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i Outline

= Basics of probability theory
= DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring
conditional independence (CI)

= D-separation: Inferring CIs in graphs



* Outline

= Basics of probability theory
s DAGS, Markov(G), Bayesian networks

m Graphoids: axioms of for inferring
conditional independence (CI)

s Capturing CIs by graphs
m D-separation: Inferring CIs in graphs
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Examples:
Common Sense Reasoning

= Zebra on Pajama: (7:30 pm): I told Susannah: you have a nice
pajama, but it was just a dress. Why jump to that conclusion?: 1.
because time is night time. 2. certain designs look like pajama.

= Cars going out of a parking lot: You enter a parking lot which is
quite full (UCI), you see a car coming : you think ah... now there is a
space (vacated), OR... there is no space and this guy is looking and
leaving to another parking lot. What other clues can we have?

= Robot gets out at a wrong level: A robot goes down the elevator.
stops at 2™ floor instead of ground floor. It steps out and should
immediately recognize not being in the right level, and go back inside.
= Turing quotes
= If machines will not be allowed to be fallible they cannot be intelligent

= (Mathematicians are wrong from time to time so a machine should also be
allowed)



i Why/What/How Uncertainty?

= Why Uncertainty?
s Answer: It is abandant

= What formalism to use?
= Answer: Probability theory

= How to overcome exponential
representation?

= Answer: Graphs, graphs, graphs... to
capture irrelevance, independence



i Why Uncertainty?

Al goal: to have a declarative, model-based, framework that
allows computer system to reason.

= People reason with partial information

= Sources of uncertainty:

= Limitation in observing the world: e.g., a physician see symptoms and not
exactly what goes in the body when he performs diagnosis. Observations
are noisy (test results are inaccurate)

= Limitation in modeling the world,
= maybe the world is not deterministic.



Degrees of Belief

@ Assign a degree of belief or probability in [0, 1] to each world
w and denote it by Pr(w).
@ The belief in, or probability of, a sentence a:

Pr(«) « ZPl(w)

wEa
world | Earthquake Burglary Alarm  Pr(.)
W1 true true true  .0190
W true true false  .0010
W3 true false true  .0560
W4 true false false  .0240
Wws false true true  .1620
We false true false .0180
Wy false false true  .0072
ws false false false  .7128




Properties of Beliefs

@ A bound on the belief in any sentence:

0 < Pr(a) <1 forany sentence «.
@ A baseline for inconsistent sentences:

Pr(a) =0 when « is inconsistent.
@ A baseline for valid sentences:

Pr(a) =1  when « is valid.



Properties of Beliefs
o
X

@ [he belief in a sentence given the belief in its negation:

Pr(a) + Pr(—-a) = 1.

Example

Pr(Burglary) = Pr(wy)+ Pr(wz) + Pr(ws) + Pr(ws) = .2
Pr(—Burglary) = Pr(w3)+ Pr(ws) + Pr(w7) 4+ Pr(wsg) = .8




Properties of Beliefs
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@ The belief in a disjunction:

Pr(a Vv 3) = Pr(a) + Pr(3) — Pr(a A 3).

o Example:
Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(wsz) + Pr(ws) = .1
Pr(Burglary) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .2
Pr(Earthquake A Burglary) = Pr(wi) + Pr(w2) = .02
Pr(Earthquake vV Burglary) = .1+ .2 - .02 = .28



Properties of Beliefs
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@ [he belief in a disjunction:

Pr(av3) = Pr(a)+Pr(3) when « and 3 are mutually exclusive.



Quantify uncertainty about a variable X using the notion of
entropy:

ENT(X) € —3 Pr(x)log, Pr(x),

where 0log 0 = 0 by convention.

Earthquake Burglary Alarm
true 1 2 2442
false 9 8 7558

ENT(.) 469 122 802




@ The entropy for a binary variable X and varying p = Pr(X).
@ Entropy is non-negative.

@ When p =0 or p = 1, the entropy of X is zero and at a
minimum, indicating no uncertainty about the value of X.

@ When p = % we have Pr(X) = Pr(—X) and the entropy is at

a maximum (indicating complete uncertainty).



Bayes Conditioning

Alpha and beta are events

Closed form for Bayes conditioning:

Pr(a A 3)

Pr(«a|3) =

Pr(3)

Defined only when Pr(/3) # 0.



Degrees of Belief

world | Earthquake Burglary Alarm  Pr(.)

W1 true true true .0190
Wo true true false  .0010
W3 true false true  .0560
Wy true false false .0240
W false true true  .1620
We false true false  .0180
Wy false false true  .0072
wg false false false .7128

Pr(Earthquake) = Pr(wi)+ Pr(w2) + Pr(ws) + Pr(ws) = .1

Pr(Burglary) = .2

Pr(—Burglary) = .8

Pr(Alarm) = .2442



Belief Change

Burglary is independent of Earthquake

Conditioning on evidence Earthquake:

Pr(Burglary) = .2
Pr(Burglary|Earthquake) 2

Pr(Alarm) = .2442
Pr(Alarm|Earthquake) ~ 751

The belief in Burglary is not changed, but the belief in Alarm
Increases.



Belief Change

Earthguake is independent of burglary

Conditioning on evidence Burglary:

Pr(Alarm) = .2442
Pr(Alarm|Burglary) ~ .9051
Pr(Earthquake) = .1
Pr(Earthquake|Burglary) = .1

The belief in Alarm increases in this case, but the belief in
Earthquake stays the same.



Belief Change

The belief in Burglary increases when accepting the evidence
Alarm. How would such a belief change further upon obtaining
more evidence?

@ Confirming that an Earthquake took place:

Pr(Burglary|Alarm) ~ 741
Pr(Burglary|Alarm A Earthquake) ~ .253 |
We now have an explanation of Alarm.
@ Confirming that there was no Earthquake:
Pr(Burglary|Alarm) 741

Pr(Burglary|Alarm A —=Earthquake) =~ .957

New evidence will further establish burglary as an explanation.



Conditional Independence

Pr finds a conditionally independent of (3 given -y iff

Pr(a|3 A ~v) = Pr(aly) or Pr(BA~v)=0.

Another definition

Pr(a A 3|v) = Pr(aly)Pr(5|y) or Pr(y) = 0.




Variable Independence

Pr finds X independent of Y given Z, denoted /p.(X,Z.Y), means
that Pr finds x independent of y given z for all instantiations x, y
and z.

