
5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 1/67

Causal ProgrammingCausal Programming

Joshua BruléJoshua Brulé

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 2/67

Smoking/cancer structural causal modelSmoking/cancer structural causal model

smoking

tar

cancer

smoking = ()f1 ϵ1

tar = (smoking,)f2 ϵ2

cancer = (tar,)f3 ϵ3

⊥̸⊥ϵ1 ϵ3

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 3/67

Causal calculus (Pearl 1995)Causal calculus (Pearl 1995)

 - nodes in a causal DAG
 delete edges pointing into

 denotes delete edges emanating from
 -nodes that are not ancestors of any -node

Note: abbreviated

P (y ∣ , z,w) = P (y ∣ ,w) if (Y ⊥⊥ Z ∣ X,Wx̂ x̂)G
X̄̄̄

P (y ∣ , ,w) = P (y ∣ , z,w) if (Y ⊥⊥ Z ∣ X,Wx̂ ẑ x̂)G
X̄̄̄ Z−−

P (y ∣ , z,w) = P (y ∣ ,w) if (Y ⊥⊥ Z ∣ X,Wx̂ x̂)G
,X̄̄̄ Z(W)¯ ¯¯̄¯̄¯̄¯̄

W ,X,Y ,Z G
G

X
¯ ¯¯̄¯ X

GX−−
X

Z(W) Z W

P(y ∣ do(x)) P(y ∣)x̂

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 4/67

Example proofExample proof

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 5/67

Causation coe�cientCausation coe�cient

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 6/67

Correlation is not causationCorrelation is not causation

"Correlation is not causation but it sure is a hint."

"Empirically observed covariation is a necessary but not suf�cient condition for
causality."

—Edward Tufte

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 7/67

Correlation coe�cientCorrelation coe�cient

ρ =
cov(X,Y)

V ar[X]V ar[Y]
− −−−−−−−−−−−√

ρ =
xyP (x, y) − xP (x) yP (y)∑x∑y ∑x ∑y

(P (x) − (xP (x))(P (y) − (yP (y))∑x x
2 ∑x)2 ∑y y

2 ∑y)2
− −−−

√

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 8/67

Correlation coe�cient (rewritten)Correlation coe�cient (rewritten)
V ar[X] = P (x) − (xP (x)∑

x

x2 ∑
x

)2

V ar[Y] = P (y|x)P (x) − (yP (y|x)P (x)∑
x

∑
y

y2 ∑
x

∑
y

)2

ρ =
xyP (y|x)P (x) − xP (x) yP (y|x)P (x)∑x∑y ∑x ∑x∑y

V ar[X]V ar[Y]
− −−−−−−−−−−−√

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 9/67

De�ning the causation coe�cientDe�ning the causation coe�cient

Substitute , abbreviated for

i.e. Replace observational distribution with interventional distribution

Substitute for
'Distribution of interventions'
Interpret as the relative cohort sizes in an experimental study

Natural causation coef�cient:

P (y ∣ do(x)) P(y ∣)x̂ P (y ∣ x)

(x)P̂ P (x)

(x) = P (x)P̂

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 10/67

Causation coe�cientCausation coe�cient
V ar[] = (x) − (x (x)X̂ ∑

x

x2P̂ ∑
x

P̂)2

V a [Y] = P (y|) (x) − (yP (y|) (x)r
X̂

∑
x

∑
y

y2 x̂ P̂ ∑
x

∑
y

x̂ P̂)2

=γX→Y

xyP (y|) (x) − x (x) yP (y|) (x)∑x∑y x̂ P̂ ∑x P̂ ∑x∑y x̂ P̂

V ar[]V a [Y]X̂ r
X̂

− −−−−−−−−−−−−
√

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 11/67

Interpretation of Interpretation of

 - perfect positive/negative linear correlation
 - perfect positive/negative linear causation

 - "linearly uncorrelated"
 - "linearly acausal"

γ

ρ = ±1
γ = ±1
ρ = 0
γ = 0

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 12/67

No-confoundingNo-confounding

 implies

Converse holds for Bernoulli (binary) random variables

x y

P (y ∣ x) = P (y ∣)x̂ = ργX→Y

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 13/67

Independence and InvarianceIndependence and Invariance

De�nitions:

 and are independent iff

 is invariant to iff

Lemmas:

