iAlgorithms for Reasoning with graphical models

Slides Set 8:
Search for Constraint Satisfaction

(Dechter2 chapters 5-6, Dechterl chapter 6)
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Sudoku —
Approximation: Constraint Propagation

e Variables: empty slots

e Constraint o =

e Propagation {1,2,3,4,5,6,7,8,9}
eConstraints:

oln fe rence 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
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i Outline: Search in CSPs

= Improving search by bounded-inference
(constraint propagation) in looking ahead

= Improving search by looking-back
= The alternative AND/OR search space
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= Improving search by looking-back
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What if the CN is Not Backtrack-

ifree?

= Backtrack-free in general is too costly,
so what to do?

= Search?
= What is the search space?

= How to search it? Breadth-first? Depth-
first?
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i The Search Space for a CN

= A tree of all partial solutions
A partial solution: (a;,..., a;) satisfying all
relevant constraints

The size of the underlying search space
depends on:

Variable ordering

Level of consistency possessed by the
problem
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The Effect of Variable Ordering
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Z
The Effect of Consistency Level @

= After arc-consistency z=5
and I=5 are removed @ @ @

Y

= After path-consistency, NALCALAL
= R zx @
= R_zy
= R 7
= R_Xxy
= R xl
= Ryl

(b)
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i The Effect of Variable Ordering
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Sudoku —
Search in Sudoku. Variable ordering?

Constraint propagation?

e Variables: empty slots

e Constraint omaine
- ° // =
e Propagation {1,2,3,4,5,6,7,8,9}
eConstraints:
oln fe rence 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
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Sudoku

Alternative formulations:

Variables?
Domains? 2| 6
Constraints? 3 1
2 4
2 3
5|4
3 6
4 7
4
| 9

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution
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Backtracking Search for a Solution
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Second ordering = (1,7,4,5,6,3,2)
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Backtracking Search for a Solution
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Backtracking Search for All Solutions
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Backtracking search for *all* solutions
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For all tasks
Time: O(k")
Space: linear

Nn=number of variables
K = max domain size slides7 828X 2019



Traversing Breadth-First (BFS)?

Not-equal

BFS memory is O(k™)
while no Time gain 2> use
DFS
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i Improving Backtracking

= Before search: (reducing the search space)

= Arc-consistency, path-consistency
= Variable ordering (fixed)

= During search:

= Look-ahead schemes:
= value ordering,
= variable ordering (if not fixed)
= Look-back schemes:
= Backjump
= Constraint recording or learning
= Dependency-directed backtacking
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Look-Ahead: Value Orderings

= Intuition:

= Choose value least likely to yield a dead-end

= Approach: apply constraint propagation at each node in the search
tree

= Forward-checking
= (check each unassigned variable separately
= Maintaining arc-consistency (MAC)
= (apply full arc-consistency)
= Full look-ahead
= One pass of arc-consistency (AC-1)
= Partial look-ahead
= directional-arc-consistency
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Forward-Checking for Value Ordering
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Forward-Checking for Value Ordering
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Forward-Checking, Variable Ordering
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Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2
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Not searched
by forward
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Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2
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Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2
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Arc-consistency for Value Ordering
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Not searched
by forward

checking
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FW overhead:
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Arc-Consistency for Value Ordering

Arc-consistency prunes x1=red

Prunes the whole tree ) Not searched
. : By MAC

green

ot searched
by forward
checking

. green
-~ ~

[ b
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red [~ ~[1 blue

FW overhead: O(ekz)

MAC overhead:  O(Ek’) 7
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Branching-Ahead for SAT: DLL

example: (~AVB)(~CVA)(AVBVD)(C)

(Davis, Logeman and Laveland, 1962)

Backtracking look-ahead with
Unit propagation=
Generalized arc-consistency

Only enclosed area will be explored with unit-propagation
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i Constraint Programming

Constraint solving embedded in programming
languages

Allows flexible modeling with algorithms
Logic programs + forward checking
Eclipse, ILog, OPL,minizinc

Using only look-ahead schemes (is that
true?)

