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Overview

3. Markov Chain Monte Carlo: Gibbs Sampling



Markov Chain

0000

A Markov chain is a discrete random process with
the property that the next state depends only on the

current state (Markov Property):
P(x'|x',x%,...x")=P(x" | x'™)

o |f P(X!|x*!) does not depend on t (time
homogeneous) and state space is finite, then it is
often expressed as a transition function (aka

transition matrix) Z P(X =x)=1
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Example: Drunkard’s Walk

 arandom walk on the number line where, at
each step, the position may change by +1 or
-1 with equal probability

00000

D(X)={0,1,2,...} P(n—1) P(n+1)

"

d

transition matrix P(X)
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Example: Weather Model

rain

rain rain rain

D(X) = {rainy, sunny}
P(rainy) = P(sunny)

rainy
sunny

transition matrix P(X)
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Multi-Variable System
X ={X,, X,, X,},D(X,)=discrete, finite

e state is an assignment of values to all the

variables °

X' =X, X5, X0}
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Bayesian Network System

* Bayesian Network is a representation of the
joint probability distribution over 2 or more
variables

X:{Xlaxzax?,} Xt:{Xlt,X;,X;}
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Stationary Distribution

Existence

* |f the Markov chain is time-homogeneous,
then the vector nt(X) is a stationary distribution
(aka invariant or equilibrium distribution, aka
“fixed point”), if its entries sum up to 1 and

isfy:
Y 0= S A0)PO X))
x:eD(X)
* Finite state space Markov chain has a unique
stationary distribution if and only if:
— The chain is irreducible

— All of its states are positive recurrent



Irreducible

e Astate xis irreducible if under the transition rule
one has nonzero probability of moving from xto

any other state and then coming back in a finite
number of steps

* If one state is irreducible, then all the states
must be irreducible

(Liu, Ch. 12, pp. 249, Def. 12.1.1)



Recurrent

e Astate xis recurrent if the chain returns to x
with probability 1

e Let M(x) be the expected number of steps to
return to state x

e State xis positive recurrent if M(x) is finite

The recurrent states in a finite state chain are positive recurrent .



Stationary Distribution Convergence

* Consider infinite Markov chain:
P = P(x" | XO) = POP"
* |f the chain is both irreducible and aperiodic,

then: ,
7 =limP™

N—o0

* |nitial state is not important in the limit

“The most useful feature of a “good” Markov
chain is its fast forgetfulness of its past...”

(Liu, Ch. 12.1)



Aperiodic

* Define d(i) =g.c.d.{n >0 | it is possible to go
fromitoiin n steps}. Here, g.c.d. means the
greatest common divisor of the integers in the
set. If d(i)=1 for Vi, then chain is aperiodic

* Positive recurrent, aperiodic states are ergodic



Markov Chain Monte Carlo

* How do we estimate P(X), e.g., P(X/e) ?
* Generate samples that form Markov Chain
with stationary distribution 7=P(X|/e)

e Estimate 7 from samples (observed states):

visited states xC,...,x" can be viewed as “samples”
from distribution

T(X) = le_:a(x, X"

7w = lim 7 (X)
T—>o0
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MCMC Summary

Convergence is guaranteed in the limit

Initial state is not important, but... typically,
we throw away first K samples - “burn-in”

Samples are dependent, not i.i.d.

The stronger correlation between states, the
slower convergence!
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Gibbs Sampling (Geman&Geman,1984)

* Gibbs sampler is an algorithm to generate a
sequence of samples from the joint probability
distribution of two or more random variables

 Sample new variable value one variable at a
time from the variable’s conditional
distribution:

P(XI) — P(Xn | XI»"axit—lﬂ Xit+19'">X:1} — P(Xu | X \Xi)

 Samples form a Markov chain with stationary
distribution P(X/e)



Gibbs Sampling: lllustration

The process of Gibbs sampling can be understood as a random walk
in the space of all instantiations of X=x (remember drunkard’s walk):

® © © ©® ¢ © o ©o In one step we can reach instantiations
that differ from current one by value

® @ ¢ ¢ © assignment to at most one variable

assume randomized choice of variables

o e o0 o0 0 |
Xi).