For Bernoulli , , iff and are independent
For Bernoulli , , iff is invariant to

X Y P (y ∣ x) = P (y), ∀x, y
Y X P (y ∣) = P (y), ∀x, yx̂

X Y ρ = 0 X Y
X Y = 0γX→Y Y X

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 14/67

Average treatment e�ectAverage treatment e�ect

For Bernoulli random variables:

 has the same sign as

 > 0 - treatment is more effective

 < 0 - treatment is less effective

ATE(X → Y) ≡ P (Y = 1 ∣ do(X = 1)) − P (Y = 1 ∣ do(X = 0))

= ATE(X → Y)γX→Y

V ar[]X̂

V a [Y]r
X̂

− −−−−−−−

√

γ ATE(X → Y)
ATE(X → Y)
ATE(X → Y)

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 15/67

Plot causation vs correlationPlot causation vs correlation

Every point on a plot is a structural causal model γρ

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 16/67

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 17/67

Invariant and independentInvariant and independent

Neither manipulation nor observation of changes/provides information about

e.g. Two events outside each other's past and future light cone

X
Y

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 18/67

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 19/67

Causation vs. correlation: common causationCausation vs. correlation: common causation

"If an improbable coincidence has occurred, there must exist a common cause"
(Reichenbach 1956)

e.g. Myopia and ambient lighting at night (Quinn et al. 1999)

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 20/67

Inverse causationInverse causation

 and have the opposite sign
e.g. Tuberculosis in Arizona (Gardner 1982)

ρ γ

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 21/67

Example model: inverse causationExample model: inverse causation

Let and . The following model exhibits

inverse causation:

∼ Bernoulli(1/2)ϵZ ∼ Bernoulli(3/4)ϵY

Z = ϵZ
X = Z

Y = {¬Z
X

if = 1ϵY
if = 0ϵY

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 22/67

Inverse causation probability distributionsInverse causation probability distributions

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 23/67

Causation vs. correlation: unfaithfulnessCausation vs. correlation: unfaithfulness

 and are unfaithful if they are independent but not invariant
I de�ne this as a 'local' version of unfaithful distribution (Spirtes et al.
1993)

X Y

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 24/67

"Friedman's thermostat""Friedman's thermostat"

Observe correlation between furnace and outside temperature
Observe no correlation between furnace and inside temperature
Observe no correlation between inside and outside temperature

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 25/67

"Traitorous lieutenant""Traitorous lieutenant"

General wishes to send one bit, recipient XORs bits
For 1, send (0, 1) or (1, 0) with equal probability

For 0, send (1, 1) or (0, 0) with equal probability

General

Lieutenant (loyal)

Lieutenant (traitor)

Recipient

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 26/67

Genuine causation and confounding biasGenuine causation and confounding bias

 and have the same sign
May be biased by confounders

ρ γ

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 27/67

Recovering intuition: Why do we think correlation Recovering intuition: Why do we think correlation

causation?causation?

Need a way to analyze behavior of 'typical' models
Don't draw samples from a model, draw models from a space of models
How to parameterize that space?

≈

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 28/67

ParameterizationParameterization

z

x

y

Draw a sample model from maximum entropy distribution over the parameters
Compute (,) for
Plot a kernel density estimate

Z = ϵZ
X = Z +αZ ϵX

Y = X + Z +βX βZ ϵY

M
ρ γ M

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 29/67

Causation vs correlation (Causation vs correlation (12% inverse causation) 12% inverse causation)≈

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 30/67

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 31/67

Correlation/causation relationshipsCorrelation/causation relationships

Most of these effects were known, not all were named
 provides uni�ed framework (population, acyclic)

Intuition for why correlation causation
Other relationships:

Spurious correlation (population vs sample distribution)
Mutual causation (not in acyclic models)
Reverse causation (confusing for)

No substitute for proper causal analysis

γ, ρ
≈

X → Y Y → X

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 32/67

Causal programmingCausal programming

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 33/67

Declarative programming ("what" instead of "how")Declarative programming ("what" instead of "how")

