i Algorithms for Reasoning with graphical models

Slides Set 7:

Exact Inference Algorithms
Tree-Decomposition Schemes

(Dechterl chapter 5, Darwiche chapter 6-7)

slides7 828X 2019

Bucket elimination
iAlgorithm BE-bel (Dechter 1996)

Al[E=0)=« ZP(A)-P(B|A)-P(C|A)-P(D|A,B)-P(E|B,C)

E=0,D,C,B

ZH<— Elimination operator
b A

bucket B: P(bJa) P(d]b,a) P(e|b,c)

bucket C: P(c|a) /lB(a,d,c,e)
\/ N Y
bucket D: A (a,d,e)

bucket E: e=0 A°(a,e)

\ / W*=4

_ E “induced width”
bucket A: //P(%(a) (max clique size)
—) —
P(ale=0)_P(a,eﬁ 0)

P(e=0)

P(ale=0)

9

"/V/orz/” Irrelevant buckets for
grap. BE-BEL

Buckets that sum to 1 are irrelevant.
Identification: nNno evidence, Nno new Tunctions.

Recursive recognition : (bel(ale))

bucket() — Ple|lb,e), e = O

bucket(1) = P(d|la,b),...skipable bucket
bucket{ ') — P(c|la)

bucket{ B) — P(b|la)

bucket(.A) — P (e)

Complexity: Use induced width in moral graph
without irrelevant nodes, then update for ewvi-

dence arcs.

Use the ancestral graph only

Pruning Nodes: Example

Example of pruning irrelevant subnetworks

TN P TN
(A) (A (A)
-}"-— 'J:}I }"\-\._.-'{ l}n . ..f'
o & W, A
f.r" '\.\K f
f ™,
| I. | | : : i
N B S C.{'I N B x%C Y I'x_B J
- il - - Y e
"_\ x_,."" H\\\ \x.\
, ¢ “ \
™, -
e
| | f | | ;
Ny I"x.E_/"I I‘ME-J

network structure jointon B, E joint on B

Pruning Edges: Example

Example of pruning edges due to evidence or conditioning

A B Op|a A C Ocla
true true 2 true true .8
true false .8 P true false .2
/ Winter? \
false true .75 @) false true .1
false false .25 e . false false .9
I.»’%prinkler%'.\x { Kain?)
B N
(D /7 Slippery Road? ™,
(=false
B D 2oc lE"'.l::r| BC e
A | O4 true true .9 E doc e'E|{?Ee
true | .6 true false .1 true | 0
false | .4 false true O false | 1

false false 1

Evidence e : C =false

Pruning Nodes and Edges: Example

/ Atrue ! e
B ©p =2 1954 C O =Y, 08,
true 2 (w]::jﬁ \ e o
S A
false | .8 — false | .2
g SPTI FIJ—'LI.c::r‘?'\‘« :-"f .-Rain 7 ..\‘-.:
B @
o
1‘_‘__ ':.D] _J____--'II
/ — C=false
5 = DB — Zc eD|BC
A Oa true true .9
true 6 true false .1
false | .4 false true O

false false 1

Query Q = {D} and e: A=true, C =false

Finding MPE = max P(X)

Algorithm BE-mpe (Dechter 1996)

+

> isreplaced by max :

MPE = max P(a)P(c|a)P(b|a)P(d |a,b)P(e|b,c)

mglx Ef Elimination operator
bucket B: P(bQ P(d|b,a) P(e[b,c)

bucket C: h ,
/ Y
bucket D: P(\Cla)‘ c

bucket E: e=0 h°(a,e)

| g W=4
bucket A: P("{“h/ @) nduced width”

MPE (max clique sizeb

1

‘L Generating the MPE-tuple

5. b'=arg max P(b|a')x
xP(d'|b,a")xP(e'|b,c")

4. c'=argmax P(c|a')x
xh®(@' ,d"',c,e)

3. d'=arg max h(a' ,d,e')

2.e' =0

1. a' =arg max P(a)-h(a)

A

B: P(bla) P(d|b,a) P(elb,c)

C: h®(a,d,c,e)
P(cla)

D: h®(a,d,e)

E: e=0 bh°(ae)

A: P(a) h®(a)

Return (a',b',c' ,d',e')

General Graphical Models

Definition 2.2 Graphical model. A graphical model M is a 4-tuple, M = (X.D.F.),
where:

1. X =1{X,,..., X,} is a finite set of variables;
2.D={Dy,..., D, } is the set of their respective finite domains of values;

3. F={fi...., fr} is a set of positive real-valued discrete functions, defined over scopes of
variables S = {Sy, ..., S;}, where S; C X. They are called /oca/ functions.