Numberjeck (in Python)
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* Outline: Search in CSPs

= Improving search by bounded-inference in
branching aheac

= Improving search by looking-back
= [he alternative AND/OR search space
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i LOOk'BaCk' Backjumping / Learning

= Backjumping:

= In deadends, go back to the most recent
culprit.

= Learning:

= constraint-recording, no-good learning,
Deep-learning, shallow learning

= good-recording
= Clause learning
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Look-Back: Backjumping

Figure 6.1: A modified coloring problem.

(X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b}) .
(r,b,b,b,g,r) conflict set of x7

(r,-,b,b,g,-) c.s. of x7 K
(r,-,b,-,-,-,-) minimal conflict-set "”
Leaf deadend: (r,b,b,b,g,r) e
Every conflict-set is a no-good 1
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Jumps At Leaf Dead-Ends
(Gascnnig-style 1977)
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Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends,

except for the jump back to ({z,, green), (z,, blue), (z3,red), (x4, blue)), because this is

the only case where another value exists in the domain of the culprit variable. O
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Jumps at Leaf Dead-End | |
(Gascnnig 1977) =

I3

Figure 6.1: A modified coloring problem.

X b g

X g b b g

Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends,

except for the jump back to ({z,, green), (z,, blue), (z3,red), (x4, blue)), because this is

the only case where another value exists in the domain of the culprit variable. O
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Graph-Based Backjumping Scenarios
Internal Deadend at X4

Scenario 1, deadend at x4:
Scenario 2: deadend at x5:
Scenario 3: deadend at x7:
Scenario 4: deadend at x6:

@)
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i Graph-Based Backjumping

Uses only graph information to find culprit
Jumps both at leaf and at internal dead-ends

Whenever a deadend occurs at x, it jumps to the most
recent variable y connected to x in the graph. If y is an
internal deadend it jumps back further to the most recent
variable connected to x ory.

The analysis of conflict is approximated by the graph.
Graph-based algorithm provide graph-theoretic bounds.
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i Properties of Graph-Based Backjumping

a Algorithm graph-based backjumping jumps back at
any deadend variable as far as graph-based
information allows.

For each variable, the algorithm maintains the
iInduced-ancestor set [; relative the relevant dead-
ends in its current session.

The size of the induced ancestor set is at most w*(d).
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raph-based Backjumping on DFS ordering

g Example: d= X1, X3, X3, X4, X5, Xg, X7
Constraints: (6,7)(5,2)(2,3)(5,7)(2,7)(2,1)(2,3)(1,4)3,4)
Rule: go back to parent. No need to maintain parent set

DD B

Figure 6.6: Several ordered constraint graphs of the problem in Figure 6.1: (a) along
ordering d1 = (x1, T2, T3, Ta, Ts, Te, 7). (b) the induced graph along d,. (¢) along ordering
ds = (x1,T7, T4, Ts, Te, Ta,T3z), and (d) a DFS spanning tree along ordering ds.

Theorem 6.5.2 Given a DFS ordering of the constraint graph, if f(z) denotes the DFS
parent of z, then, upon a dead-end at x, f(x) is x’s graph-based earliest safe variable for
both leaf and internal dead-ends.

K MK K % Kk X
MoMoM ok oM ko
- N

K %K K K K
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i Backjumping Styles

= Jump at leaf only (Gaschnig 1977)
=« Context-based

= Graph-based (Dechter, 1990)

=« Jumps at leaf and internal dead-ends, graph
information

= Conflict-directed (Prosser 1993)
= Context-based, jumps at leaf and internal dead-ends
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DFS of graph and induced graphs

i

6 7 2 4

RN

1
(a) (b) ()

o
-1

Spanning-tree of a graph;
DFS spanning trees, Pseudo-tree
Pseudo-tree is a spanning tree that does not allow arcs across branches.
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Complexity of Backjumping
Uses Pseudo-Tree Analysis

4 1 6 6 7 2 4
LA_I | |
3 2 7 5 1 |

(a) (b) (c)

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(tree-depth)
Complexity for csp: exp(w*log n)
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i Complexity of Backjumping

Graph-based and conflict-based backjumpint

4 1 6 6 7 2 4
LA_I | |
3 2 7 5 1 1

(a) (b) ()

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(w*log n), exp(m), m= depth
From exp(n) to exp(w*logn) while linear space
(proof detalls: exercise)
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i Look-back: NoGood Learning

Learning means recording conflict sets
used as constraints to prune future
search space.