(Purely) functional programming
Functions, algebraic data types
Function application

Logic programming
First-order horn clauses
Resolution

Linear programming
Linear objective function, linear constraints
Optimize

Probabilistic programming
Various
Conditional sampling

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 34/67

Causal inference relationCausal inference relation

 - set of structural causal models
 - set of distributions; known probability functions
 - query from the causal hierarchy (Shpitser 2008), e.g. ,

 - formula that computes as a function of for every model in

 - set of endogenous variables (usually implicit)

⟨M,D,Q,F ⟩V

M
D
Q P (y ∣ x) P (y ∣ do(x))
F Q D M

V

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 35/67

Identi�cation (�nd F)Identi�cation (�nd F)

Model, Model,

x

z

y

Distribution, QueryDistribution, Query

,

FormulaFormula

M =

D = P (x, y, z) Q = P (y ∣ do(x))

P (z ∣ x) P (y ∣ , z)P ()∑z ∑x′ x′ x′

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 36/67

SolutionsSolutions
, , where: , ,

Causal discovery (�nd M)Causal discovery (�nd M)

Distribution, QueryDistribution, Query

, where

ModelsModels

D = P (x, y) X⊥̸⊥ Y

Q = P (y ∣ do(x))

⟨ ,D,Q, ⟩M1 F1 ⟨ ,D,Q, ⟩M2 F2 = (a)M1 = P (y ∣ x)F1 = (b)M2

= P (y)F2

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 37/67

Context mattersContext matters

There always exist compatible models where identi�cation is impossible

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 38/67

SolutionsSolutions

Research design (�nd D)Research design (�nd D)

ModelModel

QueryQuery

⟨M, ,Q, ⟩, ⟨M, ,Q, ⟩D1 F1 D2 F2 = P (y ∣ , ,x)P (,)F1 ∑ ,w3 w4
w3 w4 w3 w4

= P (y ∣ , ,x)P (,)F2 ∑ ,w4 w5
w4 w5 w4 w5 = P (x, y, ,)D1 w3 w4

= P (x, y, ,)D2 w4 w5

Q = P (y ∣ do(x))

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 39/67

Query generation (�nd Q)Query generation (�nd Q)

"Testable implications"

e.g. Can identify and , but not P (y ∣ do(x)) P (z ∣ do(x)) P (y ∣ do(z))

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 40/67

Optimization problemsOptimization problems

Cost function over M, D, Q

M - favor simple models (Occam's razor)
D - optimal research design
Q - (inverse) value of information

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 41/67

"Meta-theory" / "Framework""Meta-theory" / "Framework"

Sensitive to domains of M, D, Q

Specify domains to get usable/implementable theory

Framework to classify existing methods/problems

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 42/67

(Some) Prior work / existing algorithms(Some) Prior work / existing algorithms

Identi�cationIdenti�cation

ID (Shpitser 2006): M = (causal diagrams), D = , Q =

IDC* (Shpitser & Pearl 2007): M = "", D = , Q =

zID (Bareinboim 2012): M = "", D = , Q =

Selection bias (Bareinboim 2014): M = "", D = , Q =

Causal discoveryCausal discovery

Inductive causation based algorithms, e.g. PC, FCI

Research design / query generation (research opportunity?)Research design / query generation (research opportunity?)

Informally studied, no formal algorithms?

P (v) P (y ∣ do(x))
P (v ∣ do(z))∀Z ⊆ V P (α ∣ β)

P (v ∣ do(z)) P (y ∣ do(x))
P (v ∣ S = 1) P (y ∣ do(x))

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 43/67

Causal programming languageCausal programming language

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 44/67

Learn Lisp in < 1 minuteLearn Lisp in < 1 minute

Everything is a function call

Move the left parentheses one word to the left

load_image("xkcd-297.png")

In [2]: (load-image "xkcd-297.png")

Out[2]:

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 45/67

"Core" Whittemore"Core" Whittemore

(model {:x [], :y [:x]}) - a (set of) structural causal model(s)

(data [:x :y]) - the "signature" of a distribution, e.g.

