iAlgorithms for Reasoning with graphical models

Slides Set 8:
Search for Constraint Satisfaction

(Dechter2 chapters 5-6, Dechterl chapter 6)

slides7 828X 2019

Sudoku —
Approximation: Constraint Propagation

e Variables: empty slots

e Constraint o =

e Propagation {1,2,3,4,5,6,7,8,9}
eConstraints:

oln fe rence 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
slides7 828X 2019

i Outline: Search in CSPs

= Improving search by bounded-inference
(constraint propagation) in looking ahead

= Improving search by looking-back
= The alternative AND/OR search space

slides7 828X 2019

‘L Outline: Search in CSPs

= Improving search by bounded-inference
(constraint propagation) in looking ahead

= Improving search by looking-back
= [he alternative AND/OR search space

slides7 828X 2019

What if the CN is Not Backtrack-

ifree?

= Backtrack-free in general is too costly,
so what to do?

= Search?
= What is the search space?

= How to search it? Breadth-first? Depth-
first?

slides7 828X 2019

i The Search Space for a CN

= A tree of all partial solutions
A partial solution: (a;,..., a;) satisfying all
relevant constraints

The size of the underlying search space
depends on:

Variable ordering

Level of consistency possessed by the
problem

slides7 828X 2019

The Effect of Variable Ordering

slides7 828X 2019

Z
The Effect of Consistency Level @

= After arc-consistency z=5
and I=5 are removed @ @ @

Y

= After path-consistency, NALCALAL
= R zx @
= R_zy
= R 7
= R_Xxy
= R xl
= Ryl

(b)

slides7 828X 2019

i The Effect of Variable Ordering

245 46 2851 16 205] A6

HHHHIE _‘- =g'-.;i;':$ 1{:.5_-.

slides7 828X 2019

z divides x, y and t

Sudoku —
Search in Sudoku. Variable ordering?

Constraint propagation?

e Variables: empty slots

e Constraint omaine
- ° // =
e Propagation {1,2,3,4,5,6,7,8,9}
eConstraints:
oln fe rence 27 all-different

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution: 27 constraints
slides7 828X 2019

Sudoku

Alternative formulations:

Variables?
Domains? 2| 6
Constraints? 3 1
2 4
2 3
5|4
3 6
4 7
4
| 9

Each row, column and major block must be alldifferent

“Well posed” if it has unique solution

slides7 828X 2019

Backtracking Search for a Solution

X b 0)

D PRe e
X r @ b 7 h b
Xy r gm(@) i {(®) r b r b h

P g @ b @ g @g b g g b g g
U 2 W 0 N A NIV S W A W 0 IR ANV S W o W S AN S W

©0 000 o]
| ®

1") /)

(b)

Second ordering = (1,7,4,5,6,3,2)

slides7 828X 2019

Backtracking Search for a Solution

s@D) -
b @)

h I3 b b
h @ r b r h h
el Pm® @ b o g b iz 2

X 0 TN 3 0 Y S N A W 0 ANV A WL A W 1 VA NERVE A A WA 4

CHECRCIC,

xl X7 Xy r

X,

00 000 Jo|
’ ®

I AN [-)

blue.green

slides7 828X 2019

Backtracking Search for All Solutions

- “— p—
X e ' ©) P \®, h g
©) 5 = 2
1 X7 LD 1®) \ b ! bep b
7 \ \ N
4 4 b g g

blue.green

slides7 828X 2019

Backtracking search for *all* solutions

- J “— p—

Y, h = - ¢ @ e

v @ ®,

X2 g @ b \ b g

Xy . b f f

v, ! @ y, \ y))
xl X7 Xy r gm(4) li ‘/ b r b b

/A \ V- AN
Y ON 1O 10N hym g g D g
! R\ A T LYYA AN LWL £ . g\
o0 ®00 fo b
X7 o S oD

blue.green

®

For all tasks
Time: O(k")
Space: linear

Nn=number of variables
K = max domain size slides7 828X 2019

Traversing Breadth-First (BFS)?

