

#### Algorithms for Reasoning with graphical models

# Class2: Constraint Networks Rina Dechter

dechter1: chapters 2-3,

Dechter2: Constraint book: chapters 2 and 4

### **Text Books**









### Road Map

- Graphical models
- Constraint networks model
- Inference
  - Variable elimination for Constraints
  - Variable elimination for CNFs
  - Variable elimination for Linear Inequalities
  - Constraint propagation
- Search
- Probabilistic Networks



### Road Map

- Graphical models
- Constraint networks model
- Inference
  - Variable elimination for Constraints
  - Variable elimination for CNFs
  - Variable elimination for Linear Inequalities
  - Constraint propagation
- Search
- Probabilistic Networks



# Text Book (not required)

Rina Dechter,

**Constraint Processing**,

Morgan Kaufmann





### Sudoku – Approximation: Constraint Propagation

- Constraint
- Propagation
- Inference

|   |   | 2          | 4 |   | 6 |   |   |            |
|---|---|------------|---|---|---|---|---|------------|
| 8 | 6 | 5          | 1 |   |   | 2 |   |            |
|   | 1 |            |   |   | 8 | 6 |   | 9          |
| 9 |   |            |   | 4 |   | 8 | 6 |            |
|   | 4 | 7          |   |   |   | 1 | 9 |            |
|   | 5 | 8          |   | 6 |   |   |   | (3)        |
| 4 |   | <b>(6)</b> | 9 |   |   |   | 7 | 2.3<br>4.6 |
|   |   | 9          |   |   | 4 | 5 | 8 | 1          |
|   |   |            | 3 |   | 2 | 9 |   |            |

- Variables: empty slots
- **Domains** = {1,2,3,4,5,6,7,8,9}
- Constraints: • 27 all-different

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27 constraints



#### Sudoku

Alternative formulations: Variables? Domains? Constraints?

|   |   | 12  |   | 5 |   |   |   | 6 |
|---|---|-----|---|---|---|---|---|---|
|   |   |     | 3 | 6 | 8 |   |   |   |
| 6 | 1 | 8   |   |   | 2 |   |   | 4 |
|   |   | (5) |   | 2 |   |   |   | 3 |
|   | 9 | 3   |   |   |   | 5 | 4 |   |
| 1 |   |     |   | 3 |   | 6 |   |   |
| 3 |   |     | 8 |   |   | 4 |   | 7 |
|   | 8 |     | 8 | 4 | 3 |   |   |   |
| 5 |   |     |   | 1 | 7 | 9 |   |   |

Each row, column and major block must be all different "Well posed" if it has unique solution



#### Constraint Networks

A

#### Example: map coloring

*Variables - countries (A,B,C,etc.)* 

Values - colors (red, green, blue)

Constraints:

 $A \neq B$ ,  $A \neq D$ ,  $D \neq E$ , etc.

red green
red yellow
green red
green yellow
yellow green
yellow red





class2 828X 2019



# Constraint Satisfaction Tasks

Example: map coloring

*Variables - countries (A,B,C,etc.)* 

*Values - colors (e.g., red, green, yellow)* 

Constraints:

 $A \neq B$ ,  $A \neq D$ ,  $D \neq E$ , etc.

Are the constraints consistent?

Find a solution, find all solutions

Count all solutions

Find a good (optimal) solution

| A   | В     | С     | D     | E     |
|-----|-------|-------|-------|-------|
|     |       |       |       |       |
| red | green | red   | green | blue  |
| red | blue  | green | green | blue  |
|     |       | •••   |       | green |
|     |       |       | •••   | red   |
| red | blue  | red   | green | red   |

# -

### **Constraint Network**

- A constraint network is: R=(X,D,C)
  - X variables

$$X = \{X_1, ..., X_n\}$$

D domain

$$D = \{D_1, ..., D_n\}, D_i = \{v_1, ..., v_k\}$$

C constraints

$$C = \{C_1, ..., C_t\}$$
$$C_i = (S_i, R_i)$$

- R expresses allowed tuples over scopes
- A solution is an assignment to all variables that satisfies all constraints (join of all relations).
- Tasks: consistency?, one or all solutions, counting, optimization



### Crossword Puzzle

#### Formulation?

- Variables: x<sub>1</sub>, ..., x<sub>13</sub>
- Domains: letters
- Constraints: words from

| 1 | 2 | 3  | 4  | 5  |
|---|---|----|----|----|
|   |   | 6  |    | 7  |
|   | 8 | 9  | 10 | 11 |
|   |   | 12 | 13 |    |