(q [:y] :do [:x]) - a query, e.g.

(identify m d q) - returns a formula

(estimate distribution formula) - applies formula to distribution

P (x, y)
P (y ∣ do(x))

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 46/67

Example: Treatment of renal calculi (Charig et al. 1986)Example: Treatment of renal calculi (Charig et al. 1986)

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 47/67

Load dataLoad data

In [3]: (def kidney-dataset

 (read-csv "data/renal-calculi.csv"))

(count kidney-dataset)

In [4]: (head kidney-dataset)

Out[3]: 700

Out[4]:
:size :success :treatment

"small" "yes" "surgery"

"large" "yes" "nephrolithotomy"

"small" "yes" "surgery"

"small" "yes" "surgery"

"large" "yes" "nephrolithotomy"

"large" "yes" "surgery"

"small" "yes" "nephrolithotomy"

"small" "yes" "surgery"

"large" "no" "nephrolithotomy"

"large" "yes" "nephrolithotomy"

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 48/67

Categorical distributionCategorical distribution

In [5]: (def kidney-distribution

 (categorical kidney-dataset))

(plot-univariate kidney-distribution :size)

Out[5]:

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 49/67

Simpson's paradoxSimpson's paradox

P(success=yes | treatment=surgery) < P(success=yes | treatment=nephrolithotomy)

In [7]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "surgery"}))

In [8]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "nephrolithotomy"}))

Out[7]: 0.78

Out[8]: 0.8257142857142857

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 50/67

P(success=yes | treatment, size=small)

In [9]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "surgery" :size "small"}))

In [10]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "nephrolithotomy" :size "small"}))

P(success=yes | treatment, size=large)

In [11]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "surgery" :size "large"}))

In [12]: (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "nephrolithotomy" :size "large"}))

Out[9]: 0.9310344827586207

Out[10]: 0.8666666666666667

Out[11]: 0.7300380228136882

Out[12]: 0.6875

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 51/67

Model assumptionsModel assumptions

size = ()fsize ϵsize

treatment = (size,)ftreatment ϵtreatment

success = (treatment, size,)fsuccess ϵsuccess

In [13]: (define charig1986

 (model

 {:size []

 :treatment [:size]

 :success [:treatment :size]}))

Out[13]:

size

treatment

success

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 52/67

IdentifyIdentify

In [14]: (define f

 (identify charig1986

 (data [:treatment :success :size])

 (q [:success] :do {:treatment "surgery"})))

In [15]: (identify charig1986

 (data [:treatment :success])

 (q [:success] :do {:treatment "surgery"}))

Out[14]:

[P (size)P (success ∣ size, treatment)]∑
size

where: treatment = "surgery"

Out[15]: #whittemore.core.Fail{:cause #{{:hedge #whittemore.core.Model{:pa {:treatment

#{}, :success #{:treatment}}, :bi #{#{:treatment :success}}}, :s #{:succes

s}}}}

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 53/67

EstimateEstimate

In [16]: (estimate kidney-distribution f)

In [17]: (plot-univariate (estimate kidney-distribution f))

Out[16]: #whittemore.core.Categorical{:pmf {{:success "yes"} 0.8325462173856037, {:succ

ess "no"} 0.16745378261439622}}

Out[17]:

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 54/67

Problem: Problem: notation is overloaded notation is overloaded

; real number in the range [0, 1]

; conditional distribution of

; function from domain of to conditional distributions of

P()

P (Y = y ∣ X = x)
P (y ∣ X = x) Y

P (y ∣ x) X Y

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 55/67

Solution: syntactic sugarSolution: syntactic sugar

In [18]: (infer

 charig1986

 kidney-distribution

 (q {:success "yes"} :do {:treatment "surgery"}))

In [19]: (infer

 charig1986

 kidney-distribution

 (q {:success "yes"} :do {:treatment "nephrolithotomy"}))

Out[18]: 0.8325462173856037

Out[19]: 0.778875

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 56/67

Infer and plotInfer and plot

In [20]: (def associational-plot

 (plot-p-map

 {"P(success | nephro...)"