Not-equal

BFS memory is O(k™)
while no Time gain 2> use
DFS

slides7 828X 2019

i Improving Backtracking

= Before search: (reducing the search space)

= Arc-consistency, path-consistency
= Variable ordering (fixed)

= During search:

= Look-ahead schemes:
= value ordering,
= variable ordering (if not fixed)
= Look-back schemes:
= Backjump
= Constraint recording or learning
= Dependency-directed backtacking

slides7 828X 2019

Look-Ahead: Value Orderings

= Intuition:

= Choose value least likely to yield a dead-end

= Approach: apply constraint propagation at each node in the search
tree

= Forward-checking
= (check each unassigned variable separately
= Maintaining arc-consistency (MAC)
= (apply full arc-consistency)
= Full look-ahead
= One pass of arc-consistency (AC-1)
= Partial look-ahead
= directional-arc-consistency

slides7 828X 2019

Forward-Checking for Value Ordering

blue,green red,green, leal

x5

x4

X7

Fd
4
e
, I
’ " green
I
; Not searched
[] red N by forward
i ! checking
1 F
1 ! /
v ored 1,
i s
\ I
\ i
\ " green
A \
‘ \
\\ \
“ ‘ o1r'ee
. agreen
A “ ~
-~ ~
red] =1 hlue

slides7 828X 2019

Forward-Checking for Value Ordering

X,
v
r 4
1, u
Xy 7 " green
I
P Not searched
X ! [red N by forward
I ' checking
] I
[! P
You red 1,
1 /
1 I
N l
X5 3 | green
A 1
\\ \
. Y
.\,(, \\ \
. green
~» . - ~ o
d L)
X7 red] [hlue

slides7 828X 2019

Forward-Checking, Variable Ordering

blue,green red,green, leal

x5

x4

O(ek?)

]

FW overhead:

X,
v
r 4
1, u
Xy 7 " green
I
P Not searched
X ! [red N by forward
I ' checking
] I
[! P
You red 1,
1 /
1 I
N l
X5 3 | green
A 1
\\ \
. Y
.\,(, \\ \
. green
~» . - ~ o
d L)
X7 red] [hlue

slides7 828X 2019

Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2

green
Not searched
by forward

checking

green

green

~»

~ -~
-~ ~ -
@ X d 03~ ~ blue

slides7 828X 2019

Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2

X
P r 4
I'4
X, o 1
: 1T
P Not searched
X3 | []red ! by forward

checking

green

A i
A i
\
X \
"'6 \\ \
. green
- . - ~ o
b L

,'7 e ¢
X red (] [blue

slides7 828X 2019

Forward-Checking, Variable Ordering

After X1 =red choose X3 and not X2

Not searched
) by forward
‘ ue :
s checking

X5 3 green

green

~»

- b
- -~
X7 red 1 ~ ~[blue

slides7 828X 2019

Arc-consistency for Value Ordering

green
Not searched
by forward

checking

green

FW overhead:

green

O(ek?) . .
O(ek’) X7 red 01~ =1 blue

MAC overhead:

slides7 828X 2019

Arc-Consistency for Value Ordering

Arc-consistency prunes x1=red

Prunes the whole tree) Not searched
. : By MAC

green

ot searched
by forward
checking

. green
-~ ~

[b
- -~
red [~ ~[1 blue

FW overhead: O(ekz)

MAC overhead: O(Ek’) 7

slides7 828X 2019

Branching-Ahead for SAT: DLL

example: (~AVB)(~CVA)(AVBVD)(C)

(Davis, Logeman and Laveland, 1962)

Backtracking look-ahead with
Unit propagation=
Generalized arc-consistency

Only enclosed area will be explored with unit-propagation

slides7 828X 2019

i Constraint Programming

Constraint solving embedded in programming
languages

Allows flexible modeling with algorithms
Logic programs + forward checking
Eclipse, ILog, OPL,minizinc

Using only look-ahead schemes (is that
true?)

Numberjeck (in Python)

slides7 828X 2019

* Outline: Search in CSPs

= Improving search by bounded-inference in
branching aheac

= Improving search by looking-back
= [he alternative AND/OR search space

slides7 828X 2019

i LOOk'BaCk' Backjumping / Learning

= Backjumping:

= In deadends, go back to the most recent
culprit.

= Learning:

= constraint-recording, no-good learning,
Deep-learning, shallow learning

= good-recording
= Clause learning

slides7 828X 2019

Look-Back: Backjumping

Figure 6.1: A modified coloring problem.