X={A,B},)Y={C}and Z={D.E}, where A,B,C,D and E
are all propositional variables. The statement /p,(X,Z.,Y) is then a
compact notation for a number of statements about independence:

A » B is independent of C given D / E;
A n =B is independent of C given D / E;

—A A =B is independent of = C given =D A —E;

That is, lpr(X,Z,Y) is a compact notation for 4 x 2 x 4 = 32
independence statements of the above form.




Further Properties of Beliefs

Pr(ai Aas AL A ap)
= Pr(ai|ag A ... Aap)Pr(az|laz Ao A ap) ... Pr(ag).

Case analysis (law of total probability)

n
Pr(a) = Z Pr(a A 5;),
i=1

where the events /31, .... (3, are mutually exclusive and exhaustive.

>




Further Properties of Beliefs

Another version of case analysis
Pr(a) =) Pr(a|8;)Pr(3),

i=1

where the events (31, .... (3, are mutually exclusive and exhaustive.

-

Two simple and useful forms of case analysis are these:

Pr(a) = Pr(aAB)+ Pr(aA—/3)
Pr(a) = Pr(a|8)Pr(3)+ Pr(a|=38)Pr(—03).

The main value of case analysis is that, in many situations,
computing our beliefs in the cases is easier than computing our
beliefs in v. We shall see many examples of this phenomena in
later chapters.



Further Properties of Beliefs

Bayes rule

Pr(3|a)Pr(a)

Pr(al|3) = Pr()

@ Classical usage: «v is perceived to be a cause of 3.
@ Example: « is a disease and (3 is a symptom-—
@ Assess our belief in the cause given the effect.

@ Belief in an effect given its cause, Pr(3|«), is usually more

readily available than the belief in a cause given one of its
effects, Pr(a|/3).




Difficulty: Complexity in model construction and inference

m In Alarm example:

m 31 numbers needed,
m Quite unnatural to assess: e.g.

m Computing P(B=y|M=y) takes 29 additions.

m In general,

m P(Xy, Xa2,...,X,) needs at least 2" — 1 numbers to specify the joint
probability. Exponential model size.
m Knowledge acquisition difficult (complex, unnatural),

m Exponential storage and inference.



™

Overcome the problem of exponential size by exploiting conditional independence

m The chain rule of probabilities:
P(X1,X2) = P(X1)P(X2|X1)
P(X1,X2,X3) = P(X1)P(Xa|X1)P(X3| X1, X2)
P(X1,Xa,...,Xn) = P(X1)P(Xa|X1)...P(Xn| X1, ...  Xnz1)

n
= J[PXilX1,... . Xi-1).
i=1

m No gains yet. The number of parameters required by the factors is:
2l on-l4 4 1=2"-1.



m About P(X;|X1,...,Xi_1):

m Domain knowledge usually allows one to identify a subset
pa(X;) € {Xi1,...,Xj—1} such that
m Given pa(X;), X; is independent of all variables in
{Xl, . ,X,'_l} \ pa(X,-), ie.

P(X,- |X1, 55 s ,X,«_l) = P(X,-|pa(X,-))

m [hen

P(X1, Xz, Ce s ,Xn) = ﬁ P(X,-lpa(X,-))

=1
m Joint distribution factorized.

m The number of parameters might have been substantially reduced.



‘L Example

P(B,E,A,J,M)=?
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P(B,E,A,J, M)
P(B)P(E|B)P(A|B,E)P(J|B,E,A)P(M|B,E,A,J)
P(B)P(E)P(A|B, E)P(J|A)P(M|A)(Factorization)

B P(B)

A P(M|A)

Y
N

A P(J|R)

m pa(B) = {}, pa(E) = {},pa(A) = {B, E}, pa(J) = {A},pa(M) = {A}.
m Conditional probabilities tables (CPT)

P(A|B, E)

ooz N (P
R R R L
2 2R

ZZ <o

.95
.05
.94
.06
.29
.71
.001
.999



-

m Model size reduced from 31 to 1+14+4+242=10

m Model construction easier

m Fewer parameters to assess.
m Parameters more natural to dassess.e.g.

P(B=Y),P(E=Y),P(A=Y|B=Y,E=Y),
P(J=Y|A=Y),P(M=Y|A=Y)

m Inference easier.Will see this later.



o Bayesian Networks
From Factorizations to Bayesian Networks

Graphically represent the conditional independency relationships:

m construct a directed graph by drawing an arc from X; to X; iff X; € pa(X;)

pa(B) = {}, pa(E) = {}, pa(A) = {B,E}, pa(J) = {A}, pa(M) = {A}.

m Also attach the conditional probability (table) P(X;|pa(X;)) to node X;.

m What results in is a Bayesian network.Also known as belief network,
probabilistic network.

| NednL Zhang (HKUST) Bayesian Newsts Soing 2007 15 /54



A Bayesian network is:
m An directed acyclic graph (DAG), where
m Each node represents a random variable

m And is associated with the conditional probability of the node given its
parents.




i Bayesian Networks: Representation

P(S)

BN = (G, O)

P(C|S) P(B|S)
CPD:
C B| D=0D=1
0 0| 0.1 0.9
S
1 1] 09 0.1

P(S, C, B, X, D) =P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

Conditional Independencies mmp Efficient Representation
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i Outline

m Basics of probability theory
= DAGS, Markov(G), Bayesian networks

m Graphoids: axioms of for inferring
conditional independence (CI)

s D-separation: Inferring CIs in graphs

(Darwiche chapter 4)
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Capturing Independence Graphically

The causal interpretation

@rthqua@ Gur{g;?rys
o 7 Assume that edges in this

graph represent direct causal
influences among these
variables.

The alarm triggering (A) is a direct cause of receiving a call from a
neighbor (C).




Capturing Independence Graphically

C

arthquak
(E )

-

Alarm?

“w

<D

We expect our belief in C to be
influenced by evidence on K.

If we get a radio report that an
earthquake took place in our
neighborhood, our belief in the
alarm triggering would probably
Increase, which would also
increase our belief in receiving
a call from our neighbor.




Capturing Independence Graphically

&

arthquak
(E)

e‘?>

We would not change this
belief, however, if we knew for
sure that the alarm did not
trigger. That is, we would find
C independent of R given —A
iIn the context of this causal
structure.



Capturing Independence Graphically

7 Visitto Asia? N

_/

/’)-—Tubercu]os's?

