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\ Outline
I

Class page
o Introduction: Constraint and probabilistic graphical models.
. Constraint networks: Graphs, modeling, Inference
° Inference in constraints: Adaptive consistency, constraint propagation, arc-conistency
o Graph properties: induced-width, tree-width, chordal graphs, hypertrees, join-trees
o Bayesian and Markov networks: Representing independencies by graphs
o Building Bayesian networks.
° Inference in Probabilistic models: Bucket-elimination (summation and optimization), Tree-decompositions, Join-tree/Junction-tree
algorithm
o Search in CSPs: Backtracking, pruning by constraint propagation,

backjumping and learning
o Search in Graphical models: AND/OR search Spaces for likelihood, optimization queries

o Approximate Bounded Inference: weighted Mini-bucket, belief-propagation,
generalized belief propagation

o Approximation by Sampling: MCMC schemes, Gibbs sampling, Importance sampling

o Causal Inference with causal graphs.


https://www.ics.uci.edu/~dechter/courses/ics-276/spring-19/

Course Requirements/Textbook

Homeworks : There will be 5-6 problem sets , graded 50% of the final
grades.

A term project:. paper presentation, a programming project (20%).
Final (30%)
Books:

« “Reasoning with probabilistic and deterministic graphical models”, R.
Dechter, Claypool, 2013
https://www.morganclaypool.com/doi/abs/10.2200/S00529ED1V01Y201
308AIM023

- "Modeling and Reasoning with Bayesian Networks”, A. Darwiche, MIT
Press, 20009.

- “Constraint Processing” , R. Dechter, Morgan Kauffman, 2003


https://www.morganclaypool.com/doi/abs/10.2200/S00529ED1V01Y201308AIM023

TI;/I/NKING,

| Al Renaissance
|

* Deep learning

— Fast predictions
— “Instinctive”

Tools:

o

Tensorflow, PyTorch,

/

FAST . SLOW

P r—
DANIEL

KAHNEMAN

* Probabilistic models

— Slow reasoning

— “Logical / deliberative”

Tools:
Graphical Models,
Probabilistic programming,
Markov Logic, ...



| Outline of classes
L

Part 1: Introduction and Inference

012
* Part 2: Search
2 0 : il
A OR ® ®
B IO il flTil
; on ey o ¢ gt
C 1 orR QDEH OO &F
D ff il il
F o Context minimal AND/OR search graph

* Parr 3: Variational Methods and Monte-Carlo Sampling
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| RoadMap: Introduction and Inference
|

* Basics of graphical models
— Queries
— Examples, applications, and tasks

— Algorithms overview

Inference algorithms, exact
— Bucket elimination for trees

Riiclat aliminatinn

For Constraints first

— Decomposition bounds
— Mini-bucket & weighted mini-bucket
— Belief propagation

Summary and Part 2
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‘Roadl\/lap: Introduction and Inference

* Basics of graphical models
— Queries
— Examples, applications, and tasks

— Algorithms overview



| Probabilistic Graphical models
|

* Describe structure in large problems
— Large complex system F'(X)
— Made of “smaller”, “local” interactions fuo ()
— Complexity emerges through interdependence



| Probabilistic Graphical models
|

* Describe structure in large problems
— Large complex system F(X)

* Protein Structure prediction: predicting the 3d structure from given

sequences
o * PDB: Protein design (backbone) algorithms enumerate a
combinatorial number of candidate structures to compute the

\_ Global Minimum Energy Conformation (GMEC).