(X1=r,x2=b,x3=b,x4=b,x5=g,x6=r,x7={r,b}) .
(r,b,b,b,g,r) conflict set of x7

(r,-,b,b,g,-) c.s. of x7 K
(r,-,b,-,-,-,-) minimal conflict-set "”
Leaf deadend: (r,b,b,b,g,r) e
Every conflict-set is a no-good 1

slides7 828X 2019

Jumps At Leaf Dead-Ends
(Gascnnig-style 1977)

I3

X b g

b T b - b'.

L4 ’
I, I,
b gy b : N YL S
- , T
s, '
/ ! / 1 i
o I o b I O o) v o Vo
& [= 1 > -] ’,."" v < | R
i Y f] \‘ \\
I f \ FEFEE DI Zinii DD ‘] 1(\‘\ DI PIIIEE
I [o] r r [o] AN | AN |
X7
I I]]

Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends,

except for the jump back to ({z,, green), (z,, blue), (z3,red), (x4, blue)), because this is

the only case where another value exists in the domain of the culprit variable. O
slides7 828X 2019

Jumps at Leaf Dead-End | |
(Gascnnig 1977) =

I3

Figure 6.1: A modified coloring problem.

X b g

X g b b g

Example 6.3.1 In Figure 6.4, all of the backjumps illustrated lead to internal dead-ends,

except for the jump back to ({z,, green), (z,, blue), (z3,red), (x4, blue)), because this is

the only case where another value exists in the domain of the culprit variable. O
slides7 828X 2019

Graph-Based Backjumping Scenarios
Internal Deadend at X4

Scenario 1, deadend at x4:
Scenario 2: deadend at x5:
Scenario 3: deadend at x7:
Scenario 4: deadend at x6:

@)

slides7 828X 2019

i Graph-Based Backjumping

Uses only graph information to find culprit
Jumps both at leaf and at internal dead-ends

Whenever a deadend occurs at x, it jumps to the most
recent variable y connected to x in the graph. If y is an
internal deadend it jumps back further to the most recent
variable connected to x ory.

The analysis of conflict is approximated by the graph.
Graph-based algorithm provide graph-theoretic bounds.

slides7 828X 2019

i Properties of Graph-Based Backjumping

a Algorithm graph-based backjumping jumps back at
any deadend variable as far as graph-based
information allows.

For each variable, the algorithm maintains the
iInduced-ancestor set [; relative the relevant dead-
ends in its current session.

The size of the induced ancestor set is at most w*(d).

slides7 828X 2019

raph-based Backjumping on DFS ordering

g Example: d= X1, X3, X3, X4, X5, Xg, X7
Constraints: (6,7)(5,2)(2,3)(5,7)(2,7)(2,1)(2,3)(1,4)3,4)
Rule: go back to parent. No need to maintain parent set

DD B

Figure 6.6: Several ordered constraint graphs of the problem in Figure 6.1: (a) along
ordering d1 = (x1, T2, T3, Ta, Ts, Te, 7). (b) the induced graph along d,. (¢) along ordering
ds = (x1,T7, T4, Ts, Te, Ta,T3z), and (d) a DFS spanning tree along ordering ds.

Theorem 6.5.2 Given a DFS ordering of the constraint graph, if f(z) denotes the DFS
parent of z, then, upon a dead-end at x, f(x) is x’s graph-based earliest safe variable for
both leaf and internal dead-ends.

K MK K % Kk X
MoMoM ok oM ko
- N

K %K K K K

slides7 828X 2019

i Backjumping Styles

= Jump at leaf only (Gaschnig 1977)
=« Context-based

= Graph-based (Dechter, 1990)

=« Jumps at leaf and internal dead-ends, graph
information

= Conflict-directed (Prosser 1993)
= Context-based, jumps at leaf and internal dead-ends

slides7 828X 2019

DFS of graph and induced graphs

i

6 7 2 4

RN

1
(a) (b) ()

o
-1

Spanning-tree of a graph;
DFS spanning trees, Pseudo-tree
Pseudo-tree is a spanning tree that does not allow arcs across branches.

slides7 828X 2019

Complexity of Backjumping
Uses Pseudo-Tree Analysis

4 1 6 6 7 2 4
LA_I | |
3 2 7 5 1 |

(a) (b) (c)

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(tree-depth)
Complexity for csp: exp(w*log n)

slides7 828X 2019

i Complexity of Backjumping

Graph-based and conflict-based backjumpint

4 1 6 6 7 2 4
LA_I | |
3 2 7 5 1 1

(a) (b) ()

Simple: always jump back to parent in pseudo tree
Complexity for csp: exp(w*log n), exp(m), m= depth
From exp(n) to exp(w*logn) while linear space
(proof detalls: exercise)

slides7 828X 2019

i Look-back: NoGood Learning

Learning means recording conflict sets
used as constraints to prune future
search space.