{HOSES, LASER, SHEET, SNAIL, STEER, ALSO, EARN, HIKE, IRON, SAME, EAT, LET, RUN, SUN, TEN, YES, BE, IT, NO, US}

# Crossword Puzzle

```
R_{1,2,3,4,5} = \{(H, O, S, E, S), (L, A, S, E, R), (S, H, E, E, T), \}
(S, N, A, I, L), (S, T, E, E, R)

R_{3.6.9.12} = \{(H, I, K, E), (A, R, O, N), (K, E, E, T), (E, A, R, N),
               (S, A, M, E)
R_{5.7.11} = \{(R, U, N), (S, U, N), (L, E, T), (Y, E, S), (E, A, T), (T, E, N)\}
R_{8,9,10,11} = R_{3,6,9,12}
R_{10.13} = \{(N, O), (B, E), (U, S), (I, T)\}
R_{12.13} = R_{10.13}
                                                                      12
                                                                            13
```



# The Queen Problem



# 4

## The Queen Problem



The network has four variables, all with domains  $D_i = \{1, 2, 3, 4\}$ . (a) The labeled chess board. (b) The constraints between variables.

# Varieties of Constraints

Unary constraints involve a single variable,

e.g., SA ≠ green

Binary constraints involve pairs of variables,

e.g., SA ≠ WA

Higher-order constraints involve 3 or more variables,

e.g., cryptarithmetic column constraints

# 4

# Constraint's Representations

Relation: allowed tuples

Algebraic expression:

$$X + Y^2 \le 10, X \ne Y$$

Propositional formula:

$$(a \lor b) \rightarrow \neg c$$

Semantics: by a relation



### **Partial Solutions**







Not all partial consistent instantiations are part of a solution: (a) A partial consistent instantiation that is not part of a solution. (b) The placement of the queens corresponding to the solution (2, 4, 1, 3). (c) The placement of the queens corresponding to the solution (3, 1, 4, 2).



# **Constraint Graphs:**

#### Primal, dual and hypergraphs

CSP: When defining variables as squares:

A (primal) constraint graph: a node per variable arcs connect constrained variables.

A dual constraint graph: a node per constraint's scope, an arc connect nodes sharing variables =hypergraph

| 1 | 2 | 3  | 4  | 5  |
|---|---|----|----|----|
|   |   | 6  |    | 7  |
|   | 8 | 9  | 10 | 11 |
|   |   | 12 | 13 |    |





Primal graph?

Dual graph?



# Constraint Graphs (primal)



| 1 | 2 | 3  | 4  | 5  |
|---|---|----|----|----|
|   |   | 6  |    | 7  |
|   | 8 | 9  | 10 | 11 |
|   |   | 12 | 13 |    |

When variables are words



class2 828X 2019

Queen problem





**Figure 2.1:** (a) Hyper; (b) primal; (c) dual; (d) join-tree of a graphical model having scopes ABC, AEF, CDE and ACE; and (e) the factor graph.



# **Graph Concepts Reviews:**

Hyper Graphs and Dual Graphs





# **Propositional Satisfiability**

 $\varphi = \{(\neg C), (A \lor B \lor C), (\neg A \lor B \lor E), (\neg B \lor C \lor D)\}.$ 





### Example: Radio Link Assignment



Given a telecommunication network (where each communication link has various antenas), assign a frequency to each antenna in such a way that all antennas may operate together without noticeable interference.

#### **Encoding?**

Variables: one for each antenna

Domains: the set of available frequencies

Constraints: the ones referring to the antennas in the same communication link

class2 828X 2019



# Constraint graphs of 3 instances of the Radio frequency assignment problem in CELAR's benchmark









## **Operations With Relations**

- Intersection
- Union
- Difference
- Selection
- Projection
- Join
- Composition

#### **Local Functions**



$$f\bowtie g$$

Join:

$$\begin{array}{c|cc} x_1 & x_2 \\ \hline a & a \\ b & b \end{array}$$

 $\bowtie$ 

$$\begin{array}{ccc} x_2 & x_3 \\ \hline a & a \\ a & b \\ b & a \end{array} =$$

$$\begin{array}{c|cccc} X_1 & X_2 & X_3 \\ \hline \textbf{a} & \textbf{a} & \textbf{a} \\ \hline \textbf{a} & \textbf{a} & \textbf{b} \\ \textbf{b} & \textbf{b} & \textbf{a} \\ \end{array}$$

$$f \wedge g$$

#### Logical AND:

| $\mathbf{x}_1$ | $X_2$ | f     |
|----------------|-------|-------|
| а              | а     | true  |
| а              | b     | false |
| b              | а     | false |
| b              | b     | true  |
|                |       | •     |

$$\begin{array}{c|cccc} x_2 & x_3 & g \\ \hline a & a & true \\ & a & b & true \\ & b & a & true \\ & b & b & false \\ \end{array}$$

| $X_1$ | $X_2$ | $X_3$ | h     |
|-------|-------|-------|-------|
| а     | а     | а     | true  |
| а     | а     | b     | true  |
| а     | b     | а     | false |
| а     | b     | b     | false |
| b     | а     | а     | false |
| b     | а     | b     | false |
| b     | b     | а     | true  |
| b     | b     | b     | false |

class2 828X 2019

#### Global View of the Problem



Does the problem a solution?

