+

Algorithms for Reasoning with graphical models

Class3
Rina Dechter

i Road Map

s Inference
= Variable elimination for Constraints

Inference: Join and Project

= Given 2 constraints we can deduce a new one by join
and then project, via variable-elimination

Join operation X\ over A finds all solutions satisfying
constraints that involve A

Rig A B Rac - A C
r g r g
g I g T
Join (Rag Rac)
Project on BC
Rec: B\A) C
r r
g/ N &8

Bucket Elimination

Adaptive Consistency (Dechter & Pearl, 1987)

BucketE: E =D, E #C

Bucket D: D zA D=C
BucketC: C ¢B\>A ;}-‘C
Bucket B: B =A B —lA

T
Bucket A: \contradiction

Complexity : O(n exp(w"))
w’ - induced width

) 1222 DE C

Whatlsthe B o) 1223_,.§§§
. 2222

Inferred function? 2113 113

value assignment

Rpsc = HDBC Rep @ Reg MRec
Eliminate variable E < join and project

Bucket-Elimination

Bucket(E): E#D, ExC, E#B
Bucket(D): D#A || Rpes
Bucket(C): C#B || Rucs
Bucket(B): B#= A || Ry
Bucket(A): R,

Bucket(D): D#E || Rpg

Bucket(C): C#B, C#E

Bucket(B): B#E || R, R%¢
Bucket(E): || Re ‘

Complexity : O(nexp(w (d))),
w’ (d)- induced widthalong ordering d

The Induced-Width

Width along @, w(d):
= max # of previous parents

= Induced width w*(d):
= The width in the ordered

(£) (&) induced graph
o o) = Induced-width w*;
W' (D) =3 W (D)=2 = Smallest induced-width
(©) (©) over all orderings
= Finding w*
(BY (B)
K = NP-complete (Armnborg,
(4) (E) 1985) but greedy heuristics
W () =3 W =2 (min-fifl).

Adaptive Consistency, Bucket-Elimination

Initialize: partition constraints into bucket,...., bucket,
For /=n down to 7 along d // process in reverse order
for all relations R,,...,R e bucket. do
join and “project-out” X;

If R is not empty, add it to bucket, .k <1,
where k is the largest variable index in R,
Else problem is unsatisfiable

Return the set of all relations (old and new) in the buckets

Properties of Adaptive-Consistency

= Adaptive consistency generates a constraint network that
is backtrack-free (can be solved without dead-ends).

Definition 3.1.2 (partial solution) Given a constraint network R, we say that
an assignment of values to a subset of the variables S = {Xi,...,X;} given by
a= (< Xi,a1 >, < Xo,a9 >,...,< X;,a; >) is consistent relative to R iff it satisfies

every constraint whose scope is subsumed in S. The assignment a s also called a

partial solution of R.

Definition 3.1.3 (backtrack-free search) A constraint network is backtrack-free
relative to a given ordering d = (X1, ..., Xy) if for every i < n, every partial solution

over (X1, ..., X;) can be consistently extended to include X;. .

Properties of Adaptive-Consistency (AC)

= Adaptive consistency generates a constraint network that
is backtrack-free (can be solved without dead-ends).

= The time and space complexity of AC along ordering ¢ is
exponential in w*(d)

Theorem 3.9 The time and space complexity of ADAPTIVE-CONSISTENCY is O((r 4 n)k¥ ()+1)
and O(n - k w*(d)), respectively, where n is the number of variables, k is the maximum domain size,
and w*(d) is the induced-width along the order of processing d and r is the number of the problems’
constraints.

Example:
deadends, backtrack-freeness

Assign values in the order
D,B,C A before and after adaptive-consistence

Order A,B,C D, order A,.B.D,C

class2 828X 2019

Properties of Adaptive-Consistency

= Adaptive-consistency generates a constraint network that
is backtrack-free (can be solved without dead-ends).

= The time and space complexity of adaptive-consistency
along ordering d is time and memory exponential in
w*(d)

= Therefore, problems having bounded induced-width are
tractable (solved in polynomial time).
s frees(w*=1),
n series-parallel networks (w*=2),
= and in general k-frees (w*=Kk).