4. Q) is a combination operator (e.g., @ € {[[. D_. <t} (product, sum, join)). The combination
operator can also be defined axiomatically as in [Shenoy, 1992], but for the sake of our
discussion we can define it explicitly, by enumeration.

The graphical model represents a global function whose scope is X which is the combination of all
its functions: @;_, fi.

13

General Bucket Elimination

Algorithm General bucket elimination (GBE)

Input: M = (X.D,F.®) . F ={fi...., fa} an ordering of the variables, d = X,..., X;;
Y cX.

Output: A new compiled set of functions from which the query |y ®7_, fi can be derived
in linear time.

1. Initialize: Generate an ordered partition of the functions into bucket,, ..., bucket,, where
bucket; contains all the functions whose highest variable in their scope is X;. An input func-
tion in each bucket ¥, ¥ = ®7_, fi.

2. Backward: For p < n downto 1, do

for all the functions ¥r,, A, A5, ...,A; in bucket,, do

» If (observed variable) X, = x,, appears in bucket,, assign X, = x, in ¥, and to each
A; and put each resulting function in appropriate bucket.

* else, (combine and marginalize)
Ap <s, ¥, ® (®/_,A;) and add A, to the largest-index variable in scope(A,).

3. Return: all the functions in each bucket.

Theorem 4.23 Correctness and complexity. Algorithm GBE is sound and complete for its task. Its
time and space complexities is exponential in the w*(d) + 1 and w* (d), respectively, along the order

of processing d.

1998 roadmap

Outline; Road Map

: olving

Tasks . . MPE, | qp 2
‘ : Optimi- Belief MAP. linear
_ CSP SAT - - MEU |dqualities
Method: zation updating ithequalities
v directional c || Join-tree. |join-tree. | | -
adaptive | CITSCHONAL | dynamic || JOI-T] &Gaussian/
liminati consistency ocram-| YE - SPL | alim- .
elimination | 0T program : elim-mpe | gourier
jom-tree ming elim-bel | elim-map dlimination
backtracki | branch- branch-
.. . |backtracking “oc HAcKE and- and-
conditioning] ~ caarch | (Davis- bound. bound.
Putnam) | best-first best-first
search search
alimination | cvele-cutset| DCDR. loop-
- BDE-DF cutset
-onditioni forward
conditioning] checking
approximate| 1-consistency bounded mini- mini- mini-
elimination (directional) buckets || buckets | buckets
resolution
ApDroXimate greedylocal gradient| stochastiq| gradient
ippl"' ' Sefm:h GSAT descent | simulation descent
conditioning] (GSAT)
approximate| GSAT +
(elimination | yartial Path-
T | consistency
conditioning J

Belief Updatlng Example

F P(F) F hy(F) F hy(F) F P(F,B=1)
0] .99 * 0] .1245 * 0 1 _ 1 0].123255
1 1] .01 1|.73175 1 1 - [1].073175

SUM-PROD operators
POLY-TREE structure

H F M P(M|H,F) H F M BEMIMEEYR)
olofo 9 o[o[o] .0485 F R P(R|F)
0lo/1] 1] .072
0[1]0 : ';' h‘(()';') '(')' h’(g"') 8 (1) 0 .0(7145 8 (1) :g
011 9 ¥t 1 ¥ 31 1 = [0]L[1] .648 10| .3
1/0]0 8 1/o/0][.0o08 ol1] .7
1]0]1 2 1/0[1][.o0a
1[1]/o0] .01 1[1]0o] .oompn5
111 .99 1[1]1] .om B: P(B|M)
H: P(M[H,F),P(H)
M B P(B|M) M:
olol o5 | .
Ej é -?25 R:P(R|F)
P(h,trm,b) = P(h) P(f) P(m/[h,f) P(r/f) P(b/m) 1[1] .8 F:P(F)
P(F|B=1) = ? P(B=1) = .19643 AF=1/B=1) = .3725

Probability of evidence Updated belief

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
= From BTE to CTE, Acyclic networks, the join-tree algorithm

= Generating join-trees, the treewidth

= Examples of CTE for Bayesian network

= Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

= Conditioning with elimination (Dechter, 7.1, 7.2)

Outline

= From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm

s Generating join-trees, the treewidth

s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides7 828X 2019

From BE to Bucket-Tree Elimination(BTE)

First, observe the BE operates on a tree. /@
Second, What if we want the marginal on D? R Cf
©
Bucket G: P(G|F) G

Bucket F: P(’F|&>)J‘AG_>F(F) Aoor(F
F

Bucket D: P(D|4,B) @ D
hr-c(B.C) | P(D|A,B)
Bucket C: P(C|4) Aro(B,0)

