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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• Identifiability
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Target: to Determine the Effect of Interventions

• “Correlation is no causation”, e.g., Increasing ice-cream sales is correlated with 
more crime, still selling more ice-cream will not cause more violence. Hot 
weather is a cause for both.

• Randomized controlled experiments are used to determine causation: all factors 
except a selected one of interest are kept static or random. So the outcome can 
only be influenced by the selected factor.

• Randomized experiments are often not feasible (we cannot randomize the 
weather), so how can we determine cause for wildfire?

• Observational studies must be used. But how we untangle correlation from 
causation?
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Causal Inference —
Connecting Different Worlds

Data
Q(P’)

(Aspects of P’)

P

Distribution
(Regime 1)

P’

Distribution
(Regime 2)

change

Inference
What happens when P changes?

e.g., Infer whether less people would get cancer 

if we ban smoking.

Q = P(Cancer = true | do(Smoking = no)) Not an aspect of P.
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The Challenge of Causal Inference

•Goal: how much Y changes with X if we vary X between

two different constants free of the influence of Z.

•These variations are called causal effects!

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W

P(z, x, w, y)

X

Hypothetical world

Z

W Y

P(y | do(x))

Bareinboim slides 2020
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Method for Computing Causal  
Effects: Randomized Experiments

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Hypothetical world

Z

W

P(y | do(X0))

X0

do(X0)

Z

P(y | do(X1))

do(X1)

Z

W YW Y X1

Randomization:

Often we cannot do this:
How do we force people to smoke (and wait 20 years
For them to die or not)
How can we change cholesterol levels…
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Computing Causal Effects (l2) from  
Observational Data (l1)

Questions:

* What is the relationship between P(z, x, w, y) and P(y | do(x))?

* Is P(y | do(x)) = P(y | x)?

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W

P(z, x, w, y)

X

Hypothetical world

Z

W Y

P(y | do(x))?
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Causal Effects (formal)

Causal Effect (Def. 3.2.1 [C]):

Given two disjoint sets of variables, X and Y, the  

causal effect of X on Y, denoted as P(y | do(x)), is a  

function from X to the space of probability  

distributions of Y.

For each realization x of X, P(y | do(x)) is the  

probability Y = y induced by deleting from the  

model all equations corresponding to variables in X  

and substituting X = x in the remaining equations.
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Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Alternative world

Z

W

do(X=x)
M =

Z = fZ(uz)  

X = fX(z, ux)

W = fW(x, uw)  

Y = fY(w,z, uy)

xM =

Z = fZ(uz)

X = fX(z, ux) X = x  

W = fW(x, uw)

Y = fY(w,z, uy)

Computing Causal Effects from  
Observational Data
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Px(v) =

Z : age, sex

X : action

W : mediator

Y : outcome
change

X Y

Real world

Z

W X Y

Alternative world

Z

W

do(X=x)

P(v) =

P(z) ⨉ P(x | z) ⨉ P(w | x)

⨉ P(y | w, z)

P(z) ⨉

P(x|z) ⨉equal to 1 in Mx  

P(w | x) ⨉

P(y | w, z)

Computing Causal Effects from  
Observational Data
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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• Identifiability
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Computing Causal Effects from  
Observational Data

Consider a distribution over the  

variables: season, sprinkler, rain, wet,  

and slippery; and the causal graph:

wet

season P(se)

sprinkler

P(sp | se)

This distribution decomposes as

P(v) =

P(se)P(sp | se)P(ra | se)P(we | sp, ra)P(sl | we)

rain

P(ra | se)

P(we | sp, ra)

slippery

P(sl | we)
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Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

Computing Causal Effects from  
Observational Data
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Queries:

Q1 = P(wet | Sprinkler = on)

= P(p1) + P(p2)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

p2

Computing Causal Effects from  
Observational Data
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Computing Causal Effects from  
Observational Data

Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery
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Computing Causal Effects from  
Observational Data

Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

rain

wet

slippery

p1

season

!
sprinkler

You can do algorithm  bucket elimination to infer Q2.
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Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

= P(p1)

season

sprinkler rain

wet

slippery

p1

r se ,ra P(we l Sp = on, ra)P(Sp = on l se)P(ral se)P(se)

=
r s e P(Sp = on l se)P(se)

Computing Causal Effects from  
Observational Data

You can do algorithm  bucket elimination to infer Q1.
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Queries:

Q1 = P(wet | Sprinkler = on)

Q2 = P(wet | do(Sprinkler = on))

season

sprinkler rain

wet

slippery

p1

r se ,ra P(we l Sp = on, ra)P(Sp = on l se)P(ral se)P(se)

=
r s e P(Sp = on l se)P(se)

Computing Causal Effects from  
Observational Data

You can do algorithm  bucket elimination to infer Q2 or any other PGM.