 (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "nephrolithotomy"}))

 "P(success | surgery)"

 (estimate kidney-distribution

 (q {:success "yes"} :given {:treatment "surgery"}))}))

(def interventional-plot

 (plot-p-map

 {"P(success | do(nephro...))"

 (infer charig1986 kidney-distribution

 (q {:success "yes"} :do {:treatment "nephrolithotomy"}))

 "P(success | do(surgery))"

 (infer charig1986 kidney-distribution

 (q {:success "yes"} :do {:treatment "surgery"}))}))

Out[20]: #'user/interventional-plot

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 57/67

In [21]: associational-plot

Out[21]:

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 58/67

In [22]: interventional-plot

Out[22]:

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 59/67

Nonstandard adjustmentsNonstandard adjustments

"How Conditioning on Posttreatment Variables Can Ruin Your Experiment and What to
Do about It" (Montgomery et al. 2018)

This article provides the most systematic account to date of the
problems with and solutions to a recurring problem in
experimental political science: conditioning on posttreatment
variables.

...we recommend avoiding selecting on or controlling for
posttreatment covariates.

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 60/67

In [23]: (define wainer1989

 (model

 {:pests_0 []

 :birds [:pests_0]

 :pests_1 [:pests_0]

 :fumigants [:pests_0]

 :pests_2 [:pests_1 :fumigants]

 :pests_3 [:pests_2 :birds]

 :crops [:fumigants :pests_2 :pests_3]}))

Out[23]:

pests_0

birds

pests_1

fumigants

pests_3

pests_2 crops

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 61/67

In [25]: (define wainer-short

 (model

 {:z_0 []

 :b [:z_0]

 :z_1 [:z_0]

 :x [:z_0]

 :z_2 [:z_1 :x]

 :z_3 [:z_2 :b]

 :y [:x :z_2 :z_3]}))

Out[25]:

z_0

b

z_1

x

z_3

z_2 y

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 62/67

In [27]: (define concomitant-example

 "Figure 3.8 (f) from (Shpitser 2008)"

 (model

 {:y [:x :z_1 :z_2]

 :z_2 [:z_1]

 :z_1 [:x]

 :x []}

 #{:y :z_1}

 #{:x :z_2}))

In [28]: (identify

 concomitant-example

 (data [:x :y :z_1 :z_2])

 (q [:y] :do [:x]))

Out[27]:

y

z_1

z_2x

Out[28]:

[[P (x)P (∣ x,)]P (∣ x)P (y ∣ x, ,)]∑
,z1 z2

∑
x

z2 z1 z1 z1 z2

where: (unbound)

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 63/67

Distribution protocolDistribution protocol

(estimate this formula)
(measure this event)
(signature this)

User extensible; potential for integration with probabilistic programming

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 64/67

"Nanopass" simpli�cation"Nanopass" simpli�cation

Tikka and Karvanen modify the ID algorithm to simplify formulas
Whittemore seperates identi�cation and simpli�cation steps
"Pattern matching" rules to simplify formulas

Marginalize rule

Conditional rule

Not currently user extensible

P (x, y) → P (y)∑x

→ P (x ∣ y)
P(x,y)

P(y)

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 65/67

Install (Ubuntu)Install (Ubuntu)

SourceSource

github.com/jtcbrule/whittemore

$ sudo apt install leiningen

$ pip3 install jupyter

$ lein new whittmore demo

$ cd demo

$ lein jupyter notebook

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 66/67

Questions?Questions?

5/2/2019 talk slides

file:///home/josh/causal-programming-guest-lecture/slides.html?print-pdf#/ 67/67

In [29]: (define butterfly

 (model

 {:x_1 []

 :z_1 [:x_1]

 :y [:z_1 :z_2]

 :x_2 []

 :z_2 [:x_2]}

 #{:x_1 :z_2}

 #{:z_1 :x_2}))

In [30]: (identify butterfly (q [:y] :do [:x_1 :x_2]))

Out[29]:

x_1 z_1

z_2

y

x_2

Out[30]:

[P (y ∣ , , ,)P (∣)P (∣)]∑
,z1 z2

x1 x2 z1 z2 z2 x2 z1 x1

where: (unbound)

