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Examples: 
Common Sense Reasoning
 Zebra on Pajama: (7:30 pm): I told Susannah: you have a nice 

pajama,  but it was just a dress. Why jump to that conclusion?: 1. 
because time is night time. 2. certain designs look like pajama.

 Cars going out of a parking lot: You enter a parking lot which is 
quite full (UCI), you see a car coming : you think ah… now there is a 
space (vacated), OR… there is no space and this guy is looking and 
leaving to another parking lot. What other clues can we have?

 Robot gets out at a wrong level:  A robot goes down the elevator. 
stops at 2nd floor instead of ground floor. It steps out and should 
immediately recognize not being in the right level, and go back inside.

 Turing quotes
 If machines will not be allowed to be fallible they cannot be intelligent
 (Mathematicians are wrong from time to time so a machine should also be 

allowed)
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Why/What/How Uncertainty?
 Why Uncertainty?

 Answer: It is abandant
 What formalism to use? 

 Answer: Probability theory
 How to overcome exponential 

representation?
 Answer: Graphs, graphs, graphs… to 

capture irrelevance, independence
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Why Uncertainty?
 AI goal: to  have a declarative, model-based, framework that 

allows computer system to reason.
 People  reason with partial information
 Sources of uncertainty: 

 Limitation in observing the world: e.g., a physician see symptoms and not 
exactly what goes in the body when he performs diagnosis. Observations 
are noisy (test results are inaccurate)

 Limitation in modeling the world, 
 maybe the world is not deterministic.
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Alpha and beta are events
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Burglary is independent  of Earthquake
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Earthquake is independent of burglary
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Example

P(B,E,A,J,M)=?
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Bayesian Networks: Representation

= P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B)

lung Cancer

Smoking

X-ray

Bronchitis

Dyspnoea
P(D|C,B)

P(B|S)

P(S)

P(X|C,S)

P(C|S)

P(S, C, B, X, D)

Conditional  Independencies Efficient  Representation

Θ) (G,BN 

CPD:
C  B   D=0 D=1
0  0    0.1  0.9
0  1    0.7  0.3
1  0    0.8  0.2
1  1    0.9  0.1
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Outline
 Basics of probability theory 
 DAGS, Markov(G),  Bayesian networks
 Graphoids: axioms of for inferring 

conditional independence (CI)
 D-separation: Inferring  CIs in graphs

(Darwiche chapter 4)
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The causal interpretation
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R and C are independent given A

This independence follows from the Markov assumption
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Properties of Probabilistic independence

 Symmetry:
 I(X,Z,Y) I(Y,Z,X)  

 Decomposition: 
 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)
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Pearl language:
If two pieces of information are irrelevant to X then each one is irrelevant to X
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Example: Two coins and a bell
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When there are no constraints
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Properties of Probabilistic independence

 Symmetry:
 I(X,Z,Y) I(Y,Z,X)  

 Decomposition: 
 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Graphoid axioms:
Symmetry, decomposition
Weak union and contraction

Positive graphoid:
+intersection

In Pearl: the 5 axioms 
are called Graphids, 
the 4, semi-graphois
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Outline
 Basics of probability theory 
 DAGS, Markov(G),  Bayesian networks
 Graphoids: axioms of for inferring 

conditional independence (CI)
 D-separation: Inferring  CIs in graphs

 I-maps, D-maps, perfect maps
 Markov boundary and blanket
 Markov networks
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d-speration
 To test whether X and Y are d-separated by Z in dag G, we 

need to consider every path between a node in X and a node in 
Y, and then ensure that the path is blocked by Z.

 A path is blocked by Z if at least one valve (node) on the path 
is ‘closed’ given Z.