@ O @ © ©o

@ © ©o @ @ O ©

@ @ ¢ ¢ ¢ ¢ o ©o

@ @ ¢ ¢ ¢ ¢ o ©o
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Ordered Gibbs Sampler

Generate sample x**! from xt :
t+1 t t t
Process Xl — Xl < P(Xl | X29X39---9X|\| 9e)

t+1 t+1 t t
A”. X2:X2 (_P(X2|Xl 9X39'--9XNae)
Variables
In Some

Order t+1 t+1  , t+1 t+1
VXN =Xy PO X T XS e X5 ©)

In short, for i=1 to N:
X, = X" <« sampled from P(X; | X' \ X, ,€)
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Transition Probabilities in BN

Given Markov blanket (parents,
children, and their parents),
X. is independent of all other nodes

Markov blanket:
markov(X,) = pa,@ch, B ( (@ pa))

P(X.|x"\x)=P(X,|markov):
P(x | X' \x) e P(x; | pay) | [ P(x; | pa))
X ech;

Computation is linear in the size of Markov blanket!
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Ordered Gibbs Sampling Algorithm
(Pearl,1988)

Input: X, E=e

Output: T samples {xt}

Fix evidence E=e, initialize x° at random
1. Fort=1toT (compute samples)

2 Fori=1to N (loop through variables)
3. x. «— P(X. | markov})

4. End For

5. End For



Gibbs Sampling Example - BN

X = {X,, X,y Xo}, E = {X,}

X =x
X5 =Xg
Xg = Xg'
X5 =X,
Xg = Xg'
Xg = Xg'
X, =x,

— 0
X;5=X;
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Gibbs Sampling Example

X = {X,, X0, Xo}, E = {X,}
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ooy Xg 5 X

ooy Xg 5 X,

)
)



Answering Queries P(x; [e) = ?

* Method 1: count # of samples where X;= x; (histogram estimator):

" / Dirac delta f-n
P (X, =X) = 2804 x)
t=1

 Method 2: average probability (mixture estimator):
_ | T
P(X;=X%)= ?Z P(X; = X, [markov;)
t=I

* Mixture estimator converges faster



Rao-Blackwell Theorem

Rao-Blackwell Theorem: Let random variable set X be
composed of two groups of variables, R and L. Then,
for the joint distribution ©t(R,L) and function g, the
following result applies

Var[E{g(R)| L} <Var[g(R)]
for a function of interest g, e.g., the mean or
covariance (Casella&Robert,1996, Liu et. al. 1995).

* theorem makes a weak promise, but works well in practice!
e improvement depends on the choice of R and L



Importance vs. Gibbs

Gibbs: X'« P(X|e)
P(X |e)—=25P(X |e)

@<X>=%Zg<xt>

Importance: xt<_Q(x|e) W,
1 S g(xHP(xH
g:_




Gibbs Sampling: Convergence

Sample from I_D(X/e)aP(X/e)
Converges iff chain is irreducible and ergodic

Intuition - must be able to explore all states:

— if X; and X; are strongly correlated, X;=0<> X:=0,
then, we cannot explore states with X;=1 and X;=1

All conditions are satisfied when all
probabilities are positive

Convergence rate can be characterized by the
second eigen-value of transition matrix



Gibbs: Speeding Convergence

Reduce dependence between samples
(autocorrelation)

e Skip samples

 Randomize Variable Sampling Order

* Employ blocking (grouping)

 Multiple chains

Reduce variance (cover in the next section)



Blocking Gibbs Sampler

 Sample several variables together, as a block

 Example: Given three variables X,%,Z, with domains of
size 2, group Yand Ztogether to form a variable
W={%, Z} with domain size 4. Then, given sample
(15,91, 2), compute next sample:

X" P(X |y, z)=PW)

(yt+1, Zt-l—l) — Wt+1 «— P(Y,Z | Xt-l—l)
+ Can improve convergence greatly when two variables
are strongly correlated!

- Domain of the block variable grows exponentially with
the #variables in a block!
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Gibbs: Multiple Chains

* Generate M chains of size K
* Each chain produces independent estimate P :

. K
P (%, |€) = %Z P (%, | X'\ X,)
t=1

. Estimate P(x;/e) as average of P_(x;[e):
P ()= WZ P (®)
i=1

Treat P, as independent random variables.



