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ABSTRACT 

The problem of representation and handling of constraints is here considered, mainly for 

picture processing purposes. A systematic specification and utilization of the available con- 

straints could significantly reduce the amount of search in picture recognition. On the other 

hand, formally stated constraints can be embedded in the syntactic productions of picture 

languages. Only binary constraints are treated here, but they are represented in full gen- 

erality as binary relations. Constraints among more than two variables are then represented 

as networks of simultaneous binary relations. In general, more than one equivalent (i.e., 

representing the same constraint) network can be found: a minimal equivalent network 

is shown to exist, and its computation is shown to solve most practical problems about con- 

straint handling. No exact solution for this central problem was found. Anyway, con- 

straints are treated algebraically, and the solution of a system of linear equations in this 

algebra provides an approximation of the minimal network. This solution is then proved 

exact in special cases, e.g., for tree-like and series-parallel networks and for classes of rela- 

tions for which a distributive property holds. This latter condition is satisfied in cases of 

practical interest. 

1. INTRODUCTION 

In writing this paper we had in mind mainly the problems of a particular 

field, namely picture recognition and description. However, the problem of 

proper representation and economic handling of constraints is very general 

and is important in many problems of operations research, engineering, and 

computer science. For instance, many practical design problems consist of find- 

ing any solution which satisfies all topological and geometrical restrictions [l] . 
Even when an optimization problem must be stated, the chosen constraint 
representation is essential in determining the nature of the mathematical prob- 
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lem involved and its difficulty. Unfortunately, many practical constraints are 

difficult to handle, because they involve in a complicated way many variables. 

For instance, we can mention the noncrossing condition among electrical paths 

in an integrated circuit layout or, as a more esoteric example, the restriction to 
be faced in the design of computer rooms that all magnetic tape units must be in 

sight from the operator. 

In picture processing, constraints play an important role, but they are un- 
likely to be representable in a linear or anyway simple form. Here constraints 

are better known by the name of (geometrical, topological, structural) prop 
erties of the class of pictures under consideration. But in fact they are present as 

fixed characteristics in explicit models or are implied by recognition routines 

which do not take into account configurations without the desired property. 

However, we believe that an explicit and consistent treatment of constraints 

can bring valuable advantages, To show what we have in mind, we present 

some scenarios. 

(A) SPEED UP OF THE RECOGNITION PROCESS 

Often recognition subroutines search a picture for specific elements or fea- 

tures. The search space is usually more than two-dimensional, because other 

free parameters must be determined at the same time (e.g., the angular position 

of a stroke, the vertex structure in a cube [2]). For efficiency, what we are 

looking for must in general be dependent on what we have already found out 

about the particular picture. More precisely, it is useless to look for features 

which are possible a priori, but are not consistent with the part of the picture we 
have already recognized. For instance, if the problem is to recognize human 

faces [3] , we must, of course, limit the search for particular elements (eyes, 

nose, mouth, ears, etc.) to the areas of the picture where they may ever be 
present. A second step is to establish constraints between pairs of elements. 

If for instance the position of one ear has already been determined, the area in 

which the mouth could be found is further restricted. Such binary constraints, 

if formally stated, can be intersected and composed. For instance, if also an eye 

has been determined, the allowed area for the mouth can be considered the 
intersection of the constraints given by the ear and the eye. Furthermore, the 
presence of elements yet unfound, such as the nose, but for which constraints 
have been defined, could transmit further constraints from determined elements 

to the sought ones. In conclusion, if all those constraints are superimposed, the 
search space can be reduced. Only the first few elements will be time consum- 

ing. For the others, the recognition procedure should be essentially a check of 
the evidence we have already gathered. 

(B) OPTIMAL RECOGNITION 

In particularly bad cases, combined evidence from all elements is required 
before accepting a picture, because many acceptable candidates are present for 
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each feature. This situation arises mainly during preprocessing or anyway during 
recognition of unstructured entities (see [4] for the limit case of optimal detec- 
tion of curves). In this case, it is convenient to assign a merit figure to the var- 
ious alternatives, and then to find the best one with an optimization procedure. 
Again, systematic handling of constraints is vital in reducing the combinatori~ 
involved. 

(C) IMPERFECT MODELS 

A model can be imprecise because it is too simple, or because something 
present in the model is missing in reality. In the former case, the model will 
not be as powerful as it could be, but it will work; while in the latter case 
the picture could be rejected as not satisfying the model. The missing part could 
be simply obscured by the noise. If the model is organized in terms of con- 
straints, a model without the critical part could be systematically built, taking 
into account the constraints transmitted from one part of the model to the other 
through the missing part. 

(D) LINGUISTIC METHODS 

The application of parsing mechanisms in picture analysis is very promising 
[5,6] . These methods work well if the structure of the image is mainly topolog- 
ical, as in bubble climber tracks, chemical structures, block diagrams [7,8] . 
If geometrical information is essential, it can be embedded in the syntax rules 
only in simple cases, as in the linguistic description of mathematical formulas 
[9] . If the allowed geometrical relations can be expressed as a set of simulta- 
neous constraints, they can be formally added to the rewriting rules of the 
grammar under the form of applicability conditions [lo] . In this way, perhaps 
the geometrical consistency of the various rules can be proved at a gramm~ 
level. This fact would guarantee that all the pictures generated by the grammar 
are consistent and representable on the plane. 

In this paper, we have limited our formalization to binary constraints. On 
the other hand, they are represented in the most general way, i.e., as algebraic 
relations between sets of possible values of pair of variables [14] . For many 
variables, a constraint is then represented as a network of simultaneous binary 
relations. 

Of course, an n-ary constraint cannot always be represented exactly by an 
n-vertex network of binary constraints. However, an optimal approximating 
network can be given easily. On the other hand, many different but equivalent 
networks can represent the same n-ary constraint. All the networks equivalent 
to a given one can be ordered by set inclusion. A least element is proved to 
exist and it is called the minimal network. Minimal networks are shown to have 
all the constraints as explicit as possible. 

The problem of the determination of the minimal network from a given one 
is then shown to include most of the practical problems mentioned above about 
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constraint composition and transmission. Unfortunately, no general algorithm 
was found. This is not surprising, since very tough problems, like the graph- 
coloring problems, fit this scheme. 

Approximate solutions are considered instead. In these networks (which are 
called closed) all those global constraints are explicit that can be transmitted 
through all the possible paths in the network. The problem of determining a 
closed, equivalent network is then stated algebraically. If the operations of 
interaction and composition of constraint are defined, the above problem can 
be shown to be equivalent to the solution of a system of linear equations in this 
algebra. Since composition does not distribute, in general, over intersection, an 
iterated Gaussian elimination algorithm is required for finding the solution of 
the system. 

In the last section, some special cases are investigated, in which closed net- 
works are minimal, i.e., in which our algo~~m computes the exact solution. 
If the topology of the network is restricted, tree-like and series-parallel closed 
networks are proved minimal. The same result is also achieved if we restrict the 
class of allowed relations to a class where composition distributes over inter- 
section. This is the case when the sets of possible values of variables have a lat- 
tice structure and the relations satisfy a monotonicity assumption. This condi- 
tion is satisfied in some cases of practical interest, such as the shortest path 
problem in a graph (possibly with negative weights) and its multimensional 
equivalents. Here, our algorithm becomes the well-known Floyd algorithm 

P21. 

2. ZION, INTE~ECTION, AND CO~~SITION OF CONSTANTS 

In this section, a constraint between two variables is represented, in complete 
generality, by a relation between two sets. Elementary algebraic properties of 
relations are then recalled. 

If a constraint exists between two variables x 1 and x2,x I E Xl = (x 1, 1 , . . . , 

+v,l,XZ~& =b2,17..., 
6 

x2, N 2 } then in general not all possible pairs 

1,r,X2,, ) are allowed. The set of allowed pairs is called a rehtion between 
sets X1 and X, . In general, it is convenient to consider ordered pairs and thus 
to distinguish between a relation R L2 and a relation R2,. For instance, if Xr = 
{1,2)andX2=~1,2,3),thenR,~=((1,1),(2,1),(1,3))isarelation. Any 
relation R 1 2 is thus a subset, proper or improper, of the product set X = X, X 
X2 of all the pairs. A standard way of representing subsets is to use the charac- 
teristic function F 

F: X, X &--+{O, 1);F((xk,,,x2,,))= 1 iff(x1,r,X2,s)ER,2. 