T Ap~g(A,B)
X P(D)?
Bucket B: P(B|4) Ap_(A,B)A\c_p(A, B) i

4 A /(P(BlA4)
Bucket A: P(4) A 5(A) m

Tagla) = P(A),

e pla.b) = p(bla) - ma_pla) - Ae— g(b)

bel(d) = f.l'z P(d|a,b) - mg_,pla,b).
i, b

‘L BTE: Allows Messages Both Ways

G

Initial buckets
+ messages /©
g7
©)
Output buckets "
a G
P(F) = z P(F|b,c)mcp(b,) Agp(F) P(G|F), 2. (F)] P(D) = Z P(D|a,b) mzp(a, b)
b,c F ab
~ P(F|B,C),) D
‘ ﬂC—»F(B,C) [P(D |A’B), . (A:B)]/

C
o (B.O)
{P (ClA), 7, 4B

B

Ao p(AB)
P(B‘A)) ‘;I'D—bB(A:B)

TTA—.B(

A
[P(A), Ap_a(4)

(b)

BTE: Allows Messages Both Ways

Bucket G: P(GJF) 78 (F) T%@\
” F / F ‘/@D
Bucket F. P(F/B,E&,lG(F) z¢: (B,C) & ?
Bucket D: P(D/A,b\ / 70 (A, B) ©
Each bucket can Bucket C: P(C/A)\ J£(B,C) 75 (A, B)
Compute its ~Q
marginal probability ~ Bucket B: P(BJA) 2(A,B) A%(A,B) zE(A)
Bucket A: P(A) 22 (A~
) 2
- ZP(G|F) l
—7 11¢ _B _
PEBC) T “?'EG)PEEE JAB (a. b) 7 (a)
ﬂﬁ(B,C)\L mTglc,a) = Na)Apla, b)myla
{RE(:H) AB(AF;)(E@ 78 (a,b) = P(bla)\E(a,b)mH(a,b)
PCIA) = "B A maB) mé(eb) =32, Plela)rg(a, b)
A AP g PBIA) TG (f) =Y. P(fIb,c)mE(c,b)

PA) 7w

=
A2 (A)

‘L Idea of BTE

This example can be generalized. We can compute the belief for every variable by a
second message passing from the root to the leaves along the original bucket-tree, such
that at termination the belief for each variable can be computed locally consulting only

the functions in its own bucket. In the following we will describe the idea of message

e

in Bayesian networks. Given an ordering of the variables d the first step generates the
bucket-tree by partitioning the functions into buckets and connecting the buckets into
a tree. The subsequent top-down phase is 1dentical to general bucket-elimination. The
bottom-up messages are defined as follows. The messages sent from the root up to the
leaves will be denoted by 7. The message from B; to a child B; is generated by combining
(e.g., multiplying) all the functions currently in B; including the 7 messages from its
parent bucket and all the A messages from its other child buckets and marginalizing (e.g.,
summing) over the eliminator from B; to B;. By construction, downward messages are
generated by eliminating a single variable. Upward messages, on the other hand, may be

generated by eliminating zero, one or maéréaariables,

‘L BTE

Theorem: When BTE terminates The ALGORITHM BUCKET-TREE ELIMINATION (BTE)
product of functions in each bucket is the Input: A problem M = (X, D.F,[[.3). ordering d.
beliefs of the variables joint with the X={X),..Xp}tand F = {f1, ..., fr}

evidence. Evidence E = e.

Output: Augmented buckets { B'; }. containing the original functions and all the
m and A functions received from neighbors in the bucket tree.
1. Pre-processing: Partition functions to the ordered buckets as usual
i i1 = N— . and penerate the bucket tree.
ellm(l"]) - Scope(Bl) Scope(B]) 2. Top-down phase: A messages (BE) do
for i = nto 1, in reverse order of d process bucket B;:
The message A;_,; from B; to its parent B;, is:
,\1-_,}- = Eeiim[tj} Wi - HkEchird{-z"l Ak—si
endfor
bottom-up phase: = messages
for j = 1 10 n, process bucket B; do:
B; 1akes mp_, ; received from its parent By, and computes a message mj_,;
tor each child bucket B; by
Mj—si Z&Hml:j.f] The—j i';!J' ‘ Hr;é-i ‘j"?'—f_f'
endfor

Ouitput: augmented buckets By, ..., B',, where each B'; contains the
original bucket functions and the A and = messages it received.

o

o

Figure 5.3: Algorithm bucket-tree elimination.

slides7 828X 2019

i Bucket-Tree Construction From the Graph
1. Pick a (good) variable ordering, d. z%?@