Gibbs Sampling Summary

e Markov Chain Monte Carlo method
(Gelfand and Smith, 1990, Smith and Roberts, 1993, Tierney, 1994)

 Samples are dependent, form Markov Chain
e Sample fromP (X |e) which convergesto P (X |e)
* Guaranteed to converge when all P> 0

 Methods to improve convergence:
— Blocking
— Rao-Blackwellised



Overview

5. Rao-Blackwellisation



Sampling: Performance

Gibbs sampling
— Reduce dependence between samples

Importance sampling
— Reduce variance

Cutset sampling Achieve both by sampling a
subset of variables and integrating out the rest
(reduce dimensionality), aka Rao-
Blackwellisation

Exploit graph structure to manage the extra cost



Smaller Subset State-Space

* Smaller state-space is easier to cover

X :{X1>X27X39X4} X :{XUXZ}

D(X) = 64 D(X)=16
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Smoother Distribution

P(X1, X3, X3,X,) P(X.,X,)

m0-0.1 m0.1-0.2 mO0.2-0.26 m0-0.1 m0.1-0.2 mO0.2-0.26
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Speeding Up Convergence

* Mean Squared Error of the estimator:
MSE,, [P |= BIAS 2 +Var,|P |

* In case of unbiased estimator, BIAS=0

MSE ,[P]=Var,| ( [P]2 Eqo[P] )

* Reduce variance = speed up convergence !



Rao-Blackwellisation
X =R@L

@<x>=Ti{h<xl>+---+h<xT>}

g(x) = %{E[h(x) 14+ E[h(O |17}

Var {g(x)} =Var{E[g(x) [T} + E{var[g(x) | 1]}
Var {g(x)} >Var{E[g(x)|I]}
Var {G(x)} = Var{Th(X)} . Vaf{E[:(X) L

Liu, Ch.2.3

=Var{g(x);




Rao-Blackwellisation

“Carry out analytical computation as much as possible” - Liu
e X=RUL
* Importance Sampling:

P(R,L) P(R)
V > Var
arQ{Q(R L)} {Q(R) Liu, Ch.2.5.5
* Gibbs Sampling:

— autocovariances are lower (less correlation
between samples)

— it X; and X; are strongly correlated, X;=0 <> X;=0,
only include one of them into a sampling set
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Blocking Gibbs Sampler vs. Collapsed

e Standard Gibbs:
P(x|y,z),P(y|Xx,2),P(z|x,y) (1)

Faster :
* Blocking:
Convergence
P(x]y,2),P(y,z[X) (2)
* Collapsed:

P(x| y). Py %) 3)
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Collapsed Gibbs Sampling

Generating Samples

Generate sample ct*! from ct:

C, =c¢" « P(c, |c§,c§,... o)

C,=c" <« P(c,|c™,cl,....Cy . €)

C Ct+1 «— P(CK | Ct+1 t—|—1 .,C::_ll,e)

In short, for i=1 to K:
C. =c*' <~ sampled from P(c. |c' \c ,e€)




Collapsed Gibbs Sampler

Input: Cc X, E=e
Output: T samples {ct}
Fix evidence E=e, initialize c® at random
1. Fort=1toT (compute samples)
Fori=1to N (loop through variables)
¢« P(C: | ct\c)
End For
End For

A



Calculation Time

* Computing P(c;[ ct\c,e) is more expensive
(requires inference)

* Trading #samples for smaller variance:
— generate more samples with higher covariance
— generate fewer samples with lower covariance

* Must control the time spent computing

sampling probabilities in order to be time-
effective!



Exploiting Graph Properties

Recall... computation time is exponential in the
adjusted induced width of a graph

* y-cutset is a subset of variable s.t. when they
are observed, induced width of the graph is w

 when sampled variables form a w-cutset,
inference is exp(w) (e.g., using Bucket Tree

Elimination)
e cycle-cutset is a special case of w-cutset

Sampling w-cutset = w-cutset sampling!
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What If C=Cycle-Cutset ?

