

Algorithms for Reasoning with graphical models

Class3 Rina Dechter

Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

Inference: Join and Project

 Given 2 constraints we can deduce a new one by join and then project, via variable-elimination

Join operation ⋈ over A finds all solutions satisfying constraints that involve A

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

Bucket E: $E \neq D$, $E \neq C$

Bucket D: $D \neq A$ $\longrightarrow D \neq C$

Bucket C: $C \neq B$ $A \neq C$

Bucket B: $B \neq A$ $\Rightarrow B = A$

Bucket A: contradiction

Complexity: $O(n \exp(w^*))$

w* - induced width

The Idea of Elimination

$$R_{DBC} = \prod_{DBC} R_{ED} \bowtie R_{EB} \bowtie R_{EC}$$

Eliminate variable $E \Leftrightarrow join$ and project

Bucket-Elimination

 $Bucket(E): E \neq D, E \neq C, E \neq B$

 $Bucket(D): D \neq A // R_{DCB}$

 $Bucket(C): C \neq B // R_{ACB}$

 $Bucket(B): B \neq A // R_{AB}$

Bucket(A): R_A

Bucket(A): A \neq D, A \neq B

 $Bucket(D): D \neq E // R_{DB}$

 $Bucket(C): C \neq B, C \neq E$

 $Bucket(B): B \neq E // R^{D}_{BE}, R^{C}_{BE}$

 $Bucket(E): // R_E$

Complexity: O(n exp(w*(d))), w*(d) - induced widthalong ordering d

The Induced-Width

- Width along d, w(d):
 - max # of previous parents
- Induced width w*(d):
 - The width in the ordered induced graph
- Induced-width w*:
 - Smallest induced-width over all orderings
- Finding w*
 - NP-complete (Arnborg, 1985) but greedy heuristics (min-fill).

4

Adaptive Consistency, Bucket-Elimination

Initialize: partition constraints into $bucket_1,...,bucket_n$ **For** i=n down to 1 along d // process in reverse order **for** all relations $R_1,...,R_m \in bucket_i$ **do** join and "project-out" X_i

$$R_{new} \leftarrow \prod_{(-X_i)} (\quad {}_j R_j)$$

If R_{new} is not empty, add it to $bucket_k$, k < i, where k is the largest variable index in R_{new} **Else** problem is unsatisfiable

Return the set of all relations (old and new) in the buckets

MIT 2018

Properties of Adaptive-Consistency

 Adaptive consistency generates a constraint network that is backtrack-free (can be solved without dead-ends).

Definition 3.1.2 (partial solution) Given a constraint network \mathcal{R} , we say that an assignment of values to a subset of the variables $S = \{X_1, ..., X_j\}$ given by $\bar{a} = (\langle X_1, a_1 \rangle, \langle X_2, a_2 \rangle, ..., \langle X_j, a_j \rangle)$ is consistent relative to \mathcal{R} iff it satisfies every constraint whose scope is subsumed in S. The assignment \bar{a} is also called a partial solution of \mathcal{R} .

Definition 3.1.3 (backtrack-free search) A constraint network is backtrack-free relative to a given ordering $d = (X_1, ..., X_n)$ if for every $i \le n$, every partial solution over $(X_1, ..., X_i)$ can be consistently extended to include X_{i+1} .

Properties of Adaptive-Consistency (AC)

- Adaptive consistency generates a constraint network that is backtrack-free (can be solved without dead-ends).
- The time and space complexity of AC along ordering d is exponential in $w^*(d)$

Theorem 3.9 The time and space complexity of ADAPTIVE-CONSISTENCY is $O((r+n)k^{w^*(d)+1})$ and $O(n \cdot k^{w^*(d)})$, respectively, where n is the number of variables, k is the maximum domain size, and $w^*(d)$ is the induced-width along the order of processing d and r is the number of the problems' constraints.

Example: deadends, backtrack-freeness

Assign values in the order D,B,C,A before and after adaptive-consistence

Order A,B,C,D, order A,B,D,C

Properties of Adaptive-Consistency

- Adaptive-consistency generates a constraint network that is backtrack-free (can be solved without dead-ends).
- The time and space complexity of adaptive-consistency along ordering d is time and memory exponential in w*(d)
- Therefore, problems having bounded induced-width are tractable (solved in polynomial time).
 - *trees* (w*=1),
 - series-parallel networks (w*=2),
 - and in general k-trees (w*=k).