Truncated Factorization Product  
(Operationalizing Interventions)

Corollary (Truncated Factorization, Manipulation Thm., G-comp.):

The distribution generated by an intervention do(X=x) (in a Markovian  

model M) is given by the truncated factorization:
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Truncated Factorization Formula

29
276 slides8  F24



Intervention vs. Conditioning, The Ice-Cream Story

When we intervene to fix a value of a variable,
We curtail the natural tendencies of the variable to vary
In response to other variables in nature.

• This corresponds to a surgery of the model
• i.e. varying Z will not affect X
• Intervention depends on the structure of the graph.

Conditioning P(Y=y|X=x)
Intervening P(Y=y| do(X=x))

Ice cream sales

temperature

Crime rates
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Intervention vs Conditioning,
The Surgery Operation

X Y

Z

X Y

Z

X Y

Z

The Simpson story The blood pressure story The ice-cream story

Conditioning P(Y=y|X=x)

Intervening P(Y=y| do(X=x))

X Y

Z

X Y

Z

X Y

Z

X=x
X=x

X=x
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We make an assumption that intervention has no side-effect. Namely, assigning a variable by 
intervention does not affect other variables in a direct way. Truncation is local

Do operation and graph surgery can help determine causal effect

Intervention vs. Conditioning…
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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The back door criterion and the adjustment formula

• Identifiability
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The Adjustment Formula
To find out how effective the drug is in the population, we imagine a hypothetical intervention by which 
we administer the drug uniformly to the entire population and compare the recovery rate to what 
would obtain under the complementary intervention, where we prevent everyone from using the drug. 

We want to  estimate the “causal effect difference,” or “average causal effect” (ACE).

                           𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 1)) − 𝑃(𝑌 = 1|𝑑𝑜(𝑋 = 0)) (3.1)
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Definition of Intervention and Graph Surgery:
The Invariance Relationship

• We simulate the intervention in the form of a graph surgery. 
• The causal effect 𝑃(𝑌 = 𝑦|𝑑𝑜(𝑋 = 𝑥)) equals to the conditional 

probability 𝑃𝑚(𝑌 = 𝑦|𝑋 = 𝑥) that prevails in the manipulated model 
of the figure below

P_m

Important: the random functions for Z and Y remain invariant
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The Adjustment Formula
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The right hand-side can be estimated from the data since it has only conditional probabilities.

If we had a randomized controlled experiments on X (taking the drug) we would not need adjustment
Because the data is already generated from the manipulated distribution. Namely it will yield P(Y=y|do(x))
From the data of the randomized experiment.

In practice adjustment is sometime used in randomized experiments to reduce sampling variations (Cox 1958).
(This means: If the input is sampled from the intervened upon joint distribution over X,Y and Z we can estimate the 
P(y|x) directly. Or, we can first estimate P(y|x,z) and  also P(z) and perform the summation.)

The Adjustment Formula
(in the Simpson story)
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In the Simpson example:

We get that  the Average Causal Effect (ACE):

A more informal interpretation of ACE is that it is the difference in the fraction of the population that 
would recover if everyone took the drug compared to when no one takes the drug.

=0.832

=0.7818
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The Blood Pressure Example

P(Y=y | do(X=x) = ? Here the “surgery on X changes nothing. So, 
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To Adjust or not to Adjust?

So, the causal graph helps determine the parents PA!

But, in many cases some of the parents are unobserved so we cannot perform the calculation.

Luckily we can often adjust for other variables substituting for the unmeasured variables in PA(X),  and this
Can be decided via the graph.

Where  z ranges over all the combinations of values that the variables that PA take.
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Multiple Interventions and the Truncated Product Rule
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Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

Example:

T
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Multiple Interventions, the Truncated Product Rule

Often we have multiple interventions that may not correspond to disconnected variables.
We will use the product decomposition. We write the product truncated formula

Example:

T
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Outline (chapter 3)

• The semantic of Intervention in SCM, the do operators

• How to determine P(Y|do(x)) given an SCM

• The identification problem 

• The back door criterion and the adjustment formula
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How Can We Do It? partial model + data

Input:
• Causal graph (no parameters)
• Data (observational)

Output: 
• Causal effect

Key observations:
▪ This may not always be possible
▪ When it is possible, we say that the causal effect is identifiable
▪ Identifiability depends on type of causal graph and available data
▪ Several criteria for deciding identifiability: some are complete, some are not
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Identifiability

• When can we answer the causal effect p(Y|do(X)) from observations?

• Intuition
• If a query is not identifiable, it cannot be answered uniquely for any amount 

of data – no consistent estimator exists!
• Conversely, if we can express p(Y|do(X)) in terms of p(V), the query must be 

identifiable.