Tuberculosis or Cancer?

We would clearly find a visit to
Asia relevant to our belief in
the X-Ray test coming out
positive, but we would find the
visit irrelevant if we know for
sure that the patient does not
have Tuberculosis. That is, X
is dependent on A, but is
independent of A given —T.



Capturing Independence Graphically

These examples of independence are all implied by a formal
interpretation of each DAG as a set of conditional independence
statements.

Given a variable V in a DAG G:

Parents(V') are the parents of V in DAG G, that is, the set of
variables NV with an edge from N to V.

Descendants(V) are the descendants of V' in DAG G, that is, the
set of variables N with a directed path from V to N
(we also say that V is an ancestor of N in this case).

Non_Descendants( V) are all variables in DAG G other than V,
Parents(V') and Descendants(V'). We will call these
variables the non-descendants of V' in DAG G.



Capturing Independence Graphically

We will formally interpret each DAG G as a compact
representation of the following independence statements

(Markovian assumptions):
[(V,Parents(V), Non_Descendants(V)),

for all variables V' in DAG G.

@ If we view the DAG as a causal structure, then Parents( V)
denotes the direct causes of V' and Descendants(V') denotes

the effects of V.

@ Given the direct causes of a variable, our beliefs in that
variable will no longer be influenced by any other variable
except possibly by its effects.



Capturing Independence Graphically

@ a_rtiqu_al;;D Cﬁul‘(gga ryﬁ
(E) B S B.E. )
B

i ) I(C.A {B,E.R}
I(R,E,{A,B,C})
“Radi Alarm? IEA’ ;{DB{ ) f))
arm (B E.R
W “ 0.8)
T/ I(E. 0, B)
e
<_Ca11'm
©

Note that variables B and E have no parents, hence, they are
marginally independent of their non-descendants.



1 Par_lhquak:?\ Burglary? ™
. Ey - B S
el T
B’ S x (A) /

Can?\
(© ,

Capturing Independence Graphically

<Parlhqu1kn,\ o //fliu_r;l;;’\s
B '\____{,B)___f,/'
/ Radm *\ / ﬁ]arl; :’H\
NG w® @
|
/"&:ﬁ?)
O

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



Parameterizing the Independence Structure

@ The DAG G is a partial
specification of our state of belief

-~ Ea[_'[I]qlEli{B;x\\ - Bl_njg];r};“\ Pr.
N B ~® S . .
/T @ By constructing G, we are saying
/ . that the distribution Pr must
.(Rf:;if‘-" ) (\ A‘g;“?/. satisfy the independence
o T assumptions in Markov(G).
| : : :
TR @ This clearly constrains the possible

@ choices for the distribution Pr, but
does not uniquely define it.

We can augment the DAG G by a set of conditional probabilities
that together with Markov(G) are guaranteed to define the
distribution Pr uniquely.




Parameterizing the Independence Structure

'<Eart'1qg‘;ak6?>- (fur{,e]?r}}) For every variable X in the DAG G,
/ 7 and its parents U, we need to provide
i . the prol::fa bility Pr(x|u) for. every Yallue
N N x of variable X and every instantiation
T| u of parents U.
<D

We need to provide the following conditional probabilities:

Pr(c|a), Pr(rle), Pr(alb,e), Pr(e), Pr(b),

where a, b, ¢, e and r are values of variables A, B, C. E and R.




Parameterizing the Independence Structure

The conditional probabilities required for

- variable C:
'r‘,;l_._ IEI_n v FE-Burg]ar ;\'\
<E tlqu) kﬂ) \m___‘f]_j_f_../ A C Pr(cla)
N /"" true  true | .80
L \ - true false | .20
(" Radio? ™ ( -A‘af‘“?« false true | .001
~= \“'“"-{AT)--"/ false false | .099
/l The above table is known as a Conditional
\%‘1}5 Probability Table (CPT) for variable C.

Pr(c|a) + Pr(c|a) = 1 and Pr(c|3) + Pr(c|3) = 1.

Two of the probabilities in the above CP T are redundant and can
be inferred from the other two. We only need 10 independent
probabilities to completely specify the CPTs for this DAG.




Parameterizing the Independence Structure

A Bayesian network for variables Z is a pair (G, ©), where

@ G is a directed acyclic graph over variables Z, called the
network structure.

@ O is a set of conditional probability tables (CPTs), one for
each variable in Z, called the network parametrization.

@ Ox|y: the CPT for variable X and its parents U.
o XU: a network family.

@ ,u: the value assigned by CPT ©xy to the conditional
probability Pr(x|u). Called a network parameter.

We must have ) 0,|, = 1 for every parent instantiation u.



Parameterizing the Independence Structure

7 Winter? m\l
\\ (A4) /
- T "H A B S) B|A A C S ClA
- N true  true | .2 true  true | .8
l:/ Sprinkler? \‘; f Rfi-"]? \ true  false | .8 true false | .2
\(3/ \“';;,—'«\—--”'/ false true | .75 false true | .1
~_ el \\\_ false false | .25 false false | .9
? ‘:’uiet Gras s¥<\. --\.\‘

! | T I
o . N
\.._x ] S './ Slippery Road? ;

T . ®

e

B C D ©pie,c

true  true  true .95

true  true false | .05 C E ©g|c
A | Oa true false true | .9 true  true | .7
true | .6 true false false | .1 true false | .3
false | .4 false true true | .8 false true | O

false true false | .2 false false | 1

false false true | O

false false false | 1



Parameterizing the Independence Structure

Each state variable S; has m values and similarly for sensor
variables O;.

@ The CPT for any state

Hidden Markov Model varlaple 5,-2: i > 1, will then
contain m* parameters,
o\ SN e o\ which are usually known as
(S S -“\S - (S ) .
L/ 2/ \T3) o/ transition probabilities.
@ The CPT for any sensor
variable O; will have m?
I./O\.- 7R /O\ l/O\ parameters, \;"f..'hl.ch are usually
L N2 N\ T3 N4 known as emission or sensor
probabilities.

The CPT for $; will only have m parameters. The CPTs for S;, i > 1,
are all identical, and so are the CPTs for all sensor variables O;. The
HMM is said to be homogeneous in this case.



i Outline

= Graphoids: axioms of for inferring
conditional independence (CI)



Properties of Probabilistic Independence

This independence follows from the Markov assumption

The distribution Pr specified by a
Bayesian network (G, ©) is
guaranteed to satisfy every

independence assumption in
Markov(G).