In other words, to each pair in X a binary digit is associated, which is 1 if and 
only if the pair belongs to the relation. Being characterized by a binary number 
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of N, - N2 digits, 2N~ . Nz different relations exist between Xi and X2. Usu- 
ally, these digits are arranged in a N, X Nz matrix [R rz, J whose rows cor- 
respond to the elements of set Xi and columns to set X2. Thus we have 

R lZ,rs= 1 iffIxl,r,x2,s)ER12- 

In our example, the characteristic binary matrix is: 

1 0 1 
RIZ = I I 10 0’ 

In what follows, relations will be mainly represented in matrix notation. 
The inverse R;: of a relation RI2 is defined as the transpose R;;, ,.s = 

RZ,rs=R21,sr. 

For relations, being sets, we can define the usual operations of negation 

RI2 =lR12 iffR12,rS=lR12,vs (r=l,.._, N,;s=l,..., N2) 

union or logical sum 

I li 1 
RI, =R12 “Rx2 lff&,,, =R’t2,rsVRY2,rs 

intersection or logical product 

RI2 =Ri2 nR:‘2 iffR12,, =Riz,rs ARi!2,rs 

and the partial ordering relation of set inclusion 

R’,, CRY2 iffR;z,rs C R’i’2,rs_ 

An empty relation Q, i2 and an universal relation U,, can be defined 

4 12,r.~=~; u12,rs.s= I 

such that 

R,2 “cP12 =R,2;R12 n CT12 =R,2> 

forallRi,. Thus relations between two sets form a complete lattice with great- 
est element iJ and least element $ and where the operations of sup and inf coin- 
cide with union and intersection, respectively. 

Next step is to consider a constraint R 12 between variables x1 and x2 and a 
constraint Rz3 between variables x2 and x3. There will be an induced or trans- 
mitted constraint R 1 j between variables x 1 and x 3 : a pair (x 1 , r , x3, ,) is al- 
lowed, if at least one value x2, t exists, such that both (xl, r, x2, t) and (~2, t, 
x3,s) are allowed by R,, and R 23, respectively. This requirement defines the 
operation of c~m~sition of relations: 

R13 =R,2 ‘R,, iffR,3,,, 
=“;R 

12,rtAR23,ts- 
t=1 
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Note that composition, in matrix notation, is just binary matrix multiplication. 
For example, we may have 

1 0 

1 0 1 
R 12 = 

I I 1 
;R23 = 1 1 ;I& =R12 ,Rz3= 

* 100 I 1 .l 0 I 
0 1 

It is very easy to see that composition is associative, and that an identity relation 
exists, defined only between a set and itself, 

I Il,uS = 1 iff y=s 

such that 

R 12 *r22 =I11 -R,2 =R12 

for every relation R I2 . 
The defined operations of union, intersection and composition have an use- 

ful monotonicity property. If f(R 12) is any expression involving the operations 
of intersection, union and composition among relation R f2 and any number of 
constants, from R’ 12 CR’;, we hav~~~~~~) Cf(Ry2). This property is obvious 
if we notice that function f, written in binary form, contains binary sums and 
products, but no negations. 

A particular case of a relation happens when one of the two sets (say the 
first) has just one element. These relations, in binary form, are representable as 
vectors and are in a one-to-one correspondence with the subsets of the second 
set. Actually, in what follows we will always assume the existence of a ficti- 
tious one-element set X0 ~ to have an homogeneous way of representing subsets. 
Especially useful in our formalism are the fundamental vectors V, 1 and V, ,, , 
Le., the vectors with only one nonzero element. For instance, the imtzge in R 12 

of the element x1 f r can be defined as represented by the vector 

where VO1 is the fundamental vector corresponding to element x 1, y 

V ol,t= 1 iff t=r. 

A relation R $2 is called total if every element of X, and X2 is in relation with 
some other element, In our formalism, R 12 is total iff 

V 01 %2 +#02 and&2 b VZO f&, 

for every fundamental vector V 0 1 and V2 o . Given any total relation R , 2 , it is 
easy to see that R,, + U,, = U,, and .!I,, .I?,, = UIZ, 

In what follows we are mainly interested in the operations of intersection 
and com~siti~~, so we will use the symbol + for intersection and the simple 
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concatenation for composition. Unfortunately, composition does not distribute 
over intersection. In general 

R,&, fR;dfR,2R;3 +R,tRI;s 

For instance, if 

then 

1 0 
&,(&a +&)=$,3; Rrz&, +R,zR;ra = 

I I 0 0 * 

A special case arises when distributivity does hold. In general, we say that 
the relations 

Rik,Rki i= 1,. . . ,n; ifk. 

form a distributive set of relations with respect to set X, if 

for every set of fundamental vectors Voi , Vi0 (i = 1, . . . , m; i # k) and for 
every m. In (2.1) the indexes of the sums go from 1 to m. Actually, the order- 
ing is immaterial and thus we require (2.1) to hold whenever the indexes assume 
any set of m values. Note that distributivity defined in terms of fundamental 
vectors is more general than simple distributivity. For instance, from 

V,, R12 t&s Go +& V;o) = ffo, Ri2 R:s Vi’, + VOX Rr2 R;s v:b 

for every V. 1 , Vi0 and V;b , (2.2) follows, but not conversely. 

R,2 (Rb3 + Ri3)= R,* R;s + R,z R;s. (2.2) 

3. NETWORKS OF CONSTRAINTS 

In this section, constraints among n (!z > 2) variables are considered. A 
straightforward formalization of such constraints as nary relations is possible, 
but the quantity of information involved grows exponentially with n, and so 
no hope exists to handle it for any practical n. Networks of binary relations as 
defining an n-ary relation are then introduced. An optimal appro~mation 
theorem is proved, and just one minimal network is shown to exist. Finally, a 
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problem is stated, called the central problem, which embodies most practical 
problems posed by networks of constraints. 

Generalizing the approach followed in Section 2, it is clear that an n-ary con- 
straint can be considered to allow some (or none or all) among the possible n- 
tuples of values of n variables. Thus an nary relation p is any subset of X = 
Xi xx, x . . . X X,. The set X can be visualized as an ndimensional space. 
An n-ary relation p thus represents a “solid” in this space. Given an nz- 
d~ension~ subspace S = Xi, X . . . X Xi,, any n-tuple CI and any nary rela- 
tion p in X can be projected on 5 yielding the m-tuple as and the m-ary relation 
ps_ The number of distinct n-tuples is Ni . . . N, and thus 2N~ ’ ’ ’ Nn is the 
number of distinct nary relations. If Ni = . . , = N, = N then NR bits are re- 
quired on the average for storing a n-ary relation. Practical values for N and n 
in picture-processing applications are 1000 and 20, and thus the information in- 
volved is enormous. One way out is to consider a restricted class of nary 
relations. 

A network R of binary relations is defined as a set of sets x = {Xi , . . . , 
X, } plus a relation Rii from every set Xi to every set Xi (i, i = 1, . . . , n). Fur- 
thermore,Rii E Iii(i= 1,. . . , n). If Rij = RjT, the network will be called sym- 
metic. The network of relations R can be thought of as representing an n-ary 
relation 

p= {aIaEX=X, X ** .XX,;(~i,i)S=XiXXj;a~ERij}, 

In other words, an n-tuple a is allowed by p iff its projections on all the two- 
dimensional subspaces S of X simultaneously satisfy the binary constraints of 
the network R. Note that if some Rij = &if then p = $, while, if p = X then 
Rij=Uq(i,j=l,..., n;i#j)mdRii=ljj(i=l,...,n). 

An obvious way of visualizing a network is by a directed graph. Vertices 
V . . . , V, correspond to sets Xi, , . . , X,, , and an arc Vi ?$ is present from 
i ;O I$ iff Rij $: Uq(i # i) or Rii # Zii. Relation Rij is then associated with 
the direct arc Vi f$. For instance the following nary relation p is represented 
by the network R in Fig. la: 

P= H~,J>X2,1, ~3,1),(~1,1,~2,1~~3,2)~(~1,2~~2,3~~3,I)~ 

or, in a more compact notation, 

(3.1) 

where the indexes of the allowed n-tuples form the columns. 
A network R is determined by giving in orderly fashion all its binary relations, 

and this requires roughIy B = nz N2 bits. Clearly B <N”, except for very small 
values of N and n. This argument shows that the cfass of nary relations repre- 
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Fig. 1. Examples of networks of constraints. As a graphical convention, if both arcs ViVi 

and ViVi exist, but only ViVj is labeled with relation Rii, then arc ViVi is assumed la- 
beled with R$. Networks (a), (b), and (c) are equivalent, and network (c) is the intersec- 
tion of networks (a) and (b). 

sentable by networks is narrower (in fact, much narrower) than the class of all 

n-ary relations. 
Given an n-ary relation p, the simple projection formula (3.2) generates a net- 

work R’ which is, in a sense, the best possible excess approximation of p. 