Solving Trees

(Mackworth and Freuder, 1985)

Adaptive consistency is linear for trees and
equivalent to enforcing directional arc-consistency
(recording only unary constraints)

bucket(G)
bucket(F)
Buckei(E)
bucket(D)

bucketiC)

bucket{B)

bucketiiA)

‘L Tree Solving is Easy

‘L Tree Solving is Easy

‘L Tree Solving is Easy

‘L Tree Solving is Easy

‘L Tree Solving is Easy

‘L Tree Solving is Easy

i Tree Solving is Easy

i Tree Solving is Easy

X

<

r R S@U@

Adaptive-consistency is linear time because induced-width is 1
(Constraint propagation Solves trees in linear time)

* Example: Crossword Puzzle

R1)2’3:4’5 ={(H,O,S,E,S),(L,A,S,E,R),(S,H,E,E, T),
(S,N,A,LL), (S, T,E,E,R)}

R3,6’9’12 ={(H,LK,E),(A,R,O,N),(K,E,E, T),(E,A,R,N),
(S,A,M,E)}

R5,7,11 ={(R,U,N),(S,U,N),(L,E, T),(Y,E,S),(E,A,T),(T,E,N)}

R8,9,10,11 = R3,6,9,12

EIO,B = gNs 0)9 (Ba E)n (Ua S)a (Ia T)} L - 3 + 5

12,13 10,13

Q 7

8 Q Lo L1

) 3

class2 828X 2019

Adaptive-Consistency
on the Crossword Puzzle

bucket(x,)
bucket(x,)
bucket(x;)
bucket(x,)
bucket(xs)
bucket(xe)
bucket(x-)
bucket(xg)
bucket(xy)
bucket(xg)
bucket(x;,)
bucket(x;,)

bucket(x,3)

1.2.3.4.5 = {(H, O: S: E’ S)’ (L’ A: S: E: R}: (S, H’ E’ E’ T)a

o (S,N,ALLL), (S, T,E,E,R)}

36012 {(H,LK,E), (A,R,O,N),(K,E,E,T),(E,A,R,N),
(S,A,M,E)}

{(R.U,N), (S, U,N), (L, E, T), (Y, E,), (E, A, T), (T, E, N)}

6.9.1

=R,
E{(N 0). (B.E). (U,S), (1)}

5.7.11

10.13

PUPUFUPU PU ~

8.9.10.11

12.13

class2 828X 2019

1.2.3.4.5 = {(I—Ii 07 S’ E’ S)’ (L:' A: S: E: R): (S: H: E: E: T):
(S,N,A,LL),(S,T,E,E,R)}

3.6,9.12 = {(I{’ I’ K! E)! (Ai R! O) N): (K: E) E: T): (E: A: R: N):
(S,A, M,E)}

R
R
ﬁs.m:{(R N, (S, U.N),(L,E, T), (Y.E.S), (E. A, T), (T.E.N)}
R
R

12.13

Adaptive-Consistency
on the Crossword Puzzle

I
pu

E{(N 0).(B.E), (U,S), (L)}

10.13

bucket(x,) Ris345
bucket(x,)

bucket(x;) Ri69.12
bucket(x.,)

bucket(xs) Rs 71
bucket(x4)

bucker(x-)

bucket(xy) Rso.10.11
bucket(xy) H9,1+),l 1
bucket(x o) Rio1s
bucket(x,;)

bucket(x,,) JASPRE
bucket(x,3)

class2 828X 2019

Adaptive-Consistency
on the Crossword Puzzle

bucket(x,)
bucket(x,)
bucket(x;)
bucket(x,)
bucket(xs)
bucket(xq)
bucket(x4)
bucket(xg)
bucket(xy)
bucket(x,y)
bucket(x;,)
bucket(x;,)

bucket(x,3)

R;545 = {(H,O.8,E,),(L,A,S,E,R),(S,H,E,E,T),
(S,N,A,LL),(S.
R,.,., = {(ILLKE), (AR, o N) (K.E,E,T),(E,A,R,N),
(S,A,M.E
R0 ={R.U,N), (S, U,N), (L, E, T), (Y. E,S), (E,A, T),(T.E,N)}
Rionom =Rigon
R = 1N, 0),(B.E), (U,8),(I.T)}
RIZ.IS = R10.13
2 3 + 5
& T
A
'd ™y
R1.214.5\ LI b I
Hy 545 12 i-
R360.12 \Hz 45
H45(‘>9 12
3711\ ‘56912
Hmt) 1,12
Hi911.12
Rs 01011 |
Ho.lo,u\H9,11 12
STRE Hl(),il,l2\
\- Empty relation . . . exit
Rio3

class2 828X 2019

i Road Map

= Inference

= Variable elimination for CNFs

Gausian and Boolean Propagation,
Resolution

= Linear inequalities
X+y+z<15,2213=

= Boolean constraint
propagation, unit resolution

(AvBv—-C),(—B)=

class2 828X 2019

i Extended Composition

Definition 3.2.1 (extended composition) The extended composition of relation

Rs,. ..., Rg,, relative to a subset of variables A C | J:~, S;, denoted EC4(Rs,, ..., Rs,,).
s defined by

