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Exact Inference Algorithms 
Tree-Decomposition Schemes

(Dechter1 chapter 5, Darwiche chapter 6-7)



Bucket elimination 
Algorithm BE-bel  (Dechter 1996)


b

Elimination operator

P(e=0)

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)
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Example of pruning irrelevant subnetworks



Example of pruning edges due to evidence or conditioning





Finding
Algorithm BE-mpe (Dechter 1996)


b

max Elimination operator

MPE

W*=4

”induced width” 

(max clique size)

bucket  B: 

P(a)

P(c|a)
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Generating the MPE-tuple

C: 

E: 

P(b|a)   P(d|b,a)   P(e|b,c)B: 

D:

A: P(a)

P(c|a)

e=0 e)(a,hD

(a)hE

e)c,d,(a,hB

e)d,(a,hC
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=
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General Graphical Models
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General Bucket Elimination
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Belief Updating Example

Buzz

sound

Mechanical 

problem

High

temperature
Faulty

head

Read

delays

H P(H)
0 .9
1 .1

F P(F)
0 .99
1 .01

H F M P(M|H,F)
0 0 0 .9
0 0 1 .1
0 1 0 .1
0 1 1 .9
1 0 0 .8
1 0 1 .2
1 1 0 .01
1 1 1 .99

F R P(R|F)
0 0 .8
0 1 .2
1 0 .3
0 1 .7

P(F | B=1) = ?

M h1(M)
0 .05
1 .8

H F M Bel(M,H,F)
0 0 0 .0405
0 0 1 .072
0 1 0 .0045
0 1 1 .648
1 0 0 .004
1 0 1 .008
1 1 0 .00005
1 1 1 .0792

H h2(H)
0 .9
1 .1

F h3(F)
0 .1245
1 .73175

F h4(F)
0 1
1 1

H F M P(M|H,F)
0 0 0 .9
0 0 1 .1
0 1 0 .1
0 1 1 .9
1 0 0 .8
1 0 1 .2
1 1 0 .01
1 1 1 .99

* * =

M B P(B|M)
0 0 .95
0 1 .05
1 0 .2
1 1 .8

* * =

F P(F,B=1)
0 .123255
1 .073175

P(B=1) = .19643

Probability of evidence

P(F=1|B=1) = .3725 

Updated belief

SUM-PROD operators
POLY-TREE structure

P(h,f,r,m,b) = P(h) P(f) P(m|h,f) P(r|f) P(b|m)

B: P(B|M)
H: P(M|H,F),P(H)
M: 
R:P(R|F)
F:P(F)



Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Generating join-trees, the treewidth

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

◼ Conditioning with elimination (Dechter, 7.1, 7.2)
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Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Generating join-trees, the treewidth

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks
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From BE to Bucket-Tree Elimination(BTE)

D

G

A

B C

F

First, observe the BE operates on a tree.

Second, What if we want the marginal on D?

slides7 828X 2019

P(D)?



BTE: Allows Messages Both Ways

D

G

A

B C

F

Initial buckets
+ messages

Output buckets
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𝑃(𝐷) =෍

𝑎,𝑏

𝑃(𝐷|𝑎, 𝑏) 𝜋𝐵→𝐷(𝑎, 𝑏)
𝑃(𝐹) =෍

𝑏,𝑐

𝑃 𝐹 𝑏, 𝑐 𝜋𝐶→𝐹 𝑏, 𝑐 𝜆𝐺→𝐹(𝐹)



BTE: Allows Messages Both Ways

Bucket G:  P(G|F) 

Bucket F:  P(F|B,C) 

Bucket D: P(D|A,B)

Bucket C: P(C|A) 

Bucket B: P(B|A) 

Bucket A: P(A)

)(FF

G

),( CBC

F

),( BAB

D ),( BAB

C

)(AA

B

)(FG

F

),( CBF

C

),( BAD

B

),( BAC

B

)(AB

A

P(F|B,C)

P(G|F)

P(D|A,B)

P(C|A)

P(A)

P(B|A)

G

F

C

A

D

B

)(FF

G

),( CBC

F

),( BAB

D

),( BAB

C

)(AA

B

)(FG

F

),( CBF

C

),( BAD

B

),( BAC

B

)(AB

A

Each bucket can
Compute its 
marginal probability

D

G

A

B C

F
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Idea of BTE
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BTE

Theorem: When BTE terminates The 
product of functions in each bucket is the 
beliefs of the variables joint with the 
evidence.

elim(i,j) = scope(Bi)– scope(Bj)
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Bucket-Tree Construction From the Graph

1. Pick a (good) variable ordering, d.

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is mapped to 
pairs (variables, functions) 

4. The variables are the clique of X, the functions are 
those placed in the bucket

5. Connect the bucket of X to earlier bucket of Y if Y is 
the closest node connected to X
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D

G

A

B C

F

Example: Create bucket tree for ordering A,B,C,D,F,G 



Asynchronous BTE:
Bucket-tree Propagation (BTP)
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Query Answering
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Explicit functions
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Complexity of BTE/BTP on Trees

This will be extended to acyclic graphical models shortly
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Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks
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From Buckets to Tree-Clusters

◼ Merge non-maximal buckets into maximal clusters.