R:j=~asIafpandS=XiXXil. (3.2) 

In words, if p is expressed in column form, Rij is obtained by taking the i-th and 
the j-th rows (and merging repeated pairs). Note that Rji C_ I and that Rji = 

RliT, i.e.,K’ is symmetric. 
Some properties of R’ are proved by the following theorem. 
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THEOREM 3.1. The network of relations RIdefined by (3.2) represents an 
n-sly relation p’ such that 

PCP’. (3.3) 

Furthermore, no network R ” exists, which represents an n-ary relation p” such 
that 

p c p” c p’. 

Thus, in particular, p’ = p if p is representable by a network. 

Proof. Formula (3.3) is easy proved, because n-tuples a E p satisfy network 
R’ by construction. We will prove the second part by contradiction. Let a be 
an n-tuple such that a E p’ but a $ p”. Thus, some projection b of a does not 
satisfyarelationofR”,sayb=as,S=XiXXj,bBR:~,whilebER~. Butif 
the pair b was included in Rij it means that an n-tuple ZE p exists, such that 
ZS = b. This is a contradiction, because then Z $! p”, while we assumed 

P E P”. Q.E.D. 
As an example of the projection procedure let us consider the following 

relation: 

The approximating network is: 

The induced nary relation is 

1 12 1 

p’= 1 2 2 2 

1211 

(3.4) 

(3.5) 

A partial ordering among networks of constraints having the same number n 
of vertices can be introduced in a natural way. The ordering relation is defined 
as follows: 

R’5R”iffR:jCR~~(i,j=l,..., n). (3.6) 
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The reflexive, weakly antisymmetric and transitive properties for network inclu- 
sion descend from the same properties for set inclusion. It is also clear that the 
set of all networks with n vertices is a lattice under C_ because a least (R ji = @ii) 
and greatest (Rii = Uji if i f j; Rii = I) networks exist. Thus union and inter- 
section between two networks are defined. It is also immediate to see that 

R’ CR” implies p’ C p” 13.7) 

where R’ and R” represent p‘ and p”, 
We have seen that not all the n-ary relations are representable by a network 

of constraints. It can also happen that an n-ary relation p is representable by 
many distinct networks. For instance, relation (3.1) can be represented by the 
networks in both Fig. la and Fig. lb. Two networks R’ and R” which represent 
the same n-ary relation p are called equivalent. 

The next theorem proves the existence of a minimal network M representing 

P* 
THEOREM 3.2. Let S, be the equivalence class c?f’all networks representing 

the same relation p. If 

R’ESpandR”ES,., 

also 

R =R’nR”ESp. 

(See, for instance, Fig. 1 a, b, c), As a consequence, a minimal (with respect to 
CJ network M representing p exists, and can be obtained from p by the projec 
tion formula (3.2). 

Proof: To prove this theorem, we first notice that R CR’ and R E R”, and 
thus an n-tuple a satisfying R satisfies also R’ and R” for (3.7). Conversely, 
if a satisfies R’ and R” it satisfies also R. In fact, for each subspace S = Xi X Xi, 
ifa~~R~janda~~R~jthena~~R’nR It = R by the definition of intersection. 
Finally, the network obtained by formula (3.2) must be minimal: if any pair 
b is erased by any relation Rij, the represented relation p is changed. Q.E.D. 

Given an n-ary relation p representable with a (minimal) network of con- 
straints M, and a subspace S = X, X . . . X X, of X, one could ask if the projec- 
tion ps of p: 

PS = {as lagpI (3.8) 

is representable with a network of m nodes. Interestingly enough, in the general 
case the answer is no, and a counterexample is given in Fig. 2. There, relation 
p is 

P’h,bX2,i>X3,1 ,x4, I>,@,, i,x2,2,x3,2~~4,2), 

(Xl, 21 -%,2rX3,l,x4,3))* 
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Fig. 2. An example of indecomposable network. 

If S = X, X X2 X X3, ps is given by (3.4). But, as we saw, (3.4) is not repre- 

sentable with a three-vertex network. If ps is representable for all S, then p and 

all networks representing p are called decomposable. If not, the next theorem 

gives the best approximating network for ps. 

THEOREM 3.3. The best, minimal approximating network of ps is the com- 
plete subnetwork II@ of M corresponding to the set of vertices S = {X, , . . . , 

4n~. 

Proof: This property descends immediately from Theorem (3.1) and from 
the fact that if T = Xt X Xi is any bidimensional subspace of S, we have: 

GMT =PT* Q.E.D. 

In the remainder of the paper we will be often concerned in proving that a 

network R is minimal: M = R. The next theorem gives a characteristic condi- 

tion for R to be minimal. 

THEOREM 3.4. A necessary and sufficient condition for a network R to be 
minimal, is that if a pair b satisfies the generic relation R ii, an n-tuple a satisfy- 
ingR exists,such thatas=b,S=Xi X Xi. 

Proof Necessity. If R is minimal and b E Rji, an n-tuple, II E p, must exist 

such that as = b, because otherwise R’ with Rii = Rit - {b} would be equivalent 
to R and smaller. Sufficiency. Under our assumption, no pair can be erased 
from any Rti still obtaining an equivalent network. Thus R is minimal. Q.E.D. 

The last theorem can be modified as follows. 
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COROLLARY. Given any relation Rii of R, if whenever a pair b belongs to 
Rii, an n-tuple a satisfying R exists such that as = b, S = Xi X Xi, then Rii = 
Mij. 

Proof: This statement follows from the previous theorem and from the equiv- 
alence of R and M. Q.E.D. 

The above theorem shows that a minimal network of constraints is perfectly 

explicit: as far as the pair of variables xi and xi is concerned, the rest of the net- 
work does not add any further constraint to the direct constraint Mii. Minimal 

networks are likely to represent an n-ary relation in a redundant way. In our 

application, for instance, we expect to define constraints almost only between 

geometrically adjacent elements. As a result, the density d of connections (de- 

fined as the average number of arcs per vertex) should be bounded, like that of 

a planar graph, d < 3r or at most should grow logarithmically with the number 
of vertices, but not linearly like in a complete graph. 

From the above reasoning it should be clear that, in our application, net- 

works of constraints will never be given or stored as minimal networks. Further- 

more, the trivial way of getting the minimal network, i.e., generating the n-ary 
relation p from the given R, and then M from p with (3.2) will be impossible in 

continuous cases and always practically infeasible. Therefore, the problem of 

computing M from R in an economic way is nontrivial. On the other hand, we 

can show that most of the practical problems arising from the use of networks 

of constraints can be naturally reduced to the central problem of deriving M. 
In fact, in the first scenario described in the introduction, if VOk (k = 1, . . . , m) 
are the fundamental vectors corresponding to the already determined values of 

the first m variables, the intersection of images 

Rap =k$, VOk Mkp 

clearly represents the set of allowed values for the p-th variable. In scenario (b), 
if we want to eliminate a variable (related to m others variables) using a se- 
quential optimization method, we must optimize the objective function sep 
arately for all the feasible m-tuples of related variables. The set of those m- 

tuples is ps, if S is the subspace of the related variables. By Theorem (3.3)M’ 
is the best approximating network of pS. Finally, in scenario (c), the minimal 
subnetwork MS corresponding to the parts which are not missing constitutes 
the best reduced model. 

‘In a planar graph, the number n of vertices is related to the number a of arcs by the 

relation a < 3n - 6. Equality is achieved if all the faces are triangular. 
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4. APPROXIMATE SOLUTION OF THE CENTRAL PROBLEM 

In this section, we consider the problem of computing the minimal network 
equivalent to a given network. No exact general algorithm, besides complete 
enumeration, was found. However, an approximate solution is given, which 
generates an equivalent “closed” network. 

In a generic network of constraints, a certain pair (xi, r, xi, ,) can be allowed 
by the direct relation Rij (or also by Rji, Rii, and Rjj), but can be actually for- 
bidden because it is not possible to give to all the other variables any set of 
values allowed by all the constraints. To recognize such pairs and erase them, 
namely to make explicit the global constraint, is the essence of the central 
problem. The central problem, in its generality, is very difficult. Graph-coloring 
problems, for instance, are very neatly represented by networks of constraints: 
relations are all of the type U-I, i.e., all pairs are allowed except those of the 
same color. The number of allowed colors (i.e., the cardinality of sets Xi) and 
the topology of the graph characterize the particular problem. For instance, 
Fig. 3 shows the network of constraints representing the problem of coloring a 
tetrahedron with three colors: an impossible task. However, it is difficult to 
recognize it with a sequence of local examinations of the network, and without 
“higher-order” reasonings. Needless to say, no hope exists to extend such tricks 

011 
Fig. 3. In this network, the relation I I 1 0 1 is associated to every arc. This network repre- 

110 
sents the impossible problem of coloring a four-vertex complete graph with three colors. 