ECA(RSN ..y Rs) — WA(M;ZI RS‘i)

m

Example 3.2.2 Consider the two clauses a = (PV -Q V -0) and § = (Q V
—W). Now let the relation Rpgo = {000, 100,010,001, 110,101,111} be the models
of a and the relation Rgoy = {00,10,11} be the models of 3. Resolving these

two clauses over () generates the resolvent clause v = res(a,3) = (P V =0V
—W). The models of v are {(000, 100,010,001, 110,101,111}. It is easy to see that
ECPQW'(RPQQ? RQW') = T RQW’(R PQO X RQw) YlEldS the models of Y. LI

Lemma 3.2.3 The resolution operation over two clauses, (aV Q) and (V —Q),
results in a clause (aV [3) for which models(aV[3) = ECq (models(aVQ), models(3V

—(Q)), where Q" is the union of scopes of both clauses excluding Q. O

The Effect of Resolution on Its Graph

(~C) (AVBVC) (~AVvBVE)(~B,GE)

resolution
OVEr A

E

(a)

Figure 4.19: (a) The interaction graph of theory ¢, = {(-C),(AVBVC), (mAV BV E),
(mBVv CV D)}, and (b) the effect of resolution over A on that graph.

class2 828X 2019

Directional Resolution &
Adaptive Consistency

b

(~C) (AVBVC) (~AVBVE)(~B,C,E)

Bucket A
Bucket B
Bucket cC
Bucket D
Bucket E

Dire

| bucket; |= O(exp(W
DR time and space : O(nexp(wW"))

class2 828X 2019

Directional Resolution &
Adaptive Consistency

o+

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E V

|\ BVcVDET T

Directional

(~C) (AVBVC) (~AVvBVE)(~B,GE)

"""""""""""""""""""
ey

class2 828X 2019

Directional Resolution &
Adaptive Consistency

(~C) (AVBVC) (~AVBVE)(~B,C,E)

Bucket A

Bucket B

Bucket C

Bucket D

Bucket E V¥ /

Directional Extension Eg

Width w=3
Induced width w'= 2

| bucket, |= O(exp(wW"))
DR time and space : O(n exp(W*))

Directional Resolution &
Adaptive Consistency

bucket

bucket

bucket

bucket

{ bucket

Knowledge compilation Model generation

Directional Extension

Eg

class2 828X 2019

‘L Directional Resolution

1.

DIRECTIONAL-RESOLUTION

Input: A CNF theory ¢, an ordering d =)y, ... ,Q, of its variables.
OutputA decision of whether ¢ is satisfiable. If it is, a theory F4(yp),

equivalent to ¢, else an empty directional extension.
Initialize: generate an ordered partition of clauses into buckets.
buckety, ... , bucket,, where bucket; contains all clauses whose
highest literal is ();.
for 7 +— n downto 1 process bucket;:
if there is a unit clause then (the instantiation step)
apply unit-resolution in bucket; and place the resolvents in their right buckets.
if the empty clause was generated, theory is not satisfiable.
else resolve each pair {(a V Q;), (B V —Q;)} C bucket,.
if v = a Vv 3 is empty, return Fq4(p) = {}, theory is not satisfiable
else determine the index of v and add it to the appropriate bucket.
return F(y) « |J, bucket;

i History

= 1960 — resolution-based Davis-Putnam algorithm

= 1962 - resolution step replaced by conditioning
(Davis, Logemann and Loveland, 1962) to avoid
memory explosion, resulting into a backtracking search
algorithm known as Davis-Putnam (DP), or DPLL procedure.

= The dependency on induced-width was not known in 1960.
= 1994 — Directional Resolution (DR), a rediscovery of

the original Davis-Putnam, identification of tractable classes
(Dechter and Rish, 1994).

class2 828X 2019

i Properties of DR

Lemma 3.2.6 Given a theory p and an orderingd = (Qq, ..., Q,), if Q; has at most

k parents in the induced graph along d, then the bucket of Q; in E4(¢) contains no
more than 31 clauses.

Proof: Given a clause a in the bucket of ();, there are three possibilities for each
parent P of ();: either P appears in «, —P appears in «, or neither of them appears
In «. Since (); also appears In «, either positively or negatively, the number of
possible clauses in a bucket is no more than 2 - 3% < 3%+, |
Theorem 3.2.7 (complexity of DR)
Given a theory ¢ and an ordering of its variables d, the time complexity of algorithm
DR along d is O(n-9%2), and E4(p) contains at most n - 3¥a*l clauses, where w? is

the induced width of ©’s interaction graph along d. O

class2 828X 2019

+

Algorithms for Reasoning with graphical models

Class4
Rina Dechter