¢’ = {3 X5} E = {X,}

P(x,,Xs,Xg) — can compute using Bucket Elimination (probability of evidence)

———Caay—>

=)

P(x,,Xs,Xg) — computation complexity is O(N)
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Computing Transition Probabilities
Compute joint probabilities:

BE : P(X, =0,X;,X,)
BE : P(X, =1,X;,X,)

Normalize:

a=P(X; =0,%;,%)+P(X, =1,X3, %)
P(Xz =0 | X3) = aP(Xz = 09 X39X9)
P(X, =1]X;) =aP (X, =1,%;,X%,)
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Cutset Sampling-Answering Queries

* Query: V¢, €C, P(c, |e)=? same as Gibbs:

T
P(cle) ==Y P(e[¢*\cpe)
t=1

computed while generating sample t
using bucket tree elimination

* Query: Vx. eX\C, P(x; |e)=?

P(x/€) = Tiz P(x, | ' )

compute after generating sample t
using bucket tree elimination
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Cutset Sampling vs. Cutset Conditioning

Cutset Conditioning

P(xle) = P(X; | c,e)x
CGDZ(C) @

Cutset Sampling

P(x€) = Tiz P(x, |C'\6)

count (c)

= > P(x |c.e)x

ceD(C) T

> P(x, |c,e)><
ceD(C)



Cutset Sampling Example
Estimating P(x, | e) for sampling node X, :
X e PG XS x,) TP

Sample 2

[\ .

1
Xy = P(X| X5.%,)

Sample 3

(8]

X; < P(X| X5 ,Xo)
P(x,| X;)’X9)

— 1
P(Xz | X9) :g + P(le Xé,X9)

_+ P(X2| X52’X9)_
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Cutset Sampling Example
Estimating P(x; | e) for non-sampled node X,

Cl = {X;,X;} — P(X3 | X;9X;9X9)
2 _ 2 2 P 2 2
C _{X29X5}:> (X3|X29X59X9)

C3 :{Xgaxg}: P(XS | X§9X539X9)

P (X3 | X, X5, X)

1
P(Xs | X9):§ + P(Xs | X22:X52>X9)

P0G X, %5, %)
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CPCS54 Test Results
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MSE vs. #samples (left) and time (right)
Ergodic, |X]|=54, D(X;)=2, |C|=15, |E|=S3

Exact Time = 30 sec using Cutset Conditioning




CPCS179 Test Results

CPCS179, n=179, |C|=8, |E|=35
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MSE vs. #samples (left) and time (right)
Non-Ergodic (1 deterministic CPT entry)
|X] = 179, |C|] = 8, 2<= D(X))<=4, |E|] = 35

Exact Time = 122 sec using Cutset Conditioning




CPCS360b Test Results

CPCS360b, n=360, |C|=21, [E|=36
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MSE vs. #samples (left) and time (right)

Ergodic, |X] = 360, D(X))=2, |C|] = 21, |E| = 36

Exact Time > 60 min using Cutset Conditioning

Exact Values obtained via Bucket Elimination




Random Networks
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MSE vs. #samples (left) and time (right)
|X] = 100, D(X)) =2,|C|] = 13, |E| = 15-20

Exact Time = 30 sec using Cutset Conditioning




Coding Networks

Cutset Transforms Non-Ergodic Chain to Ergodic

® OO
() @) G

2T
ORORORO

0.1

Coding Networks, n=100, |C|=12-14

\ —o IBP —=— Gibbs —e— Cutset \
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oY s

(o o
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MSE vs. time (right)
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Non-Ergodic, |X]|] = 100, D(X;)=2, |C|] = 13-16, |E|] = 50
Sample Ergodic Subspace U={U,, U,,..U, }

Exact Time = 50 sec using Cutset Conditioning
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Non-Ergodic Hailfinder
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Non-Ergodic, |X]| = 56, |C|] = 5, 2 <=D(X;) <=11, |[E| =0

Exact Time = 2 sec using Loop-Cutset Conditioning




CPCS360b - MSE

cpcs360b, N=360, |E|=[20-34], w*=20, MSE
—a— Gibbs
" —a—|C|=26,fw=3
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MSE vs. Time
Ergodic, |X]|] = 360, |C|] = 26, D(X;)=2