This network is symmetric and closed but not minimal. 
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to the general case. Therefore, we look for an approximation of the minimal 

network M, i.e., a network Y which is as explicit as possible and still computable 

with local operations. 

Let us consider an ordered pair of values 

and a path’ 

P=(V,= Vi, )...) V$ )...) Vim = 5) m>l 

in the complete network R from vertex Vi to vertex Vi. The pair b is allowed 
by the path P if the variables 

Xi=Xi 
0 

,. . . ,Xi 
P 

, . . . ,Xi m 
=xj 

can be given suitable values 

Xi, r = Xi, , r. 3 . . . 3 xi p,‘pv * * * ) Xi,,r, =xj.s 

which satisfy the relations 

RiOi, )--. ,Rip_lip~-..~Rim_,im 

along the path P. Note that the same vertex V, can occur in a path any number 
of times, and different values can be given to its variable xk for each occurrence. 

A pair b is called legal if it is allowed by all the paths P from Vi to 5. We will 

see that the property of being legal is decidable in a finite number of steps. 

Finally, a network is called closed if any pair b which is not legal is also not al- 

lowed by the direct relation Rij. 
It is clear from the definition that minimal networks are closed. The converse 

is, in general, not true. For instance, the network in Fig. 3 (representing the 

uncolorable tetrahedron) is closed but not minimal. This also means that many 

closed networks equivalent to a given network may exist. Given a network R, 
its closure Y is defined as the largest closed network not larger than R but equiv- 

alent to R. The next theorem proves the uniqueness of the closure. 

THEOREM 4.1. The set of closed networks not larger than R but equivalent 
to R (which is ordered under CZ) has a largest element Y. Therefore, Y is the 
only closure of R. 

Proof We must prove that the union of two closed networks Y’ and Y “, 
both not larger than R but equivalent to R, is a closed network Y not larger than 
R but equivalent to R. In fact from R > Y’ and R > Y” we have R > Y’ U Y ‘I= 
Y. From R > Y > Y’, R equivalent to Y’ and (3.7) twice, we have Y equivalent 

2A path in R is any sequence of vertices. A vertex can occur more than once in a path, 
even in consecutive positions. 
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toI?. Let Yii,rs = 1. Then for Y = Y’ U Y” either Y& ,.S = 1 or YG, rS = 1 or both, 
say Yi, ,.S = 1. Then the pair b = (xi, ,., x i, $ ) is allowed by Pin Y’ for closure. 
Thus b is allowed by P also in Y, because the same set of path values satisfying 
Y’ satisfies also Y, for Y’ 5 Y. Q.E.D. 

The closure Y of a network R can be characterized as being the solution of 
the following system of equations. 

(4-l) 

where 

dii = iii if i = i ; dfj = l_Jij otherwise. 

A network of relations Y is called a solution of system (4.1) iff: 
(i) The relations Yii satisfy equations (4.1). 

(ii) No other network Y’ exists, such that Y’ satisfies equations (4.1) and 
Y’ 2 Y. 

Note that condition (ii) is necessary for ruling out solutions which are not equiv- 
alent to R (like the trivial case Yii = &iii) and that it does not imply uniqueness 
of the solution a priori. We can prove the following theorem. 

THEOREM 4.2. Any ne~or~ Y which ~tis~es system (4.1) is: 
(a) Not larger thy R. 
(bf Closed. 

If furthermore Y is a solution of system (4.1), then Y is: 
(c) Equivalent to R. 
(d) l”he closure of R. 

Therefore only one solution exists. 

Proof: (a) From (4.1) we have 

Yjj c ‘ii. 

Thus, by the monotonicity property of composition 

And finally, from (4.1) 

Yfi C_ Rii yii 2 Rii. 

(b) Given any path P, we will prove that if Yi/, ,.$ = 1 and Y satisfies equations 
(4.1) then the pair b = (x. I, ,., xi, ,) is allowed by P in R, i.e., the relations of R 
along P can be satisfied. We will prove this result by induction on the length 

m of the path P. If m = 1 the proof is trivial, because Yii is the only relation 
which must be satisfied. If the result is true for every path of length (m - I), 
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it is true also for paths of length m. In fact, from (4.1) we have: 

Yii= Yi,i, ERi,,i, YiliM. 

Therefore at least one value xi,, r, must exist, such that Ri i 0 L’ror1 = 1 and 

Yi,i,n,r,r,, = 1. Thus relation Rio i, is satisfied by (xi0 ,ro, xi, , ,., ), while 

Yi,im,r,r,, = 1 implies that the m - 1 relations Ril i, , . . . , Ri,n _1 i, can be 

satisfied according to the induction assumption. 

(c) If an n-tuple satisfies Y, it satisfies also R, because Y E R for (a). Con- 

versely, let a = (xi , r, , . . . , x, , yn ) be an n-tuple satisfying network R, namely 

Rij,rir. = 1 (i,j= 1,. . . , 
.c 

H). We will prove that a satisfies network Y too. In 

fact, 1 we assume Yij, ,.iri = 0 for some i,i, it is possible to find a larger network 
Y’ 2 Y (against (ii)) satisfying (4.1) and such that Yii, ,.iri = 1. For proving it, let 

‘~, ‘i’j = ’ ; ‘~, rS =Yii,rsifrfriands#ri(i,j=l ,..., n) 

It is immediate to see that equations 

are satisfied, while from Y satisfying (4.1) we have: 

Adii,,,(i,j= 1,. . . ,n,rfri,s#si) 

from monotonicity of union and intersection. So we have 

Y$ C k Rik Yii + dii, 
k=l 

Now, if we compute iteratively 

Ye = ~ Rik Y~,~’ + dii 
k=l 

we will have 

YO c Y’ c.. . E YP 

from monotonicity of intersection and composition. Thus for some 4 we will 
have 

yq = yq+1 = y' 

satisfying (4.1) and such that Y’ > Y” 3 Y. 

(d) Let Y be the closure of R. From the definition of closed network, applied 
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to paths of length two, we have 

Summing up, we have 

Actually, we must have equality, i.e. (4.1), because otherwise with the iterative 
method shown in part (c), a network Y’ can be found which satisfies (4.1). 
Then the proof of part (c) shows that a network P” 2 L’ 2 Bean be found 
which satisfies (4.1) (and thus is closed and not larger than R) and is equivalent 
to R. The existence of r“ would contradict the maximality of F proved in 
Theorem (4.1). Thus Lsatisfies (i). On the other hand, if Y is any solution, we 
must have F2 Y for the same reason. Thus y satisfies (ii) and is the only 
solution. Q.E.D. 

T%e next corollary gives a simple way for ch~acterizing a closed network. 

COROLLARY. A necessary and sufficient condition for a network Y to be 
closed is to satisfy the following system of equations 

Yii’ t YfkYkj+dij (i,j= l,..., n). 
k=l 

Proof: According to Theorem (4.2b), if Y satisfies system (4.2) Y is closed. 
Conversely, if Y is closed, it must be the closure of itself and thus by Theorem 
(4.2d) must satisfy equations (4.2). Q.E.D. 

The next theorem proves a useful property of closed networks. 

THEOREM 4.3. In a closed ne~ork Y, the loop relations and the relations 
among different vertices satisfy the following equation 

Yii= YiiUiifIii (i,j= 1,. . .,n). (4.3) 

Proof. From (4.2) we have 

Yii C Yij Yji f Iti 

and from monotonicity 

Yii 2 Yij Uji f Iii* 

Furthermore, from (4.2) we have 

Yjj f& Yji Yjj* 
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In binary form we have 

or, from a truth table 

yij,rs c yii,rr. 

Making the union with respect to s 

Ni 
V Yij, rs c yij, pr (r = 1) . . . , Ni). 

J-=1 

Equivalently, we can write 

Therefore we have 

Yij vi + Iii 2 Yji . 

Yii = Yij Uji t Iii. Q.E.D. 

Given a network R with n vertices we can give an algorithm for computing its 

closure Y. 

Algotithm C 
Step1 Y” =R. 
Step 2 Execute next step for k = 1, . . . , rz. 
Step 3 Y$ = Y$-’ t Yik,-’ YEi’ Y$’ (i,j = 1, . . . , n). (4.4) 
Step 4 If Y” # Y” then let Y” = Y” and go to Step 2; else let Y = Y” and stop. 