These, however, are not the only independencies satisfied by the
distribution Pr.
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Properties of Probabilistic Independence

- Earthque”\“\ // Burolar}?\\
u_ 2 —® -
\ D and E are independent given
//Rﬂdlﬁ Alarm < Aj C
\\ ® S N (A} -
/-"'_l_"
/ Call?
N_© S

This independence, and additional ones, follow from the ones in
Markov(G) using a set of properties for probabilistic
independence, known as the graphoid axioms, which include
Symmetry, Decomposition, Weak Union, and Contraction.



Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of

variables from U. If I (X, Z, Y) stands for the relation “‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then /
must satisfy the following four independent conditions:

Symmetry:
I(X,2,Y) > I(Y,ZX)

= Decomposition:
I(X,Z,YW)- I(X,Z,Y) and I(X,Z,W)

= Weak union:
I(X,Z,YW)->I(X,ZW,Y)

= Contraction:
I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)
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Eallth"l ke’*\\ /" Burglar» ? \\ -
mh_ ® N “3* L (X, Z,Y) iff Ip.(Y,Z,X)
PR \Al If learning y does not influence
N ® / N {A}/ our belief in x, then learning x
l does not influence our belief In
e y either.
N_© ‘

From the independencies declared by Markov(G), we know that
by (A, {B,E}, R). Using Symmetry, we can then conclude that
Ipr(R,{B, E}, A), which is not part of the independencies declared

by Markov(G).




If some information is irrelevant, then any part of it is also
irrelevant.

Ior(X, Z,Y UW) emig=if Ip,(X,Z,Y) and lp,(X, Z, W).

If learning yw does not influence our belief in X, then learning y
alone, or learning w alone, will not influence our belief in x either.

i

Pearl language:
If two pieces of information are irrelevant to X then each one is irrelevant to X



The opposite of Decomposition, called Composition:

Ipr(X.Z,Y) and Ipr(X. Z,W) emy= Ipr(X. Z. Y UW)

does not hold in general.

i

Two pieces of information may each be irrelevant on their own, yet
their combination may be relevant.

Example: Two coins and a bell



Decomposition

Car D From Markov(G) we have
I /"’"\\ I(B.S.{A, C.P. T.X}).
(o™ (el TN\ By Decomposition, we get /(B. S, C).
\,m_ (T) » — \
I B — TN
N Bronchitis? \ .
w Once we know whether the person is a
berculors or Caeer? ™ smoker, our belief in developing bronchitis
T is no longer influenced by information
o™ T DCPL TN about developing cancer.
\x X e '\ (o) A y

This independence holds in any probability distribution induced by
a parametrization of DAG G. Yet, this independence is not part of
the independencies declared by Markov(G).



More generally...

Decomposition allows us to state the following:
o (X, Parents(X), W)  for every W C Non_Descendants(X).

Every variable X is conditionally independent of any subset of its
non-descendants given its parents.

This is a strengthening of the independence statements declared by
Markov(G), which is a special case when W contains all
non-descendants of X.



Decomposition proves the chain rule for Bayesian networks. ]

By the chain rule of probability calculus:

Pr(r.c,a, e, b) = Pr(r|c, a, e, b)Pr(c|a, e, b)Pr(a|e, b)Pr(e|b)Pr(b).

ﬁ_-_ § _-_-? - I"/ ];"_L_Lr;n-‘_._:’ \“\I
':x.ﬁ___z_m:gl;ake___,:' \.._ ® By Decomposition:
) / / Pr(r|c,a,e,b) = Pr(rle)
~
f\m FTdRI:D?/ 'J‘Ji?lj Pr(cla,e,b) = Pr(c|a)
1
| Pr(elb) = Pr(e).
e
o

This leads to the chain rule of Bayesian networks:

Pr(r,c,a,e,b) = Pr(r|e)Pr(c|a)Pr(ale, b)Pr(e)Pr(b)
= e 02 Oajep e Ob.

rle Yela Y3



The variable ordering c, a, r, b, e gives

Pr(c,a,r,b,e) = Pr(cla,r, b,e)Pr(alr, b, e)Pr(r|b, e)Pr(b|e)Pr(e)

By Decomposition:

G D Pr(cla.r.b.e) = Pr(cla)
/ N / Pr(alr.b.e) = Pr(alb.e)
CRob Pr(rlb.e) = Pr(rle)

—® W

| Pr(ble) = Pr(b)
v
&
Hence,

Pr(c,a,r,b,e) = Pr(c|a)Pr(a|b, e)Pr(r|e)Pr(b)Pr(e)
— Qc\a 6).;.=|b,e Qr\e Op Oe.



The variable ordering o,,...,01,5p,...,51 gives

Pr(on,...,01,50,...,5) =
Pr(onlon_1...,01,8,,...,51)...Pr(o1|sn,....s1)Pr(sy|sn_1.-.,51)...Pr(s)

By Decomposition:

Pr(on,...,01,50,...,51) . -
.S J—( NN |

= Pr(on|sn)...Pr(o1]s1)Pr(snlsn_1)...Pr(s) %~ % ‘1 ‘\‘
(@) 0

By
L
[E%]

— 90n|snnr¢901|51 95n|sn_1 |14951|

Hence, we were able again to express Pr(o,,...,01,5,,...,51) as a
product of network parameters.



Ipe(X.Z.Y UW) only if lp,(X,ZUY, W)

If the information yw is not relevant to our belief in x, then the
partial information y will not make the rest of the information, w,

relevant.

l// aE:'j_rlhqua];o-eﬁ?h\
~_ B

7 Radio? ™
B '

N

e ﬁ_l;rgla ;}?\
~ B 7

/

4 fi'*‘larm?\<I

@S

I(C,A,{B,E,R}) is part of

Markov(G). By Weak Union:
lb.(C,{A, B, E},R), which is
not part of the independencies

declared by Markov(G).



An implication of Weak Union

o (X, Parents(X) U W, Non_Descendants(X) \ W),
for any W C Non_Descendants(X).

@ Each variable X in DAG G is independent of any of its
non-descendants given its parents and the remaining
non-descendants.

@ This can be viewed as a strengthening of the independencies
declared by Markov(G), which fall as a special case when the

set W is empty.



loe(X,Z,Y) and Ip,(X.ZU Y, W) aabeif [p, (X, Z,Y UW)

If after learning the irrelevant information y, the information w is
found to be irrelevant to our belief in x, then the combined
information yw must have been irrelevant from the beginning.