Exact Time = 50 min using BTE



Cutset Importance Sampling
(Gogate & Dechter, 2005) and (Bidyuk & Dechter, 2006)

* Apply Importance Sampling over cutset C
T

s 1 P(ct,e):lT t
PO=T 290 T

where P(ct,e) is computed using Bucket Elimination

L T
P(c, |e):ochZ5(ci,ct)wt
t=1

L T
P (X |e)=aTlZ P(x;|c',e)w'
t=1



Likelihood Cutset Weighting (LCS)

e /=Topological Order{C,E}
* Generating sample t+1.:

ForZ; e Z do: - computed while generating
IfZ, €E sample t
using bucket tree
zit+1 =7.,2 e elimination
Else
t+] 41 (41 - can be memoized for some
Li & P(Zi | Zl yeees Li number of instances K
End If (based on memory available
End For

KL[P(C|e), Q(C)] < KL[P(X]e), Q(X)]
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Pathfinder 1

MSE

_ ) . F C4q| LW
PathFinder 1, N=109, w*=6, |LC|=9, [E|=11| __ . _
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0.0008

0.0004 4%‘-?? . =

U : . . T
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Pathfinder 2

0.002

PathFinder2, N=135, |LC|=4, |E|=17

Time (sec)

—-— W

—&— LWLC
—e— | WLC-BUF
—— |BP

slides11b 828X 2019




Link

MSE

Link, N=724, w*=15, |LC|=142, |[E|=10
0.003

0.002

0.001

0.000

—-— W
—a—LWLC

10

12
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Summary

Importance Sampling

i.i.d. samples
Unbiased estimator
Generates samples fast

Samples from Q

Reject samples with
zero-weight

Improves on cutset

Gibbs Sampling
Dependent samples

Biased estimator

Generates samples
slower

Samples from B(Xle)

Does not converge in
presence of constraints

Improves on cutset



CPCS360b

cpcs360b, N=360, |LC|=26, w*=21, |E|=15

1.E-02 —a— LW

+

—8— AIS-BN
—a— Gibbs

MSE

1.E-05 ‘ ' ' ; ' '

1.E-03 EN A—LCS
1.E-04 | ‘\‘\‘\‘\‘\A
im

Time (sec)

14

LW — likelihood weighting
LCS — likelihood weighting on a cutset

slides11b 828X 2019




CPCS422b

MSE
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LW — likelihood weighting
LCS — likelihood weighting on a cutset




Coding Networks

i
70
=

coding, N=200, P=3, |LC[=26, w*=21 | —=—LW
. 0E01 —a— AIS-BN
e —a— Gibbs
=—8 —»~ICS
1.0E-02 —*—IBP
1.0E-03 |
K—K—K—K—K—F—K—X
1.0E-04 kﬁ\&\ﬂ\ﬁ_ﬂ_ﬂﬂ_ﬂ
1.0E-05 ‘ ‘ ‘ ‘
0 2 4 6 8 10
Time (sec)

LW — likelihood weighting
LCS — likelihood weighting on a cutset
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Rao-Blackwell Sampling

@ Given a Bayesian network over disjoint variables X and Y
@ Goal is to estimate the probability of some event «, Pr(«)

@ Assume Pr(aly) can be computed efficiently for any
Instantiation y

@ Rao-Blackwell sampling can exploit this fact to reduce the

variance, by sampling from the distribution Pr(Y) instead
the full distribution Pr(X,Y)
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Rao-Blackwell Sampling

Rao-Blackwell sampling:

@ Draw a sample y', . ... y" from the distribution Pr(Y)

@ Compute Pr(aly’) for each sampled instantiation y’
© Estimate the probability Pr(«) using the average

(1/n) Y Pr(aly’)
=]

Will generally have a smaller variance than direct sampling.
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Rao-Blackwell Sampling

for event o and distribution

maps each instantiation y into [0, 1] as follows:

i(y) & Pr(aly)

If our sample is y'.....y", and if we use Monte Carlo simulation

to estimate the expectation of the RB function ¢(Y), then our
estimate will simply be the sample mean:

N :
Av,(a) = - ZPI‘(Q\y )
i—1
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