Xy X5

s (X1=2,x2=2,x3=1,x4=2) is a
dead-end

= Conflicts to record:
. (X1=2,x2=2,x3=1,x4=2) 4-ary
= (Xx3=1,x4=2) binary
= (X4=2) unary

slides7 828X 2019

i Learning, Constraint Recording

Learning means recording conflict sets

An opportunity to learn is when deadend is
discovered.

Goal of learning is to not discover the same
deadends.

Try to identify small conflict sets
Learning prunes the search space.

slides7 828X 2019

(a) (b)

Figure 6.9: The search space explicated by backtracking on the CSP from Figure 6.1,
using the variable ordering (z¢, 23, x4, 2, 7,21, 25) and the value ordering (blue, red,
green, teal). Part (a) shows the ordered constraint graph, part (b) illustrates the search
space. The cut lines in (b) indicate branches not explored when graph-based learning is
used.

slides7 828X 2019

i Learning Issues

= Learning styles
= Graph-based or context-based
= i-bounded, scope-bounded
= Relevance-based

= Non-systematic randomized learning
= Implies time and space overhead

= Applicable to SAT: CDCL (Conflict-Directed
Clause Learning)

slides7 828X 2019

Deep Learning

= Deep learning: recording all and only minimal
conflict sets

= Example:

= Although most accurate, or “deepest”,
overhead can be prohibitive: the number of
conflict sets in the worst-case:

r
=2
[r/2)

https.//medium.com/a-computer-of-ones-own/rina-dechter-deep-learning-pioneer-
e/e9ccc96cbe

slides7 828X 2019

Bounded and Relevance-Based Learning

Bounding the arity of constraints recorded.

= When bound is i: i-ordered graph-based,i-order jumpback or
i-order deep learning.

= Overhead complexity of i-bounded learning is time and
space exponential in i.

Definition 6.7.3 (i-relevant) A no-good is i-relevant if it differs from the current par-
tial assignment by at most © variable-value pairs.

Definition 6.7.4 (i’th order relevance-bounded learning) Ani’th order relevance-
bounded learning scheme maintains only those learned no-goods that are i-relevant.

slides7 828X 2019

Graph-Based Learning Scenarios

Internal Deadend at X4, conflicts?

Scenario 1, deadenc
Scenario 2: deadenc
Scenario 3: deadenc
Scenario 4: deadenc

@)

slides7 828X 2019

i Complexity of Backtrack-Learning for CSP

= The complexity of learning along d is time and
space exponential in w*(d):

For graph-based learning the number of dead
ends is bounded by O(nk""")

Number of constraint tests per dead-end are O(e)

Space complexity is O (nk "*(*)
- . . 2 w*(d)+1
Time complexity is o)

slides7 828X 2019

i Proof of Complexity NG learning

Theorem 6.7.5 Let d be an ordering of a constraint graph, and let w*(d) be its induced
width. Any backtracking algorithm using ordering d with graph-based learning has a space
complezity of O(n - (k) @) and a time complexity of O(n? - (2k)*" DY) where n is the
number of variables and k bounds the domain sizes.