) Phenylalanine
[Yanover & Weiss 2002]

[Bruce R. Donald et. Al. 2016]
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| Probabilistic Graphical models

I : :
* Describe structure in large problems

— Large complex system F(X)
— Made of “smaller”, “local” interactions f,(Zq)
— Complexity emerges through interdependence

* Examples & Tasks

— Summation & marginalization “partition function”
1
plx:) = 2\: [[/aGca) and 2= ][ falxa)

Image segmentation and classification:

Observation y Marginals p(x; | y) Observation y Marginals p(x; | y)

cow

e.g., [Plath et al. 2009]
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| Graphical models

* Describe structure in large problems
— Large complex system F(X)
— Made of “smaller”, “local” interactions fa(iva)
— Complexity emerges through interdependence

* Examples & Tasks
— Mixed inference (marginal MAP, MEU, ...)

f(xn) = IE?JXZHfa(Xa)

Xs o
= —©
Influence diagrams & / \/ T
optimal decision-making ——» iy

(the “oil wildcatter” problem) \ /
Oil Market

e.g., [Raiffa 1968; Shachter 1986]
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In more details...



Constraint Networks

Example: map coloring
Variables - countries (A,B,C,etc.)
Values - colors (red, green, blue)

Constraints: A=D, D=#E, etc.

Constraint graph
A B
red green
red yellow
green red
green  yellow T
yellow  green \
yellow red
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Propositional Reasoning

Example: party problem
\e A%

Y Y
f Alex goes, then éecky goes: A—>B

f Chris goes| then Alex goes: CoA
Q N

¢ <

* Question:
Is it possible that Chris goes to

the party but Becky does not? Q (B>

Is the propositional theory C
o={A—>B,C—> A —B, C} satisfiable?

classl 828X-2018



‘ Radio Link Frequency Assignment Problem
. ICabon et al., Constraints 1999) (Koster et al., 40R 2003)
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Bayesian Networks (Pearl 1988)

An early example
From medical diagnosis

BN=(G, O)

P(C|S) P(B]S)

CPD:

C B |p(D]C,B)
00 |0.1 09
01 |0.7 0.3

\ 10 |0.8 0.2
1110901

P(s, C, B, X, D) = P(S) P(C|S) P(B|S) P(X|C,S) P(D|C,B) Combination: Product

Marginalization: sum/max

P(X]C,S) P(D|C,B)

* Posterior marginals, probability of evidence, MPE

* P(D=0)=Ys 5 x P(S) P(CIS) P(B]S) P(X|CS) P(D|C,B
MAP(P)= maxs ; g x P(S)- P(C|S)- P(B]S)- P(X|C,S)- P(D|C,B)
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‘ AI a rm nEtWO rk [Beinlich et al., 1989]
I

* Bayes nets: compact representation of large joint distributions

The “alarm” network: 37 variables, 509 parameters (rather than 23/ = 1011 I)
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| Probabilistic reasoning (directed)
|

Party example: the weather effect

* Alex is-likely-to-go in bad weather @ —@ P(a|W=bad)=.9
* Chris rarely-goes in bad weather @ —@ r(ciw=bad)=.1
* Becky is indiff t but dictabl
ecky is indifferent but unpredictable W)——(B) p(ewebad)-s
Questions: wo| A P(A|W)
* Given bad weather, which group of individuals is most good | O 01
likely to show up at the party? good | 1 99
What is the probability that Chris goes to the party ~ P(W) bad | 0 -
but Becky does not? bad | 1 9

P(W,AC,B) =P(B|W) " P(C|W) * P(A|W) * P(W)
P(A,C,B|W=bad) =0.9-0.1"-0.5 P(B|W) P(C|W)

P(A|W) J

classl 828X-2018



Mixed Probabilistic and Deterministic networks

Alex is-likely-to-go in bad weather
Chris rarely-goes in bad weather
Becky is indifferent but unpredictable

PN

P(W)

CN

P(B]|W) P(CIW)

A-B C->A

Query:
Is it likely that Chris goes to the

party if Becky does not but the
weather is bad?