◼ Connect  clusters into a tree: each cluster to one with which it shares a 
largest subset of variables.

◼ Separators are variable- intersection on adjacent clusters.

F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

D

G

A

B C

F

A super-bucket-tree is an i-map of the Bayesian network

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B)

F

G,F

A,B,C,D,F

(C)

Time exp(3)
Memory exp(2)

Time exp(5)
Memory exp(1)



Acyclic Graphical Models

◼ Dual network: Each scope of a CPT is a node and each arc is 
denoted by intersection.

◼ Acylic network: when the dual graph is a tree or has a join-
tree

◼ Tree-clustering converts a network into an acyclic one.
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From Acyclic Networks



Connectedness  and Ascyclic dual Graphs
(The Running Intersection Property)

Definition: A graphical model whose dual graph has a join-tree is acyclic

Theorem: BTE is time and space linear on acyclic graphical models

Tree-decomposition: If we transform a general model into an acyclic one 
it can then be solved by a BTE/BTP scheme. Also known as tree-clustering
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Tree-Decompositions

property)on intersecti (running subtree connected       

 a forms set   the bleeach variaFor  2.   

 and       

such that vertex oneexactly  is  therefunction each For  1.   

:satisfying 

and  sets,  twox each verte with gassociatin functions,

labeling are  and  and  treea is   where,,, triple

 a is network  belief afor  A 

χ(v)}V|X{vXX

χ(v))scope(pψ(v)p

Pp

Pψ(v)

Xχ(v)Vv

ψχ(V,E)TT

X,D,G,PBNiondecomposit tree

ii

ii

i











=

=



Treewidth: maximum number of variables in a node of Tree-decomposition – 1
Seperator-width: maximum intersection between adjacent nodes
Eliminator: elim(u,v) = ᵡ(u) - ᵡ(v) 
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property)on intersecti (running subtree connected       

 a forms set   the bleeach variaFor  2.   

 and       

such that vertex oneexactly  is  therefunction each For  1.   

:satisfying 

and  sets,  twox each verte with gassociatin functions,

labeling are  and  and  treea is   where,,, triple

 a is  model graphical afor  A 

χ(v)}V|X{vXX

χ(v))scope(pψ(v)p

Pp

Pψ(v)

Xχ(v)Vv

ψχ(V,E)TT

X,D,Piondecomposit tree

ii

ii

i











=





A B C

p(a), p(b|a), p(c|a,b)

B C D F

p(d|b), p(f|c,d)

B E F

p(e|b,f)

E F G

p(g|e,f)

EF

BF

BC

G

E

F

C D

B

A

Tree decomposition

Connectedness, or
Running intersection property

Tree Decompositions
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Generating Tree-Decompositions

A bucket-tree of a graphical model is a tree-decomposition of the model
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From Buckets to Clusters

◼ Merge non-maximal buckets into maximal clusters.

◼ Connect  clusters into a tree: each cluster to one with which it shares a 
largest subset of variables.

◼ Separators are variable- intersection on adjacent clusters.

F

B,C A,B

A,B

G,F

A,B,C

D,B,A

B,A

A

F,B,C

(A)

D

G

A

B C

F

F

B,C

G,F

A,B,C

D,B,AF,B,C

(B)

F

G,F

A,B,C,D,F

(C)

Time exp(3)
Memory exp(2)

Time exp(5)
Memory exp(1)
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u v

x1

x2

xn

𝒎𝒖→𝒗

For max-product
Just replace σ
With max.

Message Passing on a Tree Decomposition

Cluster(u) = 𝜓(𝑢) ∪ {𝑚𝑋1→𝑢 , 𝑚𝑋1→𝑢 , 𝑚𝑋2→𝑢 , …𝑚𝑋𝑛→𝑢}

Type equation here.

𝒎𝒖→𝒗 = σ𝑒𝑙𝑖𝑚(𝑢,𝑣)∏𝑓 ∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑢 − 𝒎𝒗→𝒖
𝑓

𝒎𝒖→𝒗 =σ𝑒𝑙𝑖𝑚(𝑢,𝑣)𝜓 𝑢 ∏𝑟 ∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢 ,𝑟≠𝑣 𝒎𝒓→𝒖

Elim(u,v) = cluster(u)-sep(u,v)



Cluster-Tree Elimination



Properties of CTE

◼ Theorem: Correctness and completeness: Algorithm CTE 
is correct, i.e. it computes the exact joint probability of a 
single variable and the evidence. Moreover, it generates 
explicit clusters.