Compare Contraction with Composition:
(X, Z,Y) and Ip, (X, Z, W) emisg=# Ip. (X, Z. Y UW)

One can view Contraction as a weaker version of Composition.
Recall that Composition does not hold for probability distributions.



Strictly Positive Distributions

When there are no constraints

Definition

A strictly positive distribution assign a non-zero probability to
every consistent event.

: :

\x / ] A strictly positive distribution
N4 cannot represent the behavior
c __ D of Inverter X as it will have to
\1 J/—k assign the probability zero to
"‘\z/" the event A=true, C =true. )

T

A strictly positive distribution cannot capture logical constraints.



Intersection

Holds only for strictly positive distributions

(X, ZUW.Y) and b (X, ZUY, W) only if Ip,(X,Z,Y UW)
If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.




Intersection
Holds only for strictly positive distributions

loe (X, ZUW.Y) and Ip,(X.Z UY., W) only if lp,(X,Z,Y UW)

If information w is irrelevant given y, and y is irrelevant given w,
then combined information yw is irrelevant to start with.

@ If we know the input A of
A B inverter X, its output C
becomes irrelevant to our belief
|

in the circuit output E.

/ \_ / @ If we know the output C of
CTJ . inverter X, its input A becomes
| \T irrelevant to this belief.
\\ f @ Yet, variables A and C are not

ya
Z/ irrelevant to our belief in the
TE circuit output E.



Properties of Probabilistic Independence

Triviality: Ip (X, Z.,0).

Symmetry, Decomposition, Weak Union, and Contraction,
combined with Triviality, are known as the graphoid axioms. }

With Intersection, the set is known as the positive graphoid axioms.J

@ Decomposition, Weak Union, and Contraction can be
summarized tersely in one statement:

e (X. Z,Y UW) iff o (X,Z.Y) and lp (X, ZUY, W)

@ [he terms semi-graphoid and graphoid are sometimes used
instead of graphoid and positive graphoid, respectively.



Properties of Probabilistic independence

THEOREM 1: Let X, Y, and Z be three disjoint subsets of

variables from U. If I (X, Z, Y) stands for the relation “‘X is in-
dependent of Y, given Z’’ in some probabilistic model P, then I
must satisfy the following four independent conditions:

= Symmetry:
I(X,Z,Y) > I(Y,ZX)

= Decomposition:
I(X,Z,YW)- I(X,Z,Y) and I(X,Z,W)

= Weak union:
I(X,Z,YW)->I(X,ZW,Y)

= Contraction:
I(X,Z,Y) and I(X,ZY,W)->I(X,Z,YW)

= Intersection:
I(X,ZY,W) and I(X,ZW,Y) > I(X,Z,YW)
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Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms
are called Graphids,
the 4, semi-graphois



i Outline

= D-separation: Inferring CIs in graphs
= I-maps, D-maps, perfect maps
= Markov boundary and blanket
=« Markov networks



A Graphical Test of Independence

The inferential power of the graphoid axioms can be tersely
captured using a graphical test, known as d-separation, which
allows one to mechanically, and efficiently, derive the
independencies implied by these axioms.

@ lTo test whether X and Y are d-separated by Z in DAG G,
written dseps(X,Z,Y), we need to consider every path
between a node in X and a node in Y, and then ensure that

the path is blocked by Z.

@ [he definition of d-separation relies on the notion of blocking
a path by a set of variables Z.

dseps (X, Z,Y) implies Ip(X,Z,Y) for every probability
distribution Pr induced by G.



d-speration

= To test whether X and Y are d-separated by Z in dag G, we
need to consider every path between a node in X and a node in
Y, and then ensure that the path is blocked by Z.

= A path is blocked by Z if at least one valve (node) on the path
is ‘closed’ given Z.

= A divergent valve or a sequential valve is closed if it is in Z

= A convergent valve is closed if it is not on Z nor any of its
descendants are in Z.



The type of a valve is determined by its relationship to its
neighbors on the path. }

_ divergent convergent
sequential

oo
00 W

@ A sequential valve —W— arises when W is a parent of one of its
neighbors and a child of the other.

@ A divergent valve —W— arises when W is a parent of both neighbors.

@ A convergent valve — W+« arises when W is a child of both neighbors.



A path with 6 valves. From left to right, convergent, divergent,
sequential, convergent, sequential, and sequential.




Let X, Y and Z be disjoint sets of nodes in a DAG G. We will say
that X and Y are d-separated by Z, written dsep(X,Z,Y), iff
every path between a node in X and a node in Y is blocked by Z,
where a path is blocked by Z iff at least one valve on the path is

closed given Z.

A path with no valves (i.e., X — Y') is never blocked. |




DEPENDENCE SEMANTICS FOR BAYESIAN NETWORKS

DEFINITION: If X, Y, and Z are three disjoint subsets of nodes in a

DAG D, then Z is said mI from ¥, denoted

<X | Z 1Y >p, if there is no path bérw anode in X and anodein¥
along which the following two conditions hold: (1) every node with
converging arrows is in Z or has a descendent in Z and (2) every other
node is outside Z .

. If a path satisfies the condition above, it is said to be active;
otherwise, it is said to be blocked by Z .

<21113>p , =<211513>,

Figure 3.10. A DAG depicting d-separation; node 1 blocks
the path 2-1-3, while node 5 activates the path 2-4-3.

No path

Is active =
Every path is
blocked



ayesian Networks as i-maps

E: Employment
V: Investment
H: Health
W: Wealth

C: Charitable
contributions

P: Happiness

Are C and V d-separated give E and P?
Are C and H d-separated?
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d-Seperation Using Ancestral Graph

= X is d-separated from Y given Z (<X,Z,Y>d) iff:
= Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
= Moralized the obtained subgraph

Apply regular undirected graph separation

Check: (E,{},V),(E,P,H),(C,EW,P),(C,E,HP)?




Idsep(R, EC, B)?
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B (]
ol ® - R and B are d-separated by E

/N// and C. The closure of only one
T - valve is sufficient to block the

<ﬁadio?> ;;l_au_lm -y -
(R) @ path, therefore, establishing
| d-separation.




Lesep(R,@,C)?
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Ea;'thquaiie‘? E;fm;l_'y‘?
SO ING

——

/\ R and C are not d-separated
| since both valves are open.