The problem has a solution if the global view is not empty

| $\mathbf{x}_1$ | $X_2$                      | $X_3$                   | h                                                             |
|----------------|----------------------------|-------------------------|---------------------------------------------------------------|
| а              | а                          | а                       | true                                                          |
| а              | а                          | b                       | true                                                          |
| а              | b                          | а                       | false                                                         |
| а              | b                          | b                       | false                                                         |
| b              | а                          | а                       | false                                                         |
| b              | а                          | b                       | false                                                         |
| b              | b                          | а                       | true                                                          |
| b              | b                          | b                       | false                                                         |
|                | a<br>a<br>a<br>b<br>b<br>b | a a a a a b a b a b b b | a a a a a a a a a a a b a a a a b a a b b b a a b b b b b b a |

The problem has a solution if there is some true tuple in the global view, the universal relation



#### Example of Selection, Projection and Join

| $x_1$           | $x_2$ | $x_3$        |
|-----------------|-------|--------------|
| a               | b     | c            |
| b               | b     | С            |
| $^{\mathrm{c}}$ | b     | С            |
| c               | b     | $\mathbf{s}$ |

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ c & n & n \\ \end{array}$$

$$\begin{array}{c|cccc}
x_2 & x_3 & x_4 \\
\hline
a & a & 1 \\
b & c & 2 \\
b & c & 3
\end{array}$$

- (a) Relation R
- (b) Relation R'
- (c) Relation R''

$$\begin{array}{c|ccc} x_1 & x_2 & x_3 \\ \hline b & b & c \\ c & b & c \\ \end{array}$$

$$\begin{array}{c|c} x_2 & x_3 \\ \hline b & c \\ n & n \end{array}$$

- (a)  $\sigma_{x_3=c}(R')$
- (b)  $\pi_{\{x_2,x_3\}}(R')$
- (c)  $R' \bowtie R''$

#### Global View of the Problem



## What about counting?

Number of true tuples

|      | <b>X</b> <sub>1</sub> | $X_2$ | $\mathbf{x}_3$ | h     |                         | $\mathbf{x}_1$ | $X_2$ | $x_3$ | h |
|------|-----------------------|-------|----------------|-------|-------------------------|----------------|-------|-------|---|
|      | a                     | а     | а              | true  |                         | a              | а     | а     | 1 |
| TASK | а                     | а     | b              | true  |                         | а              | а     | b     | 1 |
| Z /  | а                     | b     | а              | false |                         | а              | b     | а     | 0 |
|      | а                     | b     | b              | false | true is 1               | а              | b     | b     | 0 |
|      | b                     | а     | а              | false | true is 1<br>false is 0 | b              | а     | а     | 0 |
|      | b                     | а     | b              | false | logical AND?            | b              | а     | b     | 0 |
|      | b                     | b     | а              | true  | rogroui / ii vb .       | b              | b     | а     | 1 |
|      | b                     | b     | b              | false |                         | b              | b     | b     | 0 |

class2 828X 201**Sum over all the tuples** 

#### **Examples**

#### Numeric constraints



Can we specify numeric constraints as relations?

# Numeric Constraints

• Given P = (V, D, C), where

$$m{V} = \{V_1, V_2, \dots, V_n\}$$
 $m{D} = \{D_{V1}, D_{V2}, \dots, D_{Vn}\}$ 
 $m{C} = \{C_1, C_2, \dots, C_l\}$ 

#### Example I:

$$V1$$
  $\{1, 2, 3, 4\}$   $v1 < v2$   $\{3, 6, 7\}$   $V2$   $v1+v3 < 9$   $v2 < v3$   $v2 > v4$   $v3$   $\{3, 4, 9\}$   $\{3, 5, 7\}$   $v4$ 

• Define C?



# The minimal network, An extreme case of re-parameterization

#### **Binary Constraint Networks**

#### **Properties of Binary Constraint Networks**

A graph  $\Re$  to be colored by two colors, an equivalent representation  $\Re'$  having a newly inferred constraint between x1 and x3.



Equivalence and deduction with constraints (composition)

Winter 2016 33



#### Equivalence, Redundancy, Composition

 Equivalence: Two constraint networks are equivalent if they have the same set of solutions.

Composition in relational operation

$$R_{xz} = \pi_{xz} (R_{xy} \bowtie R_{yz})$$

Winter 2016 34

### The N-queens Constraint Network

The network has four variables, all with domains  $Di = \{1, 2, 3, 4\}$ . (a) The labeled chess board. (b) The constraints between variables.