Proof: Graph-based learning has a one-to-one correspondence between dead-ends and
conflict sets. Backtracking with graph-based learning along d records conflict sets of size
w*(d) or less, because the dead-end variable will not be connected to more than w*(d)
earlier variables by both original constraints and recorded ones. Therefore the number of
dead-ends is bounded by the number of possible no-goods of size w*(d) or less. Moreover,
a dead-end at a particular variable z can occur at most k% (¥ times after which point
constraints are learned excluding all possible assignments of its induced parents. So the
total number of dead-ends for backtracking with learning is O(n - k"), yielding space
complexity of O(n-k* (9)). Since the total number of values considered between successive
dead-ends is at most O(kn), the total number of values considered during backtracking
with learning is O(kn - n - k" @) = O(n? - k*"(@+1), Since each value requires testing
all constraints defined over the current variable, and at most w*(d) prior variables, at

most O(2%" (@) constraints are checked per value test, yielding a time complexity bound
of O(n?(2k)w @+ O

Relationships between various backtracking
algrithms

Backtracking

Gaschnig’s
backjumping

Graph-based
backjumping

Conflict-directed
backjumping

CBJ with
forward-
checking

CBJ with
Jjumpback
learning

Backtracking with
arc-consistency

slides7 828X 2019

i Moving to New Queries

= Consistency and one solution.
= Counting
= Enumerating

slides7 828X 2019

* Bucket-elimination for counting

Algorithm elim-count
Input: A constraint network R = (X, D,), ordering d.
Output: Augmented output buckets including the
intermediate count functions and The number of solutions.
1. Imitialize: Partition ' (0-1 cost functions) into ordered buckets buckety, .. ., bucket,,
We denote a function in a bucket N;, and its scope 5;.)
2. Backward: For p+— n downto 1, do
(Generate the function NF: NF EJ{,, H.".-‘.f&u,:k:f,. N;.

Add NP to the bucket of the latest variable in [J_; S; — {X,}.

3. Return the number of solutions, N1 and the set of output
buckets with the original and computed functions.

Figure 13.9: Algonthm elim-count

slides7 828X 2019

- Tree DFS Traversal

i #CSP

A E F|Ry,

A B E|R,

B C D|Ryep

A B C|R,

Rl
)
S|
D)
Rl
SO
S
&
Q
=]
~N
S
~N
S
=
~N
S
S
~N

21| 1|0

1[0

E 1ld d4 1[d d4 19 a1

0|1

g1
01

/,

10

number of solutions below it

01110111

Value of node

01

01

slides7 828X 2019

i Outline

= The alternative AND/OR search space

slides7 828X 2019

:LOR Search Space
{‘\e

Ordering: ABECD F

o (1 [o [1 |9 (1] [9 (21 [o [1 [0 [1 [d (21 [d [1 |9 [1 |9 [21 [d [1 [o [1 |9 [21 [d [2 [d [1 [g [4]

10|l 2](al| 1]| 0|(1] 0]| 1]{0|| 1] | 0] 1] | 0]| 2] [0]| 2] [0| 2] | 0| 1] 0]| 2] (0| 2]| 0] 1] | 0][2| 0| 2] [0] 1] [0]| 2]|0l| 1]|0||][]l 2][0l| 1]| 0l 2] 0]| 2] [0| 2] |0l 2] | 0][2| 2| 2] [0] 2]\ 0][2] | 0][] Ol 1] | O] 1}

slides7 828X 2019

OR

OR

OR

OR

AND/OR Search

Primal graph
O,
0
(8)
9
(® (© (® (©
0 o 9 0

@ 6 & 6 o 6 O ¢
J @U@ @ UEE0E @[

Space

g 1 |9 g (1 [d

® 6 © 6 0 6 0 ¢

NIUIEE la (1 [d |1 [d [1 [d [1]

OR (4)
o
OR (8) (8) AND/OR
0 0
orR (B G (£ 9 (&) O, (B ©
o 0 0 o o 9 0 o

OR @ ®» @ 6 O 6 & 60 W 6 @ 6 O 6 & @
d Q@D @@ E dEIdEIEEEE P EA@EAEEDEE @ EIdEEE @[

AND/OR size: exp(4), OR size exp(6)

D [d (1 [d (2 [d [4 lo

OR

OR

OR

OR

AND/OR vs. OR %

1[4z

0
(&)

G,
o 1 [g

@ N @ 6B & 6 & ¢
0 BP0 EH\@E@EE EIdEEE @M

No-goods
(A=1,B=1)

a |1 |9

@ W\ @ B\ & 6 & ¢
0 @ EH\@EEEE\@EDdEEE @

(A=1,B=1)

(B=0,C=0)

AND/OR vs. OR
OR (a)
OR (B) (8)

9 9] L

orR (&) (o) (e) (c) (E) (o)