◼ Time complexity: 
◼ O ( deg  (n+N)  k w*+1 )

◼ Space complexity: O ( N  k sep)
where deg = the maximum degree of a node

n = number of variables (= number of CPTs)
N = number of nodes in the tree decomposition
k = the maximum domain size of a variable
w* = the induced width, treewidth
sep = the separator size
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Generating Join-trees
(Junction-trees); a special type of 
tree-decompositions
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Examples of (Join)-Trees Construction

A

E D

CB

A

B

C

D

E

F
F

F

E

D

C

B

A

ABCE

DEF

BCE

BCDE
DE

E

FD

ABC

ABE

AB

BC

D

BCD

B
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Tree-Clustering and Message-Passing

Two join-trees

Message-passing by CTE on
The tree in (b)
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Find the errors



Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks
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G

E

F

C D

B

A

)p(b|a

)p(a

),| bap(c

),dp(f|c

)P(d|b

),| fbp(e

), fp(g|e

A B C

p(a), p(b|a), p(c|a,b)

B C D F

p(d|b), p(f|c,d)

B E F

p(e|b,f)

E F G

p(g|e,f)

EF

BF

BC

Example of a Tree Decomposition
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u v

x1

x2

xn

  −
=

),( )},({)(
),(             

:message  theCompute

vu uvhuclusterf
fvuh

elim

h(u,v)

)},(),,(),...,,(),,({)()( 21 uvhuxhuxhuxhuucluster n=

Elim(u,v) = cluster(u)-sep(u,v)

For max-product
Just replace σ
With max.

Message passing on a tree decomposition



u v

x1

x2

xn

𝒎𝒖→𝒗

For max-product
Just replace σ
With max.

Message Passing on a Tree Decomposition

Cluster(u) = 𝜓(𝑢) ∪ {𝑚𝑋1→𝑢 , 𝑚𝑋1→𝑢 , 𝑚𝑋2→𝑢 , …𝑚𝑋𝑛→𝑢}

Type equation here.

𝒎𝒖→𝒗 = σ𝑒𝑙𝑖𝑚(𝑢,𝑣)∏𝑓 ∈𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑢 − 𝒎𝒗→𝒖
𝑓

𝒎𝒖→𝒗 =σ𝑒𝑙𝑖𝑚(𝑢,𝑣)𝜓 𝑢 ∏𝑟 ∈𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 𝑢 ,𝑟≠𝑣 𝒎𝒓→𝒖
Elim(u,v) = cluster(u)-sep(u,v)



Cluster-Tree Elimination (CTE), or
Join-Tree Message-passing

),|()|()(),()2,1( bacpabpapcbh
a

=

),(),|()|(),( )2,3(

,

)1,2( fbhdcfpbdpcbh
fd

=

),(),|()|(),( )2,1(

,

)3,2( cbhdcfpbdpfbh
dc

=

),(),|(),( )3,4()2,3( fehfbepfbh
e

=

),(),|(),( )3,2()4,3( fbhfbepfeh
b

=

),|(),()3,4( fegGpfeh e==
G

E

F

C D

B

A

ABC

2

4

1

3 BEF

EFG

EF

BF

BC

BCDF

Time: O ( exp(w+1) )
Space: O ( exp(sep) )

For each cluster P(X|e) is computed, also P(e)

CTE is exact
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Outline

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks
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Polytrees and Acyclic Networks 

◼ Polytree: a BN whose undirected skeleton is a tree

◼ Acyclic network: A network is acyclic if it has a tree-
decomposition where each node has a single original CPT.

◼ A polytree is an acyclic model.
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Pearl’s Belief Propagation
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From Exact to Approximate:
Iterative Belief Propagation

◼ Belief propagation is exact for poly-trees

◼ IBP - applying BP iteratively to cyclic networks

◼ No guarantees for convergence

◼ Works well for many coding networks

)( 11
uX

1U 2U 3U

2X1X

)( 12
xU

)( 12
uX

)( 13
xU

) BEL(U

 update  

:step One

1
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Propagation in Both Directions

◼ Messages can propagate both ways and we 
get beliefs for each variable

P(X)

P(Y|X) P(Z|X)

P(T|Y) P(R|Y) P(L|Z) P(M|Z)

)(XmZX

)(XmXZ

)(ZmZM)(ZmZL

)(ZmMZ)(ZmLZ

)(XmYX

)(XmXY

)(YmTY

)(YmYT

)(YmRY

)(YmYR
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Agenda

◼ From bucket-elimination (BE) to bucket-tree elimination (BTE)

◼ From BTE to CTE, Acyclic networks, the join-tree algorithm

◼ Generating join-trees, the treewidth

◼ Examples of CTE for Bayesian network

◼ Belief-propagation on acyclic probabilistic networks (poly-trees) 
and Loopy networks