Xy X5

s (X1=2,x2=2,x3=1,x4=2) is a
dead-end

= Conflicts to record:
. (X1=2,x2=2,x3=1,x4=2) 4-ary
= (Xx3=1,x4=2) binary
= (X4=2) unary
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i Learning, Constraint Recording

Learning means recording conflict sets

An opportunity to learn is when deadend is
discovered.

Goal of learning is to not discover the same
deadends.

Try to identify small conflict sets
Learning prunes the search space.
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(a) (b)

Figure 6.9: The search space explicated by backtracking on the CSP from Figure 6.1,
using the variable ordering (z¢, 23, x4, 2, 7,21, 25) and the value ordering (blue, red,
green, teal). Part (a) shows the ordered constraint graph, part (b) illustrates the search
space. The cut lines in (b) indicate branches not explored when graph-based learning is
used.
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i Learning Issues

= Learning styles
= Graph-based or context-based
= i-bounded, scope-bounded
= Relevance-based

= Non-systematic randomized learning
= Implies time and space overhead

= Applicable to SAT: CDCL (Conflict-Directed
Clause Learning)
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Deep Learning

= Deep learning: recording all and only minimal
conflict sets

= Example:

= Although most accurate, or “deepest”,
overhead can be prohibitive: the number of
conflict sets in the worst-case:

r
=2
[r/2)

https.//medium.com/a-computer-of-ones-own/rina-dechter-deep-learning-pioneer-
e/e9ccc96cbe
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Bounded and Relevance-Based Learning

Bounding the arity of constraints recorded.

= When bound is i: i-ordered graph-based,i-order jumpback or
i-order deep learning.

= Overhead complexity of i-bounded learning is time and
space exponential in i.

Definition 6.7.3 (i-relevant) A no-good is i-relevant if it differs from the current par-
tial assignment by at most © variable-value pairs.

Definition 6.7.4 (i’th order relevance-bounded learning) Ani’th order relevance-
bounded learning scheme maintains only those learned no-goods that are i-relevant.
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Graph-Based Learning Scenarios

Internal Deadend at X4, conflicts?

Scenario 1, deadenc
Scenario 2: deadenc
Scenario 3: deadenc
Scenario 4: deadenc

@)
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i Complexity of Backtrack-Learning for CSP

= The complexity of learning along d is time and
space exponential in w*(d):

For graph-based learning the number of dead
ends is bounded by  O(nk""")

Number of constraint tests per dead-end are O(e)

Space complexity is O (nk "*(*)
- . . 2 w*(d)+1
Time complexity is o)
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i Proof of Complexity NG learning

Theorem 6.7.5 Let d be an ordering of a constraint graph, and let w*(d) be its induced
width. Any backtracking algorithm using ordering d with graph-based learning has a space
complezity of O(n - (k) @) and a time complexity of O(n? - (2k)*" DY) where n is the
number of variables and k bounds the domain sizes.