2. Generate the induced ordered graph

3. From top to bottom, each bucket of X is mapped to
pairs (variables, functions)

4. The variables are the cligue of X, the functions are
those placed in the bucket

5. Connect the bucket of X to earlier bucket of Y if Y is
the closest node connected to X

Example: Create bucket tree for ordering A,B,C,D,EG

Asynchronous BTE:
Bucket-tree Propagation (BTP)

Bucker-TrEE ProracaTiON (BTP)

Input: A problem M = (X.D.F,[].)]), ordering d. X = {X,..... X, } and
F={fi.... /r}, E=e. Anordering d and a corresponding bucket-tree structure,
in which for each node X, its bucket B; and its neighboring buckets are well defined.

Output: Explicit buckets. Assume functions assigned with the evidence.

1. for bucket B; do:
2. for each neighbor bucket B; do,

once all messages from all other neighbors were received, do

compute and send to RJ; the message
[Aisj € 2 etim.py Vi~ Ut Aesi)]

3. Output: augmented buckets By, ..., B’;,, where each B’; contains the

original bucket functions and the A messages it received.

slides7 828X 2019

‘L Query Answering

COMPUTING MARGINAL BELIEFS

Input: a bucket tree processed by BTE with augmented buckets: Bry. ..., Br,

output: beliefs of each vanable, bucket, and probability of evidence.

bel(Bi) < a - Ilfep, f
bel(X;) <= a-Ep._xyHien, f
Plevidence) <= Y g [iep. f

Figure 5.4: Query answering.

‘L Explicit functions

Definition 5.4 Explicit function and explicit sub-model. Given a graphical model M =
(X,D.F,[]), and reasoning tasks defined by marginalization) and given a subset of variables
Y, Y € X, we define My, the explicit function of M over ¥:

My=)]~ (5.4)

We denote by Fy any set of functions whose scopes are subsumed in ¥ over the same domains
and ranges as the functions in F. We say that (Y, Fy) is an explicit submodel of M iff

[17=My 5.5)

feFy

i Complexity of BTE/BTP on Trees

Theorem 5.6 Complexity of BTE. Ler w*(d) be the induced width of (G*.d) where G is the
primal graph of M = (X.D.F.[[.).), r e the number of functions in ¥ and k be the maximum
domain size. The time complexity of BT E is O(r - deg - k" “AEYy wwheredeg is the maximum degree
of a node in the bucket tree. Ihe space complexity of BTE is O(n - ws @)y,

Proposition 5.8 BTE on trees For free graphical models, algorithms BT'E and BT'P are time and
space O(nk?) and O(nk), respectively, when k bound the domain size and n bounds the number of
variables.

This will be extended to acyclic graphical models shortly

Outline

s From bucket-elimination (BE) to bucket-tree elimination (BTE)
= From BTE to CTE, Acyclic networks, the join-tree algorithm
s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides7 828X 2019

i From Buckets to Tree-Clusters

= Merge non-maximal buckets into maximal clusters.

s Connect clusters into a tree: each cluster to one with which it shares a
largest subset of variables.

= Separators are variable- intersection on adjacent clusters.

(A) A (B) /Twime exp(o")(z) /\Tgfgoer);pe(g(z)
€emory ex;
o Ty e T ©

i Acyclic Graphical Models

= Dual network: Each scope of a CPT is a node and each arc is
denoted by intersection.

= Acylic network: when the dual graph is a tree or has a join-
tree

= Tree-clustering converts a network into an acyclic one.

From Acyclic Networks

Sometime the dual graph seems to not be a tree, but it is in fact, a tree. This is because some
of its arcs are redundant and can be removed while not violating the original independency rela-

tionships that is captured by the graph.

ABC AEF CDE ACE

(e)

(c) (d)

Figure 5.1: (a)Hyper, (b)Primal, (¢)Dual and (d)Join-tree of a graphical model having
scopes ABC, AEF, CDE and ACE. (e) the factor graph

Connectedness and Ascyclic dual Graphs
(The Running Intersection Property)

Definition 5.11 Connectedness, join-trees.

Given a dual graph of a graphical model M, an
arc subgraph of the dual graph satisfies the connectedness property iff for each two nodes that share

a variable, there is at least one path of labeled arcs of the dual graph such that each contains the

shared variables. An arc subgraph of the dual graph that satisfies the connectedness property is
called a join-graph and if it is a tree, it is called a join-free.