#### The 4-queens constraint network



$$M_{12} = \{(2,4), (3,1)\}$$

$$M_{13} = \{(2,1), (3,4)\}$$

$$M_{14} = \{(2,3), (3,2)\}$$

$$M_{23} = \{(1,4), (4,1)\}$$

$$M_{24} = \{(1,2), (4,3)\}$$

$$M_{34} = \{(1,3), (4,2)\}$$

$$D_1 = \{23\}$$
 $D_2 = \{1,4\}$ 
 $D_3 = \{1,4\}$ 
 $D_4 = \{2,3\}$ 

The minimal domains 
$$(c)$$



## The 4-queen problem



The constraint graph (a)

$$M_{12} = \{(2,4), (3,1)\}$$
  
 $M_{13} = \{(2,1), (3,4)\}$   
 $M_{14} = \{(2,3), (3,2)\}$   
 $M_{23} = \{(1,4), (4,1)\}$   
 $M_{24} = \{(1,2), (4,3)\}$   
 $M_{34} = \{(1,3), (4,2)\}$ 

$$D_1 = \{1,3\}$$
  
 $D_2 = \{1,4\}$   
 $D_3 = \{1,4\}$   
 $D_4 = \{1,3\}$ 

The minimal domains (c)

### The 4-queens problem



$$R_{12} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{13} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{14} = \{(1,2), (1,3), (2,1), (2,3), (2,4), (3,1), (3,2), (3,4)$$

$$(4,2), (4,3)\}$$

$$R_{23} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$

$$R_{24} = \{(1,2), (1,4), (2,1), (2,3), (3,2), (3,4), (4,1), (4,3)\}$$

$$R_{34} = \{(1,3), (1,4), (2,4), (3,1), (4,1), (4,2)\}$$



$$M_{12} = \{(2,4), (3,1)\}$$

$$M_{13} = \{(2,1), (3,4)\}$$

$$M_{14} = \{(2,3), (3,2)\}$$

$$M_{23} = \{(1,4), (4,1)\}$$

$$M_{24} = \{(1,2), (4,3)\}$$

$$M_{34} = \{(1,3), (4,2)\}$$

$$D_1 = \{1,3\}$$

$$D_2 = \{1,4\}$$

$$D_3 = \{1,4\}$$

$$D_4 = \{1,3\}$$



# Figure 2.11: The 4-queens constraint network: (a) The constraint graph. (b) The minimal binary constraints.

(c) The minimal unary constraints (the domains).



$$M_{12} = \{(2,4), (3,1)\}$$
  
 $M_{13} = \{(2,1), (3,4)\}$   
 $M_{14} = \{(2,3), (3,2)\}$   
 $M_{23} = \{(1,4), (4,1)\}$   
 $M_{24} = \{(1,2), (4,3)\}$   
 $M_{34} = \{(1,3), (4,2)\}$ 

$$D_1 = \{1,3\}$$

$$D_2 = \{1,4\}$$

$$D_3 = \{1,4\}$$

$$D_4 = \{1,3\}$$

(a)

(b) (c)



### The Minimal Network

- The minimal network is perfectly explicit for binary and unary constraints:
  - Every pair of values permitted by the minimal constraint is in a solution.

# 4

## The Projection Networks

- The projection network of a relation is obtained by projecting it onto each pair of its variables (yielding a binary network).
- Relation =  $\{(1,1,2)(1,2,2)(1,2,1)\}$ 
  - What is the projection network?
- What is the relationship between a relation and its projection network?
- {(1,1,2)(1,2,2)(2,1,3)(2,2,2)} are the solutions of its projection network?

### Example: Sudoku

What is the minimal network?

The projection network?

Constraint propagation

|   |   | 2          | 4 |   | 6 |   |   |     |
|---|---|------------|---|---|---|---|---|-----|
| 8 | 6 | 5          | 1 |   |   | 2 |   |     |
|   | 1 |            |   |   | 8 | 6 |   | 9   |
| 9 |   |            |   | 4 |   | 8 | 6 |     |
|   | 4 | 7          |   |   |   | 1 | 9 |     |
|   | 5 | 8          |   | 6 |   |   |   | (3) |
| 4 |   | <b>(6)</b> | 9 |   |   |   | 7 | 23  |
|   |   | 9          |   |   | 4 | 5 | 8 | 1   |
|   |   |            | 3 |   | 2 | 9 |   |     |

• Variables: 81 slots

• *Domains* = {1,2,3,4,5,6,7,8,9}

• Constraints: • 27 not-equal

Each row, column and major block must be alldifferent

"Well posed" if it has unique solution: 27



#### Algorithms for Reasoning with graphical models

### Class3 Rina Dechter