L t 0 o L
OR (& (»n (@ (B B (5 (B) (F)

0 9 0 r t o 9 9]

A 0
B & G 1 OR
E 9 9
C L L L
D 0 0 0
i A A AN

10l 1]| 0] 1] 0] 2]|o] 1] 0] 1][0] 1]

slides7 828X 2019

(A=1,B=1)
(B=0,C=0)

AND/OR vs. OR

OR

OR

OR

OR

mM OO O m W >

()
I
(8) (8)
7 7

() G, () ©, (e 0,

7 L 9 1]7 @ @ L
(o B & (A (@& & (5) (A
JEEE @ HEEEE @M @ [@ [

L
I 7
9 9
L L L 0

9 (1 9] (1 9] [4

A\ /\ A

(o A0l 2 o A[02 o] 1[0l 1

slides7 828X 2019

AND/OR

Space: linear
Time:
O(exp(h))
O(w* log n)

OR

Linear space,
Time:
O(exp(n))

i AND/OR vs. OR Spaces

_ OR space
width depth
Time (sec.) Nodes
5 10 3.15 2,097,150
4 9 3.13 2,097,150
5 10 3.12 2,097,150
4 10 3.12 2,097,150
5 13 3.11 2,097,150

AND/OR space

Time (sec.) | AND nodes

0.03
0.01
0.03
0.02
0.10

10,494
5,102
8,926
7,806

36,510

Random graphs with 20 nodes, 20 edges and 2 values per node

slides7 828X 2019

OR nodes
5,247
2,551
4,463
3,903
18,255

#CSP — AND/OR Search Tree

A E F|Ry,

A B E|R,,

B C D|Ryep

A B C|R,

OR

OR

OR

@@ @ ® 6 @ @ 6O O

@ @ » 6 @ O 6 &

OR

2] |9 [4]

2] g [1] [9

1] [d [1 Io

g (1] [d

[1]

2l [d |1 [d [4]

2l [d

[d [[d [4 [d [1 Io

g [1

slides7 828X 2019

i #CSP — AND/OR Tree DFS

A B C|Rysc B C D|Rgep A B E|[Ry A E F|[Rys
000 1 0 00 1 000 1 0 00 0
0 0 1 1 0 0 1 1 0 0 1 0 0 0 1 1 |
010 0 010 1 010 1 010 1 Y
0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 !
1. 00 1 1. 00 1 1 00 0 1. 00 1 !
1 0 1 1 1.0 1 0 1 0 1 1 1. 0 1 1 /
110 1 110 1 110 1 110 1 /
1. 1 1 0 1. 1 1 1 1. 1 1 0 1 1 1 0 !
OR 14(a)
9[d 571
OR 9(8) 5(8)
3G o AND node: Combiggation operator (preguct)
OR 3 (o 1(E) 2(o 3(e) 300 1(E) HO 2(8)
2[d 1l @R RodetMariinalzation operdori(8ummatign) 1@ o 2@ of
or 2 1® 1(p 20 1(»p 2p 2 1(0 1(p 1@ 2(p)
9 2] (9 (1] [9 [4 g (1] [d (1] [a [4] g [1] [9 [1 d [1 [9 (4] g 1]
1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 0 1 0 1 0 1 1

slides7 828X 2019

Pseudo-Trees

(Freuder 85, Bayardo 95, Bodlaender and Gilbert, 91)

4 (1) 6

O—2 O——~0
h <= W* Iog N (a) Graph

(b) DFS tree (c) pseudo- tree (d) Chain
depth=3 depth=2 depth=6

slides7 828X 2019

slides7 828X 2019

AND/OR search tree for graphical models

The AND/OR search tree of R relative to a tree, T, has:
= Alternating levels of: OR nodes (variables) and AND nodes (values)

Successor function:
= The successors of OR nodes X are all its consistent values along its path
= The successors of AND <X,v> are all X child variablesin T

A solution is a consistent subtree
Task: compute the value of the root node

OR (4)
0]
OR (8) (8)
9 o
orR (&) © (e (9 (& O, (& O,
0] 9 0] 9 o 9 9] 0]