Definition: A graphical model whose dual graph has a join-tree is acyclic

Theorem: BTE is time and space linear on acyclic graphical models

Tree-decomposition: If we transform a general model into an acyclic one
it can then be solved by a BTE/BTP scheme. Also known as tree-clustering

i Tree-Decompositions

A tree decomposition for a belief network BN =< X,D,G,P >isa
triple<T, y,w >, whereT =(V,E) isa tree and y and y are labeling
functions, associating with each vertex v eV two sets, y(v) — X and
w(v) < P satisfying :
1. For each function p, € P there is exactly one vertex such that
p, € w(v) and scope(p;) < x(v)
2. For each variable X, € X the set{v eV|X, € y(v)}forms a
connected subtree (running intersection property)

Treewidth: maximum number of variables in a node of Tree-decomposition — 1
Seperator-width: maximum intersection between adjacent nodes
Eliminator: elim(u,v) = X(u) - X(v)

Tree Decompositions

A Tree decomposition for a graphical model < X,D,P >isa [ABC J
triple<T, 7, >, whereT = (V,E)isa treeand y and y are labeling _P(2): P(}a), p(cfa,b)
functions, associating with each vertex v eV two sets, y(v) < X and BC
w(v) < P satisfying: SCOF

1. For each function p, € P thereis exactly one vertex such that [o(db), p(fic.d) J

P; € w(v)and scope(p;) < x(v)
[2.For each variable X, € X theset{v eV|X; € y(v)}formsa] BF

connected subtree (running intersection property)

e

Connectedness, or
Running intersection property

p(elo,f)

EF
[EFG J
p(gle,f)

Tree decomposition

BEF J

‘L Generating Tree-Decompositions

Proposition 6.2.12 IfT is a tree-decomposition, then any tree obtained by merging ad-

jgacent clusters is also a tree-decomposition.

A bucket-tree of a graphical model is a tree-decomposition of the model

i From Buckets to Clusters

= Merge non-maximal buckets into maximal clusters.

s Connect clusters into a tree: each cluster to one with which it shares a
largest subset of variables.

= Separators are variable- intersection on adjacent clusters.

(A) A (B) /Twime exp(o")(z) /\Tgfgoer);pe(g(z)
€emory ex;
o Ty e T ©

iMessage Passing on a Tree Decomposition

@_, J el y
Mype equation here.

53§tn;eaﬁ)7(/_5ggaz’ucz- C/USter(u) = lp (u) U {mX1—>u) mX]__)u) sz Sy’ an_)u}

With max. Elim(u,v) = cluster(u)-sep(u,v)

m, _,, = Zelim(u,v) H f €cluster(u)—{m,_} f

my_.y =Zelim(u,v) lp(u) [eEneighbor(u),r+v {mr—m}

i Cluster-Tree Elimination

cLUSTER-TREE ELIMINATION (CTE)

Input: A tree decomposition < T, y, ¥ > fora problem M =< X, D, F,[[.)_} >,
X ={X,....X,,}, F={fi...., f+}. Evidence E = ¢, ¥, = erwu} f
Output: An augmented tree decomposition whose clusters are all model explicit.
Namely, a decomposition < T, y, ¥ > where u € T, ¥ (u) is model explicit relative to y(u).
1. Initialize. (denote by m,_., the message sent from vertex u to vertex v.)
2. Compute messages:
For every node u in T, once u received messages from all neighbors but v,
Process observed variables:
For each node u € T assign relevant evidence to ¥ (u)
Compute the message:
My—v <— Z){I{u}—.wpl[n.i.lj % ! Hreneighbor(uj.r?év Mr—u
endfor
Note: functions whose scopes do not contain any separator variable
do not need to be combined and can be directly passed on to the receiving vertex.
3. Return: The explicit tree < T, y, ¥ >, where
Vlf(v) — lﬁ'(v) UuEm?ingr{v} {mn—w}
return the explicit function: for each v, My) = [1cj) f

Properties of CTE

= [heorem: Correctness and completeness: Algorithm CTE
is correct, i.e. it computes the exact joint probability of a
single variable and the evidence. Moreover, it generates

explicit clusters.

= Time complexity:
« O(deg x (n+N) x kWw+1)

= Space complexity: O (N x k5¢P)
where deg = the maximum degree of a node
n = number of variables (= number of CPTs)
/N = number of nodes in the tree decomposition
k = the maximum domain size of a variable
w* = the induced width, treewidth
sep = the separator size

+

Generating Join-trees
(Junction-trees); a special type of
tree-decompositions

ASSEMBLING A JOIN TREE

. Use the fill-in algorithm to generate a chordal graph G’ (if G is
chordal, G =G").

2. Identify all cliques in G’. Since any vertex and its parent set
(lower ranked nodes connected to it) form a clique in G’, the
maximum number of cliques is | V1.