Solving Trees

(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and equivalent to enforcing directional arc-consistency (recording only unary constraints)

Adaptive-consistency is linear time because induced-width is 1 (Constraint propagation Solves trees in linear time)

4

Example: Crossword Puzzle

```
\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \\ R_{12,13} &= R_{10,13} \end{split}
```


Adaptive-Consistency on the Crossword Puzzle

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \\ R_{12,13} &= R_{10,13} \end{split}$$

10

13

12

11

Adaptive-Consistency on the Crossword Puzzle

 $bucket(x_{12})$

 $bucket(x_{13})$

 $R_{12,13}$

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \end{split}$$

Adaptive-Consistency on the Crossword Puzzle

 $bucket(x_{12})$

 $bucket(x_{13})$

 $R_{12.13}$

$$\begin{split} R_{1,2,3,4,5} &= \{(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E,T),\\ &\quad (S,N,A,I,L),(S,T,E,E,R)\} \\ R_{3,6,9,12} &= \{(H,I,K,E),(A,R,O,N),(K,E,E,T),(E,A,R,N),\\ &\quad (S,A,M,E)\} \\ R_{5,7,11} &= \{(R,U,N),(S,U,N),(L,E,T),(Y,E,S),(E,A,T),(T,E,N)\} \\ R_{8,9,10,11} &= R_{3,6,9,12} \\ R_{10,13} &= \{(N,O),(B,E),(U,S),(I,T)\} \\ \hline R_{12,13} &= R_{10,13} \end{split}$$

3

6

12

10

13

11

 $R_{1,2,3,4,5}$ $bucket(x_1)$ $bucket(x_2)$ $R_{3,6,9,12}$ $bucket(x_3)$ $bucket(x_4)$ $H_{4,5,6,9,12}$ $R_{5,7,11}$ $H_{5,6,9,12}$ $bucket(x_5)$ $H_{6,7,9,11,12}$ $bucket(x_6)$ $bucket(x_7)$ $H_{7,9,11,12}$ $R_{8,9,10,11}$ $bucket(x_8)$ $H_{9,10,11}$ $bucket(x_9)$ $H_{9,11,12}$ $R_{10,13}$ $bucket(x_{10})$ $H_{10,11,12}$ Empty relation . . . exit. $bucket(x_{11})$

Road Map

- Graphical models
- Constraint networks Model
- Inference
 - Variable elimination for Constraints
 - Variable elimination for CNFs
 - Variable elimination for Linear Inequalities
 - Constraint propagation
- Search
- Probabilistic Networks

Gausian and Boolean Propagation, Resolution

Linear inequalities

$$x + y + z \le 15, z \ge 13 \Longrightarrow$$

$$x \le 2, y \le 2$$

Boolean constraint propagation, unit resolution

$$(A \lor B \lor \neg C), (\neg B) \Longrightarrow$$

$$(A \vee \neg C)$$

4

Extended Composition

Definition 3.2.1 (extended composition) The extended composition of relation R_{S_1}, \ldots, R_{S_m} relative to a subset of variables $A \subseteq \bigcup_{i=1}^m S_i$, denoted $EC_A(R_{S_1}, \ldots, R_{S_m})$, is defined by

$$EC_A(R_{S_1},\ldots,R_{S_m})=\pi_A(\bowtie_{i=1}^m R_{S_i})$$

Example 3.2.2 Consider the two clauses $\alpha = (P \vee \neg Q \vee \neg O)$ and $\beta = (Q \vee \neg W)$. Now let the relation $R_{PQO} = \{000, 100, 010, 001, 110, 101, 111\}$ be the models of α and the relation $R_{QW} = \{00, 10, 11\}$ be the models of β . Resolving these two clauses over Q generates the resolvent clause $\gamma = res(\alpha, \beta) = (P \vee \neg O \vee \neg W)$. The models of γ are $\{(000, 100, 010, 001, 110, 101, 111\}$. It is easy to see that $EC_{PQW}(R_{PQO}, R_{QW}) = \pi_{RQW}(R_{PQO} \bowtie R_{QW})$ yields the models of γ .