THEOREM 4.4. Algotithm C computes the closure Y of R. In particular, if 

Y; KS = 1 in the network Y” obtained at the end of the first iteration, then pair 

(x. , ,‘,, xi, ,) is allowed by all the paths from Vi to Vi in R. 

Proof: We will prove that (i) Y is not larger than and equivalent to R; (ii) Y is 

closed; (iii) for every closed network Y’ equivalent to R and not larger than R 
wehave Y’CYCR. 
(i) Each appli ca t ion of Step 3 produces a network Yk equivalent to the prece- 

dent Yk-r. In fact, clearly Yk C Yk-’ . On the other hand, if the second. term 

in the right member of (4.4) 

Nk 

V y.k-1 A yk-1 A yk-1 =o 
1=1 

Ik, rt kk, tt kj, ts 

is zero for some r, s it means that no value for xk can be found which satisfies 
relations Y?-’ Ykml and Yk-’ forxi=Xi randxi=~i,,. Thusnon-tupleis 
excluded b>* Y’ wkkch is notkLxcluded by Y k-1 . Therefore, from transitivity 

of equivalence and inclusion, Y is equivalent to R and Y CR . 
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(ii) We will p r 0 ve that if a pair is allowed by Y” then is allowed by all paths 

in Y” . We assume that when Step 3 was executed (k - 1) times, if a pair 

(x. , , y, xi, J is allowed by the relation Yij ‘-l, then it is allowed also by all the 

paths in Y” with extrema in Vi and 5 and having all the intermediate vertices 
with indexes <k - 1. If k = 1, the assumption is trivially true. We will prove 

the same property for k after the kth execution. Let us consider any path P 
from Vi to 5 having intermediate vertices with indexes < k. If vertex V, does 

not belong to this path, the induction step is proved. If it does, path P can be 

decomposed in three paths: 

(a) a path from I$ to Vk; 

(b) a finite (possibly zero) number of circuits from Vk to V, ; 
(c) a path from V, to Vi. 

All those paths have intermediate vertices with indexes <k - 1. According to 

the step (4.4), if Y$, r’s = 1, then a value xk, t can be found such that Y&-\, = 
Y[if tt = 1 and Y,“i,\, = I. Thus, by the induction assumption, we can give to 

1, 

all the intermediate variables of paths (a), (b), and (c) suitable values which sat- 

isfy the corresponding constraints in Y”. When the algorithm stops, we have 

Y” = Y” = Y, and thus Y is closed. 

(iii) Let Y’ 2 R b e any closed network equivalent to R. We will have Y ’ C Yk 

for all k and for all iterations of algorithm C. Thus also Y’ C Y. Inductively, 

let us assume that Y’ C Y k-1 before the execution of Step 3. This is certainly - 
true for the first execution of Step 3 in the first iteration Y” = R. Then Y’ C 

Yk. In fact, if network Y’ is closed, it satisfies equations (4.2)‘for the corollary 

to Theorem (4.2). In particular, we have 

Yii & YiZ Y&t dii; Y& C YLk YRi 

and therefore for the monotonicity of composition and intersection 

Yi; E YiZ Yik YLi t dii 

and thus 

But from the induction assumption and monotonicity we have 

Yij t Yiz Yak Y~j t dii C Yi~-l + Yap' Ye,' Yap’ + dij. 

(4.5) 

(4.6) 
Now note that the dii term in the right member is redundant because if i #j 
then dii = Uij and if i =/’ then dii = Iii and Yi-’ E Rii E Iii. Thus from (4.4), 

(4.5), and (4.6) we have 

Y; g r; Q.E.D. 

It is interesting to see how the number of iterations required by algorithm C is 
dependent on the order of vertices in Step 2. F;lr instance, in network R in 
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b 

Fig. 4. (a) A symmetric network of constraints. (b) The network of constraints Y’ equiv- 
alent to (a) computed by algorithm C in one iteration, with order of elimination (4, 1, 2, 3). 

Fig. 4a, if k = 1,2,3,4 then only one iteration is necessary for finding the clo- 

sure Y (Yii = #ii). If k = 4, 1,2,3 then two iterations are necessary. Fig. 4b 

shows the network Y’ obtained at the end of the first iteration. 

According to the above theorem, if Y$, ,.S = 1 in the networkX, Y’ obtained 

at the end of first iteration, then the pair (X i, ,., xi, J is allowed by all paths in R. 

For instance, in the above example for i = 1, j = 2, and r = s = 1 and for path P = 

(h, L 6 VA valuesxl, I ,x3, 1 ,x4, 1 and x2, I satisfy the three relations 

R 1 3, Rs4, R4* along P. Note how this condition is not sufficient for Y ’ being 

closed. Thus, in general, one iteration of algorithm C is not sufficient. On the 
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other hand, each iteration of algorithm C produces an equivalent, strictly smaller 
network, and thus convergence is assured. 

5. EXACT SOLUTION OF THE CENTRAL PROBLEM FOR PARTICULAR 

CLASSES OF NETWORKS 

In the last section we have been able to give only an approximate solution to 

the central problem in the general case. A closed network instead of the min- 

imal network was obtained. We can now ask if there are particular cases in 

which a closed network is always minimal. 

In general, given a network R and a pair of vertices Vi, Vi we are interested 
in knowing if the relation Yij of the closure Y of R coincides with the relation 

Mij of the minimal network equivalent to R. In this case, network R will be 
called regular with respect to pair Vi Vi. If R is regular with respect to all pairs 

of vertices, it will be called regular. Thus for a regular network R we have Y = 

M. In this section, we will see that interesting classes of networks are regular. 

We can determine regular classes of networks in essentially two ways: either 

constraining the topology of the network or restricting the type of allowed rela- 

tions. We will consider the former case first. 
A symmetric3 series-parallel network (spn) with respect to a pair of vertices 

Vi Vj is usually defmed recursively as follows 
a) A complete symmetric network with two vertices Vi and Vi is a spn. 

b) Given two spn’s with respect to V;V; and I’: I$“, the network obtained 

letting Vi’ and Vy coalesce is a spn with respect to Vi Vy. 

c) Given two spn’s with respect to V/ Vi’ and Vy I$“, the network obtained 

letting Vi = V/ = Vy and Vi = Vi = Vy is a spn with respect to I’i Vi. 

As usual, all missing arcs Vi Vi are assumed to correspond to the universal rela- 

tions Vii. 
In the last section we saw that in a closed network Y a relation Yij makes 

explicit the constraints given by all the paths from Vi to Vi. The next lemma 

proves that a closed network has the same property for all the subnetworks 

which are series parallel with respect to Vi Vi. 

LEMMA 5.1. Let Y be a symmetric closed network, and let R be any subnet- 
work of Y which is a spn with respect to Vi VP Let M be the minimal network 
equivalent to R. We have 

Yii C_ Mij . (5.1) 

31~ what follows, symmetry will be almost always required, since a minimal network 

is obviously symmetric, while symmetry is not assured for a closed network. On the other 

hand, an equivalent, symmetric and not larger network R ’ can be immediately computed 
from any R with the formula: Rij = Rii + RiT. Its closure Y is then symmetric, as is obvious 
from algorithm C. 
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hoof: According to the corollary to Theorem (3.4) we must prove that if 

yij, YS = 1 then an m-tuple satisfying R (R has m vertices) such that Xi = xi, r and 

Xi = Xi, s can be found. We will use induction applied to each step of the recur- 

sive definition of a spn: we assume that the property is true for the component 
networks and we prove it for the resulting network. For steps of type (a), if 

yij, rs = 1 then Yii, sT = 1 for symmetry, while Yii, ,.,. = 1 and Yii, ss = 1 for 

(4.3). For steps of type (b), let V, be the vertex in the middle of the series. 

If yij, rs = 1 and Y is closed, then a value xk = xk, t exists such that Yik, ,.r = 1 

and ykj, ts = 1 and therefore the recursive assumption can be applied because 

no constraint exists in R between two vertices in different components. In defi- 

nition (c), the recursive assumption can be directly applied to both components. 

Q.E.D. 

As an example of application of this theorem, let us consider again the color- 

ing problem represented by the closed but not minimal network Yin Fig. 3. In 

Fig. 5a, we have a subnetwork R which is a spn with respect to all pairs of ver- 
tices except V, V3 . In Fig. 4b, we have the minimal network M equivalent to R. 

Note that Yii 2 Mij (in fact, Yij = IVij) for all pairs except V, I’, . 
The next theorem proves the regularity of some classes of networks. 