3. Order the cliques C,, C»,..., C, by rank of the highest vertex in each
clique.

4. Form the join tree by connecting each C; to a predecessor C i G<i)
sharing the highest number of vertices with C;.

ia) (k) e)

EXAMPLE: Consider the graph in Figure 3.9a. One maximum
cardinality ordering is{A, B, C, D, E).

. Every vertex in this ordering has its preceding neighbors already
connected, hence the graph is chordal and no edges need be added.
e The cliques are ranked €, C;, and C as shown in Figure 3.95.

¢ C;={C, E) shares only vertex C with its predecessors C, and €,
so either one can be chosen as the parent of C;,

e These two choices yield the join trees of Figures 3.95 and 3.9¢.

* Now suppose we wish to assemble a join tree for the same graph
with the edge (8, C) missing.

. The ordering (A, B,C,D,E) is still a maximum cardinality
ordering, but now when we discover that the preceeding neighbors
of node D (i.e., 8 and C) are nonadjacent, we should fill in edge
(&, C).

. This renders the graph chordal, and the rest of the procedure yields
the same join trees as in Figures 3.9b and 3.9¢.

Y
A

i Examples of (Join)-Trees Construction

Tree-Clustering and Message-Passing

(7 A“\
Wi for) G.F)
W{fAB'-fAC’fBD}
yf{fBF = fCF} B C
WS- Sach GB’C >
o - [D) (D) (F)
W{fFG} W{fer-Jrc-Sant
W{fep-Sup} KG-\I
Two join-trees
(@) (b) J

‘(;11 w2 (F) =2 plfar) .
7 g (F) = S p (e - for -mass) Message-passing by CTE on

The tree in (b)

ma3(B,C) = > pgeolfor - for -misz)
1352(B,C) = X polfas - fac - masa)

/ a(A,B) =3 p(fan - fac 2-+3) \

masa(A B) = Y an(fon - fan) Find the errors

Outline

s From bucket-elimination (BE) to bucket-tree elimination (BTE)
s From BTE to CTE, Acyclic networks, the join-tree algorithm
= Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

slides7 828X 2019

‘_L Example of a Tree Decomposition

ABC
p@ (A | L p(@), p(bla), p(clab)]
OLR >
- (BCDF
| p(db), pic.d) J
E \ n/r\| b -F\
n(c|a, b)@* m [>(d|b) m o
- : - / [BEF
\ / | peb J
p(flc.d) (F o

o (EFG
@ (gD

%essage passing on a tree decomposition

cluster(u) =y (u) u{h(x,,u),h(x,,u),....,h(x ,u),h(v,u)}

For max-proauct
Just replace). Compute the message :

With max.
h(U,V) = Zelim(u,v)ercluster(u)—{h(V,U)} f

Elim(u,v) = cluster(u)-sep(u,v)

iMessage Passing on a Tree Decomposition

@_, J el y
Mype equation here.

53§tn;eaﬁ)7(/_5ggaz’ucz- C/USter(u) = lp (u) U {mX1—>u) mX]__)u) sz Sy’ an_)u}

With max.

m, _,, = Zelim(u,v) H f €cluster(u)—{m,_} f

my_.y =Zelim(u,v) lp(u) [eEneighbor(u),r+v {mr—m}
Elim(u,v) = cluster(u)-sep(u,v)

Cluster-Tree Elimination (CTE), or
Join-Tree Message-passing

1| ABC
| hay®.0)= p(a)-p(bla)- p(cla,b)
BC
h(2,1) (b,c) :Z p(d|b)- p(f |C’d)'h(3,2) (b,)
2| BCDF
h(2,3) (b, f)= Z p(d|b)- p(f |C’d)'h(1,2) (b,c)
BF)
h(3,2) (b, f)= Z p(e|b, f)'h(4,3) (e, f)
3| BEF
hisa (e) :Z p(e|b, f)-h,4 (b,)
) EF b
CTE is exact

i has(e f)=p(G=g.le f)
Space: O (exp(sep)) 4| _EFG

Time: O (exp(w+1))
For each clustersP(Xle) is computed, also P(e)

Outline

= Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

i Polytrees and Acyclic Networks

= Polytree: a BN whose undirected skeleton is a tree

= Acyclic network: A network is acyclic if it has a tree-
decomposition where each node has a single original CPT.

= A polytree is an acyclic model.

(a))]

Figure 4.18. (a) A fragment of a polytree and (b) the parents and chil-
dren of a typical node X.