Cisgii)oD Algl)lh, Hence, the path is not blocked
— open “T_/ and d-separation does not hold.

il

v

G



Idsep(c,s, B) =7?

WVisit to Asia?
(A)

T
Tuberculosis? o
() Lung Cancer?
iC)

B

Tuberculosis or Cancer?

(F)
Positive X-Ray?
(X
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|./t‘———‘\’ir;it to Asia":"ﬁh\l <7 Smoker? ‘>

@) _/ N

-

J ) Example
" #closed

( rube?;;m» g Gt C and B are d-separated by S

()

< Bmﬁ}m since both paths between them
TL1beJc11]m1:-o: Canoerg o are blOCked by S'

(P >
LlDSEd |
T _"-—--_______ |
o _L"'_,_r I S
/, Positive K—Raj-"':‘ ) // Dryspnoea? ™
x) P D) /



closed

— —

DEOROS

Ipr(S1. S2, {53, S4}) for any probability distribution Pr which is
induced by the DAG.
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Any path between S; and {53, S4}
. ~ - . must have the valve 5;—5,— 53

| on it, which is closed given 55.

| Hence, every path from $; to

{S3, 54} is blocked by S;, and we
have dsepG(Sl, 52, {53, 54}),

i/ \ 5 ) 2 ) O which leads to
o 2N - lpy (51, 52,153, Sa}).

Ipr (51, S2,{53. S4}) for any probability distribution Pr which is
induced by the DAG.



(ﬁ;ﬁmﬁ;}\, ’éurgmrs-‘?“)
(E) — (B) -

‘_ﬁ_____ ___H,/ -

4 Radio? ™ Efaﬁ?{

B @

¥
Call? ™\
o

Capturing Independence Graphically

<Parlhqu1kn,\ e ,Iiu_r;l;;?\
B \ (B) __f,/'
/ Radm ’\ / ﬁ_g_larl; :’H\
\ >» N @
|
/"Eﬁ?)
O

Every independence which is declared (or implied) by the second
DAG is also declared (or implied) by the first one. Hence, if we
accept the first DAG, then we must also accept the second.



* Outline

s Basics of probability theory
s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring Cls in graphs
= Soundness, completeness of d-seperation
» I-maps, D-maps, perfect maps
s Construction a minimal I-map of a distribution
= Markov boundary and blanket
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Soundness of d-separation

The d-separation test is sound in the following sense.

If Pr is a probability distribution induced by a Bayesian network
(G,©), then

dsepc(X,Z,Y) only if Ip,(X,Z,Y).

The proof of soundness is constructive, showing that every
independence claimed by d-separation can indeed be derived using

the graphoid axioms.



Completeness of d-separation

It is not a d-map

d-separation is not complete in the following sense:

@ Consider a network with three binary variables X—Y—/Z.
@ / is not d-separated from X.

@ / can be independent of X in a probability distribution
induced by this network.

Choose the CPT for variable Y so that 0, = 0,x.
Y independent of X since

e Pr(y) =Pr(y|x) = Pr(y|x) and
o Pr(y) = Pr(y|x) = Pr(y[x).
Z is also independent of X.




BAYESIAN NETWORKS AS I-MAPS

DEFINITION: A DAG D is said to be an [-map of a dependency
model M if every d-separation condition displayed in D corresponds to
a valid conditional independence relationship in M, i.e., if for every
three disjoint sets of vertices X, ¥, and Z we have

<XIZ\Ysp = I(X,Z,Y),.

* A DAG is a minimal [-map of M if none of its arrows can be
deleted without destroying its / -mapness.

DEFINITION: Given a probability distribution P on a set of variables
U, a DAG D =(U, f} 1s called a Bayesian network of P iff D is a
minimal /-map of P.



* Outline

m Basics of probability theory
s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring Cls in graphs
s Soundness, completeness of d-seperation
=« I-maps, D-maps, perfect maps
s Construction a minimal I-map of a distribution
= Markov boundary and blanket
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More on DAGs and Independence

G is an Independence MAP (I-MAP) of Pr iff every independence
declared by d-separation on DAG G holds in the distribution Pr:

dsepc(X,Z,Y) only if Ip,(X,Z,Y).

Definition

An I-MAP G is minimal if G ceases to be an I-MAP when we
delete any edge from G.

By the semantics of Bayesian networks, if Pr is induced by a
Bayesian network (G, ©), then G must be an I-MAP of Pr,
although it may not be minimal.



More on DAGs and Independence

G is a Dependency MAP (D-MAP) of Pr iff

lpr(X,Z,Y) only if dsepg (X, Z,Y).

If G is a D-MAP of Pr, then the lack of d-separation in G implies
a dependence in Pr.

Definition

If DAG G is both an I-MAP and a D-MAP of distribution Pr, then
G is called a Perfect MAP (P-MAP) of Pr.




i Outline

s Basics of probability theory
s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring Cls in graphs
s Soundness, completeness of d-seperation
» I-maps, D-maps, perfect maps
= Construction a minimal I-map of a distribution
= Markov boundary and blanket
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CONSTRUCTING A BAYESIAN NETWORK
FOR ANY GIVEN DISTRIBUTION P

DEFINITION: Let M be a dependency model defined on a set
U={X,X;..,X,} of elements, and let d be an ordering
(X1, Xs,..., X;,...) of the elements of U.

. The boundary strata of M relative to d is an ordered set of
subsets of U, (B, B,,..., B;,...), such that each B; is a Markov
boundary of X; with respect to the set Uj;, = {X |, X,..... X;_,}, i.e.,
B; is a minimal set satisfying B; < U, and I (X;, B;, U, - B;).

. The DAG created by designating each B; as parents of vertex X, is
called a boundary DAG of M relative to d.

THEOREM 9: [Verma 1986]: Ler M be any semi-graphoid (i.e., any
dependency model satisfying the axioms of Egs. (3.6a) through (3.6d)).
If D is a boundary DAG of M relative to any ordering d, then D is a
minimal /-map of M .



Independence MAPs

Given a distribution Pr, how can we construct a DAG G which is
guaranteed to be a minimal I-MAP of Pr?

J

Given an ordering X1, ..., X, of the variables in Pr:

e Start with an empty DAG G (no edges)

@ Consider the variables X; one by one, for i = 1,...,n.

@ For each variable X;, identify a minimal subset P of the
variables in X7, ..., X;_1 such that

Ioe(Xi, P U X1, ... Xi—1} \ P).