P(C,—B|w=bad,A—B,C —> A)

classl 828X-2018



|Graphical models (cost networks)
I

Example:

A graphical model consists of: A€ {0,1}
X ={Xy,...,X,} - variables B e {0,1}
D={Ds,...,D,} --domains (we’ll assume discrete) C e {0,1}
F ={fa,,.., fa, - functions or “factors”

fAB(AvB)a fBC(Bvc)
and a combination operator

The combination operator defines an overall function from the individual factors,

eg., “+": F(A,B,C) = fap(A,B) + fpc(B,C)
Notation:
Discrete Xi values called states

Tuple or configuration: states taken by a set of variables
Scope of f: set of variables that are arguments to a factor f

often index factors by their scope, e.g., fo(X,), Xo C X

classl 828X-2018



|Graphical models (cost networks)
|

Example:

A graphical model consists of: Ac{0,1}
X ={Xy,...,X,} --variables B e€{0,1}
D ={D,,...,D,} --domains (we'll assume discrete) C e {0,1}
F ={fa,,.., fa, - functions or “factors”

fAB(AaB)a fBC(BaC)

and a combination operator
F(A: Ba C) — fAB(Aa B) + fBO(B? C)

For discrete variables, think of functions as “tables”

(though we might represent them more efficiently)
0|00 12
0|01 6
0/10] o
0|0 6 0|0 6 —_— 011 6 =0 +6
ol L + 0,1 0 — 1100 6
tjop o 110/ © 1]0]1 0
tjt] *® Ll 6 110 6
F(A=0,B=1,C=1) 111 12
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|Graph Visualiization: Primal Graph
|

A graphical model consists of:
X ={X1,...,X,} --variables
D={D,,...,D,} --domains
F ={fa,,.., fa, - functions or “factors”

and a combination operator
Primal graph:

variables = nodes
factors — cliques

F(A,B,C,D,F,G) :fl(AﬂBaD)—}_f?(DaFaG)
+f3(B707F) +f4(AaC)

classl 828X-2018



|[Example: Constraint networks

| X; € {red, , blue}

fii(Xi, X;) = (X; # X;) foradjacent regions i,]

Overall function is “and” of individual constraints:
F(X) = fo1(Xo, X1) A f12(X1, X2) A fo2(Xo, X2) A ...

“Tabular” form:

1.0 X, +X,
fij(Xo, Xj) = g
0.0 X, =X,

1.0 all valid
0.0 any invalid

PO = [1 £, X5) = {

Tasks: “max”: is there a solution?
“sum”: how many solutions?

N NI NP RR|O|O|O
N RIONMNIH|IONMN|—|O
OlRr ROl FR|FR| R O
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| Markov logic, Markov ne
|

tworks

[Richardson & Domingos 2005]

1.5 | ¥x Smokeqx) = Cancer(x)
1.1 | Vx,y Friends(x, y) = (Smokeg(x) <> Smokesy)) NS

Two constants: Anna (A) and Bob (B)

Friends(A,A)

Friends(A,B)

classl 828X-2018
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|Graphical visualization
|

A graphical model consists of:
X ={Xy,...,X,} --variables
D={D,,...,D,} --domains
F ={fay,-., fa, }-functions or “factors”

and a combination operator

Primal graph:
variables — nodes
factors — cliques

F(A,B,C,D,F,G) = [1(A, B, D) + f2(D, F,G)
+ f3(Baca F) + f4(AyC)

Dual graph:
factor scopes _,nodes
edges — intersections (separators)

classl 828X-2018




|Graphical visualization
|

“Factor” graph: explicitly indicate the scope of each factor
variables — circles
factors — squares

F(A,B,C,D,F,G) = fi(A, B,D) + fo(D, F,G)
+ fg(B,C, F) + f4(A7 C)

Useful for disambiguating factorization:

f1(A,B,C, D) f1(A, B) + f2(A, C) + . ..
?
DY vs. "
O(d*) pairwise: O(d?)

classl 828X-2018



Conditional Probability

|Graphical models
|

. . Table (CPT
A graphical model consists of: T C F( p(p&,q Relation
. 0 00 0.14
X ={X1,...,X,} --variables 00 1] 006 o
. 0 1 0 0.40 bi d d
D={D,,...,D,} --domains 0 111708 bioe. blus,freer
. 7 ” 170 1] 065 green red blue
F ={fa,,...1fa, +- functions or “factors Y K

Operators: \ ﬂ = (F=A+C)

combination operator

(sum, product, join, ...) (AVCVF)

elimination operator
(projection, sum, max, min, ...)