 A divergent valve or a sequential valve is closed if it is in Z
 A convergent valve is closed if it is not on Z nor any of its 

descendants are in Z.
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No path 
Is active =
Every path is
blocked
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Bayesian Networks as i-maps 

 E: Employment
 V: Investment
 H: Health
 W: Wealth
 C: Charitable 

contributions
 P: Happiness

E
E
E

C

E V

W

C P

H

Are C and V d-separated give E and P?
Are C and H d-separated?
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d-Seperation Using Ancestral Graph

 X is d-separated from Y given Z (<X,Z,Y>d) iff:
 Take the ancestral graph that contains X,Y,Z and their ancestral subsets.
 Moralized the obtained subgraph
 Apply regular undirected graph separation
 Check:  (E,{},V),(E,P,H),(C,EW,P),(C,E,HP)?

E
E
E

C

E V

W

C P

H
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Idsep(R,EC,B)?
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Idsep(C,S,B)=?
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 I-maps, D-maps, perfect maps
 Construction a minimal I-map of a distribution
 Markov boundary and blanket
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It is not a d-map
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Perfect Maps for DAGs
 Theorem 10 [Geiger and Pearl 1988]: For any dag D 

there exists a P such that D is a perfect map of P 
relative to d-separation.

 Corollary 7: d-separation identifies any implied 
independency that follows logically from the set of 
independencies characterized by its dag.
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Blanket Examples
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Blanket Examples

slides5 828X 2019



Bayesian Networks as 
Knowledge-Bases
 Given any distribution, P, and an ordering we can 

construct a minimal i-map.

 The conditional probabilities of x given its parents is 
all we need.

 In practice we go in the opposite direction: the 
parents must be identified by human expert… they 
can be viewed as direct causes, or direct influences.
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Markov Networks and Markov 
Random Fields (MRF)

Can we also capture conditional independence by undirected graphs?

Yes: using simple graph separation
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Graphoids

 Symmetry:
 I(X,Z,Y) I(Y,Z,X)  

 Decomposition: 
 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)
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Undirected Graphs as I-maps of Distributions


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Axiomatic Characterization of Graphs
 Graph separation satisfies:

 Symmetry:  I(X,Z,Y)  I(Y,Z,X)  

 Decomposition:  I(X,Z,YW) I(X,Z,Y) and I(X,Z,Y)
 Intersection:  I(X,ZW,Y) and I(X,ZY,W)I(X,Z,YW)

 Strong union: I(X,Z,Y)  I(X,ZW, Y)

 Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or I(t,Z,Y)
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Graphoids vs Undirected graphs

 Symmetry:
 I(X,Z,Y) I(Y,Z,X)  

 Decomposition: 
 I(X,Z,YW) I(X,Z,Y) and I(X,Z,W)

 Weak union: 
 I(X,Z,YW)I(X,ZW,Y)

 Contraction: 
 I(X,Z,Y) and I(X,ZY,W)I(X,Z,YW)

 Intersection:
 I(X,ZY,W) and I(X,ZW,Y)  I(X,Z,YW)

Symmetry:  I(X,Z,Y)  I(Y,Z,X)  

Decomposition:  I(X,Z,YW) I(X,Z,Y) and 
I(X,Z,Y)

Intersection:  I(X,ZW,Y) and
I(X,ZY,W)I(X,Z,YW)

Strong union: I(X,Z,Y)  I(X,ZW, Y)

Transitivity: I(X,Z,Y)  exists t s.t. I(X,Z,t) or 
I(t,Z,Y)
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Markov Networks
 An undirected  graph G which is a minimal I-map of  

a probability distribution Pr, namely deleting any 
edge destroys its i-mappness relative to (undirected) 
seperation, is called a Markov network of P.
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The unusual edge (3,4)
reflects the reasoning that if we fix 
the arrival time (5) the travel time (4) 
must depends on current time (3)
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How can we construct a probability
Distribution that will have all these 
independencies?
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So, How do we learn
Markov networks From data?

Markov Random Field (MRF)
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Examples of Bayesian and and 
Markov Networks
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Markov Networks 
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Sample Applications for Graphical 
Models
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