THEOREM 5.1. (a) Tree networks4 are regular. (b) Svmmetrical series- 
parallel networks with respect to a pair Vi Vi, possibly with trees rooted at any 
vertex, are regular with respect to Vi Vi. 

Prooj: (a) Let R be a tree network, and let Y be its closure. Given a pair 

Vi I$, let P be the only connecting path in R. If Yii, Ts = 1, suitable values can 

be given to the vertices of P which satisfy the relations of Y along P, since Y is 

closed. It is now easy to see that suitable values can also be given to the other 

variables. It is sufficient to evaluate them following the tree structure of R, i.e., 

in such a way that each new vertex vk to be evaluated is adjacent in R to one 

already evaluated vertex Vh (more than one vertex is not possible: a circuit 

would be present). Inductively, let xh, t be the value already assigned to xh . 

To xk we can assign any value xk, s such that Yhk, tS = 1. Such a value must 

exist, because otherwise Yhh , 11 = 0 for Theorem (4.3) and thus Yph, rl = 0 for 
all p (again for the same Theorem) so that the value xh, f could not have been 
given previously to xh according to this procedure. At the end, all the variables 

have been evaluated and satisfy the Y constraints along the tree, and thus also 

all the R constraints, because Y 5 R for Theorem (4.2(a)), and R has constants 
only along the tree. Therefore also Y is satisfied, because Y and R are equiva- 
lent. Thus Y is minimal and R is regular. 

(b) Let R be the spn and let Y be its closure. Let Y’ be the subnetwork of Y 
topologically equivalent to R. We have Y C Y ’ E R. But Y is equivalent to R 

4As with spn, the branches of the tree correspond to symmetric, Z-vertex networks. 
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Fig. 5. (a) A series-parallel network with respect to all pairs of vertices except Vz V3. 
(b) Its minimai equivalent network. Ail nonlabelled arcs are assumed labeled with 

011 

I I 
101. 
110 

and thus also Y’ is eq~v~ent to both Y and R from (3.7) twice. Now let M 
be the minimal network equivalent to Y’ and thus to Y and R. For Lemma 
(5 .I) we have Yif 2 Mii . But M and Y are equivalent and M is minimal. Thus 

J4ij = Yij and R is regular with respect to Vi 5. If trees are present at some 
vertices of the spn, we can find a feasible n-tuple evaluating the vertices of the 
spn first, and then evaluating the vertices of each tree as in part (a) of this 
theorem. Q.E.D. 
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In the remainder of this section, we want to determine a class of regular net- 

works by restricting the type of allowed relations. We need the following defini- 

tion. A network R such that relations Rik and Rki (i = 1, . . . , n; i # k) form a 

distributive set of relations (see condition (2.1)) for all k, is called a distributive 
network. We can now prove the following theorem. 

THEOREM 5.2. A closed, distributive network Y is decomposable. Further- 
more, its symmetrization 

Yji=Yijt YjT(i,j=l,...,rZ) 

is minimal. Thus in particular if Y is symmetric, it is minimal. 

Proof: We will prove first that if variables x 1 , . . . , x~_~ can be given values 

Xl,r,~~~~rXk-l,rk-, which satisfy relations Yij(i,i = 1, . . . , k - l), a value 

xk, ,.k can be given to variable xk which, tOgether with the previous values, sat- 

isfy relations Yij (i, i = 1, . . . , 
equivalently 

k). From the assumption we have Yij, ,.i,.i = 1 or 

VeiYjjvj~=Ue~ i,j=l,..., k- 1, 

where the fundamental vectors V, i and Vje are defined as 

VOj, r = 1 and Vie, ,. = 1 iff r = ri 

From the corollary to Theorem (4.2) we have 

YijSYik Ykj i,i=l,...,k-1. 

From monotonicity, we obtain: 

vei Yjk Ykj VjO = uo,. 

Summing with respect to i and j 

k-l k-l 

cc 
voi Yik Ykj %O = u(),. 

j=l j=l 

Applying distributivity (2.1) we have 

(E vOiyik)(z ykj!i,)=“OO* 

Then a value xk, Yk can be found, such that 
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or, completely in binary form, 

‘ik, ‘irk = 1 and Yki, rk pi =l i,j=l,...,k- 1. 

Therefore, from Theorem (4.3) we have 

Y kk, ‘k’k = l* 

Finally, adding the inductive assumption, we have 

Observing that the ordering of variables is immaterial and using the above proof 
as inductionstep, we have shown that if a k-tuple b satisfies any complete sub- 
network YS of Y,S= { Vi,, . . . , Vik } , at least one n-tuple a exists, whose 
projection on S is b, which satisfies Y. On the other hand, if b does not satisfy 
Ys , II does not satisfy Y by de~mition. Thus the~rojection pS of the n-ary 
relation p represented by Y is representable by Ys and therefore Y is decom- 
posable. Furthermore, Y’ is minimal. In fact, if Yirs = 1 the ordered pair b = 
(xi, ,., xi, ,) satisfies the two-vertex subnetwork YF, S = (Xi, Xi}. Then by 
the first part of this theorem an rz-tuple CI exists, such that a satisfies Y and as = 
b. But Y is equivalent to Y ’ and thus a satisfies Y’ as well. Therefore Y’ is 
minimal for Theorem (3.4). Q.E.D. 

In what follows, it is convenient to consider a particular case in which a 
slightly different distributive property holds. Given a network R, let us con- 
sider the set D of all the relations equal to all the possible expressions obtained 
by combining relations Rii with the operations of intersection and composition. 
If in D right and left distributivity of composition over intersection always 
holds, R is called star-disttibutive. In this case, given any expression, it can al- 
ways be reduced to a sum of products using distributivity. It is immediate to 
see that each term of the sum is the constraint represented by a path between 
the same pair of nodes. Therefore every relation Dii in D represents the global 
constraint transmitted by some set of paths between vertices Vi and Vi. Es- 
pecially interesting then are the limit relations D$’ representing the global con- 
straint transmitted by all the paths in R between Vi and I$. D* is the corre- 
sponding network, called limit network. 

The next theorem proves some interesting properties of D*. 

THEOREM 5.3. Let R be a star~~st~buti~e network, let D* be its limit net- 
work, let Yn be the n~~rk obtained after one iteration of ~l~o~‘thrn C, and 
let Y be the closure of R. We have 

(a) D*= Yn. 
(b) D* = Y. 

Therefore Y = Y n and one iteratiorz is sufficient for algorithm C 

‘AS usual, we assume Dt; c Iif (i = 1, _ _ . , n). 
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Root (a) According to Theorem (4.4), if Yd Ts = 1, then the pair (xi, ,., 

Xi, ,) is allowed by all the paths in R. Therefore ’ 

On the other hand, Y[ is obtained, in algorithm C, with a finite number of inter- 

sections and compositions of relations of R. Therefore Y$ is the sum of some of 

the terms of which DIT is the sum: thus 

Therefore we have 

D;=Y;(i,j=l,,.., n). 

(b) It is very easy to see that D* is the solution of system (4.1). We prove first 

that D” satisfies equations (4.1). In fact, let us consider the relation D,;. It is 
equal to the sum of the terms corresponding to all paths between I’i and Vi. 

The first factor of each term must be one of the relations Rik (k = 1, . . . , n). 

Partitioning the paths and factorizing Rik, we clearly obtain the right member 

2 Rik Dzi + dii . 
k=l 

In fact, if i = j the condition Dt: 2 Iii holds by construction. Since D* satisfies 

(4.1), from Theorem (4.2) we have 

D*cY. 

But we have 

YS Y”, 

and, from part (a) 

D”= Y”. 

Thus we have also 

D*= Y. Q.E.D. 

It may be interesting to see how in the star-distributive case algorithm C is 

nothing else that the solution by Gaussian elimination of the system of equa- 
tions (4.1). We will show it with an example. If n = 3, we have 

Yli=Rll Y,i+Rl* Y,i+R,, Y,i+dli 

Yzi=Rzl Y,i+R,z Y,i+R23Y3j+d2j. j=l,...,n 

Y,i=R31 Y,j+RJz Y,i+Rss Y,i+d3j. 
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Now it is easy to see from a truth table that the solution of the single equation 

Z=AZ+B 

is 

Z=AB 

if we are interested (as we are) only in the largest Z. Thus applying distributiv- 
ity, the first equation of our system becomes 

Y,j=R,,d,j+R,,R,z Yzj+R,,R,a Ysj. 