@ Make P the parents of X; in DAG G.
The resulting DAG is a minimal I-MAP of Pr.



Independence MAPs

Construct a minimal I-MAP G for some distribution Pr using the }

previous procedure and variable order A, B, C. E. R.

'u_ u; 9 Bm;'uv? \_

//]? “:qE} kﬁ___) C B _

/ . / Suppose that DAG G’ is a
~ Radio? ™, C Py P-MAP of distribution Pr
\ (R / A /'

|
v
/ocan
N ©

Independence tests on Pr, Ip.(X;,P.{X1,....X;_1} \ P), can now be
reduced to equivalent d- separation tests on DAG G’,

dsepg (Xi, P.{ X1,. ... Xi-11 \ P).



Independence MAPs

This minimal -MAP G is Barthquake? N Burglan? ™

. \H-..__QE]___.--’;/ B S
constructed according to the / AN /r
following details: e \__\_\_
r/ Radio? H‘“‘l /7 Alarm? E\}
" " / 4
@ Variable A added with B N @
) |
P=0. |
Car
\&_____(i‘]____//'

@ Variable B added with P = A, since dsep./ (B, A, ) holds and
dsepc/ (B, 0, A) does not.

@ Variable C added with P = A, since dsep¢/(C, A, B) holds and
dsep(C,0,{A, B}) does not.

@ Variable E added with P = A, B since this is the smallest subset of
A, B, C such that dsep..(E,P,{A, B, C}\ P) holds.

@ Variable R added with P = E since this is the smallest subset of
A, B, C, E such that dseps/ (R,P.{A,B,C,E} \ P) holds.



Independence MAPs

! . . . . . .
DAG G’ and distribution Pr Minimal -MAP G
// Eanhflmke \.. ' Burglan" ™ //— Eﬂl‘““fl'-”'“’f}\\ - Burglary? ™
S~ fE] \K___ {B} __f,/' B i; “rfg?n __
— J /
/ R'ldlo’ ‘\ / A]a_rm”f' ™ f R'ldIO'-" \ Ala:m"’ ™
SR _// '\E ) /;‘ (R __,/' \_,ﬁ_ “) /
| |
— _*_ T — T
(" can? Ocar
~_ (O S '\H___(E}____ /

o If dseps(X,Z,Y), then dseps/(X,Z,Y) and Ip,(X,Z,Y).

@ This ceases to hold if we delete any of the five edges in G.

For example, if we delete the edge E «— B, we will have

dsepg(E., A, B), yet dsepe/(E, A, B) does not hold.



Independence MAPs

The minimal I-MAP of a distribution is not unique, as we may
get different ones depending on which variable ordering we
start with.

Even when using the same variable ordering, it is possible to
arrive at different minimal -MAPs. This is possible since we

may have multiple minimal subsets P of {Xi1,..., Xj_1} for
which Ip(Xi, P, {X1,..., Xi—1} \ P) holds.

This can only happen if the probability distribution Pr
represents some logical constraints.

We can ensure the uniqueness of a minimal I-MAP for a given
variable ordering if we restrict ourselves to strictly positive
distributions.



i Perfect Maps for DAGs

= Theorem 10 [Geiger and Pearl 1988]: For any dag D
there exists a P such that D is a perfect map of P
relative to d-separation.

= Corollary 7: d-separation identifies any implied
independency that follows logically from the set of
independencies characterized by its dag.



* Outline

m Basics of probability theory
s DAGS, Markov(G), Bayesian networks

= Graphoids: axioms of for inferring conditional
independence (CI)

= D-separation: Inferring Cls in graphs
s Soundness, completeness of d-seperation
» I-maps, D-maps, perfect maps
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= Markov boundary and blanket
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Blankets and Boundaries

Let Pr be a distribution over variables X. A Markov blanket for a
variable X € X is a set of variables B C X such that X ¢ B and

(X, B, X\ B\ {X}).

A Markov blanket for X is a set of variables which, when known,
will render every other variable irrelevant to X.

Definition

A Markov blanket B is minimal iff no strict subset of B is also a
Markov blanket. A minimal Markov blanket is a Markov Boundary.

The Markov Boundary for a variable is not unique, unless the
distribution is strictly positive.



Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0

{S5¢-1,5¢11. O} is a Markov
blanket for every variable 5;,
where t > 1
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Blanket Examples

If Pr is induced by DAG G, then a Markov blanket for variable X
with respect to Pr can be constructed using its parents, children,
and spouses in DAG G. Here, variable Y is a spouse of X if the
two variables have a common child in DAG G.

0,) (0,) (0

{Si—1,5¢11, 0} is a Markov

{S,P, T} is a Markov blanket for blanket for every variable 5;,
- where t > 1

variable C - - -
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Bayesian Networks as
i Knowledge-Bases

= Given any distribution, P, and an ordering we can
construct a minimal i-map.

= The conditional probabilities of x given its parents is
all we need.

= In practice we go in the opposite direction: the
parents must be identified by human expert... they

can be viewed as direct causes, or direct influences.



BAYESIAN NETWORK AS A KNOWLEDGE BASE

STRUCTURING THE NETWORK

Given any joint distribution P (x ,..., x,) and an ordering d of the
variables in U, Corollary 4 prescribes a simple recursive
procedure for constructing a Bayesian network.

Choose X | as a root and assign to it the marginal probability P (x,)
dictated by P (x,..., x,,).

If X, is dependent on X ;, a link from X, to X, is established and
quantified by P(x;lx;). Otherwise, we leave X; and X,
unconnected and assign the prior probability P (x,) to node X ,.

At the i-th stage, we form the node X;, draw a group of directed
links to X; from a parent set Ily defined by Eq. (3.27), and
quantify this group of links by the conditional probability
P (x; Iny ).

The result is a directed acyclic graph that represents all the
independencies that follow from the definitions of the parent sets.



e  Inpractice, P(x.....x, ) is not available.
. The parent sets ITy must be identified by human judgment.