We say a query p(Y|do(X)) is identifiable on graph G if, for any two 
distributions p1(V,U), p2(V,U) on G,

Definition

Let’s look at a few useful special cases, before the general setting…

53



The Identification Problem 
(more formal)

5

4

Causal Effect Identifiability (Def. 3.2.2)

The causal effect of X on Y is said to be identifiable from a  

causal diagram G if the quantity P(y | do(x)) can be  

computed uniquely from a positive probability of the  

observed variables.

That is, if for every pair of models M1 and M2 inducing G,  

PM1(y | do(x)) = PM2(y | do(x)), whenever PM1(v) = PM2(v) > 0.

Bareiboim slides
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The Identification Problem (II)

Obs. Dist.
P(v)

Causal  

Graph  
G

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

SCM
M

M1 M2

Observed  
(input)

Unobserved  
(output)

56

P(v)

Causal Inference

For any two SCMs M1, M2,

G = G(M1) = G(M2)

P(v | do(x))

(PM1(y|do(x))

= PM2(y|do(x))
(PM1(v) = PM2(v))
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M1 M2

P(v) P(v | do(x))

Causal Inference

For any two SCMs M1, M2,  

G

The Identification Problem (II)

Obs. Dist.
P(v)

Causal  

Graph  
G

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

SCM
M

Identifiable

Observed  
(input)

Unobserved  
(output)276 slides8  F24



M2

P(v) P(v | do(x))

Identifiable

Causal G

Graph
G

M1

Obs. Dist.

P(v)

The Identification Problem (II)

Exp. Dist.
P(v | do(x))

Truth  

(Unobserved)

Truth  

(Observed)

Causal Inference

For any two SCMs M1, M2,

SCM
M

Identifiability really means that,  

no matter the shape of M1, M2,
for all models agreeing in terms of
⟨G, P(v)⟩, they will also agree in

P(v | do(x))!

Observed  
(input)

Unobserved  
(output)

5

8
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Types of Causal Graphs hidden variables are roots

Markovian Model Semi-Markovian Model
each hidden variable has at most one child some hidden variable has more than one child

identifiable not identifiable

no hidden 
confounders 

causal effect always identifiable causal effect not always identifiable

276 slides8  F24
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Example. Identifiable Effect
• Consider any two pair of models compatible with the grap on the 

lest and the same observational distribution P(v):

Z Z

X Y

P(v)=P(z)P(x|z)P(y|x,z)

M(1) =
zZ ← f (1)(uz)

xX ← f (1)(z,ux)

Y ← f (1)(x, z,u )
y y

M(2) =
zZ ← f (2)(uz)

X ← f (2)(z, u )
x x

Y ← f (2)(x, z,u )
y y

⟹

M(1) =

Z ← f (1)(u )
z z

X ← x

yY ← f (1)(x, z, uy)

M(2) =

Z ← f (2)(u )
z z

X ← x

yY ← f (2)(x, z, uy)
⟹X Y

P(v|do(x))=P(z)P(y|x,z) ⟹ P(y|do(x)) = ∑ P(z)P(y|x, z)

z

No matter what the specific  

functions or P(u) are,

as long as M1, M2

agree in ⟨G, P(v)⟩,

they will also agree in  

P(z) and P(y|x,z),  

hence in P(v | do(x))!

6

2

do(x)
⟼
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Why Causal Effect May Not Be Identifiable?

Consider the model

Causal effect (using truncated formula of interventional distribution)

Data generated by the model

If U is hidden, we see this data

Cannot recover the causal effect…

Example: if pq=.14 then p=.7, q=.2 and p=.2, q=.7 
are solutions, but with different causal effects

If X and Y are off, cannot tell if X 
turned off Y or if U turned off both

both p=.7, q=.2 and p=.2, q=.7 are maximum-likelihood parameters
Darwiche example

𝑃𝑅(𝑦𝑋 ) = P (y| do(x) )

276 slides8  F24

The story: If U is on, Y follows X. But if U is off it  makes both X and Y off.



Let’s study how to decide
whether  a causal effect is
identifiable…
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Identification in Markovian Models

Theorem. Given the causal diagram G of any  

Markovian model that all variables are measured,  

the causal effect Q = P(y | do(x)) is identifiable for  

every subsets of variables X and Y and is  

obtained from the truncated factorization, i.e.,

276 slides8  F24

This expression 
(also known as the G formula)
Can also be used to compute
 causal effect



Adjustment by Direct Parents

Thm. Given a causal diagram G of any Markovian  

system, the causal quantity Q = P(y | do(x)) is  

identifiable whenever {X, Y, Pax}  V, that is,

whenever X, Y, and all the parents of variables X  

are measured. The expression of Q is then  

obtained by adjustment for PAx, or

P(y|do(x)) = ∑ P (y|x, pax) P (pax)

13

pax

Quiz: 1) derive from previous slide

2) derive for non-Markovian models
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