Then substituting in the other two equations, multiplying and factorizing, we get 

Y,j=R,,d,j+R,,R,z Yzj+R,,R,a Yaj 

Yzj=Rz,R,,d,j+(R22+RZ,R,,R,2)YZj+(R23+RZ,R,,R,3)Y3j+d2j 

Yaj=Ra,R,, dlj+(R32 +R~~R~~R~z)Y~~+(R~~+R~~R~~R~~) Y3j+d3j- 

The matrix of coefficients of this new system is exactly equal to Y ’ if we notice 

thatR,, CZ,, andthusR,, = R , , R, , and furthermore Rk , R 1, =Rk, + 
Rk,R,,. After elimination of Yzj and Yaj we obtain 

Y,j = Y:, d,j + Yf2 dzi + Y:a d3j 

Yzj = Yz, d,j t Y232 dzj + Y233 d3i 

Y,i = Yz, d,i + Y332 d3j + Y333 d3j. 

For example, if we write the first equation forj = 2, we have 

Y,z = Yf, lJ,z + Y;2 + Yf3 U32. 

But it could be possible to see6 that 

Y$ c Y:k Ukj . 

In conclusion we have 

We can also point out that algorithm C is similar to the Warshall algorithm 
[l l] for finding the closure of a relation or to the Floyd algorithm [12] for 
determining the shortest path between all pairs of nodes in a weighted graph, or 
to the algorithm for deriving a regular expression from a left linear grammar or 
from a transition graph [ 131. The similarity is not casual. In fact, all these al- 
gorithm can be considered the solution by Gaussian elimination of a linear sys- 

had 

6Actually, the terms of the type Yfk Uki would not even exist, if variable elimination 

taken place separately for the different values of indexj. 
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tern of equations in a suitable algebra. We can find the same analogy in Jordan 
algorithm for matrix inversion in the usual linear algebra. The only difference 
is that in this case the solution of the single equation 

Z=AZ+B 

is 

Z = (1 - A)-‘B, 

while in our algebra, as already pointed out, the solution is 

Z=AB. 

In what follows, we impose restrictions on our relations for obtaining distrib- 
utive and star-distributive networks. 

Let us define a partial ordering < in the set Xi of values of the variable Xi .7 
Furthermore, let us superimpose onXi a complete lattice structure together 
with the operations of sup and inf. A total relation Rij between a set Xi and a 
set Xi will be called monofone if it has the following properties: 

(0 if Rii, rs = 1 and t 2 r then Rij, ts = 1 and conversely 

if Rii, rs = 1 and t < s then Rij, rt = 1 (5.2) 
(ii) ifRij,ps= l,Rij,qs = 1 and r = inf (p, 4) then Rij, ,.$ = 1 and 

ifRij,rp= l,Rii,rq = 1 and s = SUP (p, 4) then Rij, ,.$ = 1. (5 *3) 
The next theorem will clarify the kind of relations allowed by the above 

definition. 

THEOREM 5.4. Given a total relation Rij , a necessary and sufficient condi- 
tion for R to be monotone is that a defining function 

exists, such that 

Rij, rs = 1 iff s <&j(r) 

and 

(5 -4) 

(5.5) 

or, by duality, that an inverse defining function 

exists, such that 

Rij, rs = 1 iff r > gij (S) (5.6) 

7For notational simplicity we will consider the partial ordering as defined on the set of 
indexes as well. For instance r < s is equivalent to Xi, ,. 4 xi, s. 
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Sii(SUP(S,,S,))=S”P(gij(s,),gii(s*)). (5.7) 

Proat We will prove this theorem only for conditions (5.4) and (5 -5). The 
proof in term of the inverse defining function is exactly dual. ~~~~cieffc~~. 
From equation (5.5) we have 

if rl G r2 then& (r,) GQ (Ye). (5 -8) 

Therefore if R ji, rs = 1 and t 2 I from (5.4) and (5.8j we have 

s %&i(r) Gj (0 

and thus 

Rii, tS = 1. 

If&j, rs =landt<swehave 

t<s<fii(r) 