. To specify the strengths of influences, assess the conditional
probabilities P (x; Iny,) by some functions F;(x;, my) and make
sure these assessments satisfy

ZFJ(II-’ I'IX‘_]= 1 § (3,300
X

where 0<F;(x;,ng ) <1

e  This specification is complete and consistent because the product
form

Po(xy, o x, ) =TT F(x;, ny ) (3.31)
i

constitutes a joint probability distribution that supports the
assessed quantities.

p Pi(xqs.., x,)
Pﬂ (xi;i "XI-) _ IJ; & [Xj '\Jnx}

P, (ny)

Pa(x;lng )= =F; (x;, my Y332)

Y Pilxqe...x,)
IJ: & "x"

. DAGs constructed by this method will be called Bayesian belief
networks or causal networksinmerchangeibly)



Markov Networks and Markov
i Random Fields (MRF)

Can we also capture conditional independence by undirected graphs?

Yes: using simple graph separation
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i Graphoids

Symmetry:
= I(X,Z,Y)> I(Y,ZX)

Decomposition:
= I(X,Z,YW)> I(X,ZY) and I(X,Z,W)

Weak union:
= I(X,Z,YW)>I(X,ZW,Y)

Contraction:
= I(X,2,Y) and I(X,ZY,W)->I(X,Z,YW)

Intersection:

= I(X,2Y,W) and I(X,ZW,Y) > I(X,Z,YW)
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Undirected Graphs as I-maps of Distributions

Wesay < X,Z,Y >; iff once you remove Z from the graph X
and Y are not connected

= Can we completely capture probabilistic independencies by the
notion of separation in a graph?

= Example: 2 coins and a bell.



Axiomatic Characterization of Graphs

= Graph separation satisfies:

= Symmetry: 1(X,zY)> I(Y,ZX)

= Decomposition: 1(x,z,YW)> 1(X,Z,Y) and I(X,Z,Y)
= Intersection: 1(x,zw,Y) and I(X,ZY,W)->I(X,Z,YW)

= Strong union: 1(X,z,Y) > I(X,ZW, Y)

= Transitivity: I(X,Z,Y) > exists t s.t. I(X,Z,t) or I(t,Z,Y)



i Graphoids vs Undirected graphs

Symmetry:
= I(X,Z,Y)> I(Y,ZX)

Decomposition:
= I(X,Z,YW)> I(X,ZY) and I(X,Z,W)

Weak union:
= I(X,Z,YW)>I(X,ZW,Y)

Contraction:
= I(X,2,Y) and I(X,ZY,W)->I(X,Z,YW)

Intersection:
= I(X,2Y,W) and I(X,ZW,Y) > I(X,Z,YW)

Symmetry: 1(X,z,Y)> I(Y,ZX)

Decomposition: 1(x,z,yw)- 1(X,z,Y) and
1(X,Z,Y)

Intersection: 1(x,zw,Y) and
I(X,ZY,W)->I(X,Z,YW)

Strong union: 1(X,z,Y) > I(X,ZW, Y)

Transitivity: I(X,Z,Y) > exists t s.t. I(X,Z,t) or
1(t,Z,Y)
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i Markov Networks

= An undirected graph G which is a minimal I-map of
a probability distribution Pr, namely deleting any
edge destroys its i-mappness relative to (undirected)
seperation, is called a Markov network of P.



CONCEPTUAL DEPENDENCIES AND
THEIR MARKOV NETWORKS

An agent identifies the following variables as having influence on
the main question of being late to a meeting:

1. The time shown on the watch of Passerby 1.

-

The time shown on the watch of Passerby 2.
The correct time.

The time it takes to travel to the meeting place.

U .

The arrival time at the meeting place.

The construction of G, can proceed by one of two methods:

] The edge-deletion method.

. The Markov boundary method.

The first method requires that for every pair of variables (¢, B) we

determine whether fixing the values of all other variables in the
system will render our belief in o sensitive to B.

For example, the reading on Passerby 1’s watch (1) will vary with
the actual time (3) even if all other variables are known, so
connect node 1 to node 3



The Markov boundary method requires that for every variable a in
the system, we identify a minimal set of variables sufficient to
render the belief in o insensitive to all other variables in the
system.

For instance, once we know the current time (3), no other variable
can affect what we expect to read on passerby 1's watch (1).

(1) watch - 1 (2} walch - 2

{4) wavel time The unusual edge (3,4)

reflects the reasoning that if we fix
the arrival time (5) the travel time (4)
must depends on current time (3)

{3) current Wme

(5) amival time

Figure 3.6. The Markov network representing the prediction
of A 's arrival time,

G can be used as an inference instrument.

® For example, knowing the current time (3) renders the time
on Passerby 1's watch (1) irrelevant for estimating the travel
time (4) (i.e., 1(1,3.4)); 3 is a cutset in G, separating 1 from
4,



MARKOV NETWORK AS A KNOWLEDGE BASE

M,
How can we construct a probability
Distribution that will have all these
Fy F, independencies?
M,

Figure 3.2. An undirected graph representing
interactions among four individuals.

QUANTIFYING THE LINKS

. If couple (M, F,) meet less frequently than the couple (M, F,),
then the first link should be weaker than the second

. The model must be consistent, complete and a Markov field of G.

e  Arbitrary specification of P(M,F,), P(F,M,), P(M,, F,), and
P{F,, M ;) might lead to inconsistencies.

. If we specify the pairwise probabilities of only three pairs,
incompleteness will result.



Markov Random Field (MRF)

. A safe method (called Gibbs' potential) for constructing a
complete and consistent quantitative model while preserving the

dependency structure of an arbitrary graph G.

1. Identify the cliquest of G, namely, the largest subgraphs
whose nodes are all adjacent to each other.

2. For each clique C;, assign a nonnegative compatibility
function g;(¢;), which measures the relative degree of
compatibility associated with the value assignment ¢; to the
variables included in C;.

3. Form the product 1T g,(¢;) of the compatibility functions over
]

all the cliques.

4. Normalize the product over all possible value combinations
of the variables in the system

P{II,...,IH}=K Hg;(cj]. (3.13)
i

where

T We use the term cligue for the more commaon tenmn maximal clique,

So, How do we learn

Markov networks From data?  sSlides> 828X 2019



+

Examples of Bayesian and and
Markov Networks
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Markov Networks
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Figure 2.6: (a) An example 3 x 3 square Grid Markov network (ising model) and (b) An
example potential Hg(D, F)

network represents a global joint distribution over the variables X given by:
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Sample Applications for Graphical
Models

Computer Vision Genetic Linkage
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Figure 1: Application areas and graphical models used to represent their respective systems: (a) Finding
correspondences between images, including depth estimation from stereo; (b) Genetic linkage analysis and
pedigree data; (c) Understanding patterns of behavior in sensor measurements using spatio-temporal models.
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