Proof: Graph-based learning has a one-to-one correspondence between dead-ends and
conflict sets. Backtracking with graph-based learning along d records conflict sets of size
w*(d) or less, because the dead-end variable will not be connected to more than w*(d)
earlier variables by both original constraints and recorded ones. Therefore the number of
dead-ends is bounded by the number of possible no-goods of size w*(d) or less. Moreover,
a dead-end at a particular variable z can occur at most k% (¥ times after which point
constraints are learned excluding all possible assignments of its induced parents. So the
total number of dead-ends for backtracking with learning is O(n - k"), yielding space
complexity of O(n-k* (9)). Since the total number of values considered between successive
dead-ends is at most O(kn), the total number of values considered during backtracking
with learning is O(kn - n - k" @) = O(n? - k*"(@+1), Since each value requires testing
all constraints defined over the current variable, and at most w*(d) prior variables, at

most O(2%" (@) constraints are checked per value test, yielding a time complexity bound
of O(n?(2k)w @+ O



Relationships between various backtracking
algrithms

Backtracking

Gaschnig’s
backjumping

Graph-based
backjumping

Conflict-directed
backjumping

CBJ with
forward-
checking

CBJ with
Jjumpback
learning

Backtracking with
arc-consistency
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i Moving to New Queries

= Consistency and one solution.
= Counting
= Enumerating
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* Bucket-elimination for counting

Algorithm elim-count
Input: A constraint network R = (X, D, ), ordering d.
Output: Augmented output buckets including the
intermediate count functions and The number of solutions.
1. Imitialize: Partition ' (0-1 cost functions) into ordered buckets buckety, .. ., bucket,,
We denote a function in a bucket N;, and its scope 5;.)
2. Backward: For p+— n downto 1, do
(Generate the function NF: NF EJ{,, H.".-‘.f&u,:k:f,. N;.

Add NP to the bucket of the latest variable in [ J_; S; — {X,}.

3. Return the number of solutions, N1 and the set of output
buckets with the original and computed functions.

Figure 13.9: Algonthm elim-count
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- Tree DFS Traversal

i #CSP

A E F|Ry,
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i Outline

= The alternative AND/OR search space
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:LOR Search Space
{‘\e
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OR

OR

OR

OR

AND/OR Search

Primal graph
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AND/OR vs. OR
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(A=1,B=1)
(B=0,C=0)

AND/OR vs. OR
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()
I
(8) (8)
7 7

() G, () ©, (e 0,

7 L 9 1 ]7 @ @ L
(o B & (A (@& & (5) (A
JEEE @ HEEEE @M @ [ @ [

L
I 7
9 9
L L L 0

9 (1 9] (1 9] [4

A\ /\ A

(o A0l 2 o A[02 o] 1[0l 1
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AND/OR

Space: linear
Time:
O(exp(h))
O(w* log n)

OR

Linear space,
Time:
O(exp(n))



i AND/OR vs. OR Spaces

_ OR space
width  depth
Time (sec.) Nodes
5 10 3.15 2,097,150
4 9 3.13 2,097,150
5 10 3.12 2,097,150
4 10 3.12 2,097,150
5 13 3.11 2,097,150

AND/OR space

Time (sec.) | AND nodes

0.03
0.01
0.03
0.02
0.10

10,494
5,102
8,926
7,806

36,510

Random graphs with 20 nodes, 20 edges and 2 values per node
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OR nodes
5,247
2,551
4,463
3,903
18,255



#CSP — AND/OR Search Tree
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i #CSP — AND/OR Tree DFS

A B C|Rysc B C D|Rgep A B E|[Ry A E F|[Rys
000 1 0 00 1 000 1 0 00 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 |
010 0 010 1 010 1 010 1 Y
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 !
1. 00 1 1. 00 1 1 00 0 1. 00 1 !
1 0 1 1 1.0 1 0 1 0 1 1 1. 0 1 1 /
110 1 110 1 110 1 110 1 /
1. 1 1 0 1. 1 1 1 1. 1 1 0 1 1 1 0 !
OR 14(a)
9[d 571
OR 9(8) 5(8)
3G o AND node: Combiggation operator (preguct)
OR 3 (o 1(E) 2(o 3(e) 300 1(E) HO 2(8)
2[d 1l @R RodetMariinalzation operdori(8ummatign) 1@ o 2@ of
or 2 1® 1(p 20 1(»p 2p 2 1(0 1(p 1@ 2(p)
9 2] (9 (1] [9 [4 g (1] [d (1] [a [4] g [1] [9 [1 d [1 [9 (4] g 1]
1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1
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Pseudo-Trees