and thus 

Rii, r* = 1 s 

If Rij, rp = 1, &i, rq = 1 and s = sup (p, 4) we have 

~~~i(~)and~~~~(~j 

and thus 

therefore 

s = SUP (P, 4) “.f$ (4 

Rii, rs = 1. 

If Rii, ps = 1 ,Rii, qs = 1 and r = inf (p, 4) we have 

sGAj(P>andsG./$(@ 

and thus 

s g inf (_Gi (~1, &j (4)) =& (11 

therefore 

Rii, rs = 1. 

necessity. If a relation Rji is monotone it can be put in the form (5.4). In fact, 
given an element r of Xi let us compute the superior&(r) of the image of r in 
Rija For (5.3) we have 

R- Zl* Tfij (‘1 = 1 * 
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Thus, for (5.2) equation (5.4) is satisfied. Function ,hj (r) satisfies equation 
(5.5). In fact, for (5.2) we have 

Rii,rlfiitinf(rl,r2)) = 1 andRii,r2fii(inf(rl,‘2)) = 1 

and thus, for the definition of fij 

hj (inf (~1, YZ 1) G.&i (~1) and Ai (inf (rl, r2 )) <.I$ (~2 1 

Therefore 

.Gj (inf (Yr, Y2)) G inf C&j (ri 1, &j (r2 11. 

On the other hand, we have 

(5 -9) 

%lfjj(‘l) = 1 and&j, y2 fij(rz) = 1. 

From (5 -2) 

RG,rr inf(ffj(r1),fijtr2)) = 1 andQr2 inf(jij(rl),fq(r2)) = 1. 

Thus from (5.3) 

Therefore 

~~,(inf(rl,r2)~inf(fii(Yl),fii(~2)). 

Finally from the above relation and (5.9), equation (5.5) follows. Q.E.D. 
A few examples wiII clarify the kind of relations allowed by the monotonicity 

~nstraint. For instance, if the partial ordering is also total, equation (5.5) can 
be substituted by equation (5.8), i.e., the defining function must be monotone. 
In Fig. 6a we see a monotone relation represented by a bipartite graph. We have 
&j(5)=4,fii(4)=&j(3)=2,~j(2)=fii(l)= 1. C onversely, gjj (1) = 1, gij (2) = 
3,gij (3) =gij (4) = 5. A special case of monotone relation, with infinite sets, 
is represented by the “shortest path” constraint 

In fact, the shortest path problem in a weighted graph is a special case of our 
central problem. The network of relations R can be obtained from the weighted 
graph as follows. The set of values for each variable is the set of natural numbers 
and aII relations Rif (i,i = 1, . . . , n) are monotone. 
fining function ff we have 

If Rij is specified by the de- 

Xj G 47 (Xi) = Xi + tij 

where tii are the arcs weights: tij = tji , tic = 0. We will see that the minimal net- 
work M has the same form 

Xj G&r (Xi) = Xi + dij 
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Fig. 6. (a) An example of monotone relation. (b) The relation in (a) without “ceiling” in 

Xi and “floor” in Xi. (c) The rectangular image of element xi, r as allowed by the inter- 
section of two monotone relations Rij and Rji_ 

and thus dii represents the length of the shortest path from vertex Vi to vertex 
l+. AS a check, note that dii G tij and SO Mij E Rii . 

If the sets Xi are finite, the restriction to total relations could look heavy. On 
the contrary, a “floor” value xi, 0 and a “ceiling” value xi, U can always be 
added to Xi, such that 

&j, us = 1 for all s and Rg ,.. = 1 for all r. 

Fig. 6b shows the relation in Fig. 6a without ceiling in Xi and floor in Xi. 
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In general, monotone relations are considerably more powerful than simple 

“shortest path” constraints. For instance, the lattice structure of multidimen- 

sional euclidean spaces can be used for specifying multidimensional rectangular 

domains. In Fig. 6c we see how defining functions&i of Rii and gji of Rji re- 
strict to a rectangle the image of xi, r in Rii + Rji . Different points Xi, lr can 
generate different rectangles, provided equation (5.5) is satisfied. 

The next theorem proves the closure of the class of monotone relations under 

the operations of intersection and composition and gives the rules for perform- 
ing such operations in terms of the defining functions. 

THEOREM 5.5. (a) If Rig and Ri~are monotone relations represented by the 
defining functions fij and fiy, then the sum 

R = R .I. + R .‘.I 
11 Y ‘1 

is a monotone relation represented by the defining function 

fii (9 = inf (hi (4, fiy (9). (5.10) 

(b) Likewise, the product 

Rij = Rik R,j 

is represented by 

fij (4 ‘fkj (.hk (r)). (5.11) 

PLoof: (a) Relation Rij defined by (5.4) and (5 .lO) is evidently the inter- 
section of Ri and RB. Furthermore Rij is total. In fact we have at least 

Rii, rfij (r) = 1 and Rij,gij (S)s= 1 

where gij (s) is defined dually. Finally, function fii satisfies equation (5.5) 

hj (inf (rl , rz )) = inf (hi (inf (rl , r2 )), fiy(inf (r, , r2 >)) 

=inf(inf(~~(r1),~~(r2)),inf(f~~(r,),~~(r2))) 

=inf(inf(f;li(r1),fi~(r,)), ~f(.$(r2),.$(r2))) 

= inf (hj (rl),f;:j(r2)). 

(b) The “if” part of (5.4) is trivial. For the “only if” part, if Rij, rS = 1 then an 

index t exists, such that Rik, rt = 1 and Rkj, tS = 1. But Rik, Yt = 1 implies 

t <f;:k (r). Thus from (5 -8) we have 

.fkj (t) Gfkj (fik 09) =Lj (4. 

But Rkj, ts = 1 implies s < fkj (t) and thus s <jij (r). Relation Rij is ~SO total 

because at least 

Rii, rfij Cd = 1 and Rij,gii(S)t = 1. 



128 UGOMONTANARI 

Equation (5 5) is proved as follows 

&(inf(rr , r2N =.fkj (fik ( in f( yl, r2>> ‘fkj @f(fik @l>,f;:k @2))) 

=inf(fkj(fik @l)hfkj(fij(~Z))) =inf(fii@lhfijh)) 

Q.E.D. 

Next theorem proves the distributivity of monotone relations. 

THEOREM 5.6. (a) Any set of monotone relations 

Rik,Rki i,j= 1,. . . ,tl 

form a distributive set of relations with respect to set xk, le., 

(g voiRik)($ Rkjbo)=ig ‘oiRikRkibo (5.12) 

for all fundamental vectors Vo i and Vi0 . 

Proof: For Theorem (5.4) vectorsR& = Voi Rik and Rio =Rkj Vjo repre- 
sent subsets Of & Of the form 

R ek,t=lifft<tandRkO,t=lifft>F. (5.13) 

Furthermore, intersection of two subsets of this form produces a subset of the 
same form. If 

R Ok =R& +R& 

we have 

And if 

we have 

R Ok,T=l ifft<inf(t’,t”) 

Rko = Rio + Rio 

RkO, t = 1 iff t > sup (T’, r”). 

We will prove that subsets of this form satisfy both left and right distributivity 

ROk(RLo tR~,)=R,,R;, +RokR;6. (5.14) 

(Rdk +R&)RkO =R;,R,, +Rd;Rke. (5.15) 

In fact, the right member of (5.14) in binary form, is 

Nk 
v Rok,t 

t=1 
. 
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Applying binary distributivity, we have 

or equivalently 

Nk 

v Rok,tA(&o,t AR;,,,)v “;” 7 
t=1 r,=i t,=l 

@ ok,t, ARok,~*)A(R~o,~, f’Rk”o,t,) (5.16) 
From (5.13), if 

Rok, t, =1,ROk,t2 =l,RLo,t, =landRGo,,z =I 

then a value 

t = sup (tr > 12) 

can be found, such that 

R o~,t=l,R~o,r=landR~o,t=l. 

Therefore equation (5.16) becomes 

i.e., the left member of (5.14). Formula (5.15) can be proved dually. From 
closure under sum, left and right distributivity we have 

i.e., formula (5.12). 
The next corollary will be useful in establishing star-distributivity. 

Rik (RLj + Rli)= Rik RL/ + Rik R& (5.17) 

(R;k + R,$) R,, = R& Rkj + R;; Rki. (5.18) 

Proof: Equation (5.17) can be written as 

VoiRik (R&i Vfo f Rif bo> = Voi Rik RLi Qo + Voi R,, R& Via 

for all fundamental vectors Voi and Vjo . Therefore, it descends from (5.12). 
The same is true for (5.18). Q.E.D. 
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We can now prove our final result. 

THEOREM 5.7. Let R be a network of relations such that 
(i) its relations Rii (i, j = 1, . . . , n; i # j) are monotone and 

(ii) the loop relations YZ: (i = 1, . . . , n) of the network Y n obtained after 
one iteration of algorithm Care equal to unity. 

We can prove that: 

(a) Network R is star-distributive. 
(b) Network Yn is equal to the closure Y of R. All relations Yii (i, j = 1, 

. . . ) n; i #j) are monotone. 
(c) Network Y is distributive. 
(d) Network R is decomposable and the symmetrization Y ’ of its closure Y 

is minimal. 

Proof: (a) From condition (ii) and Y” & R we have Rti = Zit. Expressions 

obtained by combining relations Rti (i, j = 1, . . . , n; i # j) with the operations 
of intersection and composition evaluate to monotone relations for theorem 
(5.5). The unity elements Rit can be involved in an expression either under com- 

position or under intersection. In the former case a monotone relation is triv- 

ially obtained. In the latter case the unity Zii must be intersected with an expres- 

sion representing the global constraint given by a set of circuits from Vi to Vi in 

R. In fact we can assume inductively that no unity is involved in this expression, 

and in this case distributivity holds for the corollary to Theorem (5.6), and the 

expression can always be reduced to a sum of products. The result of the inter- 

section operation must be again unity, because Y*T, rr = 1 for all r, and thus for 

Theorem (4.4) all pairs (Xi, ,. , Xi, ,) must be allowed by all circuits from Vi to 

I’i in R. In conclusion, the set D of all expressions contains expressions that 

either evaluate to monotone relations or to identities. 

Left distributivity 

Elk (Eli t Ed) = Eik E;i t Eik Eli (5.19) 

always hold. In fact, if all relations are monotone, this property is proved by 
the corollary to Theorem (5.6). If Etk is a unity, both members evaluate to 
E& + Eli. If ELi or E& is a unity, say ELi, we have k = j and (5.19) becomes 

Etk (Ikk + Elk) = Eik Ik, + Eik Elk. 

But then Ekk = Ikk for Yik = I,,, and therefore both members evaluate to 
Etk. The same proof holds for right distributivity. 

(b) This part follows from (a) and Theorem (5.3). 
(c) This part follows from (b) and Theorem (5.6). 
(d) This part follows from (c) and Theorem (5.2). Q.E.D. 
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CONCLUSION 

In this paper we have presented a formal treatment of networks of binary 

constraints. The main practical result was the discovery of an algorithm for 
adding to the direct constraint between each pair of variables the indirect con- 

straints transmitted by all the paths in the network. In particular cases the re- 

sulting constraint was proved equivalent to the global constraint represented 

by the entire network as seen by that pair of vertices. This result allows the 

partial or total utilization of the global constraint structure for reducing the 

set of feasible values of a variable to be determined, when the values of other 

variables are known. 

For the practical computer implementation of this method, the following 
requirements can be suggested: 

(a) In the application under examination, most constraints must be reasonably 

represented or approximated by binary constraints or simple networks of binary 

constraints. Note that if we allow a constraint among m variables to be repre- 

sented by a network of n vertices, with n > m, then the negative result of Sec- 

tion 3 no longer holds, and many representations of the constraint, trivial and 

not, can be found. For instance, the ternary relation (3.4) which is not repre- 
sentable with a 3-vertex network, can be represented by the 4-vertex network 

in Fig. 2, as seen from vertices I’, , V2, and V3. 

(b) The resulting binary relations (finite or infinite) must be capable of being 

stored in an economical way in a computer memory. For instance, if the vari- 

ables are points of m-dimensional spaces, a relation Rii could be stored repre- 

senting the images in Xi of all elements’ xi, ,. of Xi as m-dimensional domains. 
Known techniques of domain encoding can then be used. For instance, two 
given points are sufficient for determining a rectangular domain: this is often 

the meaning of functions fii (r) and gii (r) representing a monotone relation. 
(c) The operations of intersection and composition must be easily definable 
in the chosen class of relations. In particular, this class must be closed under 

those two operations. For instance, this is the case of relations represented by 
domains, convex domains, domains enclosed by polygons or convex polygons, 

rectangular domains. 

(d) The closed network is then obtained with algorithm C. The closed network 
should then be close to the minimal. For instance, we have coincidence for 

rectangular domains, and we expect reasonable closeness for convex domains. 

Bad results can be expected if the relations allow most pairs and forbide a few 
isolated pairs, like in graph-coloring problems. Anyway, if the addition of a 
further constraint destroys regularity (i.e., closed # minimal), it is, nevertheless, 

‘Or just one, if all the other images can be obtained from it by a fixed procedure (e.g., 

translation). 
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convenient to add it. Maybe its addition will not be entirely exploited, but the 

monotonicity property of intersection and composition certifies that the mod- 

ified closed network will be more restrictive. 
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