‘L Pearl’s Belief Propagation

From Exact to Approximate:
[terative Belief Propagation

= Belief propagation is exact for poly-trees
= IBP - applying BP iteratively to cyclic networks

One step :
update

BEL(U,)
PIRON

= No guarantees for convergence
= Works well for many coding networks

i Propagation in Both Directions

= Messages can propagate both ways and we
get beliefs for each variable

64

* Agenda

s From bucket-elimination (BE) to bucket-tree elimination (BTE)

s From BTE to CTE, Acyclic networks, the join-tree algorithm
s Generating join-trees, the treewidth
s Examples of CTE for Bayesian network

m Belief-propagation on acyclic probabilistic networks (poly-trees)
and Loopy networks

= Conditioning with elimination (Dechterl, 7.1, 7.2)

i The Idea of Cutset-Conditioning

Figure 7.1: An instantiated variable cuts its own cycles.

65

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset
» C(i)-size of i-cutset

(a) (b) (c)

Space: exp(i), Time: O(exp(i+c(i))

‘L Cycle-Cutset Conditioning

o @Y./ e a® a @972 &©
PP A g ©
o A f

Cycle cutset = {A,B,C} ‘B

i

I1-cutset = {A,B,C}, size 3

‘_L Search Over the Cutset (cont)

e Inference may require too much mem
Graph ay require too mu ory

Coloring
problem

FN
©
A=yellow

2-cutset = {A B}, size =2

e Condition on some of the variables

The Impact of Observations ¢

A~
A0
P
Sprinkler @\1\ C) Rain

© sipery

(a)} Directed acyclic graph (b) Moral graph

(a) (b)

Figure 4.9: Adjusted induced graph relative to observing B.

Ordered graph Induced graph

(c)

Ordered conditioned graph

i The Idea of Cutset-Conditioning

We observed that when variables are assigned, connectivity reduces.
The magnitude of saving is reflected through the "conditioned-induced graph”

Cutset-conditioning exploit this in a systematic way:
Select a subset of variables, assign them values, and
Solve the conditioned problem by bucket-elimination.
Repeat for all assignments to the cutset,

Algorithm VEC

/1

‘L Conditioning+Elimination

P(a,e=0)=P(a)>_P(bla)d P(c|a)d P(d|ab)> P(e|b,c)

A B C D E

Pibl Picla Pidlab Pielb,
A (bla) Picla) (dla,b) (elb,c) Piae=0l b=0,c=0)

sam Piae=0b=0)
O P
piema) _Pd_______-——-”_# Pia f_:l.'ll b=},c=0)
pl0la Piim) ——
il 1l
S B [! Piae=0lb=1)
E’Mm _______———__________
G

Idea: conditioning until W™ of a (sub)problem gets small

/5

/6

‘L Loop-Cutset Conditioning

= You condition until you get a polytree

iy

P(B/F=0) = P(B, A=0/F=0)+P(BA=1/F=0)

Loop-cutset method is time exp in loop-cutset size
and linear space. For each cutset we can do BP

g-Cutset, Minimal

Definition 7.3 g-cutset, minimal. Given a graph G, a subset of nodes is called a g-cutset for
an integer g iff when removed, the resulting graph has an induced-width less than or equal to 4.
A minimal g-cutset of a graph has a smallest size among all g-cutsets of the graph. A cycle-cutset
is a 1-cutset of a graph.

Finding a minimal g-cutset is clearly a hard task [A. Becker and Geiger, 1999; Bar-Yehuda
et al., 1998; Becker ef al., 2000; Bidyuk and Dechter, 2004]. However, like in the special case of a

cycle-cutset we can settle for a non-minimal g-cutset relative to a given variable ordering. Namely,

Example 7.4 Consider as another example the contsaint graph of a graph coloring problem
given in Figure 7.3a. The search space over a 2-cutset, and the induced-graph of the conditioned
instances are depicted in 7.3b.

/9

i Loop-Cutset, g-Cutset, cycle-cutset

= A loop-cutset is a subset of nodes of a
directed graph that when removed the
remaining graph is a poly-tree

= A g-cutset is a subset of nodes of an
undirected graph that when removed

the remaining graph is has an induced-
width of g or less.

= A cycle-cutset is a g-cutset such that
g=1.

‘_L Search Over the Cutset (cont)

e Inference may require too much mem
Graph ay require too mu ory

Coloring
problem

FN
©
A=yellow

2-cutset = {A B}, size =2

e Condition on some of the variables

81

VEC: Variable Elimination with Conditioning;
i or, g-cutset Igorithms

s VEC-bel:
= Identify a g-cutset, C, of the network

= For each assignment to C=c solve by CTE or
BE the conditioned sub-problem.