Primal graph
(interaction graph)

Types of queries:
Marginal: Z=>"T] falxa)
MPE / MAP: f(x*)_n;X“Hfa(XO) * Allthese _tasks are NP-hard
o * exploit problem structure
* |dentify special cases
* approximate

Marginal MAP: Fxig) = max > [T falxa)

classl 828X-2018



‘ Graphical models/reasoning task

" Definition 2.1.2 (graphical model) A graphical model M is a 4-tuple, M = (X, D.F, ®),

where:
1. X ={Xi,...,X,} is a finite set of variables;

2. D ={Dy,...,D,} is the set of their respective finite domains of values;

3. F={f,..., fr} 1s a set of positive real-valued discrete functions, defined scopes of

variables S; C X,
4. @ is a combination operator' (e.g., @ € {[[.>_.X} (product, sum, join)).

The graphical model represents a global function whose scope is X which is the combina-
tion of all its functions: ®I_, f;.
Definition 2.1.3 (a reasoning problem) A reasoning problem over a graphical model
M = (X,D,F,®) and a subset of variable Y C X is defined by a marginalization op-
erator |Jy. If S is the scope of function f then |v f € {1 f. :'_”.; f. 7y f, b.;f f} isa
marginalization operator. The reasoning problem P (M. |y .7Z) is the task of computing

the function Pym(Z) =z ®I_, fi, where r is the number of functions in F'.
classl 828X-2018



Summary of graphical models types

|
* Constraint networks

* Cost networks

* Bayesian network

* Markov networks

* Mixed probability and constraint network
* Influence diagrams



Constraint Networks

Map coloring
Combination = join

M L II t. = [l tl
Variables: countries (A B C etc.) arginalization = projection

Values: colors (red green blue)

Constraints: @ A=D, DzE,..

Constraint graph

A B

red green

red vyellow
green red
green yellow
yellow green
yellow red

33
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|Example of a Cost Network
|

A|B|C] f,(ABC) A|B|D]| f,(ABD) B|D|E| f,(BDE) (a)
olofo] = olofo] 1 plojo] e
001 o Df(of1 £o O(0f1 3 f,(ABC)
o[1]o] e o[1]o] o ol1|o] e
0|1]1 2 o[1]1 2 0l1]1 4 f,(ABD) @' D)
100 ™ 1/0]|0 6 1]0|0 @ f,(BDE) '
101 2 101 5 101 3
1[1]o] e 1[1]o] & 1[1]0] e
1111 2 1[1]1 5 1(1]1 4 (C__}' {Ej'

(a) Cost functions (b) Constraint graph

Combination: sum

Figure 2.3: A cost network. . :
Marginalization:min/max

Definition 2.3.2 (WCSP) A Weighted Constraint Satisfaction Problem (WCSP) is a
graphical model (X, D, F,> ) where each of the functions f; € F assigns "0” (no penalty)
to allowed tuples and a positive integer penalty cost to the forbidden tuples. Namely,
fi: Dx, % ..x Dx, — N, where 5; = {X:,, ..., X;, } is the scope of the function.

classl 828X-2018



| A Bayesian Network
|

- -
spnnmr@ ; E‘:_:j Rain
-l- ’
Wataring @ ?f) Weness

@ Siippery

(&) Directed sovelic praph

B N F | P(F|B,C) B |A=winter | D | P(D|A, B)
falze | false | true 0.1 false false true 0.3
true | false | true 0.9 true false true 0.9
falze | true | true 0.8 false Lrue true 0.1
true | trug | tre 0.95 true true true 1
A C | P(C)A) A B | P(B|A)
Summer | troe 0.1 Summer | troe 08 F G | F(G|F)
Fall true 0.4 Flall trug 0.4 falze | true 0.1
Winter | true 0.9 Winter | true 01 true | true 1
Spring | true 0.3 Spring | true 0.6
- Combination: product
LA Season _

