our experiments). These samples were distinct from
the training data, and the same set of samples was used to evaluate each algorithm.

For LearnAC, we trained circuits with a limit of 100,000 edges. All circuits were learned using
100,000 samples, and then the parameters were set using AC2-F with 1 million samples.3 Training
time ranged from 17 minutes (KDD Cup) to 8 hours (EachMovie). As an additional baseline, we also
learned tree-structured BNs from the same 1 million samples using the Chow-Liu algorithm [20].

Results are in Table 1. The learned arithmetic circuit (LAC) achieves the best performance on all
datasets, often by a wide margin. We also observe that, of the pruning methods, samples (P-Samp)
work better than mean field marginals (P-MF). Chow-Liu trees (C-L) typically perform somewhere
between P-MF and P-Samp. For the rest of this paper, we focus on structures selected by LearnAC.

2To support optimization methods that perform line search (including L-BFGS), we can similarly approxi-
mate KL(P �Q). log ZQ can also be computed in O(e) time.

3With 1 million samples, we ran into memory limitations that a more careful implementation might avoid.
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Experiments
Table 1: KL divergence of different
structure selection algorithms.

P-MF P-Samp C-L LAC
KDD Cup 2.44 0.10 0.23 0.07

Plants 8.41 2.29 4.48 1.27
Audio 4.99 3.31 4.47 2.12
Jester 5.14 3.55 5.08 2.82

Netflix 3.83 3.06 4.14 2.24
MSWeb 1.78 0.52 0.70 0.38

Book 4.90 2.43 2.84 1.89
EachMovie 29.66 17.61 17.11 11.12

Table 2: Mean time for answering a single conditional
query, in seconds.

AC2-F AC2-V AC2-G BP MF Gibbs
KDD Cup 0.022 3803 11.2 0.050 0.025 2.5
Plants 0.022 2741 11.2 0.081 0.073 2.8
Audio 0.023 4184 14.4 0.063 0.048 3.4
Jester 0.019 3448 13.8 0.054 0.057 3.3
Netflix 0.021 3050 12.3 0.057 0.053 3.3
MSWeb 0.022 2831 12.2 0.277 0.046 4.3
Book 0.020 5190 16.1 0.864 0.059 6.6
EachMovie 0.022 10204 28.6 1.441 0.342 11.0
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Figure 1: Average conditional log likelihood of the query variables (y axis), divided by the number
of query variables (x axis). Higher is better. Gibbs often performs too badly to appear in the frame.

4.3 Conditional probabilities

Using structures selected by LearnAC, we compared the accuracy of AC2-F, AC2-V, and AC2-G
to mean field (MF), loopy belief propagation (BP), and Gibbs sampling (Gibbs) on conditional
probability queries. We ran MF and BP to convergence. For Gibbs sampling, we ran 10 chains, each
with 1000 burn-in iterations and 10,000 sampling iterations. All methods exploited CPD structure
whenever possible (e.g., in the computation of BP messages). All code will be publicly released.

Since most of these queries are intractable to compute exactly, we cannot determine the true proba-
bilities directly. Instead, we generated 100 random samples from each network, selected a random
subset of the variables to use as evidence (10%-50% of the total variables), and measured the log
conditional probability of the non-evidence variables according to each inference method. Different
queries used different evidence variables. This approximates the KL divergence between the true
and inferred conditional distributions up to a constant. We reduced the variance of this approxi-
mation by selecting additional queries for each evidence configuration. Specifically, we generated
100,000 samples and kept the ones compatible with the evidence, up to 10,000 per configuration.
For some evidence, none of the 100,000 samples were compatible, leaving just the original query.

Full results are in Figure 1. Table 2 contains the average inference time for each method.

Overall, AC2-F does very well against BP and even better against MF and Gibbs, especially with
lesser amounts of evidence. Its somewhat worse performance at greater amounts of evidence is
consistent with Theorem 1. AC2-F is also the fastest of the inference methods, making it a very
good choice for speedy inference with small to moderate amounts of evidence.

AC2-V obtains higher accuracy than AC2-F at higher levels of evidence, but is often less accurate at
lesser amounts of evidence. This can be attributed to different optimization and evaluation metrics:
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Experiments

• Generated 100 random samples

• Select random subset of variables to use as evidence

• Generate additional samples (up to 100,000) and 
pick out ones consistent with the evidence in the 
100 samples.

• Measure the log conditional probability of non-
evidence variables of the samples

• Serves as an approximation of the KL divergence 
between the true and inferred conditional distributions
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Experiments

• Mean Query Times

Table 1: KL divergence of different
structure selection algorithms.

P-MF P-Samp C-L LAC
KDD Cup 2.44 0.10 0.23 0.07

Plants 8.41 2.29 4.48 1.27
Audio 4.99 3.31 4.47 2.12
Jester 5.14 3.55 5.08 2.82

Netflix 3.83 3.06 4.14 2.24
MSWeb 1.78 0.52 0.70 0.38

Book 4.90 2.43 2.84 1.89
EachMovie 29.66 17.61 17.11 11.12

Table 2: Mean time for answering a single conditional
query, in seconds.

AC2-F AC2-V AC2-G BP MF Gibbs
KDD Cup 0.022 3803 11.2 0.050 0.025 2.5
Plants 0.022 2741 11.2 0.081 0.073 2.8
Audio 0.023 4184 14.4 0.063 0.048 3.4
Jester 0.019 3448 13.8 0.054 0.057 3.3
Netflix 0.021 3050 12.3 0.057 0.053 3.3
MSWeb 0.022 2831 12.2 0.277 0.046 4.3
Book 0.020 5190 16.1 0.864 0.059 6.6
EachMovie 0.022 10204 28.6 1.441 0.342 11.0
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Figure 1: Average conditional log likelihood of the query variables (y axis), divided by the number
of query variables (x axis). Higher is better. Gibbs often performs too badly to appear in the frame.