Lemma 3.2.3 The resolution operation over two clauses, $(\alpha \vee Q)$ and $(\beta \vee \neg Q)$, results in a clause $(\alpha \vee \beta)$ for which $models(\alpha \vee \beta) = EC_{Q'}(models(\alpha \vee Q), models(\beta \vee \neg Q))$, where Q' is the union of scopes of both clauses excluding Q. \square

The Effect of Resolution on Its Graph

(~C) (AVBVC) (~AvBvE)(~B,C,E)

Figure 4.19: (a) The interaction graph of theory $\varphi_1 = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}$, and (b) the effect of resolution over A on that graph.

Directional Resolution Adaptive Consistency

```
(\sim C) (AVBVC) (\sim AvBvE)(\sim B,C,E)
 Bucket A
 Bucket B
 Bucket C
 Bucket D
 Bucket E
      Direct
|bucket_i| = O(\exp(w))
DR time and space : O(n \exp(w^*))
```


Directional Resolution Adaptive Consistency

(~C) (AVBVC) (~AvBvE)(~B,C,E)

class2 828X 2019

Directional Resolution Adaptive Consistency

 $(\sim C)$ (AVBVC) $(\sim AvBvE)(\sim B,C,E)$

 $|bucket_i| = O(\exp(w^*))$ DR time and space : $O(n \exp(w^*))$

Directional Resolution Adaptive Consistency

Model generation

 E_{o}

Directional Resolution

DIRECTIONAL-RESOLUTION

Input: A CNF theory φ , an ordering $d = Q_1, \ldots, Q_n$ of its variables.

OutputA decision of whether φ is satisfiable. If it is, a theory $E_d(\varphi)$, equivalent to φ , else an empty directional extension.

- 1. **Initialize:** generate an ordered partition of clauses into buckets. $bucket_1, \ldots, bucket_n$, where $bucket_i$ contains all clauses whose highest literal is Q_i .
- 2. for $i \leftarrow n$ downto 1 process $bucket_i$:
- 3. **if** there is a unit clause **then** (the instantiation step) apply unit-resolution in $bucket_i$ and place the resolvents in their right buckets. **if** the empty clause was generated, theory is not satisfiable.
- 4. **else** resolve each pair $\{(\alpha \vee Q_i), (\beta \vee \neg Q_i)\} \subseteq bucket_i$. **if** $\gamma = \alpha \vee \beta$ is empty, return $E_d(\varphi) = \{\}$, theory is not satisfiable **else** determine the index of γ and add it to the appropriate bucket.
- 5. return $E_d(\varphi) \leftarrow \bigcup_i bucket_i$

History

- 1960 resolution-based Davis-Putnam algorithm
- 1962 resolution step replaced by conditioning (Davis, Logemann and Loveland, 1962) to avoid memory explosion, resulting into a backtracking search algorithm known as Davis-Putnam (DP), or DPLL procedure.
- The dependency on induced-width was not known in 1960.
- 1994 Directional Resolution (DR), a rediscovery of the original Davis-Putnam, identification of tractable classes (Dechter and Rish, 1994).

Properties of DR

Lemma 3.2.6 Given a theory φ and an ordering $d = (Q_1, ..., Q_n)$, if Q_i has at most k parents in the induced graph along d, then the bucket of Q_i in $E_d(\varphi)$ contains no more than 3^{k+1} clauses.

Proof: Given a clause α in the bucket of Q_i , there are three possibilities for each parent P of Q_i : either P appears in α , $\neg P$ appears in α , or neither of them appears in α . Since Q_i also appears in α , either positively or negatively, the number of possible clauses in a bucket is no more than $2 \cdot 3^k < 3^{k+1}$.

Theorem 3.2.7 (complexity of DR)

Given a theory φ and an ordering of its variables d, the time complexity of algorithm DR along d is $O(n \cdot 9^{w_d^*})$, and $E_d(\varphi)$ contains at most $n \cdot 3^{w_d^*+1}$ clauses, where w_d^* is the induced width of φ 's interaction graph along d. \square

Algorithms for Reasoning with graphical models

Class4 Rina Dechter