Marginalization: sum or min/max

(b} Moral graph

Plg|f1P(f|c, b)P{d|a, b)P(c|1)Pibla) P{a)

Belief nevwork Pig, f.c. b, a)



Markov Networks

H,(A.B) H,(B.C)

a
=
= A~ HsD.E)
E He(D.E)
) T 0 20.2
g -
= = 1 12
H 0 234
H,,(G.H) 1 11.7
(a) (b)

Figure 2.6: (a) An example 3 x 3 square Grid Markov network (1sing model) and (b) An
example potential Hg(D, E)

network represents a global joint distribution over the variables X given by:

BRI LTINS W L
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| Example domains for graphical models

Natural Language processing

— Information extraction, semantic parsing, translation, topic models, ...

Computer vision

— Object recognition, scene analysis, segmentation, tracking, ...

Computational biology

— Pedigree analysis, protein folding and binding, sequence matching, ...

Networks

— Webpage link analysis, social networks, communications, citations, ....

Robotics

— Planning & decision making



Complexity of Reasoning Tasks

* Constraint satisfaction

* Counting solutions

* Combinatorial optimization
* Belief updating

* Most probable explanation
* Decision-theoretic planning

Reasoning is
computationally hard

Complexity is
Time and space(memory)

1200 ~

1000

800

f(n) 600

400

200

Linear / Polynomial / Exponential

e

1 2 3 4 5 6 7 8 9 10




Desired Properties: Guarantee, Anytime, Anyspace

* Anytime

— valid solution at any point

— solution quality improves with additional computation
* Anyspace

— run with limited memory resources

39



‘Roadl\/lap: Introduction and Inference

* Basics of graphical models
— Queries
— Examples, applications, and tasks

— Algorithms overview



| Tree-solving is easy
|

CSP — consistency

Belief updating (projection-join)

(sum-prod)
mYT (Y) mYR (Y) mZL(Z) mZM (Z)
Myy (Y) Mg (Y) M, (Z) Myz (Z)
MPE (max-prod) #CSP (sum-prod)

Trees are processed in linear time and memory

classl 828X-2018



| Transforming into a Tree
|

* By Inference (thinking)

— Transform into a single, equivalent tree of sub-
problems

* By Conditioning (guessing)

— Transform into many tree-like sub-problems.

classl 828X-2018



[ Inference and Treewidth
|

; BDEF ;

FHK

Inference algorithm:
Time: exp(tree-width)

Space: exp(tree-width) foopigth=4-1 =3
treewidth = (maximum cluster size) - 1

classl 828X-2018



| Conditioning and Cycle cutset
|

Cycle cutset = {A,B,C}

eaa :g

classl 828X-2018



|Search over the Cutset
|

e Inference may require too much memor
Graph ay requ 00 mu ory

Coloring

problem e Condition on some of the variables

classl 828X-2018



‘Bird's-eye View of Exact Algorithms
| Inference

exp(w*) time/space

Search
Exp(w*) time
O(w?*) space

SO0

1]
o]
Etﬂﬂtm
AWAWAWAWA
0/1/0{2/0{1|0{2{0{1{0 1|0 1/0(1|0{ 1| 011{0{ 1|0 2 0] 1| 0] 1|0 2| O[ 2| Of 1 011/0{1/0(1|0/1|0(1
™
Search+inference:

‘_ o = ﬁ@ﬁﬁ Space: exp(q) q: user

Time: exp(g+c(q)) controlled
classl 828X-2018




‘Bird's-eye View of Exact Algorithms
I

Inference

exp(w*) time/space

-

Context minimal AND/OR search graph
18 AND nodes

/

o i
T el ot ot ot

classl 828X-2018

Search+inference:
Space: exp(q)
Time: exp(g+c(q))

Search
Exp(w*) time
O(w?*) space

g: user
controlled



‘ Bird's-eye View of Approximate Algorithms

Inference

1

Bounded Inference

h Search
Sampling
Context minimal AND/OR search graph
18 AND nodes j

ﬁ Search + mference

i E i E Sampling + bounded inference

classl 828X-2018



End of slides
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