4.3 Conditional probabilities

Using structures selected by LearnAC, we compared the accuracy of AC2-F, AC2-V, and AC2-G
to mean field (MF), loopy belief propagation (BP), and Gibbs sampling (Gibbs) on conditional
probability queries. We ran MF and BP to convergence. For Gibbs sampling, we ran 10 chains, each
with 1000 burn-in iterations and 10,000 sampling iterations. All methods exploited CPD structure
whenever possible (e.g., in the computation of BP messages). All code will be publicly released.

Since most of these queries are intractable to compute exactly, we cannot determine the true proba-
bilities directly. Instead, we generated 100 random samples from each network, selected a random
subset of the variables to use as evidence (10%-50% of the total variables), and measured the log
conditional probability of the non-evidence variables according to each inference method. Different
queries used different evidence variables. This approximates the KL divergence between the true
and inferred conditional distributions up to a constant. We reduced the variance of this approxi-
mation by selecting additional queries for each evidence configuration. Specifically, we generated
100,000 samples and kept the ones compatible with the evidence, up to 10,000 per configuration.
For some evidence, none of the 100,000 samples were compatible, leaving just the original query.

Full results are in Figure 1. Table 2 contains the average inference time for each method.

Overall, AC2-F does very well against BP and even better against MF and Gibbs, especially with
lesser amounts of evidence. Its somewhat worse performance at greater amounts of evidence is
consistent with Theorem 1. AC2-F is also the fastest of the inference methods, making it a very
good choice for speedy inference with small to moderate amounts of evidence.

AC2-V obtains higher accuracy than AC2-F at higher levels of evidence, but is often less accurate at
lesser amounts of evidence. This can be attributed to different optimization and evaluation metrics:
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Table 1: KL divergence of different
structure selection algorithms.

P-MF P-Samp C-L LAC
KDD Cup 2.44 0.10 0.23 0.07

Plants 8.41 2.29 4.48 1.27
Audio 4.99 3.31 4.47 2.12
Jester 5.14 3.55 5.08 2.82

Netflix 3.83 3.06 4.14 2.24
MSWeb 1.78 0.52 0.70 0.38

Book 4.90 2.43 2.84 1.89
EachMovie 29.66 17.61 17.11 11.12

Table 2: Mean time for answering a single conditional
query, in seconds.

AC2-F AC2-V AC2-G BP MF Gibbs
KDD Cup 0.022 3803 11.2 0.050 0.025 2.5
Plants 0.022 2741 11.2 0.081 0.073 2.8
Audio 0.023 4184 14.4 0.063 0.048 3.4
Jester 0.019 3448 13.8 0.054 0.057 3.3
Netflix 0.021 3050 12.3 0.057 0.053 3.3
MSWeb 0.022 2831 12.2 0.277 0.046 4.3
Book 0.020 5190 16.1 0.864 0.059 6.6
EachMovie 0.022 10204 28.6 1.441 0.342 11.0
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Figure 1: Average conditional log likelihood of the query variables (y axis), divided by the number
of query variables (x axis). Higher is better. Gibbs often performs too badly to appear in the frame.

4.3 Conditional probabilities

Using structures selected by LearnAC, we compared the accuracy of AC2-F, AC2-V, and AC2-G
to mean field (MF), loopy belief propagation (BP), and Gibbs sampling (Gibbs) on conditional
probability queries. We ran MF and BP to convergence. For Gibbs sampling, we ran 10 chains, each
with 1000 burn-in iterations and 10,000 sampling iterations. All methods exploited CPD structure
whenever possible (e.g., in the computation of BP messages). All code will be publicly released.

Since most of these queries are intractable to compute exactly, we cannot determine the true proba-
bilities directly. Instead, we generated 100 random samples from each network, selected a random
subset of the variables to use as evidence (10%-50% of the total variables), and measured the log
conditional probability of the non-evidence variables according to each inference method. Different
queries used different evidence variables. This approximates the KL divergence between the true
and inferred conditional distributions up to a constant. We reduced the variance of this approxi-
mation by selecting additional queries for each evidence configuration. Specifically, we generated
100,000 samples and kept the ones compatible with the evidence, up to 10,000 per configuration.
For some evidence, none of the 100,000 samples were compatible, leaving just the original query.

Full results are in Figure 1. Table 2 contains the average inference time for each method.

Overall, AC2-F does very well against BP and even better against MF and Gibbs, especially with
lesser amounts of evidence. Its somewhat worse performance at greater amounts of evidence is
consistent with Theorem 1. AC2-F is also the fastest of the inference methods, making it a very
good choice for speedy inference with small to moderate amounts of evidence.

AC2-V obtains higher accuracy than AC2-F at higher levels of evidence, but is often less accurate at
lesser amounts of evidence. This can be attributed to different optimization and evaluation metrics:

7

Monday, March 21, 2011



Experiments
• AC2-F: Good for fast inference on with small to 

moderate amounts of evidence

• AC2-V: Better when there is more evidence

• Reducing KL(Q||P) may increase KL(P||Q)

• Slower than the other algorithms

• AC2-G: Most accurate

• Dominates BP, MF, and Gibbs on the datasets

• Takes longer than Gibbs due to parameter 
optimization step and computations of expectations
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Conclusion

• ACs are alternatives to junction trees

• Exploits determinism and context-
specific independence

• Combining sampling and learning is a good 
strategy for accurate approximate inference

• sampling - get a coarse approximation

• learning - smooth the approximation
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