= Accumulate probability.
= Time complexity: nkc+a+1
= Space complexity: nk4

Algorithm VEC (Variable-elimination with conditioning)

ALGORITHM V EC-EVIDENCE
Input: A belief network B =< AX.D.G.P >, an ordering d =
(x1.....1,) : evidence e over E, a subset C' of conditioned vari-
ables:
output: The probability of evidence P(e)
Initialize: A = 0.
1. For every assignment ' = ¢, do
e \; + The output of BE-bel with ¢ U e as observations.
e \ — A+ Ai. (update the sum).

(R

. Return P(e) = a - A (a is a normalization constant.)

84
VEC and ALT-VEC:
i Alternate conditioning and Elimination

= VEC (g-cutset-conditioining) can also
alternate search and elimination,
yielding ALT-VEC.

= A time-space tradeoff

& OedlCll bdSIC Slep.
‘L Conditioning

beid

6 O€dIChn badsIC olep.
‘L Conditioning

. Select a variable @ @

o€edlCll bdSIC Slep.

88

Search Basic Step:
i Variable Branching by Conditioning

@“@ General principle:

Condition until tractable
w Then solve sub-problems
@ @ efficiently

Xi€<a X, ¢C
X, Db

89

Search Basic Step:
i Variable Branching by Conditioning

@‘ Example: solve subproblem
e by inference, BE(i=2)

The Cycle-Cutset Scheme:
Condition Until Treeness

* Cycle-cutset
* |-cutset
» C(i)-size of i-cutset

(a) (b) (c)

Space: exp(i), Time: O(exp(i+c(i))

91

‘L Eliminate First

v

92

‘L Eliminate First

v

93

‘L Eliminate First

Solve the rest of the problem
by any means

94

i Hybrids Variants

= Condition, condition, condition ... and then
only eliminate (w-cutset, cycle-cutset)

= Eliminate, eliminate, eliminate ... and then
only search

= [nterleave conditioning and elimination (elim-
cond(i), VE+C)

Interleaving Conditioning and Elimination
(Larrosa & Dechter, CP'02)

96

i Interleaving Conditioning and Elimination

h/

97

i Interleaving Conditioning and Elimination

h/

98

i Interleaving Conditioning and Elimination

h/

99

i Interleaving Conditioning and Elimination

h/

100

i Interleaving Conditioning and Elimination

h/

101

i Interleaving Conditioning and Elimination

S AN 2he 4

103

i What hybrid should we use?

= =17 (loop-cutset?)

= 4=07 (Full search?)

= d=w* (Full inference)?
= g in between?

= depends... on the graph

= What is relation between cycle-cutset
and the induced-width?

04 Froperues or
* Conditioning+Elimination

Definition 5.6.1 (cycle-cutset,w-cutset) Given a graph G. a subset of nodes is called
a w-cutset iff when removed from the graph the resulting graph has an induced-width less
than or equal to w. A minimal w-cutset of a graph has a smallest size among all w-cutsets

of the graph. A cycle-cutset is a 1-cutset of a graph.

A cycle-cutset 15 known by the name a feedback vertex set and 1t 18 known that finding
the mimimal such set 18 NP-complete [41]. However, we can always settle for approx-
mmations, provided by greedy schemes. Cutset-decomposition schemes call for a new

optimization task on graphs:

Definition 5.6.2 (finding a minimal w-cutset) Given a graph G = (V. E) and a con-
stant w, find a smallest subset of nodes U, such that when removed, the resulting graph

has induced-width less than or equal w.

Tradeoff between w* and g-cutstes

Theorem 7.7 Given graph G, and denoting by E: tts munimal g-cutset then,

l+ef=z24c; 2. g+, .. zw" +og. =w'

Proof. Let’s assume that we have a q-cutset of size ¢;. Then if we remove it from the graph the
result is a graph having a tree decomposition whose treewidth is bounded by g. Let's T be this
decomposition where each cluter has size ¢ + 1 or less. If we now take the g-cutset variables and
add them back to every cluster of T, we will get a tree decomposition of the whole graph (exercise:
show that) whose treewidth is ¢y + ¢. Therefore, we showed that for every c4-size g-cutset, there
is a tree decomposition whose treewidth is ¢; + ¢. In particular, for an optimal g-cutset of size ¢*

we have that w#, the treewidth obeys, w* < ¢7 + ¢. This does not complete the proof because we
only showed that for every ¢, w* < ¢z + g. But, if we remove even a single node from a minimal

g-cutset whose size is ::.‘; , we get a ¢ + 1 cutset by definition, whose size is {‘; — 1. Theretore,

Cq+1 = ¢4 — 1. Adding ¢ to both sides of the last inequality we get that for every 1 = ¢ = w*,

q+r:;:_=-q+l+r*

4+1» Which completes the proof.]