◼ Conditioning with elimination (Dechter1, 7.1, 7.2)
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The Idea of Cutset-Conditioning
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The Cycle-Cutset Scheme:
Condition Until Treeness

67

• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))



Cycle-Cutset Conditioning

C
P

J A

L
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DF M

O

H

K

G N
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B

E

DF M
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H

K

G N
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C
P

J

L

E

DF M

O

H

K

G N

B

P

J

L

E

DF M

O

H

K

G N

C

Cycle cutset = {A,B,C}

C
P

J A

L

B

E

DF M

O

H

K

G N

C
P

J

L

B

E

DF M

O

H

K

G N

C
P

J

L

E

DF M

O

H

K

G N

C
P

J A

L

B

E

DF M

O

H

K

G N

1-cutset = {A,B,C}, size 3



Search Over the Cutset (cont)

69

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

C

K

G

L

D

F
H

M

J

E

• Inference may require too much memory

• Condition on some of the variables
A

C

B K

G

L

D

F
H

M

J

E

Graph
Coloring
problem

2-cutset = {A,B}, size =2



70

The Impact of Observations

Induced graphOrdered graph Ordered conditioned graph



The Idea of Cutset-Conditioning

71

We observed  that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the “conditioned-induced graph”

• Cutset-conditioning exploit this in a systematic way: 
• Select a subset of variables, assign them values, and 
• Solve the conditioned problem by bucket-elimination. 
• Repeat for all assignments to the cutset.

Algorithm VEC



Conditioning+Elimination

75


=

==
0

),|(),|()|()|()()0,(
edcb

cbePbadPacPabPaPeaP

Idea: conditioning until        of a (sub)problem gets small*w



Loop-Cutset Conditioning

◼ You condition until you get a polytree

76

B

CB

F

A

B

CB

F

A=0 A=0 A=0

B

CB

F

A=1 A=1 A=1

P(B|F=0) = P(B, A=0|F=0)+P(B,A=1|F=0)

A=0 A=1

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP



q-Cutset, Minimal

78



Loop-Cutset, q-Cutset, cycle-cutset

◼ A loop-cutset is a subset of nodes of a 
directed graph that when removed the 
remaining graph is a poly-tree

◼ A q-cutset is a subset of nodes of an 
undirected graph that when removed 
the remaining graph is has an induced-
width of q or less.

◼ A cycle-cutset is a q-cutset such that 
q=1.
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Search Over the Cutset (cont)

80

A=yellow A=green

B=red B=blue B=red B=blueB=green B=yellow
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• Inference may require too much memory

• Condition on some of the variables
A

C

B K

G
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F
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Graph
Coloring
problem

2-cutset = {A,B}, size =2



VEC: Variable Elimination with Conditioning;
or, q-cutset lgorithms

◼ VEC-bel:

◼ Identify a q-cutset, C,  of the network

◼ For each assignment to C=c solve by CTE or 
BE  the conditioned sub-problem.

◼ Accumulate probability.

◼ Time complexity: 𝑛𝑘𝑐+𝑞+1

◼ Space complexity: 𝑛𝑘𝑞
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Algorithm VEC (Variable-elimination with conditioning)

82



VEC and ALT-VEC:
Alternate conditioning and Elimination

◼ VEC (q-cutset-conditioining) can also 
alternate search and elimination, 
yielding ALT-VEC.

◼ A time-space tradeoff
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Search Basic Step: 
Conditioning
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Search Basic Step: 
Conditioning
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X1

X3

X5X4

X2
• Select a variable



Search Basic Step: 
Conditioning
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Search Basic Step: 
Variable Branching by Conditioning
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General principle:

Condition until tractable

Then solve sub-problems

efficiently



Search Basic Step: 
Variable Branching by Conditioning
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Example: solve subproblem 

by inference, BE(i=2)



The Cycle-Cutset Scheme:
Condition Until Treeness
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• Cycle-cutset

• i-cutset

• C(i)-size of i-cutset

Space: exp(i), Time: O(exp(i+c(i))



Eliminate First
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Eliminate First
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Eliminate First
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Solve the rest of the problem

by any means



Hybrids Variants

◼ Condition, condition, condition … and then 
only eliminate (w-cutset, cycle-cutset)

◼ Eliminate, eliminate, eliminate … and then 
only search

◼ Interleave conditioning and elimination (elim-
cond(i), VE+C)
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Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP’02)
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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Interleaving Conditioning and Elimination
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...

...



What hybrid should we use?

◼ q=1? (loop-cutset?)

◼ q=0? (Full search?)

◼ q=w* (Full inference)?

◼ q in between?

◼ depends… on the graph

◼ What is relation between cycle-cutset
and the induced-width?
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Properties of 
Conditioning+Elimination
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Tradeoff between w* and q-cutstes
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