(Freuder 85, Bayardo 95, Bodlaender and Gilbert, 91)

4 (1) 6

O—2 O——~0
h <= W* Iog N (a) Graph

(b) DFS tree (c) pseudo- tree (d) Chain
depth=3 depth=2 depth=6
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AND/OR search tree for graphical models

The AND/OR search tree of R relative to a tree, T, has:
= Alternating levels of: OR nodes (variables) and AND nodes (values)

Successor function:
= The successors of OR nodes X are all its consistent values along its path
= The successors of AND <X,v> are all X child variablesin T

A solution is a consistent subtree
Task: compute the value of the root node

OR (4)
0]
OR (8) (8)
9 o
orR (&) © (e (9 (& O, (& O,
0] 9 0] 9 o 9 9] 0]

R @BH @B @6 6 0o 6 6 & 6
o M0 I@EEE @I EEEE QHEAEEEHEE @ 6@ EMEE (4
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The end
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* From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged
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i From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged
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i From Search A/O Trees to Search A/O Graphs

= Any two nodes that root identical
subtrees/subgraphs can be merged

= Minimal AND/OR search graph:
closure under merge of the AND/OR search tree

= Inconsistent sub-trees can be pruned too.
= Some portions can be collapsed or reduced.
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AND/OR Tree
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i Context-based Caching

Caching is possible when context is the same

= context = current variable +
parents connected to subtree below

context(B) = {A, B}
context(c) = {A,B,C}
context(D) = {D}
context(F) = {F}

What is the context size?
Induced-width slides7 828X 2019



i Complexity of AND/OR Graph

= Theorem: Traversing the AND/OR search
graph is time and space exponential in the
induced width/tree-width.

= If applied to the OR graph complexity is time
and space exponential in the path-width.
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#CSP — AND/OR Tree DFS
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#CSP — AND/OR Search Graph

i (Caching Goods)

A E F|Ry,

A B E|R,,

B C D|Ryep

A B C|R,

OR
OR
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o
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#CSP — AND/OR Search Graph

i (Caching Goods)

A E F|Ry,

A B E|R,,

B C D|Ryep

A B C|R,

Time and Space

O(exp(w*))

OR

OR
OR
OR
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Mmoo ®™ >

OR

OR

OR

OR

Full OR search tree
126 nodes

Context minimal OR search graph

e e
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Context minimal AND/OR search graph
18 AND nodes

Full AND/OR search tree
54 AND nodes
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AND/OR vs. OR DFS Algorithms

k = domain size

m = tree depth

n = # of variables
w*= jnduced width
pw*= path width

= AND/OR tree o OR tree
= Space: O(n) ¢ Space: O(n)
« Time: O(n k™) © Time: O(Kk")
0(I1 kw* log n)
(Freuder85; Bayardo95; Darwiche01)
= AND/OR graph e OR graph
= Space: O(n kwW*) ® Space: O(n k°v™)

= Time: O(n kv*) ® Time: O(n k**")

slides7 828X 2019



Summary: Time-Space for Constraint
Processing

Constraint-satisfaction, one = Counting, enumeration
solution
= Naive backtracking = Backtracking, backjumping
= Space: O(n), = Space: O(n),
= Time: O(exp(n)) = Time: O(exp(n))
- Backjumping n Learning nO'QOOdS

=_space: O(exp(w*))

= Space: O(n), T O(exp(n))
- Time: O(exp(lo = ime: U(exp(n
“:2;) (exp(log n = Search with goods and no-
- goods learning
= Learning no-goods

= Space: O(exp(pw¥*))

= Space: O(exp(w*)) . Time: O(exp(pw*)),
= Time: O(exp(w¥*)) both, O(exp(w*logn))
= Variable-elimination = Variable-elimination
= Space: O(exp(w*)) = Space: O(exp(w*))
. Time: O(exp(w*)) = Time: O(exp(w*))
= BFS is time and space
O(exp(pw*))
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