R @BH @B @6 6 0o 6 6 & 6
o M0 I@EEE @I EEEE QHEAEEEHEE @ 6@ EMEE (4

slides7 828X 2019

The end

slides7 828X 2019

* From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged

slides7 828X 2019

i From Search Trees to Search Graphs

= Any two nodes that root identical subtrees
(subgraphs) can be merged

slides7 828X 2019

i From Search A/O Trees to Search A/O Graphs

= Any two nodes that root identical
subtrees/subgraphs can be merged

= Minimal AND/OR search graph:
closure under merge of the AND/OR search tree

= Inconsistent sub-trees can be pruned too.
= Some portions can be collapsed or reduced.

slides7 828X 2019

slides7 828X 2019

AND/OR Tree

+

R

o o o o o
O O O @) O O

m
Q.
58
x 3
MG
o2
< 5
C (O
< O

o
O

OR

OR

OR

OR

slides7 828X 2019

i Context-based Caching

Caching is possible when context is the same

= context = current variable +
parents connected to subtree below

context(B) = {A, B}
context(c) = {A,B,C}
context(D) = {D}
context(F) = {F}

What is the context size?
Induced-width slides7 828X 2019

i Complexity of AND/OR Graph

= Theorem: Traversing the AND/OR search
graph is time and space exponential in the
induced width/tree-width.

= If applied to the OR graph complexity is time
and space exponential in the path-width.

slides7 828X 2019

#CSP — AND/OR Tree DFS

A E F|Ry,

A B E|R,

B C D|Ryep

A B C|R,

14

OR

.

OR

2|1

3[g

6|1

3o

1(8)

39
1[9
(P

OR

old 2@ o[

1[0

1(p)

1]1]

1[4 0[q
1(p)

2(p) 1(p)

2 (o

Mg 21
209
1 [4
0 1 1 1

1[1 Ay o@d 21
1(p) 2(0) 1(F)

2[d]

2(2

N

OR

=] ™
S ™

1] |9 [
1 11 0

[N ™
BE)
NS
Skl
=] ™
S ™

slides7 828X 2019

#CSP — AND/OR Search Graph

i (Caching Goods)

A E F|Ry,

A B E|R,,

B C D|Ryep

A B C|R,

OR
OR
OR

o
O

slides7 828X 2019

#CSP — AND/OR Search Graph

i (Caching Goods)

A E F|Ry,

A B E|R,,

B C D|Ryep

A B C|R,

Time and Space

O(exp(w*))

OR

OR
OR
OR

slides7 828X 2019

Mmoo ®™ >

OR

OR

OR

OR

Full OR search tree
126 nodes

Context minimal OR search graph

e e
[’JJ_E 0

(5 @ (2 (® @ (B (5 @ @

[N
=
=
[
[
-
[N

Context minimal AND/OR search graph
18 AND nodes

Full AND/OR search tree
54 AND nodes

slides7 828X 2019

AND/OR vs. OR DFS Algorithms

k = domain size

m = tree depth

n = # of variables
w*= jnduced width
pw*= path width

= AND/OR tree o OR tree
= Space: O(n) ¢ Space: O(n)
« Time: O(n k™) © Time: O(Kk")
0(I1 kw* log n)
(Freuder85; Bayardo95; Darwiche01)
= AND/OR graph e OR graph
= Space: O(n kwW*) ® Space: O(n k°v™)

= Time: O(n kv*) ® Time: O(n k**")

slides7 828X 2019

Summary: Time-Space for Constraint
Processing

Constraint-satisfaction, one = Counting, enumeration
solution
= Naive backtracking = Backtracking, backjumping
= Space: O(n), = Space: O(n),
= Time: O(exp(n)) = Time: O(exp(n))
- Backjumping n Learning nO'QOOdS

=_space: O(exp(w*))

= Space: O(n), T O(exp(n))
- Time: O(exp(lo = ime: U(exp(n
“:2;) (exp(log n = Search with goods and no-
- goods learning
= Learning no-goods

= Space: O(exp(pw¥*))

= Space: O(exp(w*)) . Time: O(exp(pw*)),
= Time: O(exp(w¥*)) both, O(exp(w*logn))
= Variable-elimination = Variable-elimination
= Space: O(exp(w*)) = Space: O(exp(w*))
. Time: O(exp(w*)) = Time: O(exp(w*))
= BFS is time and space
O(exp(pw*))